Making Everything Easier!”

Learn to:

 Create well-formed PHP code that’s
compliant with PHP 4, 5, and 6

* Easily install and set up PHP and MySQL
using XAMPP

* Choose a Web host and secure your files

* Build dynamic, database-driven
Web sites

Janet Valade
Coauthor of PHP & MySQL Web
Development All-in-One For Dummies

4th Edition

Get More and Do More at Dummies.come®

Start with FREE Cheat Sheets
() .
c\\@ y, } Cheat Sheetsinclude
Q\NQ'Q * Checklists
* Charts

« Common Instructions
» And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/phpmysql

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
*Videos
* [llustrated Articles
* Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
+ Digital Photography
* Microsoft Windows & Office
* Personal Finance & Investing
* Health & Wellness
« Computing, iPods & Cell Phones
* eBay
* Internet
* Food, Home & Garden

Find out“HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

PHP & MySQL'

FOR

DUMMIES

HTH EDITION

PHP & MySQL’

@)

DUMMIES

HTH EDITION

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL® For Dummies® 4th Edition
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com
Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates in the United States and other countries, and may not be used without written permission.
MySQL is a registered trademark of MySQL AB. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2009940274
ISBN: 978-0-470-52758-0

Manufactured in the United States of America
109 87654321

WILEY

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport

About the Author

Janet Valade is the author of PHP & MySQL Web Development All-in-One Desk
Reference For Dummies, PHP 5 For Dummies, PHP & MySQL Everyday Apps

For Dummies, and PHP & MySQL: Your visual blueprint for creating dynamic,
database-driven Web sites, as well as the first, second, and third editions of
this book. In addition, Janet is the author of Spring into Linux and a coauthor
of Mastering Visually Dreamweaver 8 and Flash 8.

Janet has twenty years of experience in the computing field. Most recently,
she worked as a Web designer and programmer in an engineering firm for
four years. Before that, Janet worked for thirteen years in a university envi-
ronment, where she was a systems analyst. During her tenure, she super-
vised the installation and operation of computing resources, designed and
developed a data archive, supported faculty and students in their computer
usage, wrote numerous technical papers, and developed and presented semi-
nars on a variety of technology topics.

To keep in touch, see janetvalade.com.

Author’s Acknowledgments

First, | want to express my appreciation to the entire open source commu-
nity. Without those who give their time and talent, there would be no cool
PHP and MySQL for me to write about. Furthermore, [never would have
learned this software without the lists, where people generously spend their
time answering foolish questions from beginners.

[want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything. My thanks to my friends
Art, Dick, and Marge for responding to my last-minute call for help. I particu-
larly want to thank Sammy, Dude, Spike, Lucky, Upanishad, Sadie, and E.B. for
their important contributions.

And, of course, I want to thank the professionals who make it all possible.
Without the people at Wiley, this book would not exist. Because they all do
their jobs so well, [can contribute my part to this joint project.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com. For
other comments, please contact our Customer Care Department within the U.S. at 877-762-2974, out-
side the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial Composition Services
Project Editor: Rebecca Senninger Project Coordinator: Kristie Rees
(Previous Edition: Pat O'Brien) Layout and Graphics: Melissa K. Jester,
Acquisitions Editor: Kyle Looper Christine Williams
Copy Editor: Virginia Sanders Proofreader: Toni Settle
Technical Editor: John Gosney Indexer: BIM Indexing & Proofreading

Editorial Manager: Leah Cameron
Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant (www . the5thwave . com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Composition Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JOEFOAUCEION «aeeeeeeeeaaaeeeeeeeeeennnaaaaeeeeeeeennnnnaaseeeeeeennnnnaes |

Part I: Developing a Web Database Application
Using PHP and MySOLcaaaaaaieeeeeeeeeeeeeeeennnnnnns 7

Chapter 1: Introduction to PHP and MySQL........ccccocoiinininiiiiieneneeeeeeeeee 9
Chapter 2: Setting Up Your Work Environment...........ccccccoecveciievieeceenienieeieeeeeenen 21
Chapter 3: Developing a Web Database Application.........c.cccocevviervieniienieniienceneennen. 47
Part II: MySOL Databaseccccoueeiceeeiceecaeeennns 73
Chapter 4: Building the Databasecccoocuevviiiiiienieiicececieceeesee e 75
Chapter 5: Protecting Your Data.........ccccceeieeiiiiiiieniecececieceeeeeeee e 111
Part III: PHP..........cceeeieeeieeeieecieenineecsseesnneesseesaeens 131
Chapter 6: General PHP...........ccooooiiiiiiieeeteteeee et 133
Chapter 7: PHP Building Blocks for Programscccceccevvinniiiiiiniienienienienceneene 165
Chapter 8: Data In, Data OUt.......cccccuiviiiiiiiiiieieeeeeeee e 211
Chapter 9: Moving Information from One Web Page to the Next..........ccccccenuennenne. 285

Part IU: Applicationscccccceeeccceiccaceecccaceeeess 305

Chapter 10: Putting It All TOGEther.........ccccveiieiiiieeeeeeeeee e 307
Chapter 11: Building an Online Catalogccoceviiriienieiiniiiniieieeieeeeeeesteseesieee 321
Chapter 12: Building a Members Only Web Sitecccceceviiiriiieiiinciinieiieeieseeeene 359
Part U: The Part of Tenscccceaaaaaaaaaaaacneeeeeeeeeeeeees 387
Chapter 13: Ten Things You Might Want to Do Using PHP Functions.................... 389
Chapter 14: Ten PHP GOtCRhaScccuieiieiicieceeeeteeee et 397

Part Ul: Appendixesccccueeccueecacnieccceececaceeeeees 03
Appendix A: Installing PHP, MySQL, and Apache from XAMPP.............cccccocenennenne 405
Appendix B: Configuring PHPccccooiiiiiiiiicceeeeeeee et 415

Table of Contents

JOCEOAUCEION a.aeeeeeeeeeeenaaaaaeeeeeeeennnnnsaseeeeeeesnnnnssseeees]

ADbOUt ThisS BOOKcciiiiiiieiieiieieeectece ettt 1

Conventions Used in This BOOK..........ccccccooiiiiiiiiiiiciecece e 2

What You're Not To Read.........coooiiieiiiiiiieiceeceeeeeee e 2

FOOliSh ASSUMPTIONS.....ccueiiiiiiieiicieciecee ettt 3

How This Book Is Organized............ccecievienieniininieieieeeeeeee e 3
Part I Developing a Web Database Application

Using PHP and MySQL......cccceoieiiiiieeienieneerteseeeeieeieeve e 4

Part II: MySQL Database........cccooveviiriiriienienieniestesceeeieeieeie e 4

Part I PHP ...t 4

Part IV: APPliCatioNnS.......ccceeiuieiiieiicieeieceeeeecee et 4

Part V: The Part of TeNS......ccccecuieciieiieiecieceeceeceeeeee et 4

Part VI: ADPENAIXEScooueirvieriieiieieeiieiecteeeeeiteseesveesae e esaeesaeeaeeaee s 4

Icons Used in This BOOKccciviiuieieieieieceeeeeeeee e 5

Where to GO from HEre..........ooviiiiiiiiiiiciiceceeeeeeeeee ettt 5

Part I: Developing a Web Database Application
Using PHP and MySOLcccuuueeeeeeeeeeeeeenennnnnnnnnaaeee

Chapter 1: Introduction to PHPand MySQL. 9
What Is a Web Database Application?ccccooeeiieeviieiieecieeeiecieeeieeee 9
The database: Storing data...........ccceeveeveeeierieneeneeceee e 11

The application: Moving data in and out of the database.............. 11
MySQL, MY Databasecccceecverieriiiiiieniieiieieeie e ete et te e see e saeevees 12
Advantages of MYSQL........cocueviiiiiiieniieieeieeieeieeeeseese e sae e 13

HOW MYSQL WOTKScutiiiiiieiieieeieeteeeeetestete e 14
Communicating with the MySQL servercccecevverveniienceeneenne. 14

PHP, @ Data MOVETc.uvviiieiieieieee ettt eeeaeeeeeeeee s e saaeeeestseesssnsesesnns 15
Advantages of PHP.........cccooiiiiiiiicceceeeeteeeeee e 16

HOW PHP WOTKS ...ttt 16
MySQL and PHP, the Perfect Pair.........ccoceeeeviiiiiniiiniiciiieneeeeeeen 17
Advantages of the relationshipcccccecceeviiviiiniiniiniiicieceeee, 18

How MySQL and PHP work together..........ccooeeviiiiiiiniiniinienne, 18
Keeping Up with PHP and MySQL Changes...........cccccevevueeieeieeieceeeneennen. 19
PHP VEISIONS ..ottt 19

MYSQL VEISIONS ...c.uviiuiieiieeiieciieniiesiieeeesteeteesteesreesaeeseesesaeesaesssesssenses 20

Xii PHP & MySQL For Dummies, 4th Edition

Chapter 2: Setting Up Your Work Environment.................... 21
Anatomy of @ Web Site.......ccveiiiiiieiiieiieiiceceeeeteeeeee e 21
Building @ Web Site........coveviiiiiiiiieiieieniceeseeeee ettt 22
Deciding Where to Publish Your Web Site.........cccccovvieiiniiniiniiniice, 23

Using a Web hosting company...........coccoecveviinieniincnniennenienieneee 24
Using a company Web Site........ccccceeviieriiinciieeiiecieeee e 28
Setting UpP YOUT OWIL SETVETcc.ocueeuieeieieieienieeeeeieneeteneesreeneeneeeeeens 29
Deciding Where to Develop Your Web Site........ccccccevveeveeciieciiccieeieeene. 30
On yOUr OWIN COMPULET ...c.vveeieiieneieiienieeteenteeseesaeeseesesaeesesssesssenses 30
On another COMPULETccocieviirierieceteeeece e 30
Setting Up Your Web Sitecocceevieriiiiinienieieececeeeeese e 31
With a Web hosting companycccceeevieiiieeiieniieceeeee e 31
On a company Web Sitecccceeiriiieiieriieeeee e 32
Information you need..........ccceevuieviieiieieeiecieeeeeeee e 33
Setting Up Your Development Environment............cccceevveecieniencieneenneennen. 34
YOUI OWIN COMPULETeeruieiieiieiieieeieeieeteetestestesteesieenseesaeeaeeneeens 34
Web hosting COMPANY.......cocveviiiiiiiiiieeieeieete ettt 38
A cOMPANY COMPULETccceiiiiieeiieeiie et eee et eree e e eeae e 39
Testing, Testing, 1,2,3 ...cc.ecoieiieieeieeieeeeeeese ettt ettt ee s 39
Understanding PHP/MySQL functionsccccoevveeeeviieciienieeiennnnne. 40
TeStiNgG PHP ...c.oiiiiieeeeeeeeee ettt 40
Testing your local PHP configuration fileccccceeviiriinniiniennnne. 43
Testing MySQL ..c.ooieieieeeeeee e 43

Chapter 3: Developing a Web Database Application 47

Planning Your Web Database Application..........cccccoeevverienciiniieniieniencenen. 47
Identifying what you want from the application.........c..ccccceecueneenne. 48
Taking the user into considerationcccceceevieverieniennennieneenne 50
Making the site €asy tO US€ccocceeeeieciiriiieieeeeeeeeeee e 51
Leaving room for €Xpansion.........c.cceevverierieneenieneenieeieeeeeee s 51
Wrting it AOWI....c.voiiiiciiciciceeeeeeeeee e 52

Presenting the Two Running Examples in This Bookc.ccccccevenueune. 52
STUSE FOT SAlE...c.eeuiiiiiieiiicie e 52
MemMDbETrS ONLY ...cceevviiiieiieieieieeee ettt 53

Designing the Databaseccocveveiiiiiiiiiiiciceceeeeeeeee e 54
Choosing the data..........cceeeviiiiieiieieieieee e 54
Organizing the datacccccevverieieieieeee e 56

Designing the Sample Databases........c.cccoceviiniineniiinenienieeieeeeeeeeen 60
Pet Catalog design ProCeSS..........ccvevieieeeeeciesienieere et 61
Members Only deSign ProCESS.......cceeveriereererrieieiereresie et 63

TYPES Of DAt ..vveviiiieiieiieeee ettt e 66
Character data......c..coceeeeiiieniiniceeeeee e 66
Numerical data......cccoceeeeiiiiiiinireee s 66
Date and time data.........ccceceeviereninineeieiceneneeeeeceeeseseeeeeeeas 67

Enumeration dataccoeevvieiiiiiiiceiie e 67

Table of Contents

MySQL data type NAMEScccueevuieeeieirieieecieereeie et eae e 67
WIHING it AOWI...ooiiiiiiiiieceeeceeeeeeee et 69
Taking a Look at the Sample Database Designsccccecevvierveeneenneenen. 69
Stuff for Sale database tablescccevveeierienienieneceeeee e 69
Members Only database tables..........cccoovvviineniiiniiniinienienieeee, 70
Developing the Application.........c.ccoecieviiniiniiniiiiieeeeeeee e 71
Building the database...........ccoeeviieeiieciieeeecee e 72
Writing the programscocceeiiiiiriinienieneeeceeeeeeee e 72

Part [I: MySOL Database................ccccceeceeeeeceeeiceenacs 13

Chapter 4: Building the Database 75
Communicating with MySQL.........cccooueriririeieieieneeeeeeeeeese e 75
Building SQL QUETIEScccvieiieiieieeieeieeeeeeeee et 76
Sending SQL QUETIES......cc.ceoiiiirieiieiieieeieeee et 77
Building @ Database.........ccccieciiiiieiieeiecieceeeeeeee ettt 82
Creating a new database.........cccevierierieiiienieececeeie e 82
Viewing the databasescccoveviiieiecienieneceeeeeeeee s 85
Deleting a databasec.ccevueveriieieieieieeee e 85
Adding tables to a database.........cccceceeeeiieiiieeiieeee e 86
Changing the database structure............ccocooceeeeeecienenenenenceeeene 90
Moving Data Into and Out of the Databasec.ccccoeeeeevevciincienceenieeene. 92
Adding information..........ccoccvevieiieiiieiieieceeeee e 93
Viewing informationcocoeeeiiiiiiiniieiiniiecieicseeceeee e 98
Retrieving informationcccccoccevveriiiniiiniiniinicceeeee e 99
Combining information from tablesc.cccoeevueeciieciiecieeieeienen, 104
Updating informationocceeeeeiienininineeeeeeeeee e 109
Removing information...........ccocceeeiiiviieiienieniesieceeeeeeeee e 110
Chapter 5: ProtectingYourData m
Controlling Access to YOUr Datacccceevueeviieiiieciieiiecieeieceesee e 111
Understanding account names and hostnames............c.ccceevennen. 112
Finding out about passwords.........c.ccecevienienieneenenniineeieeienenn 113
Taking a look at account privileges..........cccccoveeniineniinniniienciencn. 115
Setting Up MySQL ACCOUNLS........ccoueeieeieiiieeeieieeie et 116
Adding aCCOUNEScooiiiiiiiieieeee e 117
Allowing access to a databaseccccecveeieeieeiecienieeeeeeee e 118
Changing Privilegescccceviiriirienieieeeeeeee e 120
Adding and changing passwords.........ccceceeeievienieneeneeneeneenieene 121
Removing aCCOUNLScceeviiiiiiiiiiiiieeieteee e 121
Backing Up Your Data.........ccoccuieeiiieiiieieeeeeeee et 122
Exporting your data with phpMyAdmincccceeeeevieciiecieeienenn. 123
Viewing the EXport file........ccoooveviiiiieiieiieiiciececeeeeeeeee e 125

Restoring Your Data.........cccceeiiiiieiieeieniecieieeeieeeeeee et 127

Xi

xi(/ PHP & MySQL For Dummies, 4th Edition

Part JII: PHPcaeeeeeaaeeaaaaaeeeeeeecceeacaneneeeeeees 131

Chapter6: General PHP............ot 133
Adding a PHP Section to an HTML Page.........ccccoocvevienienieeciieiicieeieeee 133
Writing PHP Statements.........ccccovveviiiiiiiiiinieeiecctcceceeee e 136
Using PHP Variables.........coccoviiiiiiiiiieniiiecccceeeeees et 139

Naming a variable ... 140
Creating and assigning values to variablesc.cccceevvecveeeennn. 140
Dealing with NOTICESccvieiieiiciicececeee e 142
Using PHP CONSTANTS.....ccceciiiiiiiieieeieeieciieeteie ettt 142
Working with NUMDETScccoviiiiiiiiiiiiieeiececeeeecee e 144
Working with Character Stringscocceveevieniinieniiccceeee 146
Single-quoted strings versus double-quoted strings..................... 147
JOINING SEFINGS ..eooviiiiiceeee e 148
Working with Dates and Timescccceceeieeierienienieeeeee e 149
Setting local tiMEccccevierieriieiicie e 149
Formatting a date..........cccevuivuieieieiereseeceeeeee e 150
Storing a timestamp in a variable..........coccooveniiniiniiniinicieiee 151
Using dates with MySQLccoooieiiiieneieieeeeeeee et 153
ComPAaring VAlUEScccueeiiiieiiieieeieecieeie ettt ettt sreesaesaeesaeenns 154
Making simple COMPAriSONS.........ccecvverieeriieniieniieieeie e eve e 155
Matching character strings to patterns..........ccocccevveeniiiiiienniennns 157
Joining Comparisons with and/Or/XOrccccceevieiirnieeiieniienienieseeneene 161
Adding Comments to Your Program..........ccccceecievieniinieninnennienienieneene 163

Chapter 7: PHP Building Blocks for Programs 165

Useful Simple Statementsccccveeviieiiieiiieeieecee e 166
Using echo statementscccccecevviiriienienienieniccieeeeeeeeee e 167
Using assignment statements...........c.cooeeeevieenieenieenieeeieeeee e 170
Using increment statements...........coceevuevienienieneenenieneeeeeeeeens 171
USING EXIt cuviiiieiieeieeiesieeese ettt beeaeenneenee s 172
Using function Callsccoceeviieiiiiciiiiiinienieeeseecceee e 173

USING PHP AITAYS...cutiitiiiieiiiiieieeieeteete ettt ettt st st 173
Creating ArrayS.....ccocceevieeierienienitenitesteie ettt sttt 173
VIEWING QITAYS . .eeeuveeiiiiieriieniieieeie ettt st sttt et 174
Removing values from arrays..........ccceeeevvereenieneeneesieesieeieeeeeeeens 176
SOTHING AITAYS c.vvievveeiieeiieiieieeieecte ettt e s e saeesaeebeebeeseennesneens 176
Getting values from arraysccocceeceeveeneeneenieenieeiieeieeieeeeeeeseens 178
Walking through an arraycccceeeeveecieniiiniinienecececeeeeeen 180
Multidimensional arraysccccceeeveeeieeniieesiieeeiee e esee e esae s 183

Useful Conditional Statements............cceceveviiinenenninennineeeneeeeneene 186
Using if Statementscccooiviriiieiieeeeeeeeeee e 187

Using switch statements.........ccccceeuievieevieniienienieceeeeeceee e 190

Table of Contents

USING LOOPS ..eiiieeiiie ettt ettt ettt e e e aae e saeesnsaesnneas 191
USING fOF LOOPS .venviiieiieieieieeee ettt 192
USING Whil€ IOOPSeiciiiiieiieiiciecie ettt 194
Using do..Whil€ loOPScooeeiieiiiiiiiiciecteceeeeeeeee e 196
INAINIEE IOOPS ...vviiiiieeiie e e 197
Breaking out of @ loOPDcooeiiiiiiiniiiiiiiee e 199

USING FUNCHIONSooiiiieiieceeceeeeees et 201
Using variables in functionsccocooevirienieieninciceeeeseee 203
Passing values between a function and the main program.......... 204
Using built-in functionscccceeeiivieniiiniienienieeeeceeeeeeeeenn 209

Chapter8:Dataln,DataOut.....................cccoviniinnnn. 211

PHP and MySQL FUNCHONSccoeiiieiirieiienieeeiceieeeee e 212

Making @ CONNECHION........ccciiriiriieiieiieieeeeeete ettt 214
Connecting to the MySQL Server.........ccoceeveevernierviensieniienienienens 214
Selecting the right database.........c..cccoevveeieiienieniccececeeeeee 218
Sending SQL QUETIES.......cceviriiriieieieiesieeieeeee et 219

Getting Information from a Database..........cccccceeeuieviieieniiencieciecieeeeeene 220
Sending @ SELECT QUETYcooveeiiriiiiieienieseesitesieeieeie e 220
Getting and using the data.........ccocevveeviinieniiniecceceeeee 221
Using functions to get data.........cocceoverienienieninnicicneeeeeeeeene 228

Getting Information from the USercccccoeeeiiiiiieciieieeiececeeceeeeeee 232
Using HTML fOIMS ..c..ooiiiiiiieeiieeeeeeeee e 233
Making forms dynamic..........ccoccverierienienienieieeieeie e 238
Using the information from the formcccocoovveiviiiiinninniinennn. 251
Checking the informationcccccoeeeeevinviecienenececceeeeee 253
Giving users a choice with multiple submit buttons..................... 263

Putting Information into a Database...........cccecvevcieeciiecie e, 265
Preparing the data........cccooeevieiiiiciiiiicieeceeeeee e 265
Adding new information...........ccccceeeeviierieecieciieeieceee e 270
Updating existing information..........ccccceevvevvienieneenencinecieeieene 276

Getting Information in Files.........ccccooieiiiiiiiniiiiieeeeeee 279
Using a form to upload the file..........ccocevieniiniiniiniiieeeee 280
Processing the uploaded file............ccoeoiieiieeiiiecieeeeeeee e 280
Putting it all together........covovvieiiieciieieceeeeeecee e 282

Chapter 9: Moving Information from One Web Page to the Next . . .285

Moving Your User from One Page to Anothercccooevieveneninennene. 286
Moving Information from Page to Pagecccocvvvvieiinciiniiniicieeeeee 289
Adding information to the URL.........cccccevviiiiiniiniinieicceeeeee, 290
Storing information via COOKI€Scccvvieriinienieieeiieieeieeiene 294
Passing information with HTML formsccccocvvnininiencncnene 297
USING PHP SESSIONSeocuieiiieiiieiieieeeestestte ettt ettt 298
Understanding how PHP sessions workc..cccceecevvenviniicnncncn. 298

OPENING SESSIONSeoeuiieiiieiieiieiieeieeeee ettt ste e sae e ereeaeeaeseeens 299

xv

X(/i PHP & MySQL For Dummies, 4th Edition

Using PHP session variables..........ccccccovoiiiiiieiiiiiieieeeeeeee e 299
Sessions Without COOKIES.........ccveviiiiieieeiecieceececeee e 301
Making SeSSiONS Private........ccccceeierieniieniieniienieeieeie e eee e 303
Closing PHP SESSIONS.......cccueviiiiiniiriieiieieeieeieeieee et 304

Part U: Applicationscccceeeceecceeecceeeicrecesceeees 305

Chapter 10: Putting It All Togethers. 307
Organizing the Application...........ccceevieieiininireeee e 307
Organizing at the application level...........cccccoovvevieviiciiciiciecieee 308
Organizing at the program levelcccovviivieviieiiniinieeieeiee 309
Keeping It Privateccooieiiiiiiiieeeeeeeeee e 316
Ensure the security of the computercocoveeviiiiniiniennnnn. 316
Don'’t let the Web server display filenames...........ccccccoeevveveennennenn. 317

Hide thingS.....ooiiiiiietee e 317
Don’t trust information from userscccoceeeveninniieienenenene 318

Use a secure Web Server........cooeeeienenininieicicnieneseeeeteeeseniene 318
Completing Your Documentation..........cccceeceevieriieniieniieniienienieseeseeneenne 318
Chapter 11: Building an Online Catalog......................... 321
Designing the Applicationcoceevieviiiiiinieniiiceecee e 322
Showing pets to the customers..........ccccoecveviiniiniininiinieiee 322
Adding pets to the catalog.........cccccvveeiieeiiinieceee e, 323
Building the Databasecccveiieieeieiiecieceeece e 323
Building the Pet table........ccooieiiieiiiiiiciecieeeeeeeeeeeee e 324
Building the PetType tableccccoovirviinieniinieieeceeeeeeene 327
Building the Color table..........ccccvciiiiiiiiniiieeeeceeeeeeee 328
Adding data to the databasecccoceevieeiiniiniiniinieeeeeee, 330
Designing the Look and Feelccoooviieiiieciicieeeee e 331
Showing pets to the customers...........ccooevveeieienininceeeee 331
Adding pets to the catalog.......cccevieviieciieiieiicieceeeeee e, 335
Writing the Programs............cocvevieiiiiiiiniiieieeieeeeeeeeee e 337
Showing pets to the customers..........cccoecvevieniiniininienicieeiee 338
Adding pets to the catalog.......cccovivieeiiiniiiniiiieeee, 344
Chapter 12: Building a Members Only Web Site 359
Designing the Applicationcoceeiiriiniiniiniiiceeeeeeeeee 360
Building the Databasec.coocuiveiiieiiieiececteee e 360
Building the Member tableccoceevieeieniiiieieeeeeeeeeeee 361
Building the Login table..........cccooeeiieiiieiinienieeeeeeeeeeeeeee e 363
Adding data to the databasec.cocveeveeiieiiinienieceeeeeeeeee, 364
Designing the Look and Feelcccooveiiiiniciniieieeecceeeeee e 365
STOYEIFONT PAZE...c.vieveeeieeieieieeeetete ettt snees 365

LOZIN PAZE....ioevieeiieeiee ettt ettt e et e e aeeenneeens 366

Table of Contents X(/ii

New Member Welcome pagecccuveeveeeciieenieenieecieeeieeeiee e 368
Members Only SECHIONcceeeeierieriirieieeeee e 368
Writing the Programs............cocievieiiiiiieiieeiecieceeeeeeese et 369
Writing PetShopFront..........ccocvoiiiiiiiieiieiicieeeeeeeeeee e 370
WIHHING LOGIN .ottt 371
Writing New_memDber...........coceoviiiiiiiiniiniiiieiecceceeeeeeeees 384
Writing the Members Only section...........ccccceeveeeeeieneeseeceeienne. 385
Planning for Growthcccooiiiriiiie e 386

Part U: The Part of Tenscccccaaaaaaaaacceeeeeeeeeeeeeeees 387

Chapter 13: Ten Things You Might Want to Do

Using PHP Functionscc i 389
Communicate with MySQLcccooiiiiiiiiiiieieiieeieceeeeeseesee e 389
Send E-Mail ..c..cueiuiiiiiiicieece ettt 390
Use PHP SESSIONS.....cc.couiiriiiiiiinicieienicteteteete ettt 392
StOP YOUY PrOGram.......cccocoeieiiiiiniiiieieieeiesieet e 392
HaNAIE ATTAYS ...veovieiieiieiieieeie ettt sttt ste et sae e e eaesneessaesseenaeenes 392
Check for Variables ..o 393
Format ValUescccoeviiiiiiiiiiiiniccecccccceeeeee e 393
Compare Strings to Patterns........ccoeevieviieiiniiiiiiiniececeeeseeseeeeeee 395
Find Out about STrNGSccoecvieiiieieeieeieceeeee et 395
Change the Case of StriNgS.......ccoevieieiieiinieeeeeeee e 396

Chapter 14: Ten PHP Gotchas............... ...t 397
MisSing SemMICOIONScoueiiiiiieriieeeee e 397
Not Enough EqQUal Signs........cccoeviieiieieiieiiecieseeeeeeeeee e 398
Misspelled Variable Namescccocveriierieeiiieiieeieeieeieeiesee e seeseenieenee 398
Missing Dollar SIGNScccuevieriirieiieiieieeieeicete ettt 398
Troubling QUOLES.......ccouiiriiiiiiieiieeeeeee et 399
INVISIDIE OULPULeoviiiiiiiciececeeeee et 399
INUMDETEA ATTAYS ..cuveiviiiieiieiieieeteeteeie st e e e steesteesteesseeaeeaesssessaesseesseanes 400
Including PHP Statementsccccceeieiieiienieeeecseeeeee e 401
MiISSING MALES ...ocuvieiieeiieiiieiieeiescete ettt ettt e s e s e e saeenaeenee 401
Confusing Parentheses and Brackets............ccccovviiviiniiniiniiniiniincecns 402

Part Ul: Appendixes............cccceeeecueecccneicccnececaceeeeese 03
Appendix A: Installing PHP, MySQL, and Apache

fromXAMPP e 405
Installing XAMPP on WinAOWS........cccoeiiiiiiienieieesieeieeie e 405
Installing XAMPP 0N MaC......ccccoiriieiienienieeieneesie et eve e saeesaeenee 410

USING XAMPP ...ttt ettt ettt st saeesae e 412

XVIff PHP &MySQL For Dummies, 4th Edition

Appendix B: ConfiguringPHPol 415
Changing Settings in php.ini.......cccccoovieiiiiieiiciicceeeeceee e 416

In the general php.ini fileccccoeiiiiiiiriiiniieeeeeece e 416

In a php.ini file on your Web site.......cccoocveviiniinieniniiniiieeiee 417

Changing Settings with an .htaccess File..........cccooeniiniiniinnniis 418
Changing Settings with PHP Statements.............cccccceevveeiiiiiniecieeeeeens 419

INAEK «.......aaaeaaaaaaeeeeeeeeeeeeeeeeannnnnnaaaaacaceecescacesseeeeeeeees B2

Introduction

Welcome to the exciting world of Web database applications. This book
provides the basic techniques to build any Web database applica-
tion, but I certainly recommend that you start with a simple one. In this book,
[develop two sample applications, both chosen to represent two types of
applications frequently encountered on the Web: product catalogs and cus-
tomer- or member-only sites that require the user to register and log in with a
password. The sample applications are complicated enough to require more
than one program and to use a variety of data and data manipulation tech-
niques, yet simple enough to be easily understood and adapted to a variety
of Web sites. After you master the simple applications, you can expand the
basic design to include all the functionality that you can think of.

About This Book

Think of this book as your friendly guide to building a Web database appli-
cation. This book is designed as a reference, not as a tutorial, so you don’t
have to read it from cover to cover. You can start reading at any point — in
Chapter 1, Chapter 9, wherever. I divide the task of building a Web database
application into manageable chunks of information, so check out the table of
contents and locate the topic that you're interested in. If you need to know
information from another chapter to understand the chapter you're reading, |
reference that chapter.

Here’s a sample of the topics I discuss:

v+ Building and using a MySQL database

v Adding PHP to HTML files

v Using the features of the PHP language

v Using HTML forms to collect information from users
v Showing information from a database in a Web page

v Storing information in a database

2 PHP & MySQL For Dummies, 4th Edition

Conventions Used in This Book

This book includes many examples of PHP programming statements, MySQL
statements, and HTML. Such statements are shown in a different typeface,
which looks like the following line:

A PHP program statement

In addition, snippets or key terms of PHP, MySQL, and HTML are sometimes
shown in the text of a paragraph. When they are, the special text in the para-
graph is also shown in the example typeface, different than the paragraph
typeface. For instance, this text is an example of a PHP statement within
the paragraph text.

In examples, you will often see some words in italic. Italicized words are gen-
eral types that need to be replaced with the specific name appropriate for
your data. For instance, when you see an example like the following:

SELECT fieldl, field2 FROM tablename

fieldl, field2, and tablename need to be replaced with real names
because they are in italic. When you use this statement in your program, you
might use it in the following form:

SELECT name,age FROM Customer
In addition, you might see three dots (...) following a list in an example line.
You don’t type the three dots. They just mean that you can have as many
items in the list as you want. For instance, when you see

SELECT fieldl, field2,... FROM tablename
the three dots just mean that your list of fields can be longer than two. It
means you can go on with field3, field4, and so forth. For example, your
statement might be

SELECT name, age, height, shoesize FROM Customer

From time to time, you'll also see something in bold. Pay attention to these;
they indicate something I want you to see or something you need to type.

What You're Not To Read

Some information in this book is flagged as Technical Stuff with an icon off to
the left. Sometimes you’ll see this technical stuff in a sidebar: Consider it infor-
mation that you don’t need to read to create a Web database application. This

Introduction 3

extra information might contain a further look under the hood or describe a
technique that requires more technical knowledge to execute. Some readers
may be interested in the extra technical information or techniques, but feel
free to ignore them if you don’t find them interesting or useful.

Foolish Assumptions

To write a focused book rather than an encyclopedia, I needed to assume
some background for you, the reader. [assumed that you know HTML and
CSS and have created Web sites with HTML and CSS. Consequently, although
[use HTML/CSS in many examples, I do not explain the HTML/CSS. If you
don’t have an HTML background, this book will be more difficult to use. |
suggest that you read an HTML book — such as HTML, XHTML & CSS For
Dummies by Ed Tittel and Jeff Noble (Wiley) — and build some practice Web
pages before you start this book. In particular, some background in HTML
forms and tables is useful. However, if you're the impatient type, [won't tell
you it’s impossible to proceed without knowing HTML and CSS. You may be
able to glean enough HTML and CSS from this book to build your particular
Web site. If you choose to proceed without knowing HTML, I suggest that you
have an HTML book by your side to assist you.

If you're proceeding without any experience with Web pages, you might not
know some required basics. You must know how to create and save plain text
files with an editor such as Notepad or save the file as plain text from your
word processor (not in the word processor format). You also must know
where to put the text files containing the code (HTML or PHP) for your Web
pages so that the pages are available to all users with access to your Web
site, and you must know how to move the files to the appropriate location.

You do not need to know how to design or create databases or how to pro-
gram. All the information that you need to know about databases and pro-
gramming is included in this book.

How This Book Is Organized

This book is divided into six parts, with several chapters in each part. The
content ranges from an introduction to PHP and MySQL to installing to creat-
ing and using databases to writing PHP programs.

4

PHP & MySQL For Dummies, 4th Edition

Part I: Developing a Web Database
Application Using PHP and MySQOL

Part I provides an overview of using PHP and MySQL to create a Web data-
base application. It describes and gives the advantages of PHP, of MySQL,
and of their use together. You find out how to get started, including what you
need, how to get access to PHP and MySQL, and how to test your software.
You then find out about the process of developing the application.

Part 1I: MySQL Database

In Part Il you find out the details of working with MySQL databases. You create
a database, change a database, and move data into and out of a database.

Part I1I: PHP

Part Ill provides the details of writing PHP programs that enable your Web
pages to insert new information, update existing information, or remove
information from a MySQL database. You find out how to use the PHP fea-
tures that are used for database interaction and forms processing.

Part IU: Applications

Part IV describes the Web database application as a whole. You find out
how to organize the PHP programs into a functioning application that inter-
acts with the database. Two complete sample applications are provided,
described, and explained.

Part U: The Part of Tens

Part V provides some useful lists of important things to do and not to do
when developing a Web database application.

Part Ul: Appendixes

The final part, Part VI, provides instructions for installing PHP and MySQL
for those who need to install the software themselves. Appendix B discusses
how to configure PHP.

Introduction

Icons Used in This Book

WMBER
@ﬁ
&

This icon is a sticky note of sorts, highlighting information that’s worth com-
mitting to memory.

This icon flags information and techniques that are more technical than other
sections of the book. The information here can be interesting and helpful, but
you don’t need to understand it to use the information in the book.

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

You should always read warnings. Warnings emphasize actions that you must
take or must avoid to prevent dire consequences.

Where to Go from Here

This book is organized in the order in which things need to be done. If you're
a newbie, you probably need to start with Part I, which describes how to get
started, including how to design the pieces of your application and how the
pieces will interact. When implementing your application, you need to create
the MySQL database first, so I discuss MySQL before PHP. After you under-
stand the details of MySQL and PHP, you need to put them together into a
complete application, which [describe in Part IV. If you're already familiar
with any part of the book, you can go directly to the part that you need. For
instance, if you're familiar with database design, you can go directly to Part
I, which describes how to implement the design in MySQL. Or if you know
MySQL, you can just read about PHP in Part III.

And if you want even more information, check out the cheat sheet at www.
dummies.com/cheatsheet/phpmysql.

5

6 PHP & MySQL For Dummies, 4th Edition

Part |

Developing a Web
Database Application
Using PHP and
MySQL

The 5th Wave By Rich Tennant
%{_ENNAN'V

S Paﬁe CYQPJCO Designed. &
m&e gou asked.. But >
pereondlly, T think it §
s too mang spinniryg R
irals and plinking
ights. Tt makes.. hard
ing. Make...tirad... -

afc Jose..alle: &
n tys..tion... N

§

%

SN RN AN \\\\\\\\\

..........

In this part . . .

n this part, | provide an overview. I describe PHP and

MySQL, how each one works, and how they work
together to make your Web database application possible.
After describing your tools, I show you how to set up your
working environment. | present your options for accessing
PHP and MySQL and point out what to look for in each
environment.

After describing your tools and your options for your devel-
opment environment, I provide an overview of the develop-
ment process. [discuss planning, design, and building your
application.

Chapter 1

Introduction to PHP and MySQL

In This Chapter

Finding out what a Web database application is
Discovering how MySQL works

Taking a look at PHP

Finding out how PHP and MySQL work together

So you need to develop an interactive Web site. Perhaps your boss just
put you in charge of the company’s online product catalog. Or you want
to develop your own Web business. Or your sister wants to sell her paintings
online. Or you volunteered to put up a Web site open only to members of
your circus acrobats’ association. Whatever your motivation might be, you
can see that the application needs to store information (such as information
about products or member passwords), thus requiring a database. You can
see also that the application needs to interact dynamically with the user; for
instance, the user selects a product to view or enters membership informa-
tion. This type of Web site is a Web database application.

[assume that you’ve created static Web pages before, using HTML
(HyperText Markup Language), but creating an interactive Web site is a new
challenge, as is designing a database. You asked three computer gurus you
know what you should do. They said a lot of things you didn’t understand,
but among the technical jargon, you heard “quick” and “easy,” and “free”
mentioned in the same sentence as PHP and MySQL. Now you want to know
more about using PHP and MySQL to develop the Web site that you need.

PHP and MySQL work together very well; it’s a dynamic partnership. In this
chapter, you find out the advantages of each, how each one works, and how
they work together to produce a dynamic Web database application.

What Is a Web Database Application?

An application is a program or a group of programs designed for use by an
end user (for example, customers, members, or circus acrobats). If the end
user interacts with the application via a Web browser, the application is a

1 0 Part |: Developing a Web Database Application Using PHP and MySQL

Web based or Web application. If the Web application requires the long-term
storage of information using a database, it’'s a Web database application. This
book provides you with the information that you need to develop a Web data-
base application that can be accessed with Web browsers such as Internet
Explorer and Firefox.

A Web database application is designed to help a user accomplish a task. It
can be a simple application that displays information in a browser window
(for example, current job openings when the user selects a job title) or a
complicated program with extended functionality (for example, the book-
ordering application at Amazon.com or the bidding application at eBay).

A Web database application consists of just two pieces:

v+~ Database: The database is the long-term memory of your Web database
application. The application can’t fulfill its purpose without the data-
base. However, the database alone is not enough.

v Application: The application piece is the program or group of programs
that performs the tasks. Programs create the display that the user
sees in the browser window; they make your application interactive by
accepting and processing information that the user types in the browser
window; and they store information in the database and get information
out of the database. (The database is useless unless you can move data
in and out.)

The Web pages that you’ve previously created with HTML alone are static,
meaning the user can’t interact with the Web page. All users see the same
Web page. Dynamic Web pages, on the other hand, allow the user to inter-
act with the Web page. Different users might see different Web pages. For
instance, one user looking at a furniture store’s online product catalog might
choose to view information about the sofas, whereas another user might
choose to view information about coffee tables. To create dynamic Web
pages, you must use another language in addition to HTML.

One language widely used to make Web pages dynamic is JavaScript.
JavaScript is useful for several purposes, such as mouse-overs (for example,
to highlight a navigation button when the user moves the mouse pointer over
it) or accepting and validating information that users type into a Web form.
However, it’s not useful for interacting with a database. You wouldn’t use
JavaScript to move the information from the Web form into a database. PHP,
however, is a language particularly well suited to interacting with databases.
PHP can accept and validate the information that users type into a Web form
and can also move the information into a database. The programs in this
book are written with PHP.

Chapter 1: Introduction to PHP and MySQL

The database: Storing data

The core of a Web database application is the database, which is the long-
term memory (I hope more efficient than my long-term memory) that stores
information for the application. A database is an electronic file cabinet that
stores information in an organized manner so that you can find it when

you need it. After all, storing information is pointless if you can’t find it. A
database can be small, with a simple structure — for example, a database
containing the titles and authors’ names of all the books that you own. Or a
database can be huge, with an extremely complex structure — such as the
database that Amazon.com has to hold all its information.

The information that you store in the database comes in many varieties. A
company’s online catalog requires a database to store information about

all the company’s products. A membership Web site requires a database to
store information about members. An employment Web site requires a data-
base (or perhaps two databases) to store information about job openings
and information from résumés. The information that you plan to store could
be similar to information that’s stored by Web sites all over the Internet — or
information that’s unique to your application.

The term database refers to the file or group of files that holds the actual
data. The data is accessed by using a set of programs called a DBMS
(Database Management System). Almost all DBMSs these days are RDBMSs
(Relational Database Management Systems), in which data is organized and
stored in a set of related tables.

In this book, MySQL is the RDBMS used because it’s particularly well suited
for Web sites. MySQL and its advantages are discussed in the section,
“MySQL, My Database,” later in this chapter. You can find out how to orga-
nize and design a MySQL database in Chapter 3.

The application: Moving data
in and out of the database

For a database to be useful, you need to be able to move data into and out of
it. Programs are your tools for this because they interact with the database
to store and retrieve data. A program connects to the database and makes
arequest: “Take this data and store it in the specified location.” Another
program makes the request: “Find the specified data and give it to me.” The
application programs that interact with the database run when the user inter-
acts with the Web page. For instance, when the user clicks the submit button
after filling in a Web form, a program processes the information in the form
and stores it in a database.

11

12

Part |: Developing a Web Database Application Using PHP and MySQL

E-mail discussion lists

Good technical support is available from e-mail
discussion lists, which are groups of people dis-
cussing specific topics through e-mail. E-mail
lists are available for pretty much any subject
you can think of: Powerball, ancient philosophy,
cooking, The Beatles, Scottish terriers, politics,
and so on. The list manager maintains a distri-
bution list of e-mail addresses for anyone who
wants to join the discussion. When you send a
message to the discussion list, your message
is sent to the entire list so that everyone can
see it. Thus, the discussion is a group effort,
and anyone can respond to any message that
interests him or her.

E-mail discussion lists are supported by various
sponsors. Any individual or organization can run
a list. Most software vendors run one or more
lists devoted to their software. Universities run
many lists for educational subjects. In addi-
tion, some Web sites manage discussion lists,
such as Yahoo! Groups and Topica. Users can
create a new list or join an existing list through
the Web application.

Software-related e-mail lists are a treasure
trove of technical support. Anywhere from a
hundred to several thousand users of the soft-
ware subscribe to the list. Often the develop-
ers, programmers, and technical support staff
for the software vendor are on the list. You're
unlikely to be the first person to ever experi-
ence your problem. Whatever your question or
problem, someone on the list probably knows
the answer or the solution. When you post a
question to an e-mail list, the answer usually
appears in your inbox within minutes. In addi-
tion, most lists maintain an archive of previous
discussions so that you can search for answers.
When you're new to any software, you can find
out a great deal simply by joining the discussion
list and reading the messages for a few days.

PHP and MySQL have e-mail discussion lists.
Actually, each has several discussion lists for
special topics, such as databases and PHP.
You can find the names of the mailing lists and
instructions for joining them on the PHP (www .
php.net) and MySQL (www.mysgl . com)
Web sites.

MySOL, My Database

MySQL is a fast, easy-to-use RDBMS used on many Web sites. Speed was the
developers’ main focus from the beginning. In the interest of speed, they
made the decision to offer fewer features than their major competitors (such
as Oracle and Sybase). However, even though MySQL is less full-featured
than its commercial competitors, it has all the features needed by the major-
ity of database developers. It’s easier to install and use than its commercial
competitors, and the difference in price is strongly in favor of MySQL.

MySQL was developed originally by a Swedish company but is now devel-
oped, marketed, and supported by Sun Microsystems. The company licenses
it in two ways:

v MySQL Community Server: A freely downloadable, open source edition
of MySQL, released early and often with the most advanced features.
Anyone who can meet the requirements of the GPL can use the software

Chapter 1: Introduction to PHP and MySQL ’3

A\

for free. If you're using MySQL as a database on a Web site (the subject
of this book), you can use MySQL for free, even if you're making money
with your Web site.

* MySQL Enterprise Subscription: A comprehensive offering of produc-
tion support, monitoring tools, and MySQL database software. For a
subscription fee paid per year per server, monthly software updates,
consulting services, technical support, and other services are available.
You can choose the level of services you want for the fee that you want

to pay.

Finding technical support for MySQL Community Server is not a problem. You
can join one of several e-mail discussion lists offered on the MySQL Web site
at www.mysqgl . com. You can even search the e-mail list archives, which con-
tain a large archive of MySQL questions and answers.

Advantages of MySOL

MySQL is a popular database with Web developers. Its speed and small size
make it ideal for a Web site. Add to that the fact that it’s open source, which
means free, and you have the foundation of its popularity. Here’s a rundown
of some of its advantages:

v It’s fast. The main goal of the folks who developed MySQL was speed.
Thus, the software was designed from the beginning with speed in mind.

v It’s inexpensive. MySQL is free under the open source GPL license, and
the fee for a commercial license is reasonable.

v It’s easy to use. You can build and interact with a MySQL database by
using a few simple statements in the SQL language, which is the stan-
dard language for communicating with RDBMSs. Check out Chapter 4 for
the lowdown on the SQL language.

v~ It can run on many operating systems. MySQL runs on many operating
systems — Windows, Linux, Mac OS, most varieties of Unix (including
Solaris and AIX), FreeBSD, OS/2, Irix, and others.

v It’s available on almost all Web hosts. If you're going to run your Web
site on a Web hosting company, MySQL is widely available without extra
cost. Using MySQL on a Web host is discussed in more detail in Chapter 2.

+* Technical support is widely available. A large base of users provides
free support through mailing lists. The MySQL developers also partici-
pate in the e-mail lists.

v It’s secure. MySQL’s flexible system of authorization allows some or all
database privileges (such as the privilege to create a database or delete
data) to specific users or groups of users. Passwords are encrypted.

1 4 Part |: Developing a Web Database Application Using PHP and MySQL

v~ It supports large databases. MySQL handles databases up to 50 million
rows or more. The default file size limit for a table is 4GB, but you can
increase this (if your operating system can handle it) to a theoretical
limit of 8 million terabytes (TB).

v It’s customizable. The open source GPL license allows programmers to
modify the MySQL software to fit their own specific environments.

How MySOL works

The MySQL software consists of the MySQL server, several utility programs
that assist in the administration of MySQL databases, and some supporting
software that the MySQL server needs (but you don’t need to know about).
The heart of the system is the MySQL server.

The MySQL server is the manager of the database system. It handles all your
database instructions. For instance, if you want to create a new database, you
send a message to the MySQL server that says “create a new database and
call it newdata.” The MySQL server then creates a subdirectory in its data
directory, names the new subdirectory newdata, and puts the necessary
files with the required format into the newdata subdirectory. In the same
manner, to add data to that database, you send a message to the MySQL
server, giving it the data and telling it where you want the data to be added.
You find out how to write and send messages to MySQL in Part II.

Before you can pass instructions to the MySQL server, it must be running
and waiting for requests. The MySQL server is usually set up so that it starts
when the computer starts and continues running all the time. This is the
usual setup for a Web site. However, it’s not necessary to set it up to start
when the computer starts. If you need to, you can start it manually whenever
you want to access a database. When it’s running, the MySQL server listens
continuously for messages that are directed to it.

Communicating with the MySQL server

All your interaction with the database is accomplished by passing messages
to the MySQL server. You can send messages to the MySQL server several
ways, but this book focuses on sending messages using PHP. The PHP soft-
ware has specific statements that you use to send instructions to the MySQL
server.

The MySQL server must be able to understand the instructions that you send
it. You communicate by using SQL (Structured Query Language), which is a
standard language understood by many RDBMSs. The MySQL server under-
stands SQL. PHP doesn’t understand SQL, but it doesn’t need to: PHP just
establishes a connection with the MySQL server and sends the SQL message

Chapter 1: Introduction to PHP and MySQL

over the connection. The MySQL server interprets the SQL message and fol-
lows the instructions. The MySQL server sends a return message, stating its
status and what it did (or reporting an error if it was unable to understand or
follow the instructions).

Software designed specifically to interact with MySQL database is also dis-
cussed in this book. You can use this software, called phpMyAdmin, on your
own computer to communicate with your MySQL databases. PhpMyAdmin is
also available on almost all Web hosts.

For the lowdown on how to write and send SQL messages to MySQL, check
out Part II.

PHP, a Data Mover

\\3

PHP, a scripting language designed specifically for use on the Web, is your
tool for creating dynamic Web pages. Rich in features that make Web design
and programming easier, PHP is in use on more than 20 million domains
(according to the Netcraft survey at www.php.net/usage.php). Its popular-
ity continues to grow, so it must be fulfilling its function pretty well.

PHP stands for PHP: HyperText Preprocessor. In its early development by a
guy named Rasmus Lerdorf, it was called Personal Home Page tools. When it
developed into a full-blown language, the name was changed to be more in
line with its expanded functionality.

The syntax of the PHP language is similar to the syntax of C, so if you have
experience with C, you’ll be comfortable with PHP. PHP is actually simpler
than C because it doesn’t use some of the more difficult concepts of C. PHP
also doesn’t include the low-level programming capabilities of C because PHP
is designed to program Web sites and doesn’t require the capabilities required
by C.

PHP is particularly strong in its ability to interact with databases. It supports
pretty much every database you've ever heard of (and some you haven’t).
PHP handles connecting to the database and communicating with it. You
don’t need to know the technical details for connecting to a database or for
exchanging messages with it. You tell PHP the name of the database and
where it is, and PHP handles the details. It connects to the database, passes
your instructions to the database, and returns the database response to you.

Technical support is available for PHP. You can join one of several e-mail discus-
sion lists offered on the PHP Web site (www . php . net), including a list for data-
bases and PHP. In addition, a Web interface to the discussion lists is available at
http://news.php.net, where you can browse or search the messages.

15

16 Part |: Developing a Web Database Application Using PHP and MySQL

Advantages of PHP

The popularity of PHP is growing rapidly because of its many advantages:

v~ It’s fast. Because it is embedded in HTML code, the response time is
short.

v It’s inexpensive — free, in fact. PHP is proof that free lunches do exist
and that you can get more than you paid for.

v It’s easy to use. PHP contains many special features and functions
needed to create dynamic Web pages. The PHP language is designed to
be included easily in an HTML file.

v~ It can run on many operating systems. It runs on a variety of operating
systems — Windows, Linux, Mac OS, and most varieties of Unix.

v~ It’s available on almost all Web hosts. If you are going to publish your
Web site on a Web host, you will find PHP installed on almost all Web
hosts for free.

v+ Technical support is widely available. A large base of users provides
free support through e-mail discussion lists.

v It’s secure. The user does not see the PHP code.

v It’s designed to support databases. PHP includes functionality designed
to interact with specific databases. It relieves you of the need to know
the technical details required to communicate with a database.

v It’s customizable. The open source license allows programmers to
modify the PHP software, adding or modifying features as needed to fit
their own specific environments.

How PHP works

PHP is an embedded scripting language when used in Web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose the
PHP language that you embed in your HTML file — the same way that you
would use other HTML tags. You create and edit Web pages containing PHP
the same way that you create and edit regular HTML pages.

The PHP software works with the Web server. The Web server is the software
that delivers Web pages to the world. When you type a URL into your Web
browser, you're sending a message to the Web server at that URL, asking it to
send you an HTML file. The Web server responds by sending the requested
file. Your browser reads the HTML file and displays the Web page. You also
request the Web server to send you a file when you click a link in a Web

page. In addition, the Web server processes a file when you click a Web page
button that submits a form.

Chapter 1: Introduction to PHP and MySQL

A\

When PHP is installed, the Web server is configured to expect certain file
extensions to contain PHP language statements. Often the extension is . php
or .phtml, but any extension can be used. When the Web server gets a
request for a file with the designated extension, it sends the HTML state-
ments as is, but PHP statements are processed by the PHP software before
they’re sent to the requester.

When PHP language statements are processed, only the output is sent by
the Web server to the Web browser. The PHP language statements are not
included in the output sent to the browser, so the PHP code is secure and
transparent to the user. For instance, in this simple PHP statement:

<?php echo "<p>Hello World</p>"; ?>

<?php is the PHP opening tag, and ?> is the closing tag. echo is a PHP
instruction that tells PHP to output the upcoming text. The PHP software pro-
cesses the PHP statement and outputs this:

<p>Hello World</p>

which is a regular HTML statement. This HTML statement is delivered to the
user’s browser. The browser interprets the statement as HTML code and
displays a Web page with one paragraph — Hello World. The PHP statement
is not delivered to the browser, so the user never sees any PHP statements.
PHP and the Web server must work closely together.

PHP is not integrated with all Web servers but does work with many of
the popular Web servers. PHP is developed as a project of the Apache
Software Foundation — thus, it works best with Apache. PHP also works with
Microsoft [IS/PWS, iPlanet (formerly Netscape Enterprise Server), and others.

Although PHP works with several Web servers, it works best with Apache.

If you can select or influence the selection of the Web server used in your
organization, select Apache. By itself, Apache is a good choice. It’s free, open
source, stable, and popular. It currently powers more than 60 percent of all
Web sites, according to the Web server survey at www.netcraft.com. It runs
on Windows, Linux, Mac OS, and most flavors of Unix.

MySOL and PHP, the Perfect Pair

MySQL and PHP are frequently used together. They're often called the
dynamic duo. MySQL provides the database part, and PHP provides the appli-
cation part of your Web database application.

17

1 8 Part |: Developing a Web Database Application Using PHP and MySQL

Advantages of the relationship

MySQL and PHP as a pair have several advantages:

v+ They're free. It’s hard to beat free for cost-effectiveness.

v They’re Web oriented. Both were designed specifically for use on Web
sites. Both have a set of features focused on building dynamic Web sites.

v They’re easy to use. Both were designed to get a Web site up quickly.

v They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic Web pages to
users.

+* They communicate well with one another. PHP has built-in features
for communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

How MySOL and PHP work together

PHP provides the application part, and MySQL provides the database part of
a Web database application. You use the PHP language to write the programs
that perform the application tasks. PHP can be used for simple tasks (such as
displaying a Web page) or for complicated tasks (such as accepting and veri-
fying data that a user typed into an HTML form). One of the tasks that your
application must do is move data into and out of the database — and PHP
has built-in features to use when writing programs that move data into and
out of a MySQL database.

PHP statements are embedded in your HTML files with PHP tags. When the
task to be performed by the application requires storing or retrieving data,
you use specific PHP statements designed to interact with a MySQL database.
You use one PHP statement to connect to the correct database, telling PHP
where the database is located, its name, and the password needed to connect
to it. The database doesn’t need to be on the same machine as your Web site;
PHP can communicate with a database across a network. You use another
PHP statement to send an SQL message to MySQL, giving MySQL instructions
for the task you want to accomplish. MySQL returns a status message that
shows whether it successfully performed the task. If a problem came up, it
returns an error message. If your SQL message asked to retrieve some data,
MySQL sends the data that you asked for, and PHP stores it in a temporary
location where it’s available to you.

You then use one or more PHP statements to complete the application task.
For instance, you can use PHP statements to display data that you retrieved.
Or you might use PHP statements to display a status message in the browser,
informing the user that the data was saved.

Chapter 1: Introduction to PHP and MySQL

As an RDBMS, MySQL can store complex information. As a scripting language,
PHP can perform complicated manipulations of data, on either data that you
need to modify before saving it in the database or data that you retrieved
from the database and need to modify before displaying or using it for
another task. Together, PHP and MySQL can be used to build a sophisticated
and complicated Web database application.

Keeping Up with PHP
and MySQL Changes

<MBER
S

PHP and MySQL are open source software. If you've used only software from
major software publishers — such as Microsoft, Macromedia, or Adobe —
you'll find that open source software is an entirely different species. It’s
developed by a group of programmers who write the code in their spare
time, for fun and for free. There’s no corporate office.

Open source software changes frequently, rather than once every year or
two like commercial software does. It changes when the developers feel that
it’s ready. It also changes quickly in response to problems. When a serious
problem is found — such as a security hole — a new version that fixes the
problem can be released in days. You don’t receive glossy brochures or see
splashy magazine ads for a year before a new version is released. Thus, if you
don’t make the effort to stay informed, you could miss the release of a new
version or be unaware of a serious problem with your current version.

Visit the PHP and MySQL Web sites often. You need to know the information
that’s published there. Join the mailing lists, which often are high in traffic.
When you first get acquainted with PHP and MySQL, the large number of mail
messages on the discussion lists brings valuable information into your e-mail
inbox; you can pick up a lot by reading those messages. And soon, you might
be able to help others based on your own experience. At the very least, sub-
scribe to the announcement mailing list, which delivers e-mail only occasion-
ally. Any important problems or new versions are announced here. The e-mail
that you receive from the announcement list contains information you need to
know. So, right now, before you forget, hop over to the PHP and MySQL Web
sites and sign up for a list or two at www.php.net/mailing-lists.php and
lists.mysqgl.com.

PHP versions

The current version of PHP is PHP 5. Some existing applications still run
PHP 4, but because you’re building your first PHP application, you should be
using PHP 5.

19

20 Part |: Developing a Web Database Application Using PHP and MySQL

SMBER
S

PHP 6 is due to be released soon. Perhaps it has already been released by the
time you’re reading this book. When PHP changes from version 5 to version
6, the following important changes will occur:

v The setting for register_globals will no longer exist.
v The setting for magic quotes will no longer exist.

v The long arrays, such as HTTP_POST_VARS, will no longer exist. These
arrays were commonly used in PHP 4.

If you're ever converting scripts that ran under PHP 4 or 5 to run under PHP 6,
you may need to make changes to the scripts, based on the preceding changes,
before the scripts will run correctly under PHP 6. I explain these changes
throughout the book where they apply to the techniques and procedures.

MySQL versions

MySQL 5.1 is the current version, as of this writing. MySQL 5.0 is also avail-
able. The examples and scripts in this book run equally well under either ver-
sion. Some of the more advanced features of 5.1 may not be available on sites
running 5.0, but none of those advanced features are discussed in this book.

MySQL 6 is also available for download on the MySQL Web site. However, at
the time of this writing, version 6.0 is an alpha release and not suitable for
working Web sites or for beginning developers.

You may occasionally find a Web site running MySQL 4.3.1. The examples and
scripts in this book can execute properly on these sites as well. It is not wise
to run a Web site using MySQL 4.3.0 or earlier.

Chapter 2
Setting Up Your Work Environment

In This Chapter

Accessing PHP and MySQL through company Web sites and Web hosting companies
Building your own Web site from scratch
Testing PHP and MySQL

N ow that you've decided to use PHP and MySQL to build your interac-
tive Web site, you can begin working on the site. Your first task is to
set up the environment in which you’re going to build the site. This chapter
describes how to set up your Web site environment with all the tools you
need to build your Web database application.

Anatomy of a Web Site

Because you most likely have created simple Web sites before, you know
what a Web site is. It’s a collection of text files that contain the HTML code
that the browser reads to display the Web pages. The computer space where
the files are stored is the physical location of your Web site.

Web users often talk about Web site visitors, but the term visitors is techni-
cally misleading. Visitors don’t actually visit a Web site. When a person types
the address (called a URL or Uniform Resource Locator) of a Web site into a
Web browser, the browser sends a request over the Internet, asking to view
the Web page at that address. Software at the Web site, called a Web server,
receives the request and responds by sending the requested Web page. The
browser receives the Web page file and displays the Web page in the browser
window.

To make your Web site available to the public, you place the text files con-
taining HTML code on the Web site where users can access them. A Web
database application is similar. The difference is that the files contain PHP
code, as well as HTML code.

22

Part |: Developing a Web Database Application Using PHP and MySQL

To provide the dynamic Web database applications discussed in this book,
your Web site must have the following software:
v A Web server: The software that delivers your Web pages to the world

v MySQL: The RDBMS (Relational Database Management System) that will
store information for your Web database application

v PHP: The scripting language that you’ll use to write the programs that
provide the dynamic functionality for your Web site

[describe these three tools in detail in Chapter 1.

Building a Web Site

As discussed in the previous section, a Web site is a collection of text files
placed on a computer in a location where users can access them. Placing the
Web site files where they can be accessed by the public is called publishing
the Web site. However, this is the final step of building the Web site, not the
first step. You don’t want to publish the Web site until it’s finished — a per-
fect Web site ready for public viewing.

To prevent the public from seeing your half-finished Web site, warts and all,
you need to develop your Web site in a location that isn’t available to the
public. While developing your Web site, you’ll be testing things and trouble-
shooting problems. You need to do this work in private.

Because you need to build your Web site in private and hold off on making it
public until it’s finished and perfect, your work environment needs two sites:

+* Your Web site: The site where your published Web site is located. The
location where the public views your Web site.

v Your development site: The location where you develop your Web pages.
When your pages are complete, you then move them to your Web site.

Your Web site publishes your Web pages to the world. Your development
site shouldn’t be available for the world to see your errors and half-done Web
pages. Your development site needs to be hidden from the world. Never pub-
lish your Web pages until they are complete and perfect.

You need to decide where you're going to publish your Web site and where
you're going to develop it. The information you need to make these decisions
is provided in the next few sections of this chapter.

Chapter 2: Setting Up Your Work Environment 23

Deciding Where to Publish
Vour Web Site

One of your first decisions is where to publish your Web site. You need to
publish it on a computer that’s connected to the World Wide Web. The com-
puter should also provide the tools you need, as discussed earlier: a Web
server, PHP, and MySQL. The most common locations for publishing your
Web site are

1 A Web site hosted by a Web hosting company: The Web site is located
on the Web hosting company’s computer. The Web hosting company
installs and maintains the Web site software and provides space on its
computer where you can install the files for the Web site.

1 A Web site put up by a company on its own computer: The company —
usually the company’s IT (Information Technology) department — installs
and administers the Web site software. Your job, for the purposes of this
book, is to program the Web site, either as an employee of the company
or as a contractor.

1 A Web site that you set up yourself: You plan to install and maintain the
Web site software yourself. It could be a Web site of your own that you're
building on your own computer, or it might be a Web site that you're
installing for a client on the client’s computer.

You'll most likely publish your Web site on one of the first two options. For
these options, you don’t need to know much about the administration and
operation of the Web site software. The Web server, PHP, and MySQL are
already installed, and the information you need to access them is provided
by the company responsible for the Web site.

The third option requires that you install, set up, administer, and maintain
the Web site software yourself. This option requires much more technical
knowledge of computer software than the first two options, where others
provide the software for you. However, the advantage of this option is that
you have more control. You can set up the Web site software with the set-
tings that you prefer.

In the next three sections, I describe the publishing options in more detail and
provide the information you need to decide where to publish your Web site.

24 Part |: Developing a Web Database Application Using PHP and MySQL

Using a Web hosting company

A Web hosting company provides everything that you need to put up a Web
site, including the computer space and all the Web site software. You just
create the files for your Web pages and move them to a location specified by
the Web hosting company. Most small-to-medium-sized Web sites are hosted
by Web hosting companies.

About a gazillion companies offer Web hosting services. Most charge a
monthly fee (often quite small), and some are even free. (Most, but not all,
of the free ones require you to display advertising.) Usually, the monthly fee
varies depending on the resources provided for your Web site. For instance,
a Web site with 2MB of disk space for your Web page files costs less than a
Web site with 10MB of disk space.

When looking for a place to host your Web site, make sure that the Web host-
ing company offers the following:

v PHP and MySQL: Not all companies provide these tools. You might
have to pay more for a site with access to PHP and MySQL; sometimes
you have to pay an additional fee for MySQL databases.

v A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. As of this writing, PHP 6 is close to being released.

Until PHP 6 is released, two versions of PHP are generally available —
PHP 4 and PHP 5. Even though PHP 5 has been out for several years,
many Web sites still run PHP 4. PHP 4 is still supported because existing
PHP 4 code does not always run perfectly under PHP 5. Many develop-
ers have not yet converted their code to run under PHP 5. However, the
demise of PHP 4 is looming. Support for PHP 4 stopped at the end of
2007. There will be no more releases of PHP 4, and critical security fixes
ended in late 2008. There is no reason for anyone developing new code
to use PHP 4.

Look for a Web hosting company that provides PHP 5. Some Web hosts
provide both PHP 4 and PHP 5, but they use PHP 4 as the default. You
may need to talk to technical support at the Web hosting company to
find out how to get PHP 5 on your Web site, rather than PHP 4.

v A recent version of MySQL: The current preferred version of MySQL is
MySQL 5.1. However, using an older version of MySQL is not as much of
a problem as using older versions of PHP. The techniques in this book
work with older versions of MySQL. In the future, you may learn more
advanced MySQL features and may need a newer version of MySQL.
However, even older versions provide a feature set that allows quite
sophisticated dynamic Web sites.

Chapter 2: Setting Up Your Work Environment

1 Ability to change PHP settings: Changing PHP settings can affect some
of PHP’s behavior. Web hosts vary in the amount of access to PHP set-
tings that you, as their customer, are given. More access to PHP settings
gives you more control over your Web site functionality.

A text file named php . ini contains the PHP settings. Your Web host
will not give you access to the general php. ini file for the host’s
system, but some hosts allow you to use a local php. ini file that affects
only your Web site. This is a useful feature to look for because it’s an
easy way to change the settings.

Another way to change PHP settings is using an .htaccess file. This

is a file that the Apache Web server reads that can contain some PHP
settings. Many Web hosts allow you to store an .htaccess file on your
Web site, which changes settings for your Web site only.

When you select a Web host, be sure the hosting company allows you to
use either a local php . ini file or an .htaccess file. It’s important that
you be able to change the PHP settings for your Web site.

v PhpMyAdmin: To create and use MySQL databases, you need specific
software. Any Web host that provides MySQL needs to provide software
to communicate with MySQL databases. Most Web hosts provide
phpMyAdmin, a Web application written in PHP and designed specifi-
cally for managing MySQL databases. Other software also works, but
this book assumes you have access to phpMyAdmin.

Other considerations when choosing a Web hosting company are

1 Reliability: You need a Web hosting company that you can depend on —
one that won’t go broke and disappear tomorrow, and one that isn’t run-
ning on old computers, held together by chewing gum and baling wire, with
more downtime than uptime.

v Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages could be a result of a
Web hosting company that started its business on a shoestring and has
a shortage of good equipment — or the Web hosting company might
be so successful that its equipment is overwhelmed by new customers.
Either way, Web hosting companies that deliver Web pages too slowly
are unacceptable.

v Technical support: Some Web hosting companies have no one avail-
able to answer questions or troubleshoot problems. Technical support
is often provided only through e-mail, which can be very good if the
response time is short. Sometimes you can test the quality of the com-
pany’s support by calling the tech support number, or test the e-mail
response time by sending an e-mail.

25

26 Part |: Developing a Web Database Application Using PHP and MySQL

v The domain name: Each Web site has a domain name that Web brows-
ers use to find the site on the Web. Each domain name is registered for a
small yearly fee so that only one Web site can use it. Some Web hosting
companies allow you to use a domain name that you have registered
independently of the Web hosting company, some assist you in register-
ing and using a new domain name, and some require that you use their
domain name. For instance, suppose that your name is Lola Designer
and you want your Web site to be named LolaDesigner. Some Web host-
ing companies allow your Web site to be LolaDesigner.com, but some
require that your Web site be named LolaDesigner.webhosting
companyname.com, Of webhostingcompanyname.com/~Lola
Designer, or something similar. In general, your Web site looks more
professional if you use your own domain name.

v Backups: Backups are copies of your Web page files and your database
that are stored in case your files or database are lost or damaged. You
want to be sure that the company makes regular, frequent backup
copies of your application. You also want to know how long it would
take for backups to be put in place to restore your Web site to working
order after a problem.

1 Features: Select features based on the purpose of your Web site. Usually
a hosting company bundles features together into plans — more fea-
tures equal a higher cost. Some features to consider are

e Disk space: How many MB or GB of disk space will your Web site
require? Media files, such as graphics or music files, can be quite
large.

e Data transfer: Some hosting companies charge you for sending Web
pages to users. If you expect to have a lot of traffic on your Web
site, this cost should be a consideration.

® F-mail addresses: Most hosting companies provide you with one or
more e-mail addresses for your Web site. For instance, if your Web
site is LolaDesigner. com, you could allow users to send you
e-mail at me@RLolaDesigner.com.

e Software: Hosting companies offer access to a variety of software
for Web development. PHP and MySQL are the software that I
discuss in this book. Some hosting companies might offer other
databases, and some might offer other development tools such as
FrontPage extensions, shopping cart software, and credit card
validation.

Statistics: Often you can get statistics regarding your Web traffic,
such as the number of users, time of access, access by Web page,
and so on.

Chapter 2: Setting Up Your Work Environment

Domain names

Every Web site needs a unique address on
the Web. The unique address used by com-
puters to locate a Web site is the /P address,
which is a series of four numbers between
0 and 255, separated by dots — for example,
172.17.204.20r192.163.2.33.

Because IP addresses are made up of num-
bers and dots, they're not easy to remember.
Fortunately, most IP addresses have an asso-
ciated name that's much easier to remember,
such as amazon.com, www.irs.gov, Or
mycompany . com. A name that’s an address
for a Web site is a domain name. A domain
can be one computer or many connected
computers. When a domain refers to several
computers, each computer in the domain can
have its own name. A name that includes an
individual computer name, such as thor .my
company . com, identifies a subdomain.

Each domain name must be unique in order to
serve as an address. Consequently, a system of
registering domain names ensures that no two
locations use the same domain name. Anyone
can register any domain name as long as the

name isn't already taken. You can register a
domain name on the Web. First, you test your
potential domain name to find out whether it's
available. If it's available, you register it in your
name or a company name and pay the fee. The
name is then yours to use, and no one else can
use it. The standard fee for domain name reg-
istration is $35 per year. You should never pay
more, but bargains are often available.

Many Web sites provide the ability to register
a domain name, including many Web host-
ing companies. A search at Google (www.
google.com) for register domain name
results in more than 85 million hits. Shop around
to be sure that you find the lowest price. Also,
many Web sites allow you to enter a domain
name and see whom it is registered to. These
Web sites do a domain name database search
using a tool called whois. A search at Google
for domain name whois results in more than 17
million hits. A couple of places where you can
do a whois search are Allwhois.com (www .
allwhois.com) and BetterWhois.com
(www . betterwhois . com).

27

Researching Web hosting companies from a standing start is pretty difficult —
a search at Google.com for “Web hosting” results in almost 400 million hits. The
best way to research Web hosting companies is to ask for recommendations
from people who have experience with those companies. People who have
used a hosting company can warn you if the service is slow or the computers
are down often. After you gather a few names of Web hosting companies from
satisfied customers, you can narrow the list to the one that’s best suited to
your purposes and the most cost effective.

28 Part |: Developing a Web Database Application Using PHP and MySQL

The following is a list of Web hosts that offer the tools needed, including PHP 5,
MySQL, phpMyAdmin, .htaccess files, and good technical support:

v Host Gator, www.hostgator.com

v HostMonster, www . hostmonster . com

v WebHostingBuzz (WHB), www . webhostingbuzz.com
» midPhase, www.midphase.com

v BlueHost, www.bluehost .com

Please bear in mind that this list is based solely on the Web site of the host-
ing company and reviews found on Web sites that review Web hosts — not
on personal experience.

Using a company Web site

When the Web site is run by the company, you don’t need to understand the
installation and administration of the Web site software at all. The company
is responsible for the operation of the Web site, so that burden is off your
shoulders. In most cases, the Web site already exists, and your job is to add
to, modify, or redesign the existing Web site. In a few cases, the company
might be installing its first Web site, and your job is to design the Web site. In
either case, your responsibility is to write and install the HTML files for the
Web site.

You access the Web site software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up-to-date.

If PHP or MySQL or both aren’t available on the company’s Web site, [T
needs to install them and make them available to you. PHP and MySQL have
many options, but IT might not understand the best options — and might
have options set in ways that aren’t well suited for your purposes. If you
need PHP or MySQL options changed, you need to request that IT make the
change; you won’t be able to make the change yourself. For instance, PHP
must be installed with MySQL support enabled, so if PHP isn’t communicat-
ing correctly with MySQL, IT might have to reinstall PHP with MySQL support

enabled.
\‘\Q,N\BEI? You will interact with the IT folks frequently as needs arise. For example, you
& might need options changed, you might need information to help you inter-

pret an error message, or you might need to report a problem with the Web
site software. So a good relationship with the IT folks will make your life much
easier. Bring them tasty cookies and doughnuts often.

Chapter 2: Setting Up Your Work Environment 29

Setting up your own server

If you're setting up your own Web server from scratch, to publish your own
Web site, you need to understand the Web site software fairly well. You have
to make several decisions regarding hardware and software. You have to
install a Web server, PHP, and MySQL — as well as maintain, administer, and
update the system yourself. Taking this route, rather than using a Web site
provided by others, requires more work and more knowledge. Don’t attempt
this unless you are pretty knowledgeable about the Web, legal restrictions,
security concerns, and other relevant issues. The advantage is that you have
total control over the Web development environment.

Here are the general steps that lead to your dynamic Web site:

1. Set up the computer.

While you can set up your existing computer that you use for all your
other computer work to be the Web server that delivers a Web site, it’s
not wise. If your Web site receives much traffic, it may not have enough
resources and may bog down. It’s much better to set up a new machine
to be your Web server.

2. Install the Web server.

After you set up the computer, you need to install Web server software.
In most cases, you want to install Apache. It’s free, popular, reliable,
secure, and runs on most operating systems. Apache is automatically
installed with the operating system on Macs and Linux. Currently,
Apache powers about 60 percent of Web sites. You can find information
about installing Apache at http://httpd.apache.org.

3. Install MySQL.

To run your Web database application, you need to install MySQL. Many
Mac and Linux computers arrive with MySQL already installed, although
they still may need to be upgraded to the most recent version. You can
download and install MySQL from www .mysqgl . com.

4. Install PHP.

After you install MySQL and Apache, you're ready to install PHP. Some
versions of Mac and Linux arrive with PHP already installed. You can
find software to download and install, as well as thorough documenta-
tion, at www.php .net.

30 Part |: Developing a Web Database Application Using PHP and MySQL

Deciding Where to Develop
Vour Web Site

WMBER
@&
&

As discussed previously, you need to develop your Web site in a different
location from where you publish your Web site. You need a location where
you can write the Web page files free from public view. You don’t want your
experiments and error-filled first-tries to be public.

The most common place to develop your Web site is on your local computer.
If you can’t develop on your computer, you have to have a private area of
someone else’s computer, such as your Web host’s computer, where you can
develop your Web site.

On your own computer

You can develop your Web site on your local computer and upload the files
to your Web site when your Web site is finished and ready for the world to
see. In most cases, this work process is the best solution.

When you develop on your own computer, you need to test the Web page
files, including the PHP programs, that you are writing. To test your work,
you need to install the software on your local computer. If you can’t test
your work on your development site, you will have to upload the files to your
Web site to test them, and you will then have the same problem of half-done,
untested files available for the public to see.

Your development site on your local computer needs to include Apache, PHP,
and MySQL. If your computer doesn’t have this software installed, you can
easily install it. I discuss installing the software later in this chapter.

In addition to this software, you need software for editing the text files that
make up your Web site. Your computer comes with text editing software,
such as Notepad or WordPad on Windows. However, you may want to install
software designed specifically for program editing, with features that are
helpful when you’re writing programs. I discuss software you can use for edit-
ing your files later in this chapter.

On another computer

If you have a very unusual situation that prevents you from developing your
Web site on your local computer, you can develop your Web site on another
computer, such as your Web hosting company computer or your company

computer. However, you need a separate, private location on the computer.

Chapter 2: Setting Up Your Work Environment

On your Web host, you can create a subdirectory (folder) in your Web host-
ing account where you can develop your Web page files. You don’t need to
install any extra software, because PHP and MySQL are already installed.
However, you do need to protect the subdirectory from public view. You can
do this by adding a directive to an .htaccess file. I explain how to do this
later in this chapter.

On your company Web site, IT needs to set up a separate location, which is
not available to the public, where you can develop your Web page files. You
need to talk to IT about setting up such a location for you and allowing file
transfer between that location and your Web site location.

Setting Up Your Web Site

After you decide where to publish your Web site, your next step is to set up
your Web site. The following sections tell you what you need to know.

With a Web hosting company

You set up an account with a Web hosting company on its Web site. Most of
them offer more than one type of account, with varying resources, for vary-
ing prices. You obtain an account by filling out a form on the Web site and
providing a credit card number. The Web host provides you with the infor-
mation you need to use your new account, usually by sending you an e-mail.

If you have trouble with the procedure for obtaining an account, you should
be able to contact Technical Support at the Web hosting company. Some pro-
vide a phone number, some an e-mail address, and some provide support via
instant messaging. Some provide all three. If they are unable to answer your
questions or take a long time to answer, perhaps this is not the best Web
host for you.

When you have your new account, it may take a day or two for the URL to
connect to your Web site. When the URL points to your Web site, your Web
site is public. Anything you put there can be seen by the entire world.

Your new account provides a control panel that you use to manage your
account. Many Web hosts provide a control panel called cPanel. Others pro-
vide other control panels, such as a control panel specific to the Web host,
but the control panels have similar functionality, such as setting up e-mail
accounts. You use the control panel to access software that allows you to
create new MySQL databases and add/change MySQL accounts and pass-
words. You also have access to phpMyAdmin for managing your MySQL data-
bases. Managing your MySQL accounts and databases is discussed in detail
in Chapters 4 and 5.

31

32 Part |: Developing a Web Database Application Using PHP and MySQL

As discussed previously, the Web page files stored on your Web hosting
account can be seen by the world. Therefore, you want to develop and
perfect the files on your development site and then move them to this Web
site. The preferred arrangement for most developers is to use software on
your local computer to edit and upload your Web site files. On your local
computer, you can install software that assists you with organizing and
transferring your files. I discuss this software in the section, “Setting Up Your
Development Environment.”

If, for some reason, you can’t upload from your development environment,
you can upload your files from the control panel provided by your Web host.
For example, to upload a file using cPanel, find the section labeled Files and
click the File Manager icon. The page that opens allows you to manage your
files, including upload and download files and backup your files. If you click
the upload link, you can browse to the file on your local computer that you
want to upload.

The file manager page also provides the option for you to edit your files
directly on your Web site. This is rarely a good idea. The most useful struc-
ture for your work environment consists of two complete Web sites — one is
the development site and one is the Web site. You develop the files on your
development site and transfer only the complete files to your Web site. Thus,
you have two complete Web sites, and your local development site can serve
as a backup if something happens to your Web site. For this reason, you want
your local site to look exactly like your Web site, including the same subdi-
rectories and files. Thus, if a mysterious disaster occurs and your Web site
files disappear, you can quickly upload your development site and be back in
business in minutes.

On a company Web site

When you set up your Web site on a company computer, you need to work
with the company IT staff. It’s up to them to set up your Web site and provide
you with access to the location where you need to place your Web site files.
You need to coordinate everything through them. You need to make sure
they know exactly what you need.

Which tasks you can perform independently and which tasks must be done
by the IT staff depends on the company policies. Some companies allow you
a fair amount of access to the Web site software and its settings, whereas
other companies don’t want you to touch anything. For example, one com-
pany might allow you to edit the main PHP configuration file (php . ini), but
another company might require you to request setting changes that the IT
staff will make. Whatever your level of access, you need to work closely with
the company IT department.

Chapter 2: Setting Up Your Work Environment

Information you need

Whether you're setting up with a Web hosting company or on a company
Web site, you need some information to get the job done. When you sign up
for an account on a Web hosting company, the Web host needs to provide
you with the information you need to use the Web software tools and build
your dynamic Web site. You usually receive an e-mail from the Web host that
provides the needed information. If you’re publishing your Web site on a
company Web site, the IT department needs to provide you with the neces-
sary information.

Be sure to get the following information from your host:

+* The location of the Web site: You need to know where to put the files
for the Web pages. The Web host or IT department needs to provide you
with the name and location of the directory where the files should be
installed. Also, you need to know how to install the files — copy them,
FTP them, or use other methods. If you are using a Web hosting com-
pany, you need a user ID and password to install the files. On your com-
pany Web site, you may or may not need an ID and password.

v The default filename: When users point their browsers at a URL, a file
is sent to them. The Web server is set up to send a file with a specific
name when the URL points to a directory. The file that is automatically
sent is the default file. Very often the default file is named index.htm or
index.html, but sometimes other names are used, such as default.
htm. You need to know what you should name your default file.

v A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. Your host sets up a MySQL
account for you that has the appropriate permissions and also gives you
the MySQL account name and password. (I explain MySQL accounts in
detail in Chapter 5.)

v+ The location of the MySQL databases: When you access a MySQL data-
base from a PHP script, you need to specify where the MySQL server
is located. If it’s on the same server as PHP, you can specify localhost.
However, MySQL databases need not be located on the same computer
as the Web site. If the MySQL databases are located on a computer other
than that of the Web site, you need to know the hostname (for example,
thor . companyname.com) where the databases can be found.

v The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtml, but other exten-
sions can be used. PHP statements in files that don’t have the correct
extension won'’t be processed. Ask which extension to use for your PHP
programs.

33

34 Part |: Developing a Web Database Application Using PHP and MySQL

Setting Up Your Development
Environment

Your development site is the location where you write and test your Web
files before uploading the finished files to your Web site. You need to be able
to edit files and test them in your development environment.

Your own computer

The most common location for your development site is your own local com-
puter. You can create the files on your computer and upload them to your
Web site.

Installing the Web development software

To test the PHP programs that you write, you need Apache, PHP, and MySQL
installed in your development site. You can install the software on your
machine using one of two methods:

v~ Install from an all-in-one package. Installing the software from an all-in-
one package is the faster, easier method. I prefer a free package called
XAMPP. XAMPP is not recommended for Web servers where the public
accesses the files, but it’s very suitable for a development Web site.

XAMPP installs Apache, PHP, and MySQL in one easy procedure. It also

installs phpMyAdmin. XAMPP is available for Windows, Mac, Linux, and
Solaris. Detailed instructions for downloading and installing XAMPP can
be found in Appendix A.

v~ Install each software package individually. You can install the software
individually. The software can be downloaded and installed without
charge. It’s available for most operating systems, including Windows
and Mac. Apache, MySQL, and phpMyAdmin provide an installer that
you run to install the software. PHP also provides an installer, but [
prefer to install it from the Zip file.

Instructions for installing the software are available on the official Web
sites, as follows:

e Apache: http://httpd.apache.org/docs/2.2/install.
html

e PHP: www .php.net/manual/en/install.php

e MySQL: http://dev.mysqgl.com/doc/refman/5.1/en/
installing.html

e phpMyAdmin: www . phpmyadmin.net

Chapter 2: Setting Up Your Work Environment

Writing the files

In addition to the software for testing your programs, you need software to
write the programs. Because PHP programs are just text files, like HTML files
are just text files, you can use your favorite text editor (such as WordPad or
NotePad on Windows) to write PHP programs. However, there are tools that
offer features that make program writing much easier.

It’s worthwhile to check out programming editors and integrated develop-
ment environments (IDEs) before writing your programs.

<P Programming editors and IDEs offer features that can save you enormous
amounts of time during development. Download some demos, try the soft-
ware, and select the one that suits you best. You can take a vacation later on
the time you save.

Programming editors

Programming editors offer many features specifically for writing programs.
The following features are offered by most programming editors:

v Color highlighting: The editor highlights parts of the program — such
as HTML tags, text strings, keywords, and comments — in different
colors so they’re easy to identify.

+ Indentation: The editor automatically indents inside parentheses and
curly braces to make programs easier to read.

v Line numbers: The editor adds temporary line numbers. This is impor-
tant because PHP error messages specify the line where the error was
encountered. It would be cumbersome to have to count 872 lines from
the top of the file to the line that PHP says is a problem.

+* Multiple files: You can have more than one file open at once.

v Easy code insertion: The editor offers buttons for inserting code, such
as HTML tags or PHP statements or functions.

v Code library: You can save snippets of your own code that you can
insert by clicking a button.

Many programming editors are available on the Internet for free or for a low
price. Some of the more popular editors include the following:

v Arachnophilia: (www.arachnoid.com/arachnophilia) This multi-
platform editor is written in Java. It’s freeware. It’s oriented to HTML
and Web page development.

v BBEdit: (www.barebones.com/products/bbedit/index.shtml)
This is the most popular editor for the Mac. BBEdit sells for $125.00.

v EditPlus: (www.editplus.com) This editor is designed for use on
Windows machines. It highlights HTML, PHP, and other languages. It
costs $35.00.

35

36 Part |: Developing a Web Database Application Using PHP and MySQL

v Emacs: (www.gnu.org/software/emacs/emacs.html) Emacs works
with Windows, Mac, and several flavors of Linux and Unix. It’s free.

v HTMLKit: (www.chami.com/html-kit) This is a full-featured free
editor for HTML, XHTML, XML, CSS, JavaScript, PHP and other text files.
A popular editor available for Windows.

v TextWrangler: (www.barebones.com/products/textwrangler)
This editor is provided by the same people who make BBEdit. It’s sort of
BBEdit lite, also for the Mac. It’s free.

