
by Janet Valade

PHP & MySQL®

FOR

DUMmIES
‰

3RD EDITION

01_096004 ffirs.qxp 10/11/06 9:17 PM Page iii

File Attachment
C1.jpg

01_096004 ffirs.qxp 10/11/06 9:17 PM Page ii

PHP & MySQL®

FOR

DUMmIES
‰

3RD EDITION

01_096004 ffirs.qxp 10/11/06 9:17 PM Page i

01_096004 ffirs.qxp 10/11/06 9:17 PM Page ii

by Janet Valade

PHP & MySQL®

FOR

DUMmIES
‰

3RD EDITION

01_096004 ffirs.qxp 10/11/06 9:17 PM Page iii

PHP & MySQL® For Dummies®, 3rd Edition
Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com,
and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and other countries, and may not be used without written permission.
MySQL is a registered trademark of MySQL. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDER-
STANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COM-
PETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2006934828

ISBN-13: 978-0-470-09600-0

ISBN-10: 0-470-09600-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

3O/TQ/RQ/QW/IN

01_096004 ffirs.qxp 10/11/06 9:17 PM Page iv

www.wiley.com

About the Author
Janet Valade is the author of PHP 5 For Dummies, PHP & MySQL Everyday
Apps For Dummies, and PHP & MySQL: Your visual blueprint for creating
dynamic, database-driven Web sites, as well as the author of first and second
editions of this book. In addition, Janet is the author of Spring into Linux and
a coauthor of Mastering Visually Dreamweaver 8 and Flash 8.

Janet has twenty years of experience in the computing field. Most recently, she
worked as a Web designer and programmer in an engineering firm for four
years. Before that, Janet worked for thirteen years in a university environ-
ment, where she was a systems analyst. During her tenure, she supervised
the installation and operation of computing resources, designed and devel-
oped a data archive, supported faculty and students in their computer usage,
wrote numerous technical papers, and developed and presented seminars on
a variety of technology topics.

To keep in touch, see janet.valade.com.

01_096004 ffirs.qxp 10/11/06 9:17 PM Page v

01_096004 ffirs.qxp 10/11/06 9:17 PM Page vi

Author’s Acknowledgments
First, I want to express my appreciation to the entire open source community.
Without those who give their time and talent, there would be no cool PHP
and MySQL for me to write about. Furthermore, I never would have learned
this software without the lists, where people generously spend their time
answering foolish questions from beginners.

I want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything. My thanks to my friends
Art, Dick, and Marge for responding to my last-minute call for help. I particu-
larly want to thank Sammy, Dude, Spike, Lucky, Upanishad, Sadie, and E. B.
for their important contributions.

And, of course, I want to thank the professionals who make it all possible.
Without my agent and the people at Wiley, this book would not exist.
Because they all do their jobs so well, I can contribute my part to this
joint project.

01_096004 ffirs.qxp 10/11/06 9:17 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Susan Pink
(Previous Edition: Pat O’Brien)

Acquisitions Editor:

Copy Editor: Susan Pink
(Previous Edition: Teresa Artman)

Technical Editor: John Gosney

Editorial Manager: Jodi Jensen

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone,
Travis Silvers

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager: Laura VanWinkle

Media Development Associate Producer:
Richard Graves

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Erin Smith

Layout and Graphics: Lavonne Cook,
Clint Lanhen, Barry Offringa,
Lynsey Osborn, Heather Ryan

Proofreaders: Jessica Kramer, Techbooks

Indexer: Techbooks

Special Help
Heather Ryan

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_096004 ffirs.qxp 10/11/06 9:17 PM Page viii

www.dummies.com

Contents at a Glance
Introduction ...1

Part I: Developing a Web Database Application
Using PHP and MySQL ...7
Chapter 1: Introduction to PHP and MySQL ...9
Chapter 2: Setting Up Your Work Environment ..21
Chapter 3: Developing a Web Database Application ...37

Part II: MySQL Database ..63
Chapter 4: Building the Database...65
Chapter 5: Protecting Your Data...93

Part III: PHP..111
Chapter 6: General PHP ...113
Chapter 7: PHP Building Blocks for Programs..143
Chapter 8: Data In, Data Out ...187
Chapter 9: Moving Information from One Web Page to the Next255

Part IV: Applications ..275
Chapter 10: Putting It All Together...277
Chapter 11: Building an Online Catalog...289
Chapter 12: Building a Members Only Web Site ...327

Part V: The Part of Tens ..357
Chapter 13: Ten Things You Might Want to Do Using PHP Functions359
Chapter 14: Ten PHP Gotchas...367

Part VI: Appendixes ..373
Appendix A: Installing MySQL ..375
Appendix B: Installing PHP..391
Appendix C: Installing and Configuring Apache...407

Index ...419

02_096004 ftoc.qxp 10/27/06 11:22 AM Page ix

02_096004 ftoc.qxp 10/11/06 9:16 PM Page x

Table of Contents
Introduction..1

About This Book...1
Conventions Used in This Book ...2
What You’re Not To Read ..3
Foolish Assumptions ...3
How This Book Is Organized...4

Part I: Developing a Web Database Application
Using PHP and MySQL..4

Part II: MySQL Database ..4
Part III: PHP ...4
Part IV: Applications ..4
Part V: The Part of Tens...5
Part VI: Appendixes..5

Icons Used in This Book..5
Where to Go from Here..5

Part I: Developing a Web Database Application
Using PHP and MySQL ..7

Chapter 1: Introduction to PHP and MySQL .9
What Is a Web Database Application? ...10

The database...11
The application: Moving data into and out of the database...........11

MySQL, My Database ...12
Advantages of MySQL ..13
How MySQL works ...14
Communicating with the MySQL server..15

PHP, a Data Mover..15
Advantages of PHP ...16
How PHP works ..16

MySQL and PHP, the Perfect Pair ...18
Advantages of the relationship...18
How MySQL and PHP work together ...18

Keeping Up with PHP and MySQL Changes ..19

Chapter 2: Setting Up Your Work Environment 21
The Required Tools..21
Finding a Place to Work...22

A company Web site...22
A Web hosting company..24
Setting up and running a Web site on your local computer26

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xi

Testing, Testing, 1, 2, 3 ..32
Understanding PHP/MySQL functions...32
Testing PHP ...33
Testing MySQL ..35

Chapter 3: Developing a Web Database Application 37
Planning Your Web Database Application...37

Identifying what you want from the application38
Taking the user into consideration ..40
Making the site easy to use ...41
Leaving room for expansion ...41
Writing it down ...42

Presenting the Two Running Examples in This Book42
Stuff for Sale ..42
Members Only...43

Designing the Database ...44
Choosing the data ..44
Organizing the data ..46

Designing the Sample Databases ...50
Pet Catalog design process ...51
Members Only design process ...53

Types of Data ..56
Character data ..56
Numerical data ...56
Date and time data ...57
Enumeration data ...57
MySQL data type names..57
Writing it down ...59

Taking a Look at the Sample Database Designs ...59
Stuff for Sale database tables..59
Members Only database tables ..60

Developing the Application ..61
Building the database ..62
Writing the programs...62

Part II: MySQL Database ...63

Chapter 4: Building the Database .65
Communicating with MySQL ..65

Building SQL queries..66
Sending SQL queries ..67

Building a Database ...73
Creating a new database..73
Deleting a database ..74
Adding tables to a database..74
Changing the database structure ...76

PHP and MySQL For Dummies, 3rd Edition xii

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xii

Moving Data Into and Out of the Database...77
Adding information ..78
Retrieving information...82
Combining information from tables...87
Updating information...92
Removing information ...92

Chapter 5: Protecting Your Data .93
Controlling Access to Your Data ..93

Understanding account names and hostnames94
Finding out about passwords ...96
Taking a look at account permissions ...97

Setting Up MySQL Accounts ...98
Identifying what accounts currently exist.......................................100
Adding accounts...100
Adding and changing passwords ...101
Changing permissions ...102
Removing accounts and permissions..103

Backing Up Your Data ..104
Restoring Your Data...107
Upgrading MySQL ..110

Part III: PHP ..111

Chapter 6: General PHP .113
Adding a PHP Section to an HTML Page ...113
Writing PHP Statements ..116
Using PHP Variables...119

Naming a variable...119
Creating and assigning values to variables.....................................119
Dealing with notices...121

Using PHP Constants ...122
Working with Numbers..123
Working with Character Strings ...125

Single-quoted strings versus double-quoted strings126
Joining strings...127

Working with Dates and Times...128
Setting local time..128
Formatting a date ...129
Storing a timestamp in a variable...130
Using dates with MySQL..131

Comparing Values ..132
Making simple comparisons ...133
Matching character strings to patterns...135

Joining Comparisons with and/or/xor...139
Adding Comments to Your Program..141

xiiiTable of Contents

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xiii

Chapter 7: PHP Building Blocks for Programs143
Useful Simple Statements..144

Using echo statements ..145
Using assignment statements ...148
Using increment statements ...149
Using exit ...150
Using function calls..150

Using PHP Arrays ...151
Creating arrays ...151
Viewing arrays ..152
Removing values from arrays ...154
Sorting arrays ...154
Getting values from arrays..156
Walking through an array ..158
Multidimensional arrays..160

Useful Conditional Statements ...163
Using if statements...164
Using switch statements ...167

Using Loops ..168
Using for loops..169
Using while loops ...170
Using do..while loops...172
Infinite loops ...174
Breaking out of a loop..176

Using Functions..178
Using variables in functions..180
Passing values between a function and the main program181
Using built-in functions..185

Chapter 8: Data In, Data Out .187
PHP and MySQL Functions ...187
Making a Connection ...189

Connecting to the MySQL server ...190
Selecting the right database ...191
Sending SQL queries ..194

Getting Information from a Database ..195
Sending a SELECT query ...196
Getting and using the data ..196
Using functions to get data ...202

Getting Information from the User...206
Using HTML forms..207
Making forms dynamic ..211
Using the information from the form...224
Checking the information..226
Giving users a choice with multiple submit buttons236

Putting Information into a Database..238
Preparing the data..238
Adding new information ..242
Updating existing information ..247

PHP and MySQL For Dummies, 3rd Edition xiv

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xiv

Getting Information in Files ..250
Using a form to upload the file ...250
Processing the uploaded file...251
Putting it all together ...252

Chapter 9: Moving Information from One Web Page to the Next . . .255
Moving Your User from One Page to Another ..256
Moving Information from Page to Page ...259

Adding information to the URL...260
Storing information via cookies..264
Passing information with HTML forms..267

Using PHP Sessions..267
Opening sessions..268
Using PHP session variables ...269
Sessions without cookies ..271
Making sessions private ..273
Closing PHP sessions ...274

Part IV: Applications ...275

Chapter 10: Putting It All Together .277
Organizing the Application ...277

Organizing at the application level ..278
Organizing at the program level ...279

Keeping It Private...285
Ensure the security of the computer ...285
Don’t let the Web server display filenames286
Hide things ..286
Don’t trust information from users ..287
Use a secure Web server ...287

Completing Your Documentation...288

Chapter 11: Building an Online Catalog .289
Designing the Application...289

Showing pets to the customers ..290
Adding pets to the catalog ..291

Building the Database..291
Building the Pet table...292
Building the PetType table..295
Building the Color table...296
Adding data to the database...297

Designing the Look and Feel ...299
Showing pets to the customers ..299
Adding pets to the catalog ..303

Writing the Programs...306
Showing pets to the customers ..306
Adding pets to the catalog ..312

xvTable of Contents

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xv

Chapter 12: Building a Members Only Web Site 327
Designing the Application...328
Building the Database..328

Building the Member table..329
Building the Login table...332
Adding data to the database...333

Designing the Look and Feel ...333
Storefront page ...334
Login page ...334
New Member Welcome page...336
Members Only section...336

Writing the Programs...337
Writing PetShopFront...338
Writing Login...340
Writing New_member ..352
Writing the Members Only section ..354

Planning for Growth...355

Part V: The Part of Tens ...357

Chapter 13: Ten Things You Might Want
to Do Using PHP Functions .359

Communicate with MySQL..359
Send E-Mail..360
Use PHP Sessions ...362
Stop Your Program...362
Handle Arrays...362
Check for Variables ..363
Format Values ...363
Compare Strings to Patterns...365
Find Out about Strings...365
Change the Case of Strings ...366

Chapter 14: Ten PHP Gotchas .367
Missing Semicolons..367
Not Enough Equal Signs ..368
Misspelled Variable Names ...368
Missing Dollar Signs...368
Troubling Quotes ...369
Invisible Output..369
Numbered Arrays...370
Including PHP Statements...371
Missing Mates ...371
Confusing Parentheses and Brackets ..372

PHP and MySQL For Dummies, 3rd Edition xvi

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xvi

Part VI: Appendixes...373

Appendix A: Installing MySQL .375
On Windows..375

Downloading and installing MySQL ...375
Running the MySQL configuration wizard378
Starting and stopping the MySQL server ..380

On Linux and Unix..381
Using RPM (Linux only) ...382
From source files ..383

On Mac...386
Verifying a Downloaded File ...388
Configuring MySQL ..389

Appendix B: Installing PHP .391
Installing PHP on Unix, Linux, or Mac with Apache391

On Unix and Linux ..391
On Mac OS X ...394
Installation options ..398
Configuring Apache for PHP ...399

Installing PHP on Windows ...400
Configuring your Web server for PHP..402

Configuring PHP ...404

Appendix C: Installing and Configuring Apache 407
Selecting a Version of Apache ..407
Installing Apache on Linux and Unix ...408

Before installing..408
Installing ..408
Starting and stopping Apache ..410
Getting information from Apache...412

Installing Apache on Windows ...412
Installing ..412
Starting and stopping Apache ..414
Getting information from Apache...415

Installing Apache on Mac ..416
Configuring Apache ...417

Changing settings ...417
Changing the location of your Web space.......................................418
Changing the port number..418

Index..419

xviiTable of Contents

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xvii

PHP and MySQL For Dummies, 3rd Edition xviii

02_096004 ftoc.qxp 10/11/06 9:16 PM Page xviii

Introduction

Welcome to the exciting world of Web database applications. This book
provides the basic techniques to build any Web database application,

but I certainly recommend that you start with a simple one. In this book,
I develop two sample applications, both chosen to represent two types of
applications frequently encountered on the Web: product catalogs and
customer- or member-only sites that require the user to register and log in
with a password. The sample applications are complicated enough to require
more than one program and to use a variety of data and data manipulation
techniques, yet simple enough to be easily understood and adapted to a vari-
ety of Web sites. After you master the simple applications, you can expand
the basic design to include all the functionality that you can think of.

About This Book
Think of this book as your friendly guide to building a Web database applica-
tion. This book is designed as a reference, not as a tutorial, so you don’t have
to read it from cover to cover. You can start reading at any point — in
Chapter 1, Chapter 9, wherever. I divide the task of building a Web database
application into manageable chunks of information, so check out the table of
contents and locate the topic that you’re interested in. If you need to know
information from another chapter to understand the chapter you’re reading,
I reference that chapter number.

Here’s a sample of the topics I discuss:

� Building and using a MySQL database

� Adding PHP to HTML files

� Using the features of the PHP language

� Using HTML forms to collect information from users

� Showing information from a database in a Web page

� Storing information in a database

03_096004 intro.qxp 10/11/06 9:16 PM Page 1

Conventions Used in This Book
This book includes many examples of PHP programming statements, MySQL
statements, and HTML. Such statements are shown in a different typeface,
which looks like the following line:

A PHP program statement

In addition, snippets or key terms of PHP, MySQL, and HTML are sometimes
shown in the text of a paragraph. When they are, the special text in the para-
graph is also shown in the example typeface, different than the paragraph
typeface. For instance, this text is an example of a PHP statement within
the paragraph text.

In examples, you will often see some words in italic. Italicized words are gen-
eral types that need to be replaced with the specific name appropriate for
your data. For instance, when you see an example like the following:

SELECT field1,field2 FROM tablename

field1, field2, and tablename need to be replaced with real names
because they are in italic. When you use this statement in your program,
you might use it in the following form:

SELECT name,age FROM Customer

In addition, you might see three dots (. . .) following a list in an example line.
You don’t type the three dots. They just mean that you can have as many
items in the list as you want. For instance, when you see

SELECT field1,field2,... FROM tablename

the three dots just mean that your list of fields can be longer than two.
It means you can go on with field3, field4, and so forth. For example,
your statement might be

SELECT name,age,height,shoesize FROM Customer

From time to time, you’ll also see something in bold. Pay attention to these;
they indicate something I want you to see or something you need to type.

2 PHP & MySQL For Dummies, 3rd Edition

03_096004 intro.qxp 10/11/06 9:16 PM Page 2

What You’re Not To Read
Some information in this book is flagged as Technical Stuff with an icon off to
the left. Sometimes you’ll see this technical stuff in a sidebar: Consider it
information that you don’t need to read to create a Web database application.
This extra information might contain a further look under the hood or describe
a technique that requires more technical knowledge to execute. Some readers
may be interested in the extra technical information or techniques, but feel
free to ignore them if you don’t find them interesting or useful.

Foolish Assumptions
To write a focused book rather than an encyclopedia, I needed to assume
some background for you, the reader. I assumed that you know HTML and
have created Web sites with HTML. Consequently, although I use HTML in
many examples, I do not explain the HTML. If you don’t have an HTML back-
ground, this book will be more difficult to use. I suggest that you read an
HTML book — such as HTML 4 For Dummies, 4th Edition, by Ed Tittel and
Natanya Pitts (Wiley), or HTML 4 For Dummies Quick Reference, 2nd Edition,
by Deborah S. Ray and Eric J. Ray (Wiley) — and build some practice Web
pages before you start this book. In particular, some background in HTML
forms and tables is useful. However, if you’re the impatient type, I won’t tell
you it’s impossible to proceed without knowing HTML. You may be able to
glean enough HTML from this book to build your particular Web site. If you
choose to proceed without knowing HTML, I suggest that you have an HTML
book by your side to assist you.

If you are proceeding without any experience with Web pages, you might not
know some required basics. You must know how to create and save plain text
files with an editor such as Notepad or save the file as plain text from your
word processor (not in the word processor format). You also must know
where to put the text files containing the code (HTML or PHP) for your Web
pages so that the pages are available to all users with access to your Web
site, and you must know how to move the files to the appropriate location.

You do not need to know how to design or create databases or how to program.
All the information that you need to know about databases and programming
is included in this book.

3Introduction

03_096004 intro.qxp 10/11/06 9:16 PM Page 3

How This Book Is Organized
This book is divided into six parts, with several chapters in each part. The con-
tent ranges from an introduction to PHP and MySQL to installing to creating
and using databases to writing PHP programs.

Part I: Developing a Web Database
Application Using PHP and MySQL
Part I provides an overview of using PHP and MySQL to create a Web data-
base application. It describes and gives the advantages of PHP, of MySQL,
and of their use together. You find out how to get started, including what you
need, how to get access to PHP and MySQL, and how to test your software.
You then find out about the process of developing the application.

Part II: MySQL Database
In Part II you find out the details of working with MySQL databases. You
create a database, change a database, and move data into and out of a
database.

Part III: PHP
Part III provides the details of writing PHP programs that enable your Web
pages to insert new information, update existing information, or remove
information from a MySQL database. You find out how to use the PHP
features that are used for database interaction and forms processing.

Part IV: Applications
Part IV describes the Web database application as a whole. You find out how
to organize the PHP programs into a functioning application that interacts
with the database. Two complete sample applications are provided,
described, and explained.

4 PHP & MySQL For Dummies, 3rd Edition

03_096004 intro.qxp 10/11/06 9:16 PM Page 4

Part V: The Part of Tens
Part V provides some useful lists of important things to do and not to do
when developing a Web database application.

Part VI: Appendixes
The final part, Part VI, provides instructions for installing PHP and MySQL for
those who need to install the software themselves. Appendix C discusses the
installation of the Apache Web server for those who need to install and
administer the Web server themselves.

Icons Used in This Book
This icon is a sticky note of sorts, highlighting information that’s worth com-
mitting to memory.

This icon flags information and techniques that are more technical than other
sections of the book. The information here can be interesting and helpful, but
you don’t need to understand it to use the information in the book.

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

You should always read warnings. Warnings emphasize actions that you must
take or must avoid to prevent dire consequences.

Where to Go from Here
This book is organized in the order in which things need to be done. If you’re
a newbie, you probably need to start with Part I, which describes how to get
started, including how to design the pieces of your application and how the
pieces will interact. When implementing your application, you need to create

5Introduction

03_096004 intro.qxp 10/11/06 9:16 PM Page 5

the MySQL database first, so I discuss MySQL before PHP. After you understand
the details of MySQL and PHP, you need to put them together into a complete
application, which I describe in Part IV. If you’re already familiar with any
part of the book, you can go directly to the part that you need. For instance,
if you’re familiar with database design, you can go directly to Part II, which
describes how to implement the design in MySQL. Or if you know MySQL,
you can just read about PHP in Part III.

6 PHP & MySQL For Dummies, 3rd Edition

03_096004 intro.qxp 10/11/06 9:16 PM Page 6

Part I
Developing a

Web Database
Application Using
PHP and MySQL

04_096004 pt01.qxp 10/11/06 9:16 PM Page 7

In this part . . .

In this part, I provide an overview. I describe PHP and
MySQL, how each one works, and how they work

together to make your Web database application possible.
After describing your tools, I show you how to set up your
working environment. I present your options for accessing
PHP and MySQL and point out what to look for in each
environment.

After describing your tools and your options for your
development environment, I provide an overview of the
development process. I discuss planning, design, and
building your application.

04_096004 pt01.qxp 10/11/06 9:16 PM Page 8

Chapter 1

Introduction to PHP and MySQL
In This Chapter
� Finding out what a Web database application is

� Discovering how MySQL works

� Taking a look at PHP

� Finding out how PHP and MySQL work together

So you need to develop an interactive Web site. Perhaps your boss just
put you in charge of the company’s online product catalog. Or you want

to develop your own Web business. Or your sister wants to sell her paintings
online. Or you volunteered to put up a Web site open only to members of
your circus acrobats’ association. Whatever your motivation might be, you
can see that the application needs to store information (such as information
about products or member passwords), thus requiring a database. You can
see also that the application needs to interact dynamically with the user; for
instance, the user selects a product to view or enters membership informa-
tion. This type of Web site is a Web database application.

I assume that you’ve created static Web pages before, using HTML (HyperText
Markup Language), but creating an interactive Web site is a new challenge, as
is designing a database. You asked three computer gurus you know what you
should do. They said a lot of things you didn’t understand, but among the
technical jargon, you heard “quick” and “easy” and “free” mentioned in the
same sentence as PHP and MySQL. Now you want to know more about using
PHP and MySQL to develop the Web site that you need.

PHP and MySQL work together very well; it’s a dynamic partnership. In this
chapter, you find out the advantages of each, how each one works, and how
they work together to produce a dynamic Web database application.

05_096004 ch01.qxp 10/11/06 9:16 PM Page 9

What Is a Web Database Application?
An application is a program or a group of programs designed for use by an
end user (for example, customers, members, or circus acrobats). If the end
user interacts with the application via a Web browser, the application is a
Web based or Web application. If the Web application requires the long-term
storage of information using a database, it is a Web database application.
This book provides you with the information that you need to develop a
Web database application that can be accessed with Web browsers such as
Internet Explorer and Netscape.

A Web database application is designed to help a user accomplish a task.
It can be a simple application that displays information in a browser window
(for example, current job openings when the user selects a job title) or a
complicated program with extended functionality (for example, the book-
ordering application at Amazon.com or the bidding application at eBay).

A Web database application consists of just two pieces:

� Database: The database is the long-term memory of your Web database
application. The application can’t fulfill its purpose without the database.
However, the database alone is not enough.

� Application: The application piece is the program or group of programs
that performs the tasks. Programs create the display that the user sees in
the browser window; they make your application interactive by accepting
and processing information that the user types in the browser window;
and they store information in the database and get information out of the
database. (The database is useless unless you can move data in and out.)

The Web pages that you’ve previously created with HTML alone are static,
meaning the user can’t interact with the Web page. All users see the same
Web page. Dynamic Web pages, on the other hand, allow the user to interact
with the Web page. Different users might see different Web pages. For instance,
one user looking at a furniture store’s online product catalog might choose to
view information about the sofas, whereas another user might choose to view
information about coffee tables. To create dynamic Web pages, you must use
another language in addition to HTML.

One language widely used to make Web pages dynamic is JavaScript. JavaScript
is useful for several purposes, such as mouse-overs (for example, to highlight
a navigation button when the user moves the mouse pointer over it) or accept-
ing and validating information that users type into a Web form. However, it’s
not useful for interacting with a database. You wouldn’t use JavaScript to move
the information from the Web form into a database. PHP, however, is a language
particularly well suited to interacting with databases. PHP can accept and
validate the information that users type into a Web form and can also move the
information into a database. The programs in this book are written with PHP.

10 Part I: Developing a Web Database Application Using PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 10

The database
The core of a Web database application is the database, which is the long-
term memory (I hope more efficient than my long-term memory) that stores
information for the application. A database is an electronic file cabinet that
stores information in an organized manner so that you can find it when you
need it. After all, storing information is pointless if you can’t find it. A database
can be small, with a simple structure — for example, a database containing
the titles and authors’ names of all the books that you own. Or a database
can be huge, with an extremely complex structure — such as the database
that Amazon.com has to hold all its information.

The information that you store in the database comes in many varieties.
A company’s online catalog requires a database to store information about all
the company’s products. A membership Web site requires a database to store
information about members. An employment Web site requires a database
(or perhaps two databases) to store information about job openings and
information from résumés. The information that you plan to store could be
similar to information that’s stored by Web sites all over the Internet — or
information that’s unique to your application.

Technically, the term database refers to the file or group of files that holds the
actual data. The data is accessed by using a set of programs called a DBMS
(Database Management System). Almost all DBMSs these days are RDBMSs
(Relational Database Management Systems), in which data is organized and
stored in a set of related tables.

In this book, MySQL is the RDBMS used because it is particularly well suited
for Web sites. MySQL and its advantages are discussed in the section, “MySQL,
My Database,” later in this chapter. You can find out how to organize and
design a MySQL database in Chapter 3.

The application: Moving data
into and out of the database
For a database to be useful, you need to be able to move data into and out
of it. Programs are your tools for this because they interact with the database
to store and retrieve data. A program connects to the database and makes a
request: “Take this data and store it in the specified location.” Another program
makes the request: “Find the specified data and give it to me.” The applica-
tion programs that interact with the database run when the user interacts
with the Web page. For instance, when the user clicks the submit button after
filling in a Web form, a program processes the information in the form and
stores it in a database.

11Chapter 1: Introduction to PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 11

MySQL, My Database
MySQL is a fast, easy-to-use RDBMS used on many Web sites. Speed was the
developers’ main focus from the beginning. In the interest of speed, they made
the decision to offer fewer features than their major competitors (such as
Oracle and Sybase). However, even though MySQL is less full-featured than
its commercial competitors, it has all the features needed by the majority of
database developers. It’s easier to install and use than its commercial com-
petitors, and the difference in price is strongly in MySQL’s favor.

MySQL is developed, marketed, and supported by MySQL AB, which is a
Swedish company. The company licenses it in two ways:

� Open source software: MySQL is available through the GNU GPL
(General Public License). MySQL provides two versions of the open
source software:

12 Part I: Developing a Web Database Application Using PHP and MySQL

E-mail discussion lists
Good technical support is available from e-mail
discussion lists, which are groups of people dis-
cussing specific topics through e-mail. E-mail
lists are available for pretty much any subject you
can think of: Powerball, ancient philosophy, cook-
ing, the Beatles, Scottish terriers, politics, and so
on. The list manager maintains a distribution list
of e-mail addresses for anyone who wants to join
the discussion. When you send a message to the
discussion list, your message is sent to the entire
list so that everyone can see it. Thus, the discus-
sion is a group effort, and anyone can respond
to any message that interests him or her.

E-mail discussion lists are supported by various
sponsors. Any individual or organization can run
a list. Most software vendors run one or more
lists devoted to their software. Universities run
many lists for educational subjects. In addition,
some Web sites manage discussion lists, such
as Yahoo! Groups and Topica. Users can create
a new list or join an existing list through the Web
application.

Software-related e-mail lists are a treasure
trove of technical support. Anywhere from a
hundred to several thousand users of the soft-
ware subscribe to the list. Often the developers,
programmers, and technical support staff for
the software vendor are on the list. You are
unlikely to be the first person to ever experience
your problem. Whatever your question or prob-
lem, someone on the list probably knows the
answer or the solution. When you post a ques-
tion to an e-mail list, the answer usually appears
in your inbox within minutes. In addition, most
lists maintain an archive of previous discus-
sions so that you can search for answers. When
you’re new to any software, you can find out a
great deal simply by joining the discussion list
and reading the messages for a few days.

PHP and MySQL have e-mail discussion lists.
Actually, each has several discussion lists for spe-
cial topics, such as databases and PHP. You can
find the names of the mailing lists and instructions
for joining them on the PHP and MySQL Web sites.

05_096004 ch01.qxp 10/11/06 9:16 PM Page 12

• MySQL Community Edition: A freely downloadable, open source
edition of MySQL, released early and often with the most advanced
features. Anyone who can meet the requirements of the GPL can
use the software for free. If you’re using MySQL as a database on a
Web site (the subject of this book), you can use MySQL for free,
even if you’re making money with your Web site.

• MySQL Network: An enterprise-grade set of software and services
available for a monthly subscription fee. MySQL Network provides
certified software, thoroughly tested and optimized. Services
include technical support, regular updates, access to a knowledge
base of hundreds of technical articles, and other services useful
to a large business. The subscription is available at four levels,
from the Basic level, with a limit of two incidents, no phone
support, and a two-day response time, to Platinum support,
with unlimited incidents, 24/7 phone support, and a 30-minute
response time.

� Commercial license: MySQL is available with a commercial license for
those who prefer it to the GPL. If a developer wants to use MySQL as part
of a new software product and wants to sell the new product rather than
release it under the GPL, the developer needs to purchase a commercial
license.

Finding technical support for MySQL Community Edition is not a problem.
You can join one of several e-mail discussion lists offered on the MySQL Web
site at www.mysql.com. You can even search the e-mail list archives, which
contain a large archive of MySQL questions and answers.

Advantages of MySQL
MySQL is a popular database with Web developers. Its speed and small size
make it ideal for a Web site. Add to that the fact that it’s open source, which
means free, and you have the foundation of its popularity. Here is a rundown
of some of its advantages:

� It’s fast. The main goal of the folks who developed MySQL was speed.
Thus, the software was designed from the beginning with speed in mind.

� It’s inexpensive. MySQL is free under the open source GPL license, and
the fee for a commercial license is reasonable.

� It’s easy to use. You can build and interact with a MySQL database by
using a few simple statements in the SQL language, which is the standard
language for communicating with RDBMSs. Check out Chapter 4 for the
lowdown on the SQL language.

13Chapter 1: Introduction to PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 13

� It can run on many operating systems. MySQL runs on many operating
systems — Windows, Linux, Mac OS, most varieties of Unix (including
Solaris and AIX), FreeBSD, OS/2, Irix, and others.

� Technical support is widely available. A large base of users provides free
support through mailing lists. The MySQL developers also participate in
the e-mail lists. You can also purchase technical support from MySQL AB
for a small fee.

� It’s secure. MySQL’s flexible system of authorization allows some or all
database privileges (such as the privilege to create a database or delete
data) to specific users or groups of users. Passwords are encrypted.

� It supports large databases. MySQL handles databases up to 50 million
rows or more. The default file size limit for a table is 4GB, but you can
increase this (if your operating system can handle it) to a theoretical
limit of 8 million terabytes (TB).

� It’s customizable. The open source GPL license allows programmers to
modify the MySQL software to fit their own specific environments.

How MySQL works
The MySQL software consists of the MySQL server, several utility programs
that assist in the administration of MySQL databases, and some supporting
software that the MySQL server needs (but you don’t need to know about).
The heart of the system is the MySQL server.

The MySQL server is the manager of the database system. It handles all your
database instructions. For instance, if you want to create a new database, you
send a message to the MySQL server that says “create a new database and
call it newdata.” The MySQL server then creates a subdirectory in its data
directory, names the new subdirectory newdata, and puts the necessary
files with the required format into the newdata subdirectory. In the same
manner, to add data to that database, you send a message to the MySQL
server, giving it the data and telling it where you want the data to be added.
You find out how to write and send messages to MySQL in Part II.

Before you can pass instructions to the MySQL server, it must be running
and waiting for requests. The MySQL server is usually set up so that it starts
when the computer starts and continues running all the time. This is the
usual setup for a Web site. However, it’s not necessary to set it up to start
when the computer starts. If you need to, you can start it manually whenever
you want to access a database. When it’s running, the MySQL server listens
continuously for messages that are directed to it.

14 Part I: Developing a Web Database Application Using PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 14

Communicating with the MySQL server
All your interaction with the database is accomplished by passing messages
to the MySQL server. You can send messages to the MySQL server several
ways, but this book focuses on sending messages using PHP. The PHP soft-
ware has specific statements that you use to send instructions to the MySQL
server.

The MySQL server must be able to understand the instructions that you send
it. You communicate by using SQL (Structured Query Language), which is a
standard language understood by many RDBMSs. The MySQL server under-
stands SQL. PHP doesn’t understand SQL, but it doesn’t need to: PHP just
establishes a connection with the MySQL server and sends the SQL message
over the connection. The MySQL server interprets the SQL message and fol-
lows the instructions. The MySQL server sends a return message, stating its
status and what it did (or reporting an error if it was unable to understand or
follow the instructions). For the lowdown on how to write and send SQL mes-
sages to MySQL, check out Part II.

PHP, a Data Mover
PHP, a scripting language designed specifically for use on the Web, is your
tool for creating dynamic Web pages. Rich in features that make Web design
and programming easier, PHP is in use on more than 20 million domains
(according to the Netcraft survey at www.php.net/usage.php). Its popu-
larity continues to grow, so it must be fulfilling its function pretty well.

PHP stands for PHP: HyperText Preprocessor. In its early development by a guy
named Rasmus Lerdorf, it was called Personal Home Page tools. When it
developed into a full-blown language, the name was changed to be more in
line with its expanded functionality.

The PHP language’s syntax is similar to the syntax of C, so if you have experi-
ence with C, you’ll be comfortable with PHP. PHP is actually simpler than C
because it doesn’t use some of the more difficult concepts of C. PHP also
doesn’t include the low-level programming capabilities of C because PHP is
designed to program Web sites and doesn’t require those capabilities.

PHP is particularly strong in its ability to interact with databases. PHP sup-
ports pretty much every database you’ve ever heard of (and some you
haven’t). PHP handles connecting to the database and communicating with it.
You don’t need to know the technical details for connecting to a database or

15Chapter 1: Introduction to PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 15

for exchanging messages with it. You tell PHP the name of the database and
where it is, and PHP handles the details. It connects to the database, passes
your instructions to the database, and returns the database response to you.

Technical support is available for PHP. You can join one of several e-mail dis-
cussion lists offered on the PHP Web site (www.php.net), including a list for
databases and PHP. In addition, a Web interface to the discussion lists is avail-
able at news.php.net, where you can browse or search the messages.

Advantages of PHP
The popularity of PHP is growing rapidly because of its many advantages:

� It’s fast. Because it is embedded in HTML code, the response time is
short.

� It’s inexpensive — free, in fact. PHP is proof that free lunches do exist
and that you can get more than you paid for.

� It’s easy to use. PHP contains many special features and functions
needed to create dynamic Web pages. The PHP language is designed to
be included easily in an HTML file.

� It can run on many operating systems. It runs on a variety of operating
systems — Windows, Linux, Mac OS, and most varieties of Unix.

� Technical support is widely available. A large base of users provides
free support through e-mail discussion lists.

� It’s secure. The user does not see the PHP code.

� It’s designed to support databases. PHP includes functionality designed
to interact with specific databases. It relieves you of the need to know
the technical details required to communicate with a database.

� It’s customizable. The open source license allows programmers to
modify the PHP software, adding or modifying features as needed to fit
their own specific environments.

How PHP works
PHP is an embedded scripting language when used in Web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose the
PHP language that you embed in your HTML file — the same way that you
would use other HTML tags. You create and edit Web pages containing PHP
the same way that you create and edit regular HTML pages.

16 Part I: Developing a Web Database Application Using PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 16

The PHP software works with the Web server. The Web server is the software
that delivers Web pages to the world. When you type a URL into your Web
browser, you’re sending a message to the Web server at that URL, asking it to
send you an HTML file. The Web server responds by sending the requested
file. Your browser reads the HTML file and displays the Web page. You also
request the Web server to send you a file when you click a link in a Web page.
In addition, the Web server processes a file when you click a Web page button
that submits a form.

When PHP is installed, the Web server is configured to expect certain file
extensions to contain PHP language statements. Often the extension is .php
or .phtml, but any extension can be used. When the Web server gets a
request for a file with the designated extension, it sends the HTML state-
ments as-is, but PHP statements are processed by the PHP software before
they’re sent to the requester.

When PHP language statements are processed, only the output is sent by
the Web server to the Web browser. The PHP language statements are not
included in the output sent to the browser, so the PHP code is secure and
transparent to the user. For instance, in this simple PHP statement:

<?php echo “<p>Hello World”; ?>

<?php is the PHP opening tag, and ?> is the closing tag. echo is a PHP instruc-
tion that tells PHP to output the upcoming text. The PHP software processes
the PHP statement and outputs this:

<p>Hello World

which is a regular HTML statement. This HTML statement is delivered to the
user’s browser. The browser interprets the statement as HTML code and dis-
plays a Web page with one paragraph — Hello World. The PHP statement is
not delivered to the browser, so the user never sees any PHP statements.
PHP and the Web server must work closely together.

PHP is not integrated with all Web servers but does work with many of the
popular Web servers. PHP is developed as a project of the Apache Software
Foundation — thus, it works best with Apache. PHP also works with Microsoft
IIS/PWS, iPlanet (formerly Netscape Enterprise Server), and others.

Although PHP works with several Web servers, it works best with Apache.
If you can select or influence the selection of the Web server used in your
organization, select Apache. By itself, Apache is a good choice. It is free, open
source, stable, and popular. It currently powers more than 60 percent of all
Web sites, according to the Web server survey at www.netcraft.com. It
runs on Windows, Linux, Mac OS, and most flavors of Unix.

17Chapter 1: Introduction to PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 17

MySQL and PHP, the Perfect Pair
MySQL and PHP are frequently used together. They are often called the
dynamic duo. MySQL provides the database part, and PHP provides the
application part of your Web database application.

Advantages of the relationship
MySQL and PHP as a pair have several advantages:

� They’re free. It’s hard to beat free for cost-effectiveness.

� They’re Web oriented. Both were designed specifically for use on Web
sites. Both have a set of features focused on building dynamic Web sites.

� They’re easy to use. Both were designed to get a Web site up quickly.

� They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic Web pages to
users.

� They communicate well with one another. PHP has built-in features
for communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

� A wide base of support is available for both. Both have large user
bases. Because they are often used as a pair, they often have the same
user base. Many people are available to help, including those on e-mail
discussion lists who have experience using MySQL and PHP together.

� They’re customizable. Both are open source, thus allowing program-
mers to modify the PHP and MySQL software to fit their own specific
environments.

How MySQL and PHP work together
PHP provides the application part, and MySQL provides the database part of
a Web database application. You use the PHP language to write the programs
that perform the application tasks. PHP can be used for simple tasks (such as
displaying a Web page) or for complicated tasks (such as accepting and veri-
fying data that a user typed into an HTML form). One of the tasks that your
application must do is move data into and out of the database — and PHP
has built-in features to use when writing programs that move data into and
out of a MySQL database.

18 Part I: Developing a Web Database Application Using PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 18

PHP statements are embedded in your HTML files with PHP tags. When the
task to be performed by the application requires storing or retrieving data,
you use specific PHP statements designed to interact with a MySQL database.
You use one PHP statement to connect to the correct database, telling PHP
where the database is located, its name, and the password needed to connect
to it. The database doesn’t need to be on the same machine as your Web site;
PHP can communicate with a database across a network. You use another
PHP statement to send an SQL message to MySQL, giving MySQL instructions
for the task you want to accomplish. MySQL returns a status message that
shows whether it successfully performed the task. If there was a problem, it
returns an error message. If your SQL message asked to retrieve some data,
MySQL sends the data that you asked for, and PHP stores it in a temporary
location where it is available to you.

You then use one or more PHP statements to complete the application task.
For instance, you can use PHP statements to display data that you retrieved.
Or you might use PHP statements to display a status message in the browser,
informing the user that the data was saved.

As an RDBMS, MySQL can store complex information. As a scripting language,
PHP can perform complicated manipulations of data, on either data that you
need to modify before saving it in the database or data that you retrieved from
the database and need to modify before displaying or using it for another
task. Together, PHP and MySQL can be used to build a sophisticated and
complicated Web database application.

Keeping Up with PHP and
MySQL Changes

PHP and MySQL are open source software. If you’ve used only software from
major software publishers — such as Microsoft, Macromedia, or Adobe — you’ll
find that open source software is an entirely different species. It’s developed
by a group of programmers who write the code in their spare time, for fun
and for free. There’s no corporate office.

Open source software changes frequently, rather than once every year or two
like commercial software does. It changes when the developers feel that it’s
ready. It also changes quickly in response to problems. When a serious problem
is found — such as a security hole — a new version that fixes the problem
can be released in days. You don’t receive glossy brochures or see splashy
magazine ads for a year before a new version is released. Thus, if you don’t
make the effort to stay informed, you could miss the release of a new version
or be unaware of a serious problem with your current version.

19Chapter 1: Introduction to PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 19

Visit the PHP and MySQL Web sites often. You need to know the information
that’s published there. Join the mailing lists, which often are high in traffic.
When you first get acquainted with PHP and MySQL, the large number of mail
messages on the discussion lists brings valuable information into your e-mail
box; you can pick up a lot by reading those messages. And soon, you might be
able to help others based on your own experience. At the very least, subscribe
to the announcement mailing list, which delivers e-mail only occasionally.
Any important problems or new versions are announced here. The e-mail
that you receive from the announcement list contains information you need
to know. So, right now, before you forget, hop over to the PHP and MySQL
Web sites and sign up for a list or two at www.php.net/mailing-lists.
php and lists.mysql.com.

You should be aware of some significant changes in previous PHP versions
because existing scripts that work fine on earlier versions could have prob-
lems when they’re run on a later version and vice versa. The following are
some changes that you should be aware of:

� Version 6.0.0: Removed configuration setting for register_globals.
Removed configuration setting for magic quotes. Removed the long
arrays, such as $HTTP_POST_VARS.

� Version 5.1.0: Added a configuration setting to set a local time zone.
If a time zone is not set, a notice is displayed.

� Version 5.0.0: Added support for MySQL 4.1 and later versions. Support
for MySQL is not included automatically; it must be included with an
option when PHP is installed. Also changed the filename of the PHP
interpreter used with a Web server from .php to .php-cgi.

� Version 4.3.1: Fixed a security problem in 4.3.0. It’s not wise to continue
to run a Web site using version 4.3.0 or earlier.

� Version 4.2.0: Changed the default setting for register_globals
to Off. Scripts running under previous versions might depend on
register_globals being set to On and could stop running with the
new setting. It’s best to change the coding of the script so that it runs
with register_globals set to Off.

� Version 4.1.0: Introduced superglobal arrays. Scripts written with the
superglobals won’t run in earlier versions. Prior to 4.1.0, you must use
old style arrays, such as $HTTP_POST_VARS.

20 Part I: Developing a Web Database Application Using PHP and MySQL

05_096004 ch01.qxp 10/11/06 9:16 PM Page 20

Chapter 2

Setting Up Your Work Environment
In This Chapter
� Accessing PHP and MySQL through company Web sites and Web hosting companies

� Building your own Web site from scratch

� Testing PHP and MySQL

After you decide to use PHP and MySQL, your first task is to get access to
them. A work setting already set up for Web application development

might be ready and waiting for you with all the tools that you need. On the
other hand, it might be part of your job to set up this work setting yourself.
Perhaps your job is to create an entire new Web site. In this chapter, I describe
the tools you need and how to get access to them.

The Required Tools
To put up your dynamic Web site, you need to have access to the following
three software tools:

� A Web server: The software that delivers your Web pages to the world

� MySQL: The RDBMS (Relational Database Management System) that will
store information for your Web database application

� PHP: The scripting language that you’ll use to write the programs that
provide the dynamic functionality for your Web site

I describe these three tools in detail in Chapter 1.

06_096004 ch02.qxp 10/11/06 9:18 PM Page 21

Finding a Place to Work
To create your dynamic Web pages, you need access to a Web site that pro-
vides your three software tools (see the preceding section). All Web sites
include a Web server, but not all Web sites provide MySQL and PHP. These are
the most common environments in which you can develop your Web site:

� A Web site put up by a company on its own computer: The company —
usually the company’s IT (Information Technology) department — installs
and administers the Web site software. Your job, for the purposes of this
book, is to program the Web site, either as an employee of the company
or as a contractor.

� A Web site hosted by a Web hosting company: The Web site is located
on the Web hosting company’s computer. The Web hosting company
installs and maintains the Web site software and provides space on its
computer where you can install the HTML (HyperText Markup Language)
files for a Web site.

� A Web site that doesn’t yet exist: You plan to install and maintain the
Web site software yourself. It could be a Web site of your own that you’re
building on your own computer, or it might be a Web site that you’re
installing for a client on the client’s computer.

How much you need to understand about the administration and operation
of the Web site software depends on the type of Web site access you have.
In the next few sections, I describe these environments in more detail and
explain how you gain access to PHP and MySQL.

A company Web site
When the Web site is run by the company, you don’t need to understand the
installation and administration of the Web site software at all. The company
is responsible for the operation of the Web site. In most cases, the Web site
already exists, and your job is to add to, modify, or redesign the existing Web
site. In a few cases, the company might be installing its first Web site, and
your job is to design the Web site. In either case, your responsibility is to
write and install the HTML files for the Web site. You are not responsible for
the operation of the Web site.

You access the Web site software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up to date.

If PHP or MySQL or both aren’t available on the company’s Web site, IT needs
to install them and make them available to you. PHP and MySQL have many
options, but IT might not understand the best options — and might have
options set in ways that aren’t well suited for your purposes. If you need PHP

22 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 22

or MySQL options changed, you need to request that IT make the change; you
won’t be able to make the change yourself. For instance, PHP must be installed
with MySQL support enabled, so if PHP isn’t communicating correctly with
MySQL, IT might have to reinstall PHP with MySQL support enabled.

For the world to see the company’s Web pages, the HTML files must be in a
specific location on the computer. The Web server that delivers the Web
pages to the world expects to find the HTML files in a specific directory.
The IT department should provide you with access to the directory where
the HTML files need to be installed. In most cases, you develop and test your
Web pages in a test location and then transfer the completed files to their
permanent home. Depending on the access that IT gives you, you might copy
the files from the test location to the permanent location, or you might trans-
fer the files via FTP (File Transfer Protocol), which is a method of copying a
file from one computer to another on a network. In some cases, for security
reasons, the IT folks won’t give you access to the permanent location, prefer-
ring to install the files in their permanent location themselves.

To use the Web software tools and build your dynamic Web site, you need the
following information from IT:

� The location of Web pages: You need to know where to put the files for
the Web pages. IT needs to provide you with the name and location of
the directory where the files should be installed. Also, you need to know
how to install the files — copy them, FTP them, or use other methods.
You might need a user ID and password to install the files.

� The default filename: When users point their browsers at a URL, a file is
sent to them. The Web server is set up to send a file with a specific name
when the URL points to a directory. The file that is automatically sent is
the default file. Very often the default file is named index.htm or index.
html, but sometimes other names are used, such as default.htm.
Ask IT what you should name your default file.

� A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. IT sets up a MySQL account
for you that has the appropriate permissions and also gives you the
MySQL account name and password. (I explain MySQL accounts in detail
in Chapter 5.)

� The location of the MySQL databases: MySQL databases need not be
located on the same computer as the Web site. If the MySQL databases
are located on a computer other than that of the Web site, you need to
know the hostname (for example, thor.companyname.com) where the
databases can be found.

� The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtml, but other extensions
can be used. PHP statements in files that don’t have the correct extension
won’t be processed. Ask IT what extension to use for your PHP programs.

23Chapter 2: Setting Up Your Work Environment

06_096004 ch02.qxp 10/11/06 9:18 PM Page 23

You will interact with the IT folks frequently as needs arise. For example, you
might need options changed, you might need information to help you interpret
an error message, or you might need to report a problem with the Web site
software. So a good relationship with the IT folks will make your life much
easier. Bring them tasty cookies and doughnuts often.

A Web hosting company
A Web hosting company provides everything that you need to put up a Web
site, including the computer space and all the Web site software. You just
create the files for your Web pages and move them to a location specified
by the Web hosting company.

About a gazillion companies offer Web hosting services. Most charge a monthly
fee (often quite small), and some are even free. (Most, but not all, of the free
ones require you to display advertising.) Usually, the monthly fee varies
depending on the resources provided for your Web site. For instance, a Web
site with 2MB of disk space for your Web page files costs less than a Web site
with 10MB of disk space.

When looking for a place to host your Web site, make sure that the Web host-
ing company offers the following:

� PHP and MySQL: Not all companies provide these tools. You might have
to pay more for a site with access to PHP and MySQL; sometimes you
have to pay an additional fee for MySQL databases.

� A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. As of this writing, PHP 6 is close to being released.
However, you may have trouble finding a Web hosting company that
offers PHP 6. In fact, you may find that most Web hosting companies still
offer PHP 4, although I hope that will change over time. It is worth the
time to find a Web hosting company that offers at least PHP 5, if not PHP 6.
Some Web hosting companies offer PHP 4 but have PHP 5 or 6 available
for customers who request it.

Other considerations when choosing a Web hosting company are

� Reliability: You need a Web hosting company that you can depend on —
one that won’t go broke and disappear tomorrow, and one that isn’t
running on old computers, held together by chewing gum and baling
wire, with more downtime than uptime.

� Speed: Web pages that download slowly are a problem because users will
get impatient and go elsewhere. Slow pages could be a result of a Web host-
ing company that started its business on a shoestring and has a shortage
of good equipment — or the Web hosting company might be so successful
that its equipment is overwhelmed by new customers. Either way, Web
hosting companies that deliver Web pages too slowly are unacceptable.

24 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 24

� Technical support: Some Web hosting companies have no one available to
answer questions or troubleshoot problems. Technical support is often
provided only through e-mail, which can be acceptable if the response
time is short. Sometimes you can test the quality of the company’s sup-
port by calling the tech support number, or test the e-mail response time
by sending an e-mail.

� The domain name: Each Web site has a domain name that Web browsers
use to find the site on the Web. Each domain name is registered for a
small yearly fee so that only one Web site can use it. Some Web hosting
companies allow you to use a domain name that you have registered
independently of the Web hosting company, some assist you in register-
ing and using a new domain name, and some require that you use their
domain name. For instance, suppose that your name is Lola Designer
and you want your Web site to be named LolaDesigner. Some Web host-
ing companies will allow your Web site to be LolaDesigner.com,
but some will require that your Web site be named LolaDesigner.
webhostingcompanyname.com, or webhostingcompanyname.com/
~LolaDesigner, or something similar. In general, your Web site will
look more professional if you use your own domain name.

� Backups: Backups are copies of your Web page files and your database that
are stored in case your files or database are lost or damaged. You want to
be sure that the company makes regular, frequent backup copies of your
application. You also want to know how long it would take for backups to
be put in place to restore your Web site to working order after a problem.

� Features: Select features based on the purpose of your Web site. Usually
a hosting company bundles features together into plans — more features
equal a higher cost. Some features to consider are

• Disk space: How many MB or GB of disk space will your Web site
require? Media files, such as graphics or music files, can be quite
large.

• Data transfer: Some hosting companies charge you for sending
Web pages to users. If you expect to have a lot of traffic on your
Web site, this cost should be a consideration.

• E-mail addresses: Many hosting companies provide you with a
number of e-mail addresses for your Web site. For instance, if your
Web site is LolaDesigner.com, you could allow users to send
you e-mail at me@LolaDesigner.com.

• Software: Hosting companies offer access to a variety of software for
Web development. PHP and MySQL are the software that I discuss
in this book. Some hosting companies might offer other databases,
and some might offer other development tools such as FrontPage
extensions, shopping cart software, and credit card validation.

• Statistics: Often you can get statistics regarding your Web traffic,
such as the number of users, time of access, access by Web page,
and so on.

25Chapter 2: Setting Up Your Work Environment

06_096004 ch02.qxp 10/11/06 9:18 PM Page 25

One disadvantage of hosting your site with a commercial Web hosting company
is that you have no control over your development environment. The Web
hosting company provides the environment that works best for it — probably
setting up the environment for ease of maintenance, low cost, and minimal
customer defections. Most of your environment is set by the company, and
you can’t change it. You can only beg the company to change it. The company
will be reluctant to change a working setup, fearing that a change could cause
problems for the company’s system or for other customers.

Access to MySQL databases is controlled via a system of accounts and pass-
words that must be maintained manually, thus causing extra work for the
hosting company. For this reason, many hosting companies either don’t offer
MySQL or charge extra for it. Also, PHP has myriad options that can be set,
unset, or given various values. The hosting company decides the option set-
tings based on its needs, which might or might not be ideal for your purposes.

It’s pretty difficult to research Web hosting companies from a standing start —
a search at Google.com for “Web hosting” results in almost 400 million hits.
The best way to research Web hosting companies is to ask for recommenda-
tions from people who have experience with those companies. People who have
used a hosting company can warn you if the service is slow or the computers
are down often. After you gather a few names of Web hosting companies from
satisfied customers, you can narrow the list to the one that is best suited to
your purposes and the most cost effective.

Setting up and running a Web site
on your local computer
If you’re starting a Web site from scratch, you need to understand the Web
site software fairly well. You have to make several decisions regarding hard-
ware and software. You have to install a Web server, PHP, and MySQL — as
well as maintain, administer, and update the system yourself. Taking this
route, rather than using a Web site provided by others, requires more work
and more knowledge. The advantage is that you have total control over the
Web development environment.

You may want to set up a Web site on your personal computer to be a public
Web site, accessed from the World Wide Web. Or you may want to set up a
Web site on your personal computer where you can develop your Web site
before transferring the Web page files to your work computer or a Web host-
ing company. These two types of use require different Internet connections,
as described in Step 1 next.

26 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 26

Here are the general steps that lead to your dynamic Web site (I explain these
steps in more detail in the next few sections):

1. Set up the computer.

2. Install the Web server.

3. Install MySQL.

4. Install PHP.

If you’re starting from scratch, with nothing but an empty space where the
computer will go, start at Step 1. If you already have a running computer but
no Web software, start at Step 2. Or if you have an existing Web site that does
not have PHP and MySQL installed, start with Step 3.

27Chapter 2: Setting Up Your Work Environment

Domain names
Every Web site needs a unique address on the
Web. The unique address used by computers to
locate a Web site is the IP address, which is a
series of four numbers between 0 and 255, sepa-
rated by dots — for example, 172.17.204.2
or 192.163.2.33.

Because IP addresses are made up of numbers
and dots, they’re not easy to remember.
Fortunately, most IP addresses have an associ-
ated name that’s much easier to remember,
such as amazon.com, www.irs.gov, or
mycompany.com. A name that’s an address
for a Web site is a domain name. A domain can
be one computer or many connected computers.
When a domain refers to several computers,
each computer in the domain can have its own
name. A name that includes an individual com-
puter name, such as thor.mycompany.com,
identifies a subdomain.

Each domain name must be unique in order to
serve as an address. Consequently, a system of
registering domain names ensures that no two
locations use the same domain name. Anyone
can register any domain name as long as the

name isn’t already taken. You can register a
domain name on the Web. First, you test your
potential domain name to find out whether it’s
available. If it’s available, you register it in your
name or a company name and pay the fee. The
name is then yours to use, and no one else can
use it. The standard fee for domain name regis-
tration is $35 per year. You should never pay
more, but bargains are often available.

Many Web sites provide the ability to register a
domain name, including the Web sites of many
Web hosting companies. A search at Google
(www.google.com) for register domain
name results in more than 85 million hits. Shop
around to be sure that you find the lowest price.
Also, many Web sites allow you to enter a
domain name and see whom it is registered to.
These Web sites do a domain name database
search using a tool called whois. A search at
Google for domain name whois results in more
than 17 million hits. A couple of places where
you can do a whois search are Allwhois.com
(www.allwhois.com) and BetterWhois.com
(www.betterwhois.com).

06_096004 ch02.qxp 10/11/06 9:18 PM Page 27

Setting up the computer
Your first decision is to choose which hardware platform and operating system
to use. In most cases, you’ll choose a PC with either Linux or Windows as the
operating system. Here are some advantages and disadvantages of these two
operating systems:

� Linux: Linux is open source, so it’s free. It also has advantages for use as
a Web server: It runs for long periods without needing to be rebooted;
and Apache, the most popular Web server, runs better on Linux than
Windows. Running Linux on a PC is the lowest cost option. The disad-
vantage of running Linux is that many people find Linux more difficult
to install, configure, administer, and install software on than Windows,
although Linux is getting easier to install every day.