Integrated development environment (IDE)

An IDE is an entire workspace for developing applications. It includes a pro-
gramming editor as well as other features. The following are some features
included by most IDEs:

v+ Debugging: Has built-in debugging features.
v Previewing: Displays the Web page output by the program.
v Testing: Has built-in testing features for your programs.

v FTP: Has built-in ability to connect and upload/download via FTP (File
Transfer Protocol). Keeps track of which files belong in which Web site
and keeps the Web site up-to-date.

v Project management: Organizes programs into projects; manages the
files in the project; and includes file checkout and checkin features.

v Backups: Makes automatic backups of your Web site at periodic intervals.

IDEs are more difficult to learn that programming editors. Some are fairly expen-
sive, but their wealth of features can be worth it. IDEs are particularly useful when
several people will be writing programs for the same application. An IDE can make
project coordination much simpler and make the code more compatible.

The following are popular IDEs:

1 Dreamweaver: (www . adobe . com/products/dreamweaver) This
IDE is available for the Windows and Mac platforms. It provides visual
layout tools so you can create a Web page by dragging elements around
and clicking buttons to insert elements. Dreamweaver can write the
HTML code for you. It also supports PHP. The current version is CS4,
which costs $399.00. You can also get Dreamweaver in a suite with other
Adobe products.

v Komodo: (www.activestate.com/komodo) Komodo is offered for
Linux and Windows. It supports HTML, JavaScript, CSS, and XML, as well
as PHP and other open source languages, such as PERL and Python. It
costs $295.00.

v PHPEdit: (www .phpedit .com) PHPEdit is available for Windows. It has
several different versions, with different features and different prices.

Chapter 2: Setting Up Your Work Environment

Uploading your files to your Web site

When your Web page files are complete and ready for the public, you need
to transfer them to your Web site. In most cases, you upload them from your
local machine using FTP. You can install FTP software on your computer that
makes uploading the files an easy process.

If you use an IDE, as I suggest earlier, you have a built-in FTP feature.

For instance, if you're using Dreamweaver, when you first set up your
Dreamweaver project, you set up a remote site that’s connected to your Web
site. Whenever you want to upload or download a file, you just highlight it
and click a Dreamweaver button. Also, Dreamweaver keeps track of the ver-
sions, letting you know whether you’re about to replace a newer file with one
that has an older date.

Some programming editors also have built in FTP features. For instance,
HTMLKit has a built-in FTP feature that makes uploading your files easy.

If your editor does not include an FTP feature, you can install FTP software
on your local computer. This software usually organizes file views similarly
to Windows Explorer. It has two panels: one showing the files in the current
directory on your local computer and one showing the files on a remote
location — your Web site. You then just highlight and move files from one
location to the other.

One software package you can use to transfer files is Filezilla (http: //
filezilla-project.org). It’s free software that you can download and
install. If you install your Web software using XAMPP, Filezilla is automati-
cally installed at the same time. Some other FTP software is:

v FTP Voyager: (www . ftpvoyager . com) A powerful, secure FTP client
for Windows. It has many features, including drag-and-drop file transfer.
It costs $39.95.

v WS_FTP: (www. ipswitchft.com) A fullfeatured FTP client for
Windows. It costs $54.95. The same company also sells Fetch, an FTP
client for the Mac.

v SmartFTP: (www. smartftp.com) A popular FTP client with many fea-
tures, especially features oriented toward communication with a Web
hosting company. The home version is $36.95, and the professional ver-
sion is $49.95.

37

38

Part |: Developing a Web Database Application Using PHP and MySQL

Web hosting company

If you have a reason why you must develop on your Web hosting account,
you need a private location for the development files. You can obtain a
second account from the Web host for development, and you can transfer the
files to your Web site when they’re done. Or, you can create a subdirectory
on your Web site that you use only for development, transferring the files to
the main Web site directory when they’re completed.

Whichever way you do it, you need to set up a couple of things. You need
to be sure the development area is private, not available to the public. And
you need to make sure that the development area is not indexed by search
engines. If search engines run across the same Web pages in two different
locations, it can lower your search engine results quite a bit.

Keeping it private

You need to set up a directory in your Web hosting account to serve as your

development site. You can make the directory private, with no public access

with your .htaccess file. To block access to your development directory:
1. Create a file named .htaccess in the directory you want to protect.

That is, if you created a subdirectory named devel to be your develop-
ment site, create the .htaccess file inside the devel directory. And,
yes, that’s a dot at the beginning of the filename.

2. Add a line to the .htaccess file.
The line should read as follows:
Deny from all

The Deny directive in the .htaccess file prevents anyone from accessing
any files in the directory where the .htaccess file is located.

Keeping out the search engines

You can instruct search engines not to index any files in a directory with a
robots. txt file. Create this file with the following contents:

FHESHAHA RS HA RS RS S AH AR R RS

#

robots.txt file for this website

#

addresses all robots by using wild card *
#

User-agent: *
list folders robots are not allowed to index

Disallow: /
#

Chapter 2: Setting Up Your Work Environment 39

list specific files robots are not allowed to index
zDisallow: /tutorials/meta_tags.html

#Disallow: /tutorials/custom_error_page.html

i End of robots.txt file
t##############################

The line that begin with number signs (#) are comments, which are ignored.
Notice that only two lines are not comments. The first line is

User-agent: *

This line specifies that all search engines should follow the directions in this
file. The second line is

Disallow: /

This line specifies that the search engines should ignore all files in this direc-
tory, including subdirectories.

A company computer

If your development site is located on a company computer, your company IT
department is responsible for setting up the site and making is private. You
need to communicate your needs to your IT department. You need to be able
to transfer the completed files from the development site to the Web site.
Your IT department should tell you how to do that. Also, your IT department
needs to make a text file editor available for your use and provide documen-
tation or instructions on how to use the editor.

Testing, Testing, 1,2,3

Suppose you believe that PHP and MySQL are available for you to use, for
one or more of the following reasons:

v The IT department at your company or your client company gave you all
the information that you asked for and told you that you’re good to go.

v The Web hosting company gave you all the information that you need
and told you that you're good to go.

* You followed all the instructions and installed PHP and MySQL yourself
on your local computer.

40 Part |: Developing a Web Database Application Using PHP and MySQL

Now you need to test to make sure that PHP and MySQL are working
correctly.

Understanding PHP/MySQL functions

PHP can communicate with any version of MySQL. However, PHP needs to

be installed differently, depending on which version of MySQL you’re using.
PHP provides one set of functions (mysgl functions) that communicate with
MySQL 4.0 or earlier and a different set of functions (mysgli functions) that
communicate with MySQL 4.1 or later. The mysqgl functions, which communi-
cate with earlier versions of MySQL, can also communicate with the later ver-
sions of MySQL, but you may not be able to use some of the newer, advanced
features that were added to MySQL in the later versions. The mysgli func-
tions, which can take advantage of all the MySQL features, are available only
with PHP 5 or later.

The programs in this book, including the test programs in this section, use
MySQL 5.0 and the mysqgli functions. If you're using PHP 4, you need to
change the programs to use the mysqgl functions, rather than the mysqgli
functions. The functions are similar, but some have slight changes in syntax.
Chapter 8 provides a table (Table 8-1) showing the differences between the
functions used in this book. Versions of the programs that run with PHP 4 are
available for download at my Web site (www. janetvalade.com).

If you do use the wrong function, you might see an error message similar to
the following:

Fatal error: Call to undefined function mysqgl_connect ()

The message means that you're using a mysgl function in your program, but
the mysqgl functions are not enabled. MySQL support might not be enabled at
all or mysqgli support might be enabled instead of mysqgl support. Enabling
MySQL support is explained in Appendix B.

Functions are explained later in the book, and the PHP functions that com-
municate with MySQL are discussed at the beginning of Chapter 8. I mention
them briefly here just in case you're using PHP 4, because the test programs
that follow this section don’t run correctly with PHP 4.

Testing PHP

You need to test that PHP is installed and working in both your development
site and your Web site.

Chapter 2: Setting Up Your Work Environment

3

\NG/
&VQ‘“

On your local computer
To test whether PHP is installed and working, follow these steps:

1. Find the directory in which your PHP programs need to be saved.

This directory and the subdirectories under it are your Web space.
Apache calls this directory the document root. Here’s where you can find
your directory:

e If you installed PHP from XAMPP, the default Web space is c: \
xampp \htdocs on Windows and Applications/xampp/htdocs
on Mac.

e If you installed PHP and Apache yourself, individually, the default
Web space is the subdirectory htdocs in the directory where
Apache is installed.

e If you're using IIS as your Web server, it’s ITnetpub\wwwroot.
¢ In Linux, it might be /var/www/html.

You can set the Web space to a different directory by configuring the
Web server (see Appendix B).

. Create the following file somewhere in your Web space with the name

test.php.

<html>

<head><title>PHP Test</title></head>

<body>

<p>This is an HTML line</p>

<?php
echo "<p>This is a PHP line</p>";
phpinfo() ;

?>

</body></html>

The file must be saved in your Web space for the Web server to find it.

. Execute the test.php file created in Step 2.

To run a file on your own computer, you can access the default Web
space by using the name localhost. Therefore, to execute the file, type
localhost/test.php into your browser address window.

For the file to be processed by PHP, you need to access the file through
the Web server — not by choosing File>Open from your Web browser
menu.

You should see the following in the Web browser:

This is an HTML line
This is a PHP line

41

42

Part |: Developing a Web Database Application Using PHP and MySQL

Below these lines, you should see a large table that shows informa-

tion associated with PHP on your system. It shows PHP information,
pathnames and filenames, variable values, and the status of various
options. The table is produced by the phpinfo () line in the test script.
Anytime you have a question about the settings for PHP, you can use the
phpinfo () statement to display this table and check a setting.

. Check the PHP values for the settings you need.

For instance, you need MySQL support enabled. Looking through the
listing, find the section for MySQL and make sure that MySQL support
is On.

Also, at the top of the output, you’ll see the version number of the PHP
you're running. Be sure you are running PHP 5, not PHP 4.

. Change values if necessary.

The general settings for PHP are stored in a file named php . ini. You
can change the settings to change PHP’s behavior. Various PHP set-
tings are discussed throughout the book in the appropriate sections.
Appendix B discusses how you can change PHP settings.

On a Web hosting company

If your Web site is hosted at a Web hosting company, you need to test that
PHP is working and see what the settings are. In the previous section, in
Step 2, you created a test PHP program. In this test, you upload this file to
your Web site and make sure it runs correctly.

1.

Locate the test file.

2. Upload the test file to your Web site.

3. Execute the test PHP file on your Web site by typing its address into

your browser address window.

That is, type your domain name with the filename included, such as
www.myfinecompany.com/test.php.

If the file runs successfully, you see a long listing on a Web page, similar
to the output you saw when you executed this file on your local
computer.

. Check the PHP values for the settings you need.

Check to make sure that your Web site is running PHP 5, not PHP 4. Also,
make sure that MySQL support is activated.

. Change values if necessary.

On your Web site, you can’t change the settings in the general php.ini
file. However, you can change PHP settings on a Web hosting account in
other ways. Changing the settings is described in Appendix B.

Chapter 2: Setting Up Your Work Environment

Testing your local PHP configuration file

PHP has many configuration settings that you may want to change. The set-
tings are stored in a text file named php . ini. Your Web host will certainly
not provide you with access to the general php. ini file that affects the PHP
settings of all users, but some hosts allow you to use a local php. ini file in
your own Web site that affects only your PHP settings.

If you can use a local php . ini file, writing your PHP programs is much
easier. You should test to see whether your Web host allows a local php.ini
file. Here’s how to do it:

1. Create an empty text file named php.ini and upload the empty file to
your Web site main directory.

2. Execute the program, test .php, that you previously created on your
Web site.

3. Examine the list of settings the program outputs.

Close to the top is a setting called Loaded Configuration File. This set-
ting shows the path to the php. ini file that is currently in effect. If your
host allows a local php . ini file, the setting shows the path to the empty
file that you just uploaded.

If the path to your uploaded file is not the path to your local php . ini file, your
host probably doesn’t allow local php . ini files. However, it can’t hurt to ask.
Perhaps one of you, you or your host, has to do something extra to set it up. Or
perhaps if enough people ask for it, your host will change its policies.

Testing MySOL

After you know that PHP is running okay, you can test whether you can
access MySQL by using PHP. The following test should be run on both your
development environment and your Web site. First run the test on your
development site and then upload the file to your Web site and run the test
there. Just follow these steps:

1. Create the following file somewhere in your Web space with the name
mysql_test.php.

On your Web site, you can run it in the main directory or in a subdirectory.

43

44 Part |: Developing a Web Database Application Using PHP and MySQL
\\3

You can download the file from my Web site at www. janetvalade. com.

<?php

/* Program: mysgl_test.php
* Desc: Connects to MySQL Server and
& outputs settings.
*/

echo "<html>
<head><title>Test MySQL</title></head>
<body>";

Shost = "hostname";

Suser = "mysglaccount';

Spassword = "mysglpassword";

Scxn = mysgli_connect (Shost, Suser, Spassword) ;
Ssgl="SHOW DATABASES";
Sresult = mysqgli_query (Scxn, Ssqgl) ;

if (Sresult == false)
{
echo "<h4>Error: ".mysqgli_error($Scxn)."</hd>";
}
else

{
if (mysgli_num_rows (Sresult) < 1)
{

echo "<p>No current databases</p>";

}
else
{
echo "";
while(Srow = mysgli_fetch_row(Sresult))
{
echo "Srow[0]</1li>";
}
echo "";
}
}
?>
</body></html>

2. Change lines 9, 10, and 11 of the program:

Shost="hostname" ;
Suser="mysqglaccount";
Spassword="mysqglpassword" ;

On your local computer, change "hostname" to "localhost". If

your Web site is located at a Web hosting company, you may need to
use "localhost" or you may need to use your domain name, such as
myfinecompany.com. Some Web hosts use other designations for the
hostname. The information needed should be included in the informa-
tion you received from your host when you signed up. If you can’t figure
it out, contact tech support at your Web host and ask them what to use
for the hostname in a PHP program. On a company computer, you need
to get the hostname from your IT department.

Chapter 2: Setting Up Your Work Environment

Change mysglaccount and mysqglpassword to the appropriate values.
On your local machine, an account named root is installed when MySQL
is installed, which may or may not have a password. (I discuss MySQL
accounts and passwords in Chapter 5.) If your MySQL account doesn’t
require a password, type nothing between the quotes, as follows:

Spassword="";

On your Web host account, the MySQL account name and password
should be included in the information your host sent you when you
signed up. On a company computer, you need to get this information
from the IT department.

3. Execute mysqgl_test.php.

You should see a list of database names. You don’t want to see an error
message or a warning message. If no error or warning message is dis-
played, MySQL is working fine. If you see an error or a warning message,
you need to fix the problem that’s causing the message.

The following is a common error message:

MySQL Connection Failed: Access denied for user: 'user73@
localhost' (Using password: YES)

This message means that MySQL did not accept your MySQL account number
or your MySQL password. Notice that the message reads YES for Using
password but doesn’t show the actual password that you tried for security
reasons. If you tried with a blank password, the message would read NO.

If you receive an error message, double-check your account number and
password. Remember that this is your MySQL account number — not your
account number to log on to the computer or on to your Web host account.
If you can’t connect with the account number and password that you have,
contact the IT department or the Web hosting company that gave you the
account number. (For a further discussion of MySQL accounts and pass-
words, see Chapter 5.)

b5

46 Part |: Developing a Web Database Application Using PHP and MySQL

Chapter 3

Developing a Web
Database Application

In This Chapter
Planning your application
Selecting and organizing your data
Designing your database
Building your database: An overview

Writing your application programs: An overview

Developing a Web database application involves more than just storing
data in MySQL databases and typing in PHP programs. Development
has to start with planning. Building the application pieces comes after plan-
ning. The development steps are

1. Develop a plan, listing the tasks that your application will perform.
2. Design the database needed to support your application tasks.

3. Build the MySQL database, based on the database design.
4. Write the PHP programs that perform the application tasks.

[discuss these steps in detail in this chapter.

Planning Your Web Database Application

Before you ever put finger to keyboard to write a PHP program, you need to
plan your Web database application. This is possibly the most important step
in developing your application. It’s painful to discover, especially just after
you finish the last program for your application, that you left something out
and have to start over from the beginning. It’s also hard on your computer
(and your foot) when you take out your frustrations by drop-kicking it across
the room.

48 Part |: Developing a Web Database Application Using PHP and MySQL

A\\S

Good planning prevents such painful backtracking. In addition, it keeps you
focused on the functionality of your application, thus preventing you from
writing pieces for the application that do really cool things but turn out to
have no real purpose in the finished application. And if more than one person
is working on your application, planning ensures that all the pieces will fit
together in the end.

Identifying what you want
from the application

The first step in the planning phase is to identify exactly why you’re develop-
ing your application and what you want from it. For example, your main pur-
pose might be to

v Collect names and addresses from users so that you can develop a cus-

tomer list.

v Deliver information about your products to users, as in a customer catalog.

v Sell products online.

v Provide technical support to people who already own your product.
After you clearly identify the general purpose of your application, make a list
of exactly what you want that application to do. For instance, if your goal is
to develop a database of customer names and addresses for marketing pur-
poses, the application’s list of required tasks is fairly short:

v Provide a form for customers to fill out.

v Store the customer information in a database.
If your goal is to sell products online, the list is a little longer:

v Provide information about your products to the customer.

1 Motivate the customer to buy the product.

v Provide a way for the customer to order the product online.

v Provide a method for the customer to pay for the product online.

v Validate the payment so you know that you’ll actually get the money.
v+ Send the order to the person responsible for filling the order and send-

ing the product to the customer.

At this point in the planning process, the tasks that you want your applica-
tion to perform are still pretty general. You can accomplish each of these
tasks in many different ways. So now you need to examine the tasks closely

Chapter 3: Developing a Web Database Application

and detail exactly how the application will accomplish them. For instance, if
your goal is to sell products online, you might expand the preceding list like
this:
v Provide information about products to the customer.
¢ Display a list of product categories. Each category is a link.

e When the customer clicks a category link, the list of products in
that category is displayed. Each product name is a link.

e When a customer clicks a product link, the description of the prod-
uct is displayed.

1 Motivate the customer to buy the product.

¢ Provide well-written descriptions of the products that communi-
cate their obviously superior qualities.

e Use flattering pictures of the products.
e Make color product brochures available online.
¢ Offer quantity discounts.
v Provide a way for customers to order the product online.

¢ Provide a button that customers can click to indicate their inten-
tion to buy the product.

¢ Provide a form that collects necessary information about the prod-
uct the customer is ordering, such as size and color.

¢ Provide forms for customers to enter shipping and billing
addresses.

e Compute and display the total cost for all items in the order.
e Compute and display the shipping costs.
e Compute and display the sales tax.

v Provide a method for customers to pay for the product online.

e Provide a button that customers can click to pay with a credit
card.

e Display a form that collects customers’ credit card information.
v Validate the payment so you know that you’ll actually get the money.

The usual method is to send the customer’s credit card information to a
credit card processing service.

v Send the order to the person responsible for filling the order and
sending the product to the customer.

E-mailing order information to the shipping department should do it.

49

50 Part |: Developing a Web Database Application Using PHP and MySQL

\‘&N\BEH At this point, you should have a fairly clear idea of what you want from your

& Web database application. However, this doesn’t mean that your goals can’t
change. In fact, your goals are likely to change as you develop your Web data-
base application and discover new possibilities. At the onset of the project,
start with as comprehensive a plan as possible to stay focused.

Taking the user into consideration

Identifying what you want your Web database application to do is only one
aspect of planning. You must also consider what your users will want from it.
For example, say your goal is to gather a list of names and addresses for mar-
keting purposes. Will customers be willing to give up that information?

Your application needs to fulfill a purpose for the users as well as for you.
Otherwise, they’ll just ignore it. Before users will be willing to give you their
names and addresses, for example, they need to perceive that they will ben-
efit from giving you this information. Here are a few examples of why users
might be willing to register their names and addresses at your site:

v To receive a newsletter: To be perceived as valuable, the newsletter
should cover an industry related to your products. It should offer news
and spot trends — and not just serve as marketing material about your
products.

* To enter a sweepstakes for a nice prize: Who can turn down a chance
to win an all-expense-paid vacation to Hawaii or a brand-new SUV?

v To receive special discounts: For example, you can periodically e-mail
special discount opportunities to customers.

+* To be notified about new products or product upgrades when they
become available: For example, customers might be interested in being
notified when a software update is available for downloading.

1 To get access to valuable information: For instance, many magazines
and newspapers require that you register at their sites to gain access to
their articles online.

Now add the customer tasks to your list of tasks that you want the applica-
tion to perform. For example, consider this list of tasks that you identified for
setting up an online retailer:

v Provide a form for customers to fill out.

v Store the customer information in a database.
If you take the customer’s viewpoint into account, the list expands a bit:

v Present a description of the advantages customers receive by register-
ing with the site.

Chapter 3: Developing a Web Database Application

A\\S

v Provide a form for customers to fill out.
v Add customers’ e-mail addresses to the newsletter distribution list.

v Store the customer information in a database.

After you have a list of tasks that you want and tasks that your users want,
you have a plan for a Web application that’s worth your time to develop and
worth your users’ time to use.

Making the site easy to use

In addition to planning what your Web application is going to do, you need to
consider how it’s going to do it. Making your application easy to use is impor-
tant: If customers can’t find your products, they aren’t going to buy them.
And if customers can’t find the information they need in a short time, they
will look elsewhere. On the Web, customers can easily go elsewhere.

Making your application easy to use is usability engineering. Web usability
includes such issues as

1 Navigation: What’s on your site and where it’s located should be imme-
diately obvious to a user.

v+ Graphics: Graphics make your site attractive, but graphic files can be
slow to display.

v Access: Some design decisions can make your application accessible or
not accessible to users who have disabilities such as impaired vision.

+* Browsers: Different browsers (even different versions of the same
browser) can display the same HTML file differently.

Web usability is a large and important subject, and delving into the topic more
deeply is beyond the scope of this book. But fear not; you can find lots of help-
ful information about Web usability on — you guessed it — the Web. Be sure
to check out the Web sites of usability experts Jakob Nielsen (www.useit.
com) and Jared Spool (www.uie.com). Vincent Flanders also has a fun site full
of helpful information about Web design at http: //webpagesthatsuck.
com. And books on the subject can be very helpful, such as Web Design For
Dummies by Lisa Lopuck (Wiley).

Leaving room for expansion

One certainty about your Web application is that it will change over time.
Down the line, you might think of new functions for it or just simply want to
change something about it. Or maybe Web site software improves so that

51

52 Part |: Developing a Web Database Application Using PHP and MySQL

your Web application can do things that it couldn’t do when you first put
it up. Whatever the reason, your Web site will change. When you plan your
application, you need to keep future changes in mind.

You can design your application in steps, taking planned changes into
account. You can develop a plan in which you build an application today that
meets your most immediate needs and make it available as soon as it’s ready.
Your plan can include adding functions to the application as quickly as you
can develop them. For example, you can build a product catalog and publish
it on your Web site as soon as it’s ready. You can then begin work on an
online ordering function for the Web site, which you will add when it’s ready.

<MBER You can’t necessarily foresee all the functions that you might want in your
application. For instance, you might design your travel Web site with sections
for all possible destinations today, but the future could surprise you. Trips to
Mars? Alpha Centauri? An alternate universe? Plan your application with the
flexibility needed to add functionality in the future.

Writing it down

Write down your plan. You'll get this often from me. [speak from the painful
experience of not writing it down. When you develop your plan, it’s foremost
in your mind and perfectly clear. But in a few short weeks, you'll be aston-
ished to discover that it has gone absolutely hazy while your attention was
on other pressing issues. Or you’ll want to make some changes in the applica-
tion a year from now and won’t remember exactly how the application was
designed. Or you're working with a partner to develop an application and you
discover that your partner misunderstood your verbal explanation and devel-
oped functions for the application that don’t fit in your plan. You can avoid
these types of problems by writing down everything.

Presenting the Two Running
Examples in This Book

In the next two sections, | introduce the two example Web database applica-
tions that I created for this book. I refer to these examples throughout the
book to demonstrate aspects of application design and development.

Stuff for Sale

The first example is an online product catalog. You're the owner of a pet
store, and you want your catalog to provide customers with information

Chapter 3: Developing a Web Database Application

about the pets for sale. Selling the pets online is not feasible, although you’re
toying with the idea of allowing customers to reserve pets online — that is,
before they come into the store to purchase them. Currently, the application
is simply an online catalog. Customers can look through the catalog online
and then come into the store to buy the pet. The information about all the
pets is stored in a database, and customers can search the database for infor-
mation on specific pets or types of pets.

Here’s your plan for this application:

v Allow customers to select which pet information they want to see.
Offer two selection methods:

e Selecting from a list of links: Display a list of links that are pet cat-
egories (dog, cat, dinosaur, and so on). When the customer clicks a
category link, a list of pets is displayed. Each pet in the list is a link
to a description of the pet.

e Typing search terms: Display a search form in which customers
can type words that describe the type of pet they're looking for.
The application searches the database for matching words and
displays the pet information for pets that match the search words.
For example, a customer can type cat to see a list of all available
cats. Each cat in the list is a link to a description of that cat.

v Display a description of the pet when the customer clicks the link.

The description is stored in a database.

Members Only

The second example Web database application is related to the preceding
pet store example. In addition to the online catalog, you also want to put up
a section on your pet store Web site that’s for members only. To access this
area of the site, customers have to register — providing their names and
addresses. In this Members Only section, customers can order pet food at a
discount, find out about pets that are on order but haven’t arrived yet, and
gain access to articles with news and information about pets and pet care.

This is your plan for this application:
v Display a description of what special features and information are
available in the Members Only section.
v Provide an area where customers can register for the Members Only section.
® Provide a link to the registration area.

e Display a form in the registration area where customers can type
their registration information.

53

54 Part |: Developing a Web Database Application Using PHP and MySQL

The form should include space for a user login name and password
as well as the information that you want to collect.

¢ Validate the information that the user entered.

For example, verify that the zip code is the correct length and that
the e-mail address is in the correct format.

e Store the information in the database.

v Provide a login section for customers who are already registered for
the Members Only section.

e Display a login form that asks for the customer’s username and
password.

e Compare the username and password that are entered with the user-
names and passwords in the database.

If no match is found, display an error message.

v Display the Members Only Web page after the customer has success-
fully logged in.

Designing the Database

After you determine exactly what the Web database application is going to
do (see the beginning part of this chapter if you haven’t done this yet), you're
ready to design the database that holds the information needed by the appli-
cation. Designing the database includes identifying the data that you need
and organizing the data in the way required by the database software.

Choosing the data

First, you must identify what information belongs in your database. Look at
the list of tasks that you want the application to perform and determine what
information you need to complete each of those tasks.

Here are a few examples:

v An online catalog needs a database containing product information.

v An online order application needs a database that can hold customer
information and order information.

v A travel Web site needs a database with information on destinations,
reservations, fares, schedules, and so on.

Chapter 3: Developing a Web Database Application

A\

In many cases, your application might include a task that collects information
from the user. You'll have to balance your urge to collect all the potentially
useful information that you can think of against your users’ reluctance to give
out personal information — as well as their avoidance of forms that look too
time-consuming. One compromise is to ask for some optional information.
Users who don’t mind can enter it, but users who object can leave it blank.
Another possibility is to offer an incentive: The longer the form, the stron-
ger the incentive that you’ll need to offer to motivate the user to fill out the
form. A user might be willing to fill out a short form to enter a sweepstakes
that offers two sneak-preview movie tickets for a prize. But if the form is long
and complicated, the prize needs to be more valuable, such as a free trip to
California and a tour of a Hollywood movie studio.

In the Pet Catalog application, your customers search the online catalog for
information on pets that they might want to buy. You want customers to see
information that will motivate them to buy a pet. The information that you
want to have available in the database for the customer to see is as follows:

v The name of the pet (for example, poodle or unicorn)

v A description of the pet

v A picture of the pet

v The cost of the pet
In the second example application, the Members Only section, you want to
store information about registered members. The information that you want
to store in the database is as follows:

v Member name

v Member address

v Member phone number

v Member fax number

v Member e-mail address
Take the time to develop a comprehensive list of the information you need to
store in your database. Although you can change and add information to your
database after it’s developed, including the information from the beginning is
easier. Also, if you add information to the database later — after it’s in use —
the first users in the database will have incomplete information. For example,
if you change your form so that it now asks for the user’s age, you won’t have

the age for the people who have already filled out the form and are already in
the database.

55

56 Part |: Developing a Web Database Application Using PHP and MySQL

|
Figure 3-1:
MySQL data
is organized
into tables.
|

Organizing the data

MySQL is an RDBMS (Relational Database Management System), which
means that the data is organized into tables. (See Chapter 1 for more on
MySQL.) You can establish relationships between the tables in the database.

Organizing data in tables

RDBMS tables are organized like other tables that you're used to — in rows
and columns, as shown in Figure 3-1. The place where a particular row and
column intersect, the individual cell, is a field.

Column 1 Column 2 Column 3 Column 4

Row 1

Row 2

Row 3 Field

Row 4

Row 5

The focus of each table is an object (a thing) that you want to store informa-
tion about. Here are some examples of objects:

Customers Products

Companies Animals

Cities Rooms
Books Computers
Shapes Documents
Projects Weeks

You create a table for each object. The table name should clearly identify the
objects that it contains with a descriptive word or term. The name must be

a character string, containing letters, numbers, underscores, or dollar signs,
with no spaces in it. It’s customary to name the table in the singular. Thus,

Chapter 3: Developing a Web Database Application 5 7

NBER
‘x&
&

a name for a table of customers might be Customer, and a table containing
customer orders might be named CustomerOrder.

Uppercase and lowercase are significant on Linux and Unix but not on
Windows: CustomerOrder and Customerorder are the same to Windows —
but not to Linux or Unix.

In database talk, an object is an entity, and an entity has attributes. In the
table, each row represents an entity, and the columns contain the attributes
of each entity. For example, in a table of customers, each row contains infor-
mation for a single customer. Some of the attributes contained in the col-
umns might be first name, last name, phone number, and age.

Here are the steps for organizing your data into tables:

1. Name your database.

Assign a name to the database for your application. For instance, a data-
base containing information about households in a neighborhood might
be named HouseholdDirectory.

2. Identify the objects.

Look at the list of information that you want to store in the data-
base (as discussed in the section, “Choosing the data,” earlier in this
chapter). Analyze your list and identify the objects. For instance, the
HouseholdDirectory database might need to store the following:

e Name of each family member

e Address of the house

e Phone number

e Age of each household member

e Favorite breakfast cereal of each household member

When you analyze this list carefully, you realize that you're storing infor-
mation about two objects: the household and the household members.
That is, the address and phone number are for the household in general,
but the name, age, and favorite cereal are for a particular household
member.

3. Define and name a table for each object.

For instance, the HouseholdDirectory database needs a table called
Household and a table called HouseholdMember.

4. Identify the attributes for each object.

Analyze your information list and identify the attributes you need to
store for each object. Break the information to be stored into its small-
est reasonable pieces. For example, when storing the name of a person
in a table, you can break the name into first name and last name. Doing
this enables you to sort by the last name, which would be more difficult

58 Part |: Developing a Web Database Application Using PHP and MySQL

WMBER
‘x&
&

|
Figure 3-2:
A sample
from the
Customer
table.
|

if the first and last name were stored together. You can even break down
the name into first name, middle name, and last name, although not
many applications need to use the middle name separately.

. Define and name columns for each separate attribute that you identi-

fied in Step 4.

Give each column a name that clearly identifies the information in that
column. The column names should be one word, with no spaces. For
example, you might have columns named firstName and lastName or
first_name and last_name.

Some words are reserved by MySQL and SQL for their own use and
can’t be used as column names. The words are currently used in SQL
statements or are reserved for future use. For example, ADD, ALL, AND,
CREATE, DROP, GROUP, ORDER, RETURN, SELECT, SET, TABLE, USE,
WHERE, and many, many more can’t be used as column names. For a
complete list of reserved words, see the online MySQL manual at www .
mysql.com/doc/en/Reserved_words.html.

. Identify the primary key.

Each row in a table needs a unique identifier. No two rows in a table should
be exactly the same. When you design your table, you decide which column
holds the unique identifier, called the primary key. The primary key can be
more than one column combined. In many cases, your object attributes will
not have a unique identifier. For example, a customer table might not have
a unique identifier because two customers can have the same name. When
there’s no unique identifier column, you need to add a column specifically
to be the primary key. Frequently, a column with a sequence number is
used for this purpose. For example, in Figure 3-2, the primary key is the
cust_1id field because each customer has a unique ID number.

cust_id first_name last_name phone
27895 John Smith 555-5555
44555 Joe Lopez 555-5553
23695 Judy Chang 555-5552
27822 Jubal Tudor 555-5556
29844 Joan Smythe 555-5559

Chapter 3: Developing a Web Database Application 59

\\3

7. Define the defaults.

You can define a default that MySQL will assign to a field when no data is
entered into the field. A default is not required but is often useful. For example,
if your application stores an address that includes a country, you can specify
US as the default. If the user does not type a country, US will be entered.

8. Identify columns that require data.

You can specify that certain columns are not allowed to be empty (also
called NULL). For instance, the column containing your primary key
can’t be empty. That means that MySQL will not create the row and will
return an error message if no value is stored in the column. The value
can be a blank space or an empty string (for example, " "), but some
value must be stored in the column. Other columns, in addition to the
primary key, can be set to require data.

Well-designed databases store each piece of information in only one place.
Storing it in more than one place is inefficient and creates problems if informa-
tion needs to be changed. If you change information in one place but forget to
change it in another place, your database can have serious problems.

If you find that you're storing the same data in several rows, you probably
need to reorganize your tables. For example, suppose you're storing data
about books, including the publisher’s address. When you enter the data,
you realize that you're entering the same publisher’s address in many rows.
A more efficient way to store this data would be to store the book informa-
tion in one table and the book publisher information in a separate table.
You can define two tables: Book and BookPublisher. In the Book table,
you would have the columns title, author, pub_date, and price. In the
BookPublisher table, you would have columns such as name, street
Address, and city.

Creating relationships between tables

Some tables in a database are related. Most often, a row in one table is related
to several rows in another table. A column is needed to connect the related
rows in different tables. In many cases, you include a column in one table to
hold data that matches data in the primary key column of another table.

A common application that needs a database with two related tables is a cus-
tomer order application. For example, one table contains the customer infor-
mation, such as name, address, and phone number. Each customer can have
from zero to many orders. You could store the order information in the table
with the customer information, but a new row would be created each time
that the customer placed an order, and each new row would contain all the
customer’s information. It would be much more efficient to store the orders in
a separate table, named perhaps CustomerOrder. (You can’t name the table

60 Part |: Developing a Web Database Application Using PHP and MySQL

|
Figure 3-3:
A sample
from the
Customer
Order table.
|

Order because that’s a reserved word.) The CustomerOrder table would have
a column that contains the primary key from a row in the Customer table so
that the order is related to the correct row of the Customer table. The rela-
tionship is shown in the tables in Figures 3-2 and 3-3.

The Customer table in this example looks like Figure 3-2 (see the preced-

ing section). Notice the unique cust_id for each customer. The related
CustomerOrder table is shown in Figure 3-3. Notice that it has the same
cust_id column that appears in the Customer table. In this way, the order
information in the CustomerOrder table is connected to the related custom-
er’s name and phone number in the Customer table.

Order_no cust_id item_num cost
87-222 27895 cat-3 200.00
87-223 27895 cat-4 225.00
87-224 44555 horse-1 550.00
87-225 44555 dog-27 210.00
87-226 27895 bird-1 50.00

In this example, the columns that relate the Customer table and the
CustomerOrder table have the same name. They could have different names
as long as the data in the columns is the same.

Designing the Sample Databases

In the following two sections, I design the two databases for the two example
applications used in this book.

Chapter 3: Developing a Web Database Application 6 ’

Pet Catalog design process

You want to display the following list of information when customers search
your pet catalog:

v The name of the pet (for example, poodle or unicorn)

v A description of the pet

v A picture of the pet

v The cost of the pet
In the Pet Catalog plan, a list of pet categories is displayed. This requires that

each pet be classified into a pet category and that the pet category be stored
in the database.

You design the PetCatalog database by following the steps presented in
the “Organizing data in tables” section, earlier in this chapter:
1. Name your database.
The name for the Pet Catalog database is PetCatalog.
2. Identify the objects.
The information list is
e The name of the pet (poodle, unicorn, and so on)
e A description of the pet
e A picture of the pet
e The cost of the pet
e The category for the pet
All this information is about pets, so the only object for this list is Pet.
3. Define and name a table for each object.
The Pet Catalog application needs a table called pet.
4. Identify the attributes for each object.
Now you look at the information in detail:

e Name of the pet: A single attribute (for example, poodle or uni-
corn). However, it seems likely that your pet shop might have
more than one poodle for sale at a time. Therefore, your table
needs a unique identifier to serve as the primary key.

62 Part |: Developing a Web Database Application Using PHP and MySQL

e Pet identification number: A sequence number assigned to each pet
when it’s added to the table. This number is the primary key.

e Description of the pet: Two attributes — the written description of
the pet as it would appear in print and the color of the pet.

e Picture of the pet: A path name to a graphic file containing a beauti-
ful picture of the pet.

e Cost of the pet: The dollar amount that the store is asking for the pet.

e Category for the pet: Two attributes: a category name that includes
the pet — for example, dog, horse, dragon — and a description of
the category.

It would be inefficient to include two types of information in the Pet
table:

e Category description: The category information includes a descrip-
tion of the category. Because each category can include several
pets, including the category description in the Pet table would
result in the same description appearing in several rows. It’'s more
efficient to define the pet category as an object with its own table.

e Pet color: If the pet comes in several colors, all the pet information
will be repeated in a separate row for each color. It’s more efficient
to define the pet color as an object with its own table.

The added tables are named PetType and PetColor.
5. Define and name columns.
The Pet table has one row for each pet. The columns for the Pet table are
e petID: Unique sequence number assigned to each pet.
e petName: Name of the pet.

¢ petType: The category name. This is the column that connects the
pet to the correct row in the PetType table.

e petDescription: The description of the pet.
e price: The price of the pet.
e pix: The filename of a file that contains a picture of the pet.

The PetType table has one row for each pet category. It has the follow-
ing columns:

® petType: The category name of a type of pet. This is the primary
key for this table. Notice that the Pet table has a column with the
same name. These columns link this table with the pPet table.

e typeDescription: The description of the pet type.

Chapter 3: Developing a Web Database Application 63

The PetColor table has one row for each pet color. It has the following
columns:

e petName: The name of the pet. This is the column that connects
the color row to the correct row in the Pet table.

e petColor: The color of the pet.

e pix: The filename of a file that contains a picture of the pet of the
specified color.

6. Identify the primary key.
e The primary key of the Pet table is petID.
e The primary key of the PetType table is petType.

e The primary key of the PetColor table is petName and petColor
together.

7. Define the defaults.
No defaults are defined for any of the tables.
8. Identify columns with required data.
The following columns should never be allowed to be empty:
® petID
® petName
® petColor
® petType

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

Members Only design process

You create the following list of information that you want to store when cus-
tomers register for the Members Only section of your Web site:

v Member name

v Member address

v Member phone number

v Member fax number

v Member e-mail address

64 Part |: Developing a Web Database Application Using PHP and MySQL

In addition, you would like to collect the date when the member registers and
track how often the member goes into the Members Only section.

You design the Members Only database by following the steps presented in
the “Organizing data in tables” section, earlier in this chapter:
1. Name your database.
The name for the Members Only database is MemberDirectory.
2. Identify the objects.
The information list is
e Member name
e Member address
e Member phone number
e Member fax number
e Member e-mail address
e Member registration date
e Member logins

All this information pertains to members, so the only object for this list
is member.

3. Define and name a table for each object.
The MemberDirectory database needs a table called Member.
4. Identify the attributes for each object.
Look at the information list in detail:
e Member name: Two attributes: first name and last name.

e Member address: Four attributes: street address, city, state, and zip
code. Currently, you have pet stores only in the United States, so
you can assume that the member address is an address in the U.S.
mailing address format.

e Member phone number: One attribute.
e Member fax number: One attribute.
e Member e-mail address: One attribute.
e Member registration date: One attribute.
Several pieces of information are related to member logins:

e User info: Logging in to the Members Only section requires a login
name and a password. These two items need to be stored in the
database.

Chapter 3: Developing a Web Database Application 65

¢ Date and time: The easiest way to keep track of member logins is to store
the date and time when the user logged in to the Members Only section.

Because each member can have many logins, many dates and times for
logins need to be stored. Therefore, rather than defining the login time
as an attribute of the member, define login as an object, related to the
member but requiring its own table.

The added table is named Login. The attribute of a login object is its
login time (the time includes the date).

. Define and name the columns.

The Member table has one row for each member. The columns for the
Member table are

loginName city
password state
createDate zip
firstName email
lastName phone
street fax

The Login table has one row for each login: that is, each time a member
logs into the Members Only section. It has the following columns:

e loginName: The login name of the member who logged in. This is
the column that links this table to the Member table. This value is
unique in the Member table but not unique in this table.

e loginTime: The date and time of login.
. Identify the primary key.

¢ The primary key for the Member table is 1oginName. Therefore,
loginName must be unique.

e The primary key for the Login table is loginName and login
Time together.

. Define the defaults.

No defaults are defined for either table.

. Identify columns with required data.

The following columns should never be allowed to be empty:
®] oginName
® password
® loginTime

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

66 Part |: Developing a Web Database Application Using PHP and MySQL

Types of Data

MySQL stores information in different formats based on the type of informa-
tion that you tell MySQL to expect. MySQL allows different types of data to be
used in different ways. The main types of data are character, numerical, and
date and time data.

Character data

The most common type of data is character data — data that is stored as
strings of characters and can be manipulated only in strings. Most of the
information that you store will be character data, such as customer name,
address, phone, and pet description. Character data can be moved and
printed. Two character strings can be put together (concatenated), a sub-
string can be selected from a longer string, and one string can be substituted
for another.

Character data can be stored in one of two formats:

v Fixed-length: In this format, MySQL reserves a fixed space for the data.
If the data is longer than the fixed length, only the characters that fit
are stored — the remaining characters on the end are not stored. If the
string is shorter than the fixed length, the extra spaces are left empty
and wasted.

v Variable-length: In this format, MySQL stores the string in a field that
is the same length as the string. You specify a string length, but if the
string is shorter than the specified length, MySQL uses only the space
required rather than leaving the extra space empty. If the string is longer
than the space specified, the extra characters are not stored.

If a character string length varies only a little, use the fixed-length format. For
example, a length of 10 works for all zip codes, including those with the zip+4
number. If the zip code does not include the zip+4 number, only five spaces
are left empty. However, most strings are more variable, so in most cases use
a variable-length format. For example, your pet description might be Small
bat or might run to several lines of description. It would be better to store
this description in a variable-length format.

Numerical data

Another common type of data is numerical data — data that’s stored as a
number. Decimal numbers (for example, 10.5, 2.34567, 23456.7) can be stored as
well as integers (for example, 1, 2, 248). When data is stored as a number, it can
be used in numerical operations, such as adding, subtracting, and squaring.

Chapter 3: Developing a Web Database Application 6 7

\P

If data isn’t used for numerical operations, however, storing it as a character
string is better because the programmer will be using it as a character string.
No conversion is required. For example, you probably won’t want to add the
digits in the users’ phone numbers, so phone numbers should be stored as
character strings.

MySQL stores positive and negative numbers, but you can tell MySQL to
store only positive numbers. If your data is never negative, store the data as
unsigned (without using a + or - sign before the number). For example, a city
population or the number of pages in a document can never be negative.

MySQL provides a specific type of numeric column called an auto-increment
column. This type of column is automatically filled with a sequential number
when no specific number is provided. For example, when a table row is
added with 5 in the auto-increment column, the next row is automatically
assigned 6 in the column, unless a different number is specified. Auto-
increment columns are useful when unique numbers are needed, such as a
product number or an order number.

Date and time data

A third common type of data is date and time data. Data stored as a date can
be displayed in a variety of date formats. It can also be used to determine the
length of time between two dates or two times — or between a specific date
or time and some arbitrary date or time.

Enumeration data

Sometimes data can have only a limited number of values. For example, the
only possible values for a column might be yes or no. MySQL provides a data
type called enumeration for use with this type of data. You tell MySQL what
values can be stored in the column (for example, yes, no), and MySQL will
not store any other values in the column.

MySOL data type names

When you create a database, you tell MySQL what kind of data to expect in a
particular column by using the MySQL names for data types. Table 3-1 shows
the MySQL data types used most often in Web database applications.

68

Part |: Developing a Web Database Application Using PHP and MySQL

Table 3-1 MySQL Data Types

MySQL Data Type Description

CHAR (Iength) Fixed-length character string.

VARCHAR (Iength) Variable-length character string. The longest
string that can be stored is 1ength, which must
be between 1 and 255.

TEXT Variable-length character string with a maximum

length of 64K of text.

INT (length)

Integer with a range from —2147483648 to
+2147483647. The number that can be displayed is
limited by 1ength. For example, if Iengthis 4,
only numbers from —999 to 9999 can be displayed,
even though higher numbers are stored.

INT (Iength)

Integer with a range from 0 to 4294967295.

UNSIGNED Ilengthis the size of the number that can be
displayed. For example, if Iengthis 4, only
numbers up to 9999 can be displayed, even
though higher numbers are stored.

BIGINT Alarge integer. The signed range is

—9223372036854775808 to 9223372036854775807.
The unsigned range is 0 to 18446744073709551615.

DECIMAL (length, dec)

Decimal number where Iengthisthe number
of characters that can be used to display the
number, including decimal points, signs, and
exponents, and dec is the maximum number of
decimal places allowed. For example, 12.34 has a
lengthof5anda decof 2.

DATE Date value with year, month, and date. Displays
the value as YYYY-MM-DD (for example, 2009-
09-03).

TIME Time value with hour, minute, and second.
Displays as HH:MM:SS.

DATETIME Date and time are stored together. Displays as
YYYY-MM-DD HH:MM:SS.

ENUM Only the values listed can be stored. A maximum

("vall","val2"...) of 65,535 values can be listed.

SERIAL A shortcut name for BIGINT UNSIGNED NOT

NULL AUTO_INCREMENT.

Chapter 3: Developing a Web Database Application 69

Note that the data type SERIAL is available only in MySQL 5.0 or later. Also,
you can’t set the data type SERIAL using phpMyAdmin. You must use SQL to
set the data type SERIAL, as explained in Chapter 4.
‘\? MySQL allows many other data types, but they’re needed less frequently. For
a description of all the available data types, see the MySQL online manual at
http://dev.mysqgl.com/doc/refman/5.1/en/data-types.html.

Writing it down

Here’s my usual nagging: Write it down. You probably spent substantial time
making the design decisions for your database. At this point, the decisions
are firmly fixed in your mind. You don’t believe that you can forget them.
However, suppose that a crisis intervenes; you don’t get back to this project
for two months. You’ll have to analyze your data and make all the design
decisions again. You can avoid this by writing down the decisions now.

Document the organization of the tables, the column names, and all other
design decisions. A good format is a document that describes each table

in table format, with a row for each column and a column for each design
decision. For example, your columns would be column name, data type, and
description.

Taking a Look at the Sample
Database Designs

This section contains the database designs for the two example Web data-
base applications.

Stuff for Sale database tables

The database design for the Pet Catalog application includes three tables:
Pet, PetType, and PetColor. Tables 3-2 through 3-4 show the organization
of these tables. The table definition isn’t set in concrete; MySQL allows you
to change tables pretty easily. For example, if you set the data type for a vari-
able to CHAR (20) and find that isn’t long enough, you can easily change the
data type. The database design follows.

70 Part |: Developing a Web Database Application Using PHP and MySQL

Table 3-2 PetCatalog Database Table 1: Pet

Column Name Type Description

petID SERIAL Sequence number for pet
(primary key)

petName VARCHAR (25) Name of pet

petType VARCHAR (15) Category of pet

petDescription VARCHAR (255) Description of pet

price DECIMAL(9,2) Price of pet

pix VARCHAR (15) Path name to graphic file

containing picture of pet

Table 3-3 PetCatalog Database Table 2: PetType

Column Name Type Description

petType VARCHAR (15) Name of pet category
(primary key)

typeDescription VARCHAR (255) Description of category

Table 3-4 PetCatalog Database Table 3: PetColor

Column Name Type Description

petName VARCHAR (25) Name of pet (primary key 1)

petColor VARCHAR (15) Color name (primary key 2)

pix VARCHAR (15) Path name to graphic file containing

picture of pet

Members Only database tables

The database design for the Members Only application includes two tables —
Member and Login. Tables 3-5 and 3-6 document the organization of these tables.
The table definition isn’t set in concrete; MySQL allows you to change tables pretty
easily. If you set the data type for a variable to CHAR (5) and find that it isn’t long
enough, it’s easy to change the data type.

Chapter 3: Developing a Web Database Application

The database design follows.

/1

Table 3-5 MemberDirectory Database Table 1: Member

Column Name Type Description

loginName VARCHAR (20) User-specified login name (primary key)

password VARCHAR (255) User-specified password

createDate DATE Date member registered and created

login account

lastName VARCHAR (50) Member's last name

firstName VARCHAR (40) Member’s first name

street VARCHAR (50) Member's street address

city VARCHAR (50) Member's city

state CHAR (2) Member's state

zip CHAR (10) Member's zip code

email VARCHAR (50) Member's e-mail address

phone VARCHAR (15) Member’s phone number

fax VARCHAR (15) Member's fax number

Table 3-6 MemberDirectory Database Table 2: Login

Column Name Type Description

loginName VARCHAR (20) Login name specified by user (primary
key 1)

loginTime DATETIME Date and time of login (primary key 2)

Developing the Application

After you develop a plan listing the tasks that your application will perform
and you develop a database design, you're ready to create your application.
First you build the database and then you write your PHP programs. You're
moments away from a working Web database application. Well, perhaps
that’s an exaggeration. But you are making progress.

72 Part |: Developing a Web Database Application Using PHP and MySQL

Building the database

Building the database means turning the paper database design into a work-
ing database. Building the database is independent of the PHP programs that
your application uses to interact with the database. The database can be
accessed using programming languages other than PHP, such as Perl, C, or
Java. The database stands on its own to hold the data.

WMBER
‘5“" You should build the database before writing the PHP programs. The PHP
programs are written to move data in and out of the database, so you can’t

develop and test them until the database is available.

The database design names the database and defines the tables that make
up the database. To build the database, you communicate with MySQL by
using the SQL language. You tell MySQL to create the database and to add
tables to the database. You tell MySQL how to organize the data tables and
what format to use to store the data. Detailed instructions for building the
database are provided in Chapter 4.

Writing the programs

Your programs perform the tasks for your Web database application. They
create the display that the user sees in the browser window. They make your
application interactive by accepting and processing information typed in the
browser window by the user. They store information in the database and

get information out of the database. The database is useless unless you can
move data in and out of it.

The plan that you develop (as I discuss in the earlier sections in this chapter)
outlines the programs that you need to write. In general, each task in your
plan calls for a program. If your plan says that your application will display

a form, you need a program that displays a form. If your plan says that your
application will store the data from a form, you need a program that gets the
data from the form and puts it in the database.

The PHP language was developed specifically to write interactive Web appli-
cations. It has the built-in functionality needed to make writing application
programs as painless as possible. Methods were included in the language
specifically to access data from forms, to put data into a MySQL database,
and to get data from a MySQL database. You can find detailed instructions for
writing PHP programs in Part III.

Part i
MySQL Database

The Sth Wave By Rich Tennant
[CRATENNANT

o g N ALY 2
“Great goulash, Stan. That reminds me, are
you still scripting your own Web page?”

In this part . . .

Tlis part provides the details of working with a MySQL
database. You find out how to use SQL (Structured
Query Language) to communicate with MySQL. In addi-
tion, you discover how to create a database, change a
database, and move data into and out of a database.

Chapter 4
Building the Database

In This Chapter
Using SQL to make requests to MySQL
Creating a new database
Adding information to an existing database
Looking at information in an existing database

Removing information from an existing database

A fter completing your database design (see Chapter 3 if you haven’t
done this yet), you're ready to turn it into a working database. In this
chapter, you find out how to build a database based on your design — and
how to move data into and out of it.

The database design names the database and defines the tables that make
up the database. To build the database, you must communicate with MySQL,
providing the database name and the table structure. Later, you must com-
municate with MySQL to add data to (or request information from) the data-
base. The language that you use to communicate with MySQL is SQL. In this
chapter, I explain how to create SQL queries and use them to build new data-
bases and interact with existing databases.

Communicating with MySQOL

The MySQL server is the manager of your database:

v It creates new databases.
v It knows where the databases are stored.

v It stores and retrieves information, guided by the requests, or queries,
that it receives.

76

Part Il: MySQL Database

NBER
‘x&
&

To make a request that MySQL can understand, you build an SQL query and
send it to the MySQL server. (For a more complete description of the MySQL
server, see Chapter 1.) The next two sections detail how to do this.

Building SOL queries

SQL (Structured Query Language) is the computer language that you use

to communicate with MySQL. SQL is almost English; it’s made up largely

of English words, put together into strings of words that sound similar to
English sentences. In general (fortunately), you don’t need to understand any
arcane technical language to write SQL queries that work.

The first word of each query is its name, which is an action word (a verb)
that tells MySQL what you want to do. The queries that I discuss in this chap-
ter are CREATE, DROP, ALTER, SHOW, INSERT, LOAD, SELECT, UPDATE, and
DELETE. This basic vocabulary is sufficient to create — and interact with —
databases on Web sites.

The query name is followed by words and phrases — some required and
some optional — that tell MySQL how to perform the action. For instance,
you always need to tell MySQL what to create, and you always need to tell it
which table to insert data into or to select data from.

The following is a typical SQL query. As you can see, it uses English words:
SELECT lastName FROM Member

This query retrieves all the last names stored in the table named Member.
More complicated queries, such as the following, are less English-like:

SELECT lastName, firstName FROM Member WHERE state="CA" AND
city="Fresno" ORDER BY lastName

This query retrieves all the last names and first names of members who live
in Fresno California and then puts them in alphabetical order by last name.
This query is less English-like but still pretty clear.

Here are some general points to keep in mind when constructing an SQL
query, as illustrated in the preceding sample query:

v Capitalization: In this book, I put SQL language words in all caps; items
of variable information (such as column names) are usually given labels
that are all or mostly lowercase letters. I did this to make it easier for
you to read — not because MySQL needs this format. The case of the

Chapter 4: Building the Database

SQL words doesn’t matter; for example, select is the same as SELECT,
and from is the same as FROM, as far as MySQL is concerned. On the
other hand, the case of the table names, column names, and other vari-
able information does matter if your operating system is Unix or Linux.
When using Unix or Linux, MySQL needs to match the column names
exactly, so the case for the column names has to be correct — for exam-
ple, lastname is not the same as 1astName. Windows, however, isn’t as
picky as Unix and Linux; from its point of view, 1astname and
lastName are the same.

v Spacing: SQL words must be separated by one or more spaces. It
doesn’t matter how many spaces you use; you could just as well use 20
spaces or just 1 space. SQL also doesn’t pay any attention to the end of
the line. You can start a new line at any point in the SQL statement or
write the entire statement on one line.

* Quotes: Notice that CA and Fresno are enclosed in double quotes (") in
the preceding query. CA and Fresno are series of characters called text
strings, or character strings. (1 explain strings in detail later in this chap-
ter.) You're asking MySQL to compare the text strings in the SQL query
with the text strings already stored in the database. When you com-
pare numbers (such as integers) stored in numeric columns, you don’t
enclose the numbers in quotes. (In Chapter 3, I explain the types of data
that you can store in a MySQL database.)

Sending SOL queries

When building a Web database application, two common ways to send SQL
queries to the MySQL server are

v phpMyAdmin: phpMyAdmin is software developed specifically for the
purpose of managing MySQL databases. It’s written in PHP and runs in a
browser. It provides a user interface that greatly simplifies your interac-
tions with MySQL.

v PHP scripts: The PHP language contains features developed specifically
for the purpose of sending SQL queries to MySQL databases and receiv-
ing information from the databases.

Using phpMyAdmin

The phpMyAdmin software page provides an interface for interacting with
the MySQL server. To open the main phpMyAdmin page, type localhost/
phpmyadmin/ into the address field in your browser. If you're using XAMPP,
you can also open phpMyAdmin from the XAMPP main page by clicking the
phpMyAdmin link located toward the bottom of the left orange pane.

/7

/8

utf8_unicode_ci M Font <i
: o L
I ‘i Create new database » Font size: [100% []
B phphyadmin documentation
Figure 4-1: Collation P g p:smwlmrhmn WiL;i
Official phpMyadmin
The poelel o
phpMyAdmin ° Shfow M%’.SQL runtime v [Chargelog] [Subversion]
information [Lists]
main page Show MySQL systemn variables
)
| # Drococces @

Part Il: MySQL Database

The phpMyAdmin main page is shown in Figure 4-1.

Home Help
Tfcan callost [phpMyAdmin 2.10.1 - Mozilla Firefox BE=|
Eile| Edit Miew History Bookmarks Tools Help
<E r /IJ} |,‘.,,,l hitp:/flacalhost/phpmyadmin/ "l Dl "l |\x|
localhost phpMyAdmin -

8 Server version:
5.0.41 -community-nt
» Protocol version: 10
@ Server: localhost via TCR/IP
» User: root@localhost
MySQL charset: UTF-8
Unicode (utf8)
MySQL connection collation:

2.10.1

» MySQL client version: 5.0.41
» Used PHP extensions: mysql
£ Language @ :
English H
@& Theme / Style:
Darkblueforange M

Notice the pane on the left of the page. The top of the pane shows some small
icons. The first icon on the left is the icon for home. Any time you click that
icon, you will return to this main page.

Another icon is a question mark. When you click the question mark icon, a
new window opens with documentation for phpMyAdmin.

You can use phpMyAdmin to administer your databases in one of two ways:

v Write SQL queries. You can write your own SQL query and use the SQL
feature of phpMyAdmin to send your query to the MySQL server.

v Click links and buttons in the phpMyAdmin interface. The interface
provides many features that make MySQL interaction easy. For instance,
the interface has features for browsing the data, searching the data,
inserting data, removing data, importing data, and many other features.

Sending your own SOQL queries using the phpMyAdmin query sender

You can write your own SQL query and send the query to the MySQL query
using phpMyAdmin. To send the query, follow these steps:

Chapter 4: Building the Database

|
Figure 4-2:
The
phpMyAdmin
SQL query
page.
|

1. Open the main phpMyAdmin page.
2. Click the SQL icon at the top of the left panel.

The following page opens, as shown in Figure 4-2. This page is a smaller
page that opens on top of the main page.

i, phpMyAdmin (3 | . MySQL: MySQLS.1 Reference Manu..,

£6SOL Fuimport files [ESOL history
rRun SQL guery/queries on server " =

[] Do not averwite this query from outside the window [Dehmilarl:ll Show this query here again

Dane

3. Type the SQL query into the top panel of the page.
4. Click the Go button.

The SQL query executes and the response is displayed on the main
page. The small screen remains open so that you can type another query
if desired.

Using this method, you can write any SQL query that you want and send it.
The response is displayed on the main page.

Using the phpMyAdmin interface

The phpMyAdmin software provides an interface you can use to manage
your databases. It contains buttons, links, and fields that perform the tasks
you need to perform, such as create a database, insert data, browse the data,
search for data, remove data, and so forth.

When you use the interface to perform a task, phpMyAdmin actually cre-
ates the SQL query needed to tell MySQL what you want to do and sends the
query to the MySQL server. If the query returns any information, such as
retrieves some data, the information returned is displayed on the phpMy
Admin page. The results page also shows you the query that was executed.

The most common operations you need to perform on your data are dis-
cussed in the remainder of this chapter. You find out how you perform these
actions, including how to perform the tasks with phpMyAdmin.

79

Part Il: MySQL Database

A quicker way to send SQL queries
to the MySQL server

In some situations, you can’t use phpMyAdmin to administer or modify your database. And writing
an entire PHP script for a simple database task is a waste of time. This sidebar explains a simple,
quick method for sending SAL queries to the MySQL server.

When MySQL is installed, a simple, text-based program called mysqgl (or sometimes the termi-
nal monitor or the monitor) is also installed. Programs that communicate with servers are client
software; because this program communicates with the MySQL server, it'’s a client. When you
enter SQL queries in this client, the response is returned to the client and displayed onscreen. The
monitor program can send queries across a network; it doesn't have to be running on the machine
where the database is stored.

To send SQL queries to MySQL by using the mysqgl client, follow these steps:
1. Locate the mysqgl client.

By default, the mysqgl client program is installed in the subdirectory bin under the direc-
tory where MySQL is installed. In Unix/Linux, the defaultis /usr/local /mysqgl/bin or
/usr/local/bin. In Windows, the defaultis ¢c: \Program Files\MySQL\MySQL
Server 5.0\bin.However, the client might be installed in a different directory. Or, if you're
not the MySQL administrator, you might not have access to the mysql client. If you don’t know
where MySQL is installed or cant run the client, ask the MySQL administrator to put the client
somewhere where you can run it or to give you a copy that you can put on your own computer.

2. Start the client.

In Unix and Linux, type the path/filename (for example, /usr/local/mysqgl/bin/
mysal). In Windows, open a command prompt window and then type the path\filename (for
example, c:\ Program Files\MySQL\MySQL Server 5.0\bin\mysgl). This
command starts the client if you don't need to use an account name or a password. If you need
to enter an account or a password or both, use the following parameters:

-u user: userisyour MySQL account name.
-p: This parameter prompts you for the password for your MySQL account.

For instance, if you're in the directory where the mysql clientis located, the command might
look like this:

mysgl -u root -p

Chapter 4: Building the Database 8 ’

3. If you're starting the mysq1l client to access a database across the network, use the follow-
ing parameter after the mysql command:

-h host: host is the name of the machine where MySQL is located.

For instance, if you're in the directory where the mysql client is located, the command might
look like this:

mysgl -h mysglhost.mycompany.com -u root -p
Press Enter after typing the command.
4. Enter your password when prompted for it.
The mysqgl client starts, and you see something similar to this:

Welcome to the MySQL monitor. Commands end with ; or

\g.

Your MySQL connection id is 459 to server version:
5.0.15

Type 'help;' or '\h' for help. Type '\c' to clear the
buffer.

mysqgl>

5. Select the database that you want to use.
At the mysql prompt, type the following:
use databasename
Use the name of the database that you want to query.
6. Atthe mysql prompt, type your SQL query followed by a semicolon (;) and then press Enter.

Themysql client continues to prompt for input and does not execute the query until you enter
a semicolon. The response to the query is displayed onscreen.

1. To leave the mysql client, type quit at the prompt and then press Enter.

Using PHP scripts

Because this book is about PHP and MySQL, the focus is on accessing MySQL
databases from PHP scripts. PHP and MySQL work well together. PHP pro-
vides built-in functions to interact with MySQL. You don’t need to know the
details of interacting with the database because the functions handle all the
details. You just need to know how to use the functions.

PHP functions connect to the MySQL server, select the correct database,
send a query, and receive any data that the query retrieves from the data-
base. I explain using PHP functions to interact with your MySQL database in
detail in Chapter 8.

82

Part Il: MySQL Database

Building a Database

<MBER
S

A database has two parts: a structure to hold the data and the data itself. In
the following few sections, I explain how to create the database structure.
First you create an empty database with no structure at all, and then you add
tables to it.

Rarely do you create your database from a PHP script. Generally, the database
needs to exist before your Web application can perform its tasks — display
data from the database, store data in the database, or both. Perhaps an appli-
cation might require you to create a new table for each customer, such as
create a new picture gallery or product information table for each individual.
In this case, an application might need to create a new table while it is run-
ning. But it’s unusual for an application to create a database or a table while
running.

Creating a new database

You can create your new, empty database using phpMyAdmin. After you
create a new database, you can add tables to it. Adding tables is explained
later in this chapter.

In this section, I explain how to create your new database on your local com-
puter and on a Web hosting account.

On your local computer
To create a new empty database, take these steps:

1. Open the phpMyAdmin main page in a browser.
The phpMyAdmin page opens. (Refer to Figure 4-1.)
2. Scroll down to the Create New Database heading.
The heading is located in the left column of the main panel.
3. Type the name of the database you want to create into the blank field.
4. Click Create.

When you create the new database, a new phpMyAdmin page is displayed, as
shown in Figure 4-3.

Notice that the new database name — Customer — is now shown in the left
pane. Customer is the named I typed in the field to name the new database.
The 0 after the database name means that there are, as yet, no tables in the
database.

Chapter 4: Building the Database 83

|
Figure 4-3:
The
phpMyAdmin
new data-
base page.
|

localhost " Tocalliost/ Customer | phpMyAdmin 2.10.1 - Mozilla Firefox =l
File Edit View History Bookmarks Tools Help

- €@

@ -

ﬁ_t‘ ‘ah http:ifocalhost/phprmyadmin/ ‘Y‘ l)] |v‘Goog\a ‘\

@ Server: localhost » Database: Customer

gFStructure #SQL P Search @mQuery #&@Export ®Import

Operations g8 Privileges #Drop

(@ Database Customer has been created.

SQL query:
CREATE DATABASE "Customer

Mo tables found in database.

43 Create new table on database Customer——————
’7Name‘ MNumber of fields:

In the main panel, the following is displayed

Database Customer has been created

Showing that the database was successfully created. It also shows the SQL
query that phpMyAdmin sent to create the database, which was:

CREATE DATABASE 'Customer'

Below the SQL statement, the page shows that no tables have been created
and provides a section where you can proceed to create tables. I discuss cre-
ating tables later in this chapter.

On your Web hosting account

Most Web hosts provide phpMyAdmin for your use. So, in some cases, you
may be able to use the same procedure described in the preceding section to
create a new database. However, many Web hosts do not allow you to create
a new database in phpMyAdmin. When you scroll down the phpMyAdmin
main page to the Create New Database section, you may not see the field and
Create button needed to create the new database. Instead, you may see a
message similar to the following:

No Privileges

This may mean that you must use another procedure to create a new data-
base. Or it may mean that you're not allowed to create a new database at
all. You may be allowed only one database to use with MySQL, and you can
create tables in only this one database. You can try requesting another
database, but you need a good reason. MySQL and PHP don’t care that all

84

Part Il: MySQL Database

|
Figure 4-4:
The page
where you
create a
new data-
base.
|

your tables are in one database instead of organized into databases with
meaningful names. It’s just easier for humans to keep track of projects when
they’re organized.

If you're allowed to create a new database but not allowed to create it in
phpMyAdmin, the Web hosting company provides a way for you to create

a database from your Web account control panel. Many Web hosting com-
panies provide cPanel to manage your account. Other companies provide a
different, but similar, control panel. The following steps show how to create
a new database using cPanel. You should find a similar procedure on other
control panels. If you can’t figure it out, you need to ask the tech support
staff at your Web hosting company.

1. Open the control panel for your Web hosting account.

2. Find and click the icon for MySQL databases.

In cPanel, the icon is located in the section labeled Databases. The icon
says MySQL Databases.

A page opens so that you can create a new database, shown in Figure 4-4.
The page lists your current databases, if you have any.

3. Type the name of the database you want to create into the blank field
labeled New Database.

4. Click the Create Database button.

A page displays informing you that the database was created success-
fully. From this page, you can go back to the control panel and then to
phpMyAdmin. You can see the new database listed on the phpMyAdmin
main page, in the left pane.

- MYSQL Databases

MPSQL Databases show pou to store lots of information in an easy to sccess manner, The databases themselves are not

sasily read by fumans, MySGL databases are required by many web applications including some bulletin boards, content
managament spstemns, and others, To use a database, pou'll need to oreate it, Only MySGL Users (different than mail or

sttier users) that have privileges to ascess a database can read from or write to that database.

Create New Database +lump te MySQL Users

Mew Database; Create Database

Modify Databases

Check DE: | jvalade_GD ~| cheskos |
Repair DB: | jwalade_GD v RepairDB‘

Current Databases

DATABASE SI1ZE USERS ACTIONS
jvalade_GD DSSHE L ® Delete Database
jwalade_MyHome BRIME e PR ® Delete Database
jvalade_PHPCoursework BOTVE oo ® Delste Database

Chapter 4: Building the Database 85

|
Figure 4-5:
Tabs at the
top of the
phpMyAdmin
page.
|

Viewing the databases

You can see a list of the names of your current databases at any time by
opening the main phpMyAdmin page. The names are shown in the left pane
of the page. The list includes a number after the database name. This number
represents the number of tables currently defined for the database.

The SQL query that displays a list of database names is
SHOW DATABASES

After you create an empty database, you can add tables to it. (Adding tables
to a database is described later in this chapter.)

Deleting a database

You can delete a database on your local computer using phpMyAdmin, as
follows:

1. Open the phpMyAdmin main page.

2. Click the name of the database you want to delete.

The names of all your databases appear in the left pane. You may need
to choose your database from a drop-down list.

A page opens and displays the name and structure of the database. The
page displays a set of tabs across the top of the page, shown in Figure 4-5.

3. Click Drop.
A panel asks you to verify that you want to destroy the database.
4. Click Okay.

A page opens with a message letting you know that the database has
been dropped. It also shows you the SQL query that was executed:

DROP DATABASE databasename

@ Server: localhost » @ Database: Customer

tructure R ‘Searc @ Query #fExport Zalmport
S SQL 08 h Qi E I

Operations g Privileges X Drop

86

Part Il: MySQL Database

\NG
S

Use DROP carefully because it’s irreversible. After a database is dropped, it’s
gone forever. And any data that was in it is gone as well.

To delete a database on your Web hosting account, you use a specific pro-
cedure provided by the Web hosting company. For example, in cPanel, you
use the same page that you used to create the database. As shown earlier
in Figure 4-4, the page lists all your existing databases in a table. The table
includes a column named Actions with a link for each database to Delete
Database. Click the Delete Database link to remove the database. However,
remember, after you delete the database, it’s gone forever.

Adding tables to a database

You can add tables to any database, whether it’s a new, empty database that
you just created or an existing database that already has tables and data in it.
In most cases, you create the tables in the database before the PHP script(s)
access the database. Therefore, in most cases, you use phpMyAdmin to add
the tables.

In the sample database designs that [introduce in Chapter 3, the
PetCatalog database is designed with three tables: Pet, PetType, and
PetColor. The MemberDirectory database is designed with two tables:
Member and Login.

The definition of the table, Pet, is shown in Table 4-1. The table shows a list
of the column names and data types. It also specifies which column is the pri-
mary key for the table.

Table 4-1 PetCatalog Database Table 1: Pet

Column Name Type Description

petID SERIAL Sequence number for pet
(primary key)

petName VARCHAR (25) Name of pet

petType VARCHAR (15) Category of pet

petDescription VARCHAR (255) Description of pet

price DECIMAL(9,2) Price of pet

pix VARCHAR (15) Path name to graphic file

containing picture of pet

Chapter 4: Building the Database 8 7

Data type is not the only characteristic you can apply to a field. Here are
some common definitions that you can use:

» NOT NULL: This column must have a value; it can’t be empty.

V¥ DEFAULT value: This value is stored in the column when the row is
created if no other value is given for this column.

v AUTO_INCREMENT: You use this definition to create a sequence number.
As each row is added, the value of this field increases by one integer
from the last row entered. You can override the auto number by assign-
ing a specific value to the field.

» UNSIGNED: You use this definition to indicate that the values for this
numeric field will never be negative numbers.

You can create a table in phpMyAdmin, either using the interface or with an
SQL query.

Using the phpMyAdmin interface
PhpMyAdmin provides an interface page for adding a new table to a data-
base, as follows:

1. Open the main phpMyAdmin page.
2. Click the name of the database you want to add a table to.
The database name is displayed in the left pane.

The Database Page opens. The page lists the tables currently in the data-
base or states that no tables are found in the database. The page also
displays a section labeled Create New Table on database. The section
contains a field labeled Name.

3. Type the name of the table into the field.

4. Type the number of fields you want in the table into the field labeled
Number of fields.

Don’t worry about making a mistake. Nothing is set in stone. You can
change the table structure easily if you need to.

For example, for the Pet table defined in Table 4-1, you type 6 into the
field because the table contains six fields: petID, petName, petType,
petDescription, price, and pix.

5. Click Go.

The page that opens allows you to define each column, or field. The
page provides a table, which is quite wide, where you can define the
fields. Figure 4-6 shows the left half of the page, and Figure 4-7 shows
the right half.

8 8 Part Il: MySQL Database

|
Figure 4-6:
The table
definition
page (left
half).
|

|
Figure 4-7:
The table
definition
page (right
half).
|

6. Enter the definitions for all the fields.

Figure 4-6 shows the left side of the table definition with its cells filled in.
Type the field name in the first column.

In the second column, select the data type from a drop-down list. The
data type for the first field is SERIAL. If you don’t find SERIAL in the
drop-down list, select BIGINT for the field.

In the third column, type the length or values for the field. For instance,
for VARCHAR data types, enter the number of characters, such as 15.

@ Tocallost / Tocalhost / testl 7 Pet | phpMyAdnin 2.10.1- Mozilla Firefox o0
File Edit View History Bookmarks Tools Help
@ - @ (X] @ ‘4}, hitp:/flocalhast/phpmyadmin/ "‘ Pl "‘Guugle ‘\4\]
Server: localhost » & Database: testl» @ Table: Pet has
petiD BIGINT [
pstName | vARCHAR [v] 25 | |] |
petfype | waRCHAR v 5 [] —
‘petDescnptio‘ ‘ WARCHAR ‘ ‘255 ‘ | |
price R E i [
pix | vARCHAR ¥ 1B | | E_______|
I I
T [Mysam
@
. |
File Edit View History Bookmarks Tools Help o
@ @ @ ‘a{f, hitp:/flocalhost/phpmyadmin/ ‘ ‘Pl |G ‘Guug\e ‘K\l
-.ﬁlﬁ_l
¢l mo‘mu\l auto_|i \ncrememt
A ratnul[v] I E[oo [C e O |:| [7
g [notnurfy] | 1} O e [oo [o] [-
9 e | | o[o =)
4 ol | i = —
4 il [missngjpg | E[oo [C e O |:| [
[s]
m =
Dorne

Chapter 4: Building the Database 89

Figure 4-7 shows the right side of the table definition. The column called
Null specifies whether the field can be blank or not. The default is Not
Null, but you can change it to Null with the drop-down list.

In the column named Default, you can specify a default value for the
field. MySQL will insert this value when no value is stored in the field.

The column named Extra allows you to define the field as auto_
increment from the drop-down list.

The next column includes several radio buttons. The only one you need
to worry about is the first one. Select the first radio button to define a
column as the primary key. The other radio buttons are used for more
advanced features of MySQL that are not covered in this book.

7. Click Save.

A new phpMyAdmin page opens with a message stating that the table
has been created. The new page also shows the SQL query that was
used to create the table.

You can view the tables in a database and their structure any time by going
to the database page. That is, you can open the main phpMyAdmin page and
click the name of the database. The page that opens lists the tables currently
in the database.

Each table is displayed in a row, beginning with the table name. Next, the
row shows several icons. The second icon is the structure icon. If you click
this icon, the structure of the table is displayed, showing the field names and
definitions.

Another icon shown in the listing for the table is a large red X. If you click this
icon, the table is dropped, removed completely.

Writing an SOL query
You can also create a table by writing your own SQL query and sending it to
the MySQL server. In some cases, it’s faster to just write the query.

The CREATE TABLE query creates a new table. The name is followed by the
names and definitions of all the fields, separated by commas, with parenthe-
ses around the entire set of definitions. For instance, the query you would
use to create the Pet table is

CREATE TABLE Pet (

petID SERIAL,

petName VARCHAR (25) NOT NULL,

petType VARCHAR (15) NOT NULL,
petDescription VARCHAR(255) NOT NULL,

price DECIMAL (9, 2) NULL,

pix VARCHAR (15) DEFAULT "missing.jpg",

90

Part Il: MySQL Database

WING/

\NG
S

You can also define the first field using the following:
PetID BIGINT NOT NULL UNSIGNED AUTO_INCREMENT PRIMARY KEY

If you're using a combination of columns as the primary key, include
PRIMARY KEY in the definition for all the columns that are part of the
primary key. Or, you can use a PRIMARY KEY statement at the end of the
CREATE TABLE query. For instance, you can define a Login table (refer to
Table 3-6 in Chapter 3) with the following query:

CREATE TABLE Login (
loginName VARCHAR (20) NOT NULL,
loginTime DATETIME NOT NULL,
PRIMARY KEY (loginName, loginTime))

Do not use any MySQL reserved words for column names, as I discuss in
Chapter 3. If you do, MySQL gives you an error message that looks like this:

You have an error in your SQL syntax near 'order var (20))'
at line 1

Note that this message shows the column definition that it didn’t like and
the line where it found the offending definition. However, the message
doesn’t tell you much about what the problem is. The error in your SQL
syntax that it refers to is the use of the MySQL reserved word order as a
column name.

After a table has been created, you can query to see it, review its structure,
or remove it.
v To see the tables you’ve added to a database, use this query:
SHOW TABLES
1 To see the structure of a table, use this query:
EXPLAIN tablename
v To remove any table, use this query:
DROP TABLE tablename

Use DROP carefully because it’s irreversible. After a table is dropped, it’s
gone forever, and any data that was in it is gone as well.

Changing the database structure

Your database isn’t written in stone. You can change the name of the table;
add, drop, or rename a column; or change the data type or other attributes of
the column. You can change the structure even after the table contains data,

Chapter 4: Building the Database

as long as you do not change the definition of a field to a definition that’s
incompatible with the data currently in the column.

Changing a database is not a rare occurrence. You might want to change
your database for many reasons. For example, suppose that you defined

the column lastName with VARCHAR (20) in the Member table of the
MemberDirectory database. At the time, 20 characters seemed sufficient
for a last name. But now you just received a memo announcing the new CEO,
John Schwartzheimer-Losertman. Oops. MySQL will truncate his name to the
first 20 letters, a less-than-desirable new name for the boss. So you need to
make the column wider — pronto.

Using phpMyAdmin
To change the structure in phpMyAdmin, follow these steps:

1. Open the main phpMyAdmin page.
2. Click the name of the database that contains the table to be modified.

A page opens listing the tables that are in the database. Each table is
listed in a separate row on the page.

3. In the row for the table to be modified, click the second icon (the
structure icon).

The page that opens shows the structure of the table. Each field is listed
in a row on the page.

4. Click the pencil icon for the field you want to modify.

The pencil icon is in a column named Action, which contains several
icons. The pencil icon is the second icon.

A page opens where you can change any definition for the field. In
this page, you can change the data type for the field 1astName from
VARCHAR (20) to VARCHAR (30).

The page that lists the table structure also provides a red X icon that
you can use to drop a field. And a section below the list of fields that you
can use to add a field.

5. After making changes to the field definition, click Save.

6. Repeat Steps 4 and 5 until you’ve modified all the fields you want to
change.

Writing your own SOL query

You can change the table structure with the ALTER query. The basic format
for this query is ALTER TABLE tablename, followed by the specified
changes. Table 4-2 shows the changes that you can make.

91

Part Il: MySQL Database

Table 4-2

Changes You Can Make with the ALTER Query

Change

Description

ADD columnname
definition

Adds a column; definitionincludesthe
data type and optional definitions.

ALTER columnname SET
DEFAULT value

Changes the default value for a column.

ALTER columnname DROP

Removes the default value for a column.

DEFAULT

CHANGE columnname new-
columnname definition

Changes the definition of a column and
renames the column; definition
includes the data type and optional
definitions.

Deletes a column, including all the data in
the column. The data cannot be recovered.

DROP columnname

Changes the definition of a column;
definitionincludes the data type and
optional definitions.

MODIFY columnname
definition

RENAME newtablename Renames a table.

You can make the 1astName field wider by sending this query to change the
column in a second:

ALTER TABLE Member MODIFY lastName VARCHAR (50)

Moving Data Into and
Out of the Database

An empty database is like an empty cookie jar — it’s not much fun. And
searching an empty database is no more interesting or fruitful than searching
an empty cookie jar. A database is useful only with respect to the information
that it holds.

A database needs to be able to receive information for storage and to deliver
information on request. For instance, the MemberDirectory database needs
to be able to receive the member information, and it also needs to be able to
deliver its stored information when you request it. If you want to know the
address of a particular member, for example, the database needs to deliver
that information when you request it.

Chapter 4: Building the Database

You're likely to perform four types of task on your database:

v Adding information: Adding a row to a table.

v Updating information: Changing information in an existing row. This
includes adding data to a blank field in an existing row.

v Retrieving information: Looking at the data. This request does not
remove data from the database.

* Removing information: Deleting data from the database.

Sometimes your question requires information from more than one table. For
instance, the question, “How much does a green dragon cost?” requires infor-
mation from the Pet table and from the Color table. You can ask this ques-
tion easily in a single SELECT query by combining the tables.

In the following sections, I discuss how to receive and deliver information as
well as how to combine tables.

Adding information

Every database needs data. For example, you might want to add data to your
database so that your users can look at it — an example of this is the Pet
Catalog that I introduce in Chapter 3. Or you might want to create an empty
database for users to put data into, making the data available for your eyes
only — an example of this is the Member Directory. In either scenario, data
will be added to the database.

If your data is still on paper, you can enter it directly into a MySQL database,
one row at a time, typing it in. However, if you have a lot of data, this process
could be tedious and involve a lot of typing. Suppose that you have informa-
tion on 1,000 products that must be added to your database. Assuming that
you're greased lightening on a keyboard and can enter a row per minute,
that’s 16 hours of rapid typing — well, rapid editing, anyway. Doable, but

not fun. On the other hand, suppose that you need to enter 5,000 members
of an organization into a database and that it takes 5 minutes to enter each
member. Now you’re looking at more than 400 hours of typing — who has
time for that?

If you have a large amount of data to enter, consider some alternatives.
Sometimes scanning in the data is an option. Or perhaps you need to beg,
borrow, or hire some help. In many cases, it could be faster to enter the data
into a big text file than to enter each row manually.

93

94

Part Il: MySQL Database

With phpMyAdmin, you can read data from a big text file (or even a small
text file). So, if your data is already in a computer file, you can work with that
file; you don’t need to retype all the data. Even if the data is in a format other
than a text file (for example, in an Excel, Access, or Oracle file), you can usu-
ally convert the file to a big text file, which can then be read into your MySQL
database. If the data isn’t yet in a computer file and there’s a lot of data, it
might be faster to enter that data into the computer in a big text file and
transfer it into MySQL as a second step.

Most text files can be read into MySQL, but some formats are easier than
others. If you're planning to enter the data into a big text file, read the
“Adding a bunch of data” section to find the best format. Of course, if the
data is already on the computer, you have to work with the file as it is.

Adding one row at a time with an SOL query

It’s common to want your PHP script to store data in your database. For
instance, when you sell a product, the customer enters her name, address,
product she wants to buy, and other information into forms on the Web page.
Your PHP script needs to add this data to your database. You use an SQL
query in the script to add the data to the database.

You use the INSERT query to add a row to a database. This query tells
MySQL which table to add the row to and what the values are for the fields in
the row. The general form of the query is

INSERT INTO tablename (columnname, columnname, ...,columnname)
VALUES (value, value,...,value)

The following rules apply to the INSERT query:

+* Values must be listed in the same order in which the column names
are listed. The first value in the value list is inserted into the column
that’s named first in the column list; the second value in the value list is
inserted into the column that’s named second; and so on.

v A partial column list is allowed. You don’t need to list all the columns.
Columns that are not listed are given their default value or left blank if
no default value is defined.

1 A column list is not required. If you're entering values for all the col-
umns, you don’t need to list the columns at all. If no columns are listed,
MySQL looks for values for all the columns, in the order in which they
appear in the table.

v The column list and value list must be the same length. If the list of col-
umns is longer or shorter than the list of values, you get an error mes-
sage like this: Column count doesn't match value count.

Chapter 4: Building the Database

|
Figure 4-8:
phpMyAdmin
page where
you enter a
row.
|

The following INSERT query adds a row to the Member table:

INSERT INTO Member (loginName,createDate,password,lastName,
street,city, state, zip,email,phone, fax)
VALUES ("bigguy","2001-Dec-2", "secret","Smith",
"1234 Happy St","Las Vegas", "NV", "88888",
"gsmith@GSmithCompany.com", " (555) 555-5555","")

Notice that firstName is not listed in the column name list. No value is
entered into the firstName field. If firstName were defined as NOT NULL,
MySQL would not allow this. Also, if the definition for firstName included a
default, the default value would be entered, but because it doesn’t, the field is
left empty. Notice that the value stored for fax is an empty string.

Adding one row at a time with phpMyAdmin

Many Web database applications include a database of information that you
display on the Web page. For instance, a product catalog contains product
information that the application displays when the customer wants to view
it. In this type of application, you add the information to the database outside
the application. You can create the catalog using phpMyAdmin.