� Windows: Unlike Linux, Windows is not free. However, most people feel
that Windows is easier to use, and because it’s widely used, many
people can help you if you have problems. If you plan a public Web
site, with users accessing your Web site from the WWW, you need
Windows 2000 or later.

I assume that you’re buying a computer with the operating system and soft-
ware installed, ready to use. It’s easier to find a computer that comes with
Windows installed on it than with Linux, but Linux computers are available.
For instance, at this time, Dell, IBM, and Hewlett-Packard offer computers
with Linux installed.

If you’re building your own hardware, you need more information than I
have room to provide in this book. If you have the hardware and plan to
install an operating system, Windows is easier to install, but Linux is getting
easier all the time. You can install Linux from a CD, like Windows, but you
often must provide information or make decisions that require more knowl-
edge about your system. If you already know how to perform system
administration tasks (such as installing software and making backups) in
Windows or in Linux, the fastest solution is to use the operating system
that you already know.

For using PHP and MySQL, you should seriously consider Linux. PHP is
a project of the Apache Software Foundation, so it runs best with the
Apache server. And Apache runs better on Linux than on Windows.
Therefore, if all other things are equal and the computer is mainly for
running a Web site with a Web database application, Linux is well suited
for your purposes.

Other solutions besides a PC with Windows or Linux are available, but
they’re less popular:

� Unix-based: Other free, Unix-based operating systems are available for
PCs, such as FreeBSD (which some people prefer to Linux) or a version
of Solaris provided by Sun for free download.

28 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 28

� Mac: Mac computers can be used as Web servers. Most newer Macs
come with PHP installed. Installing PHP and MySQL on Mac OS X is fairly
simple. There are fewer Mac users, however, so it can be difficult to find
help when you need it. One good site is www.phpmac.com.

Your computer must be connected to the Internet. In most cases, you obtain
an account from an Internet service provider (ISP). When you obtain an
account from the ISP, be sure to discuss the type of use you intend. A simple
user connection to the Internet is sufficient to transfer Web page files from
your development computer to a Web hosting company. However, if you plan
for users to access your Web site from the WWW, you need an Internet con-
nection with more resources.

Installing the Web server
After you set up the computer, you need to decide which Web server to install.
The answer is almost always Apache. Apache offers the following advantages:

� It’s free. What else do I need to say?

� It runs on a variety of operating systems. Apache runs on Windows,
Linux, Mac OS, FreeBSD, and most varieties of Unix.

� It’s popular. Approximately 60 percent of Web sites on the Internet use
Apache, according to surveys at news.netcraft.com/archives/web_
server_survey.html and www.securityspace.com/s_survey/
data/. This wouldn’t be true if it didn’t work well. Also, this means that
a large group of users can provide help.

� It’s reliable. After Apache is up and running, it should run as long as
your computer runs. Emergency problems with Apache are rare.

� It’s customizable. The open source license allows programmers to modify
the Apache software, adding or modifying modules as needed to fit their
own environment.

� It’s secure. Free software is available that runs with Apache to make it into
an SSL (Secure Sockets Layer) server. Security is an essential issue if you’re
using the site for e-commerce.

Apache is automatically installed when you install most Linux distributions. All
recent Macs come with Apache installed. For most other Unix flavors, you have
to download the Apache source code and compile it yourself, although some
binaries (programs that are already compiled for specific operating systems) are
available. For Windows, Apache provides an installer that asks you questions
and installs and configures Apache for you. For a public Web site, you should
run Windows NT/2000/XP, although Apache also runs on Windows 95/98/Me.
As of this writing, Apache 1.3.36, 2.0.58, and 2.2.2 are the current stable releases.
(Information on Apache versions and instructions for installing Apache are pro-
vided in Appendix C.) The Apache Web site (httpd.apache.org) provides
information, software downloads, extensive documentation that is improving
all the time, and installation instructions for various operating systems.

29Chapter 2: Setting Up Your Work Environment

06_096004 ch02.qxp 10/11/06 9:18 PM Page 29

Other Web servers are available. Microsoft offers IIS (Internet Information
Server), which is the second most popular Web server on the Internet with
approximately 27 percent of Web sites. Sun offers a Web server, which serves
less than 3 percent of the Internet. Other Web servers are available, but they
have even smaller user bases.

Installing MySQL
After setting up the computer and installing the Web server, you’re ready to
install MySQL. You need to install MySQL before installing PHP because you
may need to provide the path to the MySQL software when you install PHP.

But before installing MySQL, be sure that you actually need to install it.
It might already be running on your computer, or it might be installed but not
running. For instance, many Linux distributions automatically install MySQL.
Here’s how to check whether MySQL is currently running:

� Linux/Unix/Mac: At the command line, type the following:

ps –ax

The output should be a list of programs. Some operating systems
(usually flavors of Unix) have different options for the ps command.
If the preceding does not produce a list of programs that are running,
type man ps to see which options you need to use.

In the list of programs that appears, look for one called mysqld.

� Windows: If MySQL is running, it will be running as a service. To check
this, choose Start➪Control Panel➪Administrative Tools➪Services and
scroll down the alphabetical list of services. If MySQL is installed as a
service, it will appear in the list. If it’s currently running, its status dis-
plays Started.

Even if MySQL isn’t currently running, it might be installed but just not started.
Here’s how to check to see whether MySQL is installed on your computer:

� Linux/Unix/Mac: Type the following:

find / -name “mysql*”

If a directory named mysql is found, MySQL has been installed.

� Windows: If you did not find MySQL in the list of current services, look
for a MySQL directory or files. You can search at Start➪Search. The default
installation directory is C:\Program Files\MySQL\MySQL Server
versionnumber for recent versions or C:\mysql for older versions.

If you found MySQL in the service list, as described, but it is not started,
you can start it by highlighting MySQL in the service list and clicking
Start the Service in the left panel.

30 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 30

If you find MySQL on your computer but did not find it in the list of running
programs (Linux/Unix/Mac) or the list of current services (Windows), here’s
how to start it:

� Linux/Unix/Mac:

1. Change to the directory mysql/bin.

This is the directory that you should have found when you were
checking whether MySQL was installed.

2. Type safe_mysqld &.

When this command finishes, the prompt is displayed.

3. Check that the MySQL server started by typing ps -ax.

In the list of programs that appears, look for one called mysqld.

� Windows:

1. Open a Command Prompt window.

In Windows XP, choose Start➪All Programs➪Accessories➪
Command Prompt.

2. Change to the folder where MySQL is installed.

For example, type cd C:\Program Files\MySQL\MySQL Server 5.0.
Your cursor is now located in the MySQL folder.

3. Change to the bin subfolder by typing cd bin.

Your cursor is now located in the bin subfolder.

4. Start the MySQL Server by typing mysqld --install.

The MySQL server starts as a Windows service. You can check the
installation by going to the service list, as described previously,
and making sure that MySQL now appears in the service list and
its status is Started.

If MySQL isn’t installed on your computer, you need to download it and
install it from www.mysql.com. The Web site provides all the information
and software that you need. (You can find detailed installation instructions
in Appendix A.)

Installing PHP
After you install MySQL, you’re ready to install PHP. As I mention earlier, you
must install MySQL before you install PHP because you may need to provide
the path to the MySQL software when you install PHP. If PHP isn’t compiled
with MySQL support when it is installed, it won’t communicate with MySQL.

31Chapter 2: Setting Up Your Work Environment

06_096004 ch02.qxp 10/11/06 9:18 PM Page 31

Before you install PHP, check whether it’s already installed. For instance,
some Linux and Mac distributions automatically install PHP. To see whether
PHP is installed, search your disk for any PHP files:

� Linux/Unix/Mac: Type the following:

find / -name “php*”

� Windows: Use the Find feature (choose Start➪Find) to search for php*.

If you find PHP files, PHP is already installed, and you might not need to rein-
stall it. For instance, even if you installed MySQL yourself after PHP was
installed, you might have installed it in the location where PHP is expecting
it. Better safe than sorry, however: Perform the testing that I describe in the
next section to see whether MySQL and PHP are working correctly together.

If you don’t find any PHP files, PHP is not installed. To install PHP, you need
access to the Web server for your site. For instance, when you install PHP
with Apache, you need to edit the Apache configuration file. All the information
and software that you need is provided on the PHP Web site (www.php.net).
I provide detailed installation instructions in Appendix B.

Testing, Testing, 1, 2, 3
Suppose you believe that PHP and MySQL are available for you to use, for
one of the following reasons:

� The IT department at your company or your client company gave you all
the information that you asked for and told you that you’re good to go.

� The Web hosting company gave you all the information that you need
and told you that you’re good to go.

� You followed all the instructions and installed PHP and MySQL yourself.

Now you need to test to make sure that PHP and MySQL are working correctly.

Understanding PHP/MySQL functions
PHP can communicate with any version of MySQL. However, PHP needs to
be installed differently, depending on which version of MySQL you’re using.
PHP provides one set of functions (mysql functions) that communicate with
MySQL 4.0 or earlier and a different set of functions (mysqli functions) that

32 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 32

communicate with MySQL 4.1 or later. The mysql functions, which communi-
cate with earlier versions of MySQL, can also communicate with the later ver-
sions of MySQL, but you may not be able to use some of the newer, advanced
features that were added to MySQL in the later versions. The mysqli functions,
which can take advantage of all the MySQL features, are available only with
PHP 5 or later.

The programs in this book, including the test programs in this section, use
MySQL 5.0 and the mysqli functions. If you’re using PHP 4, you need to
change the programs to use the mysql functions, rather than the mysqli
functions. The functions are similar, but some have slight changes in syntax.
Chapter 8 provides a table (Table 8-1) showing the differences between the
functions used in this book. Versions of the programs that will run with PHP 4
are available for download at my Web site (janet.valade.com).

You might see an error message similar to the following:

Fatal error: Call to undefined function mysql_connect()

The message means that you’re using a mysql function in your program, but
the mysql functions are not enabled. MySQL support might not be enabled at
all or mysqli support might be enabled instead of mysql support. Enabling
MySQL support is explained in Appendix B.

Functions are explained later in the book and the PHP functions that commu-
nicate with MySQL are discussed at the beginning of Chapter 8. I mention
them briefly here for those people who may be using PHP 4, because the test
programs that follow this section will not run correctly with PHP 4.

Testing PHP
To test whether PHP is installed and working, follow these steps:

1. Find the directory in which your PHP programs need to be saved.

This directory and the subdirectories under it are your Web space.
Apache calls this directory the document root. The default Web space for
Apache is htdocs in the directory where Apache is installed. For IIS, it’s
Inetpub\wwwroot. In Linux, it might be /var/www/html. The Web
space can be set to a different directory by configuring the Web server
(see Appendix C). If you’re using a Web hosting company, the staff will
supply the directory name.

2. Create the following file somewhere in your Web space with the name
test.php.

33Chapter 2: Setting Up Your Work Environment

06_096004 ch02.qxp 10/11/06 9:18 PM Page 33

<html>
<head>
<title>PHP Test</title>
</head>
<body>
<p>This is an HTML line
<p>
<?php

echo “This is a PHP line”;
phpinfo();

?>
</body></html>

The file must be saved in your Web space for the Web server to find it.

3. Point your browser at the test.php file created in Step 1. That is,
type the name of your Web server into the browser address window,
followed by the name of the file (for example,
www.myfinecompany.com/test.php).

If your Web server, PHP, and the test.php file are on the same com-
puter that you’re testing from, you can type localhost/test.php.

For the file to be processed by PHP, you need to access the file through the
Web server — not by choosing File➪Open from your Web browser menu.

You should see the following in the Web browser:

This is an HTML line
This is a PHP line

Below these lines, you should see a large table that shows all the infor-
mation associated with PHP on your system. It shows PHP information,
pathnames and filenames, variable values, and the status of various
options. The table is produced by the phpinfo() line in the test script.
Anytime that you have a question about the settings for PHP, you can
use the phpinfo() statement to display this table and check a setting.

4. Check the PHP values for the settings you need.

For instance, you need MySQL support enabled. Looking through the list-
ing, find the section for MySQL and make sure that MySQL support is On.

PHP has many settings that can be changed. Various PHP settings are
discussed throughout the book in the appropriate sections.

5. Change values if necessary.

The general settings for PHP are stored in a file named php.ini. If you
installed PHP yourself, you can edit php.ini and change settings. If your
Web site is located on a company computer or a Web hosting company
computer, you may not have access to php.ini to change settings. You
can request the PHP administrator to change settings. For some settings,
you can temporarily change a setting with a statement in your PHP pro-
gram, but not all settings can be changed in a program. Changing PHP
settings is discussed in Appendix B.

34 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 34

Testing MySQL
After you know that PHP is running okay, you can test whether you can
access MySQL by using PHP. Just follow these steps:

1. Create the following file somewhere in your Web space with the name
mysql_up.php.

You can download the file from my Web site at janet.valade.com.

<?php
/* Program: mysql_up.php
* Desc: Connects to MySQL Server and
* outputs settings.
*/
echo “<html>

<head><title>Test MySQL</title></head>
<body>”;

$host=”host”;
$user=”mysqlaccount”;
$password=”mysqlpassword”;

$cxn = mysqli_connect($host,$user,$password);
$sql=”SHOW STATUS”;
$result = mysqli_query($cxn,$sql);
if($result == false)
{

echo “<h4>Error: “.mysqli_error($cxn).”</h4>”;
}
else
{
/* Table that displays the results */
echo “<table border=’1’>

<tr><th>Variable_name</th>
<th>Value</th></tr>”;

for($i = 0; $i < mysqli_num_rows($result); $i++)
{
echo “<tr>”;
$row_array = mysqli_fetch_row($result);
for($j = 0;$j < mysqli_num_fields($result);$j++)
{

echo “<td>”.$row_array[$j].”</td>\n”;
}

}
echo “</table>”;

}
?>
</body></html>

2. The following lines 9, 10, and 11 of the program need to be changed:

$host=”host”;
$user=”mysqlaccount”;
$password=”mysqlpassword”;

35Chapter 2: Setting Up Your Work Environment

06_096004 ch02.qxp 10/11/06 9:18 PM Page 35

Change host to the name of the computer where MySQL is installed —
for example, databasehost.mycompany.com. If the MySQL database
is on the same computer as your Web site, you can use localhost as
the hostname.

Change mysqlaccountname and mysqlpassword to the appropriate
values. An account named root is installed when MySQL is installed,
which may or may not have a password. (I discuss MySQL accounts and
passwords in Chapter 5.) If your MySQL account doesn’t require a pass-
word, type nothing between the quotes, as follows:

$password=””;

3. Point your browser at mysql_up.php.

You should see a table with a long list of variable names and values. You
don’t want to see an error message or a warning message. Don’t worry
about the contents of the table. It’s only important that the table is dis-
played so that you know your connection to MySQL is working correctly.

If no error or warning messages are displayed, MySQL is working fine.
If you see an error or a warning message, you need to fix the problem
that’s causing the message.

The following is a common error message:

MySQL Connection Failed: Access denied for user:
‘user73@localhost’ (Using password: YES)

This message means that MySQL did not accept your MySQL account number
or your MySQL password. Notice that the message reads YES for Using
password but doesn’t show the actual password that you tried for security
reasons. If you tried with a blank password, the message would read NO.

If you receive an error message, double-check your account number and
password. Remember that this is your MySQL account number — not your
account number to log on to the computer. If you can’t connect with the
account number and password that you have, you might need to contact the
IT department or the Web hosting company that gave you the account number.
(For a further discussion of MySQL accounts and passwords, see Chapter 5.)

36 Part I: Developing a Web Database Application Using PHP and MySQL

06_096004 ch02.qxp 10/11/06 9:18 PM Page 36

Chapter 3

Developing a Web
Database Application

In This Chapter
� Planning your application

� Selecting and organizing your data

� Designing your database

� Building your database: An overview

� Writing your application programs: An overview

Developing a Web database application involves more than just storing
data in MySQL databases and typing in PHP programs. Development has

to start with planning. Building the application pieces comes after planning.
The development steps are

1. Develop a plan, listing the tasks that your application will perform.

2. Design the database needed to support your application tasks.

3. Build the MySQL database, based on the database design.

4. Write the PHP programs that perform the application tasks.

I discuss these steps in detail in this chapter.

Planning Your Web Database Application
Before you ever put finger to keyboard to write a PHP program, you need to
plan your Web database application. This is possibly the most important step
in developing your application. It’s painful to discover, especially just after
you finish the last program for your application, that you left something out
and have to start over from the beginning. It’s also hard on your computer
(and your foot) when you take out your frustrations by drop-kicking it across
the room.

07_096004 ch03.qxp 10/11/06 9:18 PM Page 37

Good planning prevents such painful backtracking. In addition, it keeps you
focused on the functionality of your application, thus preventing you from
writing pieces for the application that do really cool things but turn out to
have no real purpose in the finished application. And if more than one person
is working on your application, planning ensures that all the pieces will fit
together in the end.

Identifying what you want
from the application
The first step in the planning phase is to identify exactly why you’re developing
your application and what you want from it. For example, your main purpose
might be to

� Collect names and addresses from users so that you can develop a cus-
tomer list

� Deliver information about your products to users, as in a customer catalog

� Sell products online

� Provide technical support to people who already own your product

After you clearly identify the general purpose of your application, make a list
of exactly what you want that application to do. For instance, if your goal is
to develop a database of customer names and addresses for marketing pur-
poses, the application’s list of required tasks is fairly short:

� Provide a form for customers to fill out

� Store the customer information in a database

If your goal is to sell products online, the list is a little longer:

� Provide information about your products to the customer

� Motivate the customer to buy the product

� Provide a way for the customer to order the product online

� Provide a method for the customer to pay for the product online

� Validate the payment so you know that you’ll actually get the money

� Send the order to the person responsible for filling the order and send-
ing the product to the customer

38 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 38

At this point in the planning process, the tasks that you want your application
to perform are still pretty general. You can accomplish each of these tasks in
many different ways. So now you need to examine the tasks closely and detail
exactly how the application will accomplish them. For instance, if your goal is
to sell products online, you might expand the preceding list like this:

� Provide information about products to the customer.

• Display a list of product categories. Each category is a link.

• When the customer clicks a category link, the list of products in
that category is displayed. Each product name is a link.

• When a customer clicks a product link, the description of the prod-
uct is displayed.

� Motivate the customer to buy the product.

• Provide well-written descriptions of the products that communi-
cate their obviously superior qualities.

• Use flattering pictures of the products.

• Make color product brochures available online.

• Offer quantity discounts.

� Provide a way for customers to order the product online.

• Provide a button that customers can click to indicate their inten-
tion to buy the product.

• Provide a form that collects necessary information about the prod-
uct the customer is ordering, such as size and color.

• Provide forms for customers to enter shipping and billing addresses.

• Compute and display the total cost for all items in the order.

• Compute and display the shipping costs.

• Compute and display the sales tax.

� Provide a method for customers to pay for the product online.

• Provide a button that customers can click to pay with a credit card.

• Display a form that collects customers’ credit card information.

� Validate the payment so you know that you’ll actually get the money.

The usual method is to send the customer’s credit card information to a
credit card processing service.

� Send the order to the person responsible for filling the order and
sending the product to the customer.

E-mailing order information to the shipping department should do it.

39Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 39

At this point, you should have a fairly clear idea of what you want from your
Web database application. However, this doesn’t mean that your goals can’t
change. In fact, your goals are likely to change as you develop your Web data-
base application and discover new possibilities. At the onset of the project,
start with as comprehensive a plan as possible to keep you focused.

Taking the user into consideration
Identifying what you want your Web database application to do is only one
aspect of planning. You must also consider what your users will want from it.
For example, say your goal is to gather a list of names and addresses for mar-
keting purposes. Will customers be willing to give up that information?

Your application needs to fulfill a purpose for the users as well as for your-
self. Otherwise, they’ll just ignore it. Before users will be willing to give you
their names and addresses, for example, they need to perceive that they will
benefit from giving you this information. Here are a few examples of why
users might be willing to register their names and addresses at your site:

� To receive a newsletter: To be perceived as valuable, the newsletter
should cover an industry related to your products. It should offer news
and spot trends — and not just serve as marketing material about your
products.

� To enter a sweepstakes for a nice prize: Who can turn down a chance
to win an all-expense-paid vacation to Hawaii or a brand-new SUV?

� To receive special discounts: For example, you can periodically e-mail
special discount opportunities to customers.

� To be notified about new products or product upgrades when they
become available: For example, customers might be interested in being
notified when a software update is available for downloading.

� To get access to valuable information: For instance, you must register
at The New York Times Web site to gain access to its articles online.

Now add the customer tasks to your list of tasks that you want the application
to perform. For example, consider this list of tasks that you identified for set-
ting up an online retailer:

� Provide a form for customers to fill out

� Store the customer information in a database

If you take the customer’s viewpoint into account, the list expands a bit:

� Present a description of the advantages customers receive by registering
with the site

� Provide a form for customers to fill out

40 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 40

� Add customers’ e-mail addresses to the newsletter distribution list

� Store the customer information in a database

After you have a list of tasks that you want and tasks that your users want,
you have a plan for a Web application that is worth your time to develop and
worth your users’ time to use.

Making the site easy to use
In addition to planning what your Web application is going to do, you need
to consider how it is going to do it. Making your application easy to use is
important: If customers can’t find your products, they aren’t going to buy
them. And if customers can’t find the information they need in a short time,
they will look elsewhere. On the Web, customers can easily go elsewhere.

Making your application easy to use is usability engineering. Web usability
includes such issues as

� Navigation: What is on your site and where it is located should be imme-
diately obvious to a user.

� Graphics: Graphics make your site attractive, but graphic files can be
slow to display.

� Access: Some design decisions can make your application accessible or
not accessible to users who have disabilities such as impaired vision.

� Browsers: Different browsers (even different versions of the same
browser) can display the same HTML file differently.

Web usability is a large and important subject, and delving into the topic more
deeply is beyond the scope of this book. But fear not, you can find lots of help-
ful information on Web usability on — you guessed it — the Web. Be sure to
check out the Web sites of usability experts Jakob Nielsen (www.useit.com)
and Jared Spool (www.uie.com). Vincent Flanders also has a fun site full of
helpful information about Web design at WebPagesThatSuck.com. And books
on the subject can be very helpful, such as Web Design For Dummies by Lisa
Lopuck (Wiley).

Leaving room for expansion
One certainty about your Web application is that it will change over time.
Down the line, you might think of new functions for it or just simply want to
change something about it. Or maybe Web site software improves so that
your Web application can do things that it couldn’t do when you first put it up.
Whatever the reason, your Web site will change. When you plan your applica-
tion, you need to keep future changes in mind.

41Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 41

You can design your application in steps, taking planned changes into
account. You can develop a plan in which you build an application today that
meets your most immediate needs and make it available as soon as it’s ready.
Your plan can include adding functions to the application as quickly as you
can develop them. For example, you can build a product catalog and publish
it on your Web site as soon as it’s ready. You can then begin work on an online
ordering function for the Web site, which you will add when it’s ready.

You can’t necessarily foresee all the functions that you might want in your
application. For instance, you might design your travel Web site with sections
for all possible destinations today, but the future could surprise you. Trips to
Mars? Alpha Centauri? An alternate universe? Plan your application with the
flexibility needed to add functionality in the future.

Writing it down
Write your plan down. You will hear this often from me. I speak from the
painful experience of not writing it down. When you develop your plan, it’s
foremost in your mind and perfectly clear. But in a few short weeks, you will
be astonished to discover that it has gone absolutely hazy while your atten-
tion was on other pressing issues. Or you want to make some changes in the
application a year from now and won’t remember exactly how the application
was designed. Or you’re working with a partner to develop an application and
you discover that your partner misunderstood your verbal explanation and
developed functions for the application that don’t fit in your plan. You can
avoid these types of problems by writing everything down.

Presenting the Two Running
Examples in This Book

In the next two sections, I introduce the two example Web database applica-
tions that I created for this book. I refer to these examples throughout the
book to demonstrate aspects of application design and development.

Stuff for Sale
The first example is an online product catalog. You’re the owner of a pet
store, and you want your catalog to provide customers with information
about the pets for sale. Selling the pets online is not feasible, although you’re
toying with the idea of allowing customers to reserve pets online — that is,
before they come into the store to purchase them. Currently, the application
is simply an online catalog. Customers can look through the catalog online

42 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 42

and then come into the store to buy the pet. The information about all the pets
is stored in a database, and customers can search the database for information
on specific pets or types of pets.

Here is your plan for this application:

� Allow customers to select which pet information they want to see.

Offer two selection methods:

• Selecting from a list of links: Display a list of links that are pet cat-
egories (dog, cat, dinosaur, and so on). When the customer clicks a
category link, a list of pets is displayed. Each pet in the list is a link
to a description of the pet.

• Typing search terms: Display a search form in which customers
can type words that describe the type of pet they’re looking for.
The application searches the database for matching words and
displays the pet information for pets that match the search words.
For example, a customer can type cat to see a list of all available
cats. Each cat in the list is a link to a description of that cat.

� Display a description of the pet when the customer clicks the link.

The description is stored in a database.

Members Only
The second example Web database application is related to the preceding pet
store example. In addition to the online catalog, you also want to put up a
section on your pet store Web site that’s for members only. To access this
area of the site, customers have to register — providing their names and
addresses. In this Members Only section, customers can order pet food at a
discount, find out about pets that are on order but haven’t arrived yet, and
gain access to articles with news and information about pets and pet care.

This is your plan for this application:

� Display a description of what special features and information are
available in the Members Only section.

� Provide an area where customers can register for the Members Only
section.

• Provide a link to the registration area.

• Display a form in the registration area where customers can type
their registration information.

The form should include space for a user login name and password
as well as the information that you want to collect.

43Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 43

• Validate the information that the user entered.

For example, verify that the zip code is the correct length and that
the e-mail address is in the correct format.

• Store the information in the database.

� Provide a login section for customers who are already registered for
the Members Only section.

• Display a login form that asks for the customer’s user name and
password.

• Compare the user name and password that are entered with the
user names and passwords in the database.

If no match is found, display an error message.

� Display the Members Only Web page after the customer has success-
fully logged in.

Designing the Database
After you determine exactly what the Web database application is going to do
(see the beginning part of this chapter if you haven’t done this yet), you’re
ready to design the database that holds the information needed by the appli-
cation. Designing the database includes identifying the data that you need
and organizing the data in the way required by the database software.

Choosing the data
First, you must identify what information belongs in your database. Look at
the list of tasks that you want the application to perform and determine what
information you need to complete each of those tasks.

Here are a few examples:

� An online catalog needs a database containing product information.

� An online order application needs a database that can hold customer
information and order information.

� A travel Web site needs a database with information on destinations,
reservations, fares, schedules, and so on.

44 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 44

In many cases, your application might include a task that collects information
from the user. You’ll have to balance your urge to collect all the potentially
useful information that you can think of against your users’ reluctance to give
out personal information — as well as their avoidance of forms that look too
time-consuming. One compromise is to ask for some optional information.
Users who don’t mind can enter it, but users who object can leave it blank.
Another possibility is to offer an incentive: The longer the form, the stronger
the incentive that you’ll need to motivate the user to fill out the form. A user
might be willing to fill out a short form to enter a sweepstakes that offers two
sneak-preview movie tickets for a prize. But if the form is long and compli-
cated, the prize needs to be more valuable, such as a free trip to California
and a tour of a Hollywood movie studio.

In the first example application, your customers search the online catalog for
information on pets that they might want to buy. You want customers to see
information that will motivate them to buy a pet. The information that you
want to have available in the database for the customer to see is as follows:

� The name of the pet (for example, poodle or unicorn)

� A description of the pet

� A picture of the pet

� The cost of the pet

In the second example application, the Members Only section, you want to
store information about registered members. The information that you want
to store in the database is as follows:

� Member name

� Member address

� Member phone number

� Member fax number

� Member e-mail address

Take the time to develop a comprehensive list of the information you need to
store in your database. Although you can change and add information to your
database after it’s developed, including the information from the beginning is
easier. Also, if you add information to the database later — after it’s in use —
the first users in the database will have incomplete information. For example,
if you change your form so that it now asks for the user’s age, you won’t have
the age for the people who have already filled out the form and are already in
the database.

45Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 45

Organizing the data
MySQL is an RDBMS (Relational Database Management System), which means
that the data is organized into tables. (See Chapter 1 for more on MySQL.)
You can establish relationships between the tables in the database.

Organizing data in tables
RDBMS tables are organized like other tables that you’re used to — in rows
and columns, as shown in Figure 3-1. The place where a particular row and
column intersect, the individual cell, is a field.

The focus of each table is an object (a thing) that you want to store informa-
tion about. Here are some examples of objects:

Customers Shapes Rooms

Companies Projects Computers

Cities Products Documents

Books Animals Weeks

You create a table for each object. The table name should clearly identify the
objects that it contains with a descriptive word or term. The name must be a
character string, containing letters, numbers, underscores, or dollar signs,
with no spaces in it. It’s customary to name the table in the singular. Thus, a
name for a table of customers might be Customer, and a table containing
customer orders might be named CustomerOrder. Uppercase and lowercase
is significant on Linux and Unix but not on Windows: CustomerOrder and
Customerorder are the same to Windows — but not to Linux or Unix.

Column 1

Row 1

Column 2 Column 3 Column 4

Row 2

Row 3 Field

Row 4

Row 5

Figure 3-1:
MySQL data
is organized

into tables.

46 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 46

In database talk, an object is an entity, and an entity has attributes. In the
table, each row represents an entity, and the columns contain the attributes
of each entity. For example, in a table of customers, each row contains infor-
mation for a single customer. Some of the attributes contained in the columns
might be first name, last name, phone number, and age.

Here are the steps for organizing your data into tables:

1. Name your database.

Assign a name to the database for your application. For instance, a data-
base containing information about households in a neighborhood might
be named HouseholdDirectory.

2. Identify the objects.

Look at the list of information that you want to store in the database
(as discussed in the section, “Choosing the data,” earlier in this
chapter). Analyze your list and identify the objects. For instance, the
HouseholdDirectory database might need to store the following:

• Name of each family member

• Address of the house

• Phone number

• Age of each household member

• Favorite breakfast cereal of each household member

When you analyze this list carefully, you realize that you’re storing infor-
mation about two objects: the household and the household members.
That is, the address and phone number are for the household in general,
but the name, age, and favorite cereal are for a particular household
member.

3. Define and name a table for each object.

For instance, the HouseholdDirectory database needs a table called
Household and a table called HouseholdMember.

4. Identify the attributes for each object.

Analyze your information list and identify the attributes you need to
store for each object. Break the information to be stored into its smallest
reasonable pieces. For example, when storing the name of a person in a
table, you can break the name into first name and last name. Doing this
enables you to sort by the last name, which would be more difficult if
the first and last name were stored together. You can even break down
the name into first name, middle name, and last name, although not
many applications need to use the middle name separately.

47Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 47

5. Define and name columns for each separate attribute that you identi-
fied in Step 4.

Give each column a name that clearly identifies the information in
that column. The column names should be one word, with no spaces.
For example, you might have columns named firstName and lastName
or first_name and last_name.

Some words are reserved by MySQL and SQL for their own use and can’t
be used as column names. The words are currently used in SQL state-
ments or are reserved for future use. For example, ADD, ALL, AND,
CREATE, DROP, GROUP, ORDER, RETURN, SELECT, SET, TABLE, USE,
WHERE, and many, many more can’t be used as column names. For a
complete list of reserved words, see the online MySQL manual at
www.mysql.com/doc/en/Reserved_words.html.

6. Identify the primary key.

Each row in a table needs a unique identifier. No two rows in a table should
be exactly the same. When you design your table, you decide which
column holds the unique identifier, called the primary key. The primary
key can be more than one column combined. In many cases, your object
attributes will not have a unique identifier. For example, a customer
table might not have a unique identifier because two customers can
have the same name. When there is no unique identifier column, you
need to add a column specifically to be the primary key. Frequently, a
column with a sequence number is used for this purpose. For example,
in Figure 3-2, the primary key is the cust_id field because each cus-
tomer has a unique ID number.

cust_id

27895 John

first_name

Smith

last_name phone

555-5555

44555 Joe Lopez 555-5553

23695 Judy Chang 555-5552

27822 Jubal Tudor 555-5556

29844 Joan Smythe 555-5559

Figure 3-2:
A sample
from the

Customer
table.

48 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 48

7. Define the defaults.

You can define a default that MySQL will assign to a field when no data
is entered into the field. A default is not required but is often useful.
For example, if your application stores an address that includes a
country, you can specify US as the default. If the user does not type
a country, US will be entered.

8. Identify columns that require data.

You can specify that certain columns are not allowed to be empty (also
called NULL). For instance, the column containing your primary key
can’t be empty. That means that MySQL will not create the row and will
return an error message if no value is stored in the column. The value
can be a blank space or an empty string (for example, “”), but some
value must be stored in the column. Other columns, in addition to the
primary key, can be set to require data.

Well-designed databases store each piece of information in only one place.
Storing it in more than one place is inefficient and creates problems if informa-
tion needs to be changed. If you change information in one place but forget to
change it in another place, your database can have serious problems.

If you find that you’re storing the same data in several rows, you probably
need to reorganize your tables. For example, suppose you’re storing data
about books, including the publisher’s address. When you enter the data,
you realize that you’re entering the same publisher’s address in many rows.
A more efficient way to store this data would be to store the book informa-
tion in one table and the book publisher information in a separate table.
You can define two tables: Book and BookPublisher. In the Book table,
you would have the columns title, author, pub_date, and price.
In the BookPublisher table, you would have columns such as name,
streetAddress, and city.

Creating relationships between tables
Some tables in a database are related. Most often, a row in one table is
related to several rows in another table. A column is needed to connect
the related rows in different tables. In many cases, you include a column
in one table to hold data that matches data in the primary key column of
another table.

A common application that needs a database with two related tables is a
customer order application. For example, one table contains the customer
information, such as name, address, and phone number. Each customer can
have from zero to many orders. You could store the order information in the
table with the customer information, but a new row would be created each time

49Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 49

that the customer placed an order, and each new row would contain all the
customer’s information. It would be much more efficient to store the orders
in a separate table, named perhaps CustomerOrder. (You can’t name the
table Order because that is a reserved word.) The CustomerOrder table would
have a column that contains the primary key from a row in the Customer
table so that the order is related to the correct row of the Customer table.
The relationship is shown in the tables in Figures 3-2 and 3-3.

The Customer table in this example looks like Figure 3-2 (see the preceding
section). Notice the unique cust_id for each customer. The related
CustomerOrder table is shown in Figure 3-3. Notice that it has the same
cust_id column that appears in the Customer table. In this way, the order
information in the CustomerOrder table is connected to the related cus-
tomer’s name and phone number in the Customer table.

In this example, the columns that relate the Customer table and the
CustomerOrder table have the same name. They could have different
names as long as the data in the columns is the same.

Designing the Sample Databases
In the following two sections, I design the two databases for the two example
applications used in this book.

Order_no

87-222

87-223

87-224

87-225

87-226

cost

200.00

225.00

550.00

210.00

50.00

cust_id

27895

27895

44555

44555

27895

item_num

cat-3

cat-4

horse-1

dog-27

bird-1

Figure 3-3:
A sample
from the

Customer
Order table.

50 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 50

Pet Catalog design process
You want to display the following list of information when customers search
your pet catalog:

� The name of the pet (for example, poodle or unicorn)

� A description of the pet

� A picture of the pet

� The cost of the pet

In the Pet Catalog plan, a list of pet categories is displayed. This requires that
each pet be classified into a pet category and that the pet category be stored
in the database.

You design the PetCatalog database by following the steps presented in the
“Organizing data in tables” section, earlier in this chapter:

1. Name your database.

The database for the Pet Catalog is named PetCatalog.

2. Identify the objects.

The information list is

• The name of the pet (poodle, unicorn, and so on)

• A description of the pet

• A picture of the pet

• The cost of the pet

• The category for the pet

All this information is about pets, so the only object for this list is Pet.

3. Define and name a table for each object.

The Pet Catalog application needs a table called Pet.

4. Identify the attributes for each object.

Now you look at the information in detail:

• Name of the pet: A single attribute — for example, poodle or uni-
corn. However, it seems likely that your pet shop might have more
than one poodle for sale at a time. Therefore, your table needs a
unique identifier to serve as the primary key.

• Pet identification number: A sequence number assigned to each
pet when it’s added to the table. This number is the primary key.

51Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 51

• Description of the pet: Two attributes — the written description of
the pet as it would appear in print and the color of the pet.

• Picture of the pet: A path name to a graphic file containing a beau-
tiful picture of the pet.

• Cost of the pet: The dollar amount that the store is asking for the pet.

• Category for the pet: Two attributes: a category name that includes
the pet — for example, dog, horse, dragon — and a description
of the category.

It would be inefficient to include two types of information in the Pet table:

• The category information includes a description of the category.
Because each category can include several pets, including the
category description in the Pet table would result in the same
description appearing in several rows. It is more efficient to define
the pet category as an object with its own table.

• If the pet comes in several colors, all the pet information will be
repeated in a separate row for each color. It is more efficient to
define the pet color as an object with its own table.

The added tables are named PetType and PetColor.

5. Define and name columns.

The Pet table has one row for each pet. The columns for the Pet table are

• petID: Unique sequence number assigned to each pet.

• petName: Name of the pet.

• petType: The category name. This is the column that connects
the pet to the correct row in the PetType table.

• petDescription: The description of the pet.

• price: The price of the pet.

• pix: The filename of a file that contains a picture of the pet.

The PetType table has one row for each pet category. It has the follow-
ing columns:

• petType: The category name of a type of pet. This is the primary
key for this table. Notice that the Pet table has a column with the
same name. These columns link this table with the Pet table.

• typeDescription: The description of the pet type.

The PetColor table has one row for each pet color. It has the following
columns:

52 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 52

• petName: The name of the pet. This is the column that connects
the color row to the correct row in the Pet table.

• petColor: The color of the pet.

• pix: The filename of a file that contains a picture of the pet of the
specified color.

6. Identify the primary key.

• The primary key of the Pet table is petID.

• The primary key of the PetType table is petType.

• The primary key of the PetColor table is petName and petColor
together.

7. Define the defaults.

No defaults are defined for any of the tables.

8. Identify columns with required data.

The following columns should never be allowed to be empty:

• petID

• petName

• petColor

• petType

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

Members Only design process
You create the following list of information that you want to store when cus-
tomers register for the Members Only section of your Web site:

� Member name

� Member address

� Member phone number

� Member fax number

� Member e-mail address

In addition, you would like to collect the date when the member registers and
track how often the member goes into the Members Only section.

53Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 53

You design the Members Only database by following the steps presented in
the “Organizing data in tables” section, earlier in this chapter:

1. Name your database.

The database for the Members Only section is named
MemberDirectory.

2. Identify the objects.

The information list is

• Member name

• Member address

• Member phone number

• Member fax number

• Member e-mail address

• Member registration date

• Member logins

All this information pertains to members, so the only object for this list
is member.

3. Define and name a table for each object.

The MemberDirectory database needs a table called Member.

4. Identify the attributes for each object.

Look at the information list in detail:

• Member name: Two attributes: first name and last name.

• Member address: Four attributes: street address, city, state, and
zip code. Currently, you have pet stores only in the United States,
so you can assume that the member address is an address in the
U.S. mailing address format.

• Member phone number: One attribute.

• Member fax number: One attribute.

• Member e-mail address: One attribute.

• Member registration date: One attribute.

Several pieces of information are related to member logins:

• Logging in to the Members Only section requires a login name and
a password. These two items need to be stored in the database.

• The easiest way to keep track of member logins is to store the date
and time when the user logged into the Members Only section.

54 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 54

Because each member can have many logins, many dates and times for
logins need to be stored. Therefore, rather than defining the login time
as an attribute of the member, define login as an object, related to the
member, but requiring its own table.

The added table is named Login. The attribute of a login object is its
login time (the time includes the date).

5. Define and name the columns.

The Member table has one row for each member. The columns for the
Member table are

• loginName city

• password state

• createDate zip

• firstName email

• lastName phone

• street fax

The Login table has one row for each login: that is, each time a member
logs into the Members Only section. It has the following columns:

• loginName: The login name of the member who logged in. This is
the column that links this table to the Member table. This value is
unique in the Member table but not unique in this table.

• loginTime: The date and time of login.

6. Identify the primary key.

• The primary key for the Member table is loginName. Therefore,
loginName must be unique.

• The primary key for the Login table is both loginName and
loginTime together.

7. Define the defaults.

No defaults are defined for either table.

8. Identify columns with required data.

The following columns should never be allowed to be empty:

• loginName

• password

• loginTime

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

55Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 55

Types of Data
MySQL stores information in different formats based on the type of informa-
tion that you tell MySQL to expect. MySQL allows different types of data to be
used in different ways. The main types of data are character, numerical, and
date and time data.

Character data
The most common type of data is character data — data that is stored as strings
of characters and can be manipulated only in strings. Most of the information
that you store will be character data, such as customer name, address, phone,
and pet description. Character data can be moved and printed. Two charac-
ter strings can be put together (concatenated), a substring can be selected
from a longer string, and one string can be substituted for another.

Character data can be stored in a fixed-length or variable-length format.

� Fixed-length format: In this format, MySQL reserves a fixed space for
the data. If the data is longer than the fixed length, only the characters
that fit are stored — the remaining characters on the end are not stored.
If the string is shorter than the fixed length, the extra spaces are left
empty and wasted.

� Variable-length format: In this format, MySQL stores the string in a field
that is the same length as the string. You specify a string length, but if
the string is shorter than the specified length, MySQL uses only the
space required rather than leaving the extra space empty. If the string is
longer than the space specified, the extra characters are not stored.

If a character string length varies only a little, use the fixed-length format.
For example, a length of 10 works for all zip codes, including those with the
zip+4 number. If the zip code does not include the zip+4 number, only five
spaces are left empty. However, if your character string can vary more than a
few characters, use a variable-length format to save space. For example, your
pet description might be Small bat or might run to several lines of descrip-
tion. It would be better to store this description in a variable-length format.

Numerical data
Another common type of data is numerical data — data that is stored as a
number. Decimal numbers (for example, 10.5, 2.34567, 23456.7) can be stored

56 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 56

as well as integers (for example, 1, 2, 248). When data is stored as a number,
it can be used in numerical operations, such as adding, subtracting, and
squaring. If data isn’t used for numerical operations, however, storing it as a
character string is better because the programmer will be using it as a char-
acter string. No conversion is required. For example, you probably won’t
want to add the digits in the users’ phone numbers, so phone numbers
should be stored as character strings.

MySQL stores positive and negative numbers, but you can tell MySQL to
store only positive numbers. If your data is never negative, store the data as
unsigned (without using a + or – sign before the number). For example, a city
population or the number of pages in a document can never be negative.

MySQL provides a specific type of numeric column called an auto-increment
column. This type of column is automatically filled with a sequential number
when no specific number is provided. For example, when a table row is added
with 5 in the auto-increment column, the next row is automatically assigned
6 in the column, unless a different number is specified. Auto-increment
columns are useful when unique numbers are needed, such as a product
number or an order number.

Date and time data
A third common type of data is date and time data. Data stored as a date can
be displayed in a variety of date formats. It can also be used to determine the
length of time between two dates or two times — or between a specific date
or time and some arbitrary date or time.

Enumeration data
Sometimes data can have only a limited number of values. For example, the
only possible values for a column might be yes or no. MySQL provides a data
type called enumeration for use with this type of data. You tell MySQL what
values can be stored in the column (for example, yes, no), and MySQL will
not store any other values in the column.

MySQL data type names
When you create a database, you tell MySQL what kind of data to expect in a
particular column by using the MySQL names for data types. Table 3-1 shows
the MySQL data types used most often in Web database applications.

57Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 57

Table 3-1 MySQL Data Types
MySQL Data Type Description

CHAR(length) Fixed-length character string.

VARCHAR(length) Variable-length character string. The longest string that can
be stored is length, which must be between 1 and 255.

TEXT Variable-length character string with a maximum length
of 64K of text.

INT(length) Integer with a range from –2147483648 to +2147483647.
The number that can be displayed is limited by length.
For example, if length is 4, only numbers from –999 to 9999
can be displayed, even though higher numbers are stored.

INT(length) Integer with a range from 0 to 4294967295. length is the
UNSIGNED size of the number that can be displayed. For example, if

length is 4, only numbers up to 9999 can be displayed,
even though higher numbers are stored.

BIGINT A large integer. The signed range is –9223372036854775808
to 9223372036854775807. The unsigned range is 0 to
18446744073709551615.

DECIMAL Decimal number where length is the number of char-
(length,dec) acters that can be used to display the number, including

decimal points, signs, and exponents, and dec is the
maximum number of decimal places allowed. For example,
12.34 has a length of 5 and a dec of 2.

DATE Date value with year, month, and date. Displays the value
as YYYY-MM-DD (for example, 2006-04-03).

TIME Time value with hour, minute, and second. Displays as
HH:MM:SS.

DATETIME Date and time are stored together. Displays as YYYY-MM-
DD HH:MM:SS.

ENUM (“val1”, Only the values listed can be stored. A maximum of 65,535
”val2”...) values can be listed.

SERIAL A shortcut name for BIGINT UNSIGNED NOT NULL
AUTO_INCREMENT.

58 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 58

MySQL allows many other data types, but they’re needed less frequently. For
a description of all the available data types, see the MySQL online manual at
dev.mysql.com/doc/refman/5.0/en/data-types.html.

Writing it down
Here’s my usual nagging: Write it down. You probably spent substantial
time making the design decisions for your database. At this point, the deci-
sions are firmly fixed in your mind. You don’t believe that you can forget
them. However, suppose that a crisis intervenes; you don’t get back to
this project for two months. You will have to analyze your data and make
all the design decisions again. You can avoid this by writing down the deci-
sions now.

Document the organization of the tables, the column names, and all other
design decisions. A good format is a document that describes each table
in table format, with a row for each column and a column for each design
decision. For example, your columns would be column name, data type, and
description.

Taking a Look at the Sample
Database Designs

This section contains the database designs for the two example Web data-
base applications.

Stuff for Sale database tables
The database design for the Pet Catalog application includes three tables:
Pet, PetType, and PetColor. Tables 3-2 through 3-4 show the organization
of these tables. The table definition is not set in concrete; MySQL allows you
to change tables pretty easily. For example, if you set the data type for a vari-
able to CHAR(20) and find that isn’t long enough, you can easily change the
data type. The database design follows.

59Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 59

Table 3-2 PetCatalog Database Table 1: Pet
Variable Name Type Description

petID SERIAL Sequence number for pet (primary
key)

petName CHAR(25) Name of pet

petType CHAR(15) Category of pet

petDescription VARCHAR(255) Description of pet

price DECIMAL(9,2) Price of pet

pix CHAR(15) Path name to graphic file containing
picture of pet

Table 3-3 PetCatalog Database Table 2: PetType
Variable Name Type Description

petType CHAR(15) Name of pet category (primary key)

typeDescription VARCHAR(255) Description of category

Table 3-4 PetCatalog Database Table 3: PetColor
VVaarriiaabbllee NNaammee TTyyppee DDeessccrriippttiioonn

petName CHAR(25) Name of pet (primary key 1)

petColor CHAR(15) Color name (primary key 2)

pix CHAR(!5) Path name to graphic file
containing picture of pet

Members Only database tables
The database design for the Members Only application includes two tables —
Member and Login. Tables 3-5 and 3-6 document the organization of these
tables. The table definition is not set in concrete; MySQL allows you to change
tables pretty easily. If you set the data type for a variable to CHAR(5) and
find that it isn’t long enough, it’s easy to change the data type. The database
design follows.

60 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 60

Table 3-5 MemberDirectory Database Table 1: Member
Variable Name Type Description

loginName VARCHAR(20) User-specified login name (primary key)

password CHAR(255) User-specified password

createDate DATE Date member registered and created login
account

lastName VARCHAR(50) Member’s last name

firstName VARCHAR(40) Member’s first name

street VARCHAR(50) Member’s street address

city VARCHAR(50) Member’s city

state CHAR(2) Member’s state

zip CHAR(10) Member’s zip code

email VARCHAR(50) Member’s e-mail address

phone CHAR(15) Member’s phone number

fax CHAR(15) Member’s fax number

Table 3-6 MemberDirectory Database Table 2: Login
Variable Name Type Description

loginName VARCHAR(20) Login name specified by user (primary key 1)

loginTime DATETIME Date and time of login (primary key 2)

Developing the Application
After you develop a plan listing the tasks that your application will perform
and you develop a database design, you’re ready to create your application.
First you build the database, and then you write your PHP programs. You are
moments away from a working Web database application. Well, perhaps
that’s an exaggeration. But you are making progress.

61Chapter 3: Developing a Web Database Application

07_096004 ch03.qxp 10/11/06 9:18 PM Page 61

Building the database
Building the database means turning the paper database design into a work-
ing database. Building the database is independent of the PHP programs that
your application uses to interact with the database. The database can be
accessed using programming languages other than PHP, such as Perl, C, or
Java. The database stands on its own to hold the data.

You should build the database before writing the PHP programs. The PHP
programs are written to move data in and out of the database, so you can’t
develop and test them until the database is available.

The database design names the database and defines the tables that make
up the database. To build the database, you communicate with MySQL by
using the SQL language. You tell MySQL to create the database and to add
tables to the database. You tell MySQL how to organize the data tables and
what format to use to store the data. Detailed instructions for building the
database are provided in Chapter 4.

Writing the programs
Your programs perform the tasks for your Web database application. They
create the display that the user sees in the browser window. They make your
application interactive by accepting and processing information typed in the
browser window by the user. They store information in the database and get
information out of the database. The database is useless unless you can
move data in and out of it.

The plan that you develop (as I discuss in the earlier sections in this chapter)
outlines the programs that you need to write. In general, each task in your
plan calls for a program. If your plan says that your application will display a
form, you need a program that displays a form. If your plan says that your
application will store the data from a form, you need a program that gets the
data from the form and puts it in the database.

The PHP language was developed specifically to write interactive Web appli-
cations. It has the built-in functionality needed to make writing application
programs as painless as possible. Methods were included in the language
specifically to access data from forms, to put data into a MySQL database,
and to get data from a MySQL database. Detailed instructions for writing PHP
programs are provided in Part III.

62 Part I: Developing a Web Database Application Using PHP and MySQL

07_096004 ch03.qxp 10/11/06 9:18 PM Page 62

Part II
MySQL Database

08_096004 pt02.qxp 10/11/06 9:18 PM Page 63

In this part . . .

This part provides the details of working with a MySQL
database. You find out how to use SQL (Structured

Query Language) to communicate with MySQL. In addi-
tion, you discover how to create a database, change a
database, and move data into and out of a database.

08_096004 pt02.qxp 10/11/06 9:18 PM Page 64

Chapter 4

Building the Database
In This Chapter
� Using SQL to make requests to MySQL

� Creating a new database

� Adding information to an existing database

� Looking at information in an existing database

� Removing information from an existing database

After completing your database design (see Chapter 3 if you haven’t done
this yet), you’re ready to turn it into a working database. In this chapter,

you find out how to build a database based on your design — and how to
move data into and out of it.

The database design names the database and defines the tables that make up
the database. To build the database, you must communicate with MySQL,
providing the database name and the table structure. Later, you must commu-
nicate with MySQL to add data to (or request information from) the database.
The language that you use to communicate with MySQL is SQL. In this chap-
ter, I explain how to create SQL queries and use them to build new databases
and interact with existing databases.

Communicating with MySQL
The MySQL server is the manager of your database:

� It creates new databases.

� It knows where the databases are stored.

� It stores and retrieves information, guided by the requests, or queries,
that it receives.

To make a request that MySQL can understand, you build an SQL query and
send it to the MySQL server. (For a more complete description of the MySQL
server, see Chapter 1.) The next two sections detail how to do this.

09_096004 ch04.qxp 10/11/06 9:25 PM Page 65

Building SQL queries
SQL (Structured Query Language) is the computer language that you use to
communicate with MySQL. SQL is almost English; it is made up largely of
English words, put together into strings of words that sound similar to English
sentences. In general (fortunately), you don’t need to understand any arcane
technical language to write SQL queries that work.

The first word of each query is its name, which is an action word (a verb)
that tells MySQL what you want to do. The queries that I discuss in this chap-
ter are CREATE, DROP, ALTER, SHOW, INSERT, LOAD, SELECT, UPDATE, and
DELETE. This basic vocabulary is sufficient to create — and interact with —
databases on Web sites.

The query name is followed by words and phrases — some required and
some optional — that tell MySQL how to perform the action. For instance,
you always need to tell MySQL what to create, and you always need to tell it
which table to insert data into or to select data from.

The following is a typical SQL query. As you can see, it uses English words:

SELECT lastName FROM Member

This query retrieves all the last names stored in the table named Member.
More complicated queries, such as the following, are less English-like:

SELECT lastName,firstName FROM Member WHERE state=”CA” AND
city=”Fresno” ORDER BY lastName

This query retrieves all the last names and first names of members who live
in Fresno and then puts them in alphabetical order by last name. This query
is less English-like but still pretty clear.

Here are some general points to keep in mind when constructing an SQL
query, as illustrated in the preceding sample query:

� Capitalization: In this book, I put SQL language words in all caps; items
of variable information (such as column names) are usually given labels
that are all or mostly lowercase letters. I did this to make it easier for
you to read — not because MySQL needs this format. The case of the
SQL words doesn’t matter; for example, select is the same as SELECT,
and from is the same as FROM, as far as MySQL is concerned. On the
other hand, the case of the table names, column names, and other vari-
able information does matter if your operating system is Unix or Linux.
When using Unix or Linux, MySQL needs to match the column names
exactly, so the case for the column names has to be correct — for exam-
ple, lastname is not the same as lastName. Windows, however, isn’t as
picky as Unix and Linux; from its point of view, lastname and lastName
are the same.

66 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 66

� Spacing: SQL words must be separated by one or more spaces. It doesn’t
matter how many spaces you use; you could just as well use 20 spaces
or just 1 space. SQL also doesn’t pay any attention to the end of the line.
You can start a new line at any point in the SQL statement or write the
entire statement on one line.

� Quotes: Notice that CA and Fresno are enclosed in double quotes (“) in
the preceding query. CA and Fresno are series of characters called text
strings, or character strings. (I explain strings in detail later in this chapter.)
You are asking MySQL to compare the text strings in the SQL query with
the text strings already stored in the database. When you compare num-
bers (such as integers) stored in numeric columns, you don’t enclose
the numbers in quotes. (In Chapter 3, I explain the types of data that can
be stored in a MySQL database.)

Sending SQL queries
This book is about PHP and MySQL as a pair. Consequently, I don’t describe
the multitude of ways in which you can send SQL queries to MySQL — many
of which have nothing to do with PHP. Rather, I provide a simple PHP program
that you can use to execute SQL queries. (For the lowdown on PHP and how
to write PHP programs, check out Part III.)

The program mysql_send.php has one simple function: to execute queries
and display the results. Enter the program into the directory where you’re
developing your Web application (or download it from my Web site at
janet.valade.com), change the information in lines 13–15, and then point
your browser at the program. Listing 4-1 shows the program.

Listing 4-1: PHP Program for Sending SQL Queries to MySQL

<?php
/*Program: mysql_send.php
*Desc: PHP program that sends an SQL query to the
* MySQL server and displays the results.
*/
echo “<html>

<head><title>SQL Query Sender</title></head>
<body>”;

if(ini_get(“magic_quotes_gpc”) == “1”)
{

$_POST[‘query’] = stripslashes($_POST[‘query’]);
}
$host=”hostname”;
$user=” mysqlaccountname”;
$password=” mysqlpassword”;

/* Section that executes query and displays the results */

(continued)

67Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 67

Listing 4-1 (continued)
if(!empty($_POST[‘form’]))
{
$cxn = mysqli_connect($host,$user,$password,

$_POST[‘database’]);
$result = mysqli_query($cxn,$_POST[‘query’]);
echo “Database Selected: {$_POST[‘database’]}

Query: {$_POST[‘query’]}
<h3>Results</h3><hr>”;

if($result == false)
{

echo “<h4>Error: “.mysqli_error($cxn).”</h4>”;
}
elseif(@mysqli_num_rows($result) == 0)
{

echo “<h4>Query completed.
No results returned.</h4>”;

}
else
{
/* Display results */
echo “<table border=’1’><thead><tr>”;
$finfo = mysqli_fetch_fields($result);
foreach($finfo as $field)
{

echo “<th>”.$field->name.”</th>”;
}
echo “</tr></thead>

<tbody>”;
for ($i=0;$i < mysqli_num_rows($result);$i++)
{

echo “<tr>”;
$row = mysqli_fetch_row($result);
foreach($row as $value)
{

echo “<td>”.$value.”</td>”;
}
echo “</tr>”;

}
echo “</tbody></table>”;

}
/* Display form with only buttons after results */
$query = str_replace(“‘“,”%&%”,$_POST[‘query’]);
echo “<hr>

<form action=’{$_SERVER[‘PHP_SELF’]}’ method=’POST’>
<input type=’hidden’ name=’query’ value=’$query’>
<input type=’hidden’ name=’database’

value={$_POST[‘database’]}>
<input type=’submit’ name=’queryButton’

value=’New Query’>
<input type=’submit’ name=’queryButton’

68 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 68

value=’Edit Query’>
</form>”;

exit();
}

/* Displays form for query input */
if (@$_POST[‘queryButton’] != “Edit Query”)
{

$query = “ “;
}
else
{

$query = str_replace(“%&%”,”’”,$_POST[‘query’]);
}
?>
<form action=”<?php echo $_SERVER[‘PHP_SELF’] ?>”

method=”POST”>
<table>
<tr><td style=’text-align: right; font-weight: bold’>

Type in database name</td>
<td><input type=”text” name=”database”

value=<?php echo @$_POST[‘database’] ?> ></td>
</tr>
<tr><td style=’text-align: right; font-weight: bold’

valign=”top”>Type in SQL query</td>
<td><textarea name=”query” cols=”60”

rows=”10”><?php echo $query ?></textarea></td>
</tr>
<tr><td colspan=”2” style=’text-align: center’>

<input type=”submit” value=”Submit Query”></td>
</tr>
</table>
<input type=”hidden” name=”form” value=”yes”>
</form>
</body></html>

The program in Listing 4-1 will not run correctly if you are using the mysql
functions, rather than the mysqli functions. The difference between mysql
and mysqli functions is discussed in Chapter 2. You must change the mysqli
functions to mysql functions, with some small syntax changes as well, as
discussed in the beginning of Chapter 8. In addition, this program uses the
function mysqli_fetch_fields, which has no comparable mysql function.
Consequently, you must replace lines 39–43, shown next:

$finfo = mysqli_fetch_fields($result);
foreach($finfo as $field)
{

echo “<th>”.$field->name.”</th>”;
}

69Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 69

with the following lines:

for($i = 0;$i < mysql_num_fields($result);$i++)
{

echo “<th>”.mysql_field_name($result,$i).
“</th>”;

}

Whether you are using the program as it is in Listing 4-1 or changing the pro-
gram to use the mysql functions mentioned in the preceding warning, you
need to change lines 13, 14, and 15 of the program before you can use it.
These lines are

$host=”hostname”;
$user=”mysqlaccountname”;
$password=”mysqlpassword”;

Change hostname to the name of the computer where MySQL is installed,
for example, databasehost.mycompany.com. If the MySQL database is
installed on the same computer as your Web site, you can use localhost.