To add data to the database table using phpMyAdmin, follow these steps:

1. Open the main phpMyAdmin page.

Figure 4-1, which appears earlier in the chapter, shows the main page.
2. Click a database name.
3. Click the insert icon.

In the action column, in the row for the table, the insert icon is the
fourth icon.

The page shown in Figure 4-8 opens where you can enter the data for

a row.
phpyAdimin &3 Server: localhost b (@ Database: jvalade_PetStore » [@ Tahle: Customer
fElBrowse § Structure 73SOL Search FcInsert FEExport [FFImport Operations Empty
BEE Eees - S =
Database
_Petstore (1) v Field Type Function Null Value
. loginName warchar(20) ‘ v ‘ ||ne |
jvalade_PetStore (1)
o comme password varchar(2s5) | | [secret |
createDate date [Tz | [|2
lastName varchari0) | | [Custamer |
firsthame varchar40) | v = |
strest varchar(s) | | [1234 0ak 5t |
city varchar(s) | v [|
state char2) ‘ v‘ |
zip char(10) ‘ v‘ | |
email warchar(50) ‘ v ‘ | |
phone warchar(15) ‘ v ‘ | |
fax warchar(15) ‘ v ‘ | |
(o]

95

90

Part Il: MySQL Database

A\\S

4. Add your data to each row.

You enter the values in the column named Values. Notice that there

is also a column named Function, which contains a drop-down list of
MySQL functions that you can use to enter the data. For instance, in this
case, the function NOW is specified for the date. The function NOW enters
the current date.

5. Click Go.

A new page opens, showing that the data was inserted and showing the
SQL query that was used.

Adding a bunch of data

If you have a large amount of data to enter and it’s already in a computer file,
you can transfer the data from the existing computer file to your MySQL data-
base using phpMyAdmin.

Because data in a database is organized in rows and columns, the text file
being read must indicate where the data for each column begins and ends
and where the end of a row is. To indicate columns, a specific character sepa-
rates the data for each column. By default, MySQL looks for a tab character
to separate the fields. However, if a tab doesn’t work for your data file, you
can choose a different character to separate the fields and tell MySQL in the
query that a different character than the tab separates the fields. Also by
default, the end of a line is expected to be the end of a row — although you
can choose a character to indicate the end of a line if you need to. A data file
for the pet table might look like this:

Unicorn<TAB>horse<TAB>Spiral horn<Tab>5000.00<Tab>/pix/unicorn.jpg
Pegasus<TAB>horse<TAB>Winged<Tab>8000.00<Tab>/pix/pegasus.jpg
Lion<TAB>cat<TAB>Large; Mane on neck<Tab>2000.00<Tab>/pix/lion.jpg

A data file with tabs between the fields is a tab-delimited file. Another
common format is a comma-delimited file, where commas separate the fields.
If your data is in another file format, you need to convert it into a delimited
file.

To convert data in another file format into a delimited file, check the manual
for that software or talk to your local expert who understands the data’s cur-
rent format. Many programs, such as Excel, Access, and Oracle, allow you

to output the data into a delimited file. For a text file, you might be able to
convert it to delimited format by using the search-and-replace function of an
editor or word processor. For a truly troublesome file, you might need to seek
the help of an expert or a programmer.

Chapter 4: Building the Database

|
Figure 4-9:
phpMyAdmin
import page
where you
canimporta
file of data.
|

To insert data into your database table with phpMyAdmin, follow these
steps:

1.

Open the main phpMyAdmin page.

Figure 4-1, earlier in this chapter, shows the main page.

2. Click a database name.

3. Click the table name.

The table names are listed in the left pane of the page.

. Click the Import tab at the top of the page.

The phpMyAdmin Import page opens, as shown in Figure 4-9.

wb]r Adrnin 3 Server: localhost » (& Database: jvalade_testing » [Table: test] &
@@ [E|Browse JESaL ‘Search %¢Insert F¥Export [lmport 3% Operations _[ffEmpty
(¥ Drop
Database
_testing (1) v
Import
rzzlaieRtestnal CFile to impart
et Location of the text file {Max: 51,200 Kig)
Character set of the file: | utig v
Imported file compression will be automatically detected from: None, gzip, zip
rPartial import
Allowy interrupt of import in case script detects it is close to time limit. This might be good way to import large files, however it
can break transactions.
Number of records(queries) to skip from start [0
rFormat of i file
73y CBY
o Options
O C5V using LOAD DATA | [JReplace table data with file
[Clgnore duplicate rows
© saL Fields terminated by
Fields enclosed by
Fields escaped by i\
Lines terminated by auto
Column names
~
Dane
.
5. Click the Browse button.
. . . e
6. Navigate to the file that contains the data to be imported.
. .
7. Select the CSV or the CSV Using LOAD DATA option.

The CSV option imports each row using a separate INSERT statement
for each row. The CSV Using LOAD DATA option uses a LOAD DATA
query. The LOAD DATA query is faster when you have a really huge file
of data to import, but you must have certain settings in order to use the
LOAD DATA query. CSV always works. [recommend trying the CSV Using
LOAD DATA option for large data files. If the settings are incorrect, the
import fails, but you can then use the CSV option.

97

98

Part Il: MySQL Database

WING/

When you click either option, a set of options appears. You need to set
the options to match your data file.

8. Enter the correct character for the Fields Terminated By field.

The default is a semicolon (;). You can change that to any character.
For instance, change it to a comma if you use a comma to separate your
fields. If your fields are separated by a tab, use \t in the field.

9. Enter the correct character for the Fields Enclosed By field.

The default is double quotes. If your values are enclosed by single
quotes, you can change it to a single quote. If your values are not
enclosed by anything, just separated by a comma or other character,
you can remove the value from the field and leave it blank.

10. Enter the correct character for the Lines Terminated By field.

The default is auto, which means the row ends at the end of the line in
the data file. If you separated your rows of data by a character, instead
of at the end of the line, you can enter this character.

11. Click Go.
A page displays, telling you that your data was successfully imported. It
also shows the SQL queries used.

If you used the CSV option, the results page shows a series of INSERT que-
ries. If you used the CSV Using LOAD DATA option, the SQL query looks
something like this:

LOAD DATA LOCAL INFILE '/tmp/phpPggfOm' INTO TABLE " testl®
FIELDS TERMINATED BY ', ' ESCAPED BY '\\' LINES
TERMINATED BY '\r\n'

To use the LOAD DATA INFILE query,the MySQL account must have the
FILE privilege on the server host. I discuss the MySQL account privileges in
Chapter 5.

Viewing information

You can browse the data in a database table at any time. You may want to be
sure that the data you entered is correct. Or, you may want to see what type
of data customers are entering into the forms in your application.

To look at the information in a table, you can do this:

1. Open the main phpMyAdmin page.
Refer to Figure 4-1 to see the main page.

2. Click a database name.

Chapter 4: Building the Database

A page opens that lists the tables currently in the database.
3. Click the browse icon.

In the action column, in the row for the table, the browse icon is the first
icon.

Retrieving information

The only purpose in storing information is to have it available when you need it.
A database lives to answer questions. What pets are for sale? Who are the mem-
bers? How many members live in Arkansas? Do you have an alligator for sale?
How much does a dragon cost? What is Goliath Smith’s phone number? And on
and on. Your application may need to display the answers to any one of these
questions. To query the database from your application, you use an SQL query.

You use the SELECT query to ask the database questions. The simplest, most
basic SELECT query is

SELECT * FROM tablename

This query retrieves all the information from the table. The asterisk (*) is a
wildcard meaning all the columns.

The SELECT query can be much more selective. SQL words and phrases

in the SELECT query can pinpoint the information needed to answer your
question. You can specify which information you want, how you want it orga-
nized, and the source of the information.

* You can request only the information (the columns) that you need to
answer your question. For instance, you can request only the first and
last names to create a list of members.

»* You can request the information in a particular order. For instance,
you can request that the information be sorted in alphabetical order.

* You can request information from selected objects (the rows) in
your table. (See Chapter 3 for an explanation of database objects.) For
instance, you can request the first and last names for only those mem-
bers whose addresses are in Florida.

In MySQL 4.1, MySQL added the ability to nest a SELECT query inside another
query. The nested query is called a subquery. You can use a subquery in
SELECT, INSERT, UPDATE, or DELETE queries or in SET clauses. A subquery
can return a single value, a single row or column, or a table, which is used in the
outer query. All the features of SELECT queries can be used in subqueries. See
the MySQL online manual at http://dev.mysgl.com/doc/refman/5.1/
en/subqueries.html for detailed information on using subqueries.

99

’ 00 Part Il: MySQL Database

Retrieving specific information
To retrieve specific information, list the columns containing the information
you want. For example:

SELECT columnname, columnname, columnname, ... FROM tablename
This query retrieves the values from all the rows for the indicated column(s).
For instance, the following query retrieves all the last names and first names
stored in the Member table:

SELECT lastName, firstName FROM Member

You can perform mathematical operations on columns when you select them.
For example, you can use the following SELECT query to add two columns:

SELECT coll+col2 FROM tablename
Or you could use the following query:
SELECT price,price*1.08 FROM Pet

The result is the price and the price with the sales tax of 8 percent added.
You can change the name of a column when selecting it, as follows:

SELECT price,price*1.08 AS pricewWithTax FROM Pet

The As clause tells MySQL to give the name pricewithTax to the second
column retrieved. Thus, the query retrieves two columns of data: price and
pricewWithTax.

In some cases, you don’t want to see the values in a column, but you want to
know something about the column. For instance, you might want to know the
lowest value in the column or the highest value in the column. Table 4-3 lists
some of the information that is available about a column.

Table 4-3 Information That Can Be Selected

SOL Format Description of Information

AVG (columnname) Returns the average of all the values in columnname

COUNT (columnname) Returns the number of rows in which columnname
is not blank

MAX (columnname) Returns the largest value in columnname

MIN (columnname) Returns the smallest value in columnname

SUM (columnname) Returns the sum of all the values in columnname

\\3

<MBER
é"\&

Chapter 4: Building the Database 10 ’

For example, the query to find out the highest price in the Pet table is
SELECT MAX (price) FROM Pet

SQL words that look like MAX () and SUM (), with parentheses following the
name, are functions. SQL provides many functions in addition to those in
Table 4-3. Some functions, like those in Table 4-3, provide information about

a column. Other functions change each value selected. For example, SQRT ()
returns the square root of each value in the column, and DAYNAME () returns
the name of the day of the week for each value in a date column, rather than
the actual date stored in the column. More than 100 functions are available for
use in a SELECT query. For descriptions of all the functions, see the MySQL
online manual at http://dev.mysqgl.com/doc/refman/5.0/en/
functions.html.

Retrieving data in a specific order

You might want to retrieve data in a particular order. For instance, in the
Member table, you might want members organized in alphabetical order by
last name. Or, in the Pet table, you might want the pets grouped by type
of pet.

In a SELECT query, ORDER BY and GROUP BY affect the order in which the
data is delivered to you:

» ORDER BY: To sort information, use the phrase
ORDER BY columnname

The data is sorted by columnname in ascending order. For instance, if
columnname is lastName, the data is delivered to you in alphabetical
order by the last name.

You can sort in descending order by adding the word DESC before the
column name. For example:

SELECT * FROM Member ORDER BY DESC lastName
v GROUP BY: To group information, use the following phrase:
GROUP BY columnname

The rows that have the same value of columnname are grouped
together. For example, use this query to group the rows that have the
same value as petType:

SELECT * FROM Pet GROUP BY petType

You can use GROUP BY and ORDER BY in the same query.

7 02 Part Il: MySQL Database

Retrieving data from a specific source

Frequently, you don’t want all the information from a table. You want infor-
mation from selected database objects, that is, rows. Three SQL words are
frequently used to specify the source of the information:

v WHERE: Allows you to request information from database objects with
certain characteristics. For instance, you can request the names of mem-
bers who live in California, or you can list only pets that are cats.

v LIMIT: Allows you to limit the number of rows from which information
is retrieved. For instance, you can request all the information from the
first three rows in the table.

v DISTINCT: Allows you to request information from only one row of
identical rows. For instance, in the Login table, you can request
loginName but specify no duplicate names, thus limiting the response
to one record for each member. This would answer the question, “Has
the member ever logged in?” rather than the question “How many times
has the member logged in?”

The WHERE clause of the SELECT query enables you to make complicated
selections. For instance, suppose your boss asks for a list of all members
whose last names begin with B, who live in Santa Barbara, and who have an
8 in either their phone or fax number. I'm sure there are many uses for such
a list. You can get this list for your boss with a SELECT query by using a
WHERE clause.

The basic format of the WHERE clause is
WHERE expression AND | OR expression AND | OR expression

expression specifies a value to compare with the values stored in the data-
base. Only the rows containing a match for the expression are selected. You
can use as many expressions as needed, each one separated by AND or OR.
When you use AND, both of the expressions connected by the AND (that is,
both the expression before the AND and the expression after the AND) must
be true in order for the row to be selected. When you use OR, only one of the
expressions connected by the OR must be true for the row to be selected.

Some common expressions are shown in Table 4-4.

Chapter 4: Building the Database 1 03

Table 4-4 Expressions for the WHERE Clause
Expression Example Result
column = value zip="12345" Selects only the rows

where 12345 is stored
in the column named
zip

column > value

zip > "50000"

Selects only the rows
where the zip code is
50001 or higher

column >= value

zip >= "50000"

Selects only the rows
where the zip code is
50000 or higher

column < value

zip < "50000"

Selects only the rows
where the zip code is
49999 or lower

column <= value

zip <= "50000"

Selects only the rows
where the zip code is
50000 or lower

column BETWEEN

zip BETWEEN

Selects only the rows

valuel AND "20000" AND where the zip code is

value2 "30000" greater than 19999 but
less 30001

column IN zip IN Selects only the rows

(valuel,valueZ2,..)

("90001","30044")

where the zip code is
90001 or 30044

column NOT IN
(valuel,value2,..)

zip NOT IN
("90001","30044")

Selects only the rows
where the zip code is
any zip code except
90001 or 30044

column LIKE
value —valuecan
contain the wildcards
% (which matches any
string) and _ (which
matches any character)

zip LIKE "9%"

Selects all rows
where the zip code
begins with 9

column NOT LIKE
value— valuecan
contain the wildcards
% (which matches any
string) and _ (which
matches any character)

zip NOT LIKE

||9%||

Selects all rows
where the zip code
does not begin with 9

7 04 Part Il: MySQL Database

A\

You can combine any of the expressions in Table 4-4 with ANDs and ORs. In
some cases, you need to use parentheses to clarify the selection criteria. For
instance, you can use the following query to answer your boss’s urgent need
to find all people in the Member Directory whose names begin with B, who
live in Santa Barbara, and who have an 8 in either their phone or fax number:

SELECT lastName, firstName FROM Member
WHERE lastName LIKE "B%"
AND city = "Santa Barbara"
AND (phone LIKE "%8%" OR fax LIKE "%8%")

Notice the parentheses in the last line. You would not get the results that
your boss asked for without the parentheses. Without the parentheses, each
connector would be processed in order from the first to the last, resulting

in a list that includes all members whose names begin with B and who live
in Santa Barbara and whose phone numbers have an 8 in them and all mem-
bers whose fax numbers have an 8 in them, whether or not they live in Santa
Barbara and whether or not their name begins with a B. When the last OR is
processed, members are selected whose characteristics match the expres-
sion before the OR or the expression after the OR. The expression before the
OR is connected to previous expressions by the previous ANDs and so does
not stand alone, but the expression after the OR does stand alone, resulting in
the selection of all members with an 8 in their fax number.

LIMIT specifies how many rows can be returned. The form for LIMIT is
LIMIT startnumber, numberofrows

The first row that you want to retrieve is startnumber, and the number of
rows to retrieve is numberofrows. If startnumber is not specified, 1

is assumed. To select only the first three members who live in Texas, use
this query:

SELECT * FROM Member WHERE state="TX" LIMIT 3

Some SELECT queries will find identical records, but in this example, you want
to see only one — not all — of the identical records. To prevent the query
from returning all identical records, add the word DISTINCT immediately
after SELECT.

Combining information from tables

In previous sections of this chapter, | assume that all the information you
want is in a single table. However, you might want to combine information
from different tables. You can do this easily in a single query.

Chapter 4: Building the Database

You can use two words in a SELECT query to combine information from two
or more tables:

»* UNION: Rows are retrieved from one or more tables and stored together,
one after the other, in a single result. For example, if your query selected
6 rows from one table and 5 rows from another table, the result would
contain 11 rows.

v Join: The tables are combined side by side, and the information is
retrieved from both tables.

UNION

UNION is used to combine the results from two or more SELECT queries. The
results from each query are added to the result set following the results of
the previous query. The format of the UNTON query is as follows:

SELECT query UNION ALL SELECT query

You can combine as many SELECT queries as you need. A SELECT query can
include any valid SELECT format, including WHERE clauses, LIMIT clauses,
and so on. The rules for the queries are

v All the SELECT queries must select the same number of columns.

v The columns selected in the queries must contain the same type of data.

The result set will contain all the rows from the first query followed by all the
rows from the second query and so on. The column names used in the result
set are the column names from the first SELECT query.

The series of SELECT queries can select different columns from the same
table, but situations in which you want a new table with one column in a
table followed by another column from the same table are unusual. It’s much
more likely that you want to combine columns from different tables. For
example, you might have a table of members who have resigned from the
club and a separate table of current members. You can get a list of all mem-
bers, both current and resigned, with the following query:

SELECT lastName, firstName FROM Member UNION ALL
SELECT lastName, firstName FROM OldMember

The result of this query is the last and first names of all current members, fol-
lowed by the last and first names of all the members who have resigned.

Depending on how you organized your data, you might have duplicate names.

For instance, perhaps a member resigned, and his name is in the 01dMember
table — but he joined again, so his name is added to the Member table. If you

105

7 06 Part Il: MySQL Database

NG/
S

don’t want duplicates, don’t include the word ALL. If ALL is not included,
duplicate lines are not added to the result.

You can use ORDER BY with each SELECT query, as [discuss in the previous
section, or you can use ORDER BY with a UNION query to sort all the rows in
the result set. If you want ORDER BY to apply to the entire result set, rather
than just to the query that it follows, use parentheses as follows:

(SELECT lastName FROM Member UNION ALL
SELECT lastName FROM OldMember) ORDER BY lastName

The UNION statement was introduced in MySQL 4.0. It is not available in
MySQL 3.

Join

Combining tables side by side is a join. Tables are combined by matching
data in a column — the column that they have in common. The combined
results table produced by a join contains all the columns from both tables.
For instance, if one table has two columns (memberID and height), and the
second table has two columns (memberID and weight), a join results in a
table with four columns: memberID (from the first table), height, memberID
(from the second table), and weight.

The two common types of joins are an inner join and an outer join. The differ-
ence between an inner and outer join is in the number of rows included in the
results table. The results table produced by an inner join contains only rows
that existed in both tables. The combined table produced by an outer join
contains all rows that existed in one table with blanks in the columns for the
rows that did not exist in the second table. For instance, if tablel contains a
row for Joe and a row for Sally, and table2 contains only a row for Sally, an
inner join would contain only one row: the row for Sally. However, an outer
join would contain two rows — a row for Joe and a row for Sally — even
though the row for Joe would have a blank field for weight.

The results table for the outer join contains all the rows for one table. If any
of the rows for that table don’t exist in the second table, the columns for the
second table are empty. Clearly, the contents of the results table are deter-
mined by which table contributes all its rows, requiring the second table

to match it. Two kinds of outer joins control which table sets the rows and
which match: a LEFT JOIN and a RIGHT JOIN.

You use different SELECT queries for an inner join and the two types of outer
joins. The following query is an inner join:

SELECT columnnamelist FROM tablel, tableZ2
WHERE tablel.col2 = table2.col2

And these queries are outer joins:

Chapter 4: Building the Database 1 0 7

SELECT columnnamelist FROM tablel LEFT JOIN table2
ON tablel.coll=table2.col2

SELECT columnnamelist FROM tablel RIGHT JOIN tableZ2
ON tablel.coll=table2.col2

In all three queries, tablel and table?2 are the tables to be joined. You can
join more than two tables. In both queries, col1 and col2 are the names of
the columns being matched to join the tables. The tables are matched based
on the data in these columns. These two columns can have the same name or
different names. The two columns must contain the same type of data.

As an example of inner and outer joins, consider a short form of the pet
Catalog. One table is Pet, with the two columns petName and petType
holding the following data:

petName petType
Unicorn Horse
Pegasus Horse
Lion Cat

The second table is Color, with two columns petName and petColor hold-
ing the following data:

petName petColor
Unicorn white
Unicorn silver
Fish Gold

You need to ask a question that requires information from both tables. If you
do an inner join with the following query:

SELECT * FROM Pet,Color WHERE Pet.petName = Color.petName

you get the following results table with four columns: petName (from Pet),
petType, petName (from Color), and petColor

petName petType petName petColor
Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver

Notice that only Unicorn appears in the results table — because only
Unicorn was in both of the original tables, before the join. On the other
hand, suppose you do a left outer join with the following query:

SELECT * FROM Pet LEFT JOIN Color
ON Pet.petName=Color.petName

7 08 Part Il: MySQL Database

You get the following results table, with the same four columns — petName
(from Pet), petType, petName (from Color), and petColor — but with dif-
ferent rows:

petName petType petName petColor
Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver
Pegasus Horse <NULL> <NULL>
Lion Cat <NULL> <NULL>

This table has four rows. It has the same first two rows as the inner join, but
it has two additional rows — rows that are in the PetType table on the left
but not in the Color table. Notice that the columns from the table Color are
blank for the last two rows.

And, on the third hand, suppose that you do a right outer join with the fol-
lowing query:

SELECT * FROM Pet RIGHT JOIN Color
ON Pet.petName=Color.petName

You get the following results table, with the same four columns, but with still
different rows:

petName petType petName petColor
Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver
<NULL> <NULL> Fish Gold

Notice that these results contain all the rows for the Color table on the right
but not for the Pet table. Notice the blanks in the columns for the Pet table,
which doesn’t have a row for Fish.

The joins that I've talked about so far find matching entries in tables.
Sometimes it’s useful to find out which rows in a table have no matching
entries in another table. For example, suppose that you want to know who
has never logged into your Members Only section. Because you have one
table with the member’s login name and another table with the login dates,
you can ask this question by using the two tables. You can find out which
login names do not have an entry in the Login table with the following
query:

SELECT loginName from Member LEFT JOIN Login
ON Member.loginName=Login.loginName
WHERE Login.loginName IS NULL

This query gives you a list of all the login names in Member that are not in the
Login table.

Chapter 4: Building the Database 1 09

Updating information

Changing information in an existing row is updating the information. For
instance, you might need to change the address of a member because she
has moved, or you might need to change the price of a product in your
catalog.

If you're updating database information from an application, you use an SQL
query. The UPDATE query is straightforward:

UPDATE tablename SET column=value, column=value, ...
WHERE clause

In the SET clause, you list the columns to be updated and the new values

to be inserted. List all the columns that you want to change in one query.
Without a WHERE clause, the values of the column(s) would be changed in all
rows. But with the WHERE clause, you can specify which rows to update. For
instance, to update an address in the Member table, use this query:

UPDATE Member SET street="3333 Giant St",
phone="555-555-5555"
WHERE loginName="bigguy"

You can also update your data using phpMyAdmin, such as when you need to
change a product price in your catalog. To change the data in your database,
here’s what you do:

1. Open the main phpMyAdmin page. (Refer to Figure 4-1.)

2. Click a database name.

3. Click the browse icon.

In the action column, in the row for the table, the browse icon is the first
icon.

A page opens that displays all the data in the table. At the beginning of
each row, a pencil (edit) icon and a red X (delete) icon are displayed.

4. Click the edit icon (the pencil).

A page opens that allows you to change any of the values in the row of
data. Figure 4-8, which appears earlier, shows the page.

5. Change the data that needs updating in the Values column.
6. Click Go.
A page opens that shows the UPDATE query that was used.

7 ’0 Part Il: MySQL Database

WING/
&

Removing information

Keep the information in your database up to date by deleting obsolete infor-
mation. If you need to remove data from an application, you can use an SQL
query. You can remove a row from a table with the DELETE query:

DELETE FROM tablename WHERE clause

Be extremely careful when using DELETE. If you use a DELETE query with-
out a WHERE clause, it will delete all the data in the table. I mean all the data.
[repeat, all the data. The data cannot be recovered. This function of the
DELETE query is right at the top of my don’t-try-this-at-home list.

You can delete a column from a table by using the ALTER query:
ALTER TABLE tablename DROP columnname

Or you could remove the whole thing and start over again with
DROP TABLE tablename

or
DROP DATABASE databasename

You can also remove data from the database with phpMyAdmin:

1. Open the main phpMyAdmin page (shown earlier in Figure 4-1).
2. Click a database name.
3. Click the browse icon for the table which has data you want to delete.

In the action column, in the row for the table, the browse icon is the first
icon.

A page opens that displays all the data in the table. At the beginning of
each row, a pencil (edit) icon and a red X (delete) icon are displayed.

4. Click the delete icon (the red X).
The page redisplays, showing the data without the deleted row.

You can delete a column by changing the table structure as described earlier
in this chapter.

You can remove an entire table by clicking the Drop button at the top of the
page when the table page is open or remove an entire database by clicking
the Drop button at the top of the page when the database page is open.

Chapter 5
Protecting Your Data

In This Chapter
Understanding MySQL data security
Adding new MySQL accounts
Modifying existing accounts
Changing passwords
Making backups
Repairing data
Restoring data

our data is essential to your Web database application. You have spent

valuable time developing your database, and it contains important infor-
mation entered by you or by your users. You need to protect it. In this chap-
ter, [show you how.

Controlling Access to Your Data

You need to control access to the information in your database. You need

to decide who can see the data and who can change it. Imagine what would
happen if your competitors could change the information in your online
product catalog or copy your list of customers — you’d be out of business in
no time flat. Clearly, you need to guard your data.

MySQL provides a security system for protecting your data. No one can
access the data in your database without an account. Each MySQL account
has the following attributes:

»* A name

v A hostname — the machine from which the account can access the
MySQL server

v A password
v A set of privileges

7 ’2 Part Il: MySQL Database

To access your data, someone must use a valid account name and know the
password associated with that account. In addition, that person must be con-
necting from a computer that’s permitted to connect to your database via
that specific account.

After the user is granted access to the database, what he or she can do to the
data depends on what privileges have been set for the account. Each account
is either allowed or not allowed to perform an operation in your database,
such as SELECT, DELETE, INSERT, CREATE, or DROP. The settings that
specify what an account can do are privileges, or permissions. You can set

up an account with all privileges, no privileges, or anything in between. For
instance, for an online product catalog, you want the customer to be able to
see the information in the catalog but not be able to change it.

When a user attempts to connect to MySQL and execute a query, MySQL con-
trols access to the data in two stages:

v Connection verification: MySQL checks the validity of the account
name and password and checks whether the connection is coming from
a host that’s allowed to connect to the MySQL server by using the speci-
fied account. If everything checks out, MySQL accepts the connection.

1 Request verification: After MySQL accepts the connection, it checks
whether the account has the necessary privileges to execute the speci-
fied query. If it does, MySQL executes the query.

Any query that you send to MySQL can fail either because the connection is
rejected in the first step or because the query is not permitted in the second
step. An error message is returned to help you identify the source of the
problem.

In the following few sections, I describe accounts and privileges in detail.

Understanding account
names and hostnames

Together, the account name and hostname (the name of the computer that

is authorized to connect to the database) identify a unique account. Two
accounts with the same name but different hostnames can exist and can have
different passwords and privileges. However, you cannot have two accounts
with the same name and the same hostname.

The MySQL account name is completely unrelated in any way to the Unix,
Linux, or Windows username (also sometimes called the login name). If you're
using an administrative MySQL account named root, it is not related to the
Unix or Linux root login name. Changing the MySQL login name does not
affect the Unix, Linux, or Windows login name, and vice versa.

Chapter 5: Protecting Your Data 1 ’3

MySQL account names and hostnames are defined as follows:

»* An account name can be up to 16 characters long. You can use special
characters in account names, such as a space or a hyphen (-). However,
you cannot use wildcards in the account name.

» An account name can be blank. If an account exists in MySQL with a
blank account name, any account name will be valid for that account.
A user could use any account name to connect to your database, given
that the user is connecting from a hostname that’s allowed to connect to
the blank account name and uses the correct password, if required. You
can use an account with a blank name to allow anonymous users to con-
nect to your database.

v The hostname can be a name or an IP address. For example, it can
be a name such as thor .mycompany .com or an IP (Internet protocol)
address such as 192.163.2.33. The machine on which the MySQL
server is installed is 1ocalhost. The hostname can contain a wildcard,
such as %, which means any host, or can be blank, which also allows the
account to connect from any host.

When MySQL is installed with XAMPP, it automatically installs an account
root@localhost. Thus, you can access your MySQL server from the com-
puter on which it’s installed, and from no other computer. This account is
okay for a development account on your local computer.

When you open an account with a Web hosting company, the name and host-
name of your database is provided to you. The hostname you use to access
the database from your Web site is often 1ocalhost, but it might be some-
thing else. If you don’t receive this information, you need to ask for it.

Finding out about passwords

A password is set up for every account. If no password is provided for the
account, the password is blank, which means that no password is required.
MySQL doesn’t have any limit for the length of a password, but sometimes
other software on your system limits the length to eight characters. If so, any
characters after eight are dropped.

For extra security, MySQL encrypts passwords before it stores them. That
means passwords are not stored in the recognizable characters that you
entered. This security measure ensures that no one can look at the stored
passwords and see what they are.

Unfortunately, some bad people out there might try to access your data by
guessing your password. They use software that tries to connect rapidly in
succession using different passwords — a practice called cracking. The fol-
lowing are some recommendations for choosing a password that is as diffi-
cult to crack as possible:

7 ’4 Part Il: MySQL Database

\\3

v Use six to eight characters.

+* Include one or more of each of the following — uppercase letter, lower-
case letter, number, and punctuation mark.

v Do not use your account name or any variation of your account name.

v Do not include any word in a dictionary, including foreign language
dictionaries.

v Do not include a name.

+* Do not use a word that might be easily identified as related to you, such
as a pet’s name, the street you live on, and so forth.

+ Do not use a phone number or a date.

A good password is hard to guess and easy to remember. If it’s too hard to
remember, you might need to write it down, which defeats the purpose of
having a password. One way to create a good password is to use the first char-
acters of a favorite phrase. For instance, you could use the phrase “All for one!
One for all!” to make this password:

Afo!Ofa!

This password doesn’t include any numbers, but you can fix that by using the
numeral 4 instead of the letter £. Then your password is

Ado!0O4a!

Or you could use the number I instead of the letter o to represent one. Then
the password is

A41'14a!

This password is definitely hard to guess. Other ways to incorporate num-
bers into your passwords include substituting / (one) for the letter / or sub-
stituting 0 (zero) for the letter o.

When MySQL is installed with XAMPP, the root@localhost account is
installed with no password, meaning that no password is required to access
the database using this account. Because no one can access the database
from any other machine, having no password is probably fine. However, if
others have access to your local computer, you might want to add a pass-
word to this account.

When you obtain your Web hosting account, you're provided with a MySQL
account and password. This information should be provided to you at that
time.

Chapter 5: Protecting Your Data 1 ’5

Taking a look at account privileges

MySQL uses account privileges to specify who can do what. Anyone using a
valid account can connect to the MySQL server, but he or she can do only
the things that are allowed by the privileges for the account. For example,
an account might be set up so that users can select data but cannot insert or
update data.

Privileges can be granted for particular databases, tables, or columns. For
instance, an account can be set up that allows the user to select data from all
the tables in the database, but insert data into only one table and update only
a single column in a specific table.

Privileges can be granted or removed individually or all at once. Table 5-1
lists some privileges that you might want to assign or remove.

Table 5-1 MySQOL Account Privileges
Privilege Description
ALL All privileges
ALTER Can alter the structure of tables
CREATE Can create new databases or tables
DELETE Can delete rows in tables
DROP Can drop databases or tables
FILE Can read and write files on the server
GRANT Can change the privileges on a MySQL account
INSERT Can insert new rows into tables
SELECT Can read data from tables
SHUTDOWN Can shut down the MySQL server
UPDATE Can change data in a table
USAGE No privileges
QNING/
& Granting ALL is not a good idea because it includes privileges for administra-

tive operations, such as shutting down the MySQL server. You're unlikely to
want anyone other than yourself to have such sweeping privileges.

7 ’6 Part Il: MySQL Database

Setting Up MySOL Accounts

An account is identified by the account name and the name of the computer
allowed to access MySQL using this account. You have one account that
you can use to administer your MySQL databases. This account is shown on
the phpMyAdmin main page. On your local computer, it’s probably root@
localhost. This is the only account you need for your development site
because no one needs to access it from the outside — only from your
computer.

On your Web hosting account, the account may be domain@localhost or
something else. Web hosting companies use different naming conventions.
However, you don’t need to worry about the hostname. Your Web host han-
dles that. You can see the account and hostname on the phpMyAdmin main
page. If you're using a company Web site, your company IT staff provides you
with an account name and hostname.

In this book, you're discovering how to write PHP scripts that interact with
your database. The script might retrieve data from the database to display
on a Web page or store data from a form into the database or both. The
script uses a MySQL account in a code statement to access the database. For
security reasons, you don’t want the account used by the script to have any
more privileges than necessary. If the account used by the script has only
SELECT privileges, you don’t have to worry about a bad guy using the script
to delete or change data or for other unintended purposes.

You need to create at least one account with limited privileges to use on your
Web site in PHP scripts that access the database. When you create a new
account, you can specify a password when you create the account or you can
add a password later. You can set up privileges when you create the account
or add/remove privileges later.

You don’t need to create a restricted account for your PHP scripts on your
local computer, where no one can access the scripts from outside. You need
to create only the new account for the PHP scripts that are accessed by visi-
tors to your Web site.

The following sections describe how to create accounts, add or change pass-
words, and add/remove account privileges on your Web hosting account. If
your Web site is hosted on a company Web site, you need to discuss adding
accounts with the IT staff at your company.

Chapter 5: Protecting Your Data 1 ’ 7

Adding accounts

The preferred way to access MySQL from PHP is to set up an account specifi-
cally for this purpose with only the privileges that are needed. Some Web
hosts don’t allow you to create a new account. If you can’t create a new
account on your Web hosting account, perhaps your Web host will create a
new account for you, with limited privileges.

One way to create accounts is to send SQL queries, such as INSERT or
UPDATE, directly to the mysqgl database that stores the account information.
This is a database that’s created when MySQL is installed. However, most
Web hosts do not give you access to this database, either to send direct
SQL queries to affect this database or through your phpMyAdmin interface.
Efforts to interact with the mysgl database generally produce error mes-
sages, such as

Access denied for user 'me'@'localhost' to database
'mysqgl’

Instead of allowing you access to the mysgl database directly, most Web
hosts provide a page specifically for the purpose of creating and managing
accounts. You need to look at your control panel icons to find the icon for
creating new MySQL accounts. Because they are MySQL accounts, the icon

is probably in the database section of your control panel. It may be the same
icon you use to create a new MySQL database. If you can’t figure out where it
is, read the documentation provided by your Web host or ask tech support at
your Web hosting company.

The following steps show how to create a new account on cPanel, a popular
control panel used by many Web hosting companies:

1. Open cPanel on your Web hosting account.

2. Find and click the icon for MySQL databases.

In cPanel, the icon is located in the section labeled Databases. The icon
says MySQL Databases.

A MySQL databases page opens. Notice that the page lists all the current
databases, along with the account names of the accounts allowed to
access the database.

3. Click Jump to MySQL Users in the upper-right corner or scroll down to
the MySQL Users section.

Figure 5-1 shows the MySQL Users section of the page. The section lists
all the current accounts.

118

Part Il: MySQL Database

MySQL Users 5 to MySOL Datab
Add New User ume ta FySQ) atabases
Username: *Seven sharacters max
Password: © Generate Password
Password Strength:
weak (42/100)
password (again):
|
Create User
Figure 5-1:
Add User To Database
The MySO.L User: | jvalade_phphome
USers sec- | cuubace [waimdeso 3
tion of the i
I\/IyS(lL Current Users
USERS DELETE
Database
jwalade_phpharne ®
page- jwalade_phpuser ®
|

4. Type the new account name into the Username field.
5. Type a password into the Password field.

Notice the field underneath the password labeled Password Strength. A
bar in the field shows how strong the password is. This password isn’t
very strong, less than 50 percent. Factors that add to password strength
are length; making sure it’s not a word in the dictionary; and using char-
acters, numbers, and punctuation.

Notice the Generate Password button. | guarantee the password gener-
ated by clicking the button will be 100 percent strong, but I also guaran-
tee that it will be impossible to remember.

6. Type the same password into the Password (Again) field.
This repetition is to ensure you typed the password correctly.
7. Click the Create User button.
A page displays, showing your new account and password.
8. Click Go Back to return to the MySQL database page.

The new account you just created is now listed on the MySQL page as
one of the current users. However, if you scroll up to the list of data-
bases, you won’t see the new account listed for any of the databases. At
this point, the account exists but can’t access any databases. You must
specifically allow it to access one or more databases, as shown in the
next section.

Allowing access to a database

If you use the procedure described in the preceding section, no account has
automatic access to any database. You must specifically give the account

|
Figure 5-2:
The Manage
User
Privileges

page.
|

access to each database. You can give the account access to as many data-
bases as you want the account to use.

To allow access, follow these steps:

1.

Go to the MySQL User section of the MySQL database page.
You can see this section in Figure 5-1, shown earlier.

The list of users should contain all your accounts, including any new
account you just created.

. In the Add User to Database section, select a user from the User drop-

down list.

The drop-down list contains all your existing accounts.

. Select a database from the Database drop-down list.

All your current databases are included in the drop-down list.

. Click the Add button.

The selected user is given access to the selected database.

The Manage User Privileges page opens showing the privileges given
the account for the selected database. Because you're just giving this
account access to the database for the first time, the account currently
has no privileges. You undoubtedly want to select some privileges, if
only SELECT.

. Select the check boxes next to the privileges you want for this account

on this database.

Figure 5-2 shows the Manage User Privileges page after you have
selected some privileges. You can change the privileges at any time, as
shown in the next section.

. MySQL Account Maintenance
Manage User Privileges
User: jvalade_phpuser
Database: jvalade_PetStore
M 511 PRIVILEGES
SELECT O create
INSERT O acter
UPDATE O oror
DELETE O Lock TaeLes
O moex O rererences
[crEATE TEMPORARY TABLES | CREATE ROUTINE
Make Changes
[GoBack]

Chapter 5: Protecting Your Data 1 ’ 9

7 20 Part Il: MySQL Database

|
Figure 5-3:
The list of
your MySQL
databases.
|

6. Click the Make Changes button.
A page displays showing that the changes were successful.
7. Return to the Database page.

The account is now listed next to the database name in the list of data-
bases, showing that the account now has access to the database.

Changing privileges

The privileges that you can give an account on a database are listed and
explained earlier in this chapter. Accounts should be given only the privi-
leges needed. The previous section explained how to set privileges when
creating a new account. In this section, you see how to change the privileges
for an existing account.

To change an account’s privileges, follow these steps:

1. Open cPanel on your Web hosting account.
2. Find and click the icon for MySQL databases.
The MySQL databases page opens.
3. Scroll down to the Current Databases section of the page.

You can see a list of your current MySQL databases, as shown in
Figure 5-3.

Current Databases
DATABASE Si1ze Users AcTIONS

_aD 0.55 MB P Dslete Database
_phpuser ®
hph ®

_MyHome 0.23 M8 i @ Delete Database
_phpuser ®

_PHPCoursewark 0.07 ME . Delete Database
_phpuser ®

_PetStare 0.03 MB = Dslete Database
_rhpuser ®

_testing 0.03 MB Delete Database

In the database list, each database name starts a row. The third column
contains the account names that are allowed to access the database.
More than one account can access a database.

4. Find the row for the database you want to change privileges for.

If the account you want to modify is not listed as able to access the
database, you must first add it to the list of accounts that are allowed to

Chapter 5: Protecting Your Data 1 2 ’

access this database. To add the account, follow the instructions in the
previous section, “Allowing access to a database.”

5. Click the name of the account you want to modify in the row for the
database you want to change privileges for.

The Manage Account Privileges page opens, as shown earlier in Figure
5-2. The page shows the current privileges that this account has for the
database.

6. Select the check boxes for the privileges you want to add or remove.
7. Click the Make Changes button.
If you don’t click this button, the changes won’t be saved.

A results page displays, showing that the privileges were updated.

Adding and changing passwords

When you create an account, you can add a password or not. You can change
a password or add a password to an existing account; you don’t need to add
the password when the account is created.

To change the password, add the account again. That is, use the same

steps you used to create the account. In the Add New User section, type the
account name that you want to change the password for and type the new
password into the Password and Password (Again) fields. Click the Add User
button. The account is added again with the new password. Any existing
privileges for any databases remain the same.

In addition, MySQL provides an SQL query specifically for creating a pass-
word that looks like this:

SET PASSWORD FOR username@hostname = PASSWORD ('password')

However, most Web hosts do not allow you to use this SQL query. You see
the access denied error message, such as

Access denied for user 'me'@'localhost' to database
'mysqgl’

Removing accounts

When you look at the list of usernames on the database page, you see a
column named Delete and a red x displayed for each username. To remove
any account, click the red x by the account name.

7 22 Part Il: MySQL Database

If you look at the list of databases, you see a red x by each username in the
User Name column. You can remove access to the database for any username
by clicking the red x by the username. The database is not affected, but the
username removed can no longer access the specified database. However,
the username can still access any other databases for which it has access.

Backing Up Vour Data

<MBER
ég“

You need to have at least one copy of your valuable database. Disasters
occur rarely, but they do occur. The computer where your database is stored
can break down and lose your data, the computer file can become corrupted,
the building can burn down, and so on. Backup copies of your database
guard against data loss from such disasters.

If your Web site is housed at a Web hosting company or on your company
computer, other people are responsible for backing up the Web site, includ-
ing the database. The administrators of the computers will have backup
procedures in place. At least, you can assume they have such procedures.
However, it’s best to be sure. Talk to your Web hosting company staff or your
company [T department about its backup procedures. Be sure it performs
backups that make you feel secure about your data and that allow rapid
replacement of a damaged database.

Even if you're happy with the backup procedures in place at your Web host-
ing company, you probably want to back up your database to your local com-
puter. By doing so, you make doubly sure that you have a backup and speed
up the process of replacing a damaged file. You can back up your database as
often as you consider necessary.

In addition, if your Web site collects data from users, you can install the
backup from your Web site on your local computer. Thus, when you're devel-
oping and testing on your local development site, you're using the actual
database, making your testing more reliable.

In general, you need to have two backup copies of your data: one copy in a
handy location where it can be quickly replaced and another copy in a differ-
ent physical location from the Web site location for that remote chance that
the building burns down. The Web host probably stores the backups on a dif-
ferent computer than the computer that hosts the Web site and/or database.
The Web host may also store a copy of its backups offsite. If you back up the
database regularly to your local computer, your backup is both convenient
and offsite.

|
Figure 5-4:
The
phpMyAdmin
Database

page.
|

Chapter 5: Protecting Your Data ’ 23

You should not copy the actual data files from one computer, such as the
Web host computer, to another computer, such as your local computer,
exactly as they are. However, you can move the data using features of
phpMyAdmin. In the following sections, I use the example of backing up
(moving) the data from your Web host to your local computer as an example.
You can use the same procedure to move the data from any MySQL database
to another.

First, you export the database from your Web host. The export procedure
saves a text file on your local computer that contains all the SQL queries
needed to re-create your database. Then you use the import feature of
phpMyAdmin on your local computer to execute the SQL queries in the text
file, which builds the database.

Exporting your data with phpMyAdmin

Follow these steps to make a backup copy of the database on your Web host-
ing company using phpMyAdmin.

1. Open the main phpMyAdmin page.

2. Select a database from the list in the left section of the page.

The Database page for the selected database appears, as shown in
Figure 5-4.

&3 Server: localhost p G Database: jvalade_PetStore

EfStucture SOL Search [@Query A3Export Filmport %EOperations
]] &

Table Action Records) Type Collation Size Overhead
[Login 2 F B @ X o MyISAM latinl_swedish_ci 1.0 EiB
1 Member) EZN 4 z MylSAM latini_swedish ci 2.2 RiB

2 table(s) Sum 2 MyISAM latin1_swedish_ci 3.2 KiB 0 ®
1 Check All f Uncheck All With selectad:

“2 Print view [Data Dictionary

%3 Create new tahle on jvalade_PetSt

Narme: Nurnber of fields:

= Open new phphyAdmin window

The Database page lists the tables in the database. In this case, the data-
base contains two tables: Member and Login.

3. Click the Export tab at the top of the page.

The Export page opens, as shown in Figure 5-5.

124 Partii: MysoL Database

~View dump of ~
—Export —Options
Select All £ Unselect All Add custom comment into header (n splits lines)

[JEnclose export in a transaction
[]Disable forsign key checks
SOL compatibility mode

(NONE v
© CsY c
) GBSV for MS Excel [&4dd DROP TABLE #VIEW / PROCEDURE / FUNGTION
[“]Add IF NOT EXISTS
) Micrasoft Excel [Add AUTO_INCREMENT value
2000 [V]Enclose table and figld names with backquotes

[C]Add CREATE FROCEDURE / FUNCTION
©) Microsoft Word
2000

Add into
[D Creation/Update/Check dates

©) LaTeX

() Open Document

Spreadshest et
— [l Complete inserts

© Open Document [Z]Extended inserts

Figure 5-5: Uz r\;nanxgga\ length of created query
FOF
The © [JUse delayed inserts
. @ 80L []Use ignore inserts

phpMyAdmln [#]Use hexadecimal for BLOB

O AL Export type
Export page. INSERT v

© YAML 1
|

4. In the Export section on the left pane of the main panel, in the top list
box, select the tables you want to export.

o

In the Export section, select the SQL radio button.

6. Select the Structure check box and the four check boxes at the top of
the Structure section if they aren’t already selected.

7. Select the Data check box and the Use Hexadecimal for Binary Data
check box (or Use Hexadecimal for BLOB check box) if they aren’t
already selected.

8. Scroll down to the File section (see Figure 5-6).

Figure 5-6:
The
phpMyAdmin [[5 *
. File name template % |__DB_ -%v%m%d { [#] remember template)
Save as F||e Compression: (3 Mane (3 "zipped” ¢ "gzipped”
section of
the export
page.
I

9. Select the Save As File check box.

Chapter 5: Protecting Your Data 1 25

10. Specify the filename.

The File Name Template field contains __DB__, which saves the file with
the database name. You can add text or special characters to the filename
to make a more meaningful filename. In this case, I added %Y%m%d,
which adds the current date to the filename of the exported file.

11. Select the Remember Template check box.
12. Next to Compression, select the None radio button.
13. Click Go.

Your browser’s Save File window opens. You see the name of the file
being saved.

14. Select the option to save your file to disk and click OK.

The file is saved where your browser saves files. If you have your
browser set to ask you where to save files, a window opens, and you can
navigate to the directory where you want to save the file.

In this example, a file named jvalade_PetStore-20090520 is saved
on my local computer.

Now you have a backup copy of your database. You can save the text file on
your Web host, on your local computer, on your neighbor’s computer, and
as many other places that make you feel that your data is safe. You can then
re-create your database easily from this file on any computer that has MySQL
installed.

Viewing the Export file

The file exported by the phpMyAdmin Export feature is a text file that con-
tains the SQL queries needed to re-create the database, exactly as it was
when you exported it. It contains a CREATE query for each table in the data-
base. It contains INSERT queries for every row of data in the tables.

The following is the export file that contains the queries needed to re-create
two tables: Member and Login.

-- phpMyAdmin SQL Dump
-- version 2.11.9.5
-- http://www.phpmyadmin.net

-— Host: localhost

-- Generation Time: May 22, 2009 at 03:28 PM
-- Server version: 5.1.30

-- PHP Version: 5.2.5

7 26 Part Il: MySQL Database

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

-- Database: "jvalade_PetStore’

-- Table structure for table "Login’

DROP TABLE IF EXISTS ‘Login‘;

CREATE TABLE IF NOT EXISTS "“Login (
"loginName™ varchar (20) NOT NULL,
‘loginTime’ datetime NOT NULL

) ENGINE=MyISAM DEFAULT CHARSET=latinl;

-- Dumping data for table "Login’

-- Table structure for table “Member

DROP TABLE IF EXISTS "Member ;

CREATE TABLE IF NOT EXISTS "Member (
*loginName' varchar (20) NOT NULL,
“password’ varchar (255) NOT NULL,
‘createDate’ date NOT NULL,
“lastName® varchar (50) NOT NULL,
“firstName® varchar (40) NOT NULL,
‘street’ varchar (50) NOT NULL,
‘city’ varchar (50) NOT NULL,
“state’ char(2) NOT NULL,

‘zip® char (10) NOT NULL,
“email’ varchar (50) NOT NULL,
“phone’ varchar (15) NOT NULL,
“fax® wvarchar (15) NOT NULL,
PRIMARY KEY (' loginName')
) ENGINE=MyISAM DEFAULT CHARSET=latinl;

-- Dumping data for table "Member'

Chapter 5: Protecting Your Data 1 2 7

INSERT INTO "Member (loginName ', " password,
‘createDate’, "lastName ', " firstName',
‘street’, ‘city’, ‘state’, ‘zip , “email’,
“phone”, "fax') VALUES

("joey', 'secret', '2009-05-12', 'Customer', 'Joe', '1234
Oak St', 'Here', 'CA', '12345-1234', 'me@home.
com', '888-888-8888', ''),

('sammy', 'secret', '2009-05-22', 'Customer', 'Sam',6 '123
Pine St', 'New York', 'NY',6 '54321-4321', 'sam@

customer.com', '888-888-8888', '');

Notice the final section for each table is Dumping data for table
tablename. For the first table, Login, this section contains no INSERT que-
ries because the table is empty. For the Member table, the dump section con-
tains an INSERT query that inserts three rows.

<P If for some reason you're unable to use phpMyAdmin to back up your data-
base, you can create the same text file using the mysqldump program.
The mysqldump program was installed automatically when MySQL was
installed. Instructions for using the mysqldump program are provided in
the MySQL online documentation, such as http://dev.mysqgl .com/doc/
refman/5.1/en/mysgldump.html for MySQL 5.1.

Restoring Your Data

In the preceding section, you find out how to create a backup copy of your
database. You saved the SQL queries necessary to re-create your database
into a text file. You can re-create your database on any computer that has
MySQL installed from the backup file you saved. You can replace your data-
base or move your database onto a new computer where it doesn’t currently
exist.

You may want to replace a database because a table has become damaged
and unusable. It’s unusual, but it happens. For instance, a hardware problem
or an unexpected shutdown of the computer can cause corrupted tables.
Sometimes an anomaly in the data that confuses MySQL can cause corrupt
tables. In some cases, a corrupt table can cause your MySQL server to shut
down.

Here’s a typical error message that signals a corrupted table:

Incorrect key file for table: 'tablename'.

7 28 Part Il: MySQL Database

You can replace the corrupted table(s) with the data stored in a backup
copy. In some cases, the database might be lost completely. For instance, if
the computer where your database resides breaks down and can’t be fixed,
your current database is lost, but your data isn’t gone forever. You can
replace the broken computer with a new computer and restore your data-
base from a backup copy.

You may want to re-create the database on a different computer where it
doesn’t currently exist. For instance, you may want to copy the database
from one Web host account to another if you're changing hosting companies.
Or, you may want to replace the database on your local development com-
puter with the most recent database from your Web hosting account, so that
you're testing your scripts on the latest customer data.

You can use the text file that you created in the preceding section to re-
create the database. However, as described previously, you build a database
by creating the database and then adding tables to the database. The backup
file contains all the SQL statements necessary to rebuild the tables, but it
does not contain the statements needed to create the database. Your data-
base must exist before you can re-create the tables from the backup file.

You can re-create the database from the backup file with the IMPORT feature
of phpMyAdmin by following these steps:

1. Open the main phpMyAdmin page.

2. Click the name of the database you want to re-create.

If the database doesn’t exist, you need to create it before proceeding.
Creating an empty database is described earlier in this chapter.

The Database page opens, as shown earlier in Figure 5-4.
3. Click the Import tab at the top of the page.
The Import page opens, as shown in Figure 5-7.
4. Click the Browse button and navigate to the file that you exported.

5. In the Format section, select the SQL radio button if it isn’t already
selected.

6. Click the Go button.

A new page appears with a message stating that your import was
successful.

|
Figure 5-7:
The
phpMyAdmin
Import page.
|

Chapter 5: Protecting Your Data ’ 29

&3 Server: localhost p (& Database: jvalade_PetStore

pHStructure J7SOL Search j@Query & Export [Elmport gs0perations

Import
rFile to imp
Location of the text file (Max: 51,200 KiB)
Character set of the file: | utte v
Imported file compression will be automatically detected from: None, gzip, zip
rPartial import
Allow interrupt of import in case script detects it is close to time limit. This might be good way to impart large files, however it
can break transactions
Number of records(queries) to skip from start [0
rFormat of imp fil
SaL
© Options
SOL compatibility mode MNOMNE -

In some cases, you may want to replace only part of the database. For
instance, the backup file created in the previous section contains two tables:
Member and Login. If only the Login table is damaged, you want to replace
only the Login table.

Your database is now restored with all the data that was in it at the time

the copy was made. If the data has changed since the copy was made, the
changes are lost. For instance, if more data was added after the backup copy
was made, the new data is not restored. If you know the changes that were
made, you can make them manually in the restored database.

You can control which data is replaced by editing the backup file. Because
the backup is a text file, you can edit it with any text editor. Remove any SQL
queries that you do not want to execute. For instance, if you do not want to
restore the Member table, only the Login table, remove all the SQL queries
from the file that CREATE or INSERT INTO the Member table.

7 30 Part Il: MySQL Database

Part Il
PHP

The 5th Wave By Rich Tennant
CRAY [ENNANT
WEB DEVELOPMENT TEAM

“ Give him air! Give him air! He’ll be okay. He’s just been
exposed to some rawt PHP code. Tt must have accidently
flaghed across his screen £rom the server.”

In this part . . .

n Part III, you find out how to use PHP for your Web
database application. Here are some of the topics
described:
v Adding PHP to HTML files

v PHP features that are useful for building a
dynamic Web database application

v Using PHP features
v+ Using forms to collect information from users

v Showing information from a database in a Web
page

v~ Storing data in a database

v Moving information from one Web page to the
next

You find out everything you need to know to write PHP
programs.

Chapter 6
General PHP

In This Chapter
Adding PHP sections to HTML files
Writing PHP statements
Using PHP variables
Comparing values in PHP variables

Documenting your programs

programs are the application part of your Web database application.
Programs perform the tasks: Programs create and display Web pages,
accept and process information from users, store information in the data-
base, get information out of the database, and perform any other necessary
tasks.

PHP, the language that you use to write your programs, is a scripting lan-
guage designed for use on the Web. It has features to aid you in programming
the tasks needed by dynamic Web applications.

In this chapter, I describe the general rules for writing PHP programs — the
rules that apply to all PHP statements. Consider these rules similar to general
grammar and punctuation rules. In the remaining chapters in Part Ill, you find
out about specific PHP statements and features and how to write PHP pro-
grams to perform specific tasks.

Adding a PHP Section to an HTML Page

PHP is a partner to HTML, enabling HTML to do things it can’t do on its own.
For example, HTML can display Web pages, and HTML has features that allow
you to format those Web pages. HTML also allows you to display graphics in
your Web pages and to play music files. But HTML alone does not allow you
to interact with the person viewing the Web page.

134 Ppartm:pup

A\\S

HTML is almost interactive. That is, HTML forms allow users to type informa-
tion that the Web page is designed to collect; however, you can’t access that
information without using a language other than HTML. PHP processes form

information and allows other interactive tasks as well.

HTML tags are used to make PHP language statements part of HTML scripts.
The file is named with a . php extension. (The PHP administrator can define
other extensions, such as .phtml or .php5, but .php is the most common.
In this book, [assume . php is the extension for PHP programs.) The PHP lan-
guage statements are enclosed in PHP tags with the following form:

<?php ?>

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?> without the php. If short tags are enabled, you can save a little
typing. However, if you use short tags, your programs will not run if they’re
moved to another Web host where PHP short tags are not activated.

PHP processes all statements between the two PHP tags. After the PHP sec-
tion is processed, it’s discarded. Or if the PHP statements produce output,
the PHP section is replaced by the output. The browser doesn’t see the PHP
section — the browser sees only its output, if there is any. For more on this
process, see the sidebar, “How the Web server processes PHP files.”

As an example, I'll start with an HTML program that displays Hello World!
in the browser window, shown in Listing 6-1. (It’s a tradition that the first pro-
gram you write in any language is the Hello World program. You might have
written a Hello World program when you first learned HTML.)

Listing 6-1: The Hello World HTML Program

<html>
<head><title>Hello World Program</title></head>
<body>
<p>Hello World!</p>
</body>
</html>

If you point your browser at this HTML program, you see a Web page that
displays

Hello World!

How the Web server processes PHP files

When a browser is pointed to a regular HTML
file with an .html or .htm extension, the
Web server sends the file, as-is, to the browser.
The browser processes the file and displays
the Web page described by the HTML tags
in the file. When a browser is pointed to a PHP
file (with a . php extension), the Web server
looks for PHP sections in the file and processes
them instead of just sending them as-is to the
browser. The Web server processes the PHP
file as follows:

1. The Web server starts scanning the file in
HTML mode. It assumes the statements are
HTML and sends them to the browser with-
out any processing.

2. The Web server continues in HTML mode
until it encounters a PHP opening tag
(<?php).

3. When it encounters a PHP opening tag, the
Web server switches to PHP mode. This is
sometimes called escaping from HTML. The
Web server then assumes that all state-
ments are PHP statements and executes
the PHP statements. If there is output, the
output is sent by the server to the browser.

4. The Web server continues in PHP mode

until it encounters a PHP closing tag (?>).

5. When the Web server encounters a PHP
closing tag, it returns to HTML mode. It
resumes scanning, and the cycle continues
from Step 1.

Listing 6-2 shows a PHP program that does the same thing — it displays
Hello World! in a browser window.

Listing 6-2: The Hello World PHP Program

<html>

<head><title>Hello World Program</title></head>

<body>
<?php
echo
?>
</body>
</html>

"<p>Hello World!</p>"

Chapter 6: General PHP] 35

If you point your browser at this program, it displays the same Web page as
the HTML program in Listing 6-1.

Don’t look at the file directly with your browser. That is, don’t choose
File>Openr>Browse from your browser menu to navigate to the file and click
it. You must open the file by typing its URL, as I discuss in Chapter 2. If you
see the PHP code displayed in the browser window instead of the output that
you expect, you might not have typed the URL.

136 rartui:prp

In this PHP program, the PHP section is

<?php
echo "<p>Hello World!</p>"
?>

The PHP tags enclose only one statement — an echo statement. The echo
statement is a PHP statement that you’ll use frequently. It simply outputs the
text that is included between the double quotes.

There is no rule that says you must enter the PHP on separate lines. You
could just as well include the PHP in the file on a single line, like this:

<?php echo "<p>Hello World!</p>" 2>

When the PHP section is processed, it is replaced with the output. In this
case, the output is

<p>Hello World!</p>

If you replace the PHP section in Listing 6-2 with the preceding output, the
program now looks exactly like the HTML program in Listing 6-1. If you
point your browser at either program, you see the same Web page. If you
look at the source code that the browser sees (in the browser, choose
Viewr>Source), you see the same source code listing for both programs.

Writing PHP Statements

The PHP section that you add to your HTML file consists of a series of PHP
statements. Each PHP statement is an instruction to PHP to do something. In
the Hello World program shown in Listing 6-2, the PHP section contains only
one simple PHP statement. The echo statement instructs PHP to output the
text between the double quotes.

PHP statements end with a semicolon (;). PHP does not notice white space
or the ends of lines. It continues reading a statement until it encounters a
semicolon or the PHP closing tag, no matter how many lines the statement
spans. Leaving out the semicolon is a common error, resulting in an error
message that looks something like this:
Parse error: expecting " ','' or ' ';'' in /hello.php on
line 6

Chapter 6: General PHP

A\

\\3

Notice that the error message gives you the line number where it encoun-
tered problems. This information helps you locate the error in your program.
This error message probably means that the semicolon was omitted at the
end of line 5.

I recommend writing your PHP programs with an editor that uses line num-
bers. If your editor doesn’t let you specify which line you want to go to, you
have to count the lines manually from the top of the file every time that you
receive an error message. You can find information about many editors,
including descriptions and reviews, at www . php-editors.com.

Sometimes groups of statements are combined into a block. A block is
enclosed by curly braces, { and }. The statements in a block execute
together. A common use of a block is as a conditional block, in which state-
ments are executed only when certain conditions are true. For instance, you
might want your program to do the following:

if (the sky is blue)
{
put leash on dragon;
take dragon for a walk in the park;

}

These statements are enclosed in curly braces to ensure that they execute as
a block. If the sky is blue, both put leash on dragon and take dragon
for a walk in the park are executed. If the sky is not blue, neither
statement is executed (no leash; no walk).

PHP statements that use blocks, such as if statements (which I explain in
Chapter 7), are complex statements. PHP reads the entire complex statement,
not stopping at the first semicolon that it encounters. PHP knows to expect
one or more blocks and looks for the ending curly brace of the last block

in complex statements. Notice that there is a semicolon before the ending
brace. This semicolon is required, but no semicolon is required after the
ending curly brace.

If you wanted to, you could write the entire PHP section in one long line,

as long as you separated statements with semicolons and enclosed blocks
with curly braces. However, a program written this way would be impossible
for people to read. Therefore, you should put statements on separate lines,
except for occasional, really short statements.

Notice that the statements inside the block are indented. Indenting is not
necessary for PHP. Nevertheless, you should indent the statements in a block
so that people reading the script can tell more easily where a block begins
and ends.

In general, PHP doesn’t care whether the statement keywords are in upper-
case or lowercase. Echo, echo, ECHO, and eCHo are all the same to PHP.

137

138 Partu:php

Error messages and warnings

PHP tries to be helpful when problems arise. It provides error messages and warnings as follows:

v~ Parse error: A parse error is a syntax error that PHP finds when it scans the script before
executing it. A parse error is a fatal error, preventing the script from running at all. A parse
error looks similar to the following:

Parse error: parse error, error, in c:\test\test.php on line 6

Often, you receive this error message because you've forgotten a semicolon, a parenthesis,
or a curly brace. The error provides more information when possible. For instance, error
might be unexpected T_ECHO, expecting ', ' or ';' meansthatPHP found
an echo statement where it was expecting a comma or a semicolon, which probably means
you forgot the semicolon at the end of the previous line.

v~ Error message: You receive this message when PHP encounters a serious error during the
execution of the program that prevents it from continuing to run. The message contains as
much information as possible to help you identify the problem.

v+ Warning message: You receive this message when the program sees a problem but the prob-
lem isn't serious enough to prevent the program from running. Warning messages do not mean
that the program can't run; the program does continue to run. Rather, warning messages tell
you that PHP believes that something is probably wrong. You should identify the source of the
warning and then decide whether it needs to be fixed. It usually does.

v~ Notice: You receive a notice when PHP sees a condition that might be an error or might be
perfectly okay. Notices, like warnings, do not cause the script to stop running. Notices are
much less likely than warnings to indicate serious problems. Notices just tell you that you are
doing something unusual and to take a second look at what you're doing to be sure that you
really want to do it.

One common reason why you might receive a notice is if you're echoing variables that don't
exist. Here's an example of what you might see in that instance:

Notice: Undefined variable: age in testing.php on line 9

v~ Strict: Strict messages, added in PHP 5, warn about language that is poor coding practice or
has been replaced by better code.

All types of messages indicate the filename causing the problem and the line number where the
problem was encountered.

You can specify which types of error messages you want displayed in the Web page. In general,
when you are developing a program, you want to see all messages, but when the program is pub-
lished on your Web site, you do not want any messages to be displayed to the user.

To change the error-message level for your Web site to show more or fewer messages, you must
change your PHP settings. Appendix B describes how to change PHP settings. On your local com-
puter, you edit your php . ini file, which contains a section that explains the error-message setting
(error_reporting), error-message levels, and how to set them. Some possible settings are

Chapter 6: General PHP] 39

error_reporting
error_reporting
error_reporting

E_ALL | E_STRICT
0
E_ALL & ~ E_NOTICE

The first setting is best, because it displays everything. It displays E_ALL, which is all errors,
warnings, and notices except strict, and E_STRICT, which displays strict messages. The second
setting displays no error messages. The third setting displays all error and warning messages, but
not notices or stricts. After changing the error_reporting settings, save the edited php .
ini file and restart your Web server.

If you're using a local php . ini file on your Web host, just add a statement, like one of the preced-
ing statements, to your local php . ini file.

If you don't have access to php . ini, you can add a statement to a program that sets the error
reporting level for that program only. Add the following statement at the beginning of the program:

error_reporting (errorSetting) ;
For example, to see all errors except stricts, use the following:
error_reporting (E_ALL) ;

You may want to put this statement in the top of your scripts when you run them on your Web host.
Then, when your programs are working perfectly and your Web site is ready for visitors, you can
remove the statement from the scripts.

In addition, PHP provides a setting that determines whether errors are displayed on the Web page
at all. This setting in your php . ini file is:

display_errors = On

You can change this to O£ £ in a php . ini file or add the following statement to the top of your
script:

ini_set ("display_errors","Off");

Using PHP Variables

Variables are containers used to hold information. A variable has a name, and
information is stored in the variable. For instance, you might name a variable
$age and store the number 12 in it. After information is stored in a variable,
it can be used later in the program. One of the most common uses for vari-
ables is to hold the information that a user types into a form.

140 Parm:pup

A\\S

Naming a variable

When you’re naming a variable, keep the following rules in mind:

v All variable names have a dollar sign ($) in front of them. This tells PHP
that it is a variable name.

v Variable names can be any length.
v Variable names can include letters, numbers, and underscores only.

v Variable names must begin with a letter or an underscore. They cannot
begin with a number.

v Uppercase and lowercase letters are not the same. For example,
$firstname and $Firstname are not the same variable. If you store
information in $firstname, for example, you can’t access that informa-
tion by using the variable name $firstName.

When you name variables, use names that make it clear what information is

in the variable. Using variable names like $Svarl, Svar2, $A, or $B does not
contribute to the clarity of the program. Although PHP doesn’t care what you
name the variable and won’t get mixed up, people trying to follow the program
will have a hard time keeping track of which variable holds what information.
Variable names like $firstName, $age, and SorderTotal are much more
descriptive and helpful.

Creating and assigning values to variables

Variables can hold either numbers or strings of characters. You store infor-
mation in variables by using a single equal sign (=). For instance, the follow-
ing four PHP statements assign information to variables:

Sage = 12;

Sprice = 2.55;

Snumber = -2;

Sname = "Goliath Smith";

Notice that the character string is enclosed in quotes, but the numbers are
not. [provide details about using numbers and characters later in this chap-
ter, in the “Working with Numbers” and “Working with Character Strings”
sections.

You can now use any of these variable names in an echo statement. For
instance, if you use the following PHP statement in a PHP section:

echo Sage;

Chapter 6: General PHP] /)]

the output is 12. If you include the following line in an HTML file:
<p>Your age 1is <?php echo $age ?>.
the output on the Web page is
Your age is 12.
Whenever you put information into a variable that did not exist before,
you create that variable. For instance, suppose you use the following PHP
statement:
Sfirstname = "George";
If this statement is the first time that you've mentioned the variable $first
name, this statement creates the variable and sets it to "George". If you
have a previous statement setting $firstname to "Mary", this statement

changes the value of $firstname to "George".

You can also remove information from a variable. For example, the following
statement takes information out of the variable Sage:

$age = nn ;
The variable $age exists but does not contain a value. It does not mean that
$age is set to 0 (zero) because 0 is a value. It means that $age does not
store any information. It contains a string of length 0.
You can go even further and uncreate the variable by using this statement:
unset (Sage) ;
After this statement is executed, the variable $age no longer exists.
A variable keeps its information for the entire program, not just for a single
PHP section. If a variable is set to "yes" at the beginning of a file, it still
holds "yes" at the end of the page. For instance, suppose your file has the

following statements:

<p>Hello World!</p>

<?php
Sage = 15;
Sname = "Harry";
?>
<p>Hello World again!</p>
<?php

echo S$name;
?>

142 Pparm:pup

The echo statement in the second PHP section displays Harry. The Web
page resulting from these statements is

Hello World!
Hello World again!

Harry

Dealing with notices

If you use a statement that includes a variable that does not exist, you
might get a notice. It depends on the error-message level that PHP is set to.
Remember that notices aren’t the same as error messages. With a notice,
the program continues to run. A notice simply tells you that you're doing
something unusual and to take a second look at what you're doing. (See the
sidebar, “Error messages and warnings.”) For instance, suppose you use the
following statements:

unset (Sage) ;
echo Sage;
Sage2 = Sage;

You might see two notices: one for the second statement and one for the
third statement. The notices will look something like this:

Notice: Undefined variable: age in testing.php on line 9

Suppose that you definitely want to use these statements. The program
works exactly the way you want it to. The only problems are the unsightly
notices. You can prevent notices in a program by inserting an at sign (@) at
the point where the notice would be issued. For instance, you can prevent
the notices generated by the preceding statements if you change the state-
ments to this:

unset (Sage) ;
echo @Sage;
Sage2 = @Sage;

Using PHP Constants

PHP constants are similar to variables. Constants are given a name, and a
value is stored in them. However, constants are constant; that is, they can’t
be changed by the program. After you set the value for a constant, it stays

Chapter 6: General PHP | £} 3

the same. If you used a constant for age and set it to 29, for example, it can’t
be changed. Wouldn’t that be nice — 29 forever?

Constants are used when a value is needed several places in the program
and doesn’t change during the program. The value is set in a constant at the
start of the program. By using a constant throughout the program, instead
of a variable, you make sure that the value won’t get changed accidentally.
By giving it a meaningful name, you know what the information is instantly.
And by setting a constant once at the start of the program (instead of using
the value throughout the program), you can change the value in one place if
it needs changing, instead of hunting for it in many places in the program to
change it.

For instance, you might set one constant that’s the company name and
another constant that’s the company address and use them wherever
needed. Then, if the company moves, you could just change the value in the
company address at the start of the program instead of having to find every
place in your program that echoed the company name to change it.

You can set a constant by using the define statement. The format is
define ("constantname", "constantvalue") ;

For instance, to set a constant with the company name, use the following
statement:

define ("COMPANY", "ABC Pet Store");
Use the constant in your program wherever you need your company name:
echo COMPANY ;

When you echo a constant, you can’t enclose it in quotes. If you do, it echoes
the constant name, instead of the value. You can echo it without anything, as
shown in the preceding example, or enclosed with parentheses.

You can use any name for a constant that you can use for a variable.
Constant names are not preceded by a dollar sign ($). By convention, con-
stants are given names that are all uppercase, so you can easily spot con-
stants, but PHP itself doesn’t care what you name a constant. You can store
either a string or a number in it. The following statement is perfectly okay
with PHP:

define ("AGE",29) ;

Just don’t expect Mother Nature to believe it.

144 Pparm:pup

Working with Numbers

<MBER
S

PHP allows you to do arithmetic operations on numbers. You indicate arith-
metic operations with two numbers and an arithmetic operator. For instance,
one operator is the plus (+) sign, so you can indicate an arithmetic operation
like this:

1+ 2

You can also perform arithmetic operations with variables that contain num-
bers, as follows:

s$nl 5
$n2 9
Ssum = $nl + S$n2;

1
2

Table 6-1 shows the arithmetic operators that you can use.

Table 6-1 Arithmetic Operators
Operator Description
+ Add two numbers.

- Subtract the second number from the first number.

* Multiply two numbers.

/ Divide the first number by the second number.

Find the remainder when the first number is divided by the
second number. This is called modulus. For instance, in
$a = 13 % 4, %aissettol.

oe

You can do several arithmetic operations at once. For instance, the following
statement performs three operations:

Sresult =1 + 2 * 4 + 1;

The order in which the arithmetic is performed is important. You can get
different results depending on which operation is performed first. PHP does
multiplication and division first, followed by addition and subtraction. If other
considerations are equal, PHP goes from left to right. Consequently, the pre-
ceding statement sets $result to 10, in the following order:

Sresult =1 + 2 * 4 + 1 (first it does the multiplication)
Sresult =1 + 8 + 1 (next it does the leftmost addition)
Sresult = 9 + 1 (next it does the remaining addition)

Sresult = 10

A\

Chapter 6: General PHP

You can change the order in which the arithmetic is performed by using

parentheses. The arithmetic inside the parentheses is performed first. For

instance, you can write the previous statement with parentheses like this:
Sresult = (1 + 2) * 4 + 1;

This statement sets Sresult to 13, in the following order:

Sresult = (1 + 2) * 4 + 1 (first it does the math in the parentheses)
Sresult = 3 * 4 + 1 (next it does the multiplication)

Sresult = 12 + 1 (next it does the addition)

Sresult = 13

On the better-safe-than-sorry principle, it’s best to use parentheses whenever
more than one answer is possible.

Often, the numbers that you work with are dollar amounts, such as prod-

uct prices. You want your customers to see prices in the proper format on
Web pages. In other words, dollar amounts should always have two decimal
places. However, PHP stores and displays numbers in the most efficient
format. If the number is 10.00, it is displayed as 10. To put numbers into the
proper format for dollars, you can use sprintf. The following statement for-
mats a number into a dollar amount:

Snewvariablename = sprintf ("$01.2f", Soldvariablename) ;

This statement reformats the number in $oldvariablename and stores it
in the new format in $newvariablename. For example, the following state-
ments display money in the correct format:

Sprice = 25;
Sf_price = sprintf ("%01.2f",Sprice) ;
echo "Sf_price
";

You see the following on the Web page:

25.00

sprintf can do more than format decimal places. For more information on
using sprintf to format values, see Chapter 13.

If you want commas to separate thousands in your number, you can use
number_format. The following statement creates a dollar format with
commas:

Sprice = 25000;
$f price = number_ format ($price,2);
echo "Sf_price";

145

146 Partui.prp

You see the following on the Web page:
25,000.00

The 2 in the number_format statement sets the format to two decimal
places. You can use any number to get any number of decimal places.

Working with Character Strings

WMBER
‘x&
&

A character string is a series of characters. Characters are letters, numbers,
and punctuation. When a number is used as a character, it’s just a stored
character, the same as a letter. It can’t be used in arithmetic. For instance,
a phone number is stored as a character string because it needs to be only
stored — not added or multiplied.

When you store a character string in a variable, you tell PHP where the string
begins and ends by using double quotes or single quotes. For instance, the
following two statements are the same:

"Hello World!";
'Hello World!';

Sstring
Sstring

Suppose that you wanted to store a string as follows:

Sstring = 'It is Tom's house';
echo S$string;

These statements won’t work because when PHP sees the ' (single quote)
after Tom, it thinks that this is the end of the string, and it displays the
following:

It is Tom

You need to tell PHP to interpret the single quote (') as an apostrophe
instead of as the end of the string. You can do this by using a backslash (\) in
front of the single quote. The backslash tells PHP that the single quote does
not have any special meaning; it’s just an apostrophe. This is escaping the
character. Use the following statements to display the entire string:

Sstring = 'It is Tom\'s house';
echo S$string;

Similarly, when you enclose a string in double quotes, you must also use a
backslash in front of any double quotes in the string.

Chapter 6: General PHP

Single-quoted strings versus
double-quoted strings

Single-quoted and double-quoted strings are handled differently. Single-
quoted strings are stored literally, with the exception of \ ', which is stored
as an apostrophe. In double-quoted strings, variables and some special char-
acters are evaluated before the string is stored. Here are the most important
differences in the use of double or single quotes in code:

v Handling variables: If you enclose a variable in double quotes, PHP uses
the value of the variable. However, if you enclose a variable in single
quotes, PHP uses the literal variable name. For example, if you use the
following statements:

Sage = 12;
Sresultl = "Sage";
Sresult2 = 'Sage';

echo Sresultl;
echo "
";
echo Sresult2;

the output is

12
Sage

1~ Starting a new line: The special characters \n tell PHP to start a new
line. When you use double quotes, PHP starts a new line at \n, but with
single quotes, \n is a literal string. For instance, when using the follow-
ing statements:

Sstringl = "String in \ndouble quotes";
Sstring2 = 'String in \nsingle quotes';

stringl outputs as

String in
double quotes

and string?2 outputs as
String in \nsingle gquotes

v~ Inserting a tab: The special characters \t tell PHP to insert a tab. When
you use double quotes, PHP inserts a tab at \ t, but with single quotes,
\t is a literal string. For instance, when using the following statements:

"String in \tdouble quotes";
'String in \tsingle quotes';

Sstringl =
Sstring2 =
stringl outputs as

String in double quotes
and string?2 outputs as

String in \tsingle quotes

147

148 Pparm:pup

The quotes that enclose the entire string determine the treatment of vari-
ables and special characters, even if other sets of quotes are inside the
string. For example, look at the following statements:

Snumber = 10;

Sstringl "There are 'Snumber' people in line.";
Sstring2 'There are "Snumber" people waiting.';
echo S$stringl, "
\n";

echo $string2;

The output is as follows:

There are '10' people in line.
There are "S$number" people waiting.

Joining strings

You can join strings, a process called concatenation, by using a dot (.). For
instance, you can join strings with the following statements:

Sstringl = 'Hello';
Sstring2 = 'World!';
Sstringall = Sstringl.S$Sstring2;
echo S$stringall;
The echo statement outputs

HelloWorld!

Notice that no space appears between Hello and Wor1d. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by using the following concatenation statement rather
than the earlier statement:

Sstringall = S$stringl." ".S$string2;

You can use . = to add characters to an existing string. For example, you can
use the following statements in place of the preceding statements:

Sstringall = "Hello";
Sstringall .= " World!";
echo S$stringall;

The echo statement outputs this:

Hello World!

Chapter 6: General PHP | 9

You can also take strings apart. You can separate them at a given character
or look for a substring in a string. You use functions to perform these and
other operations on a string. I explain functions in Chapter 7.

Working with Dates and Times

Dates and times can be important elements in a Web database application. PHP
has the ability to recognize dates and times and handle them differently than
plain character strings. Dates and times are stored by the computer in a format
called a timestamp. However, this is not a format in which you or I would want
to see the date. PHP converts dates from your notation into a timestamp that
the computer understands and from a timestamp into a format familiar to
people. PHP handles dates and times by using built-in functions.

The timestamp format is a Unix Timestamp, which is an integer that is the
number of seconds from January 1, 1970, 00:00:00 GMT (Greenwich Mean
Time) to the time represented by the timestamp. This format makes it easy
to calculate the time between two dates — just subtract one timestamp from
the other.

Setting local time

The current time is a tricky concept on the Web. The current time is the

time stored in the server where PHP is running. If you're using a Web hosting
company, you probably don’t even know where your Web hosting company
maintains the servers that house your Web site. In addition, the visitors that
visit your Web site might be anywhere in the world. Consequently, you rarely
want to display the current time on your Web site. Even the date can be dif-
ferent if your Web server and the visitor are enough time zones apart.

If you have a reason to want to display the current time in a specific location,
you do that by including the following statement in your script:

date_default_timezone_set (timezone) ;

where timezone is a code for the time zone that you want to use. For exam-
ple, you might use

date_default_timezone_set ("America/Los_Angeles")

You can find a list of the time zone codes in Appendix H of the PHP online
documentation at www.php.net/manual/en/timezones.america.php.

150 Partui:prp

On your local computer, if you're using PHP 5.1 or later, you probably need
to set a default time zone. If no default time zone is set, PHP guesses, which
sometimes results in GMT. In addition, PHP displays a message advising you
to set your local time zone.

You can set your time zone in the php . ini file:

. Open php.ini in a text editor.

. Scroll down to the section headed [Date].

1

2

3. Find the setting date.timezone =.

4. If the line begins with a semicolon (;), remove the semicolon.
5

. Add a time zone code after the equal sign.

You can see which time zone is currently your default time zone by using the
following:

Sdef = date_default_timezone_get ()
echo S$def;

Formatting a date

The function that you will use most often is date, which converts a date or
time from the timestamp format into a format that you specify. The general
format is

Smydate = date (" format", $Stimestamp) ;

$ timestamp is a variable with a timestamp stored in it. You previously
stored the timestamp in the variable, using a PHP function as I describe later
in this section. If $ timestamp is not included, the current time is obtained
from the operating system and used. Thus, you can get today’s date with the
following:

Stoday = date("Y/m/d");
If today is August 10, 2009, this statement returns
2009/08/10

The format is a string that specifies the date format that you want stored
in the variable. For instance, the format "y-m-d" returns 09-08-10, and
"M.d.Y" returns Aug.10.2009. Table 6-2 lists some of the symbols that you
can use in the format string. (For a complete list of symbols, see the docu-
mentation at www . php.net/manual/en/function.date.php.) You can
separate the parts of the date with a hyphen (-), a dot (.), a forward slash
(/), or a space.

Chapter 6: General PHP 15 ’
Table 6-2 Date Format Symbols
Symbol Meaning Example
F Month in text, not abbreviated January
M Month in text, abbreviated Jan
m Month in numbers with leading zeros 02,12
n Month in numbers without leading zeros 1,12
a Day of the month; two digits with leading zeros 01,14
b Day of the month without leading zeros 3,30
1 Day of the week in text, not abbreviated Friday
D Day of the week in text, abbreviated Fri
w Day of the week in numbers From 0 (Sunday)
to 6 (Saturday)

Y Year in four digits 2002
v Year in two digits 02
g Hour between 0 and 12 without leading zeros 2,10
G Hour between 0 and 24 without leading zeros 2,15
h Hour between 0 and 12 with leading zeros 01,10
H Hour between 0 and 24 with leading zeros 00, 23
i Minutes 00, 59
s Seconds 00, 59
a am or pmin lowercase am, pm

AM or PM in uppercase AM, PM

Storing a timestamp in a variable

You can assign a timestamp with the current date and time to a variable with
the following statements:

Stoday = time() ;
Another way to store a current timestamp is with the statement

Stoday = strtotime ("today") ;

152 Partii:prp

You can store specific timestamps by using strtotime with various key-
words and abbreviations that are similar to English. For instance, you can
create a timestamp for January 15, 2009, as follows:

SimportantDate = strtotime("January 15 2009");
strtotime recognizes the following words and abbreviations:

* Month names: Twelve month names and abbreviations
v Days of the week: Seven days and some abbreviations

v Time units: year, month, fortnight, week, day, hour, minute,
second, am, pm

v Some useful English words: ago, now, last, next, this, tomorrow,
vesterday

v Plus and minus: + or -
v All numbers

v Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific
Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a wide variety of ways. The
following statements are all valid:
SimportantDate = strtotime("tomorrow"); #24 hours from now
SimportantDate = strtotime("now + 24 hours");
SimportantDate = strtotime("last saturday") ;
SimportantDate = strtotime("8pm + 3 days");
(
(
(

SimportantDate = strtotime ("2 weeks ago"); # current time
SimportantDate = strtotime ("next year gmt") ;
SimportantDate = strtotime("this 4am") ; # 4 AM today

If you want to know how long ago $importantDate was, you can subtract it
from $today. For instance:

StimeSpan = S$today - S$SimportantDate;

This statement gives you the number of seconds between the important date
and today. Or use the statement

StimeSpan =((Stoday - SimportantDate)/60) /60

to find out the number of hours since the important date.

Chapter 6: General PHP] 53

Using dates with MySOL

Often you want to store a date in your MySQL database. For instance, you
might want to store the date when a customer made an order or the time
when a member logged in. MySQL also recognizes dates and times and
handles them differently than plain character strings. However, MySQL also
handles them differently than PHP. To use dates and times in your applica-
tion, you need to understand both how PHP handles dates (which I describe
in the previous few sections) and how MySQL handles dates.

I discuss the DATE and DATETIME data types for MySQL in detail in Chapter 3.
The following is a summary:

v DATE: MySQL DATE columns expect dates with the year first, the month
second, and the day last. The year can be yyvyy or yy. The month can be
mm or m. The day can be dd or d. The parts of the date can be separated
by a hyphen (-), a forward slash (/), a dot (.), or a space.

V¥ DATETIME: MySQL DATETIME columns expect both the date and the
time. The date is formatted as I describe in the preceding bullet. The
date is followed by the time in the format hh:mm: ss.

Dates and times must be formatted in the correct MySQL format to store
them in your database. PHP functions can be used for formatting. For
instance, you can format today’s date into a MySQL format with this
statement:

Stoday = date("Y-m-d") ;

You can format a specific date by using the statement

SimportantDate = date("Y.m.d",strtotime("Jan 15 2009")) ;

You can then store the formatted date in a database with an SQL query like
this:

UPDATE Member SET createDate="S$today"
In some cases, MySQL date functions are easier to use than PHP state-
ments to manipulate dates. For example, MySQL provides a function named

DATEDIFF that computes the number of days between two dates, as follows:

DATEDIFF (datel, date2)

154 Pparm:pup

The function returns the number of days from date2 to datel. For example,
to determine the number of days between a date in a table and the current
date, you can use the following:

SELECT DATEDIFF (NOW () ,Birth_date) FROM Customer

Now () is a MySQL function that returns the current date and time, and
Birth_ date is the name of a column in the Customer table.