Change mysqlaccountname and mysqlpassword to the account name and
password that you were given by the MySQL administrator to use to access
your database. If you installed MySQL yourself, an account named root is
automatically installed. The root account may be installed with no password
or you may have been prompted to enter a password for root during the
installation process. Sometimes an account with a blank account name and
password is installed. You can use the root or the blank account, but it’s much
better if you install an account specifically for use with your Web database
application. (I discuss MySQL accounts and passwords in detail in Chapter 5.)

An account named root with no password is not secure. You should give the
root account a password right away. An account with a blank account name
and password is even less secure because anyone can access your database
without needing to know an account name or a password. You should delete
this account if it exists (see Chapter 5).

If your MySQL account doesn’t require a password, type nothing between the
double quotes, as follows:

$password=””;

After you enter the correct hostname, account name, and password in
mysqlsend.php, these are the general steps that you follow to execute a
query:

1. Point your browser at mysql_send.php.

You see the Web page shown in Figure 4-1.

2. In the large text box, type the SQL query.

70 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 70

3. In the first text box, enter a database name if the SQL query
requires one.

I explain the details of writing specific SQL queries in the following sec-
tions of this chapter.

4. Click the Submit Query button.

The query is executed, and a page is displayed, showing the results of
the query. If your query had an error, the error message is displayed.

You can test the mysql_send.php program by entering the following test
query in Step 2 of the preceding steps:

SHOW DATABASES

This query does not require you to enter a database name, so you can skip
Step 3. When you click the Submit Query button in Step 4, a listing of existing
databases is displayed. In most cases, you see a database called Test, which
is installed automatically when MySQL is installed. Also, you’ll probably see a
database called mysql, which MySQL uses to store information that it needs,
such as account names, passwords, and permissions. Even if there are no
existing databases, your SQL query will execute correctly. If a problem occurs,
an error message is displayed. MySQL error messages are usually pretty help-
ful in finding the problem.

Figure 4-1:
An SQL

query Web
page pro-
duced by

mysql_
send.php.

71Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 71

72 Part II: My SQL Database

A quicker way to send SQL queries
to the MySQL server

When MySQL is installed, a simple, text-based program called mysql (or sometimes the terminal
monitor or the monitor) is also installed. Programs that communicate with servers are client software;
because this program communicates with the MySQL server, it’s a client. When you enter SQL
queries in this client, the response is returned to the client and displayed onscreen. The monitor
program can send queries across a network; it doesn’t have to be running on the machine where
the database is stored.

To send SQL queries to MySQL by using the mysql client, follow these steps:

1. Locate the mysql client.

By default, the mysql client program is installed in the subdirectory bin, under the directory
where MySQL is installed. In Unix/Linux, the default is /usr/local/mysql/bin or
/usr/local/bin. In Windows, the default is c:\Program Files\MySQL\MySQL
Server 5.0\bin. However, the client might be installed in a different directory. Or, if you’re
not the MySQL administrator, you might not have access to the mysql client. If you don’t know
where MySQL is installed or can’t run the client, ask the MySQL administrator to put the client
somewhere where you can run it or to give you a copy that you can put on your own computer.

2. Start the client.

In Unix and Linux, type the path/filename (for example, /usr/local/mysql/bin/
mysql). In Windows, open a command prompt window and then type the path\filename (for
example, c:\ Program Files\MySQL\MySQL Server 5.0\bin\mysql). This
command will start the client if you don’t need to use an account name or a password. If you
need to enter an account or a password or both, use the following parameters:

-u user: user is your MySQL account name.

-p: This parameter prompts you for the password for your MySQL account.

For instance, if you’re in the directory where the mysql client is located, the command might
look like this:

mysql -u root -p

3. If you’re starting the mysql client to access a database across the network, use the follow-
ing parameter after the mysql command:

-h host: host is the name of the machine where MySQL is located.

For instance, if you’re in the directory where the mysql client is located, the command might
look like this:

mysql -h mysqlhost.mycompany.com -u root -p

Press Enter after typing the command.

4. Enter your password when prompted for it.

09_096004 ch04.qxp 10/11/06 9:25 PM Page 72

Building a Database
A database has two parts: a structure to hold the data and the data itself.
In the following few sections, I explain how to create the database structure.
First you create an empty database with no structure at all, and then you add
tables to it.

The SQL queries that you use to work with the database structure are
CREATE, ALTER, DROP, and SHOW. To use these queries, you must have a
MySQL account that has permission to create, alter, and drop databases and
tables. See Chapter 5 for more on MySQL accounts.

Creating a new database
To create a new, empty database, use the following SQL query:

CREATE DATABASE databasename

where databasename is the name that you give the database. For instance,
these two SQL queries create the sample databases used in this book:

CREATE DATABASE PetCatalog
CREATE DATABASE MemberDirectory

73Chapter 4: Building the Database

The mysql client starts, and you see something similar to this:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 5.0.15
Type ‘help;’ or ‘\h’ for help. Type ‘\c’ to clear the

buffer.
mysql>

5. Select the database that you want to use.

At the mysql prompt, type the following: use databasename.

Use the name of the database that you want to query.

6. At the mysql prompt, type your SQL query followed by a semicolon (;), and then press the
Enter key.

The mysql client continues to prompt for input and does not execute the query until you enter
a semicolon. The response to the query is displayed onscreen.

7. To leave the mysql client, type quit at the prompt and then press the Enter key.

09_096004 ch04.qxp 10/11/06 9:25 PM Page 73

Some Web hosting companies don’t allow you to create a new database.
You are given one database to use with MySQL, and you can create tables in
only this one database. You can try requesting another database, but you
need a good reason. MySQL and PHP don’t care that all your tables are in one
database instead of organized into databases with meaningful names. It’s just
easier for humans to keep track of projects when they’re organized.

To see for yourself that a database was in fact created, use this SQL query:

SHOW DATABASES

After you create an empty database, you can add tables to it. (Adding tables
to a database is described later in this chapter.)

Deleting a database
You can delete any database with this SQL query:

DROP DATABASE databasename

Use DROP carefully because it is irreversible. After a database is dropped, it is
gone forever. And any data that was in it is gone as well.

Adding tables to a database
You can add tables to any database, whether it’s a new, empty database that
you just created or an existing database that already has tables and data in it.
You use the CREATE query to add tables to a database.

In the sample database designs that I introduce in Chapter 3, the PetCatalog
database is designed with three tables: Pet, PetType, and PetColor.
The MemberDirectory database is designed with two tables: Member and
Login. Because a table is created in a database, you must indicate the data-
base name where you want the table created. That is, when using the form
shown in Figure 4-1, you must type a database name in the top field. If you
don’t, you see the error message No Database Selected.

The query to add a table begins with

CREATE TABLE tablename

Next comes a list of column names with definitions. The information for each
column is separated from the information for the next column by a comma.
The entire list is enclosed in parentheses. Each column name is followed by
its data type (I explain data types in detail in Chapter 3) and any other defini-
tions required. Here are some definitions that you can use:

74 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 74

� NOT NULL: This column must have a value; it can’t be empty.

� DEFAULT value: This value is stored in the column when the row is cre-
ated if no other value is given for this column.

� AUTO_INCREMENT: You use this definition to create a sequence number.
As each row is added, the value of this column increases by one integer
from the last row entered. You can override the auto number by assign-
ing a specific value to the column.

� UNSIGNED: You use this definition to indicate that the values for this
numeric field will never be negative numbers.

The last item in a CREATE TABLE query indicates which column or com-
bination of columns is the unique identifier for the row — the primary key.
Each row of a table must have a field or a combination of fields that is differ-
ent for each row. No two rows can have the same primary key. If you attempt
to add a row with the same primary key as a row already in the table, you get
an error message, and the row is not added. The database design identifies
the primary key (as I describe in Chapter 3). You specify the primary key by
using the following format:

CREATE TABLE Member (
loginName VARCHAR(20) NOT NULL,
createDate DATE NOT NULL),

PRIMARY KEY(columnname))

The columnname is enclosed in parentheses. If you’re using a combination
of columns as the primary key, include all the column names, separated by
commas. For instance, you would designate the primary key for the Login
table in the MemberDirectory database by using this in the CREATE query:

PRIMARY KEY (loginName,loginTime)

Listing 4-2 shows the CREATE TABLE query used to create the Member table
of the MemberDirectory database. You could enter this query on a single
line if you wanted to. MySQL doesn’t care how many lines you use. However,
the format shown in Listing 4-2 makes it easier to read. This human-friendly
format also helps you spot typos.

Listing 4-2: An SQL Query for Creating a Table

CREATE TABLE Member (
loginName VARCHAR(20) NOT NULL,
createDate DATE NOT NULL,
password CHAR(255) NOT NULL,
lastName VARCHAR(50),
firstName VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),

75Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 75

Listing 4-2 (continued)
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15),

PRIMARY KEY(loginName))

Notice that the list of column names in Listing 4-2 is enclosed in parentheses
(one on the first line and one on the last line), and a comma follows each
column definition.

Remember not to use any MySQL reserved words for column names, as I dis-
cuss in Chapter 3. If you do, MySQL gives you an error message that looks
like this:

You have an error in your SQL syntax near ‘order var(20))’ at line 1

Note that this message shows the column definition that it didn’t like and the
line where it found the offending definition. However, the message doesn’t tell
you much about what the problem is. The error in your SQL syntax that
it refers to is the use of the MySQL reserved word order as a column name.

After a table has been created, you can query to see it, review its structure,
or remove it.

� To see the tables that have been added to a database, use this query:

SHOW TABLES

� To see the structure of a table, use this query:

DESCRIBE tablename

� To remove any table, use this query:

DROP TABLE tablename

Use DROP carefully because it is irreversible. After a table is dropped, it
is gone forever. And any data that was in it is gone as well.

Changing the database structure
Your database isn’t written in stone. By using the ALTER query, you can change
the name of the table; add, drop, or rename a column; or change the data type
or other attributes of the column.

The basic format for this query is ALTER TABLE tablename, followed by
the specified changes. Table 4-1 shows the changes that you can make.

76 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 76

Table 4-1 Changes You Can Make with the ALTER Query
Change Description

ADD columnname Adds a column; definition includes the data
definition type and optional definitions.

ALTER columnname Changes the default value for a column.
SET DEFAULT value

ALTER columnname Removes the default value for a column.
DROP DEFAULT

CHANGE columnname Changes the definition of a column and renames
newcolumnname the column; definition includes the data type
definition and optional definitions.

DROP columnname Deletes a column, including all the data in the
column. The data cannot be recovered.

MODIFY columnname Changes the definition of a column; definition
definition includes the data type and optional definitions.

RENAME newtablename Renames a table.

Changing a database is not a rare occurrence. You might want to change your
database for many reasons. For example, suppose that you defined the column
lastName with VARCHAR(20) in the Member table of the MemberDirectory
database. At the time, 20 characters seemed sufficient for a last name. But now
you just received a memo announcing the new CEO, John Schwartzheimer-
Losertman. Oops. MySQL will truncate his name to the first 20 letters, a
less-than-desirable new name for the boss. So you need to make the column
wider — pronto. Send this query to change the column in a second:

ALTER TABLE Member MODIFY lastName VARCHAR(50)

Moving Data Into and
Out of the Database

An empty database is like an empty cookie jar — it’s not much fun. And search-
ing an empty database is no more interesting or fruitful than searching an
empty cookie jar. A database is only useful with respect to the information
that it holds.

77Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 77

A database needs to be able to receive information for storage and to deliver
information on request. For instance, the MemberDirectory database needs
to be able to receive the member information, and it also needs to be able to
deliver its stored information when you request it. If you want to know the
address of a particular member, for example, the database needs to deliver
that information when you request it.

Your MySQL database responds to four types of requests:

� Adding information: Adding a row to a table.

� Updating information: Changing information in an existing row.
This includes adding data to a blank field in an existing row.

� Retrieving information: Looking at the data. This request does not
remove data from the database.

� Removing information: Deleting data from the database.

Sometimes your question requires information from more than one table.
For instance, the question, “How much does a green dragon cost?” requires
information from the Pet table and from the Color table. You can ask this
question easily in a single SELECT query by combining the tables.

In the following sections, I discuss how to receive and deliver information as
well as how to combine tables.

Adding information
Every database needs data. For example, you might want to add data to your
database so that your users can look at it — an example of this is the Pet
Catalog that I introduce in Chapter 3. Or you might want to create an empty
database for users to put data into, making the data available for your eyes
only — an example of this is the Member Directory. In either scenario, data
will be added to the database.

If your data is still on paper, you can enter it directly into a MySQL database, one
row at a time, by using an SQL query. However, if you have a lot of data, this
process could be tedious and involve a lot of typing. Suppose that you have
information on 1000 products that must be added to your database. Assuming
that you’re greased lightening on a keyboard and can enter a row per minute,
that’s 16 hours of rapid typing — well, rapid editing, anyway. Doable, but not fun.
On the other hand, suppose that you need to enter 5000 members of an orga-
nization into a database and that it takes five minutes to enter each member.
Now you’re looking at more than 400 hours of typing — who has time for that?

If you have a large amount of data to enter, consider some alternatives.
Sometimes scanning in the data is an option. Or perhaps you need to beg,
borrow, or hire some help. In many cases, it could be faster to enter the
data into a big text file than to enter each row in a separate SQL query.

78 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 78

The SQL query LOAD can read data from a big text file (or even a small text
file). So, if your data is already in a computer file, you can work with that file;
you don’t need to type all the data again. Even if the data is in a format other
than a text file (for example, in an Excel, Access, or Oracle file), you can usu-
ally convert the file to a big text file, which can then be read into your MySQL
database. If the data isn’t yet in a computer file and there’s a lot of data, it
might be faster to enter that data into the computer in a big text file and
transfer it into MySQL as a second step.

Most text files can be read into MySQL, but some formats are easier than
others. If you’re planning to enter the data into a big text file, read the sec-
tion, “Adding a bunch of data,” to find the best format. Of course, if the data
is already on the computer, you have to work with the file as it is.

Adding one row at a time
You use the INSERT query to add a row to a database. This query tells MySQL
which table to add the row to and what the values are for the fields in the row.
The general form of the query is

INSERT INTO tablename (columnname, columnname,...,columnname)
VALUES (value, value,...,value)

The following rules apply to the INSERT query:

� Values must be listed in the same order in which the column names
are listed. The first value in the value list is inserted into the column
that’s named first in the column list; the second value in the value list is
inserted into the column that’s named second; and so on.

� A partial column list is allowed. You don’t need to list all the columns.
Columns that are not listed are given their default value or left blank if
no default value is defined.

� A column list is not required. If you’re entering values for all the
columns, you don’t need to list the columns at all. If no columns are
listed, MySQL will look for values for all the columns, in the order in
which they appear in the table.

� The column list and value list must be the same length. If the list of
columns is longer or shorter than the list of values, you get an error
message like this: Column count doesn’t match value count.

The following INSERT query adds a row to the Member table:

INSERT INTO Member (loginName,createDate,password,lastName,
street,city,state,zip,email,phone,fax)

VALUES (“bigguy”,”2001-Dec-2”,”secret”,”Smith”,
“1234 Happy St”,”Las Vegas”,”NV”,”88888”,
“gsmith@GSmithCompany.com”,”(555) 555-5555”,””)

79Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 79

Notice that firstName is not listed in the column name list. No value is
entered into the firstName field. If firstName were defined as NOT NULL,
MySQL would not allow this. Also, if the definition for firstName included a
default, the default value would be entered, but because it doesn’t, the field is
left empty. Notice that the value stored for fax is an empty string.

To look at the data that you entered and ensure that you entered it correctly,
use an SQL query that retrieves data from the database. I describe these SQL
queries in detail in “Retrieving information,” later in this chapter. In brief, the
following query retrieves all the data in the Member table:

SELECT * FROM Member

Adding a bunch of data
If you have a large amount of data to enter and it’s already in a computer file,
you can transfer the data from the existing computer file to your MySQL data-
base. The SQL query that reads data from a text file is LOAD. The LOAD query
requires you to specify a database.

Because data in a database is organized in rows and columns, the text file
being read must indicate where the data for each column begins and ends
and where the end of a row is. To indicate columns, a specific character sepa-
rates the data for each column. By default, MySQL looks for a tab character
to separate the fields. However, if a tab doesn’t work for your data file, you
can choose a different character to separate the fields and tell MySQL in the
query that a different character than the tab separates the fields. Also by
default, the end of a line is expected to be the end of a row — although you
can choose a character to indicate the end of a line if you need to. A data file
for the Pet table might look like this:

Unicorn<TAB>horse<TAB>Spiral horn<Tab>5000.00<Tab>/pix/unicorn.jpg
Pegasus<TAB>horse<TAB>Winged<Tab>8000.00<Tab>/pix/pegasus.jpg
Lion<TAB>cat<TAB>Large; Mane on neck<Tab>2000.00<Tab>/pix/lion.jpg

A data file with tabs between the fields is a tab-delimited file. Another common
format is a comma-delimited file, where commas separate the fields. If your
data is in another file format, you need to convert it into a delimited file.

To convert data in another file format into a delimited file, check the manual
for that software or talk to your local expert who understands the data’s cur-
rent format. Many programs, such as Excel, Access, and Oracle, allow you
to output the data into a delimited file. For a text file, you might be able to
convert it to delimited format by using the search-and-replace function of an
editor or word processor. For a truly troublesome file, you might need to seek
the help of an expert or a programmer.

The basic form of the LOAD query is

80 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 80

LOAD DATA INFILE “path/datafilename” INTO TABLE tablename

The query loads data from a text file located on your server. If the filename
does not include a path, MySQL looks for the data file in the directory where
your table definition file, called tablename.frm, is located. By default, this
file is located in a directory named for your database, such as a directory
named PetDirectory. This directory is located in your data directory,
which is located in the main directory where MySQL is installed. For example,
if the file was named data.dat, the LOAD command might look for the file at
C:\Program Files\MySQL\MySQL Server 5.0\data\PetDirectory\
data.dat.

This basic form can be followed by optional phrases if you want to change a
default delimiter. The options are

FIELDS TERMINATED BY ‘character’
FIELDS ENCLOSED BY ‘character’
LINES TERMINATED BY ‘character’

Suppose that you have the data file for the Pet table, shown previously in
this section, except that the fields are separated by a comma rather than a
tab. The name of the data file is pets.dat, and it’s located in the same direc-
tory as the database. The SQL query to read the data into the table is

LOAD DATA INFILE “pets.dat” INTO TABLE Pet
FIELDS TERMINATED BY ‘,’

To use the LOAD DATA INFILE query, the MySQL account must have the
FILE privilege on the server host. I discuss MySQL account privileges in
Chapter 5.

You can also load data from a text file on your local computer by using the
word LOCAL, as follows:

LOAD DATA LOCAL INFILE “path/datafilename”
INTO TABLE tablename

You must include a path to the file. Use forward slashes for the path, even on
a Windows computer, such as “C:/data/datafile1.txt”. If you get an
error message when sending this query, LOCAL may not be enabled. Enabling
LOCAL is discussed in Chapter 5.

To look at the data that you loaded — to make sure that it’s correct — use an
SQL query that retrieves data from the database. I describe these types of
SQL queries in detail in the next section. In brief, use the following query to
look at all the data in the table so that you can check it:

SELECT * FROM Pet

81Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 81

Retrieving information
The only purpose in storing information is to have it available when you need
it. A database lives to answer questions. What pets are for sale? Who are the
members? How many members live in Arkansas? Do you have an alligator for
sale? How much does a dragon cost? What is Goliath Smith’s phone number?
And on and on. You use the SELECT query to ask the database questions.

The simplest, basic SELECT query is

SELECT * FROM tablename

This query retrieves all the information from the table. The asterisk (*) is a
wildcard meaning all the columns.

The SELECT query can be much more selective. SQL words and phrases in
the SELECT query can pinpoint the information needed to answer your ques-
tion. You can specify what information you want, how you want it organized,
and the source of the information:

� You can request only the information (the columns) that you need to
answer your question. For instance, you can request only the first and
last names to create a list of members.

� You can request information in a particular order. For instance, you
can request that the information be sorted in alphabetical order.

� You can request information from selected objects (the rows) in your
table. (See Chapter 3 for an explanation of database objects.) For instance,
you can request the first and last names for only those members whose
addresses are in Florida.

In MySQL 4.1, MySQL added the ability to nest a SELECT query inside another
query. The nested query is called a subquery. You can use a subquery in
SELECT, INSERT, UPDATE, or DELETE queries or in SET clauses. A subquery
can return a single value, a single row or column, or a table, which is used in
the outer query. All the features of SELECT queries can be used in subqueries.
See the MySQL online manual at dev.mysql.com/doc/refman/5.0/en/
subqueries.html for detailed information on using subqueries.

Retrieving specific information
To retrieve specific information, list the columns containing the information
you want. For example:

SELECT columnname,columnname,columnname,... FROM tablename

82 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 82

This query retrieves the values from all the rows for the indicated column(s).
For instance, the following query retrieves all the last names and first names
stored in the Member table:

SELECT lastName,firstName FROM Member

You can perform mathematical operations on columns when you select them.
For example, you can use the following SELECT query to add two columns:

SELECT col1+col2 FROM tablename

Or you could use the following query:

SELECT price,price*1.08 FROM Pet

The result is the price and the price with the sales tax of 8 percent added.
You can change the name of a column when selecting it, as follows:

SELECT price,price*1.08 AS priceWithTax FROM Pet

The AS clause tells MySQL to give the name priceWithTax to the second
column retrieved. Thus, the query retrieves two columns of data: price and
priceWithTax.

In some cases, you don’t want to see the values in a column, but you want to
know something about the column. For instance, you might want to know the
lowest value in the column or the highest value in the column. Table 4-2 lists
some of the information that is available about a column.

Table 4-2 Information That Can Be Selected
SQL Format Description of Information

AVG(columnname) Returns the average of all the values in columnname

COUNT(columnname) Returns the number of rows in which columnname is
not blank

MAX(columnname) Returns the largest value in columnname

MIN(columnname) Returns the smallest value in columnname

SUM(columnname) Returns the sum of all the values in columnname

For example, the query to find out the highest price in the Pet table is

SELECT MAX(price) FROM Pet

83Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 83

SQL words that look like MAX() and SUM(), with parentheses following the
name, are functions. SQL provides many functions in addition to those in
Table 4-2. Some functions, like those in Table 4-2, provide information about a
column. Other functions change each value selected. For example, SQRT()
returns the square root of each value in the column, and DAYNAME() returns
the name of the day of the week for each value in a date column, rather than
the actual date stored in the column. More than 100 functions are available
for use in a SELECT query. For descriptions of all the functions, see the MySQL
online manual at dev.mysql.com/doc/refman/5.0/en/functions.html.

Retrieving data in a specific order
You might want to retrieve data in a particular order. For instance, in the
Member table, you might want members organized in alphabetical order by
last name. Or, in the Pet table, you might want the pets grouped by type of pet.

In a SELECT query, ORDER BY and GROUP BY affect the order in which the
data is delivered to you:

� ORDER BY: To sort information, use the phrase

ORDER BY columnname

The data is sorted by columnname in ascending order. For instance, if
columnname is lastName, the data is delivered to you in alphabetical
order by the last name.

You can sort in descending order by adding the word DESC before the
column name. For example:

SELECT * FROM Member ORDER BY DESC lastName

� GROUP BY: To group information, use the following phrase:

GROUP BY columnname

The rows that have the same value of columnname are grouped together.
For example, use this query to group the rows that have the same value
as petType:

SELECT * FROM Pet GROUP BY petType

You can use GROUP BY and ORDER BY in the same query.

Retrieving data from a specific source
Frequently, you don’t want all the information from a table. You want infor-
mation from selected database objects, that is, rows. Three SQL words are
frequently used to specify the source of the information:

� WHERE: Allows you to request information from database objects with
certain characteristics. For instance, you can request the names of
members who live in California, or you can list only pets that are cats.

84 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 84

� LIMIT: Allows you to limit the number of rows from which information
is retrieved. For instance, you can request all the information from the
first three rows in the table.

� DISTINCT: Allows you to request information from only one row of iden-
tical rows. For instance, in the Login table, you can request loginName
but specify no duplicate names, thus limiting the response to one record
for each member. This would answer the question, “Has the member
ever logged in?” rather than the question “How many times has the
member logged in?”

The WHERE clause of the SELECT query enables you to make complicated
selections. For instance, suppose your boss asks for a list of all the members
whose last names begin with B, who live in Santa Barbara, and who have an 8
in either their phone or fax number. I’m sure there are many uses for such a
list. You can get this list for your boss with a SELECT query by using a WHERE
clause.

The basic format of the WHERE clause is

WHERE expression AND|OR expression AND|OR expression ...

expression specifies a value to compare with the values stored in the
database. Only the rows containing a match for the expression are selected.
You can use as many expressions as needed, each one separated by AND or OR.
When you use AND, both of the expressions connected by the AND (that is,
both the expression before the AND and the expression after the AND) must
be true in order for the row to be selected. When you use OR, only one of the
expressions connected by the OR must be true for the row to be selected.

Some common expressions are shown in Table 4-3.

Table 4-3 Expressions for the WHERE Clause
Expression Example Result

column = value zip=”12345” Selects only the rows
where 12345 is stored in
the column named zip

column > value zip > “50000” Selects only the rows
where the zip code is
50001 or higher

column >= value zip >= “50000” Selects only the rows
where the zip code is
50000 or higher

(continued)

85Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 85

Table 4-3 (continued)
Expression Example Result

column < value zip < “50000” Selects only the rows
where the zip code is
49999 or lower

column <= value zip <= “50000” Selects only the rows
where the zip code is
50000 or lower

column BETWEEN zip BETWEEN Selects only the rows
value1 AND value2 “20000” AND where the zip code is

“30000” greater than 19999 but
less 30001

column IN zip IN Selects only the rows
(value1,value2,...) (“90001”, where the zip code is

”30044”) 90001 or 30044

column NOT IN zip NOT IN Selects only the rows
(value1,value2,...) (“90001”, where the zip code is

”30044”) any zip code except
90001 or 30044

column LIKE value — zip LIKE “9%” Selects all rows where
value can contain the the zip code begins
wildcards % (which matches with 9
any string) and _ (which
matches any character)

column NOT LIKE zip NOT LIKE Selects all rows where
value — value can contain “9%” the zip code does not
the wildcards % (which matches begin with 9
any string) and _ (which
matches any character)

You can combine any of the expressions in Table 4-3 with ANDs and ORs. In
some cases, you need to use parentheses to clarify the selection criteria. For
instance, you can use the following query to answer your boss’s urgent need
to find all people in the Member Directory whose names begin with B, who
live in Santa Barbara, and who have an 8 in either their phone or fax number:

SELECT lastName,firstName FROM Member
WHERE lastName LIKE “B%”
AND city = “Santa Barbara”
AND (phone LIKE “%8%” OR fax LIKE “%8%”)

86 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 86

Notice the parentheses in the last line. You would not get the results that
your boss asked for without the parentheses. Without the parentheses, each
connector would be processed in order from the first to the last, resulting in
a list that includes all members whose names begin with B and who live in
Santa Barbara and whose phone numbers have an 8 in them and all members
whose fax numbers have an 8 in them, whether they live in Santa Barbara or
not and whether their name begins with a B or not. When the last OR is
processed, members are selected whose characteristics match the expres-
sion before the OR or the expression after the OR. The expression before the
OR is connected to previous expressions by the previous ANDs and so does
not stand alone, but the expression after the OR does stand alone, resulting in
the selection of all members with an 8 in their fax number.

LIMIT specifies how many rows can be returned. The form for LIMIT is

LIMIT startnumber,numberofrows

The first row that you want to retrieve is startnumber, and the number of
rows to retrieve is numberofrows. If startnumber is not specified, 1 is
assumed. To select only the first three members who live in Texas, use this
query:

SELECT * FROM Member WHERE state=”TX” LIMIT 3

Some SELECT queries will find identical records, but in this example you want
to see only one — not all — of the identical records. To prevent the query
from returning all identical records, add the word DISTINCT immediately
after SELECT.

Combining information from tables
In previous sections of this chapter, I assume that all the information you
want is in a single table. However, you might want to combine information
from different tables. You can do this easily in a single query.

Two words can be used in a SELECT query to combine information from two
or more tables:

� UNION: Rows are retrieved from one or more tables and stored together,
one after the other, in a single result. For example, if your query selected
6 rows from one table and 5 rows from another table, the result would
contain 11 rows.

� JOIN: The tables are combined side by side, and the information is
retrieved from both tables.

87Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 87

UNION
UNION is used to combine the results from two or more select queries. The
results from each query are added to the result set following the results of
the previous query. The format of the UNION query is as follows:

SELECT query UNION ALL SELECT query ...

You can combine as many SELECT queries as you need. A SELECT query can
include any valid SELECT format, including WHERE clauses, LIMIT clauses,
and so on. The rules for the queries are

� All the select queries must select the same number of columns.

� The columns selected in the queries must contain the same type of data.

The result set will contain all the rows from the first query followed by all the
rows from the second query and so on. The column names used in the result
set are the column names from the first SELECT query.

The series of SELECT queries can select different columns from the same
table, but situations in which you want a new table with one column in a
table followed by another column from the same table are unusual. It’s much
more likely that you want to combine columns from different tables. For exam-
ple, you might have a table of members who have resigned from the club and
a separate table of current members. You can get a list of all members, both
current and resigned, with the following query:

SELECT lastName,firstName FROM Member UNION ALL
SELECT lastName,firstName FROM OldMember

The result of this query is the last and first names of all current members, fol-
lowed by the last and first names of all the members who have resigned.

Depending on how you organized your data, you might have duplicate names.
For instance, perhaps a member resigned, and his name is in the OldMember
table — but he joined again, so his name is added to the Member table. If you
don’t want duplicates, don’t include the word ALL. If ALL is not included,
duplicate lines are not added to the result.

You can use ORDER BY with each SELECT query, as I discuss in the previous
section, or you can use ORDER BY with a UNION query to sort all the rows in
the result set. If you want ORDER BY to apply to the entire result set, rather
than just to the query that it follows, use parentheses as follows:

(SELECT lastName FROM Member UNION ALL
SELECT lastName FROM OldMember) ORDER BY lastName

88 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 88

The UNION statement was introduced in MySQL 4.0. It is not available in
MySQL 3.

Join
Combining tables side by side is a join. Tables are combined by matching
data in a column — the column that they have in common. The combined
results table produced by a join contains all the columns from both tables.
For instance, if one table has two columns (memberID and height), and the
second table has two columns (memberID and weight), a join results in a
table with four columns: memberID (from the first table), height, memberID
(from the second table), and weight.

The two common types of joins are an inner join and an outer join. The differ-
ence between an inner and outer join is in the number of rows included in the
results table. The results table produced by an inner join contains only rows
that existed in both tables. The combined table produced by an outer join
contains all rows that existed in one table with blanks in the columns for the
rows that did not exist in the second table. For instance, if table1 contains a
row for Joe and a row for Sally, and table2 contains only a row for Sally, an
inner join would contain only one row: the row for Sally. However, an outer
join would contain two rows — a row for Joe and a row for Sally — even
though the row for Joe would have a blank field for weight.

The results table for the outer join contains all the rows for one table. If any
of the rows for that table don’t exist in the second table, the columns for the
second table are empty. Clearly, the contents of the results table are deter-
mined by which table contributes all its rows, requiring the second table to
match it. Two kinds of outer joins control which table sets the rows and
which match: a LEFT JOIN and a RIGHT JOIN.

You use different SELECT queries for an inner join and the two types of outer
joins. The following query is an inner join:

SELECT columnnamelist FROM table1,table2
WHERE table1.col2 = table2.col2

And these queries are outer joins:

SELECT columnnamelist FROM table1 LEFT JOIN table2
ON table1.col1=table2.col2

SELECT columnnamelist FROM table1 RIGHT JOIN table2
ON table1.col1=table2.col2

89Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 89

In all three queries, table1 and table2 are the tables to be joined. You can
join more than two tables. In both queries, col1 and col2 are the names of
the columns being matched to join the tables. The tables are matched based
on the data in these columns. These two columns can have the same name or
different names. The two columns must contain the same type of data.

As an example of inner and outer joins, consider a short form of the Pet
Catalog. One table is Pet, with the two columns petName and petType
holding the following data:

petName petType

Unicorn Horse
Pegasus Horse
Lion Cat

The second table is Color, with two columns petName and petColor hold-
ing the following data:

petName petColor

Unicorn white
Unicorn silver
Fish Gold

You need to ask a question that requires information from both tables. If you
do an inner join with the following query:

SELECT * FROM Pet,Color WHERE Pet.petName = Color.petName

you get the following results table with four columns: petName (from Pet),
petType, petName (from Color), and petColor.

petName petType petName petColor

Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver

Notice that only Unicorn appears in the results table — because only
Unicorn was in both of the original tables, before the join. On the other
hand, suppose you do a left outer join with the following query:

SELECT * FROM Pet LEFT JOIN Color
ON Pet.petName=Color.petName

You get the following results table, with the same four columns — petName
(from Pet), petType, petName (from Color), and petColor — but with
different rows:

90 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 90

petName petType petName petColor

Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver
Pegasus Horse <NULL> <NULL>
Lion Cat <NULL> <NULL>

This table has four rows. It has the same first two rows as the inner join, but
it has two additional rows — rows that are in the PetType table on the left
but not in the Color table. Notice that the columns from the table Color are
blank for the last two rows.

And, on the third hand, suppose that you do a right outer join with the fol-
lowing query:

SELECT * FROM Pet RIGHT JOIN Color
ON Pet.petName=Color.petName

You get the following results table, with the same four columns, but with still
different rows:

petName petType petName petColor

Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver
<NULL> <NULL> Fish Gold

Notice that these results contain all the rows for the Color table on the right
but not for the Pet table. Notice the blanks in the columns for the Pet table,
which doesn’t have a row for Fish.

The joins that I’ve talked about so far find matching entries in tables.
Sometimes it’s useful to find out which rows in a table have no matching
entries in another table. For example, suppose that you want to know who
has never logged into your Members Only section. Because you have one
table with the member’s login name and another table with the login dates,
you can ask this question by using the two tables. You can find out which
login names do not have an entry in the Login table with the following query:

SELECT loginName from Member LEFT JOIN Login
ON Member.loginName=Login.loginName
WHERE Login.loginName IS NULL

This query will give you a list of all the login names in Member that are not in
the Login table.

91Chapter 4: Building the Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 91

Updating information
Changing information in an existing row is updating the information. For
instance, you might need to change the address of a member because she
has moved, or you might need to add a fax number that a member left blank
when he originally entered his information.

The UPDATE query is straightforward:

UPDATE tablename SET column=value,column=value,...
WHERE clause

In the SET clause, you list the columns to be updated and the new values to
be inserted. List all the columns that you want to change in one query.
Without a WHERE clause, the values of the column(s) would be changed in
all rows. But with the WHERE clause, you can specify which rows to update.
For instance, to update an address in the Member table, use this query:

UPDATE Member SET street=”3333 Giant St”,
phone=”555-555-5555”

WHERE loginName=”bigguy”

Removing information
Keep the information in your database up to date by deleting obsolete infor-
mation. You can remove a row from a table with the DELETE query:

DELETE FROM tablename WHERE clause

Be extremely careful when using DELETE. If you use a DELETE query without
a WHERE clause, it will delete all the data in the table. I mean all the data.
I repeat, all the data. The data cannot be recovered. This function of the
DELETE query is right at the top of my don’t-try-this-at-home list.

You can delete a column from a table by using the ALTER query:

ALTER TABLE tablename DROP columnname

Or you could remove the whole thing and start over again with

DROP TABLE tablename

or

DROP DATABASE databasename

92 Part II: My SQL Database

09_096004 ch04.qxp 10/11/06 9:25 PM Page 92

Chapter 5

Protecting Your Data
In This Chapter
� Understanding MySQL data security

� Adding new MySQL accounts

� Modifying existing accounts

� Changing passwords

� Making backups

� Restoring data

Your data is essential to your Web database application. You have spent
valuable time developing your database, and it contains important infor-

mation entered by you or by your users. You need to protect it. In this chapter,
I show you how.

Controlling Access to Your Data
You need to control access to the information in your database. You need to
decide who can see the data and who can change it. Imagine what would
happen if your competitors could change the information in your online
product catalog or copy your list of customers — you’d be out of business
in no time flat. Clearly, you need to guard your data.

MySQL provides a security system for protecting your data. No one can
access the data in your database without an account. Each MySQL account
has the following attributes:

� A name

� A hostname — the machine from which the account can access the
MySQL server

� A password

� A set of permissions

10_096004 ch05.qxp 10/11/06 9:17 PM Page 93

To access your data, someone must use a valid account name and know the
password associated with that account. In addition, that person must be con-
necting from a computer that is permitted to connect to your database via
that specific account.

After the user is granted access to the database, what he or she can do to the
data depends on what permissions have been set for the account. Each account
is either allowed or not allowed to perform an operation in your database, such
as SELECT, DELETE, INSERT, CREATE, or DROP. The settings that specify what
an account can do are privileges, or permissions. You can set up an account
with all permissions, no permissions, or anything in between. For instance,
for an online product catalog, you want the customer to be able to see the
information in the catalog but not be able to change it.

When a user attempts to connect to MySQL and execute a query, MySQL con-
trols access to the data in two stages:

1. Connection verification: MySQL checks the validity of the account
name and password and checks whether the connection is coming from
a host that is allowed to connect to the MySQL server by using the spec-
ified account. If everything checks out, MySQL accepts the connection.

2. Request verification: After MySQL accepts the connection, it checks
whether the account has the necessary permissions to execute the
specified query. If it does, MySQL executes the query.

Any query that you send to MySQL can fail either because the connection is
rejected in the first step or because the query is not permitted in the second
step. An error message is returned to help you identify the source of the
problem.

In the following few sections, I describe accounts and permissions in detail.

Understanding account names
and hostnames
Together, the account name and hostname (the name of the computer that is
authorized to connect to the database) identify a unique account. Two accounts
with the same name but different hostnames can exist and can have different
passwords and permissions. However, you cannot have two accounts with
the same name and the same hostname.

94 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:17 PM Page 94

The MySQL server will accept connections from a MySQL account only when
it is connecting from hostname. When you build the GRANT or REVOKE query
(which I describe later in this chapter), you identify the MySQL account by
using both the account name and the hostname in the following format:
accountname@hostname (for instance, root@localhost).

The MySQL account name is completely unrelated in any way to the Unix,
Linux, or Windows user name (also sometimes called the login name). If you’re
using an administrative MySQL account named root, it is not related to the
Unix or Linux root login name. Changing the MySQL login name does not
affect the Unix, Linux, or Windows login name — and vice versa.

MySQL account names and hostnames are defined as follows:

� An account name can be up to 16 characters long. You can use special
characters in account names, such as a space or a hyphen (-). However,
you cannot use wildcards in the account name.

� An account name can be blank. If an account exists in MySQL with a
blank account name, any account name will be valid for that account.
A user could use any account name to connect to your database, given
that the user is connecting from a hostname that is allowed to connect
to the blank account name and uses the correct password, if required.
You can use an account with a blank name to allow anonymous users to
connect to your database.

� The hostname can be a name or an IP address. For example, it can be a
name such as thor.mycompany.com or an IP (Internet protocol) address
such as 192.163.2.33. The machine on which the MySQL server is
installed is localhost.

� The hostname can contain wildcards. You can use a percent sign (%)
as a wildcard; % matches any hostname. If you add an account for
george@%, someone using the account named george can connect to
the MySQL server from any computer.

� The hostname can be blank. A blank hostname is the same as using %
for the hostname.

An account with a blank account name and a blank hostname is possible.
Such an account would allow anyone to connect to the MySQL server by
using any account name from any computer. An account with a blank name
and a percent sign (%) for the hostname is the same thing. It is unlikely that
you would want such an account. Such an account is sometimes installed
when MySQL is installed, but it’s given no privileges, so it can’t do anything.

95Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:17 PM Page 95

When MySQL is installed, it automatically installs an account with all privileges:
root@localhost. Depending on your operating system, this account may
be installed without a password. Anyone who is logged in to the computer on
which MySQL is installed can access MySQL and do anything to it by using
the account named root. (Of course, root is a well-known account name, so
this account is not secure. If you’re the MySQL administrator, you should add
a password to this account immediately.)

On some operating systems, additional accounts besides root@localhost
are automatically installed. For instance, on Windows, an account called
root@% might be installed with no password protection. This root account
with all privileges can be used by anyone from any machine. You should
remove this account immediately or, at the very least, give it a password.

Finding out about passwords
A password is set up for every account. If no password is provided for the
account, the password is blank, which means that no password is required.
MySQL doesn’t have any limit for the length of a password, but sometimes
other software on your system limits the length to eight characters. If so, any
characters after eight are dropped.

For extra security, MySQL encrypts passwords before it stores them. That
means passwords are not stored in the recognizable characters that you
entered. This security measure ensures that no one can look at the stored
passwords and see what they are.

Unfortunately, some bad people out there might try to access your data by
guessing your password. They use software that tries to connect rapidly in
succession using different passwords — a practice called cracking. The follow-
ing are some recommendations for choosing a password that is as difficult to
crack as possible:

� Use six to eight characters.

� Include one or more of each of the following — uppercase letter, lower-
case letter, number, and punctuation mark.

� Do not use your account name or any variation of your account name.

� Do not include any word in a dictionary, including foreign language
dictionaries.

� Do not include a name.

� Do not use a phone number or a date.

96 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:17 PM Page 96

A good password is hard to guess and easy to remember. If it’s too hard to
remember, you might need to write it down, which defeats the purpose of
having a password. One way to create a good password is to use the first
characters of a favorite phrase. For instance, you could use the phrase
“All for one! One for all!” to make this password:

Afo!Ofa!

This password doesn’t include any numbers, but you can fix that by using the
numeral 4 instead of the letter f. Then your password is

A4o!O4a!

Or you could use the number 1 instead of the letter o to represent one.
Then the password is

A41!14a!

This password is definitely hard to guess. Other ways to incorporate numbers
into your passwords include substituting 1 (one) for the letter l or substituting
0 (zero) for the letter o.

Taking a look at account permissions
MySQL uses account permissions to specify who can do what. Anyone using
a valid account can connect to the MySQL server, but he or she can only do
those things that are allowed by the permissions for the account. For example,
an account might be set up so that users can select data but cannot insert or
update data.

Permissions can be granted for particular databases, tables, or columns.
For instance, an account can be set up that allows the user to select data
from all the tables in the database but insert data into only one table and
update only a single column in a specific table.

Permissions are added by using the GRANT query and removed by using the
REVOKE query. The GRANT or REVOKE query must be sent using an account
that has permission to execute GRANT or REVOKE statements in the database.
If you attempt to send a GRANT query or a REVOKE query using an account
without grant permission, you get an error message. For instance, if you try
to grant permission to use a select query, and you send the query using an
account that does not have permission to grant permissions, you might see
the following error message:

grant command denied

97Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:17 PM Page 97

Permissions can be granted or removed individually or all at once. Table 5-1
lists some permissions that you might want to assign or remove.

Table 5-1 MySQL Account Permissions
Permission Description

ALL All permissions

ALTER Can alter the structure of tables

CREATE Can create new databases or tables

DELETE Can delete rows in tables

DROP Can drop databases or tables

FILE Can read and write files on the server

GRANT Can change the permissions on a MySQL account

INSERT Can insert new rows into tables

SELECT Can read data from tables

SHUTDOWN Can shut down the MySQL server

UPDATE Can change data in a table

USAGE No permissions

Granting ALL is not a good idea because it includes permissions for adminis-
trative operations, such as shutting down the MySQL server. You are unlikely
to want anyone other than yourself to have such sweeping privileges.

Setting Up MySQL Accounts
An account is identified by the account name and the name of the computer
allowed to access MySQL using this account. When you create a new account,
you specify it as accountname@hostname. You can specify a password when
you create an account or you can add a password later. You can set up per-
missions when you create an account or add permissions later.

All the account information is stored in a database named mysql that is auto-
matically created when MySQL is installed. To add a new account or change
any account information, you must use an account that has the proper per-
missions on the mysql database.

98 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:17 PM Page 98

99Chapter 5: Protecting Your Data

The MySQL security database
When MySQL is installed, it automatically cre-
ates a database called mysql. All the informa-
tion used to protect your data is stored in this
database, including account names, host-
names, passwords, and permissions.

Permissions are stored in columns. The format
of each column name is permission_priv,
where permission is one of the permissions
shown in Table 5-1. For instance, the column con-
taining ALTER permissions is named alter_
priv. The value in each permission column is
Y or N, meaning yes or no. So, for instance, in
the user table (described in the following list),
there would be a row for an account and a
column for alter_priv. If the account field
for alter_priv contains Y, the account can
be used to execute an ALTER query. If alter_
priv contains N, the account doesn’t have
permission to execute an ALTER query.

The mysql database contains the following
tables that store permissions:

� user table: This table stores permissions
that apply to all the databases and tables. It
contains a row for each valid account that
includes the column’s user name, hostname,
and password. The MySQL server will reject
a connection for an account that does not
exist in this table.

� db table: This table stores permissions that
apply to a particular database. It contains a
row for the database, which gives permis-
sions to an account name and a hostname.
The account must exist in the user table for
the permissions to be granted. Permissions
that are given in the user table overrule
permissions in this table. For instance, if the
user table has a row for the account
designer that gives INSERT privileges,

designer can insert into all the databases. If a
row in the db table shows N for INSERT for
the designer account in the PetCatalog
database, the user table overrules it, and
designer can insert in the PetCatalog
database.

� host table: This table controls access to a
database depending on the host. The host
table works with the db table. If a row in the
db table has an empty field for the host,
MySQL checks the host table to see
whether the db has a row there. In this way,
you can allow access to a db from some
hosts but not from others. For instance, sup-
pose you have two databases: db1 and
db2. The db1 database has sensitive infor-
mation, so you want only certain people to
see it. The db2 database has information
that you want everyone to see. If you have
a row in the db table for db1 with a blank
host field, you can have two rows for db1
in the host table. One row can give all
permissions to users connecting from a
specific host, whereas another row can
deny privileges to users connecting from
any other host.

� tables_priv table: This table stores
permissions that apply to specific tables.

� columns_priv table: This table stores
permissions that apply to specific columns.

You can see and change the tables in mysql
directly if you’re using an account that has the
necessary permissions. You can use SQL queries
such as SELECT, INSERT, and UPDATE. If
you’re accessing MySQL through your employer,
a client, or a Web hosting company, it is unlikely
that you will be given an account that has the
necessary permissions.

10_096004 ch05.qxp 10/11/06 9:17 PM Page 99

You need at least one account to access the MySQL server. When MySQL is
installed, it automatically sets up some accounts, including an account called
root that has all permissions. If you have MySQL access through a company
Web site or a Web hosting company, the MySQL administrator for the com-
pany should give you the account; the account is probably not named root,
and it might or might not have all permissions.

In the rest of this section, I describe how to add and delete accounts and
change passwords and permissions for accounts. If you have an account that
you received from your company IT department or from a Web hosting com-
pany, you might receive an error when you try to send any or some of the
GRANT or REVOKE queries described. If your account is restricted from per-
forming any of the necessary queries, you need to request an account with
more permissions or ask the MySQL administrator to add a new account or
make the changes you need.

Identifying what accounts currently exist
To see what accounts currently exist for your database, you need an account
that has the necessary permissions. Try to execute the following query on a
database named mysql:

SELECT * FROM user

You should get a list of all the accounts. However, if you’re accessing MySQL
through your company or a Web hosting company, you probably don’t have the
necessary permissions. In that case, you might get an error message like this:

No Database Selected

This message means that your account is not allowed to select the mysql
database. Or you might get an error message saying that you don’t have
SELECT permission. Even though this message is annoying, it’s a sign that the
company has good security measures in place. However, it also means that
you can’t see what privileges your account has. You must ask your MySQL
administrator or try to figure it out yourself by trying queries and seeing
whether you’re allowed to execute them.

Adding accounts
The preferred way to access MySQL from PHP is to set up an account specifi-
cally for this purpose with only the permissions that are needed. In this section,

100 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:17 PM Page 100

I describe how to add accounts. If you’re using an account given to you by a
company IT department or a Web hosting company, it might or might not
have all the permissions needed to create an account. If it doesn’t, you won’t
be able to successfully execute the query to add an account, and you’ll have
to request a second account to use with PHP.

If you need to request a second account, get an account with restricted per-
mission (if at all possible) because your Web database application will be
more secure if the account used in your PHP programs doesn’t have more
privileges than are necessary.

To create one or more users, you can use the CREATE USER query added to
MySQL in version 5.0.2, as follows:

CREATE USER accountname@hostname IDENTIFIED BY ‘password’,
accountname@hostname IDENTIFIED BY ‘password’,...

This query creates the specified new user account(s) with the specified pass-
word and no permissions. You do not need to specify a password. If you leave
out IDENTIFIED BY ‘password’, the account is created with no password.
You can add or change a password for the account at a later time. Adding pass-
words and permissions is discussed in the following sections.

If you’re using a version of MySQL before 5.0.2, you must use a GRANT query
to create an account. The GRANT query is described in the “Changing permis-
sions” section.

Adding and changing passwords
You can add or change a password for an existing account with the SET
PASSWORD query, as follows:

SET PASSWORD FOR username@hostname = PASSWORD(‘password’)

The account is set to password for the account username@hostname. If the
account currently has a password, the password is changed. You do not need
to specify the FOR clause. If you do not, the password is set for the account
you are currently using.

You can remove a password by sending the SET PASSWORD query with an
empty password, as follows:

SET PASSWORD FOR username@hostname = PASSWORD(‘’)

101Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:17 PM Page 101

Changing permissions
You can see the current permissions for an account with the following query:

SHOW GRANTS ON accountname@hostname

The output is a GRANT query that would create the current account. It shows
all the current permissions. If you do not include the ON clause, you see the
current permissions for the account that issued the SHOW GRANTS query.

You can change permissions for an account with the GRANT query, which has
the following general format:

GRANT permission (columns) ON tablename
TO accountname@hostname IDENTIFIED BY ‘password’

You can also create a new account or change a password with the GRANT
query. You need to fill in the following information:

� permission (columns): You must list at least one permission. You can
limit each permission to one or more columns by listing the column
name in parentheses following the permission. If no column name is
listed, the permission is granted on all columns in the table(s). You can
list as many permissions and columns as needed, separated by commas.
The possible permissions are listed in Table 5-1. For instance, a GRANT
query might start with this:

GRANT select (firstName,lastName), update,
insert (birthdate) ...

� tablename: This indicates which tables the permission is granted on.
At least one table is required. You can list several tables, separated by
commas. The possible values for tablename are

• tablename: The entire table named tablename in the current
database. You can use an asterisk (*) to mean all tables in the cur-
rent database. If you use an asterisk and no current database is
selected, the privilege will be granted to all tables on all databases.

• databasename.tablename: The entire table named tablename
in databasename. You can use an asterisk (*) for either the data-
base name or the table name to mean all. Using *.* grants the
permission on all tables in all databases.

� accountname@hostname: If the account already exists, it is given the
indicated permissions. If the account doesn’t exist, it’s added. The account
is identified by the accountname and the hostname as a pair. If an
account exists with the specified account name but a different host-
name, the existing account is not changed; a new one is created.

� password: This is the password that you’re adding or changing. A pass-
word is not required. If you don’t want to add or change a password for
this account, leave out the phrase IDENTIFIED BY ‘password’.

102 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:17 PM Page 102

The GRANT query to add a new account for use in the PHP programs for the
PetCatalog database might be

GRANT select ON PetCatalog.* TO phpuser@localhost
IDENTIFIED BY ‘A41!14a!’

Removing accounts and permissions
To remove an account, you can use the DROP USER query, which was added
in MySQL 4.1.1, as follows:

DROP USER accountname@hostname, accountname@hostname, ...

You must be using an account that has DELETE privileges on the mysql data-
base to execute the DROP USER query.

The behavior of DROP USER has changed through MySQL versions. As of
MySQL 5.0.2, it removes the account and all records related to the account,
including records that give it permissions on specific databases or tables.
However, before MySQL 5.0.2, DROP USER drops only accounts with no privi-
leges. Therefore, in older versions, you must remove all the privileges from
an account, including database or table permissions, before you can drop it.

To remove permissions, use the REVOKE query. The general format is

REVOKE permission (columns) ON tablename
FROM accountname@hostname

You need to fill in the following information:

� permission (columns): You must list at least one permission. You can
remove each permission from one or more columns by listing the column
name in parentheses following the permission. If no column name is
listed, the permission is removed from all columns in the table(s).
You can list as many permissions/columns as needed, separated by
commas. The possible permissions are listed in Table 5-1. For instance,
a REVOKE query might start like this:

REVOKE select (firstName,lastName), update, insert
(birthdate) ...

� tablename: Indicate which tables the permission is being removed from.
At least one table is required. You can list several tables, separated by
commas. The possible values for tablename are

• tablename: The entire table named tablename in the current
database. You can use an asterisk (*) to mean all tables. If you use
an asterisk when no current database is selected, the privilege will
be revoked on all tables in all databases.

103Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:17 PM Page 103

• databasename.tablename: The entire table named tablename
in databasename. You can use an asterisk (*) for either the data-
base name or the table name to mean all. Using *.* revokes the
permission on all tables in all databases.

� accountname@hostname: The account is identified by the accountname
and the hostname as a pair. If an account exists with the specified account
name but a different hostname, the REVOKE query will fail, and you will
receive an error message.

You can remove all the permissions for an account with the following REVOKE
query:

REVOKE all ON *.* FROM accountname@hostname

Backing Up Your Data
You need to have at least one copy of your valuable database. Disasters occur
rarely, but they do occur. The computer where your database is stored can
break down and lose your data, the computer file can become corrupted, the
building can burn down, and so on. Backup copies of your database guard
against data loss from such disasters.

You should have at least one backup copy of your database, stored in a loca-
tion that is separate from the copy that is currently in use. More than one
copy — perhaps as many as three — is usually a good idea:

� Store one copy in a handy location, perhaps even on the same computer,
to quickly replace a working database that has been damaged.

� Store a second copy on another computer in case the computer breaks
down, and the first backup copy isn’t available.

� Store a third copy in a different physical location, for that remote chance
that the building burns down. If the second backup copy is stored via a
network on a computer at another physical location, this third copy isn’t
needed.

If you don’t have access to a computer offsite where you can back up
your database, you can copy your backup to a portable medium, such as
a CD or DVD, and store it offsite. Certain companies will store your com-
puter media at their location for a fee, or you can just put the media in
your pocket and take it home.

104 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:18 PM Page 104

If you use MySQL on someone else’s computer, such as the computer of your
employer or a Web hosting company, the people who provide your access are
responsible for backups. They should have automated procedures in place
that make backups of your database. When evaluating a Web hosting company,
ask about their backup procedures. You want to know how often backup
copies are made and where they are stored. If you aren’t confident that your
data is safe, you can discuss changes or additions to the backup procedures.

If you are the MySQL administrator, you are responsible for making backups.
MySQL provides a program called mysqldump that you can use to make
backup copies. The mysqldump program creates a text file that contains all
the SQL statements needed to re-create your entire database. The file con-
tains the CREATE statements for each table and INSERT statements for each
row of data in the tables. You can restore your database by executing the set
of MySQL statements. You can restore it in its current location, or you can
restore it on another computer if necessary.