You can also use the function to return the number of days between dates
that you provide, as follows:

SELECT DATEDIFF('2009-1-15','1997-12-30")

MySQL provides many useful functions. All the date/time functions are
described at http://dev.mysqgl.com/doc/refman/5.1/en/date-and-
time-functions.html.

Comparing Values

In programs, you often use conditional statements. That is, if something is
true, your program does one thing, but if something is not true, your program
does something different. Here are two examples of conditional statements:

if user is a child
show toy catalog

if user is not a child
show electronics catalog

To know which conditions exist, the program must ask questions. Your
program then performs tasks based on the answers. Some questions (condi-
tions) that you might want to ask — and the actions that you might want
taken — are

v Is the customer a child? If so, display a toy catalog.

v Which product has more sales? Display the most popular one first.

v Did the customer enter the correct password? If so, display the
Members Only Web page.

v Does the customer live in Ohio? If so, display the map to the Ohio store
location.

Chapter 6: General PHP] 55

To ask a question in a program, you form a statement that compares values.
The program tests the statement and determines whether the statement is
true or false. For instance, you can state the preceding questions as

v The customer is less than 13 years of age. True or false? If true, display
the toy catalog.

v Product 1 sales are higher than Product 2 sales. True or false? If true,
display Product 1 first; if false, display Product 2 first.

v The customer’s password is secret. True or false? If true, show the
Members Only Web page.

v The customer lives in Ohio. True or false? If true, display a map to the
Ohio store location.

Comparisons can be quite simple. For instance, is the first value larger than
the second value? Or smaller? Or equal to? But sometimes you need to look
at character strings to see whether they have certain characteristics instead
of looking at their exact values. For instance, you might want to identify
strings that begin with S or strings that look like phone numbers. For this
type of comparison, you compare a string to a pattern, which I describe in
the section “Matching character strings to patterns,” later in this chapter.

Making simple comparisons

Simple comparisons compare one value to another value. PHP offers several
ways to compare values. Table 6-3 shows the comparisons that are available.

Table 6-3 Comparing Values

Comparison Description
== Are the two values equal?

Is the first value larger than the second value?

>

>= Is the first value larger than or equal to the second value?
< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

= Are the two values not equal to each other?

<> Are the two values not equal to each other?

156 Partui:pup

\NG/
?g‘\\

You can compare both numbers and strings. Strings are compared alphabeti-
cally, with all uppercase characters coming before any lowercase characters.
For instance, SS comes before Sa. Characters that are punctuation also have
an order, and one character can be found to be larger than another character.
However, comparing a comma to a period doesn’t have much practical value.

Strings are compared based on their ASCII (American Standard Code for
Information Interchange) code. In the ASCII character set, each character is
assigned an ASCII code that corresponds to a decimal number between 0 and
127. For instance, the number that represents the comma is 44. The period
corresponds to 46. Therefore, if a period and a comma are compared, the
period is seen as larger.

Comparisons are often used to execute statements only under certain con-
ditions. For instance, in the following example, the block of statements is
executed only when the comparison $weather == "raining" is true:

if (Sweather == "raining")
{

put up umbrella;

cancel picnic;

}

PHP checks the variable sweather to see whether it is equal to "raining".
If it is, PHP executes the two statements. If Sweather is not equal to
"raining", PHP does not execute either of the two statements.

The comparison sign is two equal signs (==). One of the most common mis-
takes is to use a single equal sign for a comparison. A single equal sign puts
the value into the variable. Thus, a statement like 1f ($weather =
"raining") would set Sweather to raining rather than check whether it
already equaled raining and would thus always be true.

For example, here’s a solution to the programming problem presented at the
beginning of this section. The problem is

if user is a child
show toy catalog

if user is not a child
show electronics catalog

To determine whether a customer is an adult, you compare the customer’s
age with the age when the customer is considered to be an adult. You need
to decide at what age a customer would stop being interested in toy cata-
logs and start being more interested in electronic catalogs. Suppose you
decide that 13 seems like the right age. You then ask whether the customer is
younger than 13 by comparing the customer’s age to 13. If the age is less than
13, show the toy catalog; if the age is 13 or over, show the electronics cata-
log. These comparisons would have the following format:

Chapter 6: General PHP

Sage < 13 (is the customer's age less than 13?)
Sage >= 13 (is the customer's age greater than or equal to 13?)

One way to program the conditional actions is to use the following
statements:

if (Sage < 13

)
Sstatus = "child";

if (Sage >= 13)
Sstatus = "adult";

These statements instruct PHP to compare the customer’s age to 13. In the
first statement, if the customer’s age is less than 13, the customer’s status

is set to "child". In the second statement, if the customer’s age is greater
than or equal to 13, the customer’s status is set to "adult". You then show
the toy catalog to customers whose status is child and show the electronic
catalog to those whose status is adult. Although you can write these i £
statements in a more efficient way, these statements do work. A full descrip-
tion of conditional statements is provided in Chapter 7.

Matching character strings to patterns

Sometimes you need to compare character strings to see whether they fit
certain characteristics rather than match exact values. For instance, you
might want to identify strings that begin with S or strings that have numbers
in them. For this type of comparison, you compare the string to a pattern.
These patterns are regular expressions, often called regex.

You’ve probably used some form of pattern matching in the past. When you
use an asterisk (*) as a wildcard when searching for files (dir s*.doc or
1s s*.txt), you are pattern matching. For instance, c* . txt is a pattern.
Any string that begins with a ¢ and ends with the string . txt, with any char-
acters in between the c and the . txt, matches the pattern. The strings cow.
txt, ¢3333.txt,and c3c4. txt all match the pattern. Using regular expres-
sions is just a more complicated variation of using wildcards.

The most common use for pattern matching on Web pages is to check the
input from a form. If the information doesn’t make sense, it’s probably not
something that you want to store in your database. For instance, if the user
types a name into a form, you can check whether it seems like a real name
by matching patterns. You know that a name consists mainly of letters and
spaces. Other valid characters might be a hyphen (-) — for example, in the
name Smith-Kline — and a single quote (') — for example, O’Hara. You can
check the name by setting up a pattern that’s a string containing only letters,
spaces, hyphens, and single quotes and then matching the name to the pat-
tern. If the name doesn’t match — that is, if it contains characters not in the
pattern, such as numerals or a question mark (?) — it’s not a real name.

157

158 Partui:prp

Patterns consist of literal characters and special characters. Literal charac-
ters are normal characters, with no other special meaning. A c is a ¢ with no
meaning other than it’s one of the 26 letters in the English alphabet. Special
characters have special meaning in the pattern, such as the asterisk (*) when
used as a wildcard. Table 6-4 shows the special characters used in patterns.

Table 6-4 Special Characters Used in Patterns
Character Meaning Example Match Not a
Match
~ Beginning of line ~c cat my cat
S End of line cs tic stick
Any single character Any string a,l
that con-
tains at
least two
characters
? Preceding characteris mea®n mean, men moan
optional
() Groups literal char- m(ea)n mean men, mn
acters into a string
that must be matched
exactly
[] Encloses a set of mlealn men, man mean,
optional literal mn
characters
- Represents all the mla-cln man, mbn, mdn,
characters between men mun,
two characters maan
+ One or more of the pre- door[1-31+ door111, door,
ceding items door131 doorbb
* Zero or more of the pre- door[1-31* door, door4,
ceding items door311 doord45
., The starting and ending a{2,5} aa, aaaaa a, Xx3
numbers of a range of
repetitions
\ The following character m*n m*n men,
is literal mean
C | | A set of alternate (Tom | Tommy') Tom, Thomas,
) strings Tommy To

Chapter 6: General PHP] 5

Literal and special characters are combined to make patterns — sometimes
long, complicated patterns. A string is compared to the pattern, and if it
matches, the comparison is true. Some example patterns follow, with a break-
down of the pattern and some sample matching and nonmatching strings:
v ~[A-2Z].* — Strings that begin with an uppercase letter
e ~[A-7] — Uppercase letter at the beginning of the string
e _* — A string of characters that is one or more characters long
Strings that match:
¢ Play it again, Sam
o
Strings that do not match:
¢ play it again, Sam
o
V” Dear (son|daughter) — Two alternative strings
® Dear — Literal characters
e (son|daughter) — Either son or daughter
Strings that match:
e Dear son
e My Dear daughter
Strings that do not match:
e Dear Goliath
® son
¥ ~[0-91{5}(\-[0-91{4})?$ — Any zip code
e ~[0-9]1{5} — Any string of five numbers
e \- — Aliteral
e [0-9]{4} — A string of numbers that is four characters long

e () ? — Groups the last two parts of the pattern and makes them
optional

Strings that match:
¢ 90001
¢ 90002-4323
Strings that do not match:
¢ 9001
e 124321

160 Parti:pup

V¥ ~.+@.+\.com$ — Any string with @ embedded that ends in .com

e ~_+ — Any string of one or more characters at the beginning
e @ — Aliteral @ (at sign); @ is not a special character
e .+ — Any string of one or more characters
e \. — Aliteral dot
e com$ — A literal string com at the end of the string

A string that matches:
°* mary@hercompany.com

Strings that do not match:
e mary@hercompany.net

e @mary.com
You can compare a string to a pattern by using ereg. The general format is
ereg ("pattern", string) ;
Either pattern or string can be a literal, as follows:
ereg("[0-9]*","1234");
or can be stored in variables, as follows:
ereg (Spattern, Sstring) ;

To use ereg to check the name that a user typed in a form, compare the
name to a pattern as follows:

ereg(""[A-Za-z' -1+S$S", Sname)
The pattern in this statement does the following:

 Uses 4 and $ to signify the beginning and end of the string. This means
all the characters in the string must match the pattern.

 Encloses all the literal characters allowed in the string in [1. No
other characters are allowed. The allowed characters are uppercase and
lowercase letters, an apostrophe ('), a blank space, and a hyphen (-).

You can specify a range of characters using a hyphen within the [1.
When you do that, as in A-Z in the example, the hyphen does not rep-
resent a literal character. Because you want the hyphen included as a
literal character that’s allowed in your string, you need to add a hyphen
that is not between any two other characters. In this case, the hyphen is
included at the end of the list of literal characters.

Chapter 6: General PP] O]

v Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [1 but must contain at least one character.

Joining Comparisons with and/or/xor

Sometimes one comparison is sufficient to check for a condition, but often you
need to ask more than one question. For instance, suppose that your company
offers catalogs for different products in different languages. You need to know

which product the customer wants to see and which language he or she needs
to see it in. This is the general format for a series of comparisons:

comparison and|or|xor comparison and|or|xor comparison and|or|xor ...
Comparisons are connected by one of the three following words:

v and: Both comparisons are true.
v or: One comparison or both comparisons are true.

v xor: One of the comparisons is true, but both comparisons are not true.

Table 6-5 shows some examples of multiple comparisons.

Table 6-5 Multiple Comparisons

Condition Is True If

$customer == "Smith" or The customer is named Smith or

Scustomer == "Jones" Jones.

Scustomer == "Smith" and The customer is named Smith, and the

$custState =="OR" customer lives in Oregon.

Scustomer == "Smith" or The customer is named Smith, or the

ScustState == "OR" customer lives in Oregon, or hoth.

Scustomer == "Smith" or The customer is named Smith, or the

$custState == "OR" customer lives in Oregon — but not
both.

$customer != "Smith" and The customer is named anything

ScustAge < 13 except Smith and is under 13 years

of age.

162 Partui:pup

You can string together as many comparisons as necessary. The compari-
sons that use and are tested first, the comparisons that use xor are tested
next, and the comparisons that use or are tested last. For instance, the fol-
lowing is a condition that includes three comparisons:

Sage == 200 or Sage == 300 and S$Sname == "Goliath"

If the customer’s name is Goliath and he is 300 years old, this statement is
true. The statement is also true if the customer is 200 years old, regardless
of what his name is. This condition is not true if the customer is 300 years
old but his name is not Goliath. You get these results because the program
checks the condition as follows:

1. The and is compared.

The program checks $age to see whether it equals 300, and it checks
$name to see whether it equals Goliath. If both match, the condition is
true, and the program does not need to check or. If only one or neither
of the variables equal the designated value, the testing continues.

2. The or is compared.

The program checks $age to see whether it equals 200. If it does, the
condition is true. If it does not, the condition is false.

You can change the order in which comparisons are made by using parenthe-
ses. The word inside the parentheses is evaluated first. For instance, you can
rewrite the previous statement with parentheses as follows:

(Sage == 200 or Sage == 300) and Sname == "Goliath"

The parentheses change the order in which the conditions are checked.
Now the or is checked first. This condition is true if the customer’s name is
Goliath and he is either 200 or 300 years old. You get these results because
the program checks the condition as follows:

1. The or is compared.

The program checks $age to see whether it equals either 200 or 300. If
it does, this part of the condition is true. However, the comparison on
the other side of the and must also be true, so the testing continues.

2. The and is compared.

The program checks $name to see whether it equals Goliath. If it does,
the condition is true. If it does not, the condition is false.

\§ . .
N Use parentheses liberally, even when you believe you know the order of the
comparisons. Unnecessary parentheses can’t hurt, but comparisons that have
unexpected results can.

Chapter 6: General PHP] O 3

If you're familiar with other languages, such as C, you may have used | | (for
or) and && (for and) in place of the words. The | | and && work in PHP as
well. The statement $a < $b && $c > S$bisjust as valid as the statement
$a < $b and $c > $b.The || is checked before or; the && is checked
before and.

Adding Comments to Vour Program

Comments are notes embedded in the program itself. Adding comments in
your programs that describe their purpose and what they do is essential. It’s
important for the lottery factor — that is, if you win the lottery and run off

to a life of luxury on the French Riviera, someone else will have to finish the
application. The new person needs to know what your program is supposed
to do and how it does it. Actually, comments benefit you as well. You might
need to revise the program next year when the details are long buried in your
mind under more recent projects.

Use comments liberally. PHP ignores comments; comments are for humans.
You can embed comments in your program anywhere as long as you tell PHP
that they are comments. The format for comments is

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/ *), it ignores everything until it sees
the code that indicates the end of a comment (*/).

One possible format for comments at the start of each program is as follows:

/* name: catalog.php
description: Program that displays descriptions of
products. The descriptions are stored
in a database. The product descriptions
are selected from the database based on
the category the user entered into a

form.
written by: Lola Designer
created: 2/1/09
modified: 3/15/09

*/

You should use comments throughout the program to describe what the
program does. Comments are particularly important when the program state-
ments are complicated. Use comments such as the following frequently:

164

Part lll: PHP

WMBER
é&
&

/* Get the information from the database */
/* Check whether the customer is over 18 years old */
/* Add shipping charges to the order total */

PHP also has a short comment format. You can specify that a single line is a
comment by using the pound sign (#) or two forward slashes (//) in the fol-
lowing manner:

This is comment line 1
// This is comment line 2

All text from the # or // to the end of the line is a comment. You can also use
or // in the middle of a line to signal the beginning of a comment. PHP will
ignore everything from the # or // to the end of the line. This technique is
useful for commenting a particular statement, as in the following example:

Saverage = SorderTotal/SnItems // compute average price

Sometimes you want to emphasize a comment. The following format makes a
comment very noticeable:

HAHHAAHHA SR AR SR AR H AR H AR AR SRR #H
Double-Check This Section
HAHH AR HH SR AR S H AR H AR HHA SR AR H AR AR S S

PHP comments are not included in the HTML code that’s sent to the user’s
browser. The user does not see these comments.

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or every-
thing you do in the script. If your script is too full of comments, the important
comments can get lost in the maze. Use comments to label sections and to
explain unusual or complicated code — not obvious code.

Chapter 7

PHP Building Blocks for Programs

In This Chapter
Echoing output to Web pages
Assigning values to variables
Stopping and breaking out of programs
Creating and using arrays
Using conditional statements
Building and using loops for repeated statements
Using functions

p HP programs are a series of instructions in a file named with an exten-
sion that tells the Web server to look for PHP sections in the file. (The
extension is usually .php or .phtml, but it can be anything that the Web
server is configured to expect.) PHP begins at the top of the file and executes
each instruction, in order, as it comes to it. Instructions are the building
blocks of PHP programs.

The basic building blocks are simple statements — a single instruction followed
by a semicolon. A simple program consists of a series of simple statements.
For example, the Hello World program in Chapter 6 is a simple program.
However, the programs that make up a Web database application aren’t that
simple. They’re dynamic and interact with both the user and the database.
Consequently, the programs require more complex building blocks.

Here are some common programming tasks that require complex building
blocks:

1 Storing groups of related values together: You often have related infor-
mation, such as the description, picture, and price of a product or a list
of customers. Storing this information as a group that you can access
under one name is efficient and useful. This PHP feature is an array.

1 Setting up statements that execute only when certain conditions are
met: Programs frequently need to do this. For instance, you may want
to display a toy catalog to a child and an electronics catalog to an adult.

166 Partu:pup

This type of statement is a conditional statement. The PHP conditional
statements are the if statement and the case statement.

1 Setting up a block of statements that is repeated: You frequently need
to repeat statements. For instance, you may want to create a list of all
your customers. To do that, you might use two statements: one that gets
the customer row from the database and a second one that stores the
customer name in a list. You would need to repeat these two statements
for every row in the customer database. The feature that enables you to
do this is a loop. Three types of loops are for loops, while loops, and
do. .while loops.

v Writing blocks of statements that can be reused many times: Many
tasks are performed in more than one part of the application. For
instance, you might want to retrieve product information from the
database and display it numerous times in an application. Getting and
displaying the information might require several statements. Writing
a block of statements that displays the product information and using
this block repeatedly is much more efficient than writing the statements
over again every time you need to display the product information. PHP
allows you to reuse statement blocks by creating a function.

In this chapter, you find out how to use the building blocks of PHP programs.
[describe the most frequently used simple statements and the most useful
complex statements and variables. You find out how to construct the build-
ing blocks and what they’re used for. Then in Chapter 8, you find out how to
use these building blocks to move data in and out of a database.

Useful Simple Statements

A simple statement is a single instruction followed by a semicolon (;). Here
are some useful simple statements used in PHP programs:

V¥ echo statement: Produces output that browsers handle as HTML

v Assignment statement: Assigns values to variables

v Increment statement: Increases or decreases numbers in variables

V¥ exit statement: Stops the execution of your program

v Function call: Uses stored blocks of statements at any location in a

program

[discuss these simple statements and when to use them in the following
sections.

Chapter 7: PHP Building Blocks for Programs 1 6 7

Using echo statements

You use echo statements to produce output. The output from an echo state-
ment is sent to the user’s browser, which handles the output as HTML.

The general format of an echo statement is
echo outputitem, outputitem, outputitem, ...
where the following rules apply:
v An outputitemcan be a number, a string, or a variable. A string must

be enclosed in quotes. The difference between double and single quotes
is explained in Chapter 6.

v List as many outputitems as you need, separated by commas.

Table 7-1 shows some echo statements and their output. For the purposes
of the table, assume that $stringl is set to Hello and $string?2 is set to

World!.

Table 7-1 echo Statements
echo Statement Output
echo "Hello"; Hello
echo 123; 123
echo "Hello", "World!"; HelloWorld!
echo Hello World!; Not valid; results in an error message
echo "Hello World!"; Hello World!
echo 'Hello World!'; Hello World!
echo S$Sstringl; Hello
echo S$stringl, $string?2; HelloWorld!
echo "S$Sstringl S$stringl2"; Hello World!
echo "Hello ",Sstring2; Hello World!
echo "Hello"," ",S$string2; Hello World!
echo 'S$stringl', "S$Sstring2"; SstringlWorld!

QNING/ i .)

N Double quotes and single quotes have different effects on variables. When you

use single quotes, variable names are echoed as-is. When you use double
quotes, variable names are replaced by the variable values.

168

Part lll: PHP

<MBER
)

You can separate variable names with curly braces ({ }). For instance, the
following statements

Spet = "bird";
echo "The Spetcage has arrived.";

will not output bird as the $pet variable. In other words, the output will not
be The birdcage has arrived. Rather, PHP looks for the variable
$petcage and won’t be able to find it. You can echo the correct output by
using curly braces to separate the Spet variable:

Spet = "bird";
echo "The {Spetl}cage has arrived.";

The preceding statement will output
The birdcage has arrived.

echo statements output a line of text that is sent to a browser. The browser
considers the text to be HTML and handles it that way. Therefore, you need
to make sure that your output is valid HTML code that describes the Web
page that you want the user to see.

When you want to display a Web page (or part of a Web page) by using PHP,
you need to consider three stages in producing the Web page:

v The PHP program: PHP echo statements that you write.

v The HTML source code: The source code for the Web page that you see
when you choose Vieww>Source in your browser. The source code is the
output from the echo statements.

1 The Web page: The Web page that your users see. The Web page results
from the HTML source code.

The echo statements send exactly what you echo to the browser — no more,
no less. If you don’t echo any HTML tags, none are sent.

PHP allows some special characters that format output, but they aren’t
HTML tags. The PHP special characters affect only the output from the echo
statement — not the display on the Web page. For instance, if you want to
start a new line in the PHP output, you must include a special character (\n)
that tells PHP to start a new line. However, this special character just starts
a new line in the output; it does not send an HTML tag to start a new line on
the Web page. Table 7-2 shows examples of the three stages.

Chapter 7: PHP Building Blocks for Programs 1 69

Table 7-2 Stages of Web Page Delivery

echo Statement HTML Source Code Web Page Display

echo "Hello World!"; Hello World! Hello World!

echo "Hello World!"; Hello World! Hello World!Here I am!
echo "Here I am!"; Here I am!

echo "Hello World!\n"; Hello World! Hello World!Here I am!
echo "Here I am!"; Here I am

echo "Hello World!"; Hello World!
 Hello World!

echo "
"; Here I am!" Here I am!

echo "Here I am!";

echo "Hello"; Hello World!
 Hello World!

echo " World!
\n"; Here I am!" Here I am!

echo "Here I am!";

Table 7-2 summarizes the differences between the stages in creating a Web
page with PHP. To look at these differences more closely, consider the follow-
ing two echo statements:

echo
echo

"Line 1";
"Line 2";

If you put these lines in a program, you might expect the Web page to display

Line
Line

1
2

However, this is not the output that you would get. The Web page would
display this:

Line

1Line 2

If you look at the source code for the Web page, you see exactly what is sent

to the browser, which is this:

Line

lLine 2

Notice that the line that is output and sent to the browser contains exactly
the characters that you echoed — no more, no less. The character strings
that you echoed did not contain any spaces, so no spaces appear between
the lines. Also notice that the two lines are echoed on the same line. If you
want a new line to start, you have to send a signal indicating the start of a

170 Pparii:pup

3

new line. To signal that a new line starts here in PHP, echo the special char-
acter \n. Change the echo statements to the following:

echo "line 1\n";
echo "line 2";

Now you get what you want, right? Well, no. Now you see the following on the
Web page:

line 1 line 2
If you look at the source code, you see this:

line 1
line 2

So, the \n did its job: It started a new line in the output. However, HTML dis-
plays the output on the Web page as one line. If you want HTML to display
two lines, you must use a tag, such as the
 tag. So, change the PHP end-
of-line special character to an HTML tag, as follows:

echo "line 1
";
echo "line 2";

Now you see what you want on the Web page:

line 1
line 2

If you look at the source code for this output, you see this:

line 1l
line 2
Use \n liberally. Otherwise, your HTML source code will have some really
long lines. For instance, if you echo a long form, the whole thing might be one
long line in the source code, even though it looks fine in the Web page. Use \n

to break the HTML source code into reasonable lines. It’s much easier to
examine and troubleshoot the source code if it’s not a mile-long line.

Using assignment statements

Assignment statements are statements that assign values to variables. The
variable name is listed to the left of the equal sign; the value to be assigned to
the variable is listed to the right of the equal sign. Here is the general format:

Svariablename = value;

Chapter 7: PHP Building Blocks for Programs

The value can be a single value or a combination of values, including values
in variables. A variable can hold numbers or characters but not both at the
same time. Therefore, a value cannot be a combination of numbers and char-
acters. The following are valid assignment statements:

Snumber 28

Snumber 2+1;

Snumber = (2 - 1) * (4 * 5) -17;
Snumber2 = Snumber + 3;

Sstring = "Hello World";
Sstring2 = $string." again!";

If you combine numbers and strings in a value, you won'’t get an error message;
you'll just get unexpected results. For instance, the following statements com-
bine numbers and strings:

Snumber = 2;

Sstring = "Hello";

Scombined = Snumber + S$string;
Scombined2 = Snumber.S$string;
echo Scombined;

echo
;

echo Scombined?2;

The output of these statements is

2 (Sstring is evaluated as 0)
2Hello (Snumber is evaluated as a character)

Using increment statements

Often a variable is used as a counter. For instance, suppose you want to be
sure that everyone sees your company logo, so you display it three times.

You set a variable to 0. Each time that you display the logo, you add 1 to the
variable. When the value of the variable reaches 3, you know that it’s time to
stop showing the logo. The following statements show the use of a counter:

Scounter=0;
Scounter = S$Scounter + 1;
echo Scounter;

These statements would output 1. Because counters are used so often, PHP
provides shortcuts. The following statements have the same effect as the pre-
ceding statements:

Scounter=0;
Scounter++;
echo Scounter;

171

172 Partii:pup

This echo statement also outputs 1 because ++ adds 1 to the current value
of Scounter. Or you can use the following statement, which subtracts 1 from
the current value of Scounter.

Scounter--;

Sometimes you may want to do a different arithmetic operation. You can use
any of the following shortcuts:

Scounter+=2;
Scounter-=3;
Scounter*=2;
Scounter/=3;

These statements add 2 to Scounter, subtract 3 from $counter, multiply
$counter by 2, and divide $counter by 3, respectively.

Using exit

Sometimes you want the program to stop executing — just stop at some
point in the middle of the program. For instance, if the program encounters
an error, often you want it to stop rather than continue with more
statements. The exit statement stops the program. No more statements are
executed after the exit statement. The format of an exit statement is

exit ("message") ;

The message is a message that is output when the program exits. For
instance, you might use the statement

exit ("The program is exiting") ;
You can also stop the program with the die statement, as follows:
die("The program is dying") ;

The die statement is the same as the exit statement. Sometimes it’s just
more fun to say die.

Using function calls

Functions are blocks of statements that perform certain specified tasks. You can
think of functions as mini-programs or subprograms. The block of statements is
stored under a function name, and you can execute the block of statements any
place you want by calling the function by its name. (For details on how to use
functions, check out the section “Using Functions,” later in this chapter.)

Chapter 7: PHP Building Blocks for Programs 1 73

You can call a function by listing its name followed by parentheses, like this:
functionname() ;

For instance, you might have a function that gets all the names of customers
who reside in a certain state from the database and displays the names in a
list in the format Iast name, first name. You write the statements that
do these tasks and store them as a function under the name get_names.
Then when you call the function, you need to specify which state. You can
use the following statement at any location in your program to get the list of
customer names from the given state, which in this case is California:

get_names ('CA"') ;

The value 'CA" is passed to the function so it knows which state you're spec-
ifying. You can pass more than one value.

PHP provides many built-in functions. For example, in Chapter 6, I discuss a
built-in function called unset. You can uncreate a variable named $testvar
with this function call:

unset (Stestvar) ;

Using PHP Arrays

Arrays are complex variables. An array stores a group of values under a single
variable name. An array is useful for storing related values. For instance, you
can store information about a shirt (such as size, color, and cost) in a single
array named $shirtinfo. Information in an array can be handled, accessed,
and modified easily. For instance, PHP has several methods for sorting an
array. The following sections give you the lowdown on arrays.

Creating arrays

The simplest way to create an array is to assign a value to a variable with
square brackets ([1) at the end of its name. For instance, assuming that you
have not referenced $pets at any earlier point in the program, the following
statement creates an array called Spets:

Spets[1l] = "dragon";

At this point, the array named $pets has been created and has only one
value: dragon. Next, you use the following statements:

Spets[2] = "unicorn";
Spets[3] = "tiger";

174 Pparm:pup

Now the array $pets contains three values: dragon, unicorn, and tiger.

An array can be viewed as a list of key/value pairs. To get a particular value,
you specify the key in the brackets. In the preceding array, the keys are num-
bers — 1, 2, and 3. However, you can also use words for keys. For instance,
the following statements create an array of state capitals:

Scapitals['CA'] = "Sacramento";
Scapitals['TX'] = "Austin";
Scapitals['OR'] = "Salem";

You can use shortcuts rather than write separate assignment statements for
each number. One shortcut uses the following statements:

Spets[] = "dragon";
Spets[] = "unicorn";
Spets[] = "tiger";

When you create an array using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For exam-
ple, the following statement

echo "$Spets[0]";
outputs dragon.

\NG/
gg‘“ The first value in an array with a numbered index is 0 unless you deliberately

set it to a different number. One common mistake when working with arrays is
to think of the first number as 1 rather than 0.

An even better shortcut is to use the following statement:

Spets = array("dragon", "unicorn", "tiger") ;
This statement creates the same array as the preceding shortcut. It assigns
numbers as keys, starting with 0. You can use a similar statement to create
arrays with words as keys. For example, the following statement creates the

array of state capitals:

Scapitals = array("CA" => "Sacramento", "TX" => "Austin",
|IORI| :> "Salem") ;

Viewing arrays

You can echo an array value like this:

Chapter 7: PHP Building Blocks for Programs 7 75

A\

echo Scapitals['TX'];

If you include the array value in a longer echo statement enclosed by double
quotes, you may need to enclose the array value name in curly braces:

echo "The capital of Texas is {Scapitals['TX']l}
";

You can see the structure and values of any array by using a print_r or a
var_dump statement. To display the $capitals array, use one of the follow-
ing statements:

print_r(Scapitals) ;
var_dump (Scapitals) ;
This print_r statement provides the following output:

Array

(
[CA] => Sacramento
[TX] => Austin
[OR] => Salem

)

The var_dump statement provides the following output:

array (3
[n CAII
0) "Sacramento"

) "Austin"

) "Salem"

}

The print_r output shows the key and the value for each element in the
array. The var_dump output shows the data type, as well as the keys and
values.

When you display the output from print_r or var_dump on a Web page, it
displays with HTML, which means that it displays in one long line. To see the
output on the Web in the useful format that I describe here, send HTML tags
that tell the browser to display the text as received, without changing it, by
using the following statements:

echo "<pre>";
var_dump (Scapitals) ;
echo "</pre>";

176 Ppartui:pp

WMBER
@ﬁ
&

Removing values from arrays

Sometimes you need to completely remove a value from an array. For exam-
ple, suppose you have the following array:

Spets = array("dragon", "unicorn", "tiger",
"scorpion", "parrot");

This array has five values. Now you decide that you no longer want to carry
scorpions in your pet store, so you use the following statement to try to
remove scorpion from the array:

Spets[3] = "";

Although this statement sets $pets[3] to an empty string, it does not
remove the string from the array. You still have an array with five values,
with one of the five values being empty. To totally remove the item from the
array, you need to unset it with the following statement:

unset (Spets([3]);

Now your array has only four values in it. $pets[3] is totally removed. The
array now consists of four elements:

Spets[0] = dragon
Spets[1l] = unicorn
Spets[2] = tiger
Spets[4] = parrot

Sorting arrays

One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them.
Often, you want to change this order when you display an array. For example,
you may want to display the array in alphabetical order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort statement as follows:

sort (Spets) ;

This statement sorts by the values and assigns new keys that are the appro-
priate numbers. When the values are strings, the values are sorted with num-
bers first, uppercase letters next, and lowercase letters last. When the values
are numbers, the values are sorted in numerical order. Sorting an array with
mixed values — some strings, some numeric — is not recommended because
the sort can produce unexpected results.

Chapter 7: PHP Building Blocks for Programs

WING/

Consider the $pets array created in the preceding section:

Spets[0] = "dragon";
Spets[l] = "unicorn";
Spets[2] = "tiger";

After the following sort statement
sort (Spets) ;

the array becomes

Spets[0] = "dragon";
Spets[l] = "tiger";
Spets[2] = "unicorn";

If you use sort () to sort an array with words as keys, the keys are changed
to numbers, and the word keys are thrown away.

To sort arrays that have words for keys, use the asort statement. This state-
ment sorts the capitals by value but keeps the original key for each value
instead of assigning a number key. For instance, consider the state capitals
array created in the preceding section:

Scapitals['CA'] = "Sacramento";
Scapitals['TX'] = "Austin";
Scapitals['OR'] = "Salem";

After the following sort statement
asort (Scapitals) ;

the array becomes

Scapitals['TX'] = "Austin";
Scapitals['CA'] = "Sacramento";
Scapitals['OR'] = "Salem";

Notice that the keys stayed with the value when the elements were reordered.
Now the elements are in alphabetical order, and the correct state key is still
with the appropriate state capital. If the keys had been numbers, the numbers
would now be in a different order. For example, if the original array was

Scapitals[l] = "Sacramento";
Scapitals[2] = "Austin";
Scapitals[3] = "Salem";

177

178 Partii:pup

after an asort statement, the new array would be

Scapitals[2] = Austin
Scapitals[l] = Sacramento
Scapitals[3] = Salem

It’s unlikely that you want to use asort on an array with numbers as a key.

Several other sort statements sort in other ways. Table 7-3 lists all the avail-

able sort statements.

Table 7-3 Ways You Can Sort Arrays

Sort Statement

What It Does

sort (Sarrayname)

Sorts by value; assigns new num-
bers as the keys

asort (Sarrayname)

Sorts by value; keeps the same
key

rsort (Sarrayname)

Sorts by value in reverse order;
assigns new numbers as the
keys

arsort ($Sarrayname)

Sorts by value in reverse order;
keeps the same key

ksort (Sarrayname)

Sorts by key

krsort (Sarrayname)

Sorts by key in reverse order

usort (Sarrayname, functionname)

Sorts by a function (see “Using
Functions,” later in this chapter)

Getting values from arrays

You can retrieve any individual value in an array by accessing it directly.

Here’s an example:

SCAcapital = Scapitals['CA'];
echo S$CAcapital ;

The output from these statements is

Sacramento

Chapter 7: PHP Building Blocks for Programs 1 79

If you use an array element that doesn’t exist in a statement, a notice is dis-
played. (Read about notices in Chapter 6.) For example, suppose that you use
the following statement:

SCAcapital = Scapitals['CAx'];

If the array $capitals exists but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on line 9

“&N\BEI; A notice doesn’t cause the script to stop. Statements after the notice con-
& tinue to execute. But because no value has been put into $CAcapital, any
subsequent echo statements echo a blank space. You can prevent the notice
from being displayed by using the @ symbol:

@SCAcapital = Scapitals['CAx'];

You can get several values at once from an array using the 1ist statement or
all the values from an array by using the extract statement.

The 1ist statement gets values from an array and puts them into variables.
The following statements include a 1ist statement:

SshirtInfo = array ("blue", "large", 12.00);
list ($firstvalue, Ssecondvalue) = SshirtInfo;
echo S$firstvalue, "
";
echo $secondvalue, "
";

The first line creates the $shirtInfo array. The second line sets up two
variables named $firstvalue and $secondvalue and copies the first two
values in $shirtInfo into the two new variables, as if you had used the two
statements

Sfirstvalue=SshirtInfo[0];
Ssecondvalue=S$SshirtInfo[l];

The third value in $shirtInfo is not copied into a variable because the
1list statement includes only two variables. The output from the echo
statements is

blue
large

180 partui:pup

You can retrieve all the values from an array with words as keys using
extract. Each value is copied into a variable named for the key. For
instance, suppose you defined the $shirtinfo array with words for keys,
as follows:

SshirtInfo = array ("color"=>"blue", "size"=>"large",
"cost"=>12.00) ;

The following statements get all the information from $shirtInfo and
echo it:

extract (SshirtInfo) ;
echo "size is $size; color is $color; cost is Scost";

The output for these statements is

size is large; color is blue; cost is 12;

Walking through an array

You'll often want to do something to every value in an array. You might want
to echo each value, store each value in the database, or add 6 to each value
in the array. In technical talk, walking through each and every value in an
array, in order, is iteration. It is also sometimes called fraversing. Here are two
ways to walk through an array:

v Manually: Move a pointer from one array value to another

v Using foreach: Automatically walk through the array, from beginning
to end, one value at a time

Manually walking through an array

You can walk through an array manually by using a pointer. To do this,
think of your array as a list. Imagine a pointer pointing to a value in the list.
The pointer stays on a value until you move it. After you move it, it stays
there until you move it again. You can move the pointer with the following
instructions:

V¥ current (Sarrayname): Refers to the value currently under the
pointer; does not move the pointer

V¥ next (Sarrayname): Moves the pointer to the value after the current
value

Chapter 7: PHP Building Blocks for Programs 1 8 ’

V¥ previous (Sarrayname): Moves the pointer to the value before the
current pointer location

V¥ end (Sarrayname) : Moves the pointer to the last value in the array

V reset (Sarrayname): Moves the pointer to the first value in the array

The following statements manually walk through an array containing state
capitals:

Svalue = current ($Scapitals);
echo "$value
";

Svalue = next (Scapitals);
echo "Svalue
";

Svalue = next (Scapitals);
echo "$Svalue
";

Unless you moved the pointer previously, the pointer is located at the first
element when you start walking through the array. If you think that the array
pointer may have been moved earlier in the script or if your output from

the array seems to start somewhere in the middle, use the reset statement
before you start walking, as follows:

reset (Scapitals) ;

When using this method to walk through an array, you need an assignment
statement and an echo statement for every value in the array — for each of
the 50 states. The output is a list of all the state capitals.

This method gives you flexibility. You can move through the array in any
manner — not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two next statements in a row,

or whatever method is useful. However, if you want to go through the array
from beginning to end, one value at a time, PHP provides foreach, which
does exactly what you need much more efficiently. foreach is described in
the next section.

Using foreach to walk through an array

foreach walks through the array one value at a time. The current key and
value of the array can be used in the block of statements each time the block
executes. The general format is

foreach($Sarrayname as Skeyname => Svaluename)

{

block of statements;

}

182 Ppartii:pup

Fill in the following information:

v arrayname: The name of the array that you're walking through.

v keyname: The name of the variable where you want to store the key.
keyname is optional. If you leave out $keyname =>, only the value is
put into a variable that can be used in the block of statements.

v valuename: The name of the variable where you want to store the value.

For instance, the following foreach statement walks through the sample
array of state capitals and echoes a list:

Scapitals = array("CA" => "Sacramento", "TX" => "Austin",
|IORII :> "Salem") ;
ksort (Scapitals) ;
foreach(Scapitals as S$state => Scity)
{
echo "Scity, Sstate
";
}

The preceding statements give the following Web page output:
Sacramento, CA
Salem, OR
Austin, TX

You can use the following line in place of the foreach line in the previous
statements:

foreach(Scapitals as S$Scity)

When using this foreach statement, only the city is available for output. You
would then use the following echo statement:

echo "Scity
";
The output with these changes is
Sacramento
Salem
Austin
When foreach starts walking through an array, it moves the pointer to

the beginning of the array. You don’t need to reset an array before walking
through it with foreach.

Chapter 7: PHP Building Blocks for Programs 1 83

Multidimensional arrays

In the earlier sections of this chapter, I describe arrays that are a single list of
key/value pairs. However, on some occasions, you might want to store values
with more than one key. For instance, suppose you want to store these prod-
uct prices together in one variable:

v shirt, 20.00

v pants, 22.50

v blanket, 25.00

v bedspread, 50.00

v lamp, 44.00

v rug, 75.00

You can store these products in an array as follows:

SproductPrices|['shirt'] = 20.00;
SproductPrices|['pants'] = 22.50;
SproductPrices|['blanket'] = 25.00;
SproductPrices|['bedspread'] = 50.00;
SproductPrices['lamp'] = 44.00;
SproductPrices['rug'] = 75.00;

Your program can easily look through this array whenever it needs to know a
price. But suppose that you have 3,000 products. Your program would need
to look through 3,000 products to find the one with shirt or rug as the key.

Notice that the list of products and prices includes a wide variety of prod-
ucts that can be classified into groups: clothing, linens, and furniture. If you
classify the products, the program would need to look through only one clas-
sification to find the correct price. Classifying the products would be much
more efficient. You can classify the products by putting the costs in a multidi-
mensional array as follows:

SproductPrices|
SproductPrices [
SproductPrices|[
SproductPrices|
SproductPrices [
SproductPrices[

'clothing'] ['shirt']
'clothing'] ['pants']

'linens'] ['blanket']
'linens'] ['bedspread’
'furniture'] ['lamp']

'furniture']['rug']

=1 11

20.00;
22.50;
25.00;
= 50.00;
44.00;

= 75.00;

184 Pparm:pup

|
Figure 7-1:
An array of
arrays.
|

This kind of array is a multidimensional array because it’s like an array of
arrays. Figure 7-1 shows the structure of $productPrices as an array of
arrays. The figure shows that $productPrices has three key/value pairs.
The keys are clothing, linens, and furniture. The value for each key
is an array with two key/value pairs. For instance, the value for the key
clothing is an array with the two key/value pairs: shirt/20.00 and
pants/22.50.

$productPrices key value
key value
clothing shirt 20.00
pants 22.50
linens blanket 25.00
bedspread 50.00
furniture lamp 44,00
rug 75.00

$productPrices is a two-dimensional array. PHP can also understand mul-
tidimensional arrays that are four, five, six, or more levels deep. However,
my head starts to hurt if [try to comprehend an array that is more than
three levels deep. The possibility of confusion increases when the number of
dimensions increases.

You can get values from a multidimensional array by using the same pro-
cedures that you use with a one-dimensional array. For instance, you can
access a value directly with this statement:

SshirtPrice = SproductPrices['clothing']['shirt'];
You can also echo the value:

echo $productPrices|['clothing']['shirt'];
However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable

name must follow the { immediately, without a space, as follows:

echo "The price of a shirt is
\${SproductPrices|['clothing'] ['shirt']}";

|
Figure 7-2:
The Web
page out-
put for the
multidimen-
sional array.
|

Chapter 7: PHP Building Blocks for Programs 1 85

Notice the backslash (\) in front of the first dollar sign ($). The backslash
tells PHP that ¢ is a literal dollar sign and not the beginning of a variable
name. The output is

The price of a shirt is $20

You can walk through a multidimensional array by using foreach state-
ments (described in the preceding section). You need a foreach statement
for each array. One foreach statement is inside the other foreach state-
ment. Putting statements inside other statements is called nesting.

Because a two-dimensional array, such as $productPrices, contains two
arrays, it takes two foreach statements to walk through it. The following
statements get the values from the multidimensional array and output them
in an HTML table:

echo "<table border='1'>";
foreach(SproductPrices as Scategory)

{
foreach(Scategory as S$product => Sprice)
{
Sf_price = sprintf ("%01.2f", Sprice);
echo "<tr><td>$product:</td>
<td>\$Sf_price</td></tr>";
}
}

echo "</table>";

Figure 7-2 shows the Web page produced with these PHP statements.

3 Produce Prices - Mozilla Firefox

File Edit View History EBookmarks Tools Help

@ - = @ E IS} http:ff\Ucalhust,fmystuffp’phped4fts|‘| B] "| |\]

shirt: £20.00
pants: £22.50
blanket: 25 00
bedspread: [£50.00
latrp: £44.00
g £75.00

Dane

186 Partin:pup

Here’s how the program interprets these statements:

1.
2.

N O U1

10.

11.

Outputs the table tag.

Gets the first key/value pair in the $SproductPrices array and stores
the value in the variable scategory. The value is an array.

. Gets the first key/value pair in the $category array. Stores the key in

Sproduct and stores the value in Sprice.

. Formats the value in $price into the correct format for money.
. Echoes one table row for the product and its price.
. Goes to the next key/value pair in the $category array.

. Formats the price and echoes the next table row for the product and its

price.

. Because there are no more key/value pairs in $category, the inner

foreach statement ends.

. Goes to the next key/value pair in the outer foreach statement. Puts

the next value in $Scategory, which is an array.

Repeats Steps 2-9 until the last key/value pair in the last $Scategory
array is reached. The inner foreach statement ends. The outer
foreach statement ends.

Outputs the /table tag to end the table.

In other words, the outer foreach starts with the first key/value pair in the
array. The key is clothing, and the value of this pair is an array that is put
into the variable Scategory. The inner foreach then walks through the array
in $category. When it reaches the last key/value pair in Scategory, it ends.
The program is then back in the outer loop, which goes on to the second key/
value pair . . . and so on until the outer foreach reaches the end of the array.

Useful Conditional Statements

A conditional statement executes a block of statements only when certain con-
ditions are met. Here are two useful types of conditional statements:

v if statement: Sets up a condition and tests it. If the condition is true, a

block of statements is executed.

V¥ switch statement: Sets up a list of alternative conditions. Tests for the

true condition and executes the appropriate block of statements.

Chapter 7: PHP Building Blocks for Programs 1 8 7

[describe these statements in more detail in the following two sections.

Using if statements

An if statement asks whether certain conditions exist. A block of statements
executes depending on which conditions are met. The general format of an
if conditional statement is

if(condition ...)
{

block of statements

}
elseif(condition ...)
{

block of statements

}

else

{
block of statements
}

The if statement consists of three sections:

v if: This section is required. It tests a condition.

e [f condition is true: The block of statements is executed. After the
statements are executed, the program moves to the next instruc-
tion following the conditional statement; if the conditional state-
ment contains any elseif or else sections, the program skips
over them.

e [f condition is not true: The block of statements is not executed. The
program skips to the next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

v elseif: This section is optional. It tests a condition. You can use more
than one elseif section if you want.

e [f condition is true: The block of statements is executed. After
executing the block of statements, the program goes to the next
instruction following the conditional statement; if the i f statement
contains any additional elseif sections or an else section, the
program skips over them.

e [f condition is not true: The block of statements is not executed. The
program skips to the next instruction, which can be an elseif, an
else, or the next instruction after the if conditional statement.

188 partm:pup

v else: This section is optional. Only one else section is allowed. This
section does not test a condition; rather, it executes the block of state-
ments. If the program has entered this section, it means that the if sec-
tion and all the elsei f sections are not true.

Each section of the i f conditional statement tests a condition that consists
of one or more comparisons. A comparison asks a question that can be true
or false. Some conditions are

sa == 1;
Sa < Sb
Sc != "Hello"

The first comparison asks whether $a is equal to 1; the second comparison
asks whether $a is smaller than $b; the third comparison asks whether sc is
not equal to "Hello". You can use two or more comparisons in a condition
by connecting the comparisons with and, or, or xor. I discuss comparing
values and using more than one comparison in detail in Chapter 6.

The following example uses all three sections of the if conditional state-
ment. Suppose that you have German, French, Italian, and English versions of
your product catalog. You want your program to display the correct language
version, based on where the customer lives. The following statements set a
variable to the correct catalog version (depending on the country where the
customer lives) and set a message in the correct language. You can then dis-
play a message in the appropriate language.

if (Scountry == "Germany")
{
Sversion = "German";
Smessage = "Sie sehen unseren Katalog auf Deutsch";
}
elseif (Scountry == ,France")
{
Sversion = ,French";
Smessage = "Vous verrez notre catalogue en francais";
}
elseif (Scountry == ,Italy")
{
Sversion = ,Italian";
Smessage = ,Vedrete i1l nostro catalogo in Italiano";
}
else
{
Sversion = ,English";
Smessage = ,You will see our catalog in English";
}

echo "Smessage
";

A\

Chapter 7: PHP Building Blocks for Programs 1 89

The if conditional statement proceeds as follows:

1. Compares the variable $country to "Germany".

If they’re the same, Sversion is set to "German", Smessage is set in
German, and the program skips to echo. If Scountry does not equal
Germany, Sversion and Smessage are not set, and the program skips
to the first elseif section.

2. Compares the variable $country to "France".

If they’re the same, $version and $Smessage are set, and the program
skips to the echo statement. If Scountry does not equal France,
$version and $message are not set, and the program skips to the
second elseif section.

3. Compares the variable $country to "Italy".

If they’re the same, Sversionis setto "Italian", and the program skips
to the echo statement. If $Scountry does not equal Italy, Sversion and
$message are not set, and the program skips to the else section.

4. $version is set to English, and $message is set in English.
The program continues to the echo statement.
Notice that only the message is echoed in this example. However, the vari-

able $version is stored because the version is useful information that can
be used later in the program.

When the block to be executed by any section of the i f conditional statement
contains only one statement, the curly braces are not needed. For instance, if
the preceding example had only one statement in the blocks

if (Scountry == "France")
{

Sversion = "French";
}

you could write it as follows:

if (Scountry == "France")
Sversion = "French";

This shortcut can save some typing, but it can lead to confusion when you
use several if statements.

You can have an if conditional statement inside another if conditional

statement. Putting one statement inside another is nesting. For instance, sup-
pose that you need to contact all your customers who live in Idaho. You plan
to send e-mail to those who have an e-mail address and send a letter to those

190 Ppartui:prp

who don’t have an e-mail address. You can identify the groups of customers
by using the following nested if statements:

if(ScustState == "ID")
{
if($EmailAadd != "")
{

ScontactMethod = "email";
}
else
{
ScontactMethod = "letter";
}
}
else
{
ScontactMethod = "none needed";

}

These statements first check to see whether the customer lives in Idaho.

If the customer does live in Idaho, the program tests for an e-mail address.
If the e-mail address is not blank, the contact method is set to email. If the
e-mail address is blank, the contact method is 1etter. If the customer does
not live in Idaho, the else section sets the contact method to indicate that
the customer won’t be contacted at all.

Using switch statements

For most situations, the i f conditional statement works best. Sometimes,

however, you have a list of conditions and want to execute different state-
ments for each of the conditions. For instance, suppose that your program
computes sales tax. How do you handle the different state sales tax rates?

The switch statement was designed for such situations.

The switch statement tests the value of one variable and executes the block
of statements for the matching value of the variable. The general format is

switch (Svariablename)
{
case value :
block of statements;
break;
case value :
block of statements;
break;
default:
block of statements;
break;

NG/
s>

\\3

Chapter 7: PHP Building Blocks for Programs 1 9 ’

The switch statement tests the value of Svariablename The program
then skips to the case section for that value and executes statements until
it reaches a break statement or the end of the switch statement. If there

is no case section for the value of $variablename, the program executes
the default section. You can use as many case sections as you need. The
default section is optional. If you use a default section, it’s customary to
put the default section at the end, but it can go anywhere.

The following statements set the sales tax rate for different states:

switch (ScustState)
{
case "OR"
Ssalestaxrate = 0;
break;
case "CA"
Ssalestaxrate
break;
default:
Ssalestaxrate = .5;
break;

Il
=
o

}

Ssalestax = SorderTotalCost * Ssalestaxrate;

In this case, the tax rate for Oregon is 0, the tax rate for California is 100
percent, and the tax rate for all the other states is 50 percent. The switch
statement looks at the value of ScustState and skips to the section

that matches the value. For instance, if ScustState is TX, the program
executes the default section and sets $salestaxrate to . 5. After the
switch statement, the program computes $salestax at .5 times the cost
of the order.

The break statements are essential in the case section. If a case section
does not include a break statement, the program does not stop executing at
the end of the case section. The program continues executing statements
past the end of the case section, on to the next case section, and continues
until it reaches a break statement in a later case section or the end of the
switch statement.

The last case section in a switch statement doesn’t actually require a break
statement. You can leave it out, but it’s a good idea to include it for clarity.

Using Loops

Loops, which are used frequently in programs, set up a block of statements
that repeat. Sometimes, the loop repeats a specified number of times. For
instance, a loop to echo all the state capitals needs to repeat 50 times.

192 Pparti:php

Sometimes, the loop repeats until a certain condition exists. For instance, a
loop that displays product information for all the products needs to repeat
until it has displayed all the products, regardless of how many products
there are. Here are three types of loops:

v Basic for loop: Sets up a counter; repeats a block of statements until
the counter reaches a specified number

v while loop: Sets up a condition; checks the condition; and if it’s true,
repeats a block of statements

v do. .while loop: Sets up a condition; executes a block of statements;
checks the condition; if the condition is true, repeats the block of
statements

[describe each of these loops in detail in the following few sections.

Using for loops

The most basic for loops are based on a counter. You set the beginning
value for the counter, set the ending value, and set how the counter is incre-
mented. The general format is

for (startingvalue; endingcondition; increment)

{

block of statements;

}
Fill in the following values:

V¥ startingvalue: A statement that sets up a variable to be your counter
and sets it to your starting value. For instance, the statement $i=1; sets
$1 as the counter variable and sets it equal to 1. Frequently, the counter
variable is started at 0 or 1. The starting value can be a combination of
numbers (2 + 2) or a variable.

V¥ endingcondition: A statement that sets your ending value. As long as
this statement is true, the block of statements keeps repeating. When
this statement is not true, the loop ends. For instance, the statement
$1<10; sets the ending value for the loop to 10. When $1 is equal to 10,
the statement is no longer true (because $1i is no longer less than 10),
and the loop stops repeating. The statement can include variables, such
as Si<ssize;.

v increment: A statement that increments your counter. For instance,
the statement $i++; adds 1 to your counter at the end of each block of
statements. You can use other increment statements, such as $I+=1; or

Si--;.

Chapter 7: PHP Building Blocks for Programs 1 93

The basic for loop sets up a variable — for example, a variable called $i, —
that is a counter. This variable has a value during each loop. The variable

$1i can be used in the block of statements that is repeating. For instance, the
following simple loop displays Hello World! three times:

for ($i=1;%$1<=3;381i++)
{
echo "Si. Hello World!
";
}
3
PHP doesn’t care whether the statements in the block are indented. However,
indenting the blocks makes it much easier for you to understand the program.

The output from these statements is

1. Hello World!
2. Hello World!
3. Hello World!

for loops are particularly useful for looping through an array. Suppose that
you have an array of customer names and want to display them all. You can
do this easily with a loop:

for ($1=0;%$1<100; Si++)
{
echo "ScustomerNames[$i]
";

}

The output displays a Web page with a list of all customer names, one on
each line. In this case, you know that you have 100 customer names. But sup-
pose that you don’t know how many customers are in this list. You can ask
PHP how many values are in the array and use that value in your for loop.
For example, you can use the following statements:

for($1i=0;Si<sizeof (ScustomerNames) ; Si++)
{
echo "$ScustomerNames[$i]
";

}

Notice that the ending value is sizeof (ScustomerNames). This statement
finds out the number of values in the array and uses that number. That way,
your loop repeats exactly the number of times that there are values in the
array.

\NG/
v““ The first value in an array with a numbered index is 0 unless you deliberately
set it to a different number. One common mistake when working with arrays is

to think of the first number as 1 rather than 0.

194 rparm:pup
Using while loops

A while loop continues repeating as long as certain conditions are true. The
loop works as follows:
1. You set up a condition.
2. The condition is tested at the top of each loop.
3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The general format of a while loop is

while(condition)
{
block of statements

}
A condition is any expression that can be found to be true or false.
Comparisons, such as the following, are often used as conditions. (For

detailed information on using comparisons, see Chapter 6.)

Stest <= 10

Stestl == Stest2
Sa == "yes" and S$b != "yes"
Sname != "Smith"

As long as the condition is found to be true, the loop repeats. When the con-
dition tests false, the loop stops. The following statements set up awhile
loop that looks through an array for a customer named Smi th:

Scustomers = array("Huang", "Smith", "Jones");
Stestvar = "no";
Sk = 0;
while($Stestvar != "yes")
{
if (Scustomers[sk] == "Smith")
{
Stestvar = "yes";
echo "Smith
";
}
else
{
echo "Scustomers[$k], not Smith
";
}
$k++;

}

Chapter 7: PHP Building Blocks for Programs 1 95

These statements display the following on a Web page:

Huang, not Smith
Smith

The program executes the previous statements as follows:

1.

10.

11.
12.
13.

Sets the variables before starting the loop.

Scustomers (an array with three values), Stestvar (a test variable set
to "no"), and $k (a counter variable set to 0).

. Starts the loop by testing whether Stestvar != "yes" is true.

Because stestvar is set to "no", the statement is true, so the loop
continues.

. Tests the if statement.

Is $customers[$k] == "Smith" true? At this point, $k is 0, so

the program checks $customers[0]. Because $Scustomers[0] is
"Huang", the statement is not true. The statements in the i f block are
not executed, so the program skips to the else statement.

. Executes the statement in the else block.

The else block outputs the line "Huang, not Smith". This is the first
line of the output.

. Adds 1 to $k, which now becomes equal to 1.
. Reaches the bottom of the loop.
. Goes to the top of the loop.

. Tests the condition again.

Is Stestvar != "yes" true? Because $testvar has not been changed
and is still set to "no", it is true, so the loop continues.

. Tests the if statement.

Is $customers[$k] == "Smith" true? At this point, sk is 1, so
the program checks Scustomers[1]. Because $Scustomers[1] is
"Smith", the statement is true. So the loop enters the i f block.

Executes the statements in the if block.

Sets Stestvar to "yes". Outputs "Smith". This is the second line of
the output.

Adds 1 to $k which now becomes equal to 2.
Reaches the bottom of the loop.
Goes to the top of the loop.

196 rartii:prp

14. Tests the condition again.

Is Stestvar != "yes" true? Because $testvar has been changed
and is now set to "yes", it is not true. The loop stops.

It’s possible to write a while loop that is infinite — that is, a loop in which
the condition is always true. If the condition never becomes false, the loop
never ends. For a discussion of infinite loops, see the “Infinite loops” section,
later in this chapter.

Using do..while loops

A do. .while loop is similar to a while loop. A do..while loop continues
repeating as long as certain conditions are true. You set up a condition. The
condition is tested at the bottom of each loop. If the condition is true, the
loop repeats. When the condition is not true, the loop stops.

The general format for a do. .while loop is

do
{

block of statements
} while(condition);

The following statements set up a loop that looks for the customer named
Smith. This program does the same thing as a program in the preceding
section using a while loop:

Scustomers = array("Huang", "Smith", "Jones");
Stestvar = "no";
sk = 0;
do
{

if (Scustomers[s$k] == "Smith")

{

Stestvar = "yes";

echo "Smith
";
}

else

{
echo "Scustomers[$k], not Smith
";

}
Sk++;
} while (Stestvar != "yes");

The output of these statements in a browser is

Huang, not Smith
Smith

Chapter 7: PHP Building Blocks for Programs 1 9 7

This is the same output shown for the while loop example. The difference
between a while loop and a do. .while loop is where the condition is
checked. In a while loop, the condition is checked at the top of the loop.
Therefore, the loop never executes if the condition is never true. In the do. .
while loop, the condition is checked at the bottom of the loop. Therefore,
the loop always executes at least once even if the condition is never true.

For instance, in the preceding loop that checks for the name Smi th, suppose
the original condition is set to yes, instead of no, by using this statement:

Stestvar = "yes";

The condition would test false from the beginning. It would never be true. In
awhile loop, there would be no output. The statement block would never
run. However, in a do. .while loop, the statement block would run once
before the condition was tested. Thus, the while loop would produce no
output, but the do. .while loop would produce the following output:

Huang, not Smith

The do. .while loop produces one line of output before the condition is tested.
It does not produce the second line of output because the condition tests false.

Infinite loops

You can easily set up loops so that they never stop. These are infinite loops.
They repeat forever. However, seldom does anyone create an infinite loop inten-
tionally. It’s usually a mistake in the programming. For instance, a slight change
to the program that sets up a while loop can make it into an infinite loop.

Here’s the program shown in the “Using while loops” section, earlier in this
chapter:

Scustomers = array ("Huang", "Smith", "Jones");
Stestvar = "no";
sk = 0;
while (Stestvar != "yes")
{

if (Scustomers[Sk] == "Smith")

{

Stestvar = "yes";

echo "Smith
";
}
else
{
echo "Scustomers[$k], not Smith
";
}
Sk++;
}

198 Parti:php

A\

Here’s the program with a slight change:

Scustomers = array ("Huang", "Smith", "Jones");
Stestvar = "no";
while (Stestvar != "yes")
{
sk = 0;
if (Scustomers[Sk] == "Smith")
{
Stestvar = "yes";
echo "Smith
";
}

else

{
echo "Scustomers[$k], not Smith
";

}
Sk++;
}

The small change is moving the statement $k = 0; from outside the loop to
inside the loop. This small change makes it into an endless loop. The output
of this changed program is

Huang, not Smith
Huang, not Smith
Huang, not Smith
Huang, not Smith

This loop repeats forever. Every time the loop runs, it resets $k to 0. Then
it gets Scustomers [0] and echoes it. At the end of the loop, $k is incre-
mented to 1. However, when the loop starts again, $k is set back to 0.
Consequently, only the first value in the array, Huang, is ever read. The loop
never gets to the name Smith, and Stestvar is never set to "yes". The
loop is endless.

Don’t be embarrassed if you write an infinite loop. I guarantee that the best
programming guru in the world has written many infinite loops. It’s not a big
deal. If you're testing a program and get output in your Web page repeating
endlessly, it will stop by itself in a short time. The default time is 30 seconds,
but the timeout period may have been changed by the PHP administrator.
You can also click the Stop button on your browser to stop the display in
your browser. Then you can figure out why the loop is repeating endlessly
and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean a double equal sign (==). The single equal sign stores
avalue in a variable; the double equal sign tests whether two values are equal.
If you write the following condition with a single equal sign:

while (Stestvar = "yes")

Chapter 7: PHP Building Blocks for Programs 1 99

it is always true. The condition simply sets Stestvar equal to "yes". This is
not a question that can be false. What you probably meant to write is this:

while ($testvar == "yes")

This is a question asking whether Stestvar is equal to "yes", which can be
answered either true or false.

You can bulletproof your programs against this error by changing the condi-
tionto "yes" == $testvar. It’s less logical to read but protects against the
single-equal-sign problem. If you use a single equal sign instead of a double
equal sign in this condition, you get an error, and your program fails to run.

Another common mistake is to leave out the statement that increments the
counter. For instance, in the program earlier in this section, if you leave out
the statement $k++;, $k is always 0, and the result is an infinite loop.

Breaking out of a loop

Sometimes you want your program to break out of a loop. PHP provides two
statements for this purpose:

v break: Breaks completely out of a loop and continues with the program
statements after the loop.

v continue: Skips to the end of the loop where the condition is tested. If
the condition tests positive, the program continues from the top of the
loop.

break and continue are usually used in a conditional statement. break, in
particular, is used most often in switch statements, as I discuss earlier in
the chapter.

The following two sets of statements show the difference between continue
and break. The first statements use the break statement:

Scounter = 0;
while(Scounter < 5)
{
Scounter++;
if ($Scounter ==)
{
echo "break
";
break;
}
echo "End of while loop: counter=Scounter
";

}
echo "After the break loop
";

200 rartui:pup

The following statements use the continue statement:

Scounter = 0;
while($Scounter < 5)
{
Scounter++;
if(Scounter == 3)
{
echo "continue
";
continue;

}

echo "End of while loop: counter=$counter
";

}

echo "After the continue loop
";

These statements build two loops that are the same, except the first uses
break and the second uses continue. The output from the first set of state-
ments that uses the break statement displays in your browser as follows:

End of while loop: counter=1
End of while loop: counter=2
break

After the break loop

The output from the second set of statements, with the cont inue statement, is

End of while loop: counter=1
End of while loop: counter=2
continue

End of while loop: counter=4
End of while loop: counter=5
After the continue loop

The first loop ends at the break statement. It stops looping and jumps imme-
diately to the statement after the loop. The second loop does not end at the
continue statement. It just stops the third repeat of the loop and jumps
back up to the top of the loop. It then finishes the loop, with the fourth and
fifth repeats, before it goes to the statement after the loop.

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

Stestdinfinity++;
if(Stestdinfinity > 100)
{
break;
}

Chapter 7: PHP Building Blocks for Programs 20 ’

If you're sure that your loop should never repeat more than 100 times, these
statements will stop the loop if it becomes endless. Use whatever number
seems reasonable for the loop that you're building.

Using Functions

Applications often perform the same task at different points in the program
or in different programs. For instance, your application might display the
company logo on several Web pages or in different parts of the program.
Suppose that you use the following statements to display the company logo:

echo "<div style='float: left'>
<hr style='width: 50'>","\n";
echo "<img src='/images/logo.jpg' width='50"
height='50" />","\n";
echo "<hr style='width: 50' /></div>","\n";

You can create a function that contains the preceding statements and name
it display_logo. Then whenever the program needs to display the logo,
you can just call the function display_1ogo with a simple function call, as
follows:

display_logo () ;

Notice the parentheses after the function name. These are required in a func-
tion call because they tell PHP that this is a function.

Using a function offers several advantages:

v Less typing: You have to type the statements only once — in the func-
tion. Forever after, you just use the function call and never have to type
the statements again.

v+~ Easier to read: The line display_logo () is much easier for a person
to understand at a glance.

1 Fewer errors: After you have written your function and fixed all its prob-
lems, it runs correctly wherever you use it.

v Easier to change: If you decide to change how the task is performed,
you need to change it in only one place. You just change the function
instead of finding all the different places in your program where you
performed the task and changing the code in all those places. For
instance, suppose that you changed the name of the graphics file that
holds the company logo. You just change the filename in one place —
the function — and it works correctly everywhere.

202 rartin:pup

You can create a function by putting the code into a function block. The
general format is

function functionname ()
{
block of statements;
return;

}

For instance, you create the function to display the company logo with the
following statements:

function display logo ()
{
echo "<div style='float: left'>
<hr style='width: 50'>","\n";
echo "<img src='/images/logo.jpg' width='50"
height='50"' />","\n";
echo "<hr style='width: 50' /></div>","\n";
return;

}

The return statement stops the function and returns to the main program.
The return statement at the end of the function is not required, but it makes
the function easier to understand. It’s often used for a conditional end to a
function.

Suppose that your function displays an electronics catalog. You might use
the following statement at the beginning of the function:

if (Sage < 13)
return;

If the customer’s age is less than 13, the function stops, and the electronics
catalog isn’t displayed.

You can put functions anywhere in the program, but the usual practice is to
put all the functions at the beginning or the end of the program file. Functions
that you plan to use in more than one program can be in a separate file. Each
program accesses the functions from the external file. For more on organizing
applications into files and accessing separate files, see Chapter 10.

Notice that the sample function is quite simple. It doesn’t use variables, and
it doesn’t share any information with the main program. It just performs an
independent task when called. You can use variables in functions and pass
information between the function and the main program as long as you know

Chapter 7: PHP Building Blocks for Programs 203

the rules and limitations. The remaining sections in this chapter explain how
to use variables and pass values.

Using variables in functions

You can create and use variables that are local to the function. That is, you
can create and use a variable inside your function. However, the variable
isn’t available outside the function; it’s not available to the main program.
You can make the variable available at any location in the program by using a
special statement called global. For instance, the following function creates
a variable:

function format_name ()

{

Sfirst_name = "Goliath";

Slast_name = "Smith";

Sname = $last_name.", ".S$first_name;
return;

}
format_name () ;
echo "Sname";

These statements produce no output. In the echo statement, $name doesn’t
contain any value. The variable $name was created inside the function, so it
doesn’t exist outside the function.

To create a variable inside a function that does exist outside the function,
you use the global statement. The following statements contain the same
function with a global statement added:

function format_name ()

{

Sfirst_name = "Goliath";

Slast_name = "Smith";

global Sname;

Sname = Slast_name.", ".Sfirst_name;
return;

}
format_name () ;
echo "Sname";

The program now echoes this:

Smith, Goliath

204 Par:pup

The global statement makes the variable available at any location in the
program. You must make the variable global before you can use it. If the
global statement follows the $name assignment statement, the program
does not produce any output.

The same rules apply when you're using a variable created in the main pro-
gram. You can’t use a variable in a function that was created outside the
function unless the variable is global, as shown in the following statements:

Sfirst_name = "Goliath";
Slast_name = "Smith";
function format_name ()

{

global S$first_name, S$Slast_name;

Sname = Slast_name.", ".Sfirst_name;
echo "Sname";
return;

}

format_name () ;

If you don’t use the global statement, $last_name and $first_name
inside the function are different variables, created when you name them.
They have no values. The program would produce no output without the
global statement.

Passing values between a function
and the main program

You can pass values into the function and receive values from the function.
For instance, you might write a function to add the correct sales tax to an
order. The function would need to know the cost of the order and which state
the customer resides in. The function would need to send back the amount of
the sales tax.

Passing values to a function

You can pass values to a function by putting the values between the paren-
theses when you call the function, as follows:

functionname (value, value, ...);

Chapter 7: PHP Building Blocks for Programs 205

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variable names for the values that
it’s expecting, as follows:

function functionname ($Svarnamel, Svarname2, ...)
{

statements

return;

}
For example, the following function computes the sales tax:

function compute_salestax (Samount, ScustState)
{
switch (ScustState)
{
case "OR"
Ssalestaxrate = 0;
break;
case "CA"
Ssalestaxrate = 1.0;
break;
default:
Ssalestaxrate = .5;
break;

}

Ssalestax = Samount * Ssalestaxrate;
echo "$salestax
";
return;

}

Scost = 2000.00;

ScustState = "CA";
compute_salestax (Scost, ScustState) ;

The first line shows that the function expects two values, as follows:
function compute_salestax (Samount, ScustState)

The last line is the function call, which passes two values to the function
compute_salestax, as it expects. The amount of the order and the state
in which the customer resides are passed. The output from this program is
2000 because the tax rate for California is 100 percent.

206

Part lll: PHP

\NG/
&“Q‘“

You can pass as many values as you need to. Values can be variables or
values, including computed values. The following function calls are valid:

compute_salestax (2000, "CA") ;
compute_salestax(2*1000,"") ;
compute_salestax (2000, "C"."A") ;

Values can be passed in an array. The function receives the variable as an
array. For instance, the following statements pass an array:

Sarrayofnumbers = array(100, 200);
addnumbers (Sarrayofnumbers) ;

The function receives the entire array. For instance, suppose the function
starts with the following statement:

function addnumbers (Snumbers)

The variable $Snumbers is an array. The function can include statements
such as

Stotal = Snumbers([0] + Snumbers[1l];

The values passed are passed by position. That is, the first value in the list
that you pass is used as the first value in the list that the function expects, the
second is used for the second, and so forth. If your values aren’t in the same
order, the function uses the wrong value when performing the task. For
instance, for compute_salestax, you might call compute_salestax pass-
ing values in the wrong order:

compute_salestax ($ScustState, SorderCost) ;

The function uses the state as the cost of the order, which it sets to 0
because the value passed is a string. It sets the state to the number in
$orderCost, which wouldn’t match any of its categories. The output
would be 0.

If you don’t send enough values, the function sets the missing value to an
empty string for a string variable or to 0 for a number. If you send too many
values, the function ignores the extra values.

If you pass the wrong number of values to a function, you might get a warning
message, depending on the error message level that PHP is set to:

Warning: Missing argument 2 for compute_salestax() in /
test7.php on line 5

Chapter 7: PHP Building Blocks for Programs 20 7

For an explanation of warning messages, check out Chapter 6.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function by assigning a default value for the
value(s) that it is expecting, as follows:

function add_2_numbers (Snuml=1, Snum2=1)
{

Stotal = Snuml + Snum2;

echo Stotal;

return;

}

If one or both values are not passed, the function uses the assigned defaults.
But if a value is passed, it is used instead of the default. For example, you
could use one of the following calls:

add_2_numbers (2, 2) ;
add_2_numbers (2) ;
add_2_numbers () ;

The results, in consecutive order, are as follows:

Stotal = 4
Stotal = 3
Stotal = 2

Getting a value from a function

When you call a function, you can pass values as described in the previous
section. The function can also pass a value back to the program that called
it, using the return statement. The program can store the value in a vari-
able or use the value directly, such as using it in a conditional statement. The
return statement also returns control to the main program; that is, it stops
the function.

The general format of the return statement is
return value;

For instance, in the tax program from the preceding section, I echo the sales
tax by using the following statements:

Ssalestax = Samount * Ssalestaxrate;
echo "$Ssalestax
";

208 rarti:pup

a\\J

[could return the sales tax to the main program, rather than echoing it, by
using the following statement:

Ssalestax = Samount * S$salestaxrate;
return S$salestax;

In fact, I could use a shortcut and send it back to the main program with one
statement:

return Samount * S$salestaxrate;

The return statement sends the salestax back to the main program and
ends the function. The main program can use the value in any of the usual
ways. The following statements use the function call in valid ways:

Ssalestax = compute_salestax(Scost, ScustState) ;
Stotalcost = Scost + compute_salestax(Scost, ScustState) ;

if (compute_salestax(Scost, ScustState) > 100000.00)
Secho "Thank you very, very, very much";

foreach ($ScustomerOrder as S$Samount)

{
Stotal = Samount +
compute_salestax (Samount, ScustState) ;
echo "Your total is Stotal";

}

A return statement can return only one value. However, the value returned
can be an array, so you can actually return many values from a function.

You can use return statements in a conditional statement to return different
values for different conditions. For example, the following function returns
one of two different strings:

function compare_values (Svaluel, Svalue2)

{
if (Svaluel < Svalue2)

{

return "less than";

}

else

{

return "not less than";

}

Chapter 7: PHP Building Blocks for Programs 209

A\

Although the function contains two return statements, only one is going to
be executed, depending on the values in $valuel and $value?2.

Using built-in functions

PHP’s many built-in functions are one reason why PHP is so powerful and
useful for Web pages. The functions included with PHP are normal functions.
They are no different than functions that you create yourself. It’s just that
PHP already did all the work for you.

[discuss some of the built-in functions in this chapter and the earlier chap-
ters. For example, see Chapter 6 for more on the functions unset and
number_format. Some useful functions for interacting with your MySQL data-
base are discussed in Chapter 8. Other useful functions are listed in Part V.

And all the functions are listed and described in the PHP documentation on
the PHP Web site at www.php.net/docs.php.

210 partm:pup

Chapter 8
Data In, Data Qut

In This Chapter

Connecting to the database

Getting information from the database

Using HTML forms with PHP

Getting data from an HTML form

Processing the information that users type into HTML forms
Storing data in the database

Using functions to move data into and out of the database

p HP and MySQL work well together. This dynamic partnership is what
makes PHP and MySQL so attractive for Web database application
development. Whether you have a database full of information that you want
to make available to users (such as a product catalog) or a database wait-
ing to be filled up by users (for example, a membership database), PHP and
MySQL work together to implement your application.

One of PHP’s strongest features is its ability to interact with databases. It pro-
vides functions that make communicating with MySQL extremely simple. You
use PHP functions to send SQL queries to the database. You don’t need to
know the details of communicating with MySQL; PHP handles the details. You
only need to know the SQL queries and how to use the PHP functions.

In previous chapters, I describe the tools that you use to build your Web
database application. You find out how to build SQL queries in Chapter 4
and how to construct and use the building blocks of the PHP language in
Chapters 6 and 7. In this chapter, you find out how to use these tools for the
specific tasks that a Web database application needs to perform.

212 ratui:pup
PHP and MySOL Functions

You use built-in PHP functions to interact with MySQL. These functions con-
nect to the MySQL server, select the correct database, send SQL queries,

and perform other communication with MySQL databases. You don’t need to
know the details of interacting with the database because PHP handles all the
details. You need to know only how to use the functions.

As of PHP 5, PHP offers two sets of functions for communicating with MySQL:
one set of functions (the mysgli functions) for use with MySQL 4.1 or later
and another set of functions (the mysgl functions) for use with MySQL 4.0
and earlier versions. Most Web hosts offer MySQL 5.0 or 5.1. If they offer only
earlier versions of MySQL, you might want to contact the folks in tech sup-
port to see when they’re going to provide a more recent version of MySQL.

If you're using PHP 5 on your Web host, the mysgli functions should be
available. If only the mysqgl functions are available, contact tech support at
your Web host and ask someone to activate the mysqgli functions. There is
no reason to continue to use mysqgl functions when using PHP 5 or later.

On your local computer, if you installed your software using XAMPP, as sug-
gested in this book and described in Appendix A, you have PHP 5 running
on your computer and both the mysgl and mysgli functions are available.
You can change to PHP 4 using the XAMPP main page, but there should be
no reason to do this. Unless you need to work on an existing Web site, writ-
ten in PHP 4, you should not use PHP 4, which is now obsolete and no longer
updated by the PHP developers. For learning PHP and developing any new
Web site, you should use PHP 5, or PHP 6 when it is released.

If you're using PHP 4 for some reason, the mysqgli functions are not available.
Instead, you use the mysqgl functions, even with later versions of MySQL. The
mysqgl functions can communicate with the later versions of MySQL, but they
cannot access some of the new features added in the later versions of MySQL.
The mysqgl functions are activated automatically in PHP 4.

Throughout the book, my examples and programs use MySQL 5.1 and use the
mysqgli functions to communicate with MySQL. The PHP functions for use
with MySQL 5.1 have the following general format:

mysqgli_function(value,value, ...);

The i in the function name stands for improved (MySQL Improved). The
second part of the function name is specific to the function, usually a word

that describes what the function does. In addition, the function requires one or
more values to be passed, specifying things such as the database connection or
the data location. Following are two of the functions discussed in this chapter:

Chapter 8: Data In, Data Out 2 ’3

mysqgli_connect (connection information) ;
mysqgli_query ($Scxn, "SQL statement") ;

If you're using PHP 4 or are communicating with MySQL 4.0 or earlier, the
corresponding mysqgl functions are

mysqgl_connect (connection information) ;
mysgl_query ("SQL statement") ;

The functionality and syntax of the functions are similar but not identical for
all functions. If you need to use the mysqgl functions rather than the mysqgl i
functions, you need to edit the programs in this book, replacing the mysqgli
functions with mysqgl functions. Table 8-1 shows the equivalent mysgl func-
tions and their syntax.

Table 8-1 Syntax for mysql and mysqli Functions
mysqli Function mysql Function
mysgli_connect ($Shost, mysqgl_
Suser, Spasswd, Sdbname) connect (Shost, Suser, Spasswd)
followed by
mysgl_select_db ($dbname)
mysgli_errno (Scxn) mysqgl_errno () or
mysgl_errno ($Scxn)
mysqgli_error ($Scxn) mysqgl_error () or
mysgl_error ($Scxn)

mysqgli_fetch_array
(Sresult)

mysqgl_fetch_array(Sresult)

mysqgli_fetch_assoc
(Sresult)

mysqgl_fetch_assoc(Sresult)

mysqgli_fetch_row
(Sresult)

mysqgl_fetch _row(Sresult)

mysgli_insert_id($Scxn)

mysqgl_insert_id(Scxn)

mysgli_num_rows
(Sresult)

mysgl_num_rows (Sresult)

mysqgli_
query ($cxn, $sqgl)

mysqgl_query ($Ssqgl) or
mysqgl_query ($Ssqgl, $cxn)

mysqgli_select_
db (Scxn, $dbname)

mysqgl_select_db ($Sdbname)

mysqgli_real_ escape_
string (Scxn, $data)

mysgl_real_escape_
string($data)

214 rparm:pup

Making a Connection

Before you can store any data or get any data, you need to connect to the
database. The database might be on the same computer with your PHP pro-
grams, or it might be on a different computer. You don’t need to know the
details of connecting to the database because PHP handles all the details. All
you need to know is the name and location of the database. Think of a data-
base connection in the same way that you think of a telephone connection.
You don’t need to know the details about how the connection is made — that
is, how your words move from your telephone to another telephone. You
need to know only the area code and phone number. The phone company
handles the details.

After connecting to the database, you send SQL queries to the MySQL data-
base by using a PHP function designed for this purpose. You can send as
many queries as you need. The connection remains open until you close it
or the program ends. Similarly, in a telephone conversation, the connection
remains open until you terminate it by hanging up the phone.

Connecting to the MySQL server

The first step in communicating with your MySQL database is connecting

to the MySQL server. To connect to the server, you need to know the name
of the computer where the database is located, the name of your MySQL
account, and the password to your MySQL account. To open the connection,
use the mysgli_connect function as follows:

Scxn=mysqgli_connect ("host", "acct", "password", "dbname")
or die ("message") ;

Fill in the following information:

v host: The name of the computer where MySQL is installed. On your
local computer, it’s 1ocalhost. Your Web host provides you with this
information, which may be 1ocalhost or may be another name. If you're
developing on a company computer, your IT staff provides you with this
name. If this information is blank (" "), PHP assumes localhost.

v acct: The name of any valid MySQL account. (I discuss MySQL accounts
in detail in Chapter 5.)

v password: The password for the MySQL account specified by acct. If
the MySQL account does not require a password, don’t type anything
between the quotes: " ".

Chapter 8: Data In, Data Out 2 ’5

WING/

%,

\\3

v dbname: The name of the database you want to communicate with. This
parameter is optional. You can select the database later, with a separate
command if you prefer. You can select a different database at any point
in your program.

If you're using the mysqgl functions, you cannot select the database in
the connect function. You must use a separate function —mysqgl__
select_db — to select the database.

v message: The message sent to the browser if the connection fails.
The connection fails if the computer or network is down or the MySQL
server isn’t running. It also may fail if the information provided isn’t cor-
rect — for example, if the password contains a typo.

You might want to use a descriptive message during development, such
as Couldn't connect to server, but use a more general message
suitable for customers after the application is in use, such as The Pet
Catalog is not available at the moment. Please try
again later.

The host includes a port number that is needed for the connection. Almost
always, the port number is 3306. On rare occasions, the MySQL administrator
needs to set up MySQL to connect on a different port. In these cases, the port
number is required for the connection. The port number is specified as
hostname : portnumber. For instance, you might use localhost:8808.

With these statements, mysgli_connect attempts to open a connection to
the named computer, using the account name and password provided. If the
connection fails, the program stops running at this point and sends message
to the browser.

The following statement connects to the MySQL server on the local computer
by using a MySQL account named catalog that does not require a
password:

Scxn = mysqgli_connect ("localhost"”, "catalog"”,
", "PetCatalog)
or die ("Couldn't connect to server.");

For security reasons, it’s a good idea to store the connection information in
variables and use the variables in the connection statement, as follows:

Shost="localhost";

Suser="catalog";

Spasswd="";

Sdbname = "PetCatalog";

Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("Couldn't connect to server.");

216 Partui:pnp

For even more security, you can put the assignment statements for the con-
nection information in a separate file in a hidden location so that the account
name and password aren’t even in the program. I explain how to do this in
Chapter 10.

The variable $cxn contains information that identifies the connection. You
can have more than one connection open at a time by using more than one
variable name. A connection remains open until you close it or until the pro-
gram ends. You close a connection as follows:

mysqgli_close (Sconnectionname) ;

For instance, to close the connection in the preceding example, use this
statement:

mysqgli_close ($Scxn) ;

Handling MySQL errors

You use the mysql i functions of the PHP language, such asmysgli_connect andmysqgli_
query, to interact with the MySQL database. If one of these functions fails to execute correctly,
a MySQL error message is returned with information about the problem. However, this error mes-
sage isn't sent to the browser unless the program deliberately sends it. The MySQL error message
is returned by its own function, mysgli_error (Scsn). To see the MySQL error message,
which contains extra information about the error, you need to include the mysgli_error func-
tion in your script.

Here are the three usual ways to call the mysqgli functions:

v~ Calling the function without error handling: The function is called without any statements
that provide error messages. For instance, the mysgli_connect function can be called as
follows:

Scxn = mysgli_connect (Shost, Suser, Spassword, Sdbname) ;

If this statement fails (for instance, the account isn’t valid), the connection is not made, but
the remaining statements in the program continue to execute. In most cases, this isn't useful
because some of the statements in the rest of the program might depend on having an open
connection, such as getting or storing data in the database.

v~ Calling the function with a die statement: The function is called with a die statement that
sends a message to the browser. For instance, the mysgli_connect function can be called
as follows:

Scxn = mysgli_connect (Shost, Suser, Spassword, Sdbname)
or die ("Couldn't connect to server");

Chapter 8: Data In, Data Out 2 ’ 7

If this statement fails, the connection is not made, and the di e statement is executed. The die
statement stops the program and sends the message to the browser. If the connection can't
be established, no more statements are executed. You can put any message that you want in
the di e statement.

v~ Calling the function in an i £ statement: The function is called by using an i £ statement that
executes a block of statements if the connection fails. For instance, the mysqgli_connect
function can be called as follows:

if (!$cxn = mysqgli_connect (Shost, Suser, Spassword,
Sdbname))
{
Smessage = mysgli_error (Scxn) ;
echo "Smessage";
die();
}
If this statement fails, the statements in the i £ block are executed. The mysgli_error
function returns the MySQL error message and saves it in the variable Smessage. The error
message is then echoed. The die statement ends the program so that no more statements
are executed. Notice the ! (exclamation point) in the i £ statement. ! means "not". In other
words, the i f statement is true if the assignment statement is not true.

The type of error handling you want to include in your program depends on what you expect to
happen in the program. When you're developing the program, you expect some errors to happen.
Therefore, during development, you probably want error handling that's more descriptive, such as
the third method in the preceding list. For instance, suppose that you're using an account called
root to access your database and that you make a typo as in the following statements:

Shost = "localhost";
Suser = "rot";
Spassword = "";
if (!$Scxn = mysqgli_connect (Shost, Suser, Spassword))
{
Smessage = mysgli_error (Scxn) ;
echo "Smessage";
die() ;
}
Because you typed "rot" instead of "root", you would see an error message similar to the
following one:

Access denied for user: 'rot@localhost' (Using password: NO)

This error message has the information that you need to figure out what the problem is; it shows
your account name with the typo. However, after your program is running and customers are using
it, you probably don’t want your users to see a technical error message like the preceding one.
Instead, you probably want to use the second method with a general statement in the die mes-
sage, such as The Pet Catalog is not available at the moment. Please
try again later.