Follow these steps to make a backup copy of your database in Linux, in Unix,
or on a Mac:

1. Change to the bin subdirectory in the directory where MySQL is
installed.

For instance, type cd /usr/local/mysql/bin.

2. Type the following:

mysqldump --user=accountname --password=password
databasename >path/backupfilename

where

• accountname is the name of the MySQL account that you’re using
to back up the database

• password is the password for the account

• databasename is the name of the database that you want to
back up

• path/backupfilename is the path to the directory where you
want to store the backups and the filename the SQL output will be
stored in

The account that you use needs to have select permission. If the account
doesn’t require a password, you can leave out the entire password option.

You can type the command on one line, without pressing Enter. Or you can
type a backslash (\), press Enter, and continue the command on another line.

105Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:18 PM Page 105

For example, to back up the PetCatalog database, the command might be

mysqldump --user=root --password=secret PetCatalog \
>/usr/local/mysql/backups/PetCatalogBackup

Note: With Linux or Unix, the account that you are logged into must have per-
mission to write a file into the backup directory.

To make a backup copy of your database in Windows, follow these steps:

1. Open a command prompt window.

For instance, choose Start➪All Programs➪Accessories➪Command
prompt.

2. Change to the bin subdirectory in the directory where MySQL is
installed.

For instance, type cd c:\Program Files\MySQL\MySQL Server 5.0\bin.

3. Type the following:

mysqldump --user=accountname --password=password
databasename >path\backupfilename

where

• accountname is the name of the MySQL account that you’re using
to back up the database

• password is the password for the account

• databasename is the name of the database that you want to
back up

• path\backupfilename is the path to the directory where you
want to store the backups and the filename the SQL output will
be stored in

The account that you use needs to have select permission. If the account
does not require a password, you can leave out the entire password option.

You must type the mysqldump command on one line without pressing Enter.

For example, to back up the PetCatalog database, the command might be

mysqldump --user=root PetCatalog >PetCatalogBackup

Backups should be made at certain times — at least once per day. If your data-
base changes frequently, you might want to back up more often. For example,
you might want to back up to the backup directory hourly but back up to
another computer once a day.

106 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:18 PM Page 106

Restoring Your Data
At some point, one of your database tables might become damaged and unus-
able. It’s unusual, but it happens. For instance, a hardware problem or an
unexpected shutdown of the computer can cause corrupted tables. Sometimes
an anomaly in the data that confuses MySQL can cause corrupt tables. In
some cases, a corrupt table can cause your MySQL server to shut down.

Here is a typical error message that signals a corrupted table:

Incorrect key file for table: ‘tablename’.

You can replace the corrupted table(s) with the data stored in a backup copy.
In some cases, the database might be lost completely. For instance, if the
computer where your database resides breaks down and can’t be fixed, your
current database is lost, but your data isn’t gone forever. You can replace the
broken computer with a new computer and restore your database from a
backup copy.

You can replace your current database table(s) with the database stored in a
backup copy. The backup copy contains a snapshot of the data as it was when
the copy was made. Any changes to the database since the backup copy was
made are not included; you have to re-create those changes manually.

Again, if you access MySQL through an IT department or through a Web
hosting company, you need to ask the MySQL administrator to restore your
database from a backup. If you’re the MySQL administrator, you can restore
it yourself.

As I describe in Chapter 4, you build a database by creating the database and
then adding tables to the database. The backup created by the mysqldump
utility is a file that contains all the SQL statements necessary to rebuild the
tables, but it does not contain the statements needed to create the database.

Your database might not exist, or it could exist with one or more corrupted
tables. You can restore the entire database or any single table. Follow these
steps to restore a single table:

1. If the table currently exists, delete the table with the following SQL
query:

DROP TABLE tablename

where tablename is the table that you want to delete.

2. Point your browser at mysql_send.php.

For a description of mysql_send.php, see Chapter 4.

107Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:18 PM Page 107

3. Copy the CREATE query for the table from the backup file into the
form in the browser window.

For instance, choose Edit➪Copy and Edit➪Paste.

4. Type the name of the database in which you are restoring the table.

The form shows where to type the database name.

5. Click Submit.

A new Web page shows the results of the query.

6. Click New Query.

7. Copy an INSERT query for the table from the backup file into the
form in the browser window.

For instance, choose Edit➪Copy and Edit➪Paste.

8. Type the name of the database in which you are restoring the table.

The form shows where to type the database name.

9. Click Submit.

A new Web page shows the results of the query.

10. Click New Query.

11. Repeat Steps 7–10 until all the INSERT queries from the backup file
have been sent.

If you have so many INSERT queries for the table that sending them one by
one would take forever — or if there are just a lot of tables — you can send
all the queries in the backup file at once. First, you may need to edit the
backup file, as follows:

1. Open the backup file in a text editor.

2. Locate the line that shows the Server Versions.

3. If you want to rebuild an entire database, add the following statement
after the line located in Step 2:

CREATE DATABASE IF NOT EXISTS databasename

4. After the line in Step 3, add a line specifying which database to add
the tables to:

USE databasename

5. Check the blocks of statements that rebuild the tables. If you do not
want to rebuild a table, comment out the lines that rebuild the table
by adding -- (two hyphens) in front of each line.

6. Check the INSERT lines for each table. If you do not want to add data
to any tables, comment out the lines that INSERT the data.

7. Save the edited backup file.

108 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:18 PM Page 108

After the backup file contains the statements that you want to use to rebuild
your database or table(s), you need to perform a few more steps.

On Linux, Unix, and Mac:

1. Change to the bin subdirectory in the directory where MySQL is
installed.

Type a cd command to change to the correct directory. For instance,
type cd /usr/local/mysql/bin.

2. Type the command that sends the SQL queries in the backup file:

mysql -u accountname -p < path/backupfilename

where accountname is an account that has create permission. If the
account doesn’t require a password, leave out the -p. If you use the -p,
you will be asked for the password. Use the entire path and filename for
the backup file. For instance, a command to restore the PetCatalog
database might be

mysql -u root -p < /usr/backupfiles/PetCatalog.bak

On Windows:

1. Change to the bin subdirectory in the directory where MySQL is
installed.

a. Open a command prompt window.

For instance, choose Start➪All Programs➪Accessories➪Command
Prompt.

b. Type a cd command to change to the correct directory.

For instance, type cd c:\Program Files\MySQL\MySQL Server
5.0\bin.

2. Type the command that sends the SQL queries in the backup file:

mysql -u accountname -p < path\backupname

where accountname is an account that has create permission. If the
account doesn’t require a password, leave out the -p. If you use the -p,
you will be asked for the password. Use the entire path and filename for
the backup file. For instance, a command to restore the PetCatalog
database might be

mysql -u root -p < c:\Program Files\MySQL\MySQL Server
5.0\bin\bak\PetCatalog.bak

The tables might take a short time to restore. Wait for the command to finish.
If a problem occurs, an error message is displayed. If no problems occur, you
see no output. When the command is finished, the prompt appears.

109Chapter 5: Protecting Your Data

10_096004 ch05.qxp 10/11/06 9:18 PM Page 109

Your database is now restored with all the data that was in it at the time
the copy was made. If the data has changed since the copy was made, the
changes are lost. For instance, if more data was added after the backup copy
was made, the new data is not restored. If you know the changes that were
made, you can make them manually in the restored database.

Upgrading MySQL
New versions of MySQL are released periodically, and you can upgrade from
one version of MySQL to a newer version. Upgrading information is provided
in the MySQL manual at dev.mysql.com/doc/refman/5.0/en/upgrade.
html. However, there are special considerations when upgrading. As a pre-
caution, it is wise to back up your current databases, including the grant
tables in the mysql database, before upgrading.

MySQL recommends that you do not skip versions. If you want to upgrade
from one version to a version more than one version newer, such as from
MySQL 4.0 to MySQL 5.0, you should upgrade to the next version first.
After that version is working correctly, you can upgrade to the next version.
And so on. In other words, upgrade from 4.0 to 4.1, then from 4.1 to 5.0.

Occasionally, incompatible changes are introduced in new versions of
MySQL. Some releases introduce changes to the structure of the grant tables.
For instance, MySQL 4.1 changed the method of encrypting passwords,
requiring a longer password field in the grant tables.

After upgrading to the newer version, you should run the mysql_upgrade
script. It checks your files, repairing them if needed, and upgrades the system
tables if needed. Before MySQL version 5.0.19, the mysql_upgrade script
does not run on Windows; it runs only on Unix. On Windows, you can run a
script called mysql_fix_privileges_tables with MySQL versions prior
to 5.0.19. The script upgrades the system tables but does not perform the
complete table check and repair that mysql_upgrade performs.

110 Part II: MySQL Database

10_096004 ch05.qxp 10/11/06 9:18 PM Page 110

Part III
PHP

11_096004 pt03.qxp 10/11/06 9:25 PM Page 111

In this part . . .

In Part III, you find out how to use PHP for your Web
database application. Here are some of the topics

described:

� Adding PHP to HTML files

� PHP features that are useful for building a dynamic
Web database application

� Using PHP features

� Using forms to collect information from users

� Showing information from a database on a Web page

� Storing data in a database

� Moving information from one Web page to the next

You find out everything you need to know to write PHP
programs.

11_096004 pt03.qxp 10/11/06 9:25 PM Page 112

Chapter 6

General PHP
In This Chapter
� Adding PHP sections to HTML files

� Writing PHP statements

� Using PHP variables

� Comparing values in PHP variables

� Documenting your programs

Programs are the application part of your Web database application.
Programs perform the tasks. Programs create and display Web pages,

accept and process information from users, store information in the database,
get information out of the database, and perform any other necessary tasks.

PHP, the language that you use to write your programs, is a scripting language
designed for use on the Web. It has features to aid you in programming the
tasks needed by dynamic Web applications.

In this chapter I describe the general rules for writing PHP programs — the
rules that apply to all PHP statements. Consider these rules similar to general
grammar and punctuation rules. In the remaining chapters in Part III, you find
out about specific PHP statements and features and how to write PHP pro-
grams to perform specific tasks.

Adding a PHP Section to an HTML Page
PHP is a partner to HTML (HyperText Markup Language), enabling HTML to do
things it can’t do on its own. For example, HTML can display Web pages, and
HTML has features that allow you to format those Web pages. HTML also allows
you to display graphics in your Web pages and to play music files. But HTML
alone does not allow you to interact with the person viewing the Web page.

HTML is almost interactive. That is, HTML forms allow users to type informa-
tion that the Web page is designed to collect; however, you can’t access that
information without using a language other than HTML. PHP processes form
information and allows other interactive tasks as well.

12_096004 ch06.qxp 10/11/06 9:21 PM Page 113

HTML tags are used to make PHP language statements part of HTML scripts.
The file is named with a .php extension. (The PHP administrator can define
other extensions, such as .phtml or .php5, but .php is the most common.
In this book, I assume .php is the extension for PHP programs.) The PHP lan-
guage statements are enclosed in PHP tags with the following form:

<?php ?>

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?> without the php. If short tags are enabled, you can save a little
typing. However, if you use short tags, your programs will not run if they are
moved to another Web host where PHP short tags are not activated.

PHP processes all statements between the two PHP tags. After the PHP sec-
tion is processed, it’s discarded. Or if the PHP statements produce output,
the PHP section is replaced by the output. The browser doesn’t see the PHP
section — the browser sees only its output, if there is any. For more on this
process, see the sidebar, “How the Web server processes PHP files.”

As an example, I’ll start with an HTML program that displays Hello World!
in the browser window, shown in Listing 6-1. (It’s a tradition that the first pro-
gram you write in any language is the Hello World program. You might have
written a Hello World program when you first learned HTML.)

114 Part III: PHP

How the Web server processes PHP files
When a browser is pointed to a regular HTML
file with an .html or .htm extension, the Web
server sends the file, as-is, to the browser. The
browser processes the file and displays the Web
page described by the HTML tags in the file.

When a browser is pointed to a PHP file (with a
.php extension), the Web server looks for PHP
sections in the file and processes them instead
of just sending them as-is to the browser.

The Web server processes the PHP file as follows:

1. The Web server starts scanning the file in
HTML mode. It assumes the statements are
HTML and sends them to the browser with-
out any processing.

2. The Web server continues in HTML mode
until it encounters a PHP opening tag
(<?php).

3. When it encounters a PHP opening tag, the
Web server switches to PHP mode. This is
sometimes called escaping from HTML. The
Web server then assumes that all state-
ments are PHP statements and executes
the PHP statements. If there is output, the
output is sent by the server to the browser.

4. The Web server continues in PHP mode
until it encounters a PHP closing tag (?>).

5. When the Web server encounters a PHP
closing tag, it returns to HTML mode. It
resumes scanning, and the cycle continues
from Step 1.

12_096004 ch06.qxp 10/11/06 9:21 PM Page 114

Listing 6-1: The Hello World HTML Program

<html>
<head><title>Hello World Program</title></head>
<body>
<p>Hello World!
</body>
</html>

If you point your browser at this HTML program, you see a Web page that
displays

Hello World!

Listing 6-2 shows a PHP program that does the same thing — it displays
Hello World! in a browser window.

Listing 6-2: The Hello World PHP Program

<html>
<head><title>Hello World Program</title></head>
<body>
<?php
echo “<p>Hello World!”

?>
</body>
</html>

If you point your browser at this program, it displays the same Web page as
the HTML program in Listing 6-1.

Don’t look at the file directly with your browser. That is, don’t choose File➪
Open➪Browse from your browser menu to navigate to the file and click it.
You must open the file by typing its URL, as I discuss in Chapter 2. If you see
the PHP code displayed in the browser window instead of the output that you
expect, you might not have pointed to the file by using its URL.

In this PHP program, the PHP section is

<?php
echo “<p>Hello World!”

?>

The PHP tags enclose only one statement — an echo statement. The echo
statement is a PHP statement that you will use frequently. It simply outputs
the text is included between the double quotes.

There is no rule that says you must enter the PHP on separate lines. You could
just as well include the PHP in the file on a single line, like this:

<?php echo “<p>Hello World!” ?>

115Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 115

When the PHP section is processed, it is replaced with the output. In this
case, the output is

<p>Hello World!

If you replace the PHP section in Listing 6-2 with the preceding output, the
program now looks exactly like the HTML program in Listing 6-1. If you point
your browser at either program, you see the same Web page. If you look at
the source code that the browser sees (in the browser, choose View➪Source),
you see the same source code listing for both programs.

Writing PHP Statements
The PHP section that you add to your HTML file consists of a series of PHP
statements. Each PHP statement is an instruction to PHP to do something.
In the Hello World program shown in Listing 6-2, the PHP section contains
only one simple PHP statement. The echo statement instructs PHP to output
the text between the double quotes.

PHP statements end with a semicolon (;). PHP does not notice white space
or the end of lines. It continues reading a statement until it encounters a
semicolon or the PHP closing tag, no matter how many lines the statement
spans. Leaving out the semicolon is a common error, resulting in an error
message that looks something like this:

Parse error: expecting `’,’’ or `’;’’ in /hello.php on
line 6

116 Part III: PHP

Error messages and warnings
PHP tries to be helpful when problems arise. It provides error messages and warnings as follows:

� Parse Error: A Parse Error is a syntax error that PHP finds when it scans the script before exe-
cuting it. A parse error is a fatal error, preventing the script from running at all. A parse error
looks similar to the following:

Parse error: parse error, error, in c:\test\test.php on line 6

Often, you receive this error message because you’ve forgotten a semicolon, a parenthesis, or
a curly brace. The error provides more information when possible. For instance, error might
be unexpected T_ECHO, expecting ‘,’ or ‘;’means that PHP found an echo
statement where it was expecting a comma or a semicolon, which probably means you forgot
the semicolon at the end of the previous line.

12_096004 ch06.qxp 10/11/06 9:21 PM Page 116

117Chapter 6: General PHP

� Error message: You receive this message when PHP encounters a serious error during the exe-
cution of the program that prevents it from continuing to run. The message contains as much
information as possible to help you identify the problem.

� Warning message: You receive this message when the program sees a problem but the prob-
lem is not serious enough to prevent the program from running. Warning messages do not mean
that the program can’t run; the program does continue to run. Rather, warning messages tell
you that PHP believes that something is probably wrong. You should identify the source of the
warning and then decide whether it needs to be fixed. It usually does.

� Notice: You receive a notice when PHP sees a condition that might be an error or might be per-
fectly okay. Notices, like warnings, do not cause the script to stop running. Notices are much
less likely than warnings to indicate serious problems. Notices just tell you that you are doing
something unusual and to take a second look at what you’re doing to be sure that you really
want to do it.

One common reason why you might receive a notice is if you’re echoing variables that don’t
exist. Here’s an example of what you might see in that instance:

Notice: Undefined variable: age in testing.php on line 9

� Strict: Strict messages, added in PHP 5, warn about language that is poor coding practice or
has been replaced by better code.

All types of messages indicate the filename causing the problem and the line number where the
problem was encountered.

You can specify which types of error messages you want displayed in the Web page. In general,
when you are developing a program, you want to see all messages, but when the program is pub-
lished on your Web site, you do not want any messages to be displayed to the user.

To change the error-message level for your Web site to show more or fewer messages, you must
edit the php.ini file on your system. It contains a section that explains the error-message setting
(error_reporting), error-message levels, and how to set them. Some possible settings are

error_reporting = E_ALL | E_STRICT
error_reporting = 0
error_reporting = E_ALL & ~ E_NOTICE

The first setting displays E_ALL, which is all errors, warnings, and notices except strict, and
E_STRICT, which displays strict messages. The second setting displays no error messages. The
third setting displays all error and warning messages, but not notices or stricts. After changing the
error_reporting settings, save the edited php.ini file and restart your Web server.

If you don’t have access to php.ini, you can add a statement to a program that sets the error
reporting level for that program only. Add the following statement at the beginning of the program:

error_reporting(errorSetting);

For example, to see all errors except stricts, use the following:

error_reporting(E_ALL);

12_096004 ch06.qxp 10/11/06 9:21 PM Page 117

Notice that the error message gives you the line number where it encoun-
tered problems. This information helps you locate the error in your program.
This error message probably means that the semicolon was omitted at the
end of line 5.

I recommend writing your PHP programs with an editor that uses line num-
bers. If your editor doesn’t let you specify which line you want to go to, you
have to count the lines manually from the top of the file every time that you
receive an error message. You can find information about many editors,
including descriptions and reviews, at www.php-editors.com.

Sometimes groups of statements are combined into a block. A block is enclosed
by curly braces, { and }. A block of statements execute together. A common
use of a block is in a conditional block, in which statements are executed only
when certain conditions are true. For instance, you might want your program
to do the following:

if (the sky is blue)
{
put leash on dragon;
take dragon for a walk in the park;

}

These statements are enclosed in curly braces to ensure that they execute as
a block. If the sky is blue, both put leash on dragon and take dragon
for a walk in the park are executed. If the sky is not blue, neither
statement is executed (no leash; no walk).

PHP statements that use blocks, such as if statements (which I explain in
Chapter 7), are complex statements. PHP reads the entire complex statement,
not stopping at the first semicolon that it encounters. PHP knows to expect
one or more blocks and looks for the ending curly brace of the last block in
complex statements. Notice that there is a semicolon before the ending
brace. This semicolon is required, but no semicolon is required after the
ending curly brace.

If you wanted to, you could write the entire PHP section in one long line, as
long as you separated statements with semicolons and enclosed blocks with
curly braces. However, a program written this way would be impossible for
people to read. Therefore, you should put statements on separate lines,
except for occasional, really short statements.

Notice that the statements inside the block are indented. Indenting is not nec-
essary for PHP. Nevertheless, you should indent the statements in a block
so that people reading the script can tell more easily where a block begins
and ends.

In general, PHP doesn’t care whether the statement keywords are in upper-
case or lowercase. Echo, echo, ECHO, and eCHo are all the same to PHP.

118 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 118

Using PHP Variables
Variables are containers used to hold information. A variable has a name, and
information is stored in the variable. For instance, you might name a variable
$age and store the number 12 in it. After information is stored in a variable,
it can be used later in the program. One of the most common uses for vari-
ables is to hold the information that a user types into a form.

Naming a variable
When you’re naming a variable, keep the following rules in mind:

� All variable names have a dollar sign ($) in front of them. This tells PHP
that it is a variable name.

� Variable names can be any length.

� Variable names can include letters, numbers, and underscores only.

� Variable names must begin with a letter or an underscore. They cannot
begin with a number.

� Uppercase and lowercase letters are not the same. For example,
$firstname and $Firstname are not the same variable. If you store
information in $firstname, for example, you can’t access that informa-
tion by using the variable name $firstName.

When you name variables, use names that make it clear what information is
in the variable. Using variable names like $var1, $var2, $A, or $B does not
contribute to the clarity of the program. Although PHP doesn’t care what you
name the variable and won’t get mixed up, people trying to follow the program
will have a hard time keeping track of which variable holds what information.
Variable names like $firstName, $age, and $orderTotal are much more
descriptive and helpful.

Creating and assigning values to variables
Variables can hold either numbers or strings of characters. You store informa-
tion in variables by using a single equal sign (=). For instance, the following
four PHP statements assign information to variables:

$age = 12;
$price = 2.55;
$number = -2;
$name = “Goliath Smith”;

119Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 119

Notice that the character string is enclosed in quotes but the numbers are not.
I provide details about using numbers and characters later in this chapter, in
the “Working with Numbers” and “Working with Character Strings” sections.

You can now use any of these variable names in an echo statement to see the
value in that variable. For instance, if you use the following PHP statement in
a PHP section:

echo $age;

the output is 12. If you include the following line in an HTML file:

<p>Your age is <?php echo $age ?>.

the output on the Web page is

Your age is 12.

Whenever you put information into a variable that did not exist before, you
create that variable. For instance, suppose you use the following PHP statement:

$firstname = “George”;

If this statement is the first time that you’ve mentioned the variable
$firstname, this statement creates the variable and sets it to “George”.
If you have a previous statement setting $firstname to “Mary”, this state-
ment changes the value of $firstname to “George”.

You can also remove information from a variable. For example, the following
statement takes information out of the variable $age:

$age = “”;

The variable $age exists but does not contain a value. It does not mean that
$age is set to 0 (zero) because 0 is a value. It means that $age does not store
any information. It contains a string of length 0.

You can go even further and uncreate the variable by using this statement:

unset($age);

After this statement is executed, the variable $age no longer exists.

A variable keeps its information for the entire program, not just for a single
PHP section. If a variable is set to “yes” at the beginning of a file, it will still
hold “yes” at the end of the page. For instance, suppose your file has the fol-
lowing statements:

<p>Hello World!</p>
<?php

120 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 120

$age = 15;
$name = “Harry”;

?>
<p>Hello World again!</p>
<?php

echo $name;
?>

The echo statement in the second PHP section will display Harry. The Web
page resulting from these statements is

Hello World!

Hello World again!

Harry

Dealing with notices
If you use a statement that includes a variable that does not exist, you might
get a notice. It depends on the error-message level that PHP is set to. Remember
that notices aren’t the same as error messages. With a notice, the program
continues to run. A notice simply tells you that you’re doing something unusual
and to take a second look at what you’re doing. (See the sidebar, “Error mes-
sages and warnings.”) For instance, suppose you use the following statements:

unset($age);
echo $age;
$age2 = $age;

You might see two notices: one for the second statement and one for the
third statement. The notices will look something like this:

Notice: Undefined variable: age in testing.php on line 9

Suppose that you definitely want to use these statements. The program works
exactly the way you want it to. The only problems are the unsightly notices.
You can prevent notices in a program by inserting an at sign (@) at the point
where the notice would be issued. For instance, you can prevent the notices
generated by the preceding statements if you change the statements to this:

unset($age);
echo @$age;
$age2 = @$age;

Instead of suppressing notices in the PHP code with an @, you can change the
error-message level so that notices are not displayed. For details on how to
do this, check out the sidebar, “Error messages and warnings,” elsewhere in
this chapter.

121Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 121

Using PHP Constants
PHP constants are similar to variables. Constants are given a name, and a
value is stored in them. However, constants are constant; that is, they can’t
be changed by the program. After you set the value for a constant, it stays
the same. If you used a constant for age and set it to 29, for example, it can’t
be changed. Wouldn’t that be nice — 29 forever?

Constants are used when a value is needed several places in the program
and doesn’t change during the program. The value is set in a constant at the
start of the program. By using a constant throughout the program, instead
of a variable, you make sure that the value won’t get changed accidentally.
By giving it a name, you know what the information is instantly. And by set-
ting a constant once at the start of the program (instead of using the value
throughout the program), you can change the value in one place if it needs
changing instead of hunting for it in many places in the program to change it.

For instance, you might set one constant that’s the company name and
another constant that’s the company address and use them wherever
needed. Then, if the company moves, you could just change the value in the
company address at the start of the program instead of having to find every
place in your program that echoed the company name to change it.

Constants are set by using the define statement. The format is

define(“constantname”,”constantvalue”);

For instance, to set a constant with the company name, use the following
statement:

define(“COMPANY”,”ABC Pet Store”);

Use the constant in your program wherever you need your company name:

echo COMPANY;

When you echo a constant, you can’t enclose it in quotes. If you do, it will
echo the constant name, instead of the value. You can echo it without any-
thing, as shown in the preceding example, or enclosed with parentheses.

You can use any name for a constant that you can use for a variable. Constant
names are not preceded by a dollar sign ($). By convention, constants are
given names that are all uppercase, so you can easily spot constants, but PHP
itself doesn’t care what you name a constant. You can store either a string or
a number in it. The following statement is perfectly okay with PHP:

define (“AGE”,29);

Just don’t expect Mother Nature to believe it.

122 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 122

Working with Numbers
PHP allows you to do arithmetic operations on numbers. You indicate arith-
metic operations with two numbers and an arithmetic operator. For instance,
one operator is the plus (+) sign, so you can indicate an arithmetic operation
like this:

1 + 2

You can also perform arithmetic operations with variables that contain num-
bers, as follows:

$n1 = 1;
$n2 = 2;
$sum = $n1 + $n2;

Table 6-1 shows the arithmetic operators that you can use.

Table 6-1 Arithmetic Operators
Operator Description

+ Add two numbers.

- Subtract the second number from the first number.

* Multiply two numbers.

/ Divide the first number by the second number.

% Find the remainder when the first number is divided by the
second number. This is called modulus. For instance, in
$a = 13 % 4, $a is set to 1.

You can do several arithmetic operations at once. For instance, the following
statement performs three operations:

$result = 1 + 2 * 4 + 1;

The order in which the arithmetic is performed is important. You can get dif-
ferent results depending on which operation is performed first. PHP does
multiplication and division first, followed by addition and subtraction. If other
considerations are equal, PHP goes from left to right. Consequently, the pre-
ceding statement sets $result to 10, in the following order:

$result = 1 + 2 * 4 + 1 (first it does the multiplication)
$result = 1 + 8 + 1 (next it does the leftmost addition)
$result = 9 + 1 (next it does the remaining addition)
$result = 10

123Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 123

You can change the order in which the arithmetic is performed by using
parentheses. The arithmetic inside the parentheses is performed first. For
instance, you can write the previous statement with parentheses like this:

$result = (1 + 2) * 4 + 1;

This statement sets $result to 13, in the following order:

$result = (1 + 2) * 4 + 1 (first it does the math in the parentheses)
$result = 3 * 4 + 1 (next it does the multiplication)
$result = 12 + 1 (next it does the addition)
$result = 13

On the better-safe-than-sorry principle, it’s best to use parentheses whenever
more than one answer is possible.

Often, the numbers that you work with are dollar amounts, such as product
prices. You want your customers to see prices in the proper format on Web
pages. In other words, dollar amounts should always have two decimal places.
However, PHP stores and displays numbers in the most efficient format. If the
number is 10.00, it is displayed as 10. To put numbers into the proper format
for dollars, you can use sprintf. The following statement formats a number
into a dollar amount:

$newvariablename = sprintf(“%01.2f”, $oldvariablename);

This statement reformats the number in $oldvariablename and stores it in
the new format in $newvariablename. For example, the following statements
display money in the correct format:

$price = 25;
$f_price = sprintf(“%01.2f”,$price);
echo “$f_price
”;

You see the following on the Web page:

25.00

sprintf can do more than format decimal places. For more information on
using sprintf to format values, see Chapter 14.

If you want commas to separate thousands in your number, you can use
number_format. The following statement creates a dollar format with
commas:

$price = 25000;
$f_price = number_format($price,2);
echo “$f_price”;

124 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 124

You see the following on the Web page:

25,000.00

The 2 in the number_format statement sets the format to two decimal
places. You can use any number to get any number of decimal places.

Working with Character Strings
A character string is a series of characters. Characters are letters, numbers,
and punctuation. When a number is used as a character, it is just a stored
character, the same as a letter. It can’t be used in arithmetic. For instance, a
phone number is stored as a character string because it needs to be only
stored — not added or multiplied.