218 Partm:pup

Selecting the right database

If you don’t select the database with the connect function, you can select the
database using the mysgli_select_db function. You can also use this func-
tion to select a different database at any time in your program. The format is

mysqgli_select_db (Sconnectionname, "databasename")
or die ("message") ;

Fill in the following information:

Vv connectionname: The variable that contains the connection information.
V¥ databasename: The name of the database.

v message: The message that is sent to the browser if the database can’t
be selected. The selection might fail because the database can’t be
found, which is usually the result of a typo in the database name.

For instance, you can select the database PetCatalog with the following
statement:

mysqgli_select_db($Scxn, "PetCatalog")
or die ("Couldn't select database.");

If mysgli_select_db is unable to select the database, the program stops
running at this point, and the message Couldn't select database. is
sent to the browser.

For security reasons, it’s a good idea to store the database name in a variable
and use the variable in the connection statement, as follows:

Sdbname = "PetCatalog";
mysqgl_select_db ($cxn, Sdbname)
or die ("Couldn't select database.");

For more security, you can put the assignment statement for the database
name in a separate file in a hidden location — as suggested for the assign-
ment statements for the connection information — so that the database
name isn’t in the program. I explain how to do this in Chapter 10.

The database stays selected until you select a different database. To select a
different database, just use a new mysqgli_select_db function statement.

Chapter 8: Data In, Data Out 2 ’9

Sending SOL queries

After you have an open connection to the MySQL server and PHP knows
which database you want to interact with, you send your SQL query. The
query is a request to the MySQL server to store some data, update some data,
or retrieve some data. (See Chapter 4 for more on the SQL language and how
to build SQL queries.)

To interact with the database, put your SQL query into a variable and send it
to the MySQL server by using the function mysgli_guery, as in the follow-
ing example:

Squery = "SELECT * FROM Pet";
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

The query is executed on the currently selected database for the specified
connection.

The variable $result holds information on the result of executing the query. The
information depends on whether or not the query gets information from
the database:

v For queries that don’t get any data: The variable $Sresult contains
information on whether the query executed successfully. If it’s suc-
cessful, Sresult is set to TRUE; if it’s not successful, Sresult is set to
FALSE. Some queries that don’t return data are INSERT and UPDATE.

v For queries that return data: The variable $result contains a result
identifier that identifies where the returned data is located, not the
returned data itself. Some queries that do return data are SELECT and
SHOW.

Beginning with MySQL 4.1, if you use PHP 5 and the mysqgli functions, you
can send multiple queries to the server at once, separated by semicolons.
You use the mysgli_multiple_guery function for this purpose. However,
sending more than one query at once can make your program less secure.
Use multiple queries seldom and carefully. See the MySQL online manual for
information on how to use multiple queries: http://us2.php.net/
manual/en/mysqgli.multi-query.php.

WBER The use of single and double quotes can be a little confusing when assigning
the query string to $query. You're actually using quotes on two levels: the
quotes needed to assign the string to $query and the quotes that are part of
the SQL language query itself. The following rules can help you avoid any
problems with quotes:

R,

22() rpartin:pup

\NG/
S

v Use double quotes at the beginning and end of the string.
v Use single quotes before and after variable names.

v Use single quotes before and after literal values.
The following are examples of assigning query strings:

Squery "SELECT firstName FROM Member";
Squery "SELECT firstName FROM Member WHERE lastName='Smith'";
Squery = "UPDATE Member SET lastName='Slast_name'";

The query string itself does not include a semicolon (;), so don’t put a semi-
colon inside the final quote. The only semicolon is at the very end; this is the
PHP semicolon that ends the statement.

Getting Information from a Database

Getting information from a database is a common task for Web database
applications. Here are two common uses for information from the database:

1 Use the information to conditionally execute statements. For instance,
you might get the state of residence from the Member Directory and
send different messages to members who live in different states.

v Display the information in a Web page. For instance, you might want to
display product information from your database.

To use the database information in a program, you need to put the informa-
tion in variables. Then you can use the variables in conditional statements,
echo statements, or other statements. Getting information from a database is
a two-step process:

1. You build a SELECT query and send the query to the database. When the
query is executed, the selected data is stored in a temporary location.

2. You move the data from the temporary location into variables and use it
in your program.

Sending a SELECT query

You use the SELECT query to get data from the database. SELECT queries
are written in the SQL language. (I discuss the SELECT query in detail in
Chapter 4.)

Chapter 8: Data In, Data Out 22 ’

To get data from the database, build the SELECT query that you need, stor-
ing it in a variable, and then send the query to the database. The following
statements select all the information from the Pet table in the PetCatalog
database:

Squery = "SELECT * FROM Pet";
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

The mysgli_guery function gets the data requested by the SELECT query
and stores it in a temporary location. You can think of this data as being
stored in a table, similar to a MySQL table, with the information in rows and
columns.

The function returns a result identifier that contains the information needed
to find the temporary location where the data is stored. In the preceding
statements, the result identifier is put into the variable Sresult. If the
function fails (because, for example, the query is incorrect), $result con-
tains false.

The next step after executing the function is to move the data from its tempo-
rary location into variables that can be used in the program.

Getting and using the data

You use the mysgli_fetch_assoc function or the mysgli_fetch_row
function to get the data from the temporary location. The mysqgli_fetch_
assoc function returns the data in an associative array; mysgli_fetch_row
returns the data in a numeric array. Occasionally, you might need to fetch
the data in both an associative and a numeric array, which you can do with
mysqgli_fetch_array.

The functions get one row of data from the temporary location. The tem-
porary data table might contain only one row of data or, more likely,

your SELECT query resulted in more than one row of data. If you need to
fetch more than one row of data from the temporary location, you use the
mysqgli_fetch_assoc ormysqgli_fetch_row function in a loop.

Getting one row of data

To move the data from its temporary location and put it into variables that
you can use in your program, you use the PHP function mysgli_fetch_
assoc or mysqgl_fetch_row. The general format for these functions is

Srow = mysgli_fetch_assoc (Sresultidentifier) ;

222 Partiil: PHP

This statement gets one row from the data table in the temporary location
and puts it in an array variable called Srow. resultidentifier is the vari-
able that points to the temporary location of the results.

The mysgl_fetch_assoc function gets one row of data from the temporary
location. In some cases, one row is all you selected. For instance, to check
the password entered by a user, you only need to get the user’s password
from the database and compare it with the password that the user entered.
The following statements check a password:

SuserEntry = "secret"; // password user entered in form
Squery = "SELECT password FROM Member

WHERE loginName='gsmith'";
Sresult = mysqgli_query (Scxn, Squery)

or die ("Couldn't execute query.");
Srow = mysgli_fetch_assoc (Sresult) ;
if (SuserEntry == Srow|['password'])

{

echo "Login accepted
";

statements that display Members Only Web pages
}

else

{
echo "Invalid password";
statements that allow user to try another password

}
Note the following points about the preceding statements:

v The SELECT query requests only one field (password) from one row
(row for gsmith).

v The mysqgli_fetch_assoc function returns an array called $row with
column names as keys.

v The if statement uses two equal signs (==) to compare the password
that the user typed in ($userEntry) with the password obtained from
the database ($row|['password']) to see whether they are the same.

v~ If the comparison is true, the passwords match, and the if block
(which displays the Members Only Web pages) is executed.

v If the comparison is not true, the user did not enter a password that
matches the password stored in the database, and the else block is
executed. The user sees an error message stating that the password is
not correct and is returned to the login Web page.

PHP provides a convenient shortcut for using the variables retrieved with
the mysqgli_fetch_assoc function. You can use the extract function,
which splits the array into variables that have the same name as the key. For
instance, you can use the extract function to rewrite the previous state-
ments that test the password. Here’s how:

Chapter 8: Data In, Data Out 223

SuserEntry = "secret"; #password entered in a form
Squery = "SELECT password FROM Member
WHERE loginName='gsmith'";
Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query.");
Srow = mysqgli_fetch_ assoc (Sresult) ;
extract (Srow) ;
if (SuserEntry == Spassword)
{
echo "Login accepted
";
statements that display Members Only Web pages
}

else

{
echo "Invalid password
";
statements that allow user to try another password

}

The extract function took the information from $row|['password'], created
a variable named with the array key (in this case, password) and stored the
information in the new variable called $password.

Using a loop to get all the rows of data

If you selected more than one row of data, use a loop to get all the rows from
the temporary location. The statements in the loop block get one row of data
and process it. The loop repeats until all rows have been retrieved. You can
use a while loop or a for loop to retrieve this information. (while loops
and for loops are explained in Chapter 7.)

The most common way to process the information is to use a while loop as
follows:

while ($Srow = mysqgli_fetch_assoc (Sresult))

{

block of statements

}

This loop repeats until it has fetched the last row from $result. If you just
want to echo all the data, for example, you would use a loop similar to the
following:

while (Srow = mysgli_fetch_ assoc (Sresult))
{

extract (Srow) ;

echo "SpetType: SpetName
";
}

Now, take a look at an example of how to get information for the Pet Catalog
application. Assume the Pet Catalog has a table called pet with four columns:
petName, petType, petDescription, and price. Table 82 shows a sample
set of data in the Pet table.

224 Patin:pup

Table 8-2 Sample Data in Pet Table

petName petType petDescription price

Unicorn Horse Spiral horn centered in forehead 10000

Pegasus Horse Flying; wings sprouting from back 15000

Pony Horse Very small; half the size of standard 500
horse

Asian dragon Dragon Serpentine body 30000

Medieval Dragon Lizard-like body 30000

dragon

Lion Cat Large; maned 2000

Gryphon Cat Lion body; eagle head; wings 25000

The petDisplay.php program in Listing 8-1 selects all the horses from the
Pet table and displays the information in an HTML table in the Web page.
The variable $Spettype contains information that a user typed into a form.

Listing 8-1: Displaying Items from the Pet Catalog

<?php
/* Program: petDisplay.php
* Desc: Displays all pets in selected category.
*/
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
Suser="catalog";
Shost="localhost";
Spassword="";
Sdatabase = "PetCatalog";
Scxn = mysgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("couldn't connect to server");
Spettype = "horse"; //horse was typed in a form by user
Squery = "SELECT * FROM Pet WHERE petType='Spettype'";
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

/* Display results in a table */

Spettype = ucfirst(Spettype)."s";

echo "<hl>S$Spettype</hl>\n";

echo "<table cellspacing='15'>\n";

echo "<tr><td colspan='3'><hr /></td></tr>\n";
while(Srow = mysgli_fetch_assoc(Sresult))

Chapter 8: Data In, Data OQut 225

{
extract (Srow) ;
$f_price = number_format (Sprice,2);
echo "<tr>\n
<td>$petName</td>\n
<td>S$petDescription</td>\n
<td style='text-align: right'>\$$Sf price</td>\n
</tr>\n";
echo "<tr><td colspan='3'><hr /></td></tr>\n";
}
echo "</table>\n";
?>
</body></html>

Figure 8-1 shows the Web page displayed by the program in Listing 8-1. The
Web page shows the Pet items for the petType horse, with the display for-
matted in an HTML table.

<} Pet Cataloy - Microsoft Internet Explorer
J File Edit View Favorites Tools Help | T
S > T I A B T~ It s R R g
Back Fomward Stop Refresh Home Search Favorites History Mail Frint Edit Real.com
JAddrESS I@ hitp: #/janetval san. . comdPHPEMyS AL forD ummies/petD escrip.php j @ Go |J Links > J m »
=
Horses
Unicotn spiral hotn centered in forehead $10,000.00
Pegasus flying; wings sprouting from hack $13,000.00
Fony wery small, half the size of standard horse $500.00
I
Figure 8-1:
The Web
page result-
ing from
petDisplay.
php. =
£] Done |—|—|Q Intermet
I

The program in Listing 8-1 uses awhile loop to get all the rows from the
temporary location. In some cases, you might need to use a for loop. For
instance, if you need to use a number in your loop, a for loop is more useful

220 rartui:pPhp

than awhile loop. To use a for loop, you need to know how many rows of
data were selected. You can find out how many rows are in temporary stor-
age by using the PHP function mysgli_num_rows:

Snrows = mysdgli_num_rows (Sresult) ;

The variable $snrows contains the number of rows in the temporary storage
location. By using this number, you can build a for loop to get all the rows:

for($1=0;$i<Snrows; $i++)

{
Srow = mysqgli_fetch_assoc (Sresult))
block of statements;

}
For instance, the program in Listing 8-1 displays the Pet items of the type

horse. Suppose that you want to number each item. Listing 8-2, the pet
DescripFor .php program, displays a numbered list with a for loop.

Listing 8-2: Displaying a Numbered List of Items from the Pet Catalog

<?php
/* Program: petDescripFor.php
* Desc: Displays a numbered list of all pets in
= selected category.
*/
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
Suser="catalog";
Shost="localhost";
Spassword="";
Sdatabase = "PetCatalog";
Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("Couldn't connect to server");
Spettype = "horse"; //horse was typed in a form by user
Squery = "SELECT * FROM Pet WHERE petType='Spettype'";
Sresult = mysqgli_query ($cxn, Squery)
or die ("Couldn't execute query.");
Snrows = mysgli_num_rows (Sresult) ;

/* Display results in a table */

echo "<hl>Horses</hl>";

echo "<table cellspacing='15'>";

echo "<tr><td colspan='4'><hr /></td></tr>";
for ($1=0;$i<Snrows;Si++)

|
Figure 8-2:
The Web
page result-
ing from
petDescrip
For.php.
|

{
Sn = $1 + 1; #add 1 so numbers don't start with 0
Srow = mysqgli_fetch_assoc (Sresult) ;
extract (Srow) ;
Sf_price = number_format (Sprice,2);
echo "<tr>\n
<td>$n.</td>\n
<td>$petName</td>\n
<td>S$petDescription</td>\n
<td style='text-align: right'>\$$Sf price</td>\n
</tr>\n";
echo "<tr><td colspan='4'><hr></td></tr>\n";
}
echo "</table>\n";
?>
</body></html>

Figure 8-2 shows the Web page that results from using the for loop in this
program. Notice that a number appears before the listing for each pet item
on this Web page.

e

#:Pet Catalog - Netscape
File Edit View Go Communicator Help

< o 3 A a < & &
Back Forward Reload Home Search Metscape Frint Security Stop:
| Bookmarks Losation: [http:/ faretval san.n comPHP&MyS QL foDuniss petD sscrpFor php | @7 what's Related

7y

Intermet L‘i Lookup [MewiCool FiealPlayer

Horses
1. Unicorn spiral horn centered in forghead $10,000.00
2. Pegasus flying wings sproviing from back $15,000.00

3. Pony very sinall; half the size of standard horse $500.00

= == | Document: Done Sl % &0 B 2|

Chapter 8: Data In, Data Out 22 7

228 Partii: pup

Using functions to get data

In most applications, you get data from the database. Often you get the data
in more than one location in your program or more than one program in your
application. Functions — blocks of statements that perform specified tasks —
are designed for such situations. (I explain functions in detail in Chapter 7.)

A function to get data from the database can be really useful. Whenever the
program needs to get data, you call the function. Functions not only save you
a lot of typing but also make the program easier for you to follow. For exam-
ple, consider a product catalog, such as the Pet Catalog. You'll need to get
information about a specific product many times. You can write a function
that gets the data and then use that function whenever you need data.

Listing 8-3 for program getdata.php shows how to use a function to get
data. The function in Listing 8-3 will get the information for any single pet

in the Pet Catalog. The pet information is put into an array, and the array is
returned to the main program. The main program can then use the informa-
tion any way that it wants. In this case, it echoes the pet information to a
Web page.

Listing 8-3: Using a Function to Get Data from a Database

<?php

/* Program: getdata.php
* Desc: Gets data from a database using a function
*/

?>

<html>

<head><title>Pet Catalog</title></head>

<body>

<?php

SpetInfo = getPetInfo("Unicorn") ; //call function

Sf_price = number_format (SpetInfol'price'],2);
echo "<p>{S$petInfo['petName']}
\n
Description: {SpetInfo['petDescription']}
\n
Price: \S${$petInfol'price']}\n"
?>
</body></html>

<?php
function getPetInfo (SpetName)

Chapter 8: Data In, Data Out 229

Suser="catalog";
Shost="localhost";
Spassword="";
Sdbname = "PetCatalog";
Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdbname)
or die ("Couldn't connect to server");
Squery = "SELECT * FROM Pet WHERE petName='SpetName'";
Sresult = mysqgli_query ($cxn, Squery)
or die ("Couldn't execute query.");
return mysqgli_fetch_assoc (Sresult) ;

}

?>

The Web page displays

Unicorn
Description: spiral horn centered in forehead
Price: $10,000.00

Note the following about the program in Listing 8-3:

v The program is easier to read with the function call than it would be if
all the statements in the function were in the main program.

v The function call sends the string "Unicorn". In most cases, the func-
tion call uses a variable name.

v The program creates the variable $SpetInfo to receive the data from
the function. SpetInfo is an array because the information stored in it
is an array.

The preceding function is very simple: It returns one row of the results as an
array. But functions can be more complex. The preceding section provides a
program to get all the pets of a specified type. The program getPets.php in
Listing 8-4 uses a function for the same purpose. The function returns a multi-
dimensional array with the pet data for all the pets of the specified type.

Listing 8-4: Using a Function to Display a Numbered List of Pets

<?php

/* Program: getPets.php
* Desc: Displays list of items from a database.
*/

?>

(continued)

230 Partui:php

Listing 8-4 (continued)

<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
Stype = "Horse";
SpetInfo = getPetsOfType (Stype) ; //call function

?>

/* Display results in a table */

echo "<hl>{Stypel}s</hl>\n";

echo "<table cellspacing='15'>\n";

echo "<tr><td colspan='4'><hr /></td></tr>\n";

for($i=1;Si<=sizeof (SpetInfo);Si++)

{

S$f_price = number_format ($SpetInfol[$i]['price'],2);
echo "<tr>\n
<td>$i.</td>\n
<td>{SpetInfo[S$i] ['petName']}</td>\n
<td>{SpetInfo[S$i] ['petDescription']}</td>\n
<td style='text-align: right'>\$$Sf_price</td>\n
</tr>\n";
echo "<tr><td colspan='4'><hr /></td></tr>\n";
}

echo "</table>\n";

</body></html>

<?php
function getPetsOfType ($petType)

{

Suser="catalog";
Shost="localhost";
Spasswd="";
Scxn = mysqgli_connect (Shost, Suser, Spasswd, "PetCatalog")
or die("Couldn't connect to server");
Squery = "SELECT * FROM Pet WHERE petType='SpetType'";
Sresult = mysqgli_query ($cxn, Squery)
or die("Couldn't execute query.");

$J =1
while (

{

foreach (Srow as S$colname => S$Svalue)

{

Srow=mysqgli_fetch_ assoc (Sresult))

Sarray multi[$j] [Scolname] = Svalue;
}
S$j++;
}

return Sarray_multi;

?>

Chapter 8: Data In, Data Out 23 ’

The program in Listing 8-4 proceeds as follows:

1.

13.

It calls the function getPetsOfType.

It passes "horse" in a variable $type containing the type of pet. It also
sets up $petInfo to receive the data returned by the function.

. The function connects to the database and selects the database

PetCatalog.

. The function sends a query to get all the rows with $petType in the

petType column.

$petType is passed to the function in the function call. The data is
stored in a table in a temporary location. The variable $result identi-
fies the location of the temporary table.

. It sets up a counter.

$7j is a counter that is incremented in each loop. It starts at 1 before
the loop.

. It starts awhile loop.

The function attempts to get a row from the temporary data table and
is successful. If there were no rows to get in the temporary location, the
while loop would end.

. It starts a foreach loop.

The loop walks through the row, processing each field.

. It stores values in a multidimensional array.

Sarray_multi is a multidimensional array. Its first key is a number,
which is set by the counter. Because this is the first time through the
while loop, the counter — $j — is now equal to 1. All the fields in the
row are stored in $array_multi with the column name as the key. (1
explain multidimensional arrays in detail in Chapter 7.)

. It increments the counter.

$7j is incremented by 1.

. It reaches the end of the while loop.
10.
11.
12.

It returns to the top of the while loop.

It repeats Steps 5-10 for every row in the results.

It returns Sarray_multi to the main program.
$array_multi contains all the data for all the selected rows.
$petInfo receives data from the function.

All the data is passed. Figure 8-3 shows the structure of $SpetInfo after
the function has finished executing.

232 Partii:pPHP

|
Figure 8-3:
The struc-
ture of the
multidimen-
sional array
$petinfo.
|

pethame] Unicom
petDescription]

price]

petinfa 1]

spiral horn centered in forehead
10000

[

[

[

[petiame]
[petDescription]
[

[

[

[

[2] Pegasus

flying; wings sprouting frorm back
15000

orice]

petMame]
petDescription]
price]

Pony
very simall; half the size of a standard horse
500

E]

14. The main program sends Pet Descriptions to the browser in an HTML
table.

The appropriate data is inserted from the $SpetInfo array.

The Web page that results from the program in Listing 8-4 is identical to the
Web page shown in Figure 8-2, which is produced by a program that does not
use a function. Functions do not produce different output. Any program that
you can write that includes a function, you can also write without using a
function. Functions just make programming easier.

Getting Information from the User

Many applications are designed to ask questions that users answer by typing
information. Sometimes the information is stored in a database; sometimes
the information is used in conditional statements to deliver an individual
Web page. Some of the most common application tasks that require users to
answer questions are

+* Online ordering: Customers need to select products and enter shipping
and payment information.

1 Registering: Many sites require users to provide some information
before they receive certain benefits, such as access to special informa-
tion or downloadable software.

v Logging in: Many sites restrict access to their pages. Users must enter
an account name and password before they can see the Web pages.

v Viewing selected information: Many sites allow users to specify what
information they want to see. For instance, an online catalog might allow
users to type the name of the product or select a product category that
they want to see.

Chapter 8: Data In, Data Out 233

You ask questions by displaying HTML forms. The user answers the ques-
tions by typing information into the form or selecting items from a list. The
user then clicks a button to submit the form information. When the form is
submitted, the information in the form is passed to a second, separate pro-
gram, which processes the information.

In the next few sections, [don’t tell you about the HTML required to display
a form; I assume that you already know HTML. (If you don’t know HTML or
need a refresher, check out HTML, XHTML, and CSS All-in-One Desk Reference
For Dummies by Andy Harris and Chris McCulloh; Wiley.) What I do tell you
is how to use PHP to display HTML forms and to process the information that
users type into the form.

Using HTML forms

HTML forms are very important for interactive Web sites. (If you're unfamil-
iar with HTML forms, you need to read the forms section of an HTML book.)
To display a form with PHP, you can do one of the following:

v Use echo statements to echo the HTML for a form. For example:

<?php
echo "<form action='processform.php'
method="'POST'>\n
<input type='text' name='fullname' />\n
<input type='submit' wvalue='Submit Name' />\n
</form>\n";
?>

v Use plain HTML outside the PHP sections. For a plain static form, there
is no reason to include it in a PHP section. For example:

<?php
statements in PHP section
?>
<form action="processform.php" method="POST">
<input type="text" name="fullname" />
<input type="submit" value="Submit Name" />
</form>
<?php
statements in PHP section
?>

Either of these methods produces the form displayed in Figure 8-4.

Joe Customer fills in the HTML form. He clicks the submit button. You now
have the information that you wanted — his name. So where is it? How do
you get it?

234 Parti:pup

|
Figure 8-4:
Aform
produced

by HTML
statements.
|

A test form - Microsoft Internet Explorer =] B3
JEiIe Edit View Favorites Tools Help |
& .5 .9 W | @ G 3 ”
Back Fomward Stop Refresh Home Search Favorites History
| Address [27 e fianetval san i comPHPEMS L foDUnmi =] (? Go HLinks > | o»
=]
I Submit Marme
|
|@ Done |7|7|° Internet 4

You get the form information by running a program that receives the

form information. When the submit button is clicked, PHP automatically
runs a program. The action parameter in the form tag tells PHP which
program to run. For instance, in the preceding program, the parameter
action=processform.php tells PHP to run the program processform.
php when the user clicks the submit button. The program processform.
php can display, store, or otherwise use the form data it receives when the
form is submitted.

When the user clicks the submit button, the program specified in the action
attribute runs, and statements in this program can get the form informa-

tion from PHP built-in arrays and use the information in PHP statements.

The built-in arrays that contain form information are $_POST, $_GET, and
$_REQUEST, which are superglobal arrays. When the form uses the POST
method, the information from the form fields is stored in the $_POST array.
The $_GET array contains the variables passed as part of the URL, includ-
ing fields passed from a form using the GET method. The $_REQUEST array
contains all the array elements together that are contained in the $_POST,
$_GET, and $_COOKIES arrays. Cookies are explained in Chapter 9.

When the form is submitted, the program that runs can get the form informa-
tion from the appropriate built-in array. In these built-in arrays, each array
index is the name of the input field in the form. For instance, if the user typed
Goliath Smith in the input field shown in Figure 8-4 and clicked the submit
button, the program processform.php runs and can use an array variable
in the following format:

S_POST['fullname']

Notice that the name typed into the form is available in the $_POST array
because the form tag specified method="'POST'. Also, note that the array
key is the name given the field in the HTML form with the name attribute
name="fullname".

Chapter 8: Data In, Data Out 235

WING/

The superglobal arrays, including $_POST and $_GET, were introduced in PHP
4.1. Up until that time, form information was passed in old arrays named
$HTTP_POST_VARS and $HTTP_GET_VARS. If you're using PHP 4.0 or earlier,
you must use the long arrays. Both types of built-in arrays exist up until PHP 5.
The long arrays no longer exist in PHP 6. If you're working with some old pro-
grams that use the long array names, you need to change the array names
from the long names, such as $HTTP_POST_VARS, to the superglobal array
names, such as $_POST. In most cases, a search-and-replace in a text editor
makes the change with one command per array.

A program that displays all the fields in a form is a useful program for test-
ing a form. You can see what values are passed from the form to be sure that
your form is formatted properly and sends the field names and values that
you expect. All the fields in a POST type form are displayed by the program in
Listing 8-5, named processform.php. When the form shown in Figure 8-4 is
submitted, the following program is run.

Listing 8-5: A Script That Displays All the Fields from a Form

<?php
/* Script name: processform.php
* Description: Script displays all the information
* passed from a form.
*/
echo "<html>
<head><title>Customer Address</title></head>
<body>";
foreach ($_POST as S$field => S$Svalue)
{

echo "$field = S$Svalue
\n";

}
?>
</body></html>

If the user types Goliath Smith into the form in Figure 8-4, the following
output is displayed:

fullname = Goliath Smith

The output displays only one line because there is only one field in the form
in Figure 8-4.

The program in Listing 8-5 is written to process the form information from
any form that uses the POST method. Suppose that you have a slightly more
complicated form, such as the program in Listing 8-6, which displays a form
with several fields.

236 rartui:prp

Listing 8-6: Displaying a Phone Number Form

<?php
/* Program name: displayForm
* Description: Script displays a form that asks for
& the customer phone number.
*/
Slabels = array("first_name" => "First Name",
"middle_name" => "Middle Name",
"last_name" => "Last Name",
"phone" => "Phone") ;
?>
<html>
<head>
<title>Customer Phone Number</title>
<style type='text/css'>

<!--
form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;
margin-right: lem; text-align: right; }
#submit { margin-left: 35%; padding-top: lem; }
-——>
</style>
</head>
<body>

<h3>Please enter your phone number.</h3>
<form action='processform.php' method='POST'
<?php
/* Loop that displays the form fields */
foreach(Slabels as S$field => $label)
{
echo "<div class='field'>
<label for='Sfield'>Slabel</label>
<input type='text' name='sfield' id='S$field’
size='65"'" maxlength='65' /></div>\n";
}
echo "<div id='submit'><input type='submit'
value='Submit Phone Number' />\n";
echo "</div>\n</form>\n</body>\n</html>";
?>

Notice the following in displayForm.php, as shown in Listing 8-6:

» An array is created that contains the labels used in the form. The keys
are the field names. Setting up your fields in an array at the top of the
program makes it easy to see what fields are displayed in the form and
to add, remove, or modify fields.

Chapter 8: Data In, Data Out 23 7

A\

|
Figure 8-5:
A form for
entering a
customer’s
phone
number.
|

v The script processform.php is named as the script that runs when
the form is submitted. The information in the form is sent to process
form.php, which processes the information.

v The form is formatted with CSS. If you're not familiar with CSS, check
out HTML, XHTML, and CSS All-in-One Desk Reference For Dummies by
Andy Harris and Chris McCulloh (Wiley).

v The script loops through the $1abels array with a foreach state-
ment. The HTML code for each field is echoed in the foreach block.
The appropriate array values are used in the HTML code.

For security reasons, always include max1length — which defines the number
of characters that users are allowed to type into the field — in your HTML
statement. Limiting the number of characters helps prevent the bad guys from
typing malicious code into your form fields. If the information is stored in a
database, set maxlength to the same number as the width of the column in
the database table.

Figure 8-5 shows the form displayed by the program in Listing 8-6.

& Customer Phone Number - Mozilla Firefox =EE
File Edit View Go Bookmarks Tools Help

Ga-op -8) [0 nitpocalnosiiP [v] © Go [ICL

Please enter your phone number below,

First Name
Middle Name
Last Name

Phone

Submit Phone Number

Dane

When Goliath Smith fills in the form shown in Figure 8-5 and submits it, the
program processform.php runs and produces the following output:

first_name = Goliath
middle_name =
last_name = Smith
phone = 555-5555

In processform.php, all elements of the $_POST built-in array are displayed
because both of the forms shown in this section used the POST method, as
do most forms.

238 Parti:php

Making forms dynamic

PHP brings new capabilities to HTML forms. Because you can use variables
in PHP forms, your forms can now be dynamic. Here are the major capabili-
ties that PHP brings to forms:

v Using variables to display information in input text fields
v Using variables to build dynamic lists for users to select from
v Using variables to build dynamic lists of radio buttons

v Using variables to build dynamic lists of check boxes

Displaying dynamic information in form fields

When you display a form on a Web page, you can put information into the
fields rather than just displaying a blank field. For example, if most of your
customers live in the United States, you might automatically enter US in the
country field when you ask customers for their address. If the customer does
indeed live in the United States, you’'ve saved the customer some typing. And
if the customer doesn'’t live in the United States, he or she can just replace US
with the appropriate country. Also, the text automatically entered into the
field doesn’t have any typos — well, unless you included some yourself.

To display a text field that contains information, you use the following format
for the input field HTML statements:

<input type="text" name="country" value="US" />

Using PHP, you can use a variable to display this information with either of
the following statements:

<input type="text" name="country"
value="<?php echo Scountry ?>" />

echo "<input type='text' name='country'
value="'S$Scountry' />";

The first example creates an input field in an HTML section, using a short
PHP section for the value only. The second example creates an input field
by using an echo statement inside a PHP section. If you're using a long form
with only an occasional variable, using the first format is more efficient. If
your form uses many variables, it’s more efficient to use the second format.

If you have user information stored in a database, you might want to display
the information from the database in the form fields. For instance, you might
show the information to the user so that he or she can make any needed

Chapter 8: Data In, Data Out 239

changes. Or you might display the shipping address for the customer’s last
online order so that he or she doesn’t need to retype the address. Listing 8-7
shows the program displayAddress.php, which displays a form with infor-
mation from the database. This form is similar to the form shown in Figure 8-5,
except that this form has information in it (retrieved from the database) and
the fields in the form in Figure 8-5 are blank.

Listing 8-7: Displaying an HTML Form with Information

<?php

/* Program name: displayAddress
* Description: Script displays a form with address
e information obtained from the database.
*/

Slabels = array("firstName"=>"First Name:",
"lastName"=>"Last Name:",
"street"=>"Street Address:",
"eity"=>"City:",
"state"=>"State: ",
"zip"=>"Zipcode:") ;

Suser="admin";

Shost="localhost";

Spassword="";
Sdatabase = "MemberDirectory";
SloginName = "gsmith"; // user login name

Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdatabase)

or die ("couldn't connect to server");
Squery = "SELECT * FROM Member

WHERE loginName='S$loginName'";
Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query.");
Srow = mysgli_fetch_assoc (Sresult) ;
?>

<html>

<head>

<title>Customer Phone Number</title>
<style type='text/css'>

gl==
form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;
margin-right: lem; text-align: right; }
#submit { margin-left: 35%; padding-top: lem; }
-——>
</style>
</head>

(continued)

240 Part:pup

Listing 8-7 (continued)

<body>
<?php
echo "<div style='text-align: center'>
<hl>Address for $loginName</hl>\n";
echo "<p style='font-size: large; font-weight: bold'>
Please check the information below and change
any information that is incorrect.</p>
<hr /></div>\n";
echo "<form action='processAddress.php' method='POST'>";
foreach(Slabels as $field => $label)
{
echo "<div class='field'>
<label for='$field'>$label</label>
<input type='text' name='sfield' id='S$field’
value="'Srow[Sfield]' size='65"
maxlength='65"' /></div>\n";
}
echo "<div id='submit'><input type='submit'
value="'Submit Address' />\n";
echo "</div>\n</form>\n</body>\n</html>";
?>

Notice the following in the program in Listing 8-7:

v The form statement transfers the action to the program process
Address.php. This program processes the information in the form
and updates the database with any information that the user changed.
This is a program that you write yourself. Checking data in a form and
saving information in the database are discussed later in this chapter in
the sections “Checking the information” and “Putting Information into a
Database,” respectively.

v Each input field in the form is given a name. The information in the
input field is stored in a variable that has the same name as the input
field.

v The program gives the field names in the form the same names as the
columns in the database. This simplifies moving information between
the database and the form, so you don’t have to transfer information
from one variable to another.

v The values from the database are displayed in the form fields with the
value parameter in the input field statement. The value parameter
displays the appropriate value from the array $row, which contains data
from the database.

<P For security reasons, always include maxlength in your HTML statement.
maxlength defines the number of characters that a user is allowed to type into
the field. If the information is going to be stored in a database, set maxlength
to the same number as the width of the column in the database table.

Chapter 8: Data In, Data Out 24 ’

Figure 8-6 shows the Web page resulting from the program in Listing 8-7. The
information in the form is the information stored in the database.

2 Customer Address - Microsoft Internet Explorer [_[O]x]

J File Edit View Favorites Tools Help ‘
J + Back ¥ = - @ ot | @Seamh (%] Favorites ®Histmy | %- 5
| Address [&] http://localhost/PHPEMyS QL forDummics/displayAddress.php ~| #Ge

=l

Address for gsmith

Please check the information helow and change any information that is incorrect.

First Name: |GDIiath

Last Name: |Smnh

Street Address: |1 234 Giant 5t
City: |Elig City

State: |AL

Zipcode: |B?BSD

Figure 8-6:
Aform
showing

the user’s Submit Address
address. -]

|@ Done |7|7| Local intranet

B

Building selection lists

One type of field that you can use in an HTML form is a selection list. Instead
of typing into a field, your users select from a list. For instance, in a product
catalog, you might provide a list of categories from which users select what
they want to view. Or the form for users’ addresses might include a list of
states that users can select. Or users might enter a date by selecting a month,
day, and year from a list.

N Use selection lists whenever feasible. When the user selects an item from a

list, you can be sure that the item is accurate, with no misspellings, odd char-

acters, or other problems introduced by users’ typing errors.

An HTML selection list for the categories in the Pet Catalog is formatted as
follows:

<form action="processform.php" method="POST">
<select name="petType">
<option value="horse">horse</option>
<option value="cat" selected="selected">cat</option>
<option value="dragon">dragon</option>
</select>
<input type="submit" value="Select Type of Pet" />
</form>

242

Part lll: PHP

|
Figure 8-7:

A selection
field for the
Pet Catalog.
|

|
Figure 8-8:

A selection
field for the
Pet Catalog
with a drop-
down list.
|

Figure 8-7 shows the selection list that these HTML statements produce.
Notice that cat is the choice that is selected when the field is first displayed.
You determine this default selection by including selected="selected" in
the option tag.

43 Pet Cataloy - Microsoft Internet Explorer =] E3
J Eile Edit ¥iew Favorites Tools Help ‘

& .2 . @ AT BENE N
Back Fomward Stop Refiesh Home Search Favorites
JAgdreSS I@ hitp:/ fianetval. san.r.com/PH j & Go “ Links ™ J Y" 53

=l
cat - Select Type of Pet
[~ |
|@ Done |—|—|O Internet y

When the user clicks the arrow on the select drop-down list box, the entire
list drops down, as shown in Figure 8-8, and the user can select any item in
the list. Notice that cat is selected until the user selects a different item.

4} Pet Cataloy - Microsoft Internet Explorer [_ O] =]
J File Edit Yiew Favorites Tools Help ‘
e o @ G
Back Fonward Stop Refresh Home Search Favorites
JAﬁdr’ESS I@ hittp: £ fjaneteal san.im.com/PH j @En “ Links J ‘Y? ¥
[—|
I cat vl Select Type of Pet I
H
|@ Done |7|7|° Internet 7

When using PHP, your options can be variables. This capability allows you to
build dynamic selection lists. For instance, you must maintain the static list
of pet categories shown in the preceding example. If you add a new pet cat-
egory, you must add an option tag manually. However, with PHP variables,
you can build the list dynamically from the categories in the database. When
you add a new category to the database, the new category is automatically
added to your selection list without your having to change the PHP program.
Listing 8-8 for the program buildSelect .php builds a selection list of pet
categories from the database.

Chapter 8: Data In, Data Out 243

Listing 8-8: Building a Selection List

<?php
/* Program name: buildSelect.php
* Description: Program builds a selection list
w from the database.
*/
Suser="admin";
Shost="localhost";
Spassword="";
Sdatabase = "PetCatalog";
Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("couldn't connect to server");
Squery = "SELECT DISTINCT petType FROM Pet ORDER BY petType";
Sresult = mysqli_query (Scxn, Squery)
or die ("Couldn't execute query.");
?>
<html>
<head><title>Pet Types</title></head>

<body>
<form action='processform.php' method='POST'>
<select name='petType'>
<?php
while(Srow = mysqgli_fetch_assoc(Sresult))
{
extract (Srow) ;
echo "<option value='S$petType'>S$SpetType</option>\n";
?> /
</select>
<input type='submit' value='Select Type of Pet' />
</form></body></html>

Notice the following in the program in Listing 8-8:

v Using DISTINCT in the query: DISTINCT causes the query to get each
pet type only once. Without DISTINCT, the query would return each pet
type several times if it appeared several times in the database.

v Using ORDER BY in the query: The pet types are sorted alphabetically.

1 echo statements before the loop: The form and select tags are
echoed before the while loop starts because they are echoed only
once.

1 echo statements in the loop: The option tags are echoed in the loop —
one for each pet type in the database. No item is marked as selected, so
the first item in the list is selected automatically.

1 echo statements after the loop: The end form and select tags are
echoed after the loop because they are echoed only once.

244 Par:pup

|
Figure 8-9:
A selection
field for the
Pet Catalog
produced by
the program
buildSelect.
php.

The selection list produced by this program is initially the same as the selec-
tion list shown in Figure 8-7, with cat selected. However, cat is selected in this
program because it’s the first item in the list — not because it’s specifically
selected as it is in the HTML tags that produce Figure 8-7. The drop-down list
produced by this program is in alphabetical order, as shown in Figure 8-9.

¥ Pet Types - Netscape

File Edit View Go Communicator Help

“« =2 A B o = =EN
Back Forward Reload Home Search Metscape Frint Secur)
" Bookmarks i Losation: [nttpe/ anetval sann omPHP | | G507 What's Related

Intermet L‘i Lookup [:i NewtCool FiealPlayer

cat - Select Type of Pet |

cat

dragon
horse

[(== Document: Don=| & % =P (@) K 2

You can use PHP variables also to set up which option is selected when the
selection box is displayed. For instance, suppose that you want the user to
select a date from month, day, and year selection lists. You believe that most
people will select today’s date, so you want today’s date to be selected by
default when the box is displayed. Listing 8-9 shows the program date
Select.php, which displays a form for selecting a date and selects today’s
date automatically.

Listing 8-9: Building a Date Selection List

<?php

/* Program name: dateSelect.php

* Description: Program displays a selection list that
. customers can use to select a date.

Y
SmonthName = array(l => "January", "February", "March",
"April", "May", "June", "July",
"August", "September", "October",
. "November", "December");
Stoday = time() ; //stores today's date
Sf_today = date("M-d-Y", Stoday) ; //formats today's date

echo "<html>

<head><title>Select a date</title></head>
<body>

<div style = 'text-align: center'>\n";

Chapter 8: Data In, Data Out 245

/* display today's date */
echo "<h3>Today is $f_today</h3><hr />\n";

/* create form containing date selection list */
echo "<form action='processform.php' method='POST'>\n";

/* build selection list for the month */
StodayMO = date("n",Stoday); //get the month from Stoday
echo "<select name='dateMO'>\n";
for (Sn=1;$n<=12; Sn++)
{

echo "<option value=$n\n";

if ($todayMO == $n)

{

echo " selected='selected'";

}

echo " > SmonthName[$n]\n";
}

echo "</select>\n";

/* build selection list for the day */
StodayDay= date ("d", $today) ; //get the day from S$today
echo "<select name='dateDay'>\n";
for (Sn=1;3$n<=31;Sn++)
{

echo " <option value=$n";

if (StodaybDay == $n)

{

echo " selected='selected'";

}

echo " > s$n\n";
}

echo "</select>\n";

/* build selection list for the year */
SstartYr = date("Y", S$Stoday); //get the year from Stoday
echo "<select name='dateYr'>\n";
for ($n=Sstart¥r; Sn<=$startYr+3;Sn++)
{

echo " <option value=$n";

if (SstartYr == $n)

{

echo " selected='selected'";

}

echo " > Sn\n";
}
echo "</select>\n";
?>
</form></body></html>

246 Partuipp

The Web page produced by the program in Listing 8-9 is shown in Figure
8-10. The date appears above the form so that you can see that the select list
shows the correct date. The selection list for the month shows all 12 months
when it drops down. The selection list for the day shows 31 days when it
drops down. The selection list for year shows four years.

2 Select a date - Mozilla Firefox |Z||E|E‘
File Edit View History Bookmarks Tools Help
<’3 - - @ g ‘|_| http:;‘f\ncalhﬂst,l’mystufF|'| [)‘] "‘ |"\]
Today is Jun-12-2009
I
. June v |12 [» 2
Figure 8-10:
A selection i
field for the 22
date with
today's date
selected.
Cone
I

The program in Listing 8-9 produces the Web page in Figure 8-10 by following
these steps:
1. Creates an array containing the names of the months.

The keys for the array are the numbers. The first month, January, starts
with the key 1 so that the keys of the array match the numbers of the
months.

2. Creates variables containing the current date.

$today contains the date in a system format and is used in the form.
$f-today is a formatted date that is used to display the date in the
Web page.

3. Displays the current date at the top of the Web page.

The current date is displayed so you can compare it with the selected
options in the drop-down lists.

4. Builds the selection field for the month:
i. Creates a variable containing today’s month.
ii. Echoes the select tag, which should be echoed only once.

iii. Starts a for loop that repeats 12 times.

Chapter 8: Data In, Data Out 24 7

iv. Inside the loop, echoes the option tag by using the first value
from the $monthName array.

v. If the number of the month being processed is equal to the number
of the current month, adds the selected attribute to the option
tag.

vi. Repeats the loop 11 more times.

vii. Echoes the closing select tag for the selection field, which should
be echoed only once.

5. Builds the selection field for the day.

Uses the procedure described in Step 4 for the month. However, only
numbers are used for this selection list. The loop repeats 31 times.

6. Builds the selection field for the year:
i. Creates the variable SstartvYr, containing today’s year.
ii. Echoes the select tag, which should be echoed only once.

iii. Starts a for loop. The starting value for the loop is $startyr. The
ending value for the loop is $startyr+3.

iv. Inside the loop, echoes the option tag, using the starting value of
the for loop, which is today’s year.

v. If the number of the year being processed is equal to the number
of the current year, adds the selected attribute to the option tag.

vi. Repeats the loop until the ending value equals $startyr+3.

vii. Echoes the closing select tag for the selection field, which should
be echoed only once.

7. Echoes the ending tag for the form.

Building lists of radio buttons

You might want to use radio buttons instead of selection lists. For instance,
you can display a list of radio buttons for your Pet Catalog and have users
select the button for the pet category that they're interested in.

The format for radio buttons in a form is

<input type="radio" name="name" value="value" />
You can build a dynamic list of radio buttons representing all the pet types
in your database in the same manner that you build a dynamic selection list

in the preceding section. Listing 8-10 shows the program buildRadio.php,
which creates a list of radio buttons based on pet types.

248 Parin:pup

Listing 8-10: Building a List of Radio Buttons

<?php
/* Program name: buildRadio.php
* Description: Program displays a list of radio
& buttons from database info.
*/
Suser="catalog";
Shost="localhost";
Spassword="";
Sdatabase = "PetCatalog";
Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("Couldn't connect to server");
Squery = "SELECT DISTINCT petType FROM Pet
ORDER BY petType";
Sresult = mysqgli_query ($cxn, $query)
or die ("Couldn't execute query.");

?>

<html>

<head><title>Pet Types</title></head>

<body>

<div style='margin-left: .5in; margin-top: .5in'>

<p style='font-weight: bold'>
Which type of pet are you interested in?</p>
<p>Please choose one type of pet from the
following list:</p>
<form action='processform.php' method='POST'>
<?php
while(Srow = mysgli_fetch_assoc (Sresult))
{
extract (Srow) ;
echo "<input type='radio' name='interest'
value="'SpetType' />$SpetType
\n";
-
<p><input type='submit' value='Select Type of Pet' /></p>
</form></div></body></html>

This program is similar to the program in Listing 8-9. The Web page produced
by this program is shown in Figure 8-11.

Building lists of check boxes

You might want to use check boxes in your form. Check boxes are different
from selection lists and radio buttons because they allow users to select
more than one option. For instance, if you display a list of pet categories with
check boxes, a user can select two or three or more pet categories. The pro-
gram buildCheckbox.php in Listing 8-11 creates a list of check boxes.

Figure 8-11:
Alist of
radio
buttons
produced by
the program
in build
Radio.php.

Chapter 8: Data In, Data Out 24 9

#{ Pet Types - Netscape
File Edit View Go Communicator Help

4 2 B DX . o m I & #H !HI
Back Forward Reload Home Search Netscape Frint Security Stop
w‘ " Bookmarks A Location: Ihllp..r‘f\anetval. zan.in.com/PHP& S QLforDummies buildF a ﬂ @ T what's Related

Intermet L‘i Lookup |:|' NewtCool RealPlayer

‘Which type of pet are you interesied in?
Please choose one type of pet from the following list:

© cat
© dragon
© horse

Select Type of Pet |

E’ﬁ| Document: Done

Listing 8-11: Building a List of Check Boxes

<?php
/* Program name: buildCheckbox.php
* Description: Program displays a list of
i check boxes from database info.
*/
Suser="catalog";
Shost="localhost";
Spassword="";
Sdatabase = "PetCatalog";
Scxn = mysgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("couldn't connect to server");
$query = "SELECT DISTINCT petType FROM Pet
ORDER BY petType";
Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

?>

<html>

<head><title>Pet Types</title></head>

<body>

<div style='margin-left: .5in; margin-top: .5in'>

<p style='font-weight: bold'>
Which type of pet are you interested in?</p>
<p>Choose as many types of pets as you want:</p>
<form action='processform.php' method='POST'>
<?php
while($Srow = mysqgli_fetch_assoc (Sresult))

{

(continued)

250 Partui:prp

Listing 8-11 (continued)
extract (Srow) ;
echo "<input type='checkbox'
name="'interest [SpetType] "'
value='SpetType' />SpetType
\n";

}
echo "<p><input type='submit'

value='Select Type of Pet' />\n";
?>

</form></div></body></html>

This program is similar to the program in Listing 8-10, which builds a list of
radio buttons. However, notice that the input field uses an array $interest
as the name for the field. This is because more than one check box can be
selected. This program creates an element in the array with a key/value pair
for each check box that’s selected. For instance, if the user selects both horse
and dragon, the following array is created:

Sinterest [horse]=horse
Sinterest [dragon]=dragon

The program that processes the form has the selections available in the POST
array, as follows:

S_POST['interest']['horse']
S_POST['interest'] ['dragon']

Figure 8-12 shows the Web page produced by buildCheckbox.php.

4} Pet Types - Microsoft Internet Explorer
J File Edit Yiew Favorites Tools Help |
S > I P A B - e [s L >
Back Fonward Stop Refresh Home Search Favortes Histoy b ail PFrint
| Address [&] nitp: janetval san r.comPHPEMySOLforD ummiss buldCheckbonphp] (@ Go H Links »|| "§79 »
=
“Which type of pet are you interested in?
I
Figure 8_12 Choose as many types of pets as you want:
Alist of oot
check boxes I dragon
produced DOnorse
by the Select Type of Pet
program in
buildCheck -
box.php. -
php |@ Done rr‘ﬂ Internet y
I 2

Chapter 8: Data In, Data Out 25 ’

Using the information from the form

As I discuss earlier in this section, Joe Customer fills in an HTML form, select-
ing from lists and typing information into text fields. He clicks the submit
button. In the form tag, you tell PHP which program to run when the submit
button is clicked. You do this by including action="programname" in the
form tag. For instance, in most of the example listings in this chapter, [use
action="processform.php". When the user clicks the submit button, the
program runs and receives the information from the form. Handling form
information is one of PHP’s best features. You don’t need to worry about the
form data — just get it from one of the built-in arrays and use it.

The form data is available in the processing program in arrays, such as
$_POST or $_GET. The key for the array element is the name of the input
field in the form. For instance, if you echo the following field in your form

echo "<input type='text' name='firstName' />";

the processing program can use the variable $_POST [firstName], which
contains the text that the user typed into the field. The information that
the user selects from selection drop-down lists or radio buttons is similarly
available for use. For instance, if your form includes the following list of
radio buttons

echo "<input type='radio' name='interest'
value='dog' />dog\n";

echo "<input type='radio' name='interest'
value='cat' />cat\n";

you can access the variable $_POST [interest], which contains either dog
or cat, depending on what the user selected.

You handle check boxes in a slightly different way because the user can
select more than one check box. As shown earlier in Listing 8-11, the data
from a list of check boxes can be stored in an array so that all the check
boxes are available. For instance, if your form includes the following list of
check boxes

echo "<input type='checkbox' name='interest[dog]'
value='dog' />dog\n";

echo "<input type='checkbox' name='interest[cat]'
value='cat' />cat\n";

you can access the data by using the multidimensional variable
$_POST[interest], which contains the following:

252 Partiil:pHp

S_POST[interest] [dog]
S_POST[interest] [cat]

dog
cat

In some cases, you might want to access all the fields in the form. Perhaps
you want to check them all to make sure that the user didn’t leave any fields
blank. As shown in the program processform.php, earlier in this chapter
(see Listing 8-5), you can use foreach to walk through the $_POST or $_GET
built-in array. Most of the sample programs and statements in this book use
the POST method. The keys are the field names. See the sidebar “Post versus
get” for more on the two methods.

For instance, suppose your program includes the following statements to dis-
play a form:

echo "<form action='processform.php' method='POST'>\n";
echo "<input type='text' name='lname'
value='Smith' />
\n";
echo "<input type='radio' name='interest'
value='dog' />dog\n";
echo "<input type='radio' name='interest'
value='cat' />cat\n";
echo "<input type='hidden' name='hidvar' value='3' />\n";
echo "

<input type='submit' value='Select Type of Pet' />
</form>\n";

The program processform.php contains the following statements, which
lists all the variables received from the form:

foreach ($_POST as S$field => Svalue)
{
echo "sfield, S$Svalue
";

}
The output from the foreach loop is

lname, Smith
interest, dog
hidvar, 3

The output shows three variables with these three values for the following
reasons:

v The user didn’t change the text in the text field. The value "Smith"
that the program displayed is still the text in the text field.

v The user selected the radio button for dog. The user can select only
one radio button.

v The program passed a hidden field named hidvar. The program sets
the value for hidden fields. The user can’t affect the hidden fields.

Chapter 8: Data In, Data Out 253

Post versus get

You use one of two methods to submit form which can be a security problem in some
information. The methods pass the form data situations.
differently and have different advantages and

disadvantages. v post method: The form data is passed as

a package in a separate communication

v get method: The form data is passed by with the processing program. The advan-
adding it to the URL that calls the form- tages of this method are unlimited informa-
processing program. For instance, the URL tion passing and security of the data. The
might look like this: disadvantages are the additional overhead

and slower speed.
processform.php?
lname=Smith& In PHP programs, the get and post methods
fname=Goliath are equally easy to use. Therefore, when using

The advantages of this method are sim- PHP, it's almost always better to use the post
plicity and speed. The disadvantages are Method because you have the advantages
that less data can be passed and that the of the post method (unlimited data passing,

information is displayed in the browser, better security) without its main disadvantage
(more difficult to use).

Checking the information

Joe Customer fills in an HTML form, selecting from lists and typing informa-
tion into text fields. He clicks the submit button. You now have all the infor-
mation that you wanted. Well, maybe. Joe might have typed information that
contains a typo. Or he might have typed nonsense. Or he might even have
typed malicious information that can cause problems for you or other people
using your Web site. Before you use Joe’s information or store it in your data-
base, you want to check it to make sure it’s the information you asked for.
Checking the data is validating the data.

Validating the data includes the following:

v Checking for empty fields: You can require users to enter information
in a field. If the field is blank, the user is told that the information is
required, and the form is displayed again so the user can type the miss-
ing information.

v Checking the format of the information: You can check the information
to see that it is in the correct format. For instance, ab3& *xx is clearly
not a valid zip code.

254 Panm:pup

3

Checking for empty fields

When you create a form, you can decide which fields are required and which
are optional. Your decision is implemented in the PHP program. You check
the fields that require information. If a required field is blank, you send a
message to the user, indicating that the field is required, and you then re-
display the form.

The general procedure to check for empty fields is

if (empty (Slast_name))
{

echo "You did not enter your last name.

Last name is required.
\n";

display the form;

exit () ;
}
echo "<p>Welcome to the Members Only club.

You may select from the menu below.
</p>\n";

display the menu;

Notice the exit statement, which ends the if block. Without the exit state-
ment, the program would continue to the statements after the if statement.
In other words, without the exit statement, the program would display the
form and then continue to echo the welcome statement and the menu as well.

In many cases, you want to check all the fields in the form. You can do this by
looping through the array $_POST. The following statements check the array
for any empty fields:

foreach ($S_POST as S$Svalue)
{
if (empty (Svalue))
{
echo "You have not filled in all the fields
\n";
display the form;
exit () ;
}
}
echo "Welcome";

When you redisplay the Web form, make sure that it contains the information
that the user already typed. If users have to retype correct information, they
are likely to get frustrated and leave your Web site.

In some cases, you might require the user to fill in most but not all fields.

For instance, you might request a fax number in the form or provide a field
for a middle name, but you don’t really mean to restrict registration on your
Web site to users with middle names and faxes. In this case, you can make an
exception for fields that are not required, as follows:

Chapter 8: Data In, Data Out 255

foreach ($_POST as S$field => Svalue)

{
if(sfield != "fax" and $field != "middle_name")
{
if (empty (Svalue))
{
echo "A required field is empty.
\n";
display the form;
exit () ;
}
}
}

echo "Welcome";

Notice that the outside i f conditional statement is true only if the field is not
the fax field and is not the middle name field. For those two fields, the pro-
gram doesn’t reach the inside if statement, which checks for blank fields.

In most cases, the program should create two arrays: one that contains the
names of the fields that are inappropriately blank and one that contains the
data that is correct, so you can display or store it. The need for an array of

correct data becomes clearer later in this section, when I discuss checking

the format of data and cleaning data.

In some cases, you might want to tell the user exactly which fields need to
be filled in. The checkBlank.php program in Listing 8-12 processes the
form produced by the program displayForm, shown in Listing 8-6, which
has four fields: first_name, middle_name, last_name, and phone. All the
fields are required except middle_name.

To use the program in Listing 8-12, first edit the displayForm program,
shown in Listing 8-6, so that checkBlank.php is shown in the action attri-
bute in the form tag. Replace processform.php with checkBlank.php, as
follows:

<form action='checkBlank.php' method='POST'>

Then run the displayForm.php program, fill in the form, and click the
submit button, which runs the checkBlank.php program.

Listing 8-12: Checking for Blank Fields

<?php

/* Program name: checkBlank.php

* Description: Program checks all the form fields for
* blank fields.

*/

?>

(continued)

256 rartui:pup

Listing 8-12 (continued)

<html>

<head>

<title>Customer Phone Number</title>

<style type='text/css'>

2ll=—
form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;

margin-right: lem; text-align: right; }

#submit { margin-left: 35%; padding-top: lem; }

-——>

</style>

</head>

<body>
<?php
/* set up array with all the fields */
Slabels = array("first_name" => "First Name",
"middle name" => "Middle Name",
"last_name" => "Last Name",
"phone" => "Phone") ;
/* check each field except middle name for
blank fields */
foreach ($_POST as $field => svalue)
{
if($field != "middle_name")
{
if (empty (Svalue))
{
Sblank_array[] = $field;
}
}
}
/* if any fields were blank, display error message and
redisplay form */
if (@sizeof (Sblank_array) > 0) //blank fields are found
{
echo "<p>You didn't fill in one or more required
fields. You must enter:
\n";
/* display list of missing information */
foreach (Sblank array as Svalue)
{
echo " {Slabels[Svalue] }
\n";
}
echo "</p>";
/* redisplay form */
echo "<form action='S_SERVER|[PHP_SELF]'
method="'POST'>\n";
foreach(Slabels as S$field => $label)
{

Chapter 8: Data In, Data Out 25 7

?>

Sgood_datal[sfield]=strip_tags(trim($S_POST[Sfield])) ;
echo "<div class='field'>
<label for='Sfield'>Slabel</label>
<input type='text' name='Sfield'
id='$field' size='65"
maxlength='65"
value='S$good_data[Sfield]' />\n
</div>\n";
}
echo "<div id='submit'><input type='submit'
value='Submit Phone Number' />\n";
echo "</div>\n</form>\n</body>\n</html>";
exit () ;
}

echo "All required fields contain information";

To check for blanks, the program does the following:

1.

Sets up an array of field labels.

These labels are used as labels in the form to display the list of missing
information and to display the form.

. Loops through all the variables passed from the form, checking for

blanks.

The variables are in the array $_POST. The field middle_name is not
checked for blanks because it is not a required field. Any blank fields are
added to an array of blank fields, $blank_array.

. Checks whether any blank fields were found.

Checks the number of items in $blank_array.

. If zero blank fields were found, jumps to the message; all required fields

contain information.

. If one or more blank fields were found:

i. Displays an error message. This message explains to the user that
some required information is missing.

ii. Displays a list of missing information. Loops through $blank_
array and displays the label(s).

iii. Creates an array of good data. The data is cleaned so it can be
safely displayed in the form.

iv. Redisplays the form. Because the form includes variable names
in the value attribute, the information that the user previously
entered is retrieved from $good_data and displayed.

v. Exits. Stops after the form displays. The user must click the submit
button to continue.

258 Partui:prp

WING/

&

Figure 8-13:
The result

of process-
ing a form
with missing
information.
|

WING/
&

Remember, programs that process forms use the information from the form. If
you run them by themselves, they don’t have any information passed from the
form and don’t run correctly. These programs are intended to run when the
user clicks the submit button for a form.

Don’t forget the exit statement. Without the exit statement, the program
would continue and would display the welcome message after displaying the
form.

Figure 8-13 shows the Web page that results if the user didn’t enter a first or
a middle name. Notice that the list of missing information doesn’t include
Middle Name because Middle Name is not required. Also, notice that the
information the user originally typed into the form is still displayed in the
form fields.

& Empty fields - Mozilla Firefox =EE
File Edit View Go Bookmarks Tools Help

@--& @) |0 htp:dfiacathostF [v| @ Go [GL

You didn't fill in one or more required fields. Yon must enter:
First Mame

First Name
Middle Name
Last Name Smith
Phone 555-5555

[Submit Name and Phone Number

Dane

Checking the format of the information

Whenever users must type information in a form, you can expect a certain
number of typos. You can detect some of these errors when the form is sub-
mitted, point out the error(s) to the user, and then request that he or she
retype the information. For instance, if the user types 8899776 in the zip
code field, you know this is not correct. This information is too long to be a
zip code and too short to be a zip+4 code.

You also need to protect yourself from malicious users — users who might
want to damage your Web site or your database or steal information from you
or your users. You don’t want users to enter HTML tags into a form field —
something that might have unexpected results when sent to a browser. A par-
ticularly dangerous tag would be a script tag that allows a user to enter a
program into a form field.

Chapter 8: Data In, Data Out 259

If you check each field for its expected format, you can catch typos and pre-
vent most malicious content. However, checking information is a balancing
act. You want to catch as much incorrect data as possible, but you don’t
want to block any legitimate information. For instance, when you check a
phone number, you might limit it to numbers. The problem with this check
is that it would screen out legitimate phone numbers in the form 555-5555 or
(888) 555-5555. So you also need to allow hyphens (-), parentheses (), and
spaces. You might limit the field to a length of 14 characters, including paren-
theses, spaces, and hyphens, but this screens out overseas numbers or num-
bers that include an extension. The bottom line: You need to think carefully
about what information you want to accept or screen out for any field.

You can check field information by using regular expressions, which are pat-
terns. You compare the information in the field against the pattern to see
whether it matches. If it doesn’t match, the information in the field is incor-
rect, and the user must type it over. (See Chapter 6 for more on regular
expressions.)

In general, these are the statements that you use to check fields:

if (!preg_match("pattern", Svariablename))
{

echo error message;

redisplay form;

exit();

}

echo "Welcome";

Notice that the condition in the i f statement is negative. That is, the !
(exclamation mark) means "not". So, the if statement actually says this: If
the variable does not match the pattern, execute the if block.

For example, suppose that you want to check an input field that contains the
user’s last name. You can expect names to contain letters, not numbers, and
possibly apostrophe and hyphen characters (as in O’Hara and Smith-Jones)
and also spaces (as in Van Dyke). Also, it’s difficult to imagine a name longer
than 50 characters. Thus, you can use the following statements to check a
name:

if (!preg match("/"[A-Za-z' -]1{1,50}$/",S$last_name)
{

echo error message;

redisplay form;

exit () ;
}

echo "Welcome";

260 Parui:pup

QNING/ If you want to list a hyphen (-) as part of a set of allowable characters that
R are surrounded by square brackets ([]), you must list the hyphen at the
beginning or at the end of the list. Otherwise, if you put it between two char-
acters, the program interprets it as the range between the two characters,
such as A-Z.

You also need to check multiple-choice fields. Although multiple choice pre-
vents honest users from entering mistakes, it doesn’t prevent clever users
with malicious intentions from entering unexpected data into the fields. You
can check multiple-choice fields for acceptable output with the following type
of regex:

if(!preg match("/ (male|female) /", $gender)

If the field contains anything except the value male or the value female, the
if block executes.

In the preceding section, you find out how to check every form field to ensure
that it isn’t blank. In addition, you probably also want to check all the fields
that have data to be sure the data is in an acceptable format. You can check
the format by making a few simple changes to the program shown earlier in
Listing 8-12. Listing 8-13 shows the modified program, called checkaAll .php.

The program in Listing 8-13, like the program in Listing 8-12, processes data sub-
mitted from the form produced by the displayForm program in Listing 8-6. To
use the program in Listing 8-13, first edit the displayForm program, shown
in Listing 8-6, so that checkal1l.php is shown in the action attribute in the
form tag. Replace processform.php with checkall.php, as follows

<form action='checkaAll.php' method='POST'>

Then run the displayForm.php program, fill in the form, and click the
submit button, which runs the checkaAll .php program.

Listing 8-13: Checking All the Data in Form Fields

<?php

/* Program name: checkAll.php* Description: Program
2 checks all the form fields for
= blank fields and incorrect format.
WY

?>

<html>

<head>

<title>Customer Phone Number</title>

<style type='text/css'>

<!--

Chapter 8: Data In, Data Out 26 ’

form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;
margin-right: lem; text-align: right; }
#submit { margin-left: 35%; padding-top: lem; }
-——>
</style>
</head>
<body>
<?php
/* set up array containing all the fields */
Slabels = array ("first_name" => "First Name",
"middle_name" => "Middle Name",
"last_name" => "Last Name",
"phone" => "Phone") ;
foreach ($_POST as $field => $Svalue)

{
/* check each field except middle name for blank
fields */
if (empty (Svalue))
{
if($field != "middle_name")
{
Sblank_array[] = S$field;
}
}
/* check names for invalid formats. */
elseif (Sfield == "first_name" or S$field ==
"middle_name" or $field == "last_name")
{
if (!preg _match("/"[A-Za-z' -]1{1,50}s/",S_
POST[$field]))
{
Sbad_format[] = $field;
}
}
/* check phone for invalid format. */
elseif (Sfield == "phone")
{
if (!preg_match("/~[0-9) (-1{7,20}
(([xX]] (ext) | (ex))?[-12[0-9]1{1,7})?$/",Svalue))
{
Sbad_format[] = S$field;
}
}
}

/* 1f any fields are not okay, display error message
and form */

if (@sizeof (Sblank_array) >0 or @sizeof ($Sbad_format) > 0)

{

(continued)

262

Part lll: PHP

Listing 8-13 (continued)

if (@sizeof (Sblank_array) > 0)
{
/* display message for missing information */
echo "<p>You didn't fill in one or more
required fields.
You must enter:
\n";
/* display list of missing information */
foreach (Sblank_array as S$value)
{
echo " {$Slabels[Svalue] }

\n";
}
echo "</p>\n";
}
if (@sizeof (Sbad_format) > 0)
{
/* display message for bad information */
echo "<p>One or more fields have information
that appears to be incorrect.
Correct the format for:
\n";
/* display list of bad information */
foreach (Sbad_format as Svalue)
{
echo " {$Slabels[Svalue]}

\n";
}
echo "</p>\n";
}
/* redisplay form */
echo "<form action='S_SERVER[PHP_SELF]'
method="'POST'>";
foreach(Slabels as $field => $label)
{
Sclean_data[sfield] =
strip_tags (trim($S_POST[Sfield])) ;
echo "<div class='field'>
<label for='Sfield'>Slabel</label>
<input type='text' name='Sfield'
id='sfield"
size='65"' maxlength='65"
value='Sclean_data[$field]' /></div>\n";
}
echo "<div id='submit'><input type='submit'
value='Submit Phone Number' />\n";
echo "</div>\n</form>\n</body>\n</html>";
exit () ;
}
/* if data 1s good */
echo "<p>All data is good</p></body></html>";
?>

Figure 8-14:
The result

of process-
ing a form
with both
missing and
incorrect
information.
|

Chapter 8: Data In, Data Out 263

Here are the differences between this program and the program in Listing 8-12:

v This program creates two arrays for problem data. It creates $blank_
array, as did the previous program. But this program also creates
$bad_format for fields that contain information that isn’t in an accept-
able format.

v This program loops through $bad_format to create a separate list of
problem data. If any fields are blank, it creates one error message and a
list of problem fields, as did the previous program. If any fields are in an
unacceptable format, this program also creates a second error message
and a list of problem fields.

The Web page in Figure 8-14 results when the user accidentally types his or her
first name into the Middle Name field and also types nonsense for his or her
phone number. Notice that two error messages appear, showing that the First
Name field is blank and that the Phone field contains incorrect information.

(& Check fields - Mozilla Firefox B2
File Edit View Go Bookmarks Tools Help

@-op -8 0 [0 nitpAeatnostF v © o [GL

You didn't fill in ene or more required fields. You must enter:

First Mame
One or more fields have information that appears to be incorrect. Correct the
format for:

Phone

First Name
Middle Name |Goliath
Last Name Smith

Phone oo

[Submit Name and Phane Number

Done

Giving users a choice with
multiple submit buttons

You can use more than one submit button in a form. For instance, in a
customer order form, you might use a button that reads Submit Order and
another button that reads Cancel Order. However, you can list only one pro-
gram in the action=programname part of your form tag, meaning that the
two buttons run the same program. PHP solves this problem. By using PHP,
you can process the form differently, depending on which button the user
clicks. The program in Listing 8-14 displays a form with two buttons.

2064 rartuipp

Listing 8-14: Displaying a Form with Two Submit Buttons

<?php
/* Program name: displayTwoButtons.php
* Description: Program displays a form with two
& buttons.
*/
?>
<html>
<head><title>Two Buttons</title></head>
<body>
<?php
echo "<form action='processTwoButtons.php' method='POST'>
Last Name: <input type='text' name='last_name'
maxlength='50"' />

<input type='submit' name='display_ button'
value='Show Address' />
<input type='submit' name='display button'
value="'Show Phone Number' />
</form>";
?>
</body></html>

Notice that the submit button fields have a name: display_button. The
fields each have a different value. Whichever button the user clicks sets the
value for $display_button. The program processTwoButtons.php in
Listing 8-15 processes the preceding form.

Listing 8-15: Processing Two Submit Buttons

<?php
/* Program name: processTwoButtons.php
* Description: Program displays different information
w depending on which submit button was
& pushed.
*/
?>
<html>
<head><title>Member Address or Phone Number</title></head>
<body>
<?php
Suser="admin";
Shost="1localhost";
Spassword="";
Sdatabase = "MemberDirectory";
Scxn = mysgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("Couldn't connect to server");
if ($_POST['display button'] == "Show Address")
{

Chapter 8: Data In, Data Out 265

Squery = "SELECT street,city,state,zip FROM Member
WHERE lastName='S$S_POST[last name]'";
Sresult = mysqgli_query ($cxn, $Squery)
or die ("Couldn't execute query.");
Srow = mysqgli_fetch_assoc (Sresult) ;
extract (Srow) ;
echo "S$Sstreet
S$city, Sstate S$Szip
";
}
else
{
Squery = "SELECT phone FROM Member
WHERE lastName='S$_POST[last_name]'";
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");
Srow = mysqgli_fetch_assoc (Sresult) ;
echo "Phone: {$Srow|['phone']}";
}
?>
</body></html>

The program executes different statements, depending on which button is
clicked. If the user clicks the button for the address, the program outputs
the address for the name submitted in the form; if the user clicks the Show
Phone Number button, the program outputs the phone number.

Putting Information into a Database

Your application probably needs to store data in your database. For example,
your database might store information that a user typed into a form for your
use — a Member Directory is an example of this. Or your database might
store data temporarily during the application. Either way, you store data by
sending SQL queries to MySQL. (I explain SQL queries in detail in Chapter 4.)

Preparing the data

You need to prepare the data before storing it in the database. Preparing the
data includes the following:

v Putting the data into variables

v Making sure that the data is in the format expected by the database

v (Cleaning the data

v Escaping the data

2006 Pparuipup

3

Putting the data into variables

You store the data by sending it to the database in an SQL query. You add
the data to the query by including the variable names in the query. Most of
the data that you want to store is typed by the user into a form. As [discuss
earlier in this chapter, PHP stores the form data in a built-in array, with the
name of the form field as the array key. You just use the PHP built-in array
elements in the query. Occasionally, you’ll want to store information that you
generate yourself, such as today’s date or a customer order number. You just
need to assign this data to a variable so that you can include it in a query.

Using the correct format

When you design your database, you set the data type for each column. The
data that you want to store must match the data type of the column that you
want to store it in. For instance, if the column expects a data type integer,

the data sent must be numbers. Or if the column expects data that’s a date,
the data that you send must be in a format that MySQL recognizes as a date.
If you send incorrectly formatted data, MySQL still stores the data, but it
might not store the value that you expected. Here’s a rundown of how MySQL
stores data for the most frequently used data types:

»* CHAR or VARCHAR: Stores strings. MySQL stores pretty much any data
sent to a character column, including numbers and dates, as strings.
When you created the column, you specified a length. For example, if
you specified CHAR (20), only 20 characters can be stored. If you send a
string longer than 20 characters, only the first 20 characters are stored.
The remaining characters are dropped.

Set the maxlength for any text input fields in a form to the same length
as the column width in the database where the data will be stored. That
way, the user can’t enter any more characters than the database can
store.

» INT or DECIMAL: Stores numbers. MySQL tries to interpret any data sent
to a number column as a number, whether or not it makes sense. For
instance, it might interpret a date as a number, and you could end up
with a number like 2001.00. If MySQL is unable to interpret the data sent
as a number, it stores 0 (zero) in the column.

v DATE: Stores dates. MySQL expects dates as numbers, with the year
first, month second, and day last. The year can be two or four digits
(2009 or 09). The date can be a string of numbers, or each part can be
separated by a hyphen (), a period (.), or a forward slash (/). Some valid
date formats are 20091203, 980103, 2009-3-2, and 2000.10.01. If MySQL
cannot interpret the data sent as a date, it stores the date as 0000-00-00.

V¥ ENUM: Stores only the values that you allowed when you created the
column. If you send data that is not allowed, MySQL stores a 0.

Chapter 8: Data In, Data Out 26 7

In many cases, the data is collected in a form and stored in the database
as is. For instance, users type their names in a form, and the program
stores them. However, in some cases, the data needs to be changed before
you store it. For instance, if a user enters a date into a form in three sepa-
rate selection lists for month, day, and year (as I describe in the section,
“Building selection lists,” earlier in this chapter), the values in the three
fields must be put together into one variable. The following statements put
the fields together:

$expDate = $_POST['expYear']."-";
SexpDate .= $_POST['expMonth']."-";
SexpDate .= $_POST|['expDay'];

Another case in which you might want to change the data before storing it is
when you're storing phone numbers. Users enter phone numbers in a variety
of formats, using parentheses, dashes, dots, or spaces. Rather than storing
these varied formats in your database, you might just store the numbers.
Then when you retrieve a phone number from the database, you can format
the number however you want before you display it. The following statement
removes characters from the string:

Sphone = preg_replace("/[)(.-1/","",$_POST['phone']) ;

The function preg_replace uses regular expressions to search for a pattern.
The first string passed is the regular expression to match. If any part of the
string matches the pattern, it is replaced by the second string. In this case, the
regular expressionis [) (.-], which means any one of the characters in the
square brackets. The second string is " ", which is a string with nothing in it.
Therefore, any spaces, parentheses, dots, or hyphens in the string (characters
that you might consider valid and allow when checking the data) are replaced
by nothing.

Cleaning the data

The earlier “Getting Information from the User” section, which describes the
use of HTML forms, discusses checking the data in forms. Users can type
data into a text field, either accidentally or maliciously, that can cause prob-
lems for your application, your database, or your users. Checking the data
and accepting only the characters expected for the information requested
can prevent many problems. However, you can miss something. Also, in
some cases, the information that the user enters needs to allow pretty much
anything. For instance, you normally wouldn’t allow the characters < and > in
a field. However, there might be a situation in which the user needs to enter
these characters — perhaps the user needs to enter a technical formula or
specification that requires them.

208 Partii:pup

PHP has two functions that can clean the data, thus rendering it harmless:

V¥ strip_tags: This function removes all text enclosed by < and > from
the data. The function looks for an opening < and removes it and every-
thing following it, until the function finds a closing > or reaches the end
of the string. You can include specific tags that you want to allow. For
instance, the following statement removes all tags from a character
string except and <i>:

Slast_name = strip_tags($last_name, "<i>") ;

» htmlspecialchars: This function changes some special characters
with meaning to HTML into an HTML format that allows them to be dis-
played without any special meaning. The changes are

e < becomes &1t ;
e > becomes > ;
* & becomes &

In this way, the characters < and > can be displayed on a Web page with-
out HTML interpreting them as tags. The following statement changes
these special characters:

Slast_name = htmlspecialchars($Slast_name) ;

If you're positive that you don’t want to allow your users to type any <
or > characters into a form field, use strip_tags. However, if you want
to allow < or > characters, you can safely store them after they've been
processed by htmlspecialchars.

Another function that you should use before storing data in your database is
trim. Users often type spaces at the beginning or end of a text field without
meaning to. Trim removes any leading or trailing spaces so they don’t get
stored. Use the following statement to remove these spaces:

Slast_name = trim(S_POST['last_name']) ;

Escaping the data

A user can type information into your form that, when used in your query,
changes your query so that it operates differently than you expect. Some

of these damaging queries are created by manipulating the quotes in your
query. You can protect against this kind of attack, called an SQL injection, by
escaping any quotes sent in form fields. Escaping special characters, such as
quotes, means to place a backslash (\) in front of the character. The special
character is then treated as any other character, not as a special character
with special meaning, rendering the query safe. I discuss escaping characters
in Chapter 6.

WMBER
@ﬁ
&

Chapter 8: Data In, Data Out 269

PHP versions before version 6 provide a feature called magic quotes that auto-
matically escapes all strings in the $_POST and $_GET arrays. Single quotes,
double quotes, backslashes, and null characters are escaped. This feature,
designed to help beginning users, is controlled by the magic_guotes-gpc
setting in php. ini and is turned on by default in PHP 4 and PHP 5. In PHP 6,
the magic quotes feature is no longer available.

The magic quotes feature is convenient and protects beginning users from
SQL injection attacks that they may be unaware of. However, all $_POST

and $_GET data is escaped, even if it isn’t going to be stored in a database.
This unnecessary escaping is inefficient. In addition, if you just display the
form data or use it in an e-mail, the backslashes in front of the quotes are dis-
played or added to the e-mail, unless you remove them first.

Most experienced users turn off magic quotes and escape quotes using PHP
functions. Even if you use magic quotes in programs you run on PHP 4 or 5,
you must modify your programs before they run correctly on PHP 6. You can
check whether magic quotes are on or off on your Web site with phpinfo ().

If your Web host has magic quotes turned on, you need to turn them off for
the programs in this book to run correctly. If your host allows local php . ini
files, you can turn off magic quotes by adding the following line to your local
php. ini file in the directories where you run scripts:

magic_quotes_gpc = Off

If you can’t use local php . ini files, you may be able to turn off magic quotes
in the .htaccess file. You can’t turn them off in your PHP script. To turn off
magic quotes in the .htaccess file, add the following line to your file:

php_flag magic_quotes_gpc = off

You may not be able to use this line in your .htaccess file. You may get a
system error message after you add this line. If you can’t use a local php.ini
file and can’t add this line to your .htaccess file, you need to contact your
Web host to find out how to change this PHP setting. Then, be sure to turn
off magic quotes on your local computer in your php. ini file so that the set-
tings are the same for your Web site and your development site.

PHP provides the mysqgli_real_escape_string () function (and the
mysgl_real_escape_string function) to escape form data for use in a
MySQL query. The function is used after a connection is made to the MySQL
server. The connection is passed to the function, along with the unescaped
string, and the function escapes the string with respect to the connection. If
magic quotes are on when you use the function, the string is already escaped

270 Ppartiipup

\NG/
&V%“

by magic quotes, resulting in a double escaped string. In this book, all escap-
ing is accomplished using the PHP function mysqgli_real_escape_string.

If you plan to use your scripts on other computers, it may not be safe to
assume that magic quotes are turned on or off. To write portable code, you
need to test whether magic quotes are on or off in the script and then use the
code that fits the status. You can use the PHP escape functions if magic quotes
are turned off or just store the data as if magic quotes is turned on. You can
test whether magic quotes is on or off using the get_magic_quotes_gpc ()
function in a conditional statement. The function returns 0 if magic quotes is
off and 1 if magic quotes is turned on.

Adding new information

You use the INSERT query (described in Chapter 4) to add new information
to the database. INSERT adds a new row to a database table. The general
format is

Squery = "INSERT INTO tablename (col,col,col...)
VALUES ('var',6 'var',6'var'...)";
Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

For instance, the statements to store the name and phone number that a user
enters in a form are

Squery = "INSERT INTO Member (lastName, firstName,phone)
VALUES ('S_POST[lastName]', 'S POST[firstName]',
'S_POST [phone] ') ";
Sresult = mysqgli_query (Squery)
or die ("Couldn't execute query.");

You would never insert data directly from the form field in the $_POST array.
Always check its format first and clean it, as discussed earlier in this chapter.

Listing 8-16 shows a program that displays a form, and Listing 8-17 lists a

program called savePhone.php that processes the form in Listing 8-16 and
stores a name and a phone number from the form in a database.

Listing 8-16: Displaying a Form

<?php

/* Program name: displayPhone
* Description: Script displays a form that asks for
w the customer phone number.
*/

Chapter 8: Data In, Data Out 2 7 ’

Slabels = array ("first_name" => "First Name",
"last_name" => "Last Name",
"phone" => "Phone") ;

?>

<html>

<head>

<title>Customer Phone Number</title>

<style type='text/css'>

2ll==
form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;
margin-right: lem; text-align: right; }
#submit { margin-left: 35%; padding-top: lem; }
-——>
</style>
</head>
<body>

<h3>Please enter your phone number below.</h3>
<form action='savePhone.php' method='POST'>
<?php
/* Loop that displays the form fields */
foreach($labels as s$field => $label)
{
echo "<div class='field'>
<label for='$field'>Slabel</label>
<input type='text' name='sSfield' id='S$field’
size='65"' maxlength='65' /></div>\n";
}
echo "<div id='submit'><input type='submit'
value='Submit Phone Number' />\n";
echo "</div>\n</form>\n</body>\n</html>";
?>

The displayed form provides three fields: first_name, last_name, and
phone.

Listing 8-17: Storing Data from a Form

<?php
/* Program name: savePhone.php
* Description: Program checks all the form fields for

@ blank fields and incorrect format. Saves
X the correct fields in a database.
Y

/* set up array of field labels */

Slabels = array("first_name" => "First Name",
"last_name" => "Last Name",
"phone" => "Phone") ;

(continued)

272 Pratui:php

Listing 8-17 (continued)

?>

<html>

<head>

<title>Customer Phone Number</title>
<style type='text/css'>

<!l--
form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;

margin-right: lem; text-align: right; }

#submit { margin-left: 35%; padding-top: lem; }

-——>

</style>

</head>

<body>

<?php

/* Check information from form */
foreach ($_POST as $field => Svalue)
{
/* check each field for blank fields */
if (empty (Svalue))
{
Sblank_array[] = S$field;
}
/* check format of each field */
elseif (preg_match("/name/i", sfield))

{
if (!preg_match("/"[A-Za-z' -1{1,50}s/",Svalue))
{
Sbad_format[] = $field;
}
}
elseif (Sfield == "phone")
{
if (!preg_match("/"~[0-9) (—]{7,20}(([XX]|(ext)|(eX))?
[-1?2[0-91{1,7})?$/",Svalue))
{
Sbad_format[] = $field;
}
}

}
/* if any fields were not okay, display error and form */
if (@sizeof (Sblank_array) > 0 or @sizeof (Sbad_format) > 0)
{
if (@sizeof (Sblank_array) > 0)
{
/* display message for missing information */
echo "<p>You didn't fill in one or more required
fields. You must enter:
";
foreach (Sblank_array as S$value)

{

Chapter 8: Data In, Data Out 2 73

}

echo " {Slabels[Svalue] }
";

}
echo "</p>";
}
if (@sizeof (Sbad_format) > 0)
{
/* display message for bad information */
echo "<p>One or more fields have information that
appears to be incorrect. Correct the format
for:
";
foreach ($bad_format as S$Svalue)
{
echo " {Slabels[Svalue] }
";
}
echo "</p>";
}

/* redisplay form */
echo "<p><hr />";
echo "<h3>Please enter your phone number below.</h3>";
echo "<form action='$_SERVER[PHP_SELF]' method='post'>";
foreach(Slabels as $field => $label)
{
Sgood_datal[sfield]=strip_tags(trim($S_POST[Sfield])) ;
echo "<div class='field'>
<label for='Sfield'>Slabel</label>
<input type='text' name='s$field' id='S$field’
size='65"' maxlength='65"
value='S$good_data[Sfield]' /></div>\n";
}
echo "<div id='submit'><input type='submit'
value="'Submit Phone Number' />\n";
echo "</div>\n</form>\n</body>\n</html>";
exit () ;

else //if data is okay

{

Suser="admin";
Shost="localhost";
Spasswd="";
Sdbnamee = "MemberDirectory";
Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("couldn't connect to server");
foreach ($labels as S$Sfield => S$Svalue)
{
Sgood_data[$field] =
strip_tags (trim($_POST[S$field])) ;
if($field == "phone")
{
Sgood_data[$field] =
preg_replace("/[)(.-1/","",$good_
datal[sfield]) ;

(continued)

274 Parm:pup

Listing 8-17 (continued)

}

Sgood_data[S$field]
mysqgli_real_ escape_string($cxn,
Sgood_datal[sfield]) ;

}

Squery = "INSERT INTO Phone ("; —118
foreach (Sgood_data as sfield => Svalue) —119
{

Squery .= "$field,";
}
Squery .= ") VALUES ("; —123
Squery = preg_replace("/,\)/",")",$query) ; —124
foreach (Sgood_data as sfield => Svalue) —125
{

Squery .= "'Svalue',";
}
Squery .= ")";
Squery = preg_replace("/,\)/",")",Squery) ;
Sresult = mysgli_query (Scxn, Squery)

or die ("Couldn't execute query.
.mysgli_error (Scxn)) ;

echo "<h4>New Member added to database</h4>";

?>
</body></html>

This program builds on the program checkall .php in Listing 8-13. It checks
the data from the form for blank fields and incorrect formats, asking the user

to

retype the data when it finds a problem. If the data is okay, the program

trims the data, cleans it, and stores it in the database.

Notice that the program builds the query that stores the data. It uses the
information from the $good_data array to build the query. Here’s how it

works:

—118 The first part of the SQL query stores the data set in the variable
Squery.

—119 Starts a foreach loop that adds the field names to the query,
using the concatenation assignment statement (.=).

—123 After the loop, line 123 adds the middle part of the SQL INSERT
query.

—124 Removes the comma that was inserted after the last field name.

—125 The procedure repeats to add the values to the last part of the

query.

Chapter 8: Data In, Data Out 2 75

Your application might need to store data in several places. A function that
stores data from a form can be very useful. The following function stores all
the data in a form:

function storeForm(Sformdata, $tablename, Scxn)
{
if(!is_array(Sformdata))
{
return FALSE;
exit () ;
}
foreach (Sformdata as $field => sSvalue)
{
Sformdata[$field] = trim(Sformdata[$field]) ;
Sformdata[$field] = strip_tags(Sformdatal[$Sfield]) ;
if ($field == "phone")
{
Sformdata[$field] =
preg_replace("/[)(.-1/",
" Sformdata[Sfield]) ;
}
Sfield_array[]l=S$field;
Svalue_array[]=Sformdatal[sfield];

}

Sfields=implode(",",s$field_array) ;
Svalues=implode('", "', Svalue_array) ;
Squery = "INSERT INTO Stablename (Sfields)

VALUES (\"Svalues\")";
if (Sresult = mysqgli_query($Scxn, Squery))
return TRUE;
else
return FALSE;
}

The function returns TRUE if it finishes inserting the data without an error or
FALSE if it is unable to insert the data. At the beginning, the function checks
that the data passed to it is actually an array. If $formdata isn’t an array, the
function stops and returns FALSE.

Notice that this function works only if the field names in the form are the
same as the column names in the database table. Also notice that this func-
tion assumes you're already connected to the MySQL server and have
selected the correct database. The database connection is passed to the
function.

The following code shows how you can call the function:

276 Ppartuipp

else //if data is okay
{
Suser="admin";
Shost="localhost";
Spassword="";
Sdatabase = "MemberDirectory";
Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("couldn't connect to server");
if (storeForm(Sgood_data, "Phone", Scxn))
echo "New Member added to database
";
else
echo "New Member was not added to the database
";

}
?>
</body></html>

Notice how much easier this program is to read with the majority of the
statements in the function. Furthermore, this function works for any form
as long as the field names in the form are the same as the column names in
the database table. If the function is unable to execute the query, it stops
execution at that point and prints the error message "Couldn't execute
query". If the query might fail in certain circumstances, you need to take
these into consideration.

Updating existing information

You update existing information with the UPDATE query, as [describe in
Chapter 4. Updating means changing data in the columns of rows that are
already in the database — not adding new rows to the database table. The
general format is

Squery = "UPDATE tablename SET col=value WHERE col=value";
Sresult = mysqgli_query ($cxn, Squery)
or die ("Couldn't execute query.");

For instance, the statements to update the phone number for Goliath
Smith are

Squery = "UPDATE Member SET phone='S$_POST|[phone]'
WHERE lastName='S$S_POST[lastName] '
AND firstName='S$S_POST[firstName]'";
Sresult = mysqgli_query (Scxn, Squery)
NNG/ or die ("Couldn't execute query.");
RN
If you don’t use a WHERE clause in an UPDATE query, the field that is SET is set
for all the rows. That is seldom what you want to do.

Chapter 8: Data In, Data Out 2 77

WING/
&

You would never update data using data directly from the form field in the
$_POST array. Always check its format first and clean it, as discussed earlier.

Listing 8-18 shows a program called updatePhone . php, which updates a
phone number in an existing database record. updatePhone.php processes
data from the same form as storePhone . php — the form displayed by
displayPhone.php listed in Listing 8-16. You just need to change the form
tag so that the program in the action attribute is updatePhone.php, as
follows:

echo "<form action='updatePhone.php' method='POST'>";

Listing 8-18: Updating Data

<?php

/* Program name: updatePhone.php
* Description: Program checks the phone number for
e incorrect format. Updates the phone
w number in the database

& for the specified name.

Y
Slabels = array ("first_name" => "First Name",
"last_name" => "Last Name",
"phone" => "Phone") ;
?>
<html>
<head>

<title>Customer Phone Number Update</title>
<style type='text/css'>
<!--
form { margin: 1.5em 0 0 0; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 20%;
margin-right: lem; text-align: right; }
#submit { margin-left: 35%; padding-top: lem; }
==z
</style>
</head>

<body>
<?php
/* check each field for blank fields */
foreach ($_POST as $field => svalue)
{

if (empty (Svalue))

{

Sblank_array[] = S$field;

}

}

(continued)

278 Partiil:pHp

Listing 8-18 (continued)

/* check format of phone number */
if (!preg_match

{
}

("/7~10-9) (=1{7,20} (([xX] | (ext) | (ex))?
[-12[0-91{1,7})2$/",
S_POST['phone']))

Sbad_format[] = "phone";

/* if any fields were not okay, display error and form */
if (@sizeof (Sblank_array) > 0 or @sizeof ($bad_format) > 0)

{

}

if (@sizeof (Sblank_array) > 0)
{
/* display message for missing information */
echo "<p>You didn't fill in one or more required
fields. You must enter:
";
/* display list of missing information */
foreach (Sblank_ array as Svalue)

{
echo " {$labels[$Svalue] }
";

}
echo "</p>";
}
if (@sizeof (Sbad_format) > 0)
{
/* display message for bad phone number */
echo "<p>Your phone number appears to be incorrect.
</p>";
}

/* redisplay form */
echo "<p><hr />";
echo "<h3>Please enter your phone number below.</h3>";
echo "<form action='$_SERVER[PHP_SELF]' method='post'>";
foreach(Slabels as $field => $label)
{
Sgood_data[$field] = strip_tags(trim(s$S_POST[Sfield]));
echo "<div class='field'>
<label for='Sfield'>S$label</label>
<input type='text' name='sSfield' id='S$field’
size='65"' maxlength='65"
value="'sSgood_datal[$field]"' /></div>\n";
}
echo "<div id='submit'><input type='submit'
value="'Submit Phone Number' />\n";
echo "</div>\n</form>\n</body>\n</html>";
exit () ;

else //if data is okay

{

\NG/
Vg‘\\

Chapter 8: Data In, Data Out 2 79

Sgood_datal 'phone"'] strip_tags (trim($S_POST|['phone'])) ;
Sgood_datal 'phone"']
ereg_replace
Suser="admin";
Shost="localhost";
Spasswd="";
Sdbname = "MemberDirectory";
Scxn = mysqgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("Couldn't connect to server");
Squery = "UPDATE Phone SET phone='S$good_data[phone] '
WHERE last_name='S$_POST[last_name]'
AND first_name='S$S_POST[first_name]'";
Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query: "
.mysgli_error (Scxn)) ;
if (mysgli_affected_rows (Scxn) > 0)

{

—~ 11

"[)(.-]","",Sgood_datal 'phone']) ;

echo "<h3>The phone number for {$_POST['first_name']}
{S_POST['last_name']} has been updated</h3>";
}
else
echo "No record updated";
}
?>
</body></html>

The program in Listing 8-18, which updates the database, is very similar

to the program in Listing 8-17, which adds new data. Using an UPDATE
query in this program — instead of the INSERT query you used to add new
data — is the major difference. Both programs check the data and then
clean it because both programs store the data in the database.

If you see backslashes (\) in the database after you have inserted or updated
the record, your data was escaped twice. This probably means you have
magic quotes turned on and also used mysqgli_real_escape_guotes. Turn
off magic quotes. When your strings are escaped correctly, the escapes make
sure the query is executed correctly, but the escapes are not stored in the
database.

Getting Information in Files

Sometimes you want to receive an entire file of information from a user, such
as user résumés for your job-search Web site or pictures for your photo
album Web site. Or, suppose you're building the catalog from information
supplied by the Sales department. In addition to descriptive text about the
product, you want Sales to provide a picture of the product. You can supply
a form that Sales can use to upload an image file.

280 rartui:pup

Using a form to upload the file

You can display a form that allows a user to upload a file by using an HTML
form designed for that purpose. The general format of the form is as follows:

<form enctype="multipart/form-data"
action="processfile.php" method="post">

<input type="hidden" name="MAX_FILE_SIZE" value="30000" />

<input type="file" name="user_file" />

<input type="submit" value="Upload File" />

</form>

Notice the following points regarding the form:

1 The enctype attribute is used in the form tag. You must set this attri-
bute tomultipart/form-data when uploading a file to ensure that
the file arrives correctly.

v+ A hidden field is included that sends a value (in bytes) for MAX FILE
SIZE. If the user tries to upload a file that is larger than this value, it
won’t upload. You can set this value as high as 2MB. If you need to
upload a file larger than that, you must change the default setting for
upload_max_filesize in php.ini to alarger number before sending
a value larger than 2MB for MAX_FILE_SIZE in the hidden field.

v The input field that uploads the file is of type £ile. Notice that the
field has a name — user_file — as do other types of fields in a form.
The filename that the user enters into the form is sent to the processing
program and is available in the built-in array called FILES. | explain the
structure and information in FILES in the following section.

When the user submits the form, the file is uploaded to a temporary location.
The script that processes the form needs to copy the file to another location
because the temporary file is deleted as soon as the script is finished.

Processing the uploaded file

Information about the uploaded file is stored in the PHP built-in array
called $_FILES. An array of information is available for each file that was
uploaded, resulting in $_FILES being a multidimensional array. As with
any other form, you can obtain the information from the array by using the
name of the field. The following is the array available from $_FILES for
each uploaded file:

WBER
‘x&
&

Chapter 8: Data In, Data Out 28’

S_FILES['fieldname'] ['name']
S_FILES['fieldname']['type']
S_FILES['fieldname'] ['tmp_name']
S_FILES['fieldname']['size']

For example, suppose that you use the following field to upload a file, as
shown in the preceding section:

<input type="file" name="user_file" />

If the user uploads a file named test. txt by using the form, the resulting
array that can be used by the processing program looks something like this:

S_FILES[user_ file] [name] = test.txt
S_FILES[user_file] [type] = text/plain
S_FILES[user_file] [tmp_name] = D:\WINNT\php92C.tmp
S_FILES[user_ file][size] = 435

In this array, name is the name of the file that was uploaded, type is the type
of file, tmp_name is the path/filename of the temporary file, and 435 is the
size of the file. Notice that name contains only the filename, but tmp_name
includes the path to the file as well as the filename.

If the file is too large to upload, the tmp_name in the array is set to none,
and the size is set to 0. The processing program must move the uploaded file
from the temporary location to a permanent location. The general format of
the statement that moves the file is as follows:

move_uploaded_file(path/tempfilename, path/permfilename) ;

The path/tempfilename is available in the built-in array element $_FILES
['fieldname']['tmp_file'].The path/permfilename is the path to
the file where you want to store the file. The following statement moves the
file uploaded in the input field, given the name user_file, shown earlier in
this section:

move_uploaded_file(S_FILES['user_file']['tmp_name'],
'c:\data\new_file.txt"');

The destination directory (in this case, c: \data) must exist before the file
can be moved to it. This statement doesn’t create the destination directory.

Allowing strangers to load files onto your computer is a security risk; some-
one might upload malicious files. You want to check the files for as many fac-
tors as possible after they’re uploaded, using conditional statements to check
file characteristics, such as expected file type and size. In some cases, for even
more security, it might be a good idea to change the name of the file to some-
thing else so that users don’t know where their files are or what they’re called.

282 rartin:pup

Putting it all together

A complete example script is shown in Listing 8-19. This program displays a
form for the user to upload a file, saves the uploaded file, and then displays a
message after the file has been successfully uploaded. That is, this program
both displays the form and processes the form. This program expects the
uploaded file to be an image file and tests to make sure that it’s an image file,
but any type of file can be uploaded. The HTML code that formats and dis-
plays the form is in a separate file — the include file shown in Listing 8-20.
A Web page displaying the form is shown in Figure 8-15.

Listing 8-19: Uploading a File with a POST Form

<?php
/* Script name: uploadFile.php
* Description: Uploads a file via HTTP with a POST form.

*/
if(!isset (S_POST['Upload'])) —5
{
include ("form_upload.inc") ;
}
else —9
{
if(S_FILES|['pix']['tmp_name'] == "none") —11
{
echo "<p style='font-weight: bold'>
File did not successfully upload. Check the
file size. File must be less than 500K.</p>";
include ("form_upload.inc") ;
exit () ;
}
if (lereg("image",S_FILES['pix']['type'l)) —19
{
echo "<p style='font-weight: bold'>
File is not a picture. Please try another
file.</p>";
include ("form_upload.inc") ;
exit () ;
}
else —27
{
Sdestination='c:\data'."\\".S_FILES['pix']['name'];
Stemp_file = $_FILES['pix']['tmp_name'];
move_uploaded_file(Stemp_file, Sdestination) ;
echo "<p style='font-weight: bold'>
The file has successfully uploaded:
{S_FILES['pix']['name']}
({S_FILES['pix']['size'l})</p>";
}
}

?>

Chapter 8: Data In, Data Out 283

Here’s how Listing 8-19 works:

—5 This line is an if statement that tests whether the form has been
submitted. If not, you can display the form by including the file con-
taining the form code. The include file is shown in Listing 8-20.

—9 This line starts an else block that executes if the form has been
submitted. This block contains the rest of the script and pro-
cesses the submitted form and uploaded file.

—11 This line begins an if statement that tests whether the file was
successfully uploaded. If not, an error message is displayed, and
the form is redisplayed.

—19 This line is an i f statement that tests whether the file is a picture.
If not, an error message is displayed, and the form is redisplayed.

—27 This line starts an else block that executes if the file has been
successfully uploaded. The file is moved to its permanent destina-
tion, and a message is displayed to tell the user that the file has
been uploaded.

Listing 8-20 shows the include file used to display the upload form.

Listing 8-20: An Include File That Displays the File Upload Form

<!-- Program Name: form upload.inc
Description: Displays a form to upload a file -->
<html>
<head><title>File Upload</title></head>
<body>
Enter the file name of the product picture you
want to upload or use the browse button
to navigate to the picture file.</1li>
When the path to the picture file shows in the
text field, click the Upload Picture
button.</1i>

<div align="center"><hr />
<form enctype="multipart/form-data"
action="uploadFile.php" method="POST">
<input type="hidden" name="MAX_FILE_ SIZE"
value="500000" />
<input type="file" name="pix" size="60" />
<p><input type="submit" name="Upload"
value="Upload Picture" />
</form>
</div></body></html>

Notice that the include file contains no PHP code — just HTML code.

284 pa:pup

The form that allows users to select a file to upload is shown in Figure 8-15.

The form has a text field for inputting a filename and a Browse button that
enables the user to navigate to the file and select it.

Upload - Microsoft Internet Explorer

J le Edit View Favorites Tools Help |
J + Back ¥ = - @ ot | @Seamh (%] Favorites @Histnw ||%' 5

J Address |@ http:#/localhost/PHPEMyS ALForD ummies/uploadFile.php

j @ Go

-

1. Enter the file name of the product picture you want to upload or use the browse button to
nawvigate to the picture file.

2. When the path to the picture file shows in the text field, click the Upload Picture button.
|

Figure 8-15:
A form that Eeisen]

allows users Upload Pictura |
to upload an
image file.

[
|@ Done ’_’_‘ Local intranet

B

Chapter 9

Moving Information from One
Web Page to the Next

In This Chapter

Moving your user from one page to the next
Moving information from one page to the next
Adding information to a URL

Taking a look at cookies

Using hidden form fields

Discovering PHP sessions

M ost Web sites consist of more than one Web page. This includes the
static Web pages that you may have developed in the past. With static
Web pages, users click a link in one Web page, and a new Web page appears
in their browser. When users move from page to page this way, no informa-
tion is transferred from the first page to the second. Each new page that is
sent to the user’s browser is independent of any other pages the user may
have seen previously.

With dynamic Web pages, you may need to transfer information from one
page to the next. If you're an advanced HTML developer, you may have expe-
rience with limited methods for transferring information from one page to
the next using HTML forms and CGI (Common Gateway Interface) or cookies.
However, PHP is a more powerful method for passing information from Web
page to Web page.

286 Parii:pup

Moving Your User from
One Page to Another

When using only HTML, you provide links so that a visitor can go from one
page to another in your Web site. When using PHP, you have three options
for moving your user from one page to the next:

v Links: You can echo the HTML tags that display a link. The general
format of an HTML statement that displays a link is

Text user sees as a link

When users click the link, the program newpage . php is sent to their
browsers. This method is used extensively in HTML Web pages. You're
likely familiar with creating links from your HTML experience, but if you
need a refresher, find out more about links in any HTML book, such as
HTML 4 For Dummies Quick Reference, 2nd Edition, by Deborah S. Ray
and Eric J. Ray (Wiley).

v Form submit buttons: You can use an HTML form with one or more
submit buttons. When the user clicks a submit button, the program in
the form tag runs and sends a new Web page to the user’s browser. You
can create a form with no fields — only a submit button — but the user
must click the submit button to move to the next page. I discuss forms
and submit buttons thoroughly in Chapter 8.

+* The header function: You can send a message to the Web server with
the PHP header function that tells the server to send a new page. When
using this method, you can display a new page in the user’s browser
without the user having to click a link or a button.

You can use the PHP header function to send a new page to the user’s
browser. The program uses a header statement and displays the new

Web page without needing any user action. When the header statement is
executed, the new page is displayed. The format of the header function that
requests a new page is

header ("Location: URL") ;

The file located at URL is sent to the user’s browser. Either of the following
statements are valid header statements:

header ("Location: newpage.php") ;
header ("Location: http://company.com/cat/catalog.php") ;

Chapter 9: Moving Information from One Web Page to the Next 28 7

URLs

A URL (Uniform Resource Locator) is an address
on the Web. Every Web page has its own URL
or address. The URL is used by the Web server
to find the Web page and send it to a browser.

The format of a URL is

HTTP://servername: portnumber/
path#target?string=string

Here's a breakdown of the parts that make up
the URL:

Vv HTTP://servername: This part tells
the server that the address is a Web site
and gives the name of the computer where
the Web site is located. Other types of
transfer can be specified, such as FTP
(File Transfer Protocol), but these aren't
related to the subject of this book. If this
part of the URL is left out, the Web server
assumes that the computer is the same
computer that the URL is typed on. Valid
choices for this part might be HTTP: / /
amazon.comOrHTTP: //localhost.
Note:HTTP doesn't have to be in uppercase
letters.

Vv :portnumber: The Web server
exchanges information with the Internet at
a particular port on the computer. Most of
the time, the Web server is set up to com-
municate via port 80. If the port number
isn't specified, port 80 is assumed. In some
unusual circumstances, a Web server may
use a different port number, in which case
the port number must be specified. The
most common reason for using a different
port number is to set up a test Web site on
another port that's available only to devel-
opers and testers, not customers. When the

site is ready for customers, it is made avail-
able on port 80.

path: This is the path to the file, which
follows the rules of any path. The root of
the path is the main Web site directory. If
the path points to a directory, rather than a
file, the Web server searches for a default
filename, such as default.html or
index.html. The person who adminis-
ters the Web site sets the default filename.
The path /catalog/show.php indi-
cates a directory called catalog in the
main Web site directory and a file named
show.php. The path catalog/show.
php indicates a directory called catalog
in the current directory.

#target: An HTML tag defines a target.
This part of the URL displays a Web
page at the location where the target
tag is located. For instance, if the tag isinthe middle
of the file somewhere, the Web page will be
displayed at the tag rather than at the top of
the file.

?string=string: The question mark
allows information to be attached to the end
of the URL. The information in forms that use
the get method is passed at the end of the
URL in the format fieldname=value.
You can add information to the end of a URL
to pass it to another page. PHP automati-
cally gets information from the URL and puts
it into built-in arrays. You can pass more
than one string=string pair by sepa-
rating each pair with an ampersand (&): for
example, ?state=CA&city=home.

288 partin:pHp

Statements that must come before output

Some PHP statements can only be used before sending any output. header statements,
setcookie statements, and session functions, all described in this chapter, must all come
before any output is sent. If you use one of these statements after sending output, you may see the
following message:

Cannot add header information - headers already sent

The message also provides the name of the file and indicates which line sent the previous output.
Or you might not see a message at all; the new page might just not appear. (Whether you see an
error message depends on what error message level is set in PHP; see Chapter 6 for details.) The
following statements will fail because the header message is not the first output:

<body>
<?php
header ("Location: http://company.com") ;
?>
</body>

One line of HTML code is sent before the header statement. The following statements will work,
although they don't make much sense:

<?php
header ("Location: http://company.com") ;
?>
<body>
</body>

The following statements will fail:

<?php

header ("Location: http://company.com") ;
?>
<html>

The reason why these statements fail isn't easy to see, but if you look closely, you'll notice a single
blank space before the opening PHP tag. This blank space is output to the browser, although the
resulting Web page looks empty. Therefore, the header statement fails because there is output
before it. This is a common mistake and difficult to spot.

The header function has a major limitation, however. You must use the
header statement only before you send any other output. You cannot send
a message requesting a new page in the middle of a program after you have
echoed some output to the Web page. See the sidebar “Statements that must
come before output” for a discussion.

Chapter 9: Moving Information from One Web Page to the Next 289

In spite of its limitation, the header function can be useful. You can have
as many PHP statements as you want before the header function as long as
they don’t send output. Therefore, the following statements will work:

<?php
if (Scustomer_age < 13)
{
header ("Location: ToyCatalog.php") ;

}
else

{

header ("Location: ElectronicsCatalog.php") ;

}

?>

These statements run a program that displays a toy catalog if the customer’s
age is less than 13 but run a program that displays an electronics catalog if
the customer’s age is 13 or older.

Moving Information from Page to Page

HTML pages are independent from one another. When a user clicks a link,
the Web server sends a new page to the user’s browser, but the Web server
doesn’t know anything about the previous page. For static HTML pages, this
process works fine. However, many dynamic applications need information
to pass from page to page. For instance, you might want to store a user’s
name and refer to that person by name on another Web page.

Dynamic Web applications often consist of many pages and expect the user
to view several different pages. The period beginning when a user views the
first page and ending when a user leaves the Web site is a session. Often you
want information to be available for a complete session. The following are
examples of sessions that necessitate sharing information among pages:

1 Restricting access to a Web site: Suppose that your Web site is
restricted and users log in with a password to access the site. You don’t
want users to have to log in on every page. You want them to log in once
and then be able to see all the pages that they want. You want users to
bring information with them to each page showing that they have logged
in and are authorized to view the page.

1 Providing Web pages based on the browser: Because browsers interpret
some HTML features differently, you might want to provide different ver-
sions of your Web pages for different browsers. You want to check the
user’s browser when the user views the first page and then deliver all the
other pages based on the user’s browser type and version.

290 Ppartui:pp

With PHP, you can move information from page to page by using any of the
following methods:

v Adding information to the URL: You can add certain information to the
end of the URL of the new page, and PHP puts the information into built-
in arrays that you can use in the new page. This method is most appro-
priate when you need to pass only a small amount of information.

v Storing information via cookies: You can store cookies — small
amounts of information containing variable=value pairs — on the
user’s computer. After the cookie is stored, you can get it from any
Web page. However, users can refuse to accept cookies. Therefore, this
method works only in environments where you know for sure that the
user has cookies turned on.

v Passing information using HTML forms: You can pass information to a
specific program by using a form tag. When the user clicks the submit
button, the information in the form is sent to the next program. This
method is useful when you need to collect information from users.

v Using PHP session functions: Beginning with PHP 4, PHP functions
are available that set up a user session and store session information
on the server; this information can be accessed from any Web page.
This method is useful when you expect users to view many pages in a
session.

Adding information to the URL

A simple way to move information from one page to the next is to add the
information to the URL. Put the information in the following format:

variable=value
The variableis a variable name, but do not use a dollar sign ($) in
it. The value is the value to be stored in the variable. You can add the
variable=value pair anywhere that you use a URL. You signal the start of
the information with a question mark (?). The following statements are all
valid ways of passing information in the URL:

<form action="nextpage.php?state=CA" method="POST">

go to next page

header ("Location: nextpage.php?state=CA") ;

Chapter 9: Moving Information from One Web Page to the Next 29 ’

You can add several variable=value pairs, separating them with amper-
sands (&) as follows:

<form action="next.php?state=CA&city=home" method="POST">
Here are two reasons why you might not want to pass information in the URL:

v Security: The URL is shown in the address line of the browser, which
means that the information that you attach to the URL is also shown. If
the information needs to be secure, you don’t want it shown so publicly.
For example, if you're moving a password from one page to the next, you
probably don’t want to pass it in the URL. Also, the URL can be book-
marked by the user. There may be reasons why you don’t want your
users to save the information that you add to the URL.

v Length of the string: There is a limit on the length of the URL. The limit
differs for various browsers and browser versions, but there’s always a
limit. Therefore, if you're passing a lot of information, you may not have
room for it in the URL.

Adding information to the URL is useful for quick, simple data transfer. For
instance, suppose that you want to provide a Web page where users can
update their phone numbers. You want the form to behave as follows:

1. When the user first displays the form, the phone number from the data-
base is shown in the form so that the user can see what number is cur-
rently stored in the database.

2. When the user submits the form, the program checks the phone number
to see whether the field is blank or whether the field is in a format that
couldn’t possibly be a phone number.

3. If the phone number checks out okay, it’s stored in the database.

4. If the phone number is blank or has bad data, the program redisplays
the form. However, this time you don’t want to show the data from the
database. Instead, you want to show the bad data that the user typed
and submitted in the form field.

The changePhone . php program in Listing 9-1 shows how to use the URL to
determine whether this is the first showing of the form or a later showing.
The program displays the phone number for the user’s login name and allows
the user to change the phone number.

292 Prartiil:pup

Listing 9-1: Displaying a Phone Number in a Form

<?php

/*
*
*

*
*

?>

Program name: changePhone.php

Description: Displays a phone number retrieved
from the database and allows the user
to change the phone number.

/

<html>
<head><title>Change phone number</title></head>
<body>
<?php

Shost="localhost";
Suser="admin";

Spassword="";
Sdatabase="MemberDirectory";
SloginName = "gsmith"; // passed from previous page

Scxn = mysqgli_connect (Shost, Suser, Spassword, Sdatabase)
or die ("couldn't connect to server");

if (@$_GET['first'] == "no") —19
{
$phone = trim($_POST['phone']) ; —21
if(lereg(""[0-9) (-1{7,20}$",Sphone) or S$phone=="")

{
echo "<h3 style='text-align: center'> Phone
number does not appear to be valid.</h3>";
display_ form($SloginName, Sphone) ; —26
}
else // phone number is okay —28
{
Squery = "UPDATE Member SET phone='S$phone'
WHERE loginName='S$loginName'";
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");
echo "<h3>Phone number has been updated.</h3>";

exit () ;
}
}
else // first time form is displayed —38
{
Squery = "SELECT phone FROM Member

WHERE loginName='S$loginName'";
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");
Srow = mysgli_fetch row(Sresult) ;
Sphone = Srowl[0];
display_ form(SloginName, Sphone) ; —45

Chapter 9: Moving Information from One Web Page to the Next 293

function display_form($SloginName, Sphone) —48
{
echo "<div style='text-align: center'>";
echo "<form action='S$_SERVER[PHP_ SELF]?first=no' —51
method="'POST' >
<h4>Please check the phone number below
and correct it if necessary.</hd><hr />
<p>$1loginName
<input type='text' name='phone'
maxlength='20"' value='S$phone'></p>
<p><input type='submit'
value="'Submit phone number'></p>
</form>";
echo "</div>";
}
?>
</body></html>

Notice the following key points about this program:

v The same program displays and processes the form. The name of
this program is changePhone .php. The form tag on line 51 includes
action='$_SERVER[PHP_SELF], meaning that when the user clicks
the submit button, the same program runs again.

v Information is added to the URL. The form tag on line 51 includes
action='$_SERVER[PHP_ SELF]?first=no'. When the user clicks
the submit button and changePhone . php runs the second time, a vari-
able $first is passed with the value "no".

v The value that was passed for £irst in the built-in §_GET array is
checked at the beginning of the program on line 19. This code checks
whether this is the first time the program has run.

v If $_GET[first] equals "no", the phone number is checked.
$_GET[first] equals no only if the form is being submitted.

$_GET[first] does not equal no if this is the first time through the
program.

e [f the phone number is not okay, an error message is printed, and
the form is redisplayed. This block of code starts on line 22.

e If the phone number is okay, it’s stored in the database, and the
program ends. This block of code starts on line 28.

v If $_GET[first] does not equal "no", the phone number is retrieved
from the database. In other words, if $_GET[first] doesn’t equal no,
it is the first time that the program has run. The program should get the
phone number from the database. This block of code starts on line 38.

294 Par:pup

|
Figure 9-1:
HTML form
to update

a phone
number.
|

|
Figure 9-2:
HTML form
when a user
submits a
nonsense
phone
number.
|

v The program includes a function that displays the form. The function
is defined beginning on line 48. Whenever the form needs to be dis-
played, the function is called (lines 26 and 45).

The form displayed by the program in Listing 9-1 is shown in Figure 9-1. This
shows what the Web page looks like the first time it’s displayed. The URL in
the browser address field doesn’t have any added information.

& Change phone number - Mozilla Firefox

S|E*]

File Edit View Go Bookmarks Tools Help

a-o - &) |0 mtpdocathostF [v| @ o [GL

Please check the phone nunber below and correct it if necessary.

gsmith 123-123-1234

Subrit phone number

Dane

Figure 9-2 shows the results when a user types a nonsense phone number in
the form in Figure 9-1 and clicks the submit button. Notice that the URL in the
browser address field now has ?first=no added to the end of it.

& Change phone number - Mozilla Firefox

SE*]

File Edit View Go Bookmarks Tools Help
@ - -8) [0 nitp#ocalnostF [v| © Go [GL

Phone number does not appear to be valid.

Please check the phone nunber below and correct it if necessary.

gsmith | 12312300

Submit phone number

Done

Storing information via cookies

You can store information as cookies. Cookies are small amounts of informa-
tion containing variable=value pairs, similar to the pairs that you can
add to a URL. The user’s browser stores cookies on the user’s computer.
Your application can then get the cookie from any Web page. Why these are

Chapter 9: Moving Information from One Web Page to the Next 295

called cookies is one of life’s great mysteries. Perhaps they’re called cook-
ies because they seem at first glance to be a wonderful thing, but on closer
examination, you realize that they aren’t that good for you. For some people
in some situations, cookies aren’t helpful at all.

At first glance, cookies seem to solve the entire problem of moving data from
page to page. Just stash a cookie on the user’s computer and get it whenever
you need it. In fact, the cookie can be stored so that it remains there after
the user leaves your site and is still available when the user enters your Web
site again a month later. Problem solved! Well, not exactly. Cookies are not
under your control: They’re under the user’s control. The user can delete the
cookie at any time. In fact, users can set their browsers to refuse to allow any
cookies. And many users do refuse cookies or routinely delete them. Many
users aren’t comfortable with the whole idea of a stranger storing things on
their computers, especially files that remain after they leave the stranger’s
Web site. It’s an understandable attitude. However, it definitely limits the use-
fulness of cookies. If your application depends on cookies and the user has
turned off cookies, your application won’t work for that user.

Cookies were originally designed for storing small amounts of information for
short periods of time. Unless you specifically set the cookie to last a longer
period of time, the cookie disappears when the user closes his or her browser.
Although cookies are useful in some situations, you're unlikely to need them
for your Web database application for the following reasons:

v Users may set their browsers to refuse cookies. Unless you know for
sure that all your users will have cookies turned on or you can request
that they turn on cookies (and expect them to follow your request),
cookies are a problem. If your application depends on cookies, it won’t
run if cookies are turned off.

1~ PHP has features that work better than cookies. Beginning with PHP 4,
PHP includes functions that create sessions and store information that’s
available for the entire session. The session feature is more reliable and
much easier to use than cookies for making information available to all
the Web pages in a session. Sessions don’t work for long-term storage of
information, but MySQL databases can be used for that.

+* You can store data in your database. Your application includes a data-
base where you can store and retrieve data, which is usually a better
solution than a cookie. Users can’t delete the data in your database unex-
pectedly. Because you're using a database in this application, you can use
it for any data storage needed, especially long-term data storage. Cookies
are more useful for applications that don’t make use of a database.

You store cookies by using the setcookie function. The general format is

setcookie("variable", "value") ;

296 rartui:prp

WING/

&@

The variableis the variable name, but do not include the dollar sign ($).
This statement stores the information only until the user leaves your Web
site. For instance, the following statement

setcookie("state", "CA") ;

stores CA in a cookie variable named state. After you set the cookie, the
information is available to your other PHP programs in the element of a built-
in array as $_COOKIE[state]. You don’t need to do anything to get the
information from the cookie. PHP does this automatically. The cookie is not
available in the program where it’s set. The user must go to another page or
redisplay the current page before the cookie information can be used.

If you're using a version of PHP earlier than PHP 4.1, you must get the data
from the long array called $SHTTP_COOKIE_VARS. However, long arrays are
no longer available in PHP 6. To run old scripts in PHP 6, you must change the
array name in your code from SHTTP_COOKIE_VARS to $_COOKIE.

If you want the information stored in a cookie to remain in a file on the user’s
computer after the user leaves your Web site, set your cookie with an expira-
tion time, as follows:

setcookie ("variable", "value", expiretime) ;

The expiretime value sets the time when the cookie expires. expiretime
is usually set by using the time or mktime function, as follows:

v time: This function returns the current time in a format that the com-
puter can understand. You use the time function plus a number of sec-
onds to set the expiration time of the cookie, as follows:

setcookie("state", "CA",time ()+3600); //expires in 1
hour

setcookie ("Name", SName, time () +(3*86400)) // exp in 3
days

v mktime: This function returns a date and time in a format that the com-
puter can understand. You must provide the desired date and time in
the following order: hour, minute, second, month, day, and year. If any
value is not included, the current value is used. You use the mktime
function to set the expiration time of the cookie, as follows:

setcookie("state", "CA",mktime(3,0,0,4,1,2009)) ;
//expires at 3:00 AM on April 1, 2009.
setcookie("state","CA" ,mktime (12,0,0,,,));
//expires at noon today

\NG/
Vg‘\\

Chapter 9: Moving Information from One Web Page to the Next 29 7

You can remove a cookie by setting its value to nothing. Either of the follow-
ing statements removes the cookie:

setcookie ("name") ;
setcookie("name","") ;

The setcookie function has a major limitation. The setcookie function can
only be used before any other output is sent. You cannot set a cookie in the
middle of a program after you’'ve echoed output to the Web page. See the side-
bar “Statements that must come before output” elsewhere in this chapter.

Passing information with HTML forms

The most common way to pass information from one page to another is with
HTML forms. An HTML form is displayed with a submit button. When the
user clicks the submit button, the information in the form fields is passed to
the program designated in the form tag. The general format is

<form action="processform.php" method="POST">
tags for one or more fields
<input type="submit" value="string">
</form>

The most common use of a form is to collect information from users (which

[discuss in detail in Chapter 8). However, forms can also be used to pass
other types of information using hidden fields — fields that are not displayed
in the form. In fact, you can create a form that has only hidden fields. You
always need a submit button, and the new page doesn’t display until the user
clicks the submit button, but you don’t need to include any fields for the user
to fill in.

For instance, the following statements pass the user’s preferred background
color to the next page when the user clicks a button named Next Page:

<?php
Scolor="blue"; //passed to this program via a user form
echo "<form action='nextpage.php' method='POST'>
<input type='hidden' name='color' value='Scolor'>
<input type='submit' value='Next Page'>
</form>\n";
?>

The Web page shows a submit button labeled Next Page, but it doesn’t ask
the user for any information. When the user clicks the button, nextpage . php
runs and can use the array element $_POST [color], which contains "blue".

298 Partu:pp

Using PHP Sessions

A session is the time that a user spends at your Web site. Users can view
many Web pages between the time they enter your site and leave it. Often
you want information to follow the user around your site so that it’s available
on every page. PHP, beginning with version 4.0, provides a way to do this.

Understanding how PHP sessions work

PHP enables you to set up a session on one Web page and save variables as
session variables. Then you can open the session in any other page, and the
session variables are available for your use in the built-in array $_SESSION.
To do this, PHP does the following:

A\

1. Assigns a session ID number.

The number is a long, nonsense number that is unique for the user and
that no one could possibly guess. The session ID is stored in a PHP
system variable named PHPSESSID.

. Stores session variables in a file on the server.

Your Web host provides a place to store your session file; you don’t
need to know where it is. On your local computer, the file is named with
the session ID number in \ tmp on Unix and Linux or in the session
data directory in the main PHP directory in Windows.

On your local computer, you can change the location where the session
files are stored by changing the setting for session.save_path in
php.ini. Change the path to the location where you want to store the
files.

. Passes the session ID number to every page.

If the user has cookies turned on, PHP passes the session ID using
cookies. If the user has cookies turned off, PHP passes the session ID
in the URL for links or in a hidden variable for forms that use the post
method.

. Gets the variables from the session file for each new session page.

Whenever a user opens a new page that’s part of the session, PHP gets
the variables from the file, using the session ID number that was passed
from the old page, and puts them into the built-in array $_SESSION. You
can use the array elements with the variable name as the key, and they
have the value that you assigned in the previous page.

\NG/
&éb“

Chapter 9: Moving Information from One Web Page to the Next 299

If users have cookies turned off, sessions do not work unless trans-sid is
turned on. You find out how to turn trans-sid on and off later, in the “Using
PHP session variables” section.

Opening sessions

You should open a session on each Web page. Open the session with the
session_start function, as follows:

session_start () ;

The function first checks for an existing session ID number. If it finds one, it
sets up the S_SESSION array. If it doesn’t find one, it starts a new session by
creating a new session ID number.

Because sessions use cookies if the user has them turned on, session_start
is subject to the same limitation as cookies. That is, the session_start func-
tion must be called before any output is sent. For complete details, see the

sidebar “Statements that must come before output,” elsewhere in this chapter.

Using PHP session variables

When you want to save a variable as a session variable — that is, available to
other Web pages that the user might visit — save it in the $_SESSTION array
as follows:

S_SESSION| 'variablename'] = value;

The value is then available in $_SESSION on other Web pages. For example,
you can store the state where the user lives with the following statement:

$S_SESSION|['state'] = "CA";

You can then use $_SESSION['state'] in any other Web page, and it has
the value Ca.

The following two programs show how to use sessions to pass information from
one page to the next. The first program, sessionTest1.php in Listing 9-2,
shows the first page where the session begins. Listing 9-3 shows the program
sessionTest?2.php for the second page in a session.

300 rartin:prp

Listing 9-2: Starting a Session

<?php
session_start() ;
?>
<html>
<head><title>Testing Sessions page l</title></head>
<body>
<?php
S_SESSION|['session_var'] = "testing";
echo "This is a test of the sessions feature.
<form action='sessionTest2.php' method='POST'>
<input type='hidden' name='form_var'
value="'testing'>
<input type='submit' value='go to next page'>
</form>";
?>
</body></html>

Note that this program sets two variables to be passed to the second page.
The session variable session_var is created. In addition, a form is dis-
played with a hidden variable form_var, which is also passed to the second
page when the user presses the submit button. Both variables are set to
"testing".

Listing 9-3: The Second Page of a Session

<?php
session_start () ;
?>
<html>
<head><title>Testing Sessions page 2</title></head>
<body>
<?php
echo "session_var = {$S_SESSION]['session_var']}
\n";
echo "form_var = {$_POST['form_var']}
\n";
?>
</body></html>

Point your browser at sessionTest1.php and then click the submit
button that reads Go to Next Page. You then see the following output from
sessionTest2.php:

session_var = testing
form_var = testing

Because sessions work differently for users with cookies turned on and for
users with cookies turned off, you should test the two programs in both

Chapter 9: Moving Information from One Web Page to the Next 30 ’

QNG

conditions. To turn off cookies in your browser, you change the settings for
options or preferences.

To disable cookies in Internet Explorer, follow these steps:

1. Choose Tools->Internet Options.

2. Click the Privacy tab.

3. Move the slider to the higher level, which says “Block All Cookies,”
and then click OK.

To disable cookies in Firefox, follow these steps:

1. Choose Tools=>Options.

2. Click the Privacy tab.

3. Deselect the Accept Cookies from Sites option and then click OK.
If the output from sessionTest2 shows a blank value for $session_var
when you turn off cookies in your browser, trans-sid probably is not

turned on. You can turn on trans-sid in your php. ini file. Find the follow-
ing line:

session.use_trans_sid = 0

Change the 0 to 1 to turn on trans-sid. If you can’t get this problem fixed,
you can still use sessions, but you must pass the session ID number in your
programming statements; PHP won’t pass the session ID number automati-
cally when cookies are turned off. For details on how to use sessions when
trans-sid is not turned on, check out the next section.

For PHP 4.1.2 or earlier, trans-sid is not available unless it was enabled by
using the option --enable-trans-sid when PHP was compiled.

Sessions without cookies

Many users turn off cookies in their browsers. PHP checks the user’s browser
to see whether cookies are allowed and behaves accordingly. If the user’s
browser allows cookies, PHP does the following:

v Sets the variable $PHPSESSID equal to the session ID number

v Uses cookies to move $PHPSESSID from one page to the next

302 rartin:pup

NG/
Q\“\ H

If the user’s browser is set to refuse cookies, PHP does the following:

1 Sets a constant called sID: The constant contains a variable=value
pair that looks like PHPSESSID=1ongstringofnumbers.

* Might or might not move the session ID number from one page to the
next, depending on whether trans-sid is turned on: If it’s turned on,
PHP passes the session ID number; if it’s not turned on, PHP does not
pass the session ID number.

Turning on trans-sid has advantages and disadvantages. The advantages
are that sessions work seamlessly even when users turn off cookies and it’s
much easier to program sessions. The disadvantage is that the session ID
number is often passed in the URL. In some situations, the session ID number
should not be shown in the browser address. Also, when the session ID
number is in the URL, it can be bookmarked by the user. Then, if the user
returns to your site by using the bookmark with the session ID number in it,
the new session ID number from the current visit can get confused with the
old session ID number from the previous visit and possibly cause problems.

Sessions with trans-sid turned on

When trans-sidis turned on and the user has cookies turned off, PHP auto-
matically sends the session ID number in the URL or as a hidden form field. If the
user moves to the next page by using a link, a header function, or a form with
the get method, the session ID number is added to the URL. If the user moves to
the next page by using a form with the post method, the session ID number is
passed in a hidden field. PHP recognizes $PHPSESSID as the session ID number
and handles the session without any special programming on your part.

The session ID number is added only to the URLs for pages on your own Web
site. If the URL of the next page includes a server name, PHP assumes that
the URL is on another Web site and doesn’t add the session ID number. For
instance, here are two link statements:

PHP adds the session ID number to the first link, but not to the second link.

Sessions without trans-sid turned on

When trans-sidis not turned on, PHP does not send the session ID number
to the next page when users have cookies turned off. Rather, you must send
the session ID number yourself.

Fortunately, PHP provides a constant that you can use to send the session
ID yourself. A constant is a variable that contains information that can’t be
changed. (Constants are described in Chapter 6.) The constant that PHP

Chapter 9: Moving Information from One Web Page to the Next 303

provides is named SID and contains a variable=value pair that you can
add to the URL, as follows:

<a href="nextpage.php?<?php echo SID?>" > next page

This link statement adds a question mark (?) and the constant SID to the
URL. SID contains the session ID number formatted as variable=value.
Therefore, the URL that is sent is

next page

For one of several reasons (which I discuss in the section “Adding informa-
tion to the URL,” earlier in this chapter), you may not want the session ID
number to appear in the URL shown by the browser. To prevent that, you
can send the session ID number in a hidden field in a form that uses the post
method. First, get the session ID number; then send it in a hidden field. The
statements to do this are

<?php
SPHPSESSID = session_id() ;
echo "<form action='nextpage.php' method='POST'>
<input type='hidden' name='PHPSESSID'
value='SPHPSESSID'>
<input type='submit' value='Next Page'>
</form>";
?>

These statements do the following:

1. Stores the session ID number in a variable called $PHPSESSID.

Use the function session_id, which returns the current session ID
number.

2. Sends $PHPSESSID in a hidden form field.

On the new page, PHP automatically uses $PHPSESSID to get any session
variables without any special programming needed from you.

Making sessions private

PHP session functions are ideal for restricted Web sites that require users to
log in with a login name and password. Those Web sites undoubtedly have
many pages, and you don’t want the user to have to log in to each page. PHP
sessions can keep track of whether the user has logged in and refuse access
to users that aren’t logged in. You can use PHP sessions to do the following:

304 partiprp

1. Show users a login page.
2. If a user logs in successfully, set and store a session variable.

3. Whenever a user goes to a new page, check the session variable to see
whether the user has logged in.

4. If the user has logged in, show the page.
5. If the user has not logged in, bring up the login page.

To check whether a user has logged in, add the following statements to the
top of every page:

<?php
session_start ()
if(@$_SESSION['login'] != "yes")

{
header ("Location: loginPage.php") ;
exit () ;

}

?>

In these statements, $_SESSION[login] is a session variable that’s

set to "yes" when the user logs in. The statements check whether
$_SESSION[login] is equal to "yes".If it is not, the user is not logged in
and is sent to the login page. If $_SESSION[login] equals "yes", the
program proceeds with the rest of the statements on the Web page.

Closing PHP sessions

For restricted sessions that users log in to, you often want users to log out
when they’re finished. To close a session, use the following statement:

session_destroy () ;

This statement gets rid of all the session variable information stored in the
session file. PHP no longer passes the session ID number to the next page.
However, the statement does not affect the variables currently set on the
current page: They still equal the same values. If you want to remove the vari-
ables from the current page — as well as prevent them from being passed to
the next page — unset them with this statement:

unset (S_SESSION) ;

Part IV
Applications

The Sth Wave By Rich Tennant
CRIGTTENNANT.

—

content, not Web innvendoes and intent.”

In this part . . .

n this part, you find out how to take the planning and

getting started information from Part I, the MySQL
information from Part II, and the PHP information from
Part Il and put it all together into a dynamic Web data-
base application. Chapters 11 and 12 present two sample
applications, complete with their databases and all their
PHP programs.

Chapter 10

Putting It All Together

In This Chapter

Organizing your whole application

Organizing individual programs
Making your application secure
Documenting your application

Fe previous chapters provide you with the tools you need to build your
Web database application. In Part I, you find out how PHP and MySQL
work and how to get access to them. In addition, you discover what you need
to do to build your application and in what order. In Part II, you find out how
to build and use a MySQL database. In Part IIl, you discover what features
PHP has and how to use them. In addition, Part IIl explains how to show infor-
mation in a Web page, collect information from users, and store information
in a database. Now here, in the first chapter in Part IV, you’re ready to put all
the pieces together into a complete application. To do this, you need to

v Organize the application.

1 Make sure that the application is secure.

v+ Document the application.

[describe each of these steps in detail.

Organizing the Application

Organizing the application is for your benefit. As far as PHP is concerned, the
application could be 8 million PHP statements all on one line of one computer
file. PHP doesn’t care about lines, indents, or files. However, humans write
and maintain the programs for the application, and humans need organiza-
tion. Applications require two levels of organization:

308 Ppartiv: applications

\\j

v The application level: Most applications need more than one program
to deliver complete functionality. You must divide the functions of the
application into an organized set of programs.

v The program level: Most programs perform more than one specific task.
You must divide the tasks of the program into sections within the program.

Organizing at the application level

In general, Web database applications consist of one program per Web page.
For instance, you might have a program that provides a form to collect infor-
mation and a program that stores the information in a database and tells the
user that the data has been stored.

Another basis for organization is one program per major task. For instance,
you might have a program to present the form and a program that stores the
data in a database. For Web applications, most major tasks involve sending
a Web page. Collecting data from the user requires a Web page for the HTML
form; providing product information to customers requires Web pages; and
when you store data in a database, you usually want to send a confirmation
page to the user that the data was stored.

One program per Web page or one program per major task is not a rule but
merely a guideline. The only rule regarding organization is that it must be
clear and easy to understand, and that’s subjective. Still, the organization

of an application such as the Pet Catalog need not be overly complicated.
Suppose that the Pet Catalog design calls for the first page to list all the pet
types — such as cat, dog, and bird — that the user can select from. Then,
after the user selects a type, all the pets in the catalog for that type are
shown on the next Web page. A reasonable organization would be two pro-
grams: one to show the page of pet types and one to show the pets based on
the pet type that was chosen.

Here are a few additional pointers for organizing your programs:

1 Choose descriptive names for the programs in your application. Program
names are part of the documentation that makes your application under-
standable. For instance, useful names for the Pet Catalog programs might
be ShowPetTypes .php and ShowPets . php. It’s usual, but not a require-
ment, to begin program names with an uppercase letter. Case isn’t
important for program names on Windows computers, but it’s important
on Unix and Linux computers. Pay attention to the uppercase and lower-
case letters so that your programs can run on any computer if needed.

v Put program files into subdirectories with meaningful names. For
instance, put all the graphic files into a directory called images. If you
have only three files, you may be okay with only one directory, but look-
ing through dozens of files for a specific file can waste a lot of time.

Chapter 10: Putting It All Together 309

Organizing at the program level

A well-organized individual program is important for the following reasons:

v It’s easier for you to write. The better organized your program is, the
easier it is for you to read and understand it. You can see what the pro-
gram is doing and find and correct problems faster.

v It’s easier for others to understand. Others may need to understand
your program. After you claim that big inheritance and head off to the
South Sea Island that you purchased, someone else will have to maintain
your application.

v It’s easier for you to maintain. No matter how thoroughly you test your
application, it’s likely to have a problem or two. The better organized
your program is, the easier it is for you to find and correct problems,
especially later.

v It’s easier to change. At some point, you or someone else will need to
change the program. The needs of the user may change. The needs of
the business may change. The technology may change. The ozone layer
may change. Figuring out what the program does and how it does it so
that you can change it is much easier if the program is well organized. I
guarantee that you won’t remember the details; you just need to be able
to understand the program.

The following rules will produce well-organized programs. I hesitate to call
them rules because there can be reasons in a specific environment to break
one or more of them — but I strongly recommend that you think carefully
before doing so.

v Divide the statements into sections for each specific task. Start each
section with a comment describing what the section does. Separate sec-
tions from each other by adding blank lines. For instance, for the Pet
Catalog, the first program might have three sections for three tasks:

1. Echo introductory text, such as the page heading and instructions.
The comment before the section might be /* opening text */.
If the program echoes a lot of complicated text and graphics, you
might make it into more than one section, suchas /* title and
logo */and /* instructions */.

2. Get a list of pet types from the database. If this section is long and
complicated, you can divide it into smaller sections, such as a)
connect to database; b) execute SELECT query; and c¢) put data
into variables.

3. Create a form that displays a selection list of the pet types. Forms are
often long and complicated. It can be useful to have a section for
each part of the form.

3 ’0 Part IV: Applications

v+ Use indents. Indent blocks in the PHP statements. For instance, indent
if blocks and while blocks as I did in the sample code for this book.
If blocks are nested inside other blocks, indent the nested block even
further. It’s much easier to see where blocks begin and end when they’re
indented, which in turn makes it easier to understand what the program
does. Indenting the HTML statements can also be helpful. For instance,
if you indent the lines between the open and close tags for a form or
between the <table> and </table> tags, you can more easily see what
the statements are doing.

v Use comments liberally. Definitely add comments at the beginning that
explain what the program does. And add comments for each section.
Also, comment any statements that aren’t obvious or where you may
have done something in an unusual way. If it took you a while to figure
out how to do it, it’s probably worth commenting. Don’t forget short
comments on the end of lines; sometimes just a word or two can help.

v Use simple statements. Sometimes programmers get carried away with
the idea of concise code to the detriment of readability. Nesting six func-
tion calls inside each other may save some lines and keystrokes, but it
also makes the program more difficult to read.

+* Reuse blocks of statements. If you find yourself typing the same ten
lines of PHP statements in several places in the program, you can move
that block of statements into another file and call it when you need it.
One line in your program that reads getData () is much easier to read
than ten lines that get the data. Not only that, if you need to change
something within those lines, you can change it in one external file
instead of having to find and change it a dozen different places in your
program. You can reuse statements in two ways: functions and include
statements. Chapter 7 explains how to write and use functions. The
following two sections explain the use of functions and include state-
ments in program organization.

v~ Use constants. If your program uses the same value many times, such as
the sales tax for your state, you can define a constant at the beginning of
the program with a function that creates a constant called CA_SALES_
TAX that is . 97 and use it whenever it’s needed. Defining a constant that
gives the number a name helps anyone reading the program understand
what the number is — plus, if you ever need to change it, you have to
change it in only one place. Constants are described in detail in Chapter 6.

Using include statements

PHP allows you to put statements into an external file — that is, a file sepa-
rate from your program — and insert the file wherever you want in the pro-
gram by using an include statement. include files are useful for storing a
block of statements that is repeated. You add an include statement wher-
ever you want to use the statements instead of adding the entire block of

Chapter 10: Putting It All Together

<MBER
ég“

statements at several locations. It makes your program shorter and easier to
read. The format for an include statement is

include (" filename") ;

The file can have any name. I like to use the extension . inc so that I can tell
from their names that they are include files, not scripts. The statements in
the file are included, as-is, at the point where the include statement is used.

The statements are included as HTML, not PHP. Therefore, if you want to
use PHP statements in your include file, you must include PHP tags in the
include file. Otherwise, all the statements in the include file are seen as
HTML and output to the Web page as-is.

Here are some ways to use include files to organize your programs:

v Put all or most of your HTML into include files. For instance, if your
program sends a form to the browser, put the HTML for the form into
an external file. When you need to send the form, use an include state-
ment. Putting the HTML into an include file is a good idea if the form
is shown several times. It’s even a good idea if the form is shown only
once because it makes your program much easier to read. The programs
in Chapters 11 and 12 put HTML code for forms into separate files and
include the files when the forms are displayed.

v Store the information needed to access the database in a file separate
from your program. Store the variable names in the file as follows:

<?php
Shost="localhost";
Suser="phpuser";
Spassword="secret";
>

Notice that this file needs the php tags in it because the include
statement inserts the file as HTML. Include this file at the top of every
program that needs to connect to the database. If any of the informa-
tion (such as the password) changes, just change the password in the
include file. You don’t need to search through every program file to
change the password. For a little added security, use a misleading file-
name, rather than something obvious like secret_passwords. inc.

v Put your functions in include files. You don’t need the statements for
functions in the program; you can put them in an include file. If you
have a lot of functions, organize related functions into several include
files, such as data_functions.inc and form_functions.inc. Use
include statements at the top of your programs, reading in the func-
tions that are used in the program.

311

372 Partiv: applications

1~ Store statements that all the files on your Web site have in common.
Most Web sites have many Web pages with many elements in common.
For instance, all Web pages start with <html>, <head>, and <body> tags.
If you store the common statements in an include file, you can include
them in every Web page, ensuring that all your pages look alike. For
instance, you might have the following statements in an include file:

<html>
<head><title><?php echo $title ?></title></head>
<body topmargin="0">
<p style="text-align: center">

<hr color="red" />

If you include this file at the top of every program on your Web site, you
save a lot of typing, and you know that all your pages match. In addition,
if you want to change anything about the look of all your pages, you only
have to change it in one place — in the include file.

PHP provides a related statement — the include_once statement. If the
specified file has already been included in a previous statement, the file is not
included again. The format is as follows:

include_once (" filename") ;

This statement prevents include files with similar variables from overwrit-
ing each other. Use include_once when you include your functions.

You can use a variable name for the filename as follows:
include("$filename") ;

For example, you might want to display different messages on different days.
You might store these messages in files that are named for the day on which
the message should appear. For instance, you could have a file named Sun.
inc with the following content

<p>Go ahead. Sleep in. No work today.</p>

and similar files for all days of the week. You can use the following state-
ments to display the correct message for the current day:

Stoday = date("D");
include("Stoday".".inc") ;

After the first statement, $today contains the day of the week, in abbrevia-
tion form. The date statement is discussed in Chapter 6. The second state-
ment includes the correct file, using the day stored in $today. If $today
contains Sun, the statement includes a file called Sun. inc.

Chapter 10: Putting It All Together 3 ’3

Storing include files

You can store your include files in the same directories where you

store your scripts. The include statement finds the include file if it is
in the same directory. You can also store your include files in a sepa-
rate directory, such as a subdirectory in your main directory, which you
name includes. If you do this, you need to use the complete path in your
include statement, such as

include ("includes/filel.inc") ;
QMING/ . .
) Notice that the path name uses forward slashes. Using backward slashes (\)
like you use on Windows results in an error message. PHP knows what you
mean with the forward slashes.

You can avoid having to use paths by setting up an include directory

where PHP looks for any files specified in an include statement. You set

up an include directory with the configuration setting include_path. See
Appendix B for a discussion of PHP configuration settings and how to change
them.

You can set up the include path in your php. ini file. On your local com-
puter or on a Web hosting account that allows you to have a local php. ini
file, set up an include_path in the php.ini file. The include path setting
has the following general format:

include_path = "paths"
For example, a common include path is:
include_path = ".:/php/includes"

This line sets up two directories where PHP looks for include files. The first
directory is . (dot), meaning the current directory, followed by the second
directory path, which is a directory named includes in the current direc-
tory. You can specify as many include directories as you want, and PHP
searches them for the include file in the order in which they are listed. The
directory paths are separated by a semicolon for Windows and a colon for
Unix and Linux.

You can also set up an include path in an .htaccess file, with the following
directive:

php_value include_path ".:./includes"

If you have trouble with the preceding techniques, you can set the include
path in your PHP script, using an ini_set statement, such as the following:

3 ’4 Part IV: Applications

ini_set ("include_path","./includes") ;

“&N\BEB The ini_set statement sets the include path only for the script that contains

& the ini_set statement. You need to make sure that every script in your Web
site that uses an include statement also includes an ini_set statement to
set the include path.

In most cases, you want to store your include files in a separate directory
and set your include path to the directory. This allows you to use only the
filename in your include statement, rather than the entire path. Using only
the filename in the include statement makes the code more flexible and
easier to maintain. If you move your include files into a different directory
or move your script onto another computer, you only need to change the set-
ting for the include path so that your program can find it. If you don’t have
an include path, but use full paths instead, any change in the location of the
include files requires you to find every include statement in your scripts
and change the path to the new path.

Protecting include files

When you store your include files in your main Web site directory, the files
are available to your visitors if they know the name. For instance, a visitor
might come to your Web site using the URL www.yoursite.com/filel.
inc. If she does, she can see what’s in your include file. If it’s just the HTML
for your Web page, it’s okay, but if the include file she looks at is secret
passwords . inc, which contains the information to access your database,
it’s much less okay.

The best way to protect include files is to store them in a protected direc-
tory that can’t be accessed by visitors to your Web site. The previous section
describes setting up a directory to contain your include files and setting a
path to the include file directory. To protect your include files, you need
to protect the include file directory so that your Web site visitors can’t
access it.

You can protect a directory from visitors on your Web host by adding an
.htaccess file to the directory you want to protect (such as includes/
.htaccess). You may already have a file named .htaccess in your main
Web site directory. This new .htaccess file is a separate file that goes
only in the subdirectory to be protected. Add the following line to your
.htaccess file:

Deny from all.

Chapter 10: Putting It All Together 3] §

The Deny directive prevents any user from accessing any file in this subdi-
rectory. Only your own script can access the include file.

If you're publishing a Web site on a company computer, ask your IT staff
to provide you with access to a directory outside your Web space for your
include files. This should be a directory that is not in your main Web site
directory, but is somewhere else on the computer where Web site visitors
can’t access it.

Using functions

Make frequent use of functions to organize your programs. (In Chapter 7, I
discuss creating and using functions.) Functions are useful when your pro-
gram needs to perform the same task at repeated locations in a program or in
different programs in the application. After you write a function that does the
task and you know it works, you can use it anywhere that you need it.

Look for opportunities to use functions. Your program is much easier to read
and understand with a line like this:

getMemberData () ;

than with 20 lines of statements that actually get the data. In fact, after you've
been writing PHP programs for a while, you will have a stash of functions

that you've written for various programs. Very often the program that you're
writing can use a function that you wrote for an application two jobs ago. For
instance, I often have a need for a list of the states. Rather than include a list
of all 50 states every time I need it, | have a function called getState

Names () that returns an array that holds the 50 state names in alphabetical
order and a function called getStateCodes () that returns an array with all
50 two-letter state codes in the same order.

Use descriptive function names. The function calls in your program should
tell you exactly what the functions do. Long names are okay. You don’t want
to see a line in your program that reads
functionl () ;
Even a line like the following is less informative than it could be:
getDatal() ;

You want to see a line like this:

getAllMemberNames () ;

3 ’6 Part IV: Applications
Keeping It Private

You need to protect your Web database application. People out there may
have nefarious designs on your Web site for purposes such as

v~ Stealing stuff: They hope to find a file sitting around full of valid credit
card numbers or the secret formula for eternal youth.

v Trashing your Web site: Some people think this is funny. Some people
do it to prove that they can.

v+ Harming your users: A malicious person can add things to your Web
site that harm or steal from the people who visit your site.

This is not a security book. Security is a large, complex issue, and I am not

a security expert. Nevertheless, I want to call a few issues to your attention
and make some suggestions. The following measures increases the security
of your Web site, but if your site handles important, secret information, read
some security books and talk to some experts:

+* Ensure the security of the computer that hosts your Web site. This
is probably not your responsibility, but you want to talk to the people
responsible and discuss your security concerns. You'll feel better if you
know that someone is worrying about security, such as your Web host.

+* Don’t let the Web server display filenames. Users don’t need to know
the names of the files on your Web site.

v Hide things. Store your information so that it can’t be easily accessed
from the Web.

+ Don’t trust information from users. Always clean any information that
you didn’t generate yourself.

v Use a secure Web server. This requires extra work, but it’s important if
you have top-secret information.

Ensure the security of the computer

First, the computer itself must be secure. The system administrator of the
computer is responsible for keeping unauthorized visitors and vandals out of
the system. Security measures include such things as firewalls, encryption,
password shadowing, and scan detectors. In most cases, the system adminis-
trator is not you. If it is, you need to do some serious investigation into secu-
rity issues. If you're using a Web hosting company, you may want to discuss
security with those folks to reassure yourself that they’re using sufficient
security measures.

Chapter 10: Putting It All Together 3 ’ 7

Don’t let the Web server display filenames

You may have noticed that sometimes you get a list of filenames when you
go to a URL in your browser. If you go to a directory (rather than a specific
file) and the directory doesn’t contain a file with the default filename (such
as index.html), the Web server may display a list of files for you to select
from. You probably don’t want your Web server to do this; your site won’t be
very secure if a visitor can look at any file on your site. On other Web sites,
you may have seen an error message that reads

Forbidden
You don't have permission to access /secretdirectory on this server.

On those sites, the Web server is set so that it doesn’t display a list of file-
names when the URL points to a directory. Instead, it delivers this error mes-
sage. This is more secure than listing the filenames. If the filenames are being
sent from your Web site, a setting for the Web server needs to be changed.

You can change this setting on your Web host by adding a line to your
.htaccess file. This should be in the .htaccess file in the main directory
for your Web site. Add the line:

Options -Indexes

This line in the .htaccess file on your Web site prevents users from seeing
the filenames.

3
If you don’t have access to an . htaccess file, request that the Web site
administrator change this setting.

Hide things

Keep information as private as possible. Of course, the Web pages that you

want visitors to see must be stored in your public Web space directory. But not
everything needs to be stored there. For instance, you can store include files in
another location altogether — in a space on the computer that can’t be accessed
from the Web. Your database certainly isn’t stored in your Web space, but it
might be even more secure if it was stored on a different computer.

<P Another way to hide things is to give them misleading names. For instance,
the include file containing the database variables shouldn’t be called
passwords. inc. A better name might be UncleHenrysChickenSoup
Recipe. inc. | know this suggestion violates other sections of the book
where | promote informative filenames, but this is a special case. Malicious
people sometimes do obvious things like typing www.yoursite.com/
passwords.html into their browser to see what happens.

3 ’8 Part IV: Applications

A\

Don’t trust information from users

Malicious users can use the forms in your Web pages to send dangerous text
to your Web site. Therefore, never store information from forms directly into
a database without checking, cleaning, and escaping it first. Check the infor-
mation that you receive for reasonable formats and dangerous characters. In
particular, you don’t want to accept HTML tags, such as <script> tags, from
forms. By using script tags, a user could enter an actual script — perhaps a
malicious one. If you accept the form field without checking it and store it in
your database, you could have any number of problems, particularly if the
stored script was sent in a Web page to a visitor to your Web site. For more
on checking, cleaning, and escaping data from forms, see Chapter 8.

Use a secure Web server

Communication between your Web site and its visitors is not totally secure.
When the files on your Web site are sent to the user’s browser, someone on
the Internet between you and the user can read the contents of these files as
they pass by. For most Web sites, this isn’t an issue; however, if your site col-
lects or sends credit card numbers or other secret information, use a secure
Web server to protect this data.

Secure Web servers use Secure Sockets Layer (SSL) to protect communica-
tion sent to and received from browsers. This is similar to the scrambled tele-
phone calls that you hear about in spy movies. The information is encrypted
(translated into coded strings) before it is sent across the Web. The receiving
software decrypts it into its original content. In addition, your Web site uses
a certificate that verifies your identity. Using a secure Web server is extra
work, but it’s necessary for some applications.

You can tell when you're communicating using SSL. The URL begins with
HTTPS, rather than HTTP.

Many Web hosts offer SSL. communication for Web site accounts. Check with
your Web host for information about using SSL.

Completing Vour Documentation

I’'m making one last pitch here. Documenting your Web database application is
essential. You start with a plan describing what the application is supposed to
do. Based on your plan, you create a database design. Keep the plan and the
design up-to-date. Often, as a project moves along, changes are made. Make
sure that your documentation changes to match the new decisions.

Chapter 10: Putting It All Together

While you design your programs, associate the tasks in the application plan
with the programs that you plan to write. List the programs and what each
one will do. If the programs are complicated, you may want to include a brief
description of how the program will perform its tasks. If this is a team effort,
list who is responsible for each program. When you complete your applica-
tion, you should have the following documents:

v~ Application plan: Describes what the application is supposed to do, list-
ing the tasks that it will perform

v Database design: Describes the tables and fields in the database

v Program design: Describes how the program(s) will perform the tasks in
the application plan

v Program comments: Describe the details of how the individual program
works

Pretend that it’s five years in the future and you’re about to do a major
rewrite of your application. What will you need to know about the application
to change it? Be sure that you include all the information that you need in
your documentation.

319

320 Part IV: Applications

Chapter 11
Building an Online Catalog

In This Chapter
Designing an online catalog
Building the database for the Pet Catalog
Designing the Web pages for the Pet Catalog

Writing the programs for the Pet Catalog

Online catalogs are everywhere on the Web. Every business that has
products for sale uses an online catalog. Some businesses use online
catalogs to sell their products online, and some use them to show the qual-
ity and worth of their products to the world. Many customers have come to
expect businesses to be online and provide information about their products.
Customers often begin their search for a product online, researching its avail-
ability and cost through the Web.

In this chapter, you find out how to build an online catalog. I chose a pet
store catalog for no particular reason except that it sounded like more fun
than a catalog of socks or light bulbs. And looking at the pictures for a pet
catalog was much more fun than looking at pictures of socks. I introduce
the Pet Catalog example in Chapter 3 and use it for many of the examples
throughout this book.

In general, all catalogs do the same thing: provide product information to
potential customers. The general purpose of the catalog is to make it as easy
as possible for customers to see information about the products. In addition,
you want to make the products look as attractive as possible so that custom-
ers want to purchase them.

322 rartiv: Applications

Designing the Application

The first step in design is to decide what the application should do. The
obvious purpose of the Pet Catalog is to show potential customers informa-
tion about the pets. A pet store might also want to show information about
pet products, such as pet food, cages, fish tanks, and catnip toys . . . but you
decide not to include such items in your catalog. The purpose of your online
catalog application is to show just pets.

For the customer, displaying the information is the sole function of the
catalog. From your perspective, however, the catalog also needs to be main-
tained; that is, you need to add items to the catalog. So, you must include the
task of adding items to the catalog as part of the catalog application. Thus,
the application has two distinct functions:

v Show pets to the customers

v Add pets to the catalog

Showing pets to the customers

The basic purpose of your online catalog is to let customers look at pets.
Customers can’t purchase pets online, of course. Sending pets through the
mail isn’t feasible. But a catalog can showcase pets in a way that motivates
customers to rush to the store to buy them.

If your catalog contains only three pets, your catalog can be pretty simple —
one page showing the three pets. However, most catalogs have many more
items than that. Usually, a catalog opens with a list of the types of products,
such as cat, dog, horse, and dragon. Customers select the type of pet they
want to see, and the catalog then displays the individual pets of that type.
For example, if the customer selects dog, the catalog would then show col-
lies, spaniels, and wolves. Some types of products might have more levels of
categories before you see individual products. For instance, furniture might
have three levels rather than two. The top level might be the room, such

as kitchen or bedroom. The second level might be type, such as chairs or
tables. The third level would be the individual products.

The purpose of a catalog is to motivate those who look at it to make a pur-
chase immediately. For the Pet Catalog, pictures are a major factor in moti-
vating customers to make a purchase. Pictures of pets make people go ooooh
and aaaah and say, “Isn’t he cuuuute!” This generates sales. The main pur-
pose of your Pet Catalog is to show pictures of pets. In addition, the catalog
also should show descriptions and prices.

Chapter 11: Building an Online Catalog 323

To show the pets to customers, the Pet Catalog will do the following:

1. Show a list of the types of pets and allow the customer to select a type.

2. Show information about the pets that match the selected type. The
information includes the description, the price, and a picture of the pet.

Adding pets to the catalog

You can add items to your catalog in several ways, but the easiest way is to
use an application designed for the purpose. In many cases, you won’t be the
person who is adding products to your catalog. One reason for adding main-
tenance functionality to your catalog application is so someone else can do
those boring maintenance tasks. The easier it is to maintain your catalog, the
less likely that errors will sneak into it.

An application to add a pet to your catalog should do the following:

1. Prompt the user to enter a pet type for the pet.

A selection list of possible pet types would eliminate many errors, such
as alternative spellings (dog and dogs) and misspellings. The application
also needs to allow the user to add new categories when needed.

2. Prompt the user to enter a name for the pet, such as collie or shark.

A selection list of names would help prevent mistakes. The application
also needs to allow the user to add new names when needed.

3. Prompt the user to enter the pet information for the new pet.
The application should clearly specify what information is needed.

4. Store the information in the catalog.

The catalog entry application can check the data for mistakes and enter the
data into the correct locations. The person entering the new pet doesn’t need
to know the inner workings of the catalog.

Building the Database

The catalog itself is a database. It doesn’t have to be a database; it’s possible
to store a catalog as a series of HTML files that contain the product informa-
tion in HTML tags and display the appropriate file when the customer clicks a
link. However, it makes my eyes cross to think of maintaining such a catalog.
Imagine the tedium of adding and removing catalog items manually — or find-
ing the right location for each item by searching through many files. Ugh. For
these reasons, putting your Pet Catalog in a database is better.

324 partiv: Applications

The PetCatalog database contains all the information about pets. It uses
three tables:

V” Pet table

V¥ PetType table

V¥ Color table
The first step in building the Pet Catalog is to build the database. It’s pretty
much impossible to write programs without a working database to test the

programs on. First you design your database; then you build it; then you add
the data (or at least some sample data to use while developing the programs).

Building the Pet table

In your design for the Pet Catalog, the main table is the Pet table. It contains
the information about the individual pets that you sell. The following SQL
query creates the pet table:

CREATE TABLE Pet (

petID INT (5) SERIAL,

petName VARCHAR (25) NOT NULL,

petType VARCHAR (15) NOT NULL DEFAULT "Misc",
petDescription VARCHAR(255),

price DECIMAL(9,2),

pix CHAR(15) NOT NULL DEFAULT "na.gif",

PRIMARY KEY (petID));
Each row of the Pet table represents a pet. The columns are as follows:

¥ petID: A sequence number for the pet. In another catalog, this might
be a product number, a serial number, or a number used to order the
product. The petID column is the primary key, which must be unique.
MySQL doesn’t allow two rows to be entered with the same petID.

The CREATE query defines the petID column as SERIAL (added in
MySQL 4.1). SERIAL is a keyword that defines the column in the follow-
ing ways:
e BIGINT: The data in the field is expected to be a numeric integer,
with a range up to 18446744073709551615. The database won'’t
accept a character string in this field.

® UNSIGNED: The integer in the field can’t be a negative number.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

Chapter 11: Building an Online Catalog 325

e AUTO-INCREMENT: This definition means that the field isn’t auto-
matically filled with a sequential number if you don’t provide a spe-
cific number. For example, if a row is added with 98 for a petID,
the next row is added with 99 for the petID unless you specify a
different number. This is a useful way of specifying a column with
a unique number, such as a product number or an order number.
You can always override the automatic sequence number with a
number of your own, but if you don’t provide a number, a sequen-
tial number is stored.

Note: If you're using phpMyAdmin to create the database, the key-
word SERTIAL may not be available. You need to define petID as a
BIGINT, UNSIGNED, NOT NULL, and AUTO_INCREMENT, and define
it specifically as the primary key.

v petName: The name of the pet, such as lion, collie, or unicorn. The
CREATE query defines the petName column in the following ways:

e VARCHAR (25): This data type defines the field as a variable char-
acter string that can be up to 25 characters long. The field is stored
in its actual length.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. After all, it wouldn’t make much sense to have a
pet in the catalog without a name.

e No default value: If you try to add a new row to the Pet table with-
out a petName, it won’t be added. It doesn’t make sense to have a
default name for a pet.

v petType: The type of pet, such as dog or fish. The CREATE query
defines the petType column in the following ways:

e VARCHAR (15): This data type defines the field as a variable char-
acter string that can be up to 15 characters long. The field is stored
in its actual length.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The online catalog application will show catego-
ries first and then pets within a category, so a pet with no category
will never be shown on the Web page.

e DEFAULT "Misc": The value "Misc" is stored if you don’t pro-
vide a value for petType. This ensures that a value is always
stored for petType.

V* petDescription: A description of the pet. The CREATE query defines
petDescription in the following way:

e VARCHAR (255): This data type defines the field as a variable
character string that can be up to 255 characters long. The field is
stored in its actual length.

3206 Prartiv: Applications

v price: The price of the pet. The CREATE query defines price in the
following way:

e DECIMAL (9, 2): This data type defines the field as a decimal
number that can be up to nine digits and has two decimal places.
If you store an integer in this field, it’s returned with two decimal
places, such as 9.00 or 2568.00.

v pix: The filename of the picture of the pet. Pictures on a Web site are
stored in graphic files with names like dog . jpg, dragon.gif, or cat.
png. This field stores the filename for the picture that you want to show
for this pet. The CREATE query defines pix in the following ways:

e CHAR (15): The data in this field is expected to be a character
string that’s 15 characters long. For some applications, the picture
files might be in other directories or on other Web sites requiring a
longer field, but for this application, the pictures are all in a direc-
tory on the Web site and have short names. If the stored string is
less than 15 characters, the field is padded so that it always takes
up 15 characters of storage.

e NOT NULL: This definition means that this field can’t be empty.
It must have a value. You need a picture for the pet. When a Web
site tries to show a picture that can’t be found, it displays an ugly
error message in the browser window where the graphic would go.
You don’t want your catalog to do that, so your database should
require a value. In this case, you define a default value so that a
value will always be placed in this field.

e DEFAULT "na.gif": The value "na.gif" is stored if you don’t
provide a value for pix. In this way, a value is always stored for
pix. The na.gif file might be a graphic that reads something like:
"picture not available".

Notice the following points about this database table design:

v Some fields are CHAR, and some are VARCHAR. In general, shorter fields
should be CHAR because shorter fields don’t waste much space. For
instance, if your CHAR is 5 characters, the most space that you could
possibly waste is 4. However, if your CHAR is 200, you could waste 199.
Therefore, short fields can use CHAR with very little wasted space.

v The petID field means different things for different pets. The petID
field assigns a unique number to each pet. However, a unique number
isn’t necessarily meaningful in all cases. For example, a unique number
is meaningful for an individual kitten but not for an individual goldfish.

There are really two kinds of pets. One is the unique pet, such as a
puppy or a kitten. After all, the customer buys a specific dog — not
just a generic dog. The customer needs to see the picture of the actual
animal. On the other hand, some pets are not especially unique, such

Chapter 11: Building an Online Catalog 32 7

as a goldfish or a parakeet. When customers purchase a goldfish, they
see a tank full of goldfish and point at one. The only real distinguishing
characteristic of a goldfish is its color. The customer just needs to see a
picture of a generic goldfish, perhaps showing the possible colors — not
a picture of the individual fish.

In your catalog, you have both kinds of pets. The catalog might contain
several pets with the name cat but with different petIDs. The picture
would show the individual pet. The catalog also contains pets that aren’t
individuals but that represent generic pets, such as goldfish. In this
case, there’s only one entry with the name goldfish, with a single petID.

I've used both kinds of pets in this catalog to demonstrate the differ-
ent kinds of products that you might want to include in a catalog. The
unique item catalog might include such products as artwork or vanity
license plates. When the unique item is sold, it’s removed from the cata-
log. Most products are more generic, such as clothing or automobiles.
Although a picture shows a particular shirt, many identical shirts are
available. You can sell the shirt many times without having to remove it
from the catalog.

Building the PetType table

You assign each pet a type, such as dog or dragon. The first Web page of the
catalog lists the types for the customer to select from. A description of each
type is also helpful. You don’t want to put the type description in the main Pet
table because the description would be the same for all pets with the same cat-
egory. Repeating information in a table violates good database design.

The pPetCatalog database includes a table called PetType that holds the
type descriptions. The following SQL query creates the PetType table:

CREATE TABLE PetType (
petType VARCHAR (15) NOT NULL,
typeDescription VARCHAR (255),

PRIMARY KEY (petType));

Each row of this table represents a pet type. These are the columns:

v petType: The type name. Notice that the petType column is defined
the same in the Pet table (which I describe in the preceding section)
and in this table. This makes table joining possible and makes matching
rows in the tables much easier. However, petType is the primary key in
this table but not in the Pet table. The CREATE query defines the pet
Type column in the following ways:

328 Partiv: Applications

e CHAR (15): This data type defines the field as a variable character
string that can be up to 15 characters long. The field is stored in its
actual length.

e PRIMARY KEY (petType): This definition sets the petType column
as the primary key. This is the field that must be unique. MySQL
won't allow two rows to be entered with the same petType.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

V¥ typeDescription: A description of the pet type. The CREATE query
defines the typeDescription in the following way:

e VARCHAR (255): The string in this field is expected to be a variable
character string that can be up to 255 characters long. The field is
stored in its actual length.

Building the Color table

When I discuss building the Pet table (see “Building the Pet table,” earlier in
this chapter), I discuss the different kinds of pets: pets that are unique (such
as puppies) and pets that are not unique (such as goldfish). For unique pets,
the customer needs to see a picture of the actual pet. For pets that aren’t
unique, the customer needs to see only a generic picture.

In some cases, generic pets come in a variety of colors, such as blue parakeets
and green parakeets. You might want to show two pictures for parakeets: a
picture of a blue parakeet and a picture of a green parakeet. However, because
most pets aren’t this kind of generic pet, you don’t want to add a color column
to your main Pet table because it would be blank for most of the rows. Instead,
you create a separate table containing only pets that come in more than one
color. Then when the catalog application is showing pets, it can check the
Color table to see whether there’s more than one color available — and if
there is, it can show the pictures from the Color table.

The Ccolor table points to pictures of pets when the pets come in different
colors so that the catalog can show pictures of all the available colors. The
following SQL query creates the Color table:

CREATE TABLE Color (

petName VARCHAR (25) NOT NULL,
petColor VARCHAR (15) NOT NULL,
pix CHAR (15) NOT NULL DEFAULT "na.gif",

PRIMARY KEY (petName, petColor)) g

Chapter 11: Building an Online Catalog 329

Each row represents a pet type. The columns are as follows:

v petName: The name of the pet, such as lion, collie, or Chinese bearded
dragon. Notice that the petName column is defined the same in the Pet
table and in this table. This makes table joining possible and makes
matching rows in the tables much easier. However, the petName is the
primary key in this table but not in the Pet table. The CREATE query
defines the petName in the following ways:

e VARCHAR (25): This data type defines the field as a variable char-
acter string that can be up to 25 characters long. The field is stored
in its actual length.

e PRIMARY KEY (petName, petColor): The primary key must be
unique. For this table, two columns together are the primary key —
this column and the petColor column. MySQL won’t allow two
rows to be entered with the same petName and petColor.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

* petColor: The color of the pet, such as orange or purple. The CREATE
query defines the petColor in the following ways:

e VARCHAR (15): This data type defines the field as a variable char-
acter string that can be up to 15 characters long. The field is stored
in its actual length.

® PRIMARY KEY (petName, petColor): The primary key must be
unique. For this table, two columns together are the primary key —
this column and the petName column. MySQL won’t allow two rows
to be entered with the same petName and petColor.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

v pix: The filename containing the picture of the pet. The CREATE query
defines pix in the following ways:

e CHAR (15): This data type defines the field as a character string
that’s 15 characters long.

e NOT NULL: This definition means that this field can’t be empty.
It must have a value. You need a picture for the pet. When a Web
site tries to show a picture that can’t be found, it displays an ugly
error message in the browser window where the graphic would go.
You don’t want your catalog to do that, so your database should
require a value. In this case, the CREATE query defines a default
value so that a value is always placed in this field.

e DEFAULT "na.gif": The value "na.gif" is stored if you don’t
provide a value for pix. In this way, a value is always stored for
pix. The file na.gif might contain a graphic that reads something
like picture not available.

330 Partiv: Applications

Adding data to the database

You can add the data to the database in many ways. You can use SQL queries
to add pets to the database, or you can use the application that [describe in
this chapter. My personal favorite during development is to add a few sample
items to the catalog by reading the data from a file. Then, whenever my data
becomes totally bizarre during development (as a result of programming
errors or my weird sense of humor), I can re-create the data in a moment. Just
DROP the table, re-create it with the SQL query, and reread the sample data.

For example, the data file for the Pet table might look like this:

<TAB>Pekinese<TAB>Dog<TAB>Small, cute, energetic. Good
alarm system.<TAB>100.00<TAB>peke. jpg

<TAB>House cat<TAB>Cat<TAB>Yellow and white cat. Extremely
playful. <TAB>20.00<TAB>catyellow.jpg

<TAB>House cat<TAB>Cat<TAB>Black cat. Sleek, shiny. Likes
children. <TAB>20.00<TAB>catblack.jpg

<TAB>Chinese Bearded Dragon<TAB>Lizard<TAB>Grows up to 2
feet long. Fascinating to watch. Likes to be
held.<TAB>100.00<TAB>1lizard. jpg

<TAB>Labrador Retriever<TAB>Dog<TAB>Black dog. Large,
intelligent retriever. Often selected as guide
dogs for the blind.<TAB>100.00<TAB>lab.jpg

<TAB>Goldfish<TAB>Fish<TAB>Variety of colors. Inexpensive.
Easy care. Good first pet for small
children.<TAB>2.00<TAB>goldfish. jpg

<TAB>Shark<TAB>Fish<TAB>Sleek. Powerful. Handle with
care.<TAB>200.00<TAB>shark. jpg

<TAB>Asian Dragon<TAB>Dragon<TAB>Long and serpentine.
Often gold or red.<TAB>10000.00<TAB>dragona.jpg

<TAB>Unicorn<TAB>Horse<TAB>Beautiful white steed with
spiral horn on forehead.<TAB>20000.00<TAB>

MBER unicorn.jpg

These are the data file rules:

v The <TAB> tags represent real tabs — the kind that you create by press-
ing the Tab key.

v Each line represents one pet and must be entered without pressing
the Enter or Return key. The lines in the preceding example are shown
wrapped to more than one line so that you can see the entire line.
However, in the actual file, the data lines are one on each line.

v A tab appears at the beginning of each line because the first field is not
being entered. The first field is the pet ID, which is entered automati-
cally; you don’t need to enter it. However, you do need to use a tab so
that MySQL knows there’s a blank field at the beginning.

Chapter 11: Building an Online Catalog 33 ’

You can then read the data from the file into the database in phpMyAdmin.
Reading data from a file is described in Chapter 4. Any time the data table
gets odd, you can re-create it and read in the data again.

Designing the Look and Feel

After you know what the application is going to do and what information the
database contains, you can design the look and feel of the application. The
look and feel includes what the user sees and how the user interacts with the
application. Your design should be attractive and easy to use. You can plan
this design on paper, indicating what the user sees, perhaps with sketches

or with written descriptions. In your design, include the user interaction
components, such as buttons or links, and describe their actions. You should
include each page of the application in the design. If you're lucky, you know a
graphic designer who can develop beautiful Web pages for you. If you’re me,
you just do your best with a limited amount of graphic know-how.

The Pet Catalog has two look-and-feel designs: one for the catalog that the
customer sees, and another, less fancy one for the part of the application
that you or whoever is adding pets to the catalog uses.

Showing pets to the customers

The application includes three pages that customers see:

v The storefront page: This is the first page that customers see. It states
the name of the business and the purpose of the Web site.

 The pet type page: This page lists all the types of pets and allows cus-
tomers to select which type of pet they want to see.

v The pets page: This page shows all the pets of the selected type.

Storefront page

The storefront page is the introductory page for the Pet Store. Because most
people already know what a pet store is, this page doesn’t need to provide
much explanation. Figure 11-1 shows the storefront page. The only customer
action available on this page is a link that the customer can click to see the
Pet Catalog.

332 Part IV: Applications

Figure 11-1:
The opening
page of the
Pet Store
Web site.
|

ZA Pet Store Front Page - Microsoft Internet Explorer
J Eile Edit ¥iew Favorites Tools Help | T ‘
e L2 . @ B o n @ @@ B9 T, P
Back Fomward Stop Refresh Home Search Favorites History Mail Frint Edit Real.com
| Address [@] hip:/ianetvel san m.comPHPEMySTLfarDummies/PetShopFront.php ~| @G |JLmks > | Y
|
}-
o
Looking for a new friend?
Check out our Pet Catalog.
We may have just what yow're looking for.
H
|—|—|Q Intermet
Pet type page

The pet type page lists all the types of pets in the catalog. Each pet type is
listed with its description. Figure 11-2 shows the pet type page. Radio buttons
appear next to each pet type so that customers can select the type of pet that
they want to see.

Pets page

The pets page lists all the pets of the selected type. Each pet is listed with its
pet ID, description, picture, and price. The pets page appears in a different
format, depending on the information in the catalog database.

Figures 11-3, 11-4, and 11-5 show some possible pets pages.

Figure 11-3 shows a page listing three different dogs from the catalog. Figure
11-4 shows that more than one pet can have the same pet name. Notice that
the house cats have different pet ID numbers. Figure 11-5 shows the output
when pets are found in the Color table, indicating that more than one color
is available.

On all these pages, a line at the top reads Click on any picture to see
a larger version. If the customer clicks the picture, a larger version of
the picture is displayed.

Chapter 11: Building an Online Catalog 333

icrosoft Inte|

JEe Edi View Favorites Tools Help

oL B Q@ G B B I w.
Back Fomward Stop Refiesh Home Search Favorites History b zil Frint Edit Real.com
JAgdreSS I@ hittp:/janetval san.ir.comdPHPUMyS OLorD ummies/catalog/PetCatalog. php j 6o |J Links *

Jw >

Pet Catalog

The following animal friends are waiting for you.
Find just what Fou want and hurry in to the store to pick up your new friend

Which pet are you interested in?

@& Cat EBeautiful and dignified. Independent. Range in size from large lons to small house cats. Carnivorous.
© Dog Strong, courageous. Extremely Intellizent. Can be trained for very usefl work, such as watchdog or secing-eye dog
Or btinging in the newspaper. Inchades wild species, such as coyotes and wolves.
| Dragon | Iagnificent, large reptiles. Dragons fly tirelessly and many are large enough to ride. Very good watch animals.
[| Fish | Iany colotfil vatieties. Relaxing and mesmerizing to watch, Size vaties from great white shatks to guppies.
Figure 11-2: | " Horse Eeautiful four legged animals that you can ride. Includes magical varieties such as Unicom and Pegasus.
Th € pEt type | " Lizard | Bmall reptiles. Fascinating to watch, Require watm environment. Eat vegetables and bugs.
page of the

Pet Store Select Pet Type |

Web site.
—— &] Done |—|—|Q Intermet

L« |

@.%.l@@ﬁ‘@@i“ﬁ el
Back Forward Stop Refresh Home Search Favorites History Mail Frint Edl Realcom
|Aﬁdress |@ hitp:fjanetval san . com/PHPEMySOL forDummies/catalog,’S howPets php Ll @ Go |_| Links ”H ‘Y’ >
Click on any picture to see a larger version. ;I
1001 Pekinese Small, cute, energetic. Good alarm system. $100.00
1005 Labrador Elack dog Large, intelligent retrisver. Often selected as guide dogs for the $100.00
Retriever : '
1002 Golden Retriever Large, intelligent retriever. Likes people. Often win obedience trials. $100.00
Figure 11-3:
This pets
page shows
. See more peis
three differ-
ent dogs. |
& r r |0 Intermet
I

334 Partiv: Applications

Figure 11-4:
This pets
page shows
three cats
with the
same pet
name.
|

Figure 11-5:
This pets
page shows
goldfish that
are avail-
able in two
colors.
|

ZA Pet Catalog - Microsoft Internet Explorer
JEiIe Edit View Favorites Tools Help

®« .5 . @ [a & 3 ‘ B 84 w . @
Back Fonward Stop Refiesh Home Search Favorites History b ail Frint Edit Real.com
]Agdress |@ hittp:fjanetval san . comdPHPEMyS OLforD ummiss/catalog,S hawPats. php j 6o |J Links ”“ .w »
Click on any picture to see alarger version. ;l
1002 House cat Vellow and white cat. Extremely playful. $20.00
1003 House cat Black cat. Sleek. shiny. Likes children. $20.00
1006 House cat Long-haired white cat. Fluffy, soft, cuddly. Keeps the mice away. $20.00
See more pets
(3| |—|—|Q Internet

Z} Pet Catalog - Microsoft Internet Explorer

J File Edit WYiew Fav s Tools Help | i
o =
@ .3 .0 B o @ &3 B g v, @
Back Fomward Stop Refresh Home Search Favorites History Mail Frint Edit Real.com
T
]Aﬁdress |@ hitp:fjanetval san . com/PHPEMySOL forDummies/catalog,’S howPets php j @ Go |J Links ”ll -Y' >
Click on any picture to see a larger version. ;I
1007 Goldfish Variety of colors. Inexpensive. Easy care. Good first pet for small children. $2.00
gold
goldiwhite
1009 Shark Sleek. Powerful Handle with care $200.00
See more peis
& |7|7|0 Intermet

Figure 11-6:
The first
page for
adding a
petto the
catalog.

|

Adding pets to the catalog

The application includes three pages that customers don’t see; these are the
pages used to add pets to the Pet Catalog. The three pages work in sequential

order to add a single pet:

1. Get pet type page.

The person adding a pet to the catalog selects the radio button for the

pet type. The user can also enter a new pet type.

2. Get pet information page.

The user selects the radio button for the pet being added and fills in the
pet description, price, and picture filename. The user can also enter a

new pet name.

3. Receives a feedback page.

A page is displayed showing the pet information that was added to the

catalog.

Get pet type page

The first page gets the pet type for the pet that needs to be added to the cata-
log. Figure 11-6 shows the get pet type page. Notice that all the pet types cur-
rently in the catalog are listed, and a section is provided where the user can

enter a new pet type if it’s needed.

Chapter 11: Building an Online Catalog

3 Pet Categories - Mozilla Firefox [®=E)
File Edit Wiew History Bookmarks Took Help

& - - @ 2% |1 rtpaifocalhostimystuffjphped+iChoosePetCat php =[] G

0

Select a category for the pet you're adding.

IFyou are adding a petin a category that is not listed, choose New Category and type the name and description of the category. Press Submit
Category when you have finished selecting an existing category or typing a new category.

@cat ODog ODragon OFish OHorse O Lizard

New Category O

e E—

Category description: ‘

Submit Categary

Done

335

336 Part IV: Applications

Get pet information page

Figure 11-7 shows the second page. This page lets the user type the informa-
tion about the pet that goes in the catalog. This page lists all the pet names
in the catalog for the selected pet type so that the user can select one. It also
provides a section where the user can type a new pet name if needed.

) New Pet Information Form - Mozilla Firefox

Fle Edit Wew Hstory Bookmarks Tooks Help

€« CuRL wcsuraareare [+ 0] [CF] 0

Pet Information

Pet Category: Fish

Pet Name:

Pet Description:

\
\
Price ‘ ‘
\
\

— Picturs fle name: |
Figure 11_7_ Pet color (optional) ‘
The second
page asks
for the pet
name.
—— L
Feedback page
When the user submits the pet information, that information is added to the
PetCatalog database. Figure 11-8 shows a page that verifies the information
that was added to the database. The user can click a link to return to the first
page and add another pet.
3 #dd Pet - Mozilla Firefox
File Edit VYiew History Bookmarks Tools Help
<E| - - @ ﬁ |_| http:ff\Uca|hust,l’mystufﬁ’phped‘?mddpe|‘| B] "| |\-\]
The following pet has been added to the Pet Catalog
+ Category. Fish
+ Pet Wame: Goldfish
+ Pet Descption: Small, colorful fish. easy te care for.
— Price: $3.00
- . + Picture file: Geld jpg
Flgure 11-8: + Color: Gold
The last
Add Another Pet
page
provides
feedback.
Done
—

Chapter 11: Building an Online Catalog 33 7

Get missing information page

The application checks the data to see that the user entered the required
information and prompts the user for any information that isn’t entered. For
instance, if the user selects New Category on the first page, the user must
type a category name and description. If the user doesn’t type the name or
the description, a page is displayed that points out the problem and requests
the information. Figure 11-9 shows the page that users see if they forget to
type the category name and description.

¥ Mew Category Form - Mozilla Firefox [(=01E3]
Fle Edit Yiew Hitory Bookmarks Tools Help

@ o = @ ﬁ [Mttpuiflocalhostimystuff/phped{ChoosePetame.php [~[&] [G] %)

|
- Either the category name or the category description was left blank. You must enter both.
Figure 11-9: oy gory Ceseriy

This page Categoryname: [|
requests a Category description: |

new cat- [Enter new category] [Retum to categary page |
egory and
description.
|

Done

Writing the Programs

After you know what the pages are going to look like and what they are going
to do, you can write the programs. In general, you write a program for each
page, although sometimes it makes sense to separate programs into more
than one file or to combine programs on a page. (For details on how to orga-
nize applications, see Chapter 10.)

As I discuss in Chapter 10, keep the information needed to connect to the
database in a separate file and include that file in all the programs that need
to access the database. The file should be stored in a secure location and
with a misleading name for security reasons. For this application, the follow-
ing information is stored in a file named misc. inc:

<?php
Suser="catalog";
Shost="localhost";
Spassword="";
Sdatabase="PetCatalog";
?>

The Pet Catalog application has two independent sets of programs: one set
to show the Pet Catalog to customers and one set to enter new pets into the
catalog.

338 Partiv: Applications

Showing pets to the customers

The application that shows the Pet Catalog to customers has three basic
tasks:

v Show the storefront page, with a link to the catalog.
* Show a page where users select the pet type.

v Show a page with pets of the selected pet type.

Showing the storefront

The storefront page doesn’t need any PHP statements. It simply displays a
Web page with a link. HTML statements are sufficient to do this. Listing 11-1
shows the HTML file that describes the storefront page.

Listing 11-1: HTML File for the Storefront Page

<?php
/* Program: PetShopFront.php
* Desc: Displays opening page for Pet Store.
*/
?>
<html>
<head><title>Pet Store Front Page</title></head>
<body>
<div style="text-align: center">

<p style="margin-top: 40pt">
<img src="images/lizard-front.jpg" height="186"
width="280" alt="animal picture" /></p>
<h2>Looking for a new friend?</h2>
<p>Check out our
Pet Catalog.

 We may have just what you're looking for.</p>
</div>
</body></html>

Notice that the link is to a PHP program called PetCatalog.php. When the
customer clicks the link, the Pet Catalog program (PetCatalog.php) begins.

Showing the pet types

The pet type page (refer to Figure 11-2) shows the customer a list of all the
types of pets currently in the catalog. Listing 11-2 shows the program that
produces the pet type Web page.

Chapter 11: Building an Online Catalog

Listing 11-2: Displaying Pet Types

<?php
/* Program: PetCatalog.php
* Desc: Displays a list of pet categories from the
2 PetType table. Includes descriptions.
@ Displays radio buttons for user to check.
Y
?>
<html>
<head><title>Pet Types</title></head>
<body>
<?php
include ("misc.inc") ; —12
Scxn = mysqgli_connect (Shost, Suser, Spasswd, Sdbname) —14

or die ("couldn't connect to server");

/* Select all categories from PetType table */

Squery = "SELECT * FROM PetType ORDER BY petType"; —18
Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query."); —20

/* Display text before form */

echo "<div style='margin-left: .lin'>\n

<hl style='text-align: center'>Pet Catalog</hl>\n

<h2 style='text-align: center'>The following animal
friends are waiting for you.</h2>\n

<p style='text-align: center'>Find just what you want
and hurry in to the store to pick up your
new friend.</p>

<h3>Which pet are you interested in?</h3>\n";

/* Create form containing selection list */
echo "<form action='ShowPets.php' method='POST'>\n"; 33
echo "<table cellpadding='5' border='1'>";

Scounter=1; —35
while (Srow = mysqgli_fetch_ assoc (Sresult)) —36
{

extract (Srow) —38

echo "<tr><td valign='top' width='15%"
style='font-weight: bold;
font-size: 1.2em'\n";

echo "<input type='radio' name='interest' —42
value="'S$SpetType'\n"; —43
if(Scounter == 1) —44

{

echo "checked='checked'";

}

(continued)

339

340 Partiv: Applications

Listing 11-2 (continued)

echo ">$SpetType</td>"; —48
echo "<td>StypeDescription</td></tr>"; —49
Scounter++; —50

}
echo "</table>";
echo "<p><input type='submit' value='Select Pet Type'>

</form></p>\n"; —54
?>
</div>
</body></html>

Here is a brief explanation of what the following lines do:

—12 The include statement brings in a file that contains the infor-
mation necessary to connect to the database. I call it misc.inc
because that seems more secure than calling it passwords. inc.

—14 Connects to the MySQL server.

—18 A query that selects all the information from the PetType table
and puts it in alphabetical order based on pet type.

—20 Executes the query on line 18.

—33 The opening tag for a form that holds all the pet types. The action
target is ShowPets.php, which is the program that shows the
pets of the chosen type.

—35 Creates a counter with a starting value of 1. The counter keeps
track of how many pet types are found in the database.

—36 Starts a while loop that gets the rows containing the pet type
and pet description that were selected from the database on lines
19 and 20. The loop executes once for each pet type that was
retrieved.

—38 Separates the row into two variables: $petType and $pet
Description.

—42 Lines 42-43 echo a form field tag for a radio button. The value
is the value in SpetType. This statement executes once in each
loop, creating a radio button for each pet type. This statement
echoes only part of the form field tag.

—44 Starts an if block that executes only in the first loop. It echoes
the word "checked="'checked'" as part of the form field. This
ensures that one of the radio buttons is selected in the form so
that the form can’t be submitted with no button selected, which
would result in unsightly error messages or warnings. The counter
was set up solely for this purpose.

Chapter 11: Building an Online Catalog

QNG

Although adding "checked="checked'" to every radio button
works in some browsers, it confuses other browsers. However,
the extra programming required to add "checked="'checked"'"
to only one radio button can prevent potential problems.

—48 Echoes the remaining part of the form field tag for the radio
button — the part that closes the tag and displays the pet type.

—49 Echoes the pet description in a second cell in the table row.

—50 Adds 1 to the counter to keep track of the number of times that
the loop has executed.

—53 Adds the submit button to the form.
—54 Closes the form.
When the user selects a radio button and then clicks the submit button, the

next program — named ShowPets . php in the form tag — runs, showing the
pets for the selected pet type.

Showing the pets

The pets page (refer to Figures 11-3, 11-4, and 11-5) shows the customer a list
of all the pets of the selected type that are currently in the catalog. Listing
11-3 shows the program that produces the pet Web page.

Listing 11-3: Displaying a List of Pets

<?php

/* Program: ShowPets.php
* Desc: Displays all the pets in a category.
& Category is passed in a variable from a
* form. The information for each pet is
@ displayed on a single line, unless the pet
& comes in more than one color. If the pet
% comes in colors, a single line is displayed
& without a picture, and a line for each color,
& with pictures, is displayed following the
& single line. Small pictures are displayed,
* which are links to larger pictures.
*/

?>

<html>

<head><title>Pet Catalog</title></head>

<body>

<?php

include ("misc.inc") ;

Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("couldn't connect to server");

(continued)

341

34 2 Part IV: Applications

Listing 11-3 (continued)

/* Select pets of the given type */
Squery = "SELECT * FROM Pet —25
WHERE petType=\"{S$_POST['interest']}\""; —26
Sresult = mysqgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

/* Display results in a table */
echo "<table cellspacing='10' border='0' cellpadding='0"
width='100%"'>";
echo "<tr><td colspan='5' style='text-align: right'>
Click on any picture to see a larger
version. <hr /></td></tr>\n";
while($Srow = mysgli_fetch_assoc (Sresult)) —36
{
Sf_price = number_format (Srow['price'],2);

/* check whether pet comes in colors */
Squery = "SELECT * FROM Color

WHERE petName='{Srow['petName']}'"; —42
Sresult2 = mysqgli_query (Scxn, Squery)
or die(mysqgli_error (Scxn)) ;
Sncolors = mysgli_num_rows (Sresult2) ; —45

/* display row for each pet */
echo "<tr>\n";
echo " <td>{Srow['petID']}</td>\n";
echo " <td style='font-weight: bold;
font-size: 1l.lem'>{Srow|['petName']}</td>\n";
echo " <td>{Srow|['petDescription']}</td>\n";
/* display picture if pet does not come in colors */

if($ncolors <= 1) —54
{
echo "<td><a href='../images/{Srow['pix']}"
border='0"'>
<img src='../images/{S$row['pix']}"
border='0' width='100' height='80"' />
</td>\n";
}
echo "<td align='center'>\$$f price</td>\n
</tr>\n";
/* display row for each color */
if (Sncolors > 1) —65
{
while(Srow2 = mysgli_fetch_assoc (Sresult2)) —67
{

echo "<tr><td colspan=2> </td>
<td>{Srow2 ['petColor']}</td>

<td><a href='../images/{Srow2['pix']}"
border='0"'>
<img src='../images/{Srow2['pix']}"

border='0"' width='100"

Chapter 11: Building an Online Catalog 343

height='80"' /></td>\n";
}
}
echo "<tr><td colspan='5'><hr /></td></tr>\n";
}
echo "</table>\n";
echo "<div style='text-align: center'>

<h3>See more pets</h3></div>";
?>
</body></html>

Many of the tasks in Listing 11-3 are also in most of the programs in this
application, such as connecting to the database, creating forms, and execut-
ing queries. Because | document these common tasks for Listing 11-2, I don’t
repeat them here. Following is a brief explanation of what some of the other
lines do in the program:

—25 Lines 25-26 select all the pets in the catalog that match the
chosen type, which was passed in a form from the previous page.

—36 Sets up a while loop that runs once for each pet selected. The
loop creates a line of information for each pet found.

—42 Lines 42-45 check whether the pet has any entries in the Color
table. Notice that the query results are put in Sresult2. They
couldn’t be put in Sresult because this variable name is already
in use. $ncolors stores the number of rows found in the Color
table for the pet. Every pet name is checked for colors when it’s
processed in the loop.

—54 Starts an if block that is executed only if zero or one row for the
pet was found in the Color table. The if block displays the pic-
ture of the pet. If the program found more than one color for the
pet in the Color table, the pet is available in more than one color,
and the picture shouldn’t be shown here. Instead, a picture for
each color will be shown in later lines. Refer to Figures 11-3 and
11-4 for pet pages that display the pictures and information on a
single row, as in this if block.

—65 Starts an if block that’s executed if more than one pet color was
found. The 1if block echoes a row for each color found in the
Color table.

—67 Sets up a while loop within the if block that runs once for each
color found in the Color table. The loop displays a line, including
a picture, for each color. Refer to Figure 11-5 for a pet page that
displays separate lines with pictures for each color.

The page has a link to more pets at the bottom. The link points to the
previous program that displays the pet types.

344 partiv: Applications

Adding pets to the catalog

The

application that adds a new pet to the catalog should do the following

tasks:

1.

Create a form that asks for a pet category.

The person adding the pet can choose one of the existing pet types or
create a new one. To create a new type, the user needs to type a cat-
egory name and description.

. If a new type is created, check that the name and description were typed.

. Create a form that asks for pet information — name, description, price,

picture filename, and color.

The person adding the pet can choose one of the existing pet names for
the selected category or create a new name. To create a new pet name,
the user needs to type a pet name.

4. If new is selected for the pet name, check that the name was typed in.

5. Store the new pet in the PetCatalog database.

The

. Send a feedback page that shows what information was just added to the

catalog.

tasks are performed in three programs:

V¥ ChoosePetCat .php: Creates the pet type form (task 1)

V¥ ChoosePetName.php: Checks the pet category data and creates the pet

information form (tasks 2 and 3)

v AddPet .php: Checks the pet name field, stores the new pet in the cata-

log database, and provides feedback (tasks 4, 5, and 6)

Writing ChoosePetCat

The

first program, ChoosePetCat . php, produces a Web page with an HTML

form in which the person adding a pet can select a pet type for the pet.
ChoosePetCat .php is shown in Listing 11-4.

Listing 11-4: Selecting a Pet Type

<?php

?>

/* Program: ChoosePetCat.php

* Desc: Allows users to select a pet type. All the
@ existing pet types from the PetType table

@ are displayed with radio buttons. A section
% to enter a new pet type is provided.

*/

Chapter 11: Building an Online Catalog 345

<html>
<head>

<title>Pet Categories</title>

<style type='text/css'>

<€ll==

#new { border: thin solid; margin: lem 0; padding: lem;

}

#radio { padding-bottom: lem; }

.field { padding-top: .5em; }

label { font-weight: bold ; }

#new label { width: 20%; float: left;

margin-right: lem; text-align: right; }

input { margin-left: lem; }

#new input { margin-left: 0 }

-——>

</style>
</head>

<body style='margin: lem'>
<h3>Select a category for the pet you're adding.</h3>
<p>If you are adding a pet in a category that is not
listed, choose New Category and type the
name and description of the category. Press
Submit Category when you have finished
selecting an existing category or typing a new
category.</p>
<?php
include ("misc.inc") ;
Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("couldn't connect to server");
Squery="SELECT petType FROM PetType —37
ORDER BY petType"; —38
Sresult = mysqgli_query ($cxn, $Squery)
or die ("Couldn't execute query.");

/* Display form for selecting pet type */
echo "<form action='ChoosePetName.php'

method="post'>\n";
Scounter=0; —45
while(Srow = mysgli_fetch_assoc (Sresult)) —46
{

extract (Srow) ;

echo "<label><input type='radio' name='category' —49
value="'S$SpetType'";
if (Scounter == 0) —51
{
echo " checked='checked'";

}
echo " />SpetType </label>\n"; —55
Scounter++; —56

(continued)

346 Part IV: Applications

Listing 11-4 (continued)

?>
<div id="new"> —59
<div id="radio">
<label for="category">New Category</label>
<input type="radio" name="category" id="category"
value="new" />
</div>
<div class="field">
<label for="newCat">Category name: </label>
<input type="text" name="newCat" size="20"
id="newCat" maxlength="20" /></div>
<div class="field">
<label for="newDesc">Category description: </label>
<input type="text" name="newDesc" id="newDesc"
size="70%" maxlength="255" /></div>
</div>
<input type='submit' value='Submit Category' />
</form></body></html>

Many of the tasks in Listing 11-4, such as connecting to the database, creating
forms, and executing queries, are found in most of the programs in this appli-
cation; refer to Listing 11-2 for an explanation. The following list provides a
brief explanation of what the following lines do:

—37 A query (lines 37 and 38) that selects all the pet types from the
PetType table and sorts them in alphabetical order.

—45 Creates a counter with a starting value of 0. The counter keeps
track of how many pet types are found in the database.

—46 Starts awhile loop that executes once for each pet type. The
loop creates a list of radio buttons for the pet types, with one
button selected. Here are the details of the while loop:

—49 Echoes a form field tag (lines 49 and 50), including a label
tag, for a radio button with the value equal to $petType.
This statement executes once in each loop, creating a radio
button for each pet type. This statement echoes only the
first part of the form field tag.

—51 An if block that executes only in the first loop. It echoes
the attribute "checked="'checked' " as part of the form
field. This attribute ensures that one of the radio buttons is
selected when displayed so that the form can’t be submitted
with no button selected, which would result in unsightly error
messages. The counter was set up solely for this purpose.

NG/ Although adding "checked="'checked' " to every radio
§g~ button works in some browsers, it causes problems in other
browsers. The extra programming required to add "checked=
'checked' " to only one radio button can prevent problems.

Chapter 11: Building an Online Catalog

—55 Echoes the remaining part of the form field tag for the radio

button — the part that closes the tag.

—56 Adds 1 to the counter to keep track of the number of times
the loop has executed. This is the last line in the while loop.

—59 From line 59 to the end of the program, HTML code displays the

new category section of the form.

Writing ChoosePetName
The second program, ChoosePetName . php, accepts the data from

the form

in the first program. It checks the information and asks for missing informa-
tion. After the pet type information is received correctly, the program creates
a form in which a user can select a pet name for the new pet being added

to the catalog and type the information for the pet. This program brings in
two forms from separate files with include statements — NewCat_form.
inc and NewName_form. inc. This program also calls a function that’s in an

include file. Listing 11-5 shows ChoosePetName . php

Listing 11-5: Asking the User for the Pet Name

<?php
/* Program: ChoosePetName.php

* Desc: Allows the user to enter the information
&3 for the new pet. If the category is new,
& it's entered into the database.
*/
if (@S_POST|['newbutton'] == "Return to category page" —7
or @$_POST['newbutton'] == "Cancel")

{
header ("Location: ChoosePetCat.php") ;
}
include ("misc.inc") ;
include ("functions.inc") ;
Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("Couldn't connect to server");
/* If new was selected for pet category, check if
category name and description were filled in. */
if(trim($_POST['category']) == "new")
{
S_POST['category']l=trim(S_POST['newCat']) ;
if (empty ($_POST['newCat'])
or empty ($S_POST|['newDesc']))
{
include ("NewCat_form.inc") ;
exit () ;
}

else

{

—13
—14

—18

—20
—21

—24
—25

—27
—28

(continued)

347

348 Partiv: Applications

Listing 11-5 (continued)

addNewType ($_POST['newCat'],$_POST['newDesc'], Scxn) ;
}

} —31
include ("NewName_form.inc") ; —32
?>

Only some of the lines are documented in the following list because many of
the tasks in the listing are found in most of the programs in this application.
The common tasks are documented for Listing 11-2 and explained in other
parts of the book, so I don’t repeat them here. Here’s a brief explanation of
what the following lines do in the program:

—7 Starts an if statement that checks whether the user clicked the
submit button labeled Cancel or Return to category page. If so, it
returns to the first page.

—13 Includes the file that defines the function AddNewType (), which
is used later in this program. The function is shown in Listing 11-8.

—14 Creates a connection to the database.

—18 Starts an if block that executes only if the user selected the radio
button for New Category in the form from the previous program.
This block checks whether the new category name and descrip-
tion are filled in. If the user forgot to type them, he or she is asked
for the pet type name and description again. After the name and
description are filled, the program calls a function that adds the
new category to the PetType table. The following lines describe
this i f block in more detail:

—20 Sets the category name, which currently equals "new", to
the new category name.

—21 Starts an if block that executes only if the category name
or the category description is blank. Because this i f block
is inside the if block for a new category, this block exe-
cutes only if the user selected New Category for pet type
but didn’t fill in the new category name and description.

—24 Creates a form that asks for the category name and
description. The HTML for the form is included from a
file — NewCat_form. inc, which is shown in Listing 11-6.
This executes only when the i f statement on line 21 is
true — that is, if the category is new and the category name
and/or description is blank.

—25 Stops the program after displaying the form on line 24.
The program can’t proceed until the category name and
description are typed. This block repeats until a category
name and description are filled.

Chapter 11: Building an Online Catalog

—27 Starts an else block that executes only if both the cat-
egory name and description are filled in. Because this block
is inside the i f block for the new radio button, this block
executes when the user selected new and filled in the new
category name and description.

—29 Calls a function that adds the new category to the PetType
table.

—31 This line ends the if block. If the user selected one of the
existing pet types, the statements between line 17 and this
line did not execute.

—32 Creates the form where the user can enter information about the
new pet. A file is included that contains the code for the form,
shown in Listing 11-7.

This program brings in three files using include statements. Listings 11-6,
11-7, and 11-8 show the three files that are included: NewCat_form. inc,
NewName_ form. inc, and functions.inc

In Listing 11-5, line 24 includes a form that requests the user to enter a pet
category name and description. This form is only displayed if the user did
not type this information on the first page, which is displayed by the program
in Listing 11-4. The program ChoosePatName . php checks whether the infor-
mation was entered on the first page, and if it wasn'’t, it displays the form in
Listing 11-6 (shown earlier in Figure 11-9).

Listing 11-6: HTML Code That Creates New Pet Type Form

<?php
/* Program: NewCat_form.inc
* Desc: Displays a form to collect a category name
& and description.

*/

?>
<html>
<head>
<title>New Category Form</title>
<style type='text/css'>

<l--

.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 18%;
margin-right: lem; text-align: right; }
-—>
</style>
</head>
<body style="padding: lem">
<h3>Either the category name or the category description
was left blank. You must enter both.</h3>

(continued)

349

350 Part IV: Applications

Listing 11-6 (continued)

<form action=<?php echo "$_SERVER[PHP_SELF]" ?>
method="post">
<div class="field">
<label for="newCat">Category name: </label>
<input type="text" name="newCat" id="newCat"
size="20" maxlength="20"
value="<?php echo $_POST['newCat'] ?>" /></div>
<div class="field">
<label for="newDesc">Category description: </label>
<input type="text" name="newDesc" id="newDesc"
value="<?php echo $_POST['newDesc'] ?>"
size="70%" maxlength="255" /></div>
<input type="hidden" name="category" value="new">
<p><input type="submit" name="newbutton"
value="Enter new category">
<input type="submit" name="newbutton"
value="Return to category page">
</form></body></html>

This program is almost all HTML code. Note the following points:

v This form is created only when the user selects the radio button for
New Category on the pet type Web page but does not type the pet type
name or description. This form is displayed to give the user a second
chance to type the name or description and continues to redisplay until
the user enters the required information.

1 Most of the file is HTML, with only two small PHP sections that echo
values for the two fields.

v The form returns to the program that generated it for processing.
It’s processed in the same manner as the form that was sent from the
first page. The field names are the same and are checked again to see

whether they are blank.

v A hidden field is included that sends $category with a value of
"new". If this form didn’t send $Scategory, the program that processes
it — the same program that generated it — wouldn’t know that the pet
type was new and wouldn’t execute the i f block that should be exe-
cuted when a new category is selected.

The program in Listing 11-5, on line 32, includes a file that creates a form
where the user can enter information about the pet. Listing 11-7 shows the
code for this form. The Web page it displays is shown in Figure 11-7.

Chapter 11: Building an Online Catalog

Listing 11-7: HTML File That Creates the Pet Information Form

<?php
/* Program name: NewName_form.inc
* Description: Script displays a form that asks for
& the new pet information.
*/
Slabels = array("petName" => "Pet Name: ",
"petDescription" => "Pet Description: ",

"price" => "Price",
"pix" => "Picture file name: ",
"petColor" => "Pet color (optional)");
if (isset (S_POST|['category'])) —11
{
Scategory = $_POST|['category'];
}
else
{
Scategory = $_POST['newCat'];
}
?>
<html>
<head>

<title>New Pet Information Form</title>
<style type='text/css'>
2ll==
form { margin: lem; padding: 0; }
.field { padding-top: .5em; }
label { font-weight: bold; float: left; width: 18%;
margin-right: lem; text-align: right; }
#submit { margin-top: lem;)
-——>
</style>
</head>

<body>
<form action="AddPet.php" method="post">
<?php
echo "<h4>Pet Information</h4>"; —37
echo "<div class='field'> <label>Pet Category:</label>
Scategory</div>\n";
foreach($labels as $field => $label)
{
echo "<div class='field'>
<label for='sSfield'>Slabel</label>
<input type='text' name='Sfield' id='S$field!’
size='65"' maxlength='65"
value="'".@ssfield."' /></div>\n";

(continued)

351

352 Part IV: Applications

Listing 11-7 (continued)

<div id="submit">
<input type='hidden' name='newCat'
value="'<?php echo Scategory ?>' />
<input type='submit' value='Submit Pet Name' />
<input type='submit' name='newbutton' wvalue='Cancel' />
</div> </form></body></html>

The code defines the form where users can enter the pet information. Note
the following points:

v An if statement, staring on line 11, sets the variable $category to
the name of the current category. The category element in the $_POST
array may contain the value "new", instead of a category name.

v The first line in the form cannot be changed. The first line displays
the current category. The form does not allow the user to change this
value. The remaining fields in the form allow the user to enter the name,
description, and other information for the new pet.

v The array $labels contains the information for the form fields. The
foreach loop echoes the fields. This array does not contain the first
field, which contains the category, because it’s displayed differently so it
can’t be changed.

v A hidden field passed the category value. Because the first field is not
anormal field, the category is not passed in the $_POST array. A hidden
field is required to pass it.

In addition to form files, the ChoosePetName. php program in Listing 11-5
(earlier in the chapter) calls a function. The function is stored in a file named
functions.inc and is included in the beginning of the program. Listing 11-8
shows the function.

Listing 11-8: Function addNewType()

<?php
/* Function addNewType
* Desc Adds a new pet type and description to the
& PetType table. Checks for the new pet type
@ first and does not add it to the table if
& it is already there.
*/

function addNewType (SpetType, StypeDescription, Scxn)
{
/* Check whether new category is in PetType table.
If it is not in table, add it to table. */
Squery = "SELECT petType FROM PetType
WHERE petType='SpetType'";

Chapter 11: Building an Online Catalog

Sresult = mysgli_query (Scxn, Squery) or
die("Couldn't execute select query");
Sntype = mysgli_num_rows (Sresult); //
if (Sntype < 1) // i1f new type is not in table
{
SpetType = ucfirst(strip_tags (trim(SpetType))) ;
StypeDescription =
ucfirst (strip_tags (trim(StypeDescription))) ;
SpetType = mysgli_real_escape_string($cxn, SpetType) ;
StypeDescription =
mysqgli_real_escape_string(Scxn, StypeDescription) ;

Squery="INSERT INTO PetType (petType, typeDescription)
VALUES ('SpetType', 'StypeDescription')";
Sresult = mysqgli_query ($cxn, Squery)
or die("Couldn't execute insert query");
}
return;

}

?>

The function checks whether the pet type is already in the PetType table. If
it isn’t, the function cleans the data and adds it to the table.

Writing AddPet

The last program, AddPet . php, accepts the data from the form in the second
program. If new was selected for the pet name, the program checks to see
that a new name was typed and prompts for it again if it was left blank. After
the pet name is filled in, the program stores the pet information from the
previous page. Notice that it doesn’t check the other information because the
other information is optional. This program, as in Listing 11-5, brings in some
of the HTML forms and tables from two separate files by using an include
statement. Listing 11-9 shows AddPet . php.

Listing 11-9: Adding a New Pet to the Catalog

<?php
/* Program: AddPet.php
* Desc: Adds new pet to the database. A confirmation
w3 page is sent to the user.
*/
if (@$_POST|['newbutton'] == "Cancel") —6

{
header ("Location: ChoosePetCat.php") ;
}

include ("misc.inc") ;
Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname) —11
or die ("Couldn't connect to server");

(continued)

353

35& Part IV: Applications

Listing 11-9 (continued)

foreach ($_POST as $field => Svalue) —13
{
if (empty (Svalue)) —15
{
if ($field == "petName" or S$field == "petDescription")
{
Sblank_array[] = S$field;
}
}
else —2
{
if($field != "category")
{
if (!preg match("/"[A-Za-z0-9., _-]1+S$/",Svalue))
{
Serror_array[] = S$field;
}
if ($field == "newCat")
{
Sclean_datal 'petType']=trim(strip_tags (Svalue)) ;
}
else
{
Sclean_data[$field] = trim(strip_tags(Svalue)) ;
}
}
}
} —40
if (@sizeof (Sblank_array)>0 or @sizeof (Serror_array)>0) 41
{
if (@sizeof (Sblank_array) > 0)
{
echo "<p>You must enter both pet name and
pet description</p>\n";
}
if (@sizeof (Serror_array) > 0)
{
echo "<p>The following fields have incorrect
information. Only letters, numbers, spaces,
underscores, and hyphens are allowed:
\n";
foreach (Serror_array as Svalue)
{
echo " Svalue
\n";
}
}

extract (Sclean_data) ;
include ("NewName_form.inc") ;
exit () ;

Chapter 11: Building an Online Catalog

foreach(Sclean_data as $field => S$value) —62
{
if ('empty (Svalue) and $field != "petColor") —64
{
Sfields_form[$field] =
ucfirst (strtolower (strip_tags (trim(Svalue))));
Sfields_form[$field] =
mysgli_real_ escape_string($cxn,
Sfields_form[$field]) ;
if(Sfield == "price") —71
{
Sfields_form[Sfield] =
(float) $fields_form[Sfield];
}
}
if (!empty ($_POST['petColor'])) —77
{
SpetColor = strip_tags (trim($_POST|['petColor']));
SpetColor = ucfirst(strtolower (SpetColor)) ;
SpetColor =
mysgli_real_escape_string($cxn, SpetColor) ;
}
} —84
>
<html>
<head><title>Add Pet</title></head>
<body>
<?php
sfield_array = array_ keys(Sfields_form); —90
Sfields=implode (", ", S$field_array) ; —91
Squery = "INSERT INTO Pet (S$Sfields) VALUES ("; —92
foreach(sfields_form as sfield => S$value) —93
{
if($field == "price")
{
Squery .= "Svalue ,";
}
else
{
Squery .= "'Svalue' ,";
}
} —103
Squery .= ") "; Tl
Squery = preg_replace("/,\)/",")",Squery) ; —105
Sresult = mysgli_query (Scxn, Squery) —106
or die ("Couldn't execute query") ;
SpetID = mysgli_insert_id($Scxn) ; —108
Squery = "SELECT * from Pet WHERE petID='SpetID'"; —109

Sresult = mysgli_query (Scxn, Squery)
or die ("Couldn't execute query.");

(continued)

355

356 Part IV: Applications

Listing 11-9 (continued)

Srow = mysqgli_fetch_assoc (Sresult) ;
extract (Srow) ;
echo "The following pet has been added to the
Pet Catalog:

Category: SpetType
Pet Name: SpetName
Pet Description: S$petDescription
Price: \$Sprice</1li>
Picture file: S$Spix\n";
if (@SpetColor != "") —122
{
Squery = "SELECT petName FROM Color
WHERE petName='S$petName'
AND petColor='SpetColor'";
Sresult = mysqgli_query (Scxn, Squery)
or die("Couldn't execute query.");
Snum = mysgli_num_rows (Sresult) ;
if (Snum < 1)
{
Squery = "INSERT INTO Color (petName,petColor,pix)
VALUES ('SpetName', 'SpetColor', 'Spix')";
Sresult = mysgli_query (Scxn, Squery)
or die("Couldn't execute query.".mysqgli_
error (Scxn)) ;
echo "Color: S$petColor\n";
}
}
echo "\n";
echo "Add Another Pet\n";
?>
</body></html>

[document only some of the lines in the following list because many of the
most common tasks, such as connecting to the database, have been docu-

mented for the previous programs in this chapter. Here’s an explanation of
what the following lines do in the program:

—6 Checks whether the user clicked the Cancel button. If so, returns to
the first page.

—11 Connects to the database.

—13 Starts a foreach block that walks through the new pet information
submitted on the previous Web page. This block checks and cleans
the data. The following line numbers describe the processing in
detail:

—15 Starts an if block that checks whether petName or pet
Description are empty. If empty, the field name is added to
the array $blank_array.

Chapter 11: Building an Online Catalog 35 7

—41

—62

—84
—90

—-91

—92

—93

—22 Starts an else block that checks for invalid format in the form

fields. The field names that contain invalid data are added to
the array Serror_array. Data that is okay is cleaned and
added to the array Sclean_data.

—40 The end of the foreach loop that checks the data.

Starts an if block that executes if any blank fields or invalid
data was found. The block displays error messages for the blank
or invalid data and then displays the form again so the user can
enter the correct information. Line 59 redisplays the form, and
line 60 stops the program.

Starts a foreach statement that loops through the $clean_data
array. The program does not reach this line until all the required
fields are filled and all the data is valid. This loop creates arrays
that are used to create an INSERT query to store the new pat in
the database. The following lines describe the processing in detail:

—64 Starts an if block that executes if the field is not blank and

if the field is not petColor. The if block creates an array
$fields_form that contains the information needed to create
the INSERT statement for the Pet table. Because petColor is
not stored in the Pet table, it isn’t included in this array.

—71 Starts an if statement that processes price separately. Price

must be stored as a number. The MySQL defines price as a deci-
mal number, so MySQL doesn’t accept a string in the INSERT
query. In this block, price is stored as a number by telling PHP
to store the value as a float, which means a decimal number.

—77 Starts an if block that processes petColor separately, with-

out putting it into the $fields_form array.
End of the foreach statement that started on line 62.

Creates an array $field-array of the fields stored in $fields_
form.

Creates a string $fields which contains all of the field names in
$fields_form, separated by commas.

Creates a string $query with the beginning of the INSERT query. It
includes the string $fields created on line 91.

Begins a foreach statement that loops through $fields_form.
The foreach block adds the values to the INSERT query. The
value for price must be added separately because it can’t have
quotes around it. If it has quotes around the value, MySQL sees it as
a string, not a number, and doesn’t accept it as a valid value for the
price field in the Pet table.

358 Part IV: Applications

—103
—104
—105
—106
—108

—109

Ends the foreach loop.
Finished the INSERT query.
Removes an extra comma from the INSERT query.
Executes the INSERT query.

Stores the Pet ID field that was automatically entered by MySQL
when the INSERT query was executed. Pet ID contains the ID
number.

Lines 109 to the end of the program send the feedback page to the
user. The information for the new pet is retrieved from the data-
base and displayed on the Web page. If a pet color was entered,
the if block that starts on line 122 executes. The pet name and
color are stored in the Color table. And the output line for the
color is added to the feedback page.

At the end of the feedback page, this program adds a link to the first page so
that the user can add another new pet to the catalog if desired.

Chapter 12

Building a Members
Only Web Site

In This Chapter
Designing the Members Only Web site
Building the database for the member directory
Designing the Web pages for the Members Only section
Writing the programs for logging in to the Members Only section

M any Web sites require users to log in. Sometimes users can’t view any
Web pages without entering a password, while sometimes just part of
the Web site requires a login. Here are some reasons why you might want to
require a user login:

v+ The information is secret. You don’t want anyone except a few authorized
people to see the information. Or perhaps only your own employees should
see the information.

v The information or service is for sale. The information or service that
your Web site provides is your product, and you want to charge people
for it. For instance, you might have a corner on some survey data that
researchers are willing to pay for. For example, AAA Automobile Club
offers some of its information for free, but you have to be a member to
see its hotel ratings.

+ You can provide better service. If you know who your customers are
or have some of their information, you can make their interaction with
your Web site easier. For instance, if you have an account with Barnes
and Noble or the Gap and log in to its site, it uses your stored shipping
address, and you don’t have to type it again.

+* You can find out more about your customers. Marketing would like to
know who is looking at your Web site. A list of customers with addresses
and phone numbers and perhaps some likes and dislikes is useful. If
your Web site offers some attractive features, customers may be willing
to provide some information to access your site.

360 Prartwv: Applications

Typically, a login requires the user to enter a user ID and a password. Often,
users can create their own accounts on the Web site, choosing their own user
IDs and passwords. Sometimes users can maintain their accounts — for exam-
ple, change their passwords or phone numbers — online.

In Chapter 11, you find out how to build an online catalog for your Pet Store
Web site. Now, you want to add a section to your Web site for Members Only.
You plan to offer discounts, a newsletter, a database of pet information, and
more in the Members Only section. You hope that customers will see the
section as so valuable that they’ll be willing to provide their addresses and
phone numbers to get a member account that lets them use the services in the
restricted section. In this chapter, you build a login section for the Pet Store.

Designing the Application

The first step in design is to decide what the application should do. Its basic
function is to gather customer information and store it in a database. It offers
customers access to valuable information and services to motivate them to
provide information for the database. Because state secrets or credit card
numbers aren’t at risk, you should make it as easy as possible for customers
to set up and access their accounts.

The application that provides access to the Members Only section of the Pet
Store should do the following:

v Provide a means for customers to set up their own accounts with
member IDs and passwords. This includes collecting from the customer
the information that’s required to become a member.

v Provide a page where customers type their member ID and password
and then check whether they are valid. If so, the customer enters the
Members Only section. If not, the customer can try another login.

v Show the pages in the Members Only section to anyone who is logged in.

1 Refuse to show the pages in the Members Only section to anyone who
is not logged in.

v Keep track of member logins. By doing this, you know who logs in and
how often.

Building the Database

The database is the core and purpose of this application. It holds the cus-
tomer information that’s the goal of the Members Only section and the Member
ID and password that allow the user to log in to the Members Only section.

Chapter 12: Building a Members Only Web Site 36 ’

The Members Only application database contains two tables:

V¥ Member table
» Login table

The first step in building the login application is to build the database. It’s
pretty much impossible to write programs without a working database to
test the programs on. First design your database, then build it, and then add
some sample data for use while developing the programs.

Building the Member table

In your design for the login application, the main table is the Member table. It
holds all the information entered by the customer, including the customer’s
personal information (name, address, and so on) and the Member ID and
password. The following SQL query creates the Member table:

CREATE TABLE Member (

loginName VARCHAR (20) NOT NULL,
createDate DATE NOT NULL,
password VARCHAR (255) NOT NULL,
lastName VARCHAR (50) ,

firstName VARCHAR (40) ,

street VARCHAR (50) ,

city VARCHAR (50) ,

state CHAR (2) ,

zip CHAR (10) ,

email VARCHAR (50) ,

phone VARCHAR (15) ,

fax VARCHAR (15) ,

)

PRIMARY KEY (loginName)
Each row represents a member. The columns are

v loginName: A Member ID for the member to use when logging in. The
customer chooses and types the login name. The CREATE query defines
the LoginName in the following ways:

e VARCHAR (20): This statement defines the field as a variable charac-
ter string that can be up to 20 characters long. The field is stored
in its actual length.

e PRIMARY KEY (loginName): The primary key identifies the row
and must be unique. MySQL doesn’t allow two rows to be entered
with the same 1oginName.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

362 rartiv: Applications

» createDate: The date when the row was added to the database — that
is, the date when the customer created the account. The query defines
createDate as

e DATE: This is a string that’s treated as a date. Dates are displayed
in the format YYYY-MM-DD. They can be entered in that format or
a similar format, such as YY/M/D or YYYYMMDD.

e NOT NULL: This definition means this field can’t be empty. It must
have a value. Because the program, not the user, creates the date
and stores it, this field won’t ever be blank.

v password: A password for the member to use when logging in. The
customer chooses and types the password. The CREATE query defines
the password in the following ways:

e VARCHAR (255): This statement defines the field as a variable
character string that can be up to 255 characters long. The field
is stored in its actual length. You don’t expect the password to
be 255 characters long. In fact, you expect it to be pretty short.
However, you intend to use the MySQL md5 function to encrypt it
rather than store it in plain view. After it’s encrypted, the string
will be longer, so you're allowing room for the longer string.

e NOT NULL: This statement means that this field can’t be empty. It
must have a value. You'’re not going to allow an empty password in
this application.

v lastName: The customer’s last name, as typed by the customer. The
CREATE query defines the field as

e VARCHAR (50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

v firstName: The customer’s first name, as typed by the customer. The
CREATE query defines the field as

e VARCHAR (40): This data type defines the field as a variable char-
acter string that can be up to 40 characters long. The field is stored
in its actual length.

v street: The customer’s street address, as typed by the customer. The
CREATE query defines the field as

e VARCHAR (50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

v city: The city in the customer’s address, as typed by the customer. The
CREATE query defines the field as

e VARCHAR (50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

Chapter 12: Building a Members Only Web Site 363

»* state: The state in the customer’s address. The string is the two-letter
state code. The customer selects the data from a drop-down list containing
all the states. The CREATE query defines the field as

e CHAR (2): This data type defines the field as a character string

that’s 2 characters long. The field always take up 2 characters of
storage.

v zip: The zip code that the customer types. The CREATE query defines
the field as

e CHAR (10): This data type defines the field as a character string
that’s 10 characters long. The field always takes up 10 characters
of storage, with padding if the actual string stored is less than ten

characters. The field is long enough to hold a zip+4 code, such as
12345-1234.

v email: The e-mail address that the customer types. The CREATE query
defines the field as

e VARCHAR (50): This data type defines the field as a variable character
string that can be up to 50 characters long. The field is stored in its
actual length.

v phone: The phone number that the customer types. The CREATE query
defines the field as

e CHAR (15): This data type defines the field as a character string
that’s 15 characters long. The field always takes up 15 characters

of storage, with padding if the actual string stored is less than 15
characters.

v fax: The fax number that the customer types. The CREATE query
defines the field as

e CHAR (15): This data type defines the field as a character string
that’s 15 characters long. The field always takes up 15 characters

of storage, with padding if the actual string stored is less than 15
characters.

Building the Login table

The Login table keeps track of member logins by recording the date and
time every time a member logs in. Because each member has multiple logins,

the login data requires its own table. The CREATE query that builds the
Login table is

CREATE TABLE Login (
loginName VARCHAR (20) NOT NULL,
loginTime DATETIME NOT NULL,
PRIMARY KEY (loginName, loginTime)) ;

364 partiv: Applications

The Login table has only two columns, as follows:

¥ loginName: The Member ID that the customer uses to log in with. The
loginName is the connection between the Member table (which I describe
in the preceding section) and this table. Notice that the 1oginName
column is defined the same in the Member table and in this table. This
makes table joining possible and makes matching rows in the tables much
easier. The CREATE query defines the 1oginName in the following ways:

® VARCHAR (20): This statement defines the field as a variable char-
acter string that can be up to 20 characters long. The field is stored
in its actual length.

® PRIMARY KEY (loginName, loginTime): The primary key iden-
tifies the row and must be unique. For this table, two columns
together are the primary key. MySQL won’t allow two rows to be
entered with the same 1oginName and loginDate.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

v loginTime: The date and time when the member logged in. This field
uses both the date and time because the field needs to be unique. It’s
unlikely that two users would log in at the same second at the Pet Store
Web site. However, in some busy Web sites, two users might log in during
the same second. At such a site, you might have to create a sequential
login number to be the unique primary key for the site. The CREATE query
defines the 1oginTime in the following ways:

e DATETIME: This is a string that’s treated as a date and time. The
string is displayed in the format YYYY-MM-DD HH:MM:SS.

® PRIMARY KEY (loginName, loginTime): The primary key iden-
tifies the row and must be unique. For this table, two columns
together are the primary key. MySQL won’t allow two rows to be
entered with the same 1loginName and 1loginDate.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

Adding data to the database

This database is intended to hold data entered by customers — not by you.
It’s empty when the application is first made available to customers until cus-
tomers add data. However, to test the programs while you write them, you
need to have at least a few members in the database. You need a few Member
IDs and passwords to test the login program. You can add some fake mem-
bers for testing — by using an INSERT SQL query — and remove them when
you're ready to go live with your Members Only application.

Chapter 12: Building a Members Only Web Site

Designing the Look and Feel

After you know what the application is going to do and what information you
want to get from customers and store in the database, you can design the
look and feel. The look and feel includes what the user sees and how the user
interacts with the application. Your design should be attractive and easy

to use. You can create your design on paper, indicating what the user sees,
perhaps with sketches or with written descriptions. You should also show
the user interaction components, such as buttons or links, and describe their
actions. Include each page of the application in the design.

The Pet Store Members Only application has three pages that are part of the
login procedures. In addition, the application includes all the pages that are
part of the Members Only section, such as the page that shows the special
discounts and the pages that provide discussions of pet care. In this chapter,
you build only the pages that are part of the login procedure. You don’t build
the pages that are part of the Members Only section, but I do discuss what
needs to be included in them to protect them from viewing by nonmembers.

The login application includes three pages, plus the group of pages that make
up the Members Only section, as follows:

v~ Storefront page: The first page that a customer sees. It provides the
name of the business and the purpose of the Web site. In Chapter 11, I
introduce a storefront page; in this chapter, you modify the page to pro-
vide access to the Members Only section.

v Login page: Allows the customer to either log in or create a new
member account. It displays a form for the customer to fill in to get a
new account.

1 New Member Welcome page: Welcomes the new users by name, letting
them know that their accounts have been created. Provides any informa-
tion that they need to know. Provides a button so that users can con-
tinue to the Members Only section or return to the main page.

» Members Only section: A group of Web pages that contain the content
of the Members Only section.

Storefront page

The storefront page is the introductory page for the Pet Store. Because most
people know what a pet store is, the page doesn’t need to provide much
explanation. Figure 12-1 shows the storefront page. Two customer actions
are available on this page: a link that the customer can click to see the Pet
Catalog and a link to the Members Only section.

365

366 Part IV: Applications

Figure 12-1:
The opening
page of the
Pet Store
Web site.
|

Figure 12-2:
The page
where
customers
login or
create a
new
member
account.
|

4 Pet Store Front Page - Microsoft Internet Explorer

| Eile Edit View Favorites Tools Help
©« .5 @9 [0 o
Back Fomward Stop Refresh Home

| Address [@] i anstvalsan .com/PHPAMy S DLt Dummies PtShapF rontchy =] @Bo ||Links || 7 »

|

= I

Seaich Favorites History

B 2 w0 @

Hail Print Edit Real com

PET STORKE

Looking for
more?

Looking for a new friend? It's free!

Check ot our Pet Catalog,
We may have just what you're looking for

] Dome || @ intermet

Login page

The login page, shown in Figure 12-2, allows the customer to log in or create
a new member account. It includes the form that customers need to fill out to
get a member account. This page has two submit buttons: one to log in with
an existing member account and one to create a new member account.

¥ Customer Login Page - Mozilla Firefox ExK

fle Edt Yew Hgory Bookmarks Inols Help

@ - -@ {1+ [retpiifocabostimystuiphpedsiiogn. s «| & G- &Y
~LoginForm——Registration Form
User IName User Name
Password Password
Email
First Name
Last Name
If you already have an account, Street
log in.
City
State | Alahama 3
If you do not have an account, .
register now. Zip
Fhone
Fax

Done

Chapter 12: Building a Members Only Web Site 36 7

Figure 12-3:
Page
showing a
message
resulting
from a
mistake in
the form.
|

If a customer makes a mistake on the login page, either in the login section or
the new member section, the form is displayed again with an error message.
For instance, suppose that a customer makes an error when typing her e-mail
address: She forgot to type the . com at the end of the e-mail address. Figure 12-3
shows the screen that she sees after she submits the form with the mistake in it.
Notice the error message printed right above the form.

When members successfully log in with a valid Member ID and password,
they go to the first page of the Members Only section. When new members
successfully submit a form with information that looks reasonable, they go
to a New Member Welcome page (see the next section). In addition, an e-mail
message is sent to the new member with the following contents:

A new Member Account has been set up for you. Your new
Member ID and password are:

gsmith
secret

We appreciate your interest in Pet Store at PetStore.com.

If you have any questions or problems, email
webmaster@petstore.com

3 Customer Login Page - Mozilla Firefox. E"E‘El

Fle Edt Miew Histoy Bookmarks Took Help

@& >-@ A% [Mamitfocahostimystufflshordiein che [~]®] G- &)
~LoginForm—_Registration Form
User Name I:l mymailEmycompany is not a valid email address. Please wy agairn
Password I:l User Name ‘gsm\\h
Password ""“’*““‘

Email ‘myma\\@mycumpamy

If you already have an account, Last Name \Smnh

|
|
|
First Name ‘Guhath |
|
|
|

log in.
Street [1234 Giant 5t
City |Big City
If you do not have an account, ‘
register now. State
Zip 12345 |

FPhone [123-123-1234 |

Done

368 Part IV: Applications

A\\S

Figure 12-4:
A page wel-
coming new
members.
|

This e-mail message contains the customer’s password. [think that it’s helpful
to both the customers and the business to provide customers with a hard
copy of their passwords. Customers will forget their passwords. It seems to be
one of the rules. An e-mail message with the password might help a customer
when he forgets it, saving both him and you some trouble. Of course, e-mail
messages aren’t necessarily secure, so sending passwords via e-mail isn’t a
good idea for some accounts, such as an online bank account. But, for this Pet
Store application, with only unauthorized discounts and pet care information
at risk, sending the password via e-mail is a reasonable risk.

New Member Welcome page

The New Member Welcome page greets the customer and offers useful informa-
tion. The customer sees that the account has been created and can then enter
the Members Only section immediately. Figure 12-4 shows a welcome page.

2 New Member Welcome - Microsoft Internet Explorer

Eile Edit View Favorites Tools Help
3 =
S < T N 4 B = W= [AR R B A
Back Fonard Stop Reftesh Home | Seach Favories Historw | Mal Pt Edf Real.com
Address [@] hip://janstvalsan . com/PHPUMyS G Lo Dummiss fmemberséneve_member.php x| @ HLmks > | 57 >
‘Welcome Goliath Smith
Your new Meniber Account lets you enter the Menbers Only section of our web site. Youll find special discounts and bargains, a huge
database of snimal facts and stosies, advice from experts, advance notification of new pets for sale, & message board whers you can talk to
other Members, and much more
Yo new Member ID and password were emailed to you. Stors them carefully for fisture use.
Glad you could join us!
Enter the Members Only Section |
Go to Pet Stare Main Page |
€] ‘ ‘ |Q Internet

Members Only section

One or more Web pages make up the contents of the Members Only section.
Whatever the content is, the pages are no different than any other Web pages
or PHP programs, except for some PHP statements in the beginning of each
file that prevent nonmembers from viewing the pages.

Chapter 12: Building a Members Only Web Site 369

Writing the Programs

<MBER
é"\&

After you know what the pages are going to look like and what they are going
to do, you can write the programs. In general, you create a program for each
page, although sometimes it makes sense to separate programs into more
than one file or to combine programs on a page. (See Chapter 10 for details
on how to organize applications.)

As I discuss in Chapter 10, keep the information needed to connect to the data-
base in a separate file and include it in the programs that need to access the
database. Store the file in a secure location, with a misleading name. For this
application, the following information is stored in a file named dogs . inc:

<?php
Suser="admin";
Shost="localhost";
Spassword="";
Sdatabase="MemberDirectory";
?>

The member login application has several basic tasks:

1. Show the storefront page.
This provides a link to the login page.

2. Show a page where customers can fill in a Member ID and a password
to log in.

3. Check the Member ID and the password that the customer types against
the Member ID and password stored in the database.

If the ID and password are okay, the customer enters the Members Only
section. If the ID and/or password are not okay, the customer is returned
to the login page.

4. Show a page where customers can fill in the information needed to
obtain a member account.

5. Check the information the customer typed for blank fields or incorrect
formats.

If bad information is found, show the form again so that the customer
can correct the information.

6. When good information is entered, add the new member to the database.

7. Show a welcoming page to the new member.

3 70 Part IV: Applications

The tasks are performed in three programs:

v PetShopFront.php: Shows the storefront page (task 1).

v Login.php: Performs both the login and create new member account
tasks (Steps 2-6).

»” New_member .php: Shows the page that welcomes the new member
(task 7).

Writing PetShopFront

The storefront page doesn’t need any PHP statements. It simply displays a
Web page with two links — one link to the Pet Catalog and one link to the
Members Only section of the Web site. HTML statements are sufficient to do
this. Listing 12-1 shows the HTML file that describes the storefront page.

Listing 12-1: HTML File for the Storefront Page

<?php
/* Program: PetShopFrontMembers.php
* Desc: Displays opening page for Pet Store.
*/
?>
<html>
<head>
<title>Pet Store Front Page</title>
<style type='text/css'>
<!--

#banner { text-align: center; }
#main { text-align: center; position: relative;}
.first {padding-top: 3em;}
#rightcol { background-color: black; color: white;
link: white; position: absolute; top: 0;
right: 0; width: 18%;}
#rightcol ul { text-align: left;}
#last { padding-bottom: 3em; };
-——>
</style>
</head>
<body>
<div id="banner">

</div>
<div id="main">
<p class="first">
<img src="images/lizard-front.jpg"
alt="1lizard picture"
height="186" width="280" /></p>
<h2>Looking for a new friend?</h2>

Chapter 12: Building a Members Only Web Site

<p>Check out our
Pet Catalog.

 We may have just what you're looking for.</p>

<div id="rightcol">
<p class="first">
Looking for
more?</p>

special deals?</1li>
pet information?</1li>
good conversation?</1i>

<p>Try the

<a href="login.php"
style="color: white">Members Only

section
of our store</></p>
<p id="last">It's free!</p>
</div>
</div>
</body></html>

Notice the link to the login PHP program. When the customer clicks the link,
the login page appears.

Writing Login

The login page (refer to Figure 12-2) is produced by the program Login.
php, shown in Listing 12-2. The program uses a switch to create two sections:
one for the login and one for creating a new account. The program creates

a session that’s opened in all the Members Only Web pages. The login form
itself isn’t included in this program; it’s in a separate file, login_form. inc,
and is called into the program, using include statements, when the form is
needed.

Listing 12-2: Logging In to the Members Only Section

<?php
/* Program: Login_reg.php
* Desc: Main application script for the User Login
@ application. It provides two options:
X (1) login using an existing username and
X (2) register a new username.
*/
session_start() ; —8
switch (@S$S_POST['Button']) —9

(continued)

371

3 72 Part IV: Applications

Listing 12-2: (continued)
{
case "Log in": —11
include ("dogs.inc") ; —12
Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die("Query died: connect");
Ssgl = "SELECT loginName FROM Member —15
WHERE loginName='S$_POST|[fusername]'";
Sresult = mysgli_query (Scxn, $Ssgl)
or die("Query died: fusername") ;

Snum = mysgli_num rows (Sresult) ; —19
if(Snum > 0) //login name was found —20
{

S$Ssgl = "SELECT loginName FROM Member —22

WHERE loginName='$_POST[fusername]'
AND password=md5 ('S$_POST [fpassword] ') ";

Sresult2 = mysqgli_query (Scxn, $Ssqgl) —25
or die("Query died: fpassword") ;
Snum2 = mysgli_num_rows (Sresult2) ; —27
if (Snum2 > 0) //password matches —28
{
S_SESSION|['auth']="yes"; —30
S_SESSION|['logname'] = $_POST['fusername'];
Ssgl = "INSERT INTO Login (loginName,loginTime)

VALUES ('S_SESSION[logname]',NOW())";

Sresult = mysqgli_query (Scxn, $Ssgl)

or die("Query died: insert");

header ("Location: SecretPage.php") ;

} —37
else // password does not match —38
{

Smessage_1="The Login Name, 'S$_POST|[fusername]'
exists, but you have not entered the
correct password! Please try again.";

Sfusername=strip_tags (trim($S_POST|['fusername'])) ;

include("login_form.inc") ; —44
}
} —46
else // login name not found —47
{
Smessage_1 = "The User Name you entered does not

exist! Please try again.";
include ("login_form.inc") ;

}

break; —53
case "Register": —55
/* Check for blanks */
foreach ($_POST as $field => svalue) —57
{
if($field != "fax") —59

{
if (empty (Svalue)) —61

Chapter 12: Building a Members Only Web Site

{
Sblanks[] = sfield;

}
else
{
Sgood_data[$field] = strip_tags (trim(Svalue)) ;
}
}
}
if (isset (Sblanks)) —71
{
Smessage_2 = "The following fields are blank.

Please enter the required information: :
foreach (Sblanks as Svalue)
{
Smessage_2 .="Svalue, ";
}
extract (Sgood_data) ;

include("login_form.inc") ;

exit () ;
}
/* validate data */
foreach ($_POST as $field => svalue) —84
{
if (!empty (Svalue)) —86
{

if (preg_match("/name/i",$field) and
lpreg_match (" /user/i",$field) and
lpreg match("/log/i",s$field))

{
if (!preg_match("/"[A-Za-z' -1{1,50}S$/",sSvalue))
{
Serrors|[] = "Svalue 1s not a valid name. ";
}

}

if (preg _match("/street/i",sfield) or
preg_match("/addr/i",$field) or
preg match("/city/i",s$field))

{

if (!preg_match("/"[A-Za-z0-9.,' -1{1,50}s$/",
Svalue))
{
Serrors[] = "$value is not a valid address
or city.";
}
}
if (preg _match("/state/i",sfield))
{
if (!preg_match("/"[A-Z] [A-Z]S/",Svalue))
{

(continued)

373

374 partiv: Applications

Listing 12-2: (continued)

Serrors[] = "Svalue is not valid state code.";
}
}
if (preg _match("/email/i",sfield))
{
if (!preg_match("/".+@.+\\..+$/",Svalue))
{
Serrors[]="$value is not a valid email addr.";
}
}
if (preg match("/zip/i",$field))
{
if (!preg _match("/~[0-9]1{5} (\-[0-9]1{4})?S/",
Svalue))
{
Serrors[] = "Svalue is not a valid zipcode. ";
}
}

if (preg_match (" /phone/i",$field) or
preg_match ("/fax/i",Sfield))

{ if (!preg_match("/"[0-9) (xX -1{7,20}s$/",sSvalue))
: Serrors[]="$value is not a valid phone no.";
: }
} // end if not empty
%oreach($_POST as Sfield => S$Svalue) —140
{ Ssfield = strip_tags (trim(Svalue)) ;
%f(@is_array($errors)) —144

Smessage_2 = "";
foreach (Serrors as S$Svalue)

{
Smessage_2 .= Svalue." Please try again
";

}

include ("login_form.inc") ;

exit () ;
} // end if errors are found —153
/* check to see if username already exists */ —155
include ("dogs.inc") ; —156

Scxn = mysgli_connect (Shost, Suser, Spasswd, Sdbname)
or die("Couldn't connect to server");
Ssgl = "SELECT loginName FROM Member
WHERE loginName='S$loginName'";

Chapter 12: Building a Members Only Web Site 3 75

Sresult = mysqgli_query (Scxn, $Ssqgl)
or die("Query died: loginName.") ;
Snum = mysgli_num_rows (Sresult) ;
if (Snum > 0) —164
{
Smessage_2 = "SloginName already used. Select
another User Name."
include("login_form.inc") ;

exit () ;

} // end if username already exists —170
else // Add new member to database
{

Ssgl = "INSERT INTO Member (loginName,createDate,
password, firstName, lastName, street,city,
state, zip, phone, fax,email) VALUES

('SloginName' ,NOW () ,md5 ('Spassword'),
'SfirstName', 'SlastName', 'Sstreet', 'Scity',
'Sstate', '$Szip', 'Sphone’', 'Sfax', 'Semail')";

mysqgli_query (Scxn, $Ssqgl) ; —179
S_SESSION|['auth']="yes"; —180
S_SESSION|['logname'] = S$loginName; —181
/* send email to new Customer */
Semess = "You have successfully registered. ";
Semess .= "Your new user name and password are: ";
Semess .= "\n\n\t$loginName\n\t";
Semess .= "S$password\n\n";
Semess .= "We appreciate your interest. \n\n";
Semess .= "If you have any questions or problems, ";
Semess .= " emall service@ourstore.com";
Ssubj = "Your new customer registration";
Smailsend=mail ("Semail","Ssubj", "Semess") ; —191
header ("Location: SecretPage.php") ; —192
} —193
break;
default: —196

include("login_form.inc") ;

}

2>
The program works like this:

—8 Starts a session. The session has to be started at the beginning of
the program, even though the user hasn’t logged in yet.

—9 Starts a switch statement. The switch statement contains
three sections, based on the value passed for the submit button
in the form, obtained from the built-in array $_POST. The first
section runs when the value passed for the button is "Log in";

3706 Partiv: Applications

—11

—20

the second section runs when the value passed for button is
Register; and the third section is the default that runs if no value
is passed for button. The third section just displays the login page
and runs only when the customer first links to the login page.

Starts the case block for the login section — the section that runs
when the customer logs in. The login section of the form sends
the button value Log in, which causes this section of the switch
statement to run.

Reads in the file that sets the variables needed to connect to the
database. The file is called dogs . inc, which is a misleading name
that seems more secure than calling the file mypasswords. inc.

Lines 13 and 14 connect to MySQL and select the database.

Lines 15-18 look in the database table Member for a row with the
username typed by the customer.

Checks to see whether a row was found with a 1oginName field
containing the Member ID typed by the customer. $num equals 0
or 1, depending on whether the row was found.

Starts an if block that executes if the Member ID was found. This
means the user submitted a Member ID that is in the database.
This block then checks to see whether the password submitted
by the user is correct for the given Member ID. This block is docu-
mented in more detail in the following list:

—22 Lines 22-24 create a query that looks for a row with both
the Member ID and the password submitted by the cus-
tomer. Notice that the password submitted in the form
($fpassword) is encrypted by using the MySQL function
md5 (). Passwords in the database are encrypted, so the
password you’re trying to match must also be encrypted, or
it won’t match.

—25 Lines 25-27 execute the query and check whether a match
was found. $num2 equals 1 or 0, depending on whether a
row with both the Member ID and the password is found.

—28 Starts an if block that executes if the password is correct.
This is a successful login. Lines 30-37 are executed, per-
forming the following tasks: 1) The two session variables,
auth and logname, are stored in the SESSION array. 2) A
row for the login is entered into the Login table. 3) The first
page of the Members Only section is sent to the member.

—38 Starts an else block that executes if the password is not
correct. This is an unsuccessful login. Lines 40-44 are
executed, performing the following tasks: 1) The appropri-
ate error message is set in Smessage. 2) The login page is
displayed again. The login page shows the error message.

Chapter 12: Building a Members Only Web Site

WING/

—47

—53

—55

—57

—-71

—84

Notice that the block starting on line 40 lets the user know
when he or she has a real login name but the wrong pass-
word. If the security of your data is important, you may want
to write this loop differently. Providing that information may
be helpful to someone who is trying to break in because now
the cracker needs to find only the password. For more secu-
rity, just have one condition that gives the same error mes-
sage whenever either the login name or the password is
incorrect. In this example, I prefer to provide the information
because it is helpful to the legitimate member (who may not
remember whether he or she installed an account at all), and
I'm not protecting any vital information.

—46 Ends the block that executes when the Member ID is found
in the database.

Starts an else block that executes when the Member ID is not
found in the database. This block creates the appropriate error
message and shows the login page again, which includes the
error message.

Ends the case block that executes when the customer submits a
Member ID and password to log in. The login block extends from
line 11 to this line.

Starts the case block that executes when the customer fills out
the form to get a new member account. The form includes a
submit button with a value of “Register”, causing the program to
jump to this section of the switch statement.

Starts a foreach loop that loops through every field in the new
member form. The loop checks for empty required fields. The
statements in the loop are documented in more detail in the
following list:

—59 Checks whether the field is the fax field. The fax field is not
required, so it isn’t checked to see whether it is blank.

—61 Checks whether the field is blank. If it is, the i £ block adds
the field name to an array named $blanks. If it isn’t blank,
the else block cleans the data and adds it to the array
Sgood_data.

Starts an if statement that executes if any blank fields were
found. The if block creates an error message and redisplays the
login form, including the error message. The form redisplays with
the data from the array $Sgood_data in the fields.

Starts a foreach loop that loops through every field in the new
member form. The loop checks the field contents for invalid for-
mats. The program doesn’t reach this loop until all the required
fields contain some data. The nonrequired fields that are blank
are not checked (line 86).

377

3 78 Part IV: Applications

—140

—144

—155

—156

—164

—170

—180

—183

This loop contains a series of i £ blocks that check the fields for
the correct format. The if block tests the content of the field
against a regular expression. If the field content is not valid, an
information error message is added to an array named Serrors.

Starts a foreach loop that cleans the data in the $_POST array
and stores it in a variable named with the field name. For example,
the datain $_POST['firstName'] is cleaned and stored in the
variable $firstName. This is done using a variable variable,
which is explained in Chapter 6.

Starts an if statement that executes when invalid data is found.
That is, it executes if the Serrors array contains at least one ele-
ment. The if block creates an error message and redisplays the
form, including the error message, so the user can enter the cor-
rect information. The error processing block ends on line 153.

Begins the section that processes the field information when it’s
all correct. The script does not reach this line until all required
fields contain data and all the data has been tested and found to
be valid.

Lines 156-162 create and execute an SQL query to search for a
record with the username entered by the user as the chosen user-
name. If a record is found, it means the user has chosen a username
that is already in use. Duplicate usernames aren’t allowed in the
database.

Starts an if statement that executes if the username already
exists. An error message is created and the new member form is
redisplayed, with the error message, so that the user can enter a
different username.

Starts an else statement that executes if the username was not
found in the database. Lines 173-179 create and execute an SQL
query that adds the new member to the database.

Lines 180 and 181 store variables in the session. These variables
are available to all pages in the user session. The session vari-
ables can be tested on every session page to determine whether
the user is logged in.

Lines 183-191 create and send an e-mail message to the new
member, letting the user know that his or her new account was
successfully created. Notice that the e-mail message is created

in the variable semess over several lines — beginning on line
183, adding text (using . =) on each line, and ending on line 189.
This format is needed to make it easier for humans to read — not
because PHP needs it. In an e-mail message, unlike in HTML con-
tent, extra spaces and line ends have an effect. For instance, if
created one long message and used extra spaces for indentation,

Chapter 12: Building a Members Only Web Site

those spaces would appear in the e-mail. So I set the message on
several lines that I can indent for readability in the program. Line
191 uses the PHP function mail to send the e-mail message.

—192 Sends the first page of the restricted section of the Web site to the
user’s browser.

—193 Ends the case statement section for the new member form.

—196 Starts the case block for the default condition. If neither the Login
button nor the Register button was pushed, the program skips to
this block. This block executes only the first time this program
runs — when the user links to it from the storefront page and
has not yet submitted either form. This section has only one
statement: a statement that displays the login page.

This program shows the login page in many places, using include statements
that call the file login_form. inc, which contains the HTML that produces
the login page. The program Login.php does not produce any output. All the
output is produced by login_form. inc. This type of application organization
is discussed in Chapter 10. This is a good example of the use of include files.
Just imagine if the statements in 1ogin_form. inc, shown in Listing 12-3, were
included in the Login program at each place where 1ogin_form is included.
Whew, that would be a mess that only a computer could understand.

Listing 12-3: File That Creates the Login Page

<?php
/* File: login_form.inc
* Desc: Contains the code for a Web page that displays

% two HTML forms, side by side. One is a login
& form and the second is a registration form.
Y
Sfields_1 = array ("fusername" => "User Name", —7
"fpassword" => "Password");
Sfields_2 = array ("loginName" => "User Name", —9
"password" => "Password",
"email" => "Email",
"firstName" => "First Name",
"lastName" => "Last Name",
"street" => "Street",
"city" => "City",
"state" => "State",
"zip" => "zip",
"phone" => "Phone",
"fax" => "Fax");
include ("functionl2.inc") ; —21
2> —22

(continued)

379

380 Partiv: applications

Listing 12-3 (continued)

<html><head>
<title>Customer Login Page</title>
<style type='text/css'>
€ ll==
label { font-weight: bold; float: left; width: 27%;
margin-right: .5em; text-align: right; }
fieldset { border: 2px solid #000000 }
legend { font-weight: bold; font-size: 1.5em;
margin-bottom: .5em; }
h3 { text-align: center; margin: 2em; }
#wrapper { margin: 0; padding: 0; }
#login { position: absolute; left: 0; width: 40%;
padding: lem 0; }
#reg { position: absolute; left: 40%; width: 60%;
padding: lem 0; }

#field {padding-bottom: .5em;}
.errors { font-weight: bold; font-style: italic;
font-size: 90%; color: red; margin-top: 0; }
-—>
</style>
</head>
<body style="margin: 0">
<div id="wrapper">
<div id="login"> —46
<form action="<?php echo $_SERVER['PHP_SELF']?>"
method="post">
<fieldset><legend>Login Form</legend>

<?php —50
if (isset (Smessage_1)) —51
{

echo "<p class='errors'>Smessage_l</p>\n";
}
foreach($fields_1 as S$field => S$value) —55
{
if (preg _match("/pass/i",sfield))
Stype = "password";
else
Stype = "text";

echo "<div id='field'>
<label for='$Sfield'>Svalue</label>
<input id='S$field' name='Sfield'
type='Stype' value='".@$sfield."'
size='20"' maxlength='50' /></div>\n";
?> :
<input type="submit" name="Button"
style='margin-left: 45%; margin-bottom: .5em'
value="Log in" />
</fieldset>
</form>

Chapter 12: Building a Members Only Web Site 38 ’

<h3>If you already have an account, log in.</h3>
<h3>If you do not have an account, register now.</h3>
</div> —75

<div id="reg">
<form action="<?php echo $_SERVER['PHP_SELF']?>"
method="post">
<fieldset><legend>Registration Form</legend>

<?php
if (isset (Smessage_2)) —82
{ echo "<p class='errors'>Smessage_2</p>\n";
%oreach($fields_2 as $field => Svalue) —86
{ if($field == "state") —88
{

echo "<div i1d='field'>
<label for='sSfield'>Svalue</label>
<select name='state' id='state'>";
SstateName=getStateName () ;
SstateCode=getStateCode () ;
for ($n=1;%$n<=50; Sn++)
{
Sstate=SstateName[S$Sn] ;
Sscode=$SstateCode[S$n] ;
echo "<option value='S$scode'";
if (isset (S_POST|['state'l]l))
{
1f ($_POST|['state'] == $scode)
{
echo " selected='selected'";
}
}
else
{
if(Sn < 2)
{
echo " selected='selected'";
}
}
echo ">$state\n</option>";
}
echo "</select></div>";
}
else —118
{
if (preg match("/pass/i",sfield))
Stype = "password";

(continued)

382 Partiv: applications

Listing 12-3: (continued)

else
Stype = "text";
echo "<div id='field'>
<label for='s$field'>sSvalue</label>
<input id='S$field' name='Sfield'
type="'Stype' value='".@$sfield.""
size='40"' maxlength='65"' /></

div>\n";
} //end else
} // end foreach field

?>
<input type="submit" name="Button"
style="margin-left: 45%; margin-bottom: .5em'
value="Register" />
</fieldset>
</form>
</div> —137
</div></body></html>

The following numbers refer to the line numbers in Listing 12-3:

—7 Creates the array that contains the fields in the login form.
—9 Creates the array that contains the fields in the registration form.

—21 Includes a file that contains the functions used in this program.
The file contains the functions getStateName () and getState
Code () that are used later in the program.

—22 Ends the opening PHP section.
—46 Opens the <div> that contains the login form.
—50 Opens a new PHP section.

—51 Begins an if statement that checks whether an error message
exists for the login form. If the message exists, the message is
displayed.

—55 Starts a foreach statement that loops through the array of fields
for the login form and echoes the fields for the form.

—75 Closes the <div> that contains the login form.
—77 Opens the <div> that contains the registration form.

—82 Begins an i f statement that checks whether an error message
exists for the registration form. If the message exists, the message
is displayed.

—86 Starts a foreach statement that loops through the array of fields
for the login form and echoes the fields for the form.

Chapter 12: Building a Members Only Web Site 383

—88 Begins an if statement that checks whether the field is state. If it
is, a drop-down list is created for the customer to select a state.
Note that lines 93 and 94 call functions. These functions — my
functions, not PHP functions — are included in the program on
line 21. The functions create arrays from a list of state names and
a list of two-letter state codes. The functions eliminate the need
to include the two 50-state lists in the program. The functions can
be used repeatedly for many programs. The functionl2. inc file
contains the two functions, as follows:

<?php
function getStateCode ()
{
SstateCode = array(l=> "AL"
"AR Y
N

IIWYII) I.
return S$stateCode;

}

function getStateName ()
{
SstateName = array(l=> "Alabama",
"Alaska",
"Arizona",

"Wyoming") ;
return $stateName;

3

A for loop then creates 50 options for the select list, using the
two state arrays. An if statement starting on line 100 determines
which option tag should be selected, so that it will be the selected
option when the drop-down list is displayed. The if statement
checks whether a state has been selected, which means that the
customer submitted the form. If a state is found in the $_POST
array, the state is selected. If no state is found in the $_POST
array, the first state, AL, is selected.

—118 Begins an else statement that executes if the field is not the state
field. The else block displays a text field for all the fields other
than the state field.

—137 Closes the <div> for the registration form.
After running Login.php, if the user is successful with a login, the first page

of the Members Only section of the Web site is shown. If the user success-
fully obtains a new user account, the New_member . php program runs.

384 Partv: Applications

Writing New_member

The New Member Welcome page greets new members by name and provides
information about their accounts. Members then have the choice of entering
the Members Only section or returning to the main page. Listing 12-4 shows
the program that displays the page that new members see.

Listing 12-4: Welcoming New Members

<?php

/* Program: New_member.php

* Desc: Displays the new member welcome page. Greets
member by name and gives a choice to enter

& restricted section or go back to main page.

*/

session_start () ; —7

if (@$_SESSION['auth']l != "yes") —9

{
header ("Location: login.php");

exit () ;
}
include ("dogs.inc") ; —14
Scxn = mysqgli_connect (Shost, Suser, Spasswd, Sdbname)
or die ("Couldn't connect to server."); —16
Ssgl = "SELECT firstName, lastName FROM Member —17

WHERE loginName='{S$_SESSIONI['logname']}'";
Sresult = mysqgli_query ($cxn, $sqgl)
or die("Couldn't execute query");
Srow = mysqgli_fetch_assoc (Sresult) ;
extract (Srow) ;
echo "<html>
<head><title>New Member Welcome</title></head>
<body>
<h2 style='margin-top: .7in; text-align: center'>
Welcome S$firstName S$lastName</h2>\n";
2> —28
<p>Your new Member Account lets you enter the Members
Only section of our web site. You'll find special
discounts and bargains, a huge database of animal facts
and stories, advice from experts, advance notification
of new pets for sale, a message board where you can talk
to other Members, and much more.</p>
<p>Your new Member ID and password were emailed to you.
Store them carefully for future use.</p>
<div style="text-align: center">
<p style="margin-top: .5in; font-weight: bold">
Glad you could join us!</p>
<form action="member_page.php" method="post"> —40
<input type="submit"
value="Enter the Members Only Section">
</form>

Chapter 12: Building a Members Only Web Site 385

<form action="PetShopFrontMembers.php" method="post"> —44
<input type="submit" value="Go to Pet Store Main Page">

</form>

</div>

</body></html>

Notice the following points about New_member . php:

»” A session starts on line 7. This makes the session variables stored in
Login.php available to this program.

v The program checks whether the customer is logged in, starting on
line 9. When the customer successfully logs in or creates a new account
in Login.php, $auth is set to yes and stored in the $_SESSION array.
Therefore, if Sauth doesn’t equal yes, the customer isn’t logged in. If a
customer tries to run the New_member . php program without running
the Login.php program first, $_SESSTION[auth] won’t equal yes, and
the user is sent to the login page.

v The program gets the customer’s first and last names from the database,
beginning with the database connection statement on line 15.

v The query is created, on line 17-18, by using $_SESSION[logname]
to search for the member’s information. The session variable 1ogname
that contains the Member ID was set in the login program.

v The PHP section ends on line 28. The remainder of the program is HTML.

v The program uses two different forms to provide two different submit
buttons. The form statements on lines 40 and 44 start different programs.

The customer controls what happens next. If the customer clicks the button
to return to the main page, the PetShopFront .php program runs. If the cus-
tomer clicks the Members Only Section submit button, the first page of the
Members Only section of your Web site is shown.

Writing the Members Only section

The Web pages in the Members Only section are no different than any other
Web pages. You just want to restrict them to members who are logged in. To
do this, you start a session and check whether they’re logged in at the top of
every page. The statements for the top of each program are

session_start() ;

if (@S_SESSION|['auth'] != "yes")

{
header ("Location: Login.php");
exit () ;

386 Part IV: Applications

When session_start executes, PHP checks for an existing session. If one
exists, it sets up the session variables. When a user logs in, $_SESSION[auth]
is set to yes. Therefore, if $_ SESSION [auth] is not set to yes, the user is not
logged in, and the program takes the user to the login page.

Planning for Growth

The original plan for an application usually includes every wonderful thing
that the user might want it to do. Realistically, it’s usually important to make
the application available to the users as quickly as possible. Consequently,
applications usually go public with a subset of the planned functionality.
More functionality is added later. That’s why it’s important to write your
application with growth in mind.

Looking at the login application in this chapter, 'm sure you can see many
things that could be added to it. Here are some possibilities:

v+ E-mail a forgotten password. Users often forget their passwords. Many
login applications have a link that users can click to have their pass-
words e-mailed to them.

1 Change the password. Members might want to change their password.
The application could offer a form for password changes.

v Update information. A member might move or change his phone
number or e-mail address. The application could provide a way for mem-
bers to change their own information.

+* Create a member list. You might want to output a nicely formatted list
of all members in the database. This probably is something you want to
make available only for yourself. In some situations, however, you might
want to make the list available to all members.

You can easily add any of these abilities to the application. For instance, you
can add to the login form a Forgot my password button that, when clicked,
e-mails the password to the e-mail address in the database. The button can
run the login program with a section for e-mailing the password or run a dif-
ferent program that e-mails the password. In the same manner, you can add
buttons for changing the password or updating customer information. You
don’t need to wait until an application has all its bells and whistles to let your
customers use it. You can write it one step at a time.

Part V
The Part of Tens

The 5th Wave By Rich Tennant

S

7 Joa” S0
V/: s 4. 3
W fag 6

42
;.?Q}glﬁu .

' 0y

= = e '—‘—-‘-\ TN
“What, gou want to do, is balance the image of the
pick—vup truck sittin’ behind your home page,
with a busted washing machine in the foreground.”

In this part . . .

Fe chapters in this part contain hints, tips, and warnings
based on my experience. Perhaps they can serve as a
shortcut for you on your journey to becoming a confident
Web developer. I sincerely hope so.

Chapter 13

Ten Things You Might Want
to Do Using PHP Functions

In This Chapter

Finding out about many useful functions

Understanding what functions can do

0ne of the strongest aspects of PHP is its many built-in functions. In this
chapter, I list the PHP functions that [use most often. Some of them I
describe elsewhere in this book, some [mention only in passing, and some |
< don’t mention at all. The PHP language has many hundreds of functions.
For a complete list of PHP functions, see the PHP documentation at www . php .
net/manual/en/funcref.php.

Communicate with MySQL

PHP has many functions designed specifically for interacting with MySQL. I
describe the following MySQL functions thoroughly in this book:

mysqgli_connect () ; mysqgli_fetch_assoc ()
mysqgli_num_rows () ; mysqgli_query ()

The following functions could be useful, but I either don’t discuss them or
discuss them only briefly:

V¥ mysqgli_insert_id($cxn): For use with an AUTO-INCREMENT MySQL
column. This function gets the last number inserted into the column.

V¥ mysqgli_select_db($cxn, Sdatabase): Selects a database. The cur-
rently selected database is changed to the specified database. All suc-
ceeding queries are executed on the selected database.

v mysqgli_fetch_row(Sresult): Gets one row from the temporary
results location. The row is put into an array with numbers as keys.

3 90 PartV: The Part of Tens

V¥ mysqgli_affected_rows ($Sresult): Returns the number of rows that
were affected by a query — for instance, the number of rows deleted or
updated.

V¥ mysgli_num fields ($result):Returns the number of fields in a result.

V¥ mysqgli_field_name ($result, N):Returns the name of the row indi-
cated by N. For instance, mysgli_field_name (Sresult, 1) returns
the name of the second column in the result. The first column is 0.

Send E-Mail

PHP provides a function that sends e-mail from your PHP program. The
format is

mail (address, subject, message, headers) ;
These are the values that you need to fill in:

v address: The e-mail address that will receive the message.
V¥ subject: A string that goes on the subject line of the e-mail message.
v message: The content that goes inside the e-mail message.

V¥ headers: A string that sets values for headers. For instance, you might
have a headers string as follows:

"From: member-desk@petstore.com\r\nbcc: mom@hercompany.com"

The header would set the From header to the given e-mail address, plus
send a blind copy of the e-mail message to mom.

The following is an example of PHP statements that you can use in your
script to set up and send an e-mail message:

Sto = "me@testl.com";
Ssubj = "Test";
Smess = "This is a test of the mail function";

Sheaders = bcc:techsupport@mycompany.com\r\n
Smailsend = mail (Sto, Ssubj, Smess, Sheaders) ;

Sometimes you might have a problem with your e-mail. PHP has a configuration
setting that must be correct before the mail function can connect to your
system e-mail software. Your Web host has the correct settings. On other
computers, the default is usually correct, but if your e-mail doesn’t seem

to be getting to its destination, check the PHP configuration mail setting by
looking for the following in the output of phpinfo():

NBER
‘x&
&

Chapter 13: Ten Things You Might Want to Do Using PHP Functions

Sendmail_path (on Unix/Linux)
SMTP (on Windows)

You can change the setting by editing the php . ini file. If you're using
Windows, look for the following lines:

[mail function]
; For Win32 only.
SMTP = localhost

; For Win32 only.
sendmail_ from = me@localhost.com

The first setting is where you put the name of your outgoing mail server.
However you send e-mail — using a LAN at work, a cable modem at home, an
ISP via a modem — you send your mail with an SMTP server, which has an
address that you need to know.

If you send directly from your computer, you should be able to find the name
of the outgoing mail server in your e-mail software. For instance, in Microsoft
Outlook Express, choose Tools=>Accounts=>Properties and then click the
Servers tab. If you can’t find the name of your outgoing mail server, ask your
e-mail administrator for the name. If you use an ISP, you can ask the ISP. The
name is likely to be in a format similar to the following:

mail.ispname.net
The second setting is the return address sent with all your e-mail. Change the
setting to the e-mail address that you want to use for your return address, as
follows:

sendmail_from = me@myhome.com

If you're using Unix or Linux, looking for these lines in your php. ini file:

; For Unix only.
;sendmail_path =

This default is usually correct. If it doesn’t work, talk to your system
administrator about the correct path to your outgoing mail server.

Don’t forget to remove the semicolon at the beginning of the lines. The
semicolon makes the line into a comment, so the setting isn’t active until
you remove the semicolon.

391

3 92 Part V: The Part of Tens

Use PHP Sessions

The functions to open or close a session follow. I explain these functions in
Chapter 9.

session_start () ; session_destroy ()

Stop Your Program

Sometimes you just want your program to stop, cease, and desist. Two func-
tions do this: exit () and die (). Actually, these are two names for the same
function, but sometimes it’s just more fun to say “die.” Both print a message
when they stop if you provide one. The format is

exit ("message string") ;

When exit executes, message stringis output.

Handle Arrays

Arrays are useful in PHP, particularly for getting the results from database
functions and for form variables. I explain the following array functions else-
where in the book, mainly in Chapter 7:

array () ; extract () ; sort () ; asort () ;
rsort () ; arsort () ; ksort () ; krsort () ;

Here are some other useful functions:
V¥ array_reverse ($Svarname): Returns an array with the values in
reverse order.
V¥ array_unique ($Svarname): Removes duplicate values from an array.

V in_array ("string", Svarname): Looks through an array $varname
for a string "string".

V¥ range (valuel, value?2): Creates an array containing all the values
between valuel and valueZ2. For instance, range ('a', 'z') creates
an array containing all the letters between a and z.

Chapter 13: Ten Things You Might Want to Do Using PHP Functions 393

V¥ explode ("sep", "string"): Creates an array of strings in which each
item is a substring of string, separated by sep. For example, explode
(" ",Sstring) creates an array in which each word in $stringisa
separate value. This is similar to split in Perl.

v implode ("glue", Sarray): Creates a string containing all the values in
Sarray with glue between them. For instance, implode (", ", Sarray)
creates a string: valuel, value2, value3, and so on. This is similar to
the join function in Perl.

Many more useful array functions are available. PHP can do almost anything
with an array.

Check for Variables

Sometimes you just need to know whether a variable exists. You can use the
following functions to test whether a variable is currently set:

isset ($Svarname); // true if variable is set
lisset (Svarname); // true if variable is not set
empty (Svarname); // true if value is 0 or is not set

Format Values

Sometimes you need to format the values in variables. In Chapter 6, I explain
how to put numbers into dollar format by using number_format () and
sprintf ().In Chapter 6, I also discuss unset (), which removes the
values from a variable. In this section, | describe additional capabilities of
sprintf ().

The function sprintf () allows you to format any string or number,
including variable values. The general format is

Snewvar = sprintf (" format", Svarnamel, SvarnameZ2, ...);
where format gives instructions for the format and $ varname contains the
value(s) to be formatted. format can contain both literals and instructions
for formatting the values in $ varname. In addition, a format containing only

literals is valid, such as the following statement:

Snewvar = sprintf ("I have a pet");

3 94 Part V: The Part of Tens

This statement outputs the literal string. However, you can also add variables,
using the following statements:

Sndogs = 5;
Sncats = 2;
Snewvar = sprintf ("I have %s dogs and %s cats", $ndogs, $ncats);

The %s is a formatting instruction that tells sprintf to insert the value in
the variable as a string. Thus, the output is I have 5 dogs and 2 cats.
The % character signals sprintf that a formatting instruction starts here.
The formatting instruction has the following format:

$pad-width.dectype
These are the components of the formatting instructions:

v %: Signals the start of the formatting instruction.

Vv pad: A padding character used to fill out the number when necessary.
If you don’t specify a character, a space is used. pad can be a space, a
0, or any character preceded by a single quote (). It's common to pad
numbers with 0 — for example, 01 or 0001.

v -: A symbol meaning to left-justify the characters. If this isn’t included,
the characters are right-justified.

v width: The number of characters to use for the value. If the value doesn’t
fill the width, the padding character is used to pad the value. For instance,
if width is 5, pad is 0, and the value is 1, the output is 00001.

v .dec: The number of decimal places to use for a number.

v type: The type of value. Use s for most values. Use £ for numbers that
you want to format with decimal places.

Some possible sprintf statements are

sprintf ("I have $%03.2f. Does %s have any?", Smoney, Sname) ;
sprintf ("%'.-20s%3.2f", Sproduct, Sprice) ;

The output of these statements is

I have $030.00. Does Tom have any?
Kitten.............. 30.00

Chapter 13: Ten Things You Might Want to Do Using PHP Functions 395

Compare Strings to Patterns

In earlier chapters in this book, [use regular expressions as patterns to match
strings. (I explain regular expressions in Chapter 6.) The following functions
use regular expressions to find and sometimes replace patterns in strings:

V¥ preg_match ("pattern", $varname): Checks whether the patternis
found in $varname.

V¥ preg_replace("pattern", "string", $varname): Searches for
patternin $varname and replaces it with string.

Find Out about Strings

Sometimes you need to know things about a string, such as its length or
whether the first character is an uppercase O. PHP offers many functions for
checking out your strings:

V¥ strlen ($Svarname): Returns the length of the string.

V strpos ("string", "substring"):Returns the position in string
where substring begins. For instance, strpos ("hello", "el")
returns 1. Remember that the first position for PHP is 0. strrpos ()
finds the last position in string where substring begins.

V¥ substr("string",nl,n2):Returns the substring from
string that begins at n1 and is n2 characters long. For instance,
substr ("hello",2,2) returns 11.

V strtr (Svarname, "strl", "str2"): Searches through the string
Svarname for strl and replaces it with str2 every place that it’s
found.

3 V¥ strrev ($varname): Returns the string with the characters reversed.

Many more string functions exist. See the documentation at www . php . net.

3 96 Part V: The Part of Tens

Change the Case of Strings

Changing uppercase letters to lowercase and vice versa is not so easy. Bless
PHP for providing functions to do this for you:

V¥ strtolower (Svarname): Changes any uppercase letters in the
string to lowercase letters

V¥ strtoupper ($Svarname): Changes any lowercase letters in the string
to uppercase letters

v ucfirst (Svarname): Changes the first letter in the string to uppercase

v ucwords ($varname) : Changes the first letter of each word in the string
to uppercase

Chapter 14

Ten PHP Gotchas

In This Chapter

Recognizing common PHP errors

Interpreting error messages

guarantee that you will do all the things that [mention in this chapter. It’s

not possible to write programs without making these mistakes. The trick
is to find out how to recognize them; roll your eyes; say, “Not again”; and then
correct your mistakes. One error message that you will see many times is

Parse error: parse error in c:\test.php on line 7

This is PHP’s way of saying, “Huh?” It means it doesn’t understand some-
thing. This message helpfully points to the file and the line number where PHP
got confused. Sometimes it points directly at the error, but sometimes

PHP’s confusion results from an error earlier in the program.

Missing Semicolons

Every PHP statement ends with a semicolon (;). PHP doesn’t stop reading a
statement until it reaches a semicolon. If you leave out the semicolon at the
end of a line, PHP continues reading the statement on the following line. For
instance, consider the following statement:

Stest = 1
echo Stest;

Of course, the statement doesn’t make sense to PHP when it reads the two
lines as one statement, so it complains with an error message, such as the
annoying

Parse error: parse error in c:\test.php on line 2

Before you know it, you’ll be writing your home address with semicolons at
the end of each line.

3 98 Part V: The Part of Tens
Not Enough Equal Signs

When you ask whether two values are equal in a comparison statement,

you need two equal signs (==). Using one equal sign is a common mistake.
It’s perfectly reasonable because you’'ve been using one equal sign to mean
equal since the first grade, when you discovered that 2 + 2 = 4. This is a dif-
ficult mistake to recognize because it doesn’t cause an error message. It just
makes your program do odd things, like infinite loops or i f blocks that never
execute. I'm continually amazed at how long I can stare at

Stest = 0;
while (Stest = 0)
{

Stest++;

}

and not see why it’s looping endlessly.

Misspelled Variable Names

An incorrectly spelled variable name is another PHP gotcha that doesn’t
result in an error message, just odd program behavior. If you misspell a vari-
able name, PHP considers it a new variable and does what you ask it to do.
Here’s another clever way to write an infinite loop:

Stest = 0;
while (Stest ==)
{
STest++;
}

Remember, to PHP, $test is not the same variable as $Test.

Missing Dollar Signs

A missing dollar sign in a variable name is hard to see, but at least it most
likely results in an error message telling you where to look for the problem. It
usually results in the old familiar parse error:

Parse error: parse error in test.php on line 7

Chapter 14: Ten PHP Gotchas 399

Troubling Quotes

You can have too many, too few, or the wrong kind of quotes. You have too
many when you put quotes inside of quotes, such as

Stest = "<table width="100%">";
PHP sees the second double quote (") — before 100 — as the ending double

quote (") and reads the 1 as an instruction, which makes no sense. Voila!
Another parse error. The line must be either

Stest = "<table width='100%'>";
or
Stest = "<table width=\"100%\">";

You have too few quotes when you forget to end a quoted string, such as
Stest = "<table width='100%'>;

PHP continues reading the lines as part of the quoted string until it encoun-
ters another double quote ("), which might not occur for several lines. This
is one occasion when the parse error pointing to where PHP got confused is
not pointing to the actual error. The error occurred some lines previously,
when you forgot to end the string.

You have the wrong kind of quotes when you use a single quote (') when you
meant a double quote (") or vice versa. The difference between single and
double quotes is sometimes important, as [explain in Chapter 6.

Invisible Output

Some statements, such as the header statement, must execute before the
program produces any output. If you try to use such statements after sending
output, they fail. The following statements will fail because the header mes-
sage isn’t the first output:

<html>
<?php

header ("Location: http://company.com") ;
?>

<html> is not in a PHP section and is therefore sent as HTML output. The
following statements will work:

4 00 Part V: The Part of Tens

<?php

header ("Location: http://company.com") ;
?>
<html>

The following statements will fail

<?php

header ("Location: http://company.com") ;
?>
<html>

because there’s one single blank space before the opening PHP tag. The blank
space is output to the browser, although the resulting Web page looks empty.
Therefore, the header statement fails because there is output before it. This
is a common mistake and difficult to spot.

Numbered Arrays

PHP believes the first value in an array is numbered zero (0). Of course, humans
tend to believe that lists start with the number one (1). This fundamentally
different way of viewing lists results in us humans believing an array isn’t
working correctly when it’s working just fine. For instance, consider the
following statements:

Stest = 1;
while(Stest <= 3)
{
Sarray[] = Stest;
Stest++;

}

echo Sarrayl[3];

Nothing is displayed by these statements. I leap to the conclusion that
there’s something wrong with my loop. Actually, it’s fine. It just results in the
following array:

Sarray[0]=1
Sarray[1l]=2
Sarray[2]=3

And doesn’t set anything into $array[3].

Chapter 14: Ten PHP Gotchas 40 ’

Including PHP Statements

When a file is read in using an include statement in a PHP section, it seems
reasonable to me that the statements in the file will be treated as PHP state-
ments. After all, PHP adds the statements to the program at the point where
[include them. However, PHP doesn’t see it my way. If a file named filel.
inc contains the following statements:

if(Stest ==)
echo "Hi";

and I read it in with the following statements in my main program:

<?php
Stest = 1;
include ("filel.inc");
?>

[expect the word Hi to appear on the Web page. However, the Web page dis-
plays this:

if ($test == 1) echo "Hi";

Clearly, the file that is included is seen as HTML. To send Hi to the Web
page, filel. inc needs to include PHP tags, as follows:

<?php

if(Stest ==)
echo "Hi";

>

Missing Mates

Parentheses and curly brackets come in pairs and must be used that way.
Opening with a (that has no closing) or a { without a } will result in an
error message. One of my favorites is using one closing parenthesis where
two are needed, as in the following statement:

if(isset(Stest)

4 02 Part V: The Part of Tens

This statement needs a closing parenthesis at the end. It’s much more dif-
ficult to spot that one of your blocks didn’t get closed when you have blocks
inside blocks inside blocks. For instance, consider the following:

while($test < 3)

{

if(Stest2 != "yes")
{

if(Stest3 > 4)

{

echo "go";

}

}

You can see there are three opening curly brackets and only two closing ones.
Imagine that 100 lines of code are inside these blocks. It can be difficult to spot
the problem — especially if you think the last closing bracket is closing the
while loop, but PHP sees it as closing the if loop for Stest2. Somewhere
later in your program, PHP might be using a closing bracket to close the
while loop that you aren’t even looking at. It can be difficult to trace the
problem in a large program.

Indenting blocks makes it easier to see where closing brackets belong. Also, |
often use comments to keep track of where [am, such as

while(Stest < 3)
{
if(Stest2 != "yes")
{
if(Stest3 > 4)
{
echo "go";
} // closing if block for $test3
} // closing if block for Stest2
} // closing while block

Confusing Parentheses and Brackets

I'm not sure whether mistaking parentheses for brackets and vice versa is a
problem for everyone or just for me because I refuse to admit that I can’t see as
well as [used to. Although PHP has no trouble distinguishing between paren-
theses and curly brackets, my eyes are not so reliable. Especially while staring
at a computer screen at the end of a ten-hour programming marathon, I can
easily confuse (and {. Using the wrong one gets you a parse error message.

Part VI
Appendixes

ﬂe 5th Wave By Rich Tennant

GRICHTENMANT

“We’ve here to clean the code.”

In this part . . .

Fis part provides instructions for installing and config-
uring the Web software on your computer. Appendix A
provides instructions for installing Apache, PHP, and
MySQL with the XAMPP installer. Appendix B provides
instructions for configuring PHP on your computer

Appendix A

Installing PHP, MySQL, and
Apache from XAMPP

ou can install PHP, MySQL, and Apache on your computer by installing

an all-in-one package called XAMPP. The XAMPP installation procedure
installs recent versions of Apache 2.2, PHP 5, and MySQL 5.1. XAMPP also
installs phpMyAdmin and FileZilla.

The XAMPP installation is perfectly appropriate for a development environment
on your own computer. You should not use XAMPP to install the software on
a Web server that is going to make the Web site available to the public. The
XAMPP installation does not install a configuration that’s secure enough or
located correctly for a public Web site.

XAMPP installs the same software that would be installed if you downloaded
and installed the software from each individual Web site. However, the soft-
ware is installed in different locations. The default location is ¢ : \xampp for
Windows or Applications\xampp for Mac. If you installed each software
package individually, they would be in different locations throughout your
machine. Consequently, the configuration files for the software are in different
locations than where they would be located if you installed them individually,
and some documentation might be misleading. Configuring the Web software
is explained in Appendix B.

Installing XAMPP on Windows

Follow these steps to install the Web software using the XAMPP installer:

1. Go to www.apachefriends.org/en/xampp-windows.html.
2. Scroll down to the Download section, shown in Figure A-1.

3. Click the Installer link under the Basic Package listing to download
the installer version.

The current downloaded file is named xampp-win32-1.7.1-installer.
exe. The version number may be different for you as the software is
upgraded regularly.

4 06 Part VI: Appendixes

Download

CE XAMPP
You can download %2MPP for Windows as three different variations:

Installer
Easy and safe: XAMPP with a comfortable installer,
ZIP archive
For purists: XAMPP as ordinary ZIP archive.
Self-extracting ZIP archive
Economical: xaMPP as wery small self-extracting 7-ZIP archive.

XAMPP for Windows 1.7.1, 2009/04/14

I | version Size Content
Figure A-1: |XAMPP Windows 1.7.1 A 1 31, HAARS orire) Bancl 5.5, KAMBD ELL Bundle
[Basic package] 1.2, Webalizer 2.01-10, Mercury Mail Transport Systern vd,62,
The FilaZilla FTP Server 0.9.31, S0Lite 2,8.15, ADODB 5.06a, Zend
imizer 3.3.0, eAccelerator 0.3.5.3, ecurity, Ming, Far
Download s 290'030,02033, P, i i S
section Of = Installer 35 MB Installer
the XAMPP |z z1e 82 MB ZIP archive
Web site. O] EXE (7-zip) 31 MB Selfextracting 7-ZIP archive
|
4. Save the downloaded file on your hard drive or desktop.
5. Navigate to the location where you saved the downloaded XAMPP file
and double-click the filename.
The Setup Wizard starts, as shown in Figure A-2.
6. Click Next.
The screen shown in Figure A-3 opens.
Welcome to the XAMPP 1.7.1 Setup
Wizard
This wizard will guide you through the installation of XaMPP
It is recommended that you close all other applications
I before starting Setup. This will make it possible to update

relevant system Files without having to reboot your
computer,

Figure A-2:
The
starting
page of

the XAMPP
Setup
Wizard.

Click Mext to continue,

|
Figure A-3:
The Choose
Install
Location
screen.
|

|
Figure A-4:
The XAMPP
Options
screen.
|

Appendix A: Installing PHP, MySQL, and Apache from XAMPP £} () 7

XAMPP 1.7.1 win32 (Basic Package) (5|6

Choose Install Location
Choose the folder in which to install XAMPP 1.7.1,

Setup will install XAMPP 1.7.1 in the Following Folder. To installin a different Folder, click.
Browse and select another falder, Click MexE ko continue.

Diestination Folder

Space required: 227.2MB
Space available: 25, 2GE

< Back ” Next =][Cancel

7. Select a location to install XAMPP.

It’s best to accept the default location (¢ : \xampp) unless you have a
really good reason to choose another location. If you're installing on Vista,
you cannot install in the Program Files folder because of a protection
problem. Also, PHP sometimes has a problem if it’s installed in a folder
with a space in the path, such as Program Files.

You can click Browse to select another install folder.
8. When you have chosen the install folder, click Next.

The XAMPP Options screen appears, as shown in Figure A-4.

[=] XAMPP 1.7.1 win32 (Basic Package) =
XAMPP Options =
Install options on NTJ2000/%P Professional systems.

XAMPP DESKTOR

Create a XAMPP desktop icon

KAMPP START MEMU

Create an Apache Friends XAMPP Folder in the start menu

SERVICE SECTION

Install Apache as service
Install MySQL as service
| Install Filezila as service

See also the ZAMPP for windows FAQ Page

< Bark ” Instal] [Cancel

4 08 Part VI: Appendixes

9. Under SERVICE SECTION, select the Install Apache As Service and the
Install MySQL As Service check boxes.

This step installs the tools as Windows services.
10. Click Install.

The Installing screen appears, as shown in Figure A-5.

[=] XAMPP 1.7.1 win32 (Basic Package) (=)
Installing
Please wait while XAMPP 1.7.1 is being installed. D
Extract: ter3z.dl
Exktract: spambust, dat ~

Extract: stdfw_1.mer
Extract: stdfw_2.mer
Extract: stdsub_1.mer
Extract: stdsub_2.mer

I Extract: stdsub_3.mer

. Extract: stdsub_s.mer

F|gure A-5: Extract: stdsubwl.mer

Extract: stdsubwz, mer

Th e Extract: skdsubw3 mer

. Extract: stdsubwd, mer

Installing Extract: ter32.di -

screen of
the wizard.
I

The installation process takes a few minutes to complete. As the installa-
tion proceeds, you see various files/components being installed on your
system, in the location you specified. A status bar shows the installation
progress.

When the installation is complete, the installation complete screen
appears, shown in Figure A-6.

[Z] XAMPP 1.7.1 win32 (Basic Package) =

Completing the XAMPP 1.7.1 Setup
Wizard
ZAMPP 1,7.1 has been installed on your computer,

Click Firish to close this wizard,

|
Figure A-6:
The XAMPP
installation
complete
screen.
|

|
Figure A-7:
The XAMPP
Control
Panel.
|

11. Click Finish.

The XAMPP installation process may continue with a few additional con-
figuration tasks. Mainly, you just get to watch as things proceed automati-
cally. Sometimes the activity on the screen may stop for a period of time.
This is okay. Do not do anything. Just wait. It will continue until it’s done.

12. When a screen asks whether you want the Control Panel to open
when the installation finishes, click the Yes button.

The open Control Panel with Apache and MySQL running is shown in
Figure A-7.

XAMPP Control Panel Application B=]=]
#APP Cartrol Pans
Modules

Status
Sve Apache Running St adrnin...

= [stop) [admin..
[v]sve MySgl Running Sto| Admin...

o

Sve FilaZilla Start
H
Mercur Start .
’

XAMPD Control Panel Version Z.5 (9. May, Z007)

Windows 5.1 Build Ze00 Platform Z Service Pack 1
Current Directory: of \xampp
Install Directory: of \xampp
Status Check OE

[(] 1) [)]

In the figure, Apache and MySQL are shown to be running, and the
service check box (labeled Svc) is selected, meaning the software is
running as a Windows service. This status means your development
environment is ready for work.

If the status of Apache and MySQL is Running but the Svc check box is
not selected, you can use Apache and MySQL, but they’ll stop when your
computer is shut down. You'll have to restart them in the XAMPP Control
Panel every time you start your computer. It’s better to run them as a
service so that they’ll start automatically whenever your computer
starts. To restart Apache and/or MySQL as a service, click Stop to

stop the software. Then, select the Svc check box and click Start to
restart the software.

You can now close the XAMPP Control Panel. Your software is installed and
ready for you to develop your Web database application.

When the Control Panel is running, the orange XAMPP icon is in your system
tray. You can click the icon to open the Control Panel. If you don’t have the

Appendix A: Installing PHP, MySQL, and Apache from XAMPP £} ()9

4 ,0 Part VI: Appendixes

icon in your system tray, you can start the Control Panel by choosing Start—>
All Programs=>Apache Friends=>XAMPP=>XAMPP Control Panel.

If you attempt to start the Control Panel when it’s already running, as shown
by the icon in your system tray, an error message will be displayed.

Installing XAMPP on Mac

\\3

|
Figure A-8:
Web
Sharing
panel
|

If you're a Mac OS X user, Apache, PHP, and MySQL are already installed on
your computer, but not activated.

If you have expertise in its setup, which includes activating the software, access-
ing hidden and locked files, and editing a configuration file on your own, you
can use the pre-installed system. Some setup tips are found at http://
foundationphp.com and other sites. You also need to download and install
phpMyAdmin on your system separately.

If you prefer, you can use XAMPP. It installs everything in one procedure and
is as easy to install as any other software application you're familiar with.
However, you need to be sure that the preinstalled software packages are not
activated:

1. Go to your computer’s System Preferences and click the Sharing
button.

2. Make sure that the Web Sharing check box (called Personal Web Sharing
in earlier Mac OS X versions) is deselected as shown in Figure A-8.

This is very important. If you have this check box selected, the OS’s
installation of Apache and PHP will interfere with your use of XAMPP.

n | Service
Sereen Sharing

| File Sharing

| Printer Sharing

) Web Sharing: Off
Web Sharing allows users of other computers 1o view Web pages in the sites
is computer

Remate Login
Remaote Management
Remote Apple Events
Xgrid Sharing
Internet Sharing

3. Go to www.apachefriends.org/en/xampp-macosx.html.

4. Scroll down to the Installation section, shown in Figure A-9.

Appendix A: Installing PHP, MySQL, and Apache from XAMPP /)]]

Installation in 4 Steps

i step 1: Download
Simply click on the link below. It's a good idea to get the latest version. :)

& complete list of downloads (older versions) is available at &7 SourceForge.
There are none yet, but there will be.

XAMPP for Mac OS X 1.0.1, 2009/04/13

Version Size Motes

F ®¥AMPR Mac 05 ¥ 1.0.1 77 MB Apache 2,211, MySGQL 51,33, PHP 5.2.9, Perl 5.10.0,

. ProFTPD 1.3.2, phpMyAdmin 3.1.3.1, OpenSSL 0.9.8k, GO
Universal Binary 2.0.35, Freetype 2.3.5, libjpeg &b, libpng 1.2.32,
libungif-4.1.4, zlib 1.2.3, expat 2.0.1, Ming 0.3.0,
Webalizer 2.01-10, pdf class 009e, mod_perl 2.0.4, SQLite
3.6.3, phpSQLiteAdmin 0.2, gdbrm-1.8.3, libxml-2.7.2,
libxslt-1.1.24, openldap-2.3.43, imap-2004g,
gettext-0.16.1, libmerypt-2.5.8, mhash-0.9.9,
zziplib-0.13.43, bzip2-1.0.5, freetds-0.64
MDS checksurn: 1ff92b7e002882c1c4982122328%a5ee

7 Developer package 20 MR Developer packags
MDS checksurn: 33c699055170d5bbeSebS2c018c480ea

i step 2: Installation

I To install xAMPP just do the following:
Figure A-9: . Oper? tlhe DMG-Image.)]
The XAMPP .o Drag'n Dr:op the)<.AMPP folder into your Apphcatm—ns folder. .
Web page. Notice: all old installations of XAMPP for MacOS X will be overwritten!
— That's all. XAMPP is now installed below the fpplications/XAMPP directory.
5. Click the first XAMPP Mac OS X link that says Universal Binary below it.
Download it to your desktop. (Note that your version may be different
than the one in Figure A-9, as the software is updated regularly.)
6. When the download is complete, the package opens automatically. If
it doesn’t, double-click it.
7. Drag the XAMPP folder to your computer’s Applications folder.
XAMPP is now installed in the Applications/xampp folder.
8. Double click the XAMPP Control icon in the XAMPP folder in your
Applications folder.
The open Control Panel is shown in Figure A-10.
—— Lo L) L XAMPP Controls
Figure A-10:

The XAMPP Apac Not Running m _
Control Noclimning
Panel. Not Running

4 72 Part VI: Appendixes

In the figure, Apache and MySQL are shown as not running, with a red
background on the icon. For your development environment to be ready
for work, both must be running.

9. If Apache and/or MySQL are not running, click Start for each package
that isn’t running.

The icon changes to say “Running” with a green background. When both
Apache and MySQL are running, your environment is ready for work.

You can now close the XAMPP Control Panel. Your software is installed and
ready for you to develop your Web database application.

When the Control Panel is running, its icon is in your Dock. You can click the
icon to open the Control Panel.

Using XKAMPP

|
Figure A-11:
The XAMPP

main page.
|

After you complete the XAMPP installation procedure as described in the
previous sections, Apache, PHP, and MySQL are ready for you to use.

If it seems like Apache and/or MySQL aren’t running correctly, you can open
the XAMPP Control Panel to check their status. Sometimes they may not be
running, and you can start them. Or, sometimes, stopping and then starting
Apache or MySQL can solve a problem.

XAMPP also offers a main page that provides some features that can be useful.
The XAMPP main page looks similar to the page shown in Figure A-11.

E-»-& [http#localhost! =[] 5] [EY)
XAMPP for Windows £ 5/

Welcome to XAMPP for Windows Version 1.7.1 |

Congratulations:
You have successfully installed XAMPP on this system!

Now you can start using Apache and Co. You should first try »Status«< on the |eft
navigation to make sure everything works fine,

For OpenssL support please use the test certificate with https://187.0.0.1 or
hitps: flocalhost

Far this release a spedial thanks to Uwe Steinmann for his excellent development
and compilation of all current "Special” modules!

Good luck, Kay Wogelgesang + Kai 'Oswald' Seidler

Specials

Appendix A: Installing PHP, MySQL, and Apache from XAMPP /)] 3

To open the XAMPP main page, shown in Figure A-11, open your browser and
type localhost into the address window. The first time you open XAMPP, you
need to choose a language.

The XAMPP main page offers features in a menu down the left side of the
page. Some useful features offered are

1~ Status: Opens a page showing the status of your Web related software.

+* Documentation: Provides useful documentation for your Web software.

v+ phpMyAdmin: Provides a link that opens phpMyAdmin. However, you
do not have to open phpMyAdmin through the XAMPP page. You can
open phpMyAdmin directly by typing localhost/phpmyadmin.

v~ FileZilla FTP: Provides a link that starts the FileZilla FTP software.
In general, you don’t need to use the XAMPP main page very often, if at all.

This book doesn’t require you to use the page at all. However, it’s a good idea
to open it once to make sure that everything is working correctly.

4 ’4 Part VI: Appendixes

Appendix B
Configuring PHP

l his appendix assumes that you have the Web software installed.

PHP has many configuration settings that determine how it behaves. I talk
about PHP settings at various places throughout the book. For instance, I talk
about the PHP error settings when [explain how PHP errors work in Chapter 6.
[explain the settings and when they need to be changed in context in the
book.

The configuration settings are stored in a text file named php. ini. PHP looks
for the file php . ini when it begins and uses the settings it finds. If PHP can’t
find the file, it uses a set of default settings.

All PHP settings can be changed in the php. ini file. Some settings should
always be changed, and some should be changed only in specific circum-
stances. For example, magic quotes should always be turned off. [explain
magic quotes in Chapter 6.

On your own computer, you always have access to the php. ini file and can
change the settings yourself. However, a Web host isn’t going to allow you
access to the general php . ini file, because it controls the settings for all the
users on the computer, not just for your site. So, you change any PHP set-
tings on your Web hosting account with a different procedure:

v A local php.ini file: Some Web hosts allow you to have a local php.
ini file that controls: PHP’s behavior for your Web site only. If so, you
can make any needed changes in this local php . ini file.

v An .htaccess file You can add directives to your .htaccess file that
change PHP settings. Only some settings can be changed this way.

v A statement in the PHP program: You can add a statement to a PHP
program that changes the settings for that program. The new settings
only apply to the program it’s in, and the old setting is still in place after
the script ends. Only some settings can be changed this way.

4 ’6 Part VI: Appendixes

Notice that only some settings can be changed in an .htaccess file or in
a PHP program. You can find a table that shows where PHP settings can be
changed at www.php.net/manual/en/ini.list.php. One column in the
table is labeled Changeable. The codes in that column define where the set-
ting can be changed, as follows:

v PHP_INI_ALL: Can be changed anywhere

v PHP_INI_PERDIR: Can be changed in the .htaccess file

v PHP_INI_USER: Can be changed temporarily in the PHP program

v PHP_INI_SYSTEM: Can be changed only in the php. ini file
Throughout this book, I discuss various settings in context. When I discuss
a setting, I discuss how to change it. For example, when I discuss error han-

dling in PHP programs, [discuss the various settings that apply to error
handling and how to change them.

Changing Settings in php.ini

You can change all your PHP settings in the php. ini file. You can always
edit your own php. ini file with a text editor on your computer. If your Web
host allows you a local php . ini on your Web site, you can edit that also
with an editor.

In the general php.ini file
Because php. ini is a text file, you can edit it with any text editor. Follow
these steps to do so:

1. Locate the php. ini file that is currently in effect.

As explained in Chapter 2, you can see that path to this file in the output
from the phpinfo () statement in a PHP program.

2. Open php.ini in your favorite text editor.
The file looks similar to the file shown in Figure B-1.
3. Scroll down to the setting you want to change.

In this example, I am turning magic quotes off. Figure B-2 shows the
magic quotes setting that [am going to change.

|
Figure B-1:
The top of
the php.ini
file.

|
Figure B-2:
The magic
quotes
setting to be
changed.

Appendix B: Configuring PP /)] 7

: = iz the default settings file for new PHF installations.

. By default, PHP installs itself with a configuration suitable for

; development purposes, and *NOT* for production purposes.

: For several security-oriented considerations that should be taken

; before going online with your site, please consult php.ini-recommended
; and http://php.net/manual/en/security.php.

: This file controls many aspects of PHP's behavior. In order for PHP to
; read it, it must be named 'php.ini'. PHP looks for it in the current

; working directory, in the path designated by the enviromment varishle

; PHPRC, and in the path that was defined in compile time (in that order).
; Under Windows, the compile-time path iz the Windows directory. The

. path in which the php.ini file is locked for can be overridden using

. the -¢ argument in command line mode

: The syntax of the file is extremely simple. Whitespace and Lines

; beginning with a semicolon are silently ignored ([as you probably guessed) .
; Section headers (e.g. [Fool) are also silently ignored, even though

; they might mean something in the future.

; Directives are specified using the following Syntax
; directive = value
: Directive nawes are *eoase sensitive* — foo=bar is different frow FOO=har.

4. Change On to Off.

(221

. Save the changed php. ini file.
6. Restart Apache.

You can open the XAMPP control panel, click Stop, and click Start. Or, you
can go into the Services Window, highlight Apache, and click Restart.

Any changes you make to php.ini do not go into effect until you restart
Apache.

: Magic quotes

: Magic gquotes for incoming GET/POST/Cookie data.
magic_guotes_gpe = On

In a php.ini file on your Web site

If you're allowed a local php . ini file by your Web host, it doesn’t need to
contain all the settings that are in the general php. ini file. It needs to con-
tain only the settings that you want to change.

In Chapter 2, when testing your setup, you created an empty file named
php.ini in your development environment. You can add the settings you
want to change to this file.

4 ,8 Part VI: Appendixes

1. Open the php. ini file in your development site in your favorite text
editor.

It may be empty or may contain any settings that you previously added
to it.

2. Add the setting you want to change.

For instance, to turn off the magic quotes setting, add the following line
to the php. ini file:

magic_quotes_gpc = Off
3. Save the php.ini file.
4. Upload the changed php. ini file to your Web site.

The changed php. ini file replaces the current one, and the setting is
changed.

Changing Settings with an .htaccess File

The file named .htaccess is an Apache configuration file. Apache reads the
file and performs certain tasks based on the directives in the file. You can
add directives to the .htaccess file that tell Apache to change the configu-
ration settings of PHP. As discussed earlier in this appendix, not all PHP set-
tings can be changed in this file.

The settings in the .htaccess file apply to all programs in the directory
where the .htaccess file resides and in its subdirectories. You can have
more than one .htaccess file — files with different directives in different
directories.

You may or may not already have an .htaccess file on your Web site. Some
Web hosts use .htaccess files on user accounts for their own settings. If
there is an .htaccess already on your Web site, be careful when you edit it.
It may contain directives that are essential to the correct functioning of your
Web site.

It’s best not to have a copy of the .htaccess file in your development envi-
ronment. The file on your Web site might contain directives that are required
on your Web site but cause problems on your local development site, even
including disabling your local site.

The directives you use in your .htaccess file to change PHP settings are

v php_flag: Used to turn settings on or off.

v php_value: Used to set a value for a setting.

Appendix B: Configuring PHP /) 19

To turn off magic quotes, as shown in the previous section, use the following
directive in the .htaccess file:

php_flag magic_quotes_gpc Off
If you need to set a value for a setting, you use the other directive, such as
php_value post_max_size = 10M

To change a setting, you just need to edit the .htaccess file to add the new
setting. If your Web host provides the ability to edit a file on your Web site,
you can edit it there. (The .htaccess file is an exception to my previous
statements suggesting you not edit files on your Web site, but only on your
development site.)

If you need to edit the .htaccess file on your development site, download
the current .htaccess file, add the directive to change the setting, and upload
the changed file back to your Web site. Be sure to delete the .htaccess file on
your development site after you have uploaded it to your Web site.

Changing Settings with PHP Statements

You can change some PHP settings temporarily with a PHP statement in a
program. The setting is changed only while the program is running. When
the program finishes, the PHP setting reverts to its previous setting. As men-
tioned previously, not all PHP settings can be changed in the PHP program.

PHP provides a statement that changes a setting. The general format is
ini_set ("setting", "value") ;

In the previous two sections, I show you how to turn off magic quotes as an
example. However, [can’t use magic quotes for this example. If you look in
the table referenced earlier in this appendix, you'll see that magic_quotes_
gpc is shown as PHP_INI_PERDIR. This means that magic quotes cannot be
turned off in the program. Magic quotes can be turned off only in the php.
ini file or in the .htaccess file.

For this example, I'm turning off errors. When and why you might want to do
this is discussed in Chapter 6. To turn off errors, add the following statement
at the beginning of a program:

ini_set ("display_errors","Off");

4 20 Part VI: Appendixes

PHP also has some specific statements for certain settings. You can use these
instead of the general ini_set statement. For example, PHP provides a
statement for setting the type of errors you want to display.

It’s quite common to want to change which type of errors you display. You
might want to use a statement that displays more error messages during
development, but you want to display fewer error messages when the Web
site goes public. You would rather display error messages in a log file than
display them to the general public.

To change the type of errors displayed, temporarily, you use the following
statement at the beginning of your program:

error_reporting(E_ALL);

This statement causes all error messages to be displayed while this program
is running, but not for any other program.

Another statement provided by PHP to change a setting is
set_time_limit(seconds) ;

This statement sets the amount of time a program can run before PHP
decides that something has gone wrong and ends the program.

Index

Symbols

#target section, URL, 287

$_FILES array, 280-281
$_POST[interest] variable, 251-252
$_SESSION array, 298-299
$_SESSION[login] variable, 304
$PHPSESSID variable, 303
$timestamp variable, 150
?string=string section, URL, 287

o/] o

access, site, 51
access to data, controlling
account names, 112-113
account privileges, 115
hostnames, 112-113
overview, 111-112
passwords, 113-114
account names, MySQL, 112-113
account number, MySQL, 45
account privileges, MySQL
changing, 120-121
overview, 115
accounts, MySQL
adding, 117-118
allowing access to database, 118-120
overview, 116
passwords, adding and changing, 121
privileges, changing, 120-121
removing, 121-122
acct variable, mysgli_connect function,
214
Add User to Database section, MySQL
Database page, 119
addNewType () function, 352-353
AddPet .php program, 344, 353-358
ALL privilege, 115
all-in-one software package, 34
ALTER privilege, 115

ALTER query, 91-92, 110
American Standard Code for Information
Interchange (ASCII) code, 156
anatomy, Web site, 21-22
and, 161-163
announcement mailing list, 19
Apache, 17, 29
application, 10-12. See also Members Only
application; Pet Catalog application
application level, organizing at, 308
application plan document, 319
Arachnophilia, 35
arithmetic operations, 144-145, 172
array_reverse ($varname) function, 392
array_unique ($varname) function, 392
arrays
$_FILES, 280-281
built in, 234-235
checking for empty fields, 254
creating, 174-175
getting values from, 179-181
handling with PHP functions, 392-393
multidimensional, 183-186
numbered, 400
overview, 165, 174
removing values from, 176-177
sorting, 177-179
superglobal, 234-235
viewing, 175-176
walking through, 181-183
arsort statement, 179
ASCII (American Standard Code for
Information Interchange) code, 156
asort statement, 178-179
assigning values to PHP variables, 140-142
assignment statements, 171-172
asterisk (*), 157
attributes, 57-58, 61-62, 64-65
AUTO_INCREMENT definition, 86, 325
auto-increment column, 67
AVG () function, 100

422

PHP & MySQL For Dummies, 4th Edition

ol e

backing up data

exporting with phpMyAdmin, 123-125

overview, 122-123

viewing export file, 125-127
backslashes, 146
backups

by IDE, 36

Web hosting companies, 26
BBEdit, 35
BIGINT data type, 67, 324
blocks

indentation, 310, 402

overview, 137

reuse of, 310
break statements, 191-192, 200-201
browsers, Web

cookies, 295, 301

Web pages based on, 289
buildCheckbox.php program, 248-250
building blocks, PHP

arrays, 174-186

conditional statements, 187-192

functions, 201-209

loops, 192-201

overview, 165-166

simple statements, 166-173
buildRadio.php program, 247-249
buildSelect.php program, 242-244
built-in PHP functions, 209

oo

C scripting language, 15, 163
calls, function, 173
capitalization, 76-77
case section, switch statement, 191-192
case sensitivity, 57, 76-77
catalogs. See online catalogs
changePhone.php program, 291-294
CHAR data type, 67, 266, 326, 328-329, 363
character data, 66
character strings
changing case of, 396
character, 77
comparing to patterns, 395
comparisons, 156

finding out about, 395
joining, 148-149
matching to patterns, 157-161
overview, 77, 146-149
query, 219-220
single-quoted versus double-quoted,
147-148
text, 77
characters
account name, 113
literal, 158-160
check box lists, 248-251
checkAll.php program, 260-263
checkBlank.php program, 255-257
checking user information
for empty fields, 254-258
format, 258-263
overview, 253
Choose Install Location screen, XAMPP
Setup Wizard, 407
ChoosePetCat .php program, 344-347
ChoosePetName.php program, 344,
347-353
city column, Member table, 362
cleaning data, 267-268
client software, 80-81
closing PHP sessions, 304
code insertion, 35
code library, 35
color highlighting, 35
Color table, 328-329
column < value expression, WHERE
clause, 103
column <= value expression, WHERE
clause, 103
column = value expression, WHERE
clause, 103
column > value expression, WHERE
clause, 103
column >= value expression, WHERE
clause, 103
column BETWEEN valuel AND value2
expression, WHERE clause, 103
column IN (valuel,value2,..)
expression, WHERE clause, 103
column LIKE value — value
expression, WHERE clause, 103
column lists, INSERT query, 94

Index 423

column NOT IN (valuel,value2,..)
expression, WHERE clause, 103
column NOT LIKE value — value
expression, WHERE clause, 103
columns
Members Only database, 65
object table, 58
Pet Catalog tables, 62-63
combining information from tables
joins, 106-108
overview, 104-105
UNION, 105-106
comma-delimited file, 96
comments, 163-164, 310, 319, 402
communicating with MySQL
building SQL queries, 76-77
overview, 75-76
sending SQL queries, 77-81
company computer, development site
on, 39
company Web site
as publishing location for site, 28
setting up site on, 32
comparisons
joining with and/or/xor, 161-163
matching character strings to patterns,
157-161
overview, 154-155
simple, 155-157
of strings to patterns, 395
complex statements, 137
compute_salestax function, 206-207
computer security, 316
concatenation, 148
conditional block, 137
conditional statements
if statements, 187-190
overview, 154-155, 165-166, 187
simple comparisons, 157
switch statements, 190-192
conditions, 194
configuration file, testing local PHP, 43
configuring PHP
.htaccess file, changing settings with,
418-419
overview, 415-416

PHP statements, changing settings with,
419-420
php.ini, changing settings in, 416-418
connectionname variable, mysgli_
select_db function, 218
connections
to MySQL server, 214-217
overview, 214
selecting right database, 218
sending SQL queries, 219-220
verification of, 112
constants, 142-143, 302-303, 310
continue statements, 200-201
control panel, Web host
accounts, creating, 117-118
allowing access to accounts, 119
database, creating new, 84
deleting databases, 86
overview, 31-32
passwords, 121
privileges, changing, 120-121
removing accounts, 121-122
Control Panel, XAMPP, 409-412
controlling access to data
account names, 112-113
account privileges, 115
hostnames, 112-113
overview, 111-112
passwords, 113-114
conventions used in book, 2
cookies
PHP sessions without, 301-303
storing information via, 290, 294-297
corrupted tables, 127-128
COUNT () function, 100
counters, 172
cPanel
accounts, creating, 117-118
allowing access to accounts, 119
database, creating new, 84
deleting databases, 86
overview, 31-32
passwords, 121
privileges, changing, 120-121
removing accounts, 121-122
cracking, password, 113-114
CREATE privilege, 115

b24

PHP & MySQL For Dummies, 4th Edition

CREATE query, 325-326

CREATE TABLE query, 89

Create User button, MySQL Database page,
118

createDate column, Member table, 362

CSV option, phpMyAdmin Import page,
97-98

CSV Using LOAD DATA option,
phpMyAdmin Import page, 97-98

curly brackets, 401-402

Current Databases section, MySQL
Database page, 120-121

current statement, 181

customer order application, 59-60

customer passwords, 368, 386

o e

data. See also protecting data
character, 66
choosing for database, 54-55
date and time, 67
enumeration, 67
getting and using from database, 221-227
getting using functions, 228-232
MySQL data type names, 67-69
numerical, 66-67
organizing in database, 56-60
overview, 66
transfer, Web site, 26
types of, 266-267
writing down decisions, 69
data files, 330
database. See also moving database data;
storing information in database
adding new information, 270-276
allowing access to, from MySQL account,
118-120
building, 72
communicating with MySQL, 75-81
creating new, 82-84
deleting, 85-86
designing, 54-60
functions, getting information using,
228-232
getting and using data from, 221-227

Members Only application, 360-364
overview, 10, 72, 75
Pet Catalog application, 323-331
PHP interaction with, 15
preparing data, 265-270
SELECT query, sending, 220-221
selecting right, 218
structure, changing, 90-92
tables, adding, 86-90
updating existing information, 276-279
viewing, 85
in Web database application, 11
database design document, 319
Database drop-down list, MySQL Database
page, 119
Database Management System (DBMS), 11
Database page, phpMyAdmin, 123
databasename variable, mysqgli_
select_db function, 218
date and time data, 67
DATE data type, 67, 153, 266, 362
date format symbols, 150-151
date function, 150, 312
date selection list, 244-247
DATEDIFF function, 153-154
dates, working with in PHP
formatting, 150-151
overview, 149
setting local time, 149-150
storing timestamp in variable, 151-152
using with MySQL, 153-154
dateSelect.php program, 244-246
DATETIME data type, 67, 153, 364
DAYNAME () function, 101
DBMS (Database Management System), 11
dbname variable, mysgli_connect
function, 215
debugging features, IDE, 36
DECIMAL data type, 67, 266, 326
DEFAULT definition, 86, 325-326, 329
default section, switch statement, 191
defaults, defining, 58
define statement, 143
definitions, field, 87-89
DELETE privilege, 115
DELETE query, 110

Index 425

deleting database, 85-86
Deny directive, .htaccess file, 38,
314-315
descriptive names
function, 315
program, 308
developing Web database application
building database, 72
data types, 66—69
designing database, 54-60
example applications, 52-54, 60-65, 69-71
overview, 47
planning, 47-52
writing programs, 72
development locations, 30-31
development site
company computer, 39
local computer, 35-37
php.ini file, 418
setting up Web site, 32
Web hosting company, 38-39
work environment, 22
development software, installing, 34
die statement, 173, 216-217, 392
directories, protecting, 314
directory, include, 313
discounts, 50
discussion lists, e-mail, 12-13, 15, 19
disk space, Web site, 26
display_logo function, 202-203
displayAddress.php program, 239-240
displayForm.php program, 236, 255
DISTINCT clause, SELECT query, 102, 243
document root, 41
documentation, writing, 52, 69, 318-319
Documentation feature, XAMPP main page,
413
dollar signs, 398
domain names, 26-27
dots, 148
double-quoted character strings, 147-148
double-quotes
echo statement, 167
importance, 399
query strings, 219-220
do. .while loop, 192, 196-198

downloading XAMPP, 405-406, 411
Dreamweaver, 36-37
Drop button, phpMyAdmin, 110
DROP privilege, 115
Drop tab, phpMyAdmin interface, 85-86
dynamic information, displaying in HTML
form fields, 238-241
dynamic Web pages
cookies, storing information via, 294-297
HTML forms, passing information with, 297
overview, 10, 285, 289-290
URL, adding information to, 290-294

oF o

ease of use, Web database application, 51
echo statement
HTML forms, 233
overview, 136, 141-142, 167-171
selection lists, 243
EditPlus, 35
else section, if statements, 188
elseif section, if statements, 188
Emacs, 36
e-mail, sending with PHP functions, 390
e-mail addresses, 26
email column, Member table, 363
e-mail discussion lists, 12-13, 15, 19
e-mail messages, 368, 386
embedded scripting language, 16
empty fields, checking user information
for, 254-258
encryption
password, 113
Web server, 318
enctype attribute, form tag, 280
end statement, 181
end users, 9
entity, 57
ENUM data type, 67, 266
enumeration data, 67
environment, Web site. See work
environment
equal signs, 156, 199, 398
ereg, 160

5,26 PHP & MySQL For Dummies, 4th Edition

error messages
corrupted tables, 127
curly brackets, 401-402
dollar signs, 398
equal signs, 398
including PHP statements, 401
misspelled variable names, 398
MySQL, 216
numbered arrays, 400
output, 399-400
overview, 397
parentheses, 401-402
preventing view of filenames on server, 317
quotes, 399
semicolons, missing, 136-137, 397
settings, 419-420
types of, 138-139
wrong functions, 40
wrong MySQL account information, 45
escaping data, 268-270
example applications. See Members Only
application; Pet Catalog application
exit statement, 172-173, 254, 258, 392
expiretime value, setcookie
function, 296
explode ("sep", "string") function, 393
export file, viewing, 125-127
Export page, phpMyAdmin, 123-124
exporting, with phpMyAdmin, 123-125
expressions
regular, 259
WHERE clause, 102-104
extensions, file, 17
external file, 310
extract function, 180, 222-223

ofF e

fax column, Member table, 363
feedback page, Pet Catalog application, 336
feel, designing. See look and feel, designing
fields

definitions for, 87-89

form, 235, 258-263

hidden, 280, 297

overview, 56
Fields Enclosed By field, phpMyAdmin

Import page, 98

Fields Terminated By field, phpMyAdmin
Import page, 98
file extensions, 17
file formats, 96
FILE privilege, 115
File Transfer Protocol (FTP), 36-37
filenames
displaying, 316
preventing Web server from
displaying, 317
files. See also .htaccess file; php.ini file
comma-delimited, 96
data, 330
export, 125-127
external, 310
getting information in, 279-284
HTML forms, using to upload, 280
include, 283, 313-315
local PHP configuration, 43
misc.inc, 337
multiple, 35
processing uploaded, 280-281
publishing, 22
session, 298
tab-delimited, 96
testing, 30
test.php, 41-42
text, adding data from, 94
uploading, 37, 280, 282-283
writing, 35-36
FileZilla, 37
FileZilla FTP link, XAMPP main page, 413
Firefox, disabling cookies in, 301
firstName column, Member table, 362
fixed-length character data, 66
for loop, 192-194, 223, 225-226
foreach statement, 182-183, 185
Forgot my password button, 386
form tag, 251, 280, 297
format
data, using correct, 266-267
in user information, 258-263
format symbols, date, 150-151
formatting
date, in PHP, 150-151
values, with PHP functions, 393-394
formatting instruction, sprintf
function, 394

Index 42 7

forms, HTML. See HTML forms
forward slashes, 313
FTP (File Transfer Protocol), 36-37
FTP Voyager, 37
function calls, 173
function statement, 205
functions. See also specific functions
by name
arrays, handling, 392-393
built-in, 209
cleaning data, 268
comparing strings to patterns, 395
e-mail, sending, 390
formatting values, 393-394
getting information from database with,
228-232
include files, 311
MySQL, 212-213, 389-390
organizing at program level, 315
overview, 101, 166, 201-203, 389
passing values between main program
and, 205-209
PHP, 212-213
PHP sessions, 392
stopping program, 392
strings, changing case of, 396
strings, finding out about, 395
using variables in, 203-205
variables, checking for, 393
future changes in Web database
application, planning for, 51-52

oG o

GET method, 234-235, 253

get missing information page, Pet Catalog
application, 337

get pet information page, Pet Catalog
application, 336

get pet type page, Pet Catalog
application, 335

get_magic_quotes_gpc () function, 270

global statement, 204-205

GRANT privilege, 115

graphics, 51

GROUP BY phrase, SELECT query, 101
growth, planning for, Members Only
application, 386

o/ o

header function, 286, 288-289
hidden fields, 280, 297
hiding information, 317
host variable, mysgli_connect function,
214-215
hostnames, MySQL, 112-113
hosts. See Web hosting company
.htaccess file
blocking access to, 38
changing settings with, 415, 418-419
include path, 313
magic quotes, 269
overview, 25
preventing view of filenames on
server, 317
protecting directories, 314-315
HTML (HyperText Markup Language). See
also HTML forms
erase, 9
file for storefront page, 338
include files, 311
page, adding PHP section to, 133-136
source code, 168
HTML forms
check boxes, building lists of, 248-250
displaying dynamic information in fields,
238-241
empty fields, checking information for,
254-258
format, checking information for, 258-263
multiple submit buttons, 263-265
New Pet Type, 349-350
overview, 233-237
passing information with, 290, 297
Pet Information, 351-352
radio buttons, building lists of, 247-248
selection lists, building, 241-247
using information from, 251-253
using to upload file, 280

428

PHP & MySQL For Dummies, 4th Edition

HTML-Kit, 36

htmlspecialchars function, 268

HTTP://servername section, URL, 287

HyperText Markup Language. See HTML;
HTML forms

o]e
icons used in book, 5
ID number, session, 298, 302
IDE (integrated development
environment), 35-36
if section, if statements, 187
if statements
calling functions, 217
checking fields, 254-255, 259-260
overview, 137, 154-155
simple comparisons, 157
use of, 187-190
implode ("glue", $array) function, 393
Import page, phpMyAdmin, 97-98, 128-129
in_array ("string", Svarname)
function, 392
.inc extension, 311
incentives, customer, 55
include files
overview, 283
protecting, 314-315
storing, 313-314
include statements, 310-312
include_once statement, 312
increment statements, 172, 193
indentation
blocks, 310, 402
programming editors, 35
statements, 137
infinite loops
break statements, 201
creating, 398
overview, 196, 198-199
Information Technology (IT) department,
28,32, 39
ini_set statement, 313-314
injection, SQL, 268-269
inner join, 106
insert icon, phpMyAdmin main page, 95
INSERT privilege, 115
INSERT query, 94-95, 270, 364

inserting tabs, 147
installation complete screen, XAMPP Setup
Wizard, 408
installing. See also XAMPP installation
MySQL, 29
PHP, 29
Web development software, 34
Web server, 29
Installing screen, XAMPP Setup Wizard, 408
instructions, PHP. See building blocks, PHP
INT data type, 67, 266
integrated development environment
(IDE), 35-36
interface, phpMyAdmin
overview, 79-81
tables, adding to database, 87-89
Internet Explorer, disabling cookies in, 301
INTUNSIGNED data type, 67
IP address, 27, 113
IT (Information Technology) department,
28, 32, 39
iteration, 181

o]o

JavaScript, 10
joining
character strings, 148-149
comparisons, 161-163
joins, 106-108

oK o

key, primary, 58
key/value pairs, 174
Komodo, 36

krsort statement, 179
ksort statement, 179

o/ o

lastName column, Member table, 362
length, URL, 291

licenses, MySQL, 12-13

LIMIT clause, SELECT query, 102
line numbers, 35

lines, starting, 147

Index 4 29

Lines Terminated By field, phpMyAdmin
Import page, 98
links, 286, 289
list manager, 12
list statement, 180
literal characters, 158-160
LOAD DATA INFILE query, 98
local computer
creating new database on, 82-83
development site on, 34-37
testing PHP on, 41-42
local PHP configuration file, testing, 43
local php. ini file, 415, 417-418
local time, setting, 149-150
login, site, 232, 303-304, 360-361
login names, 112
login page, Members Only application,
366-368
Login table, Members Only application,
65, 363-364
login_form.inc program, 379-383
loginName column
Login table, 364
Member table, 361
Login.php, 371-383
loginTime column, Login table, 364
look and feel, designing
Members Only application, 365-368
Pet Catalog application, 331-337
loops
breaking out of, 200-201
do..while, 192, 196-198
for, 192-194, 223, 225-226
getting all rows of data from database,
223-227
infinite, 196, 198-199, 201, 398
overview, 166, 192
while, 192, 194-196, 223, 225-226

ol o

Mac, installing XAMPP on, 410-412
magic quotes, 269-270, 279, 416-417, 419
mail server, outgoing, 391

main page, XAMPP, 412-413
maintenance, program, 309

malicious users, 258-259, 318
Manage User Privileges page, cPanel,
119-121
managetr, list, 12
matching character strings to patterns,
157-161
mathematical operations, 100
MAX () function, 100
MAX_FILE_SIZE setting, 280
maxlength, 237, 240
member lists, 386
Member table, Members Only application,
361-363
Members Only application
database, building, 360-364
database tables, 70-71
designing, 63-65, 360
Login table, 363-364
Login.php, writing, 371-383
look and feel, designing, 365-368
Member table, 361-363
Members Only section, writing, 385-386
New_member . php, writing, 384-385
overview, 53-54, 359-360
PetShopFront, writing, 370-371
planning for growth, 386
writing programs, 369-370
Members Only section, Members Only
application, 368, 385-386
message variable
mysqgli_connect function, 215
mysgli_select_db function, 218
MIN () function, 100
misc.inc file, 337
misleading names, 317
mktime function, 296
monitor, terminal, 80-81
mouse-overs, 10
moving database data
adding information, 93-98
combining information from tables,
104-108
overview, 92-93
removing information, 110
retrieving information, 99-104
updating information, 109
viewing information, 98-99

430

PHP & MySQL For Dummies, 4th Edition

moving information between Web pages
cookies, storing information via, 294-297
HTML forms, passing information
with, 297
moving user from one page to another,
286-289
overview, 285, 289-290
PHP sessions, 298-304
URL, adding information to, 290-294
multidimensional arrays
function for, 229-232
overview, 183-186
multiple comparisons, 161-162
multiple files, 35
multiple submit buttons, HTML forms,
263-265
multiple-choice fields, 260
MySQL. See also protecting data
advantages of, 13-14
communicating with, 75-81, 389-390
connecting to server, 214-217
data type names, 67-69
functioning of, 14
functions, 40, 212-213
overview, 1-5, 12-13
and PHP, 17-19
PHP functions, communicating with
through, 389-390
server, communicating with, 14-15
testing, 47
using dates with, 153-154
versions, 20, 24
MySQL 4.3.1, 20
MySQL 5.0, 20
MySQL 5.1, 20, 24
MySQL 6.0, 20
MySQL Community Server, 12-13
mysqgl database, 117
MySQL Database page, cPanel, 117-118
MySQL Enterprise Subscription, 13
mysql functions, 40, 212-213
mysqgl program, 80-81
MySQL Users section, MySQL Database
page, 117-119
mysqgl_real_escape_string function,
269-270

mysqldump program, 127
mysqgli functions, 40, 212-213
mysqgli_affected_rows (Sresult)
function, 390
mysqgli_connect function, 214-217
mysqgli_error (Scsn) function, 216
mysqgli_fetch_assoc function, 221-222
mysqgli_fetch_row function, 221
mysqli_fetch_row($result) function, 389
mysqgli_field_name (Sresult, N)
function, 390
mysqgli_insert_id($cxn) function, 389
mysgli_multiple_query function, 219
mysgli_num_rows function, 226
mysqgli_query function, 219, 221
mysqgli_real_ escape_string()
function, 269
mysqgli_select_db function, 218
mysqgli_select_db($cxn, sdatabase)
function, 389

o\ o

names
database, 57
function, 315
PHP variable, 140
program, 308
navigation, site, 51
negative numerical data, 67
nested queries, 99
nesting, 185, 190
New Member Welcome page, Members
Only application, 368
New_member . php, 384-385
newsletters, 50
next statement, 181-182
NOT NULL definition, 86, 324-326, 328-329,
361-362, 364
notices, 138-139, 142, 179-180
NOW () function, 154
number comparisons, 156
number_format () function, 393
numbered arrays, 400
numbers, working with in PHP, 144-146
numerical data, 66-67

Index

o () o

objects, 56-57, 64
online catalogs
adding to, writing program for, 344-358
customer pages, writing, 338-343
database, building, 323-331
designing application, 322-323
look and feel, designing, 331-337
overview, 321
writing programs, 337
online ordering, 232
online product catalog, 52-53
online sales, 48-49
open source software, 19
operating systems
MySQL, 13
PHP, 16
operators, arithmetic, 144-145
optional information, 55
or, 161-163
order, retrieving information from
database in specific, 101
ORDER BY phrase, SELECT query, 101, 243
ordering, online, 232
organizing application
at application level, 308
overview, 307-308
at program level, 309-315
organizing data in database
relationships between tables, 59-60
tables, 56-59
outer join, 106-108
outgoing mail server, 391
output, 399-400
outputitems, 167

oo

parentheses, 144-145, 162, 401-402

parse error, 138, 397-398

passing information on URL, 193

passing values between functions and main
program, 205-209

Password (Again) field, MySQL Database
page, 118

password column, Member table, 362
Password field, MySQL Database page, 118
password variable, mysgli_connect
function, 214
passwords
customer, 368
member, 386
MySQL, 112-114, 121
path section, URL, 287
patterns
comparing strings to, 395
matching character strings to, 157-161
permissions, 112
Pet Catalog application
adding to catalog, writing program for,
344-358
Color table, 328-329
customer pages, writing, 338-343
database, building, 323-331
database tables, 69-70
designing, 61-63, 322-323
look and feel, designing, 331-337
overview, 52-55
Pet table, 324-327
PetType table, 327-328
writing programs, 337
Pet table, 324-327
pet type page, Pet Catalog application, 332,
338-341
PetCatalog.php program, 338
petColor column, Color table, 329
petDescription column, PET table, 325
petID column, PET table, 324, 326-327
petName column
Color table, 329
PET table, 325
pets page, Pet Catalog application,
332-334, 341-343
PetShopFront, 370-371
petType column
PET table, 325
PetType table, 327
PetType table, 327-328
phone column, Member table, 363
phone numbers, 236, 291-293

431

£y32 PHP &MySQL For Dummies, 4th Edition

PHP (PHP: HyperText Preprocessor).
See also building blocks, PHP; error
messages; PHP sessions

advantages of, 16

changing settings, 25

comments, adding to program, 163-164
configuring, 415-420

erase, 15

functioning of, 16-17

local configuration file, testing, 43
and MySQL, 17-19

overview, 1-5, 15, 133

scripts, sending SQL queries using, 81
tags, 134

testing, 41-42

versions, 19-20, 24

deleting databases, 85-86
exporting with, 123-125
inserting data into tables, 96-98
main page, 78
overview, 15, 25
removing data from database, 110
restoring data, 128-129
sending SQL queries using, 77-81
structure, changing database, 91
tables, adding to database, 86-89
viewing databases, 98-99
phpMyAdmin link, XAMPP main page, 413
pix column
Color table, 329
PET table, 326
planning for growth, Members Only

Web site, 15 application, 386
PHP 4, 19, 24 planning Web database application
PHP 5, 19, 24 ease of use, 51
PHP 6, 20, 269 for future changes, 51-52

identifying main purpose, 48-50
overview, 47-48

.php extension, 134-135
PHP sessions

closing, 304

opening, 299

overview, 298-299

PHP functions, 392
private, 303-304

session variables, 299-301

user needs, 50-51

writing plan down, 52
:portnumber section, URL, 287
positive numerical data, 67
POST method, 234-235, 252-253

preg_match("pattern", Svarname)

function, 395
preg_replace function, 267
preg_replace("pattern", "string",

without cookies, 301-303
php_flag directive, .htaccess file, 418
php_value directive, .htaccess file, 418

PHPEdit, 36 $varname) function, 395
phpinfo () statement, 42 preparing data
php.ini file cleaning, 267-268

changing settings in, 416-418

error message settings, 139

include path, 313

magic quotes, 269

overview, 42-43

PHP settings, 25

setting time zone, 150

phpMyAdmin

adding information to database one row
at time with, 95-96

changing data in database, 109

creating new database, 82-83

escaping, 268-270
format, using correct, 266-267
overview, 265
putting into variables, 266
previewing, IDE, 36
previous statement, 181
price column, PET table, 326
prices, product, 145-146
primary key, 58, 63
PRIMARY KEY definition, 328-329, 361, 364
PRIMARY KEY statement, CREATE TABLE
query, 90

Index 433

print_r statement, 175-176
privacy, Web database application
hiding things, 317
overview, 316
preventing Web server from displaying
filenames, 317
secure Web server, 318
security of computer, 316
user information, 318
privacy, Web hosting company, 38
private PHP sessions, 303-304
privileges, MySQL
changing, 120-121
overview, 112, 115
processAddress.php program, 240
processform.php program, 235, 237, 252
processing uploaded file, 280-281
processTwoButtons.php program,
264-265
product catalog, online. See online
catalogs; Pet Catalog application
product prices, 145-146
product upgrades, 50
program design document, 319
program level, organizing at, 309-315
programming editors, 30, 35-36
programs. See also building blocks, PHP;
Members Only application; Pet Catalog
application
adding comments to, 163-164
stopping with PHP functions, 392
writing, 72
project management, IDE, 36
protected directories, 314
protecting data
backing up, 122-127
controlling access to data, 111-115
MySQL accounts, 116-122
restoring, 127-129
protecting include files, 314-315
publishing files, 22
publishing locations for site
company Web site, 28
overview, 23
setting up server, 29
Web hosting company, 24-28
purpose, Web database application, 48-50

° Q °
queries, SQL
adding data to, 266
adding information to database one row
at time with, 94-95
building, 76-77
escaping data, 268-269
SELECT, 220-221
sending, 77-81, 219-221
structure, changing database, 91-92
writing, to add tables to database, 89-90
query strings, 219-220
quotes
errors, PHP, 399
magic, 269-270, 279, 416-417, 419
single, 146
in SQL queries, 77

o R e

radio button lists, 247-249, 251
range (valuel,value2) function, 392
RDBMS (Relational Database Management
Systems), 11, 56
regex, 157
registering domain name, 27
registration, customer, 50, 232
regular expressions, 157, 259
Relational Database Management Systems
(RDBMS), 11, 56
relationships between tables, 59-60
reliability, Web hosting company, 25
removing
database information, 110
MySQL accounts, 121-122
values from arrays, 176-177
request verification, 112
required fields, 254-255
reset statement, 181-182
restoring data, 127-129
restricted Web sites, 289
retrieving information from database
overview, 99
specific, 100-101
in specific order, 101
from specific source, 102-104

434

PHP & MySQL For Dummies, 4th Edition

return statement, 203, 208-209

robots. txt file, 38

root@localhost account, 113-114

rows of data, getting from database,
221-227

rsort statement, 179

oS e

sales, online, 48-49
sales tax function, 206-207
sample applications. See Members Only
application; Pet Catalog application
Save as File section, phpMyAdmin Export
page, 124-125
savePhone.php program, 270-274
script tags, 318
scripts, PHP, 81
search engines, keeping out, 38-39
sections of statements, 309
Secure Sockets Layer (SSL), 318
secure Web server, 318
security
form fields, 237, 240, 258-259
loading files, 281
misleading filenames, 317
MySQL, 13
passing information on URL, 291
PHP, 16
protecting applications, 316
Web database application privacy,
316-318
Web hosting company privacy, 38
SELECT privilege, 115
SELECT query
combining information from tables,
105-108
getting information from database using,
220-221
retrieving information, 99-104
selecting right database, 218
selection lists, building, 241-247
semicolons, 136, 220, 397
sending SQL queries
overview, 77, 219-220
SELECT, 220-221
using PHP scripts, 81
using phpMyAdmin, 77-81

SERIAL data type, 67-68
server

MySQL, 14-15, 214-217

MySQL Community Server, 12-13

outgoing mail, 391

setting up as publishing location for

site, 29

Web, 16-17, 29, 135, 316-318
session file, 298
session functions, 288, 290
session ID number, 298, 302
session_start function, 299
session variables, 299-301
sessions, PHP

closing, 304

opening, 299

overview, 298-299

private, 303-304

session variables, 299-301

without cookies, 301-303
sessions, Web site user, 289
sessionTestl.php program, 299-300
sessionTest?2.php program, 299-301
SET clause, UPDATE query, 109
setcookie function, 288, 295-297
setting up site

on company Web site, 32

needed information, 33

with Web hosting company, 31-32
Setup Wizard, XAMPP, 406-407
SHUTDOWN privilege, 115
SID constant, 302-303
simple comparisons, 155-157
simple statements

assignment, 171-172

echo, 167-171

exit, 172-173

function calls, 173

increment, 172

overview, 166
single quotes, 146, 167, 219-220, 399
single-quoted character strings, 147-148
slashes, 313
SmartFTP, 37
software. See also phpMyAdmin

mysqgl program, 80-81

open source, 19

program editing, 30, 35

text editing, 30
Web development, installing, 34
Web hosting companies, 26
software-related e-mail lists, 12
sort statement, 177-179
sorting arrays, 177-179
source, retrieving database information
from specific, 102-104
source code, 168
spacing, SQL word, 77
speed
MySQL, 13
PHP, 16
sponsors, e-mail discussion list, 12
sprintf function, 145, 393-394
SQL (Structured Query Language), 14,
268-269. See also queries, SQL
SQRT () function, 101
square brackets, 174
SSL (Secure Sockets Layer), 318
startingvalue statement, 193
state column, Member table, 363
statements. See also specific statements by
name
changing settings with, 415, 419-420
conditional, 187-192
dividing into sections for tasks, 309
including PHP, 401
MySQL, 18
before output, 288
overview, 17
simple, 166-173
storing common, 312
writing, 136-139
static Web pages, 10, 285
statistics, Web hosting companies, 26
Status feature, XAMPP main page, 413
stopping program, with PHP functions, 392
storefront page
Members Only application, 365-366
Pet Catalog application, 331, 338
storing include files, 313-314
storing information in database
adding new information, 270-276
overview, 265
preparing data, 265-270
updating existing information, 276-279
street column, Member table, 362

strict messages, 138
strings
changing case of, 396
character, 77
comparing to patterns, 395
comparisons, 156
finding out about, 395
joining, 148-149
matching to patterns, 157-161
overview, 77, 146-149
query, 219-220
single-quoted versus double-quoted,
147-148
text, 77
strip_tags function, 268
strlen ($varname) function, 395
strpos ("string", "substring")
function, 395
strrev ($varname) function, 395
strtolower ($varname) function, 396
strtotime, 152
strtoupper ($varname) function, 396
strtr (Svarname, "strl", "str2")
function, 395
structure, changing database
overview, 90-91
using phpMyAdmin, 91
writing SQL query, 91-92
Structured Query Language (SQL), 14,
268-269. See also queries, SQL
subdirectory, 31, 308
subdomain, 27
submit buttons, 286
subquery, 99
substr ("string",nl,n2) function, 395
SUM () function, 100
superglobal arrays, 234-235
sweepstakes, 50
switch statements, 190-192
syntax, function, 213

oJ e

tab-delimited file, 96

tables
adding to database, 86-90
combining information from, 104-108
overview, 56-59

Index 435

436

PHP & MySQL For Dummies, 4th Edition

tables (continued)
queries for, 90
relationships between, 59-60
tabs
data files, 330p
inserting, 147
tags
PHP, 134
script, 318
technical support
MySQL, 13
PHP, 15-16
Web hosting companies, 25, 31
terminal monitor, 80-81
testing
files, 30
functions, 40
IDE, 36
local PHP configuration file, 43
MySQL, 47
overview, 39-40
PHP, 41-42
for variables, 393
test.php file, 41-42
TEXT data type, 67
text editing
php.ini file, 416-417
software, 30
text files, adding data from, 94
text strings, 77
TextWrangler, 36
TIME data type, 67
time function, 296
time zones, 149-150
times, working with in PHP
formatting date, 150-151
overview, 149
setting local, 149-150
storing timestamp in variable, 151-152
using dates with MySQL, 153-154
timestamp
overview, 149
storing in variable, 151-152
trans-sid
overview, 301-302
PHP sessions with, 302
PHP sessions without, 302-303
traversing, 181

trim function, 268

typeDescription column, PetType
table, 328

typos, on forms, 258-259

o lf o

ucfirst ($varname) function, 396
ucwords ($varname) function, 396
Uniform Resource Locator (URL), 287,
290-294, 303
UNION, 105-106
Unix Timestamp, 149
unset function, 173
UNSIGNED definition, 86, 324
unsigned numerical data, 67
UPDATE privilege, 115
UPDATE query, 109, 276-279
updatePhone . php program, 277-279
updating
database information, 109, 276-279
member information, 386
upgrades, product, 50
uploading files
with POST form, 282-283
using forms, 280
to Web site, 37
URL (Uniform Resource Locator), 287,
290-294, 303
usability engineering, 51
USAGE privilege, 115
user, getting information from. See also
HTML forms
empty fields, checking information for,
254-258
format, checking information for, 258-263
multiple submit buttons, 263-265
overview, 232-233
user, moving from one page to another,
286-289
User dropdown list, MySQL Database page,
119
user information, security of, 318
user needs, Web database application,
50-51
Username field, MySQL Database page, 118
usort statement, 179

oo

validating user information
for empty fields, 254-258
format, 258-263
overview, 253
var_dump statement, 175-176
VARCHAR data type, 67, 266, 325-326, 329,
361-364
variable names
misspelled, 398
storing, 311
variable-length character data, 66
variable=value pairs, 290-291, 294, 303
variables
assigning values to, 140-142
checking for, with PHP functions, 393
constants, 142-143
creating, 140-142
double-quoted strings, 147
naming, 140
notices, dealing with, 142
overview, 139
putting data into, 266
session, 299-301
single-quoted strings, 147
storing timestamp in, 151-152
using in functions, 203-205
verification, connection/request, 112
versions
MySQL, 20, 24
PHP, 19-20, 24
viewing
arrays, 175-176
databases, 85, 98-99
export file, 125-127
visitors, Web site, 21

o[/ o

walking through arrays, PHP
manually, 181-182
overview, 181
using foreach to, 182-183
warning message, 138-139, 207

Web browsers
cookies, 295, 301
Web pages based on, 289
Web database applications. See also
developing Web database application;
protecting data; user, getting
information from
adding new information, 270-276
documentation, completing, 318-319
files, getting information in, 279-284
functions, getting information from
database using, 228-232
getting and using data from database,
221-227
making connection, 214-220
MySQL functions, 212-213
organizing application, 307-315
overview, 9-12, 211, 307
PHP functions, 212-213
preparing data, 265-270
privacy, 316-318
SELECT query, sending, 220-221
updating existing information, 276-279
Web development software, installing, 34
Web hosting company
creating new database on account, 83-84
development site, 38-39
MySQL, 13
PHP, 16
as publishing location for site, 24-28
publishing sites on, 23
setting up site with, 31-32
testing PHP on, 42
Web pages. See also moving information
between Web pages
based on browsers, 289
delivery stages, 169
dynamic, 10, 285
static, 10, 285
Web server
displaying filenames, 316
installing, 29
PHP interaction with, 16-17
preventing from displaying filenames, 317
processing PHP files, 135
secure, 318

Index 43 7

£ 38 PHP & MySOL For Dummies, 4th Edition

Web Sharing check box, Mac Sharing
preferences, 410
Web sites. See also work environment
anatomy of, 21-22
building, 22
development locations, 30-31
development site, 34-39
installing software from, 34
PHP, 15
publishing locations for, 23-28
restricted access, 289
setting up, 31-33
Web space, 41
Web usability, 51
WHERE clause
SELECT query, 102-103
UPDATE query, 109, 276
while loop, 192, 194-196, 223, 225-226
whois tool, 27
wildcards, 157
Windows, installing XAMPP on, 405-410
work environment
anatomy of Web site, 21-22
building Web site, 22
development locations, 30-31
development site, 34-39
publishing locations for site, 23-29
setting up site, 31-33
testing, 39-43
writing documentation, 52, 69, 318-319
writing files
integrated development environment, 36
overview, 35
programming editors, 35-36
writing PHP statements, 136-139
writing programs, 72
writing programs for Members Only
application
Login.php, 371-383
Members Only section, 385-386

New_member . php, 384-385
overview, 369-370
PetShopFront, 370-371
writing programs for Pet Catalog
application
adding to catalog, 344-358
customer pages, 338-343
overview, 337
writing SQL query
structure, changing database, 91-92
tables, adding to database, 89-90
WS_FTP, 37

o X o

XAMPP installation
on Mac, 410-412
overview, 34, 405
PHP functions, 212
root@localhost account, 113-114
using XAMPP, 412-413
on Windows, 405-410

xor, 161-163

° y °
vsgli_num_fields ($result) function,
390

o/ o

zip column, Member table, 363

Learn to use the tools
that bring Web sites to life —
it’s easy and fun!

Static Web sites don't cut it anymore.To serve up HTML, CSS,
and database-driven pages, you need to know your way
around PHP and a MySQL backend database.This book
shows you how to build two common applications:a product
catalog and a member-only site requiring a username

and password.You'll learn a basic design you can expand
however you choose!

* New to all this? — get acquainted with PHP and MySQL and find
out how to install them on Windowse, Macs, or Linux®

* A perfect partnership — see how the language and database
work together to produce dynamic Web pages with less hassle

* MySQL moving and storage — store data in your database and
display it on your Web pages

* Up to code — learn to build PHP scripts and program pieces with
code that meets the latest standards

* The sum of the parts — organize all the parts of your application,
ensure security, and complete your documentation

Visit the companion Web site at www.dummies.com/go/
php&mysqlfd4e to find all the code examples used in
the book

Janet Valade is a technical writer, Web designer/programmer, and systems
analyst. She has designed and developed data archives, supervised

computer resource operations, and conducted seminars and workshops.
She has written all previous editions of PHP & MySQL For Dummies.

Internet/Web Site Design

* How to keep up with PHP and
MySQL updates

* What'’s different in the newest
versions

* Pros and cons of Web hosting
companies

* How to back up and restore data in
your database

* Error messages and what they
mean

*Why you must plan your database
application

* Advice on what offers value to
your users

» Ten“gotchas” that will mess up
your code

Go to Dummies.come®
for videos, step-by-step examples,
how-to articles, or to shop!

For Dummies®
A Branded Imprint of

F)WILEY
$29.99 US /$35.99 CN / £21.99 UK

ISBN 978-0-470-52758-0

“ 52999

9780470527580

	PHP & MySQL® For Dummies,® 4th Edition
	About the Author
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You’re Not To Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Developing a Web Database Application Using PHP and MySQL
	Chapter 1: Introduction to PHP and MySQL
	What Is a Web Database Application?
	MySQL, My Database
	PHP, a Data Mover
	MySQL and PHP, the Perfect Pair
	Keeping Up with PHP
and MySQL Changes

	Chapter 2: Setting Up Your Work Environment
	Anatomy of a Web Site
	Building a Web Site
	Deciding Where to Publish
Your Web Site
	Deciding Where to Develop
Your Web Site
	Setting Up Your Web Site
	Setting Up Your Development Environment
	Testing, Testing, 1,2,3

	Chapter 3: Developing a Web
	Planning Your Web Database Application
	Presenting the Two Running
Examples in This Book
	Designing the Database
	Designing the Sample Databases
	Types of Data
	Taking a Look at the Sample
Database Designs
	Developing the Application

	Part II: MySQL Database
	Chapter 4: Building the Database
	Communicating with MySQL
	Building a Database
	Moving Data Into and
Out of the Database

	Chapter 5: Protecting Your Data
	Controlling Access to Your Data
	Setting Up MySQL Accounts
	Backing Up Your Data
	Restoring Your Data

	Part III: PHP
	Chapter 6: General PHP
	Adding a PHP Section to an HTML Page
	Writing PHP Statements
	Using PHP Variables
	Using PHP Constants
	Working with Numbers
	Working with Character Strings
	Working with Dates and Times
	Comparing Values
	Joining Comparisons with and/or/xor
	Adding Comments to Your Program

	Chapter 7: PHP Building Blocks for Programs
	Useful Simple Statements
	Using PHP Arrays
	Useful Conditional Statements
	Using Loops
	Using Functions

	Chapter 8: Data In, Data Out
	PHP and MySQL Functions
	Making a Connection
	Getting Information from a Database
	Getting Information from the User
	Putting Information into a Database
	Getting Information in Files

	Chapter 9: Moving Information from One
	Moving Your User from
One Page to Another
	Moving Information from Page to Page
	Using PHP Sessions

	Part IV: Applications
	Chapter 10: Putting It All Together
	Organizing the Application
	Keeping It Private
	Completing Your Documentation

	Chapter 11: Building an Online Catalog
	Designing the Application
	Building the Database
	Designing the Look and Feel
	Writing the Programs

	Chapter 12: Building a Members Only Web Site
	Designing the Application
	Building the Database
	Designing the Look and Feel
	Writing the Programs
	Planning for Growth

	Part V: The Part of Tens
	Chapter 13: Ten Things You Might Want
	Communicate with MySQL
	Send E-Mail
	Use PHP Sessions
	Stop Your Program
	Handle Arrays
	Check for Variables
	Format Values
	Compare Strings to Patterns
	Find Out about Strings
	Change the Case of Strings

	Chapter 14: Ten PHP Gotchas
	Missing Semicolons
	Not Enough Equal Signs
	Misspelled Variable Names
	Missing Dollar Signs
	Troubling Quotes
	Invisible Output
	Numbered Arrays
	Including PHP Statements
	Missing Mates
	Confusing Parentheses and Brackets

	Part VI: Appendixes
	Appendix A: Installing XAMPP on Windows
	Installing XAMPP on Mac
	Using XAMPP

	Appendix B: Changing Settings in php.ini
	Changing Settings with an .htaccess File
	Changing Settings with PHP Statements

	Index

E—
PHP&MysalL