When you store a character string in a variable, you tell PHP where the string
begins and ends by using double quotes or single quotes. For instance, the
following two statements are the same:

$string = “Hello World!”;
$string = ‘Hello World!’;

Suppose that you wanted to store a string as follows:

$string = ‘It is Tom’s house’;
echo $string;

These statements won’t work because when PHP sees the ‘ (single quote)
after Tom, it thinks that this is the end of the string, displaying the following:

It is Tom

You need to tell PHP to interpret the single quote (‘) as an apostrophe
instead of as the end of the string. You can do this by using a backslash (\) in
front of the single quote. The backslash tells PHP that the single quote does
not have any special meaning; it’s just an apostrophe. This is escaping the
character. Use the following statements to display the entire string:

$string = ‘It is Tom\’s house’;
echo $string;

Similarly, when you enclose a string in double quotes, you must also use a
backslash in front of any double quotes in the string.

125Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 125

Single-quoted strings versus
double-quoted strings
Single-quoted and double-quoted strings are handled differently. Single-quoted
strings are stored literally, with the exception of \’, which is stored as an
apostrophe. In double-quoted strings, variables and some special characters
are evaluated before the string is stored. Here are the most important differ-
ences in the use of double or single quotes in code:

� Handling variables: If you enclose a variable in double quotes, PHP uses
the value of the variable. However, if you enclose a variable in single
quotes, PHP uses the literal variable name. For example, if you use the
following statements:

$age = 12;
$result1 = “$age”;
$result2 = ‘$age’;
echo $result1;
echo “
”;
echo $result2;

the output is

12
$age

� Starting a new line: The special characters \n tell PHP to start a new
line. When you use double quotes, PHP starts a new line at \n, but with
single quotes, \n is a literal string. For instance, when using the follow-
ing statements:

$string1 = “String in \ndouble quotes”;
$string2 = ‘String in \nsingle quotes’;

string1 outputs as

String in
double quotes

and string2 outputs as

String in \nsingle quotes

� Inserting a tab: The special characters \t tell PHP to insert a tab. When
you use double quotes, PHP inserts a tab at \t, but with single quotes,
\t is a literal string. For instance, when using the following statements:

$string1 = “String in \tdouble quotes”;
$string2 = ‘String in \tsingle quotes’;

string1 outputs as

String in double quotes

and string2 outputs as

String in \tsingle quotes

126 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 126

The quotes that enclose the entire string determine the treatment of variables
and special characters, even if other sets of quotes are inside the string.
For example, look at the following statements:

$number = 10;
$string1 = “There are ‘$number’ people in line.”;
$string2 = ‘There are “$number” people waiting.’;
echo $string1,”
\n”;
echo $string2;

The output is as follows:

There are ‘10’ people in line.
There are “$number” people waiting.

Joining strings
You can join strings, a process called concatenation, by using a dot (.). For
instance, you can join strings with the following statements:

$string1 = ‘Hello’;
$string2 = ‘World!’;
$stringall = $string1.$string2;
echo $stringall;

The echo statement outputs

HelloWorld!

Notice that no space appears between Hello and World. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by using the following concatenation statement rather
than the earlier statement:

$stringall = $string1.” “.$string2;

You can use .= to add characters to an existing string. For example, you can
use the following statements in place of the preceding statements:

$stringall = “Hello”;
$stringall .= “ World!”;
echo $stringall;

The echo statement outputs this:

Hello World!

You can also take strings apart. You can separate them at a given character
or look for a substring in a string. You use functions to perform these and
other operations on a string. I explain functions in Chapter 7.

127Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 127

Working with Dates and Times
Dates and times can be important elements in a Web database application.
PHP has the ability to recognize dates and times and handle them differently
than plain character strings. Dates and times are stored by the computer in a
format called a timestamp. However, this is not a format in which you or I would
want to see the date. PHP converts dates from your notation into a timestamp
that the computer understands and from a timestamp into a format familiar
to people. PHP handles dates and times by using built-in functions.

The timestamp format is a Unix Timestamp, which is an integer that is the
number of seconds from January 1, 1970, 00:00:00 GMT (Greenwich Mean Time)
to the time represented by the timestamp. This format makes it easy to calcu-
late the time between two dates — just subtract one timestamp from the other.

Setting local time
With the release of PHP 5.1, PHP added a setting for a default local time zone
to php.ini. If you do not set a default time zone, PHP will guess, which
sometimes results in GMT. In addition, PHP displays a message advising you
to set your local time zone.

To set a default time zone:

1. Open php.ini in a text editor.

2. Scroll down to the section headed [Date].

3. Find the setting: date.timezone =.

4. If the line begins with a semicolon (;), remove the semicolon.

5. Add a time zone code after the equal sign.

You can see a list of time zone codes in Appendix H of the PHP online manual
at www.php.net/manual/en/timezones.php. For example, you can set
your default time zone to Pacific time with the setting:

date.timezone = America/Los_Angeles

If you do not have access to the php.ini file, you can set a default time zone
in each program that applies to that program only, as follows:

date_default_timezone_set(“timezonecode”);

You can see which time zone is currently your default time zone as follows:

$def = date_default_timezone_get()
echo $def;

128 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 128

Formatting a date
The function that you will use most often is date, which converts a date or
time from the timestamp format into a format that you specify. The general
format is

$mydate = date(“format”,$timestamp);

$timestamp is a variable with a timestamp stored in it. You previously stored
the timestamp in the variable, using a PHP function as I describe later in this
section. If $timestamp is not included, the current time is obtained from the
operating system and used. Thus, you can get today’s date with the following:

$today = date(“Y/m/d”);

If today is August 10, 2006, this statements returns

2006/08/10

The format is a string that specifies the date format that you want stored in
the variable. For instance, the format “y-m-d” returns 06-08-10, and “M.d.Y”
returns Aug.10.2006. Table 6-2 lists some of the symbols that you can use in
the format string. (For a complete list of symbols, see the documentation at
www.php.net/manual/en/function.date.php.) The parts of the date
can be separated by a hyphen (-), a dot (.), a forward slash (/), or a space.

Table 6-2 Date Format Symbols
Symbol Meaning Example

F Month in text, not abbreviated January

M Month in text, abbreviated Jan

m Month in numbers with leading zeros 02, 12

n Month in numbers without leading zeros 1, 12

d Day of the month; two digits with leading zeros 01, 14

j Day of the month without leading zeros 3, 30

l Day of the week in text, not abbreviated Friday

D Day of the week in text, abbreviated Fri

w Day of the week in numbers From 0 (Sunday) to 6
(Saturday)

Y Year in four digits 2002

(continued)

129Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 129

Table 6-2 (continued)
Symbol Meaning Example

y Year in two digits 02

g Hour between 0 and 12 without leading zeros 2, 10

G Hour between 0 and 24 without leading zeros 2, 15

h Hour between 0 and 12 with leading zeros 01, 10

H Hour between 0 and 24 with leading zeros 00, 23

i Minutes 00, 59

s Seconds 00, 59

a am or pm in lowercase am, pm

A AM or PM in uppercase AM, PM

Storing a timestamp in a variable
You can assign a timestamp with the current date and time to a variable with
the following statements:

$today = time();

Another way to store a current timestamp is with the statement

$today = strtotime(“today”);

You can store specific timestamps by using strtotime with various key-
words and abbreviations that are similar to English. For instance, you can
create a timestamp for January 15, 2006, as follows:

$importantDate = strtotime(“January 15 2006”);

strtotime recognizes the following words and abbreviations:

� Month names: Twelve month names and abbreviations

� Days of the week: Seven days and some abbreviations

� Time units: year, month, fortnight, week, day, hour, minute,
second, am, pm

� Some useful English words: ago, now, last, next, this, tomorrow,
yesterday

� Plus and minus: + or -

130 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 130

� All numbers

� Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific
Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a wide variety of ways.
The following statements are all valid:

$importantDate = strtotime(“tomorrow”); #24 hours from now
$importantDate = strtotime(“now + 24 hours”);
$importantDate = strtotime(“last saturday”);
$importantDate = strtotime(“8pm + 3 days”);
$importantDate = strtotime(“2 weeks ago”); # current time
$importantDate = strtotime(“next year gmt”);
$importantDate = strtotime(“this 4am”); # 4 AM today

If you wanted to know how long ago $importantDate was, you could sub-
tract it from $today. For instance:

$timeSpan = $today - $importantDate;

This gives you the number of seconds between the important date and today.
Or use the statement

$timeSpan =(($today - $importantDate)/60)/60

to find out the number of hours since the important date.

Using dates with MySQL
Often you want to store a date in your MySQL database. For instance, you
might want to store the date when a customer made an order or the time
when a member logged in. MySQL also recognizes dates and times and han-
dles them differently than plain character strings. However, MySQL also handles
them differently than PHP. To use dates and times in your application, you
need to understand both how PHP handles dates (which I describe in the
previous few sections) and how MySQL handles dates.

I discuss the DATE and DATETIME data types for MySQL in detail in Chapter 3.
The following is a summary:

� DATE: MySQL DATE columns expect dates with the year first, the month
second, and the day last. The year can be yyyy or yy. The month can be
mm or m. The day can be dd or d. The parts of the date can be separated
by a hyphen (-), a forward slash (/), a dot (.), or a space.

� DATETIME: MySQL DATETIME columns expect both the date and the time.
The date is formatted as I describe in the preceding bullet. The date is
followed by the time in the format hh:mm:ss.

131Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 131

Dates and times must be formatted in the correct MySQL format to store them
in your database. PHP functions can be used for formatting. For instance, you
can format today’s date into a MySQL format with this statement:

$today = date(“Y-m-d”);

You can format a specific date by using the statement

$importantDate = date(“Y.m.d”,strtotime(“Jan 15 2006”));

You can then store the formatted date in a database with an SQL query like this:

UPDATE Member SET createDate=”$today”

In some cases, MySQL date functions are easier to use than PHP statements to
manipulate dates. For example, MySQL provides a function named DATEDIFF
that computes the number of days between two dates, as follows:

DATEDIFF(date1,date2)

The function returns the number of days from date2 to date1. For example, to
determine the number of days between a date in a table and the current date,
you can use the following:

SELECT DATEDIFF(NOW(),Birth_date) FROM Customer

NOW() is a MySQL function that returns the current date and time, and
Birth_date is the name of a column in the Customer table.

You can also use the function to return the number of days between dates
that you provide, as follows:

SELECT DATEDIFF(‘2004-1-15’,’1997-12-30’)

MySQL provides many useful functions. All the date/time functions are
described at dev.mysql.com/doc/refman/5.0/en/date-and-time-
functions.html.

Comparing Values
In programs, you often use conditional statements. That is, if something is
true, your program does one thing, but if something is not true, your program
does something different. Here are two examples of conditional statements:

132 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 132

if user is a child
show toy catalog

if user is not a child
show electronics catalog

To know which conditions exist, the program must ask questions. Your pro-
gram then performs tasks based on the answers. Some questions (conditions)
that you might want to ask — and the actions that you might want taken — are

� Is the customer a child? If so, display a toy catalog.

� Which product has more sales? Display the most popular one first.

� Did the customer enter the correct password? If so, display the
Members Only Web page.

� Does the customer live in Ohio? If so, display the map to the Ohio store
location.

To ask a question in a program, you form a statement that compares values.
The program tests the statement and determines whether the statement is
true or false. For instance, you can state the preceding questions as

� The customer is less than 13 years of age. True or false? If true, display
the toy catalog.

� Product 1 sales are higher than Product 2 sales. True or false? If true,
display Product 1 first; if false, display Product 2 first.

� The customer’s password is secret. True or false? If true, show the
Members Only Web page.

� The customer lives in Ohio. True or false? If true, display a map to the
Ohio store location.

Comparisons can be quite simple. For instance, is the first value larger than
the second value? Or smaller? Or equal to? But sometimes you need to look
at character strings to see whether they have certain characteristics instead
of looking at their exact values. For instance, you might want to identify
strings that begin with S or strings that look like phone numbers. For this
type of comparison, you compare a string to a pattern, which I describe in
the section “Matching character strings to patterns,” later in this chapter.

Making simple comparisons
Simple comparisons compare one value to another value. PHP offers several
ways to compare values. Table 6-3 shows the comparisons that are available.

133Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 133

Table 6-3 Comparing Values
Comparison Description

== Are the two values equal?

> Is the first value larger than the second value?

>= Is the first value larger than or equal to the second value?

< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

!= Are the two values not equal to each other?

<> Are the two values not equal to each other?

You can compare both numbers and strings. Strings are compared alphabeti-
cally, with all uppercase characters coming before any lowercase characters.
For instance, SS comes before Sa. Characters that are punctuation also have
an order, and one character can be found to be larger than another character.
However, comparing a comma to a period doesn’t have much practical value.

Strings are compared based on their ASCII (American Standard Code for
Information Interchange) code. In the ASCII character set, each character is
assigned an ASCII code that corresponds to a decimal number between 0 and
127. For instance, the number that represents the comma is 44. The period
corresponds to 46. Therefore, if a period and a comma are compared, the
period is seen as larger.

Comparisons are often used to execute statements only under certain condi-
tions. For instance, in the following example, the block of statements is
executed only when the comparison $weather == “raining” is true:

if ($weather == “raining”)
{

put up umbrella;
cancel picnic;

}

PHP checks the variable $weather to see whether it is equal to “raining”.
If it is, PHP executes the two statements. If $weather is not equal to
“raining”, PHP does not execute the two statements.

The comparison sign is two equal signs (==). One of the most common mis-
takes is to use a single equal sign for a comparison. A single equal sign puts the
value into the variable. Thus, a statement like if ($weather = “raining”)
would set $weather to raining rather than check whether it already equaled
raining and would thus always be true.

134 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 134

For example, here’s a solution to the programming problem presented at the
beginning of this section. The problem is

if user is a child
show toy catalog

if user is not a child
show electronics catalog

To determine whether a customer is an adult, you compare the customer’s
age with the age when the customer is considered to be an adult. You need to
decide at what age a customer would stop being interested in toy catalogs
and start being more interested in electronic catalogs. Suppose you decide that
13 seems like the right age. You then ask whether the customer is younger
than 13 by comparing the customer’s age to 13. If the age is less than 13,
show the toy catalog; if the age is 13 or over, show the electronics catalog.
These comparisons would have the following format:

$age < 13 (is the customer’s age less than 13?)
$age >= 13 (is the customer’s age greater than or equal to 13?)

One way to program the conditional actions is to use the following statements:

if ($age < 13)
$status = “child”;

if ($age >= 13)
$status = “adult”;

These statements instruct PHP to compare the customer’s age to 13. In the
first statement, if the customer’s age is less than 13, the customer’s status is
set to “child”. In the second statement, if the customer’s age is greater than
or equal to 13, the customer’s status is set to “adult”. You then show the
toy catalog to customers whose status is child and show the electronic
catalog to those whose status is adult. Although you can write these if
statements in a more efficient way, the statements shown will work. A full
description of conditional statements is provided in Chapter 7.

Matching character strings to patterns
Sometimes you need to compare character strings to see whether they fit
certain characteristics rather than match exact values. For instance, you
might want to identify strings that begin with S or strings that have numbers
in them. For this type of comparison, you compare the string to a pattern.
These patterns are regular expressions, often called regex.

You’ve probably used some form of pattern matching in the past. When you
use an asterisk (*) as a wildcard when searching for files (dir s*.doc or
ls s*.txt), you are pattern matching. For instance, c*.txt is a pattern.
Any string that begins with a c and ends with the string .txt, with any

135Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 135

characters in between the c and the .txt, matches the pattern. The strings
cow.txt, c3333.txt, and c3c4.txt all match the pattern. Using regular
expressions is just a more complicated variation of using wildcards.

The most common use for pattern matching on Web pages is to check the
input from a form. If the information doesn’t make sense, it’s probably not
something that you want to store in your database. For instance, if the user
types a name into a form, you can check whether it seems like a real name by
matching patterns. You know that a name consists mainly of letters and
spaces. Other valid characters might be a hyphen (-) — for example, in the
name Smith-Kline — and a single quote (‘) — for example, O’Hara. You can
check the name by setting up a pattern that’s a string containing only letters,
spaces, hyphens, and single quotes and then matching the name to the pat-
tern. If the name doesn’t match — that is, if it contains characters not in the
pattern, such as numerals or a question mark (?) — it’s not a real name.

Patterns consist of literal characters and special characters. Literal characters
are normal characters, with no other special meaning. A c is a c with no
meaning other than it’s one of the 26 letters in the English alphabet. Special
characters have special meaning in the pattern, such as the asterisk (*) when
used as a wildcard. Table 6-4 shows the special characters used in patterns.

Table 6-4 Special Characters Used in Patterns
Character Meaning Example Match Not a

Match

^ Beginning of line ^c cat my cat

$ End of line c$ tic stick

. Any single .. Any string that a, I
character contains at least

two characters

? Preceding charac- mea?n mean, men moan
ter is optional

() Groups literal char- m(ea)n mean men, mn
acters into a string
that must be
matched exactly

[] Encloses a set of m[ea]n men, man mean, mn
optional literal
characters

- Represents all the m[a-c]n man, mbn, mdn, mun,
characters between mcn maan
two characters

136 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 136

Character Meaning Example Match Not a
Match

+ One or more of the door[1-3]+ door111, door,
preceding items door131 door55

* Zero or more of the door[1-3]* door, door4,
preceding items door311 door445

{ , } The starting and a{2,5} aa, aaaaa a, xx3
ending numbers of a
range of repetitions

\ The following char- m*n m*n men,
acter is literal mean

(| |) A set of alternate (Tom|Tommy) Tom, Tommy Thomas,
strings To

Literal and special characters are combined to make patterns — sometimes
long, complicated patterns. A string is compared to the pattern, and if it
matches, the comparison is true. Some example patterns follow, with a break-
down of the pattern and some sample matching and nonmatching strings:

� ^[A-Z].* — Strings that begin with an uppercase letter

• ^[A-Z] — Uppercase letter at the beginning of the string

• .* — A string of characters that is one or more characters long

Strings that match:

• Play it again, Sam

• I

Strings that do not match:

• play it again, Sam

• i

� Dear (son|daughter) — Two alternate strings

• Dear — Literal characters

• (son|daughter) — Either son or daughter

Strings that match:

• Dear son

• My Dear daughter

Strings that do not match:

• Dear Goliath

• son

137Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 137

� ^[0-9]{5}(\-[0-9]{4})?$ — Any zip code

• ^[0-9]{5} — Any string of five numbers

• \- — A literal

• [0-9]{4} — A string of numbers that is four characters long

• ()? — Groups the last two parts of the pattern and makes them
optional

Strings that match:

• 90001

• 90002–4323

Strings that do not match:

• 9001

• 12–4321

� ^.+@.+\.com$ — Any string with @ embedded that ends in .com

• ^.+ — Any string of one or more characters at the beginning

• @ — A literal @ (at sign); @ is not a special character

• .+ — Any string of one or more characters

• \. — A literal dot

• com$ — A literal string com at the end of the string

Strings that match:

• mary@hercompany.com

Strings that do not match:

• mary@hercompany.net

• @mary.com

You can compare a string to a pattern by using ereg. The general format is

ereg(“pattern”,string);

Either pattern or string can be a literal, as follows:

ereg(“[0-9]*”,”1234”);

or can be stored in variables, as follows:

ereg($pattern,$string);

138 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 138

To use ereg to check the name that a user typed in a form, compare the
name to a pattern as follows:

ereg(“^[A-Za-z’ -]+$”,$name)

The pattern in this statement does the following:

� Uses ^ and $ to signify the beginning and end of the string. This means
all the characters in the string must match the pattern.

� Encloses all the literal characters allowed in the string in []. No other
characters are allowed. The allowed characters are uppercase and low-
ercase letters, an apostrophe (‘), a blank space, and a hyphen (-).

You can specify a range of characters using a hyphen within the [].
When you do that, as in A-Z in the example, the hyphen does not repre-
sent a literal character. Because you want the hyphen included as a literal
character that is allowed in your string, you need to add a hyphen that
is not between any two other characters. In this case, the hyphen is
included at the end of the list of literal characters.

� Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [] but must contain at least one character.

Joining Comparisons with and/or/xor
Sometimes one comparison is sufficient to check for a condition, but often you
need to ask more than one question. For instance, suppose that your com-
pany offers catalogs for different products in different languages. You need to
know which product the customer wants to see and which language he or she
needs to see it in. This is the general format for a series of comparisons:

comparison and|or|xor comparison and|or|xor comparison and|or|xor ...

Comparisons are connected by one of the three following words:

� and: Both comparisons are true.

� or: One comparison or both comparisons are true.

� xor: One of the comparisons is true, but both comparisons are not true.

Table 6-5 shows some examples of multiple comparisons.

139Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 139

Table 6-5 Multiple Comparisons
Condition Is True If

$customer == “Smith” or The customer is named Smith or Jones.
$customer == “Jones”

$customer == “Smith” and The customer is named Smith, and the
$custState ==”OR” customer lives in Oregon.

$customer == “Smith” or The customer is named Smith, or the
$custState == “OR” customer lives in Oregon, or both.

$customer == “Smith” xor The customer is named Smith, or the
$custState == “OR” customer lives in Oregon — but not both.

$customer != “Smith” and The customer is named anything except
$custAge < 13 Smith and is under 13 years of age.

You can string together as many comparisons as necessary. The comparisons
that use and are tested first, the comparisons that use xor are tested next,
and the comparisons that use or are tested last. For instance, the following is
a condition that includes three comparisons:

$age == 200 or $age == 300 and $name == “Goliath”

If the customer’s name is Goliath and he is 300 years old, this statement is
true. The statement is also true if the customer is 200 years old, regardless of
what his name is. This condition is not true if the customer is 300 years old
but his name is not Goliath. You get these results because the program
checks the condition as follows:

1. The and is compared. The program checks $age to see whether it
equals 300, and it checks $name to see whether it equals Goliath.
If both match, the condition is true, and the program does not need to
check or. If only one or neither of the variables equal the designated
value, the testing continues.

2. The or is compared. The program checks $age to see whether it equals
200. If it does, the condition is true. If it does not, the condition is false.

You can change the order in which comparisons are made by using parenthe-
ses. The word inside the parentheses is evaluated first. For instance, you can
rewrite the previous statement with parentheses as follows:

($age == 200 or $age == 300) and $name == “Goliath”

140 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 140

The parentheses change the order in which the conditions are checked.
Now the or is checked first. This condition is true if the customer’s name is
Goliath and he is either 200 or 300 years old. You get these results because
the program checks the condition as follows:

1. The or is compared. The program checks $age to see whether it equals
either 200 or 300. If it does, this part of the condition is true. However,
the comparison on the other side of the and must also be true, so the
testing continues.

2. The and is compared. The program checks $name to see whether it
equals Goliath. If it does, the condition is true. If it does not, the condi-
tion is false.

Use parentheses liberally, even when you believe that you know the order of
the comparisons. Unnecessary parentheses can’t hurt, but comparisons that
have unexpected results can.

If you are familiar with other languages, such as C, you may have used ||
(for or) and && (for and) in place of the words. The || and && work in PHP
as well. The statement $a < $b && $c > $b is just as valid as the state-
ment $a < $b and $c > $b. The || is checked before or; the && is
checked before and.

Adding Comments to Your Program
Comments are notes embedded in the program itself. Adding comments in
your programs that describe their purpose and what they do is essential.
It’s important for the lottery factor — that is, if you win the lottery and run
off to a life of luxury on the French Riviera, someone else will have to finish
the application. The new person needs to know what your program is sup-
posed to do and how it does it. Actually, comments benefit you as well.
You might need to revise the program next year when the details are long
buried in your mind under more recent projects.

Use comments liberally. PHP ignores comments; comments are for humans.
You can embed comments in your program anywhere as long as you tell PHP
that they are comments. The format for comments is

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/*), it ignores everything until it sees
the code that indicates the end of a comment (*/).

141Chapter 6: General PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 141

One possible format for comments at the start of each program is as follows:

/* name: catalog.php
description: Program that displays descriptions of

products. The descriptions are stored
in a database. The product descriptions
are selected from the database based on
the category the user entered into a

form.
written by: Lola Designer
created: 2/1/06
modified: 3/15/06

*/

You should use comments throughout the program to describe what the
program does. Comments are particularly important when the program
statements are complicated. Use comments such as the following frequently:

/* Get the information from the database */
/* Check whether the customer is over 18 years old */
/* Add shipping charges to the order total */

PHP also has a short comment format. You can specify that a single line is a
comment by using the pound sign (#) or two forward slashes (//) in the fol-
lowing manner:

This is comment line 1
// This is comment line 2

All text from the # or // to the end of the line is a comment. You can also use
or // in the middle of a line to signal the beginning of a comment. PHP will
ignore everything from the # or // to the end of the line. This is useful for
commenting a particular statement, as in the following example:

$average = $orderTotal/$nItems // compute average price

Sometimes you want to emphasize a comment. The following format makes a
comment very noticeable:

######################################
Double-Check This Section
######################################

PHP comments are not included in the HTML code that is sent to the user’s
browser. The user does not see these comments.

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or every-
thing you do in the script. If your script is too full of comments, the important
comments can get lost in the maze. Use comments to label sections and to
explain unusual or complicated code — not obvious code.

142 Part III: PHP

12_096004 ch06.qxp 10/11/06 9:21 PM Page 142

Chapter 7

PHP Building Blocks for Programs
In This Chapter
� Echoing output to Web pages

� Assigning values to variables

� Stopping and breaking out of programs

� Creating and using arrays

� Using conditional statements

� Building and using loops for repeated statements

� Using functions

P HP programs are a series of instructions in a file named with an extension
that tells the Web server to look for PHP sections in the file. (The exten-

sion is usually .php or .phtml, but it can be anything that the Web server is
configured to expect.) PHP begins at the top of the file and executes each
instruction, in order, as it comes to it. Instructions are the building blocks of
PHP programs.

The basic building blocks are simple statements — a single instruction followed
by a semicolon. A simple program consists of a series of simple statements.
For example, the Hello World program in Chapter 6 is a simple program.
However, the programs that make up a Web database application are not that
simple. They are dynamic and interact with both the user and the database.
Consequently, the programs require more complex building blocks.

Here are some common programming tasks that require complex building
blocks:

� Storing groups of related values together: You often have related infor-
mation, such as the description, picture, and price of a product or a list
of customers. Storing this information as a group that you can access
under one name is efficient and useful. This PHP feature is an array.

� Setting up statements that execute only when certain conditions are
met: Programs frequently need to do this. For instance, you may want
to display a toy catalog to a child and an electronics catalog to an adult.
This type of statement is a conditional statement. The PHP conditional
statements are the if statement and the case statement.

13_096004 ch07.qxp 10/11/06 9:25 PM Page 143

� Setting up a block of statements that is repeated: You frequently need
to repeat statements. For instance, you may want to create a list of all
your customers. To do that, you might use two statements: one that gets
the customer row from the database and a second one that stores the
customer name in a list. You would need to repeat these two statements
for every row in the customer database. The feature that enables you to
do this is a loop. Three types of loops are for loops, while loops, and
do..while loops.

� Writing blocks of statements that can be reused many times: Many tasks
are performed in more than one part of the application. For instance, you
might want to retrieve product information from the database and display
it numerous times in an application. Getting and displaying the informa-
tion might require several statements. Writing a block of statements that
displays the product information and using this block repeatedly is much
more efficient than writing the statements over again every time you need
to display the product information. PHP allows you to reuse statement
blocks by creating a function.

In this chapter, you find out how to use the building blocks of PHP programs.
I describe the most frequently used simple statements and the most useful
complex statements and variables. You find out how to construct the building
blocks and what they are used for. Then in Chapter 8, you find out how to use
these building blocks to move data in and out of a database.

Useful Simple Statements
A simple statement is a single instruction followed by a semicolon (;). Here are
some useful simple statements used in PHP programs:

� echo statement: Produces output that browsers handle as HTML

� Assignment statement: Assigns values to variables

� Increment statement: Increases or decreases numbers in variables

� exit statement: Stops the execution of your program

� Function call: Uses stored blocks of statements at any location in a
program

I discuss these simple statements and when to use them in this section.

144 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 144

Using echo statements
You use echo statements to produce output. The output from an echo state-
ment is sent to the user’s browser, which handles the output as HTML.

The general format of an echo statement is

echo outputitem,outputitem,outputitem,...

where the following rules apply:

� An outputitem can be a number, a string, or a variable. A string must
be enclosed in quotes. The difference between double and single quotes
is explained in Chapter 6.

� List as many outputitems as you need, separated by commas.

Table 7-1 shows some echo statements and their output. For the purposes
of the table, assume that $string1 is set to Hello and $string2 is set to
World!.

Table 7-1 echo Statements
echo Statement Output

echo “Hello”; Hello

echo 123; 123

echo “Hello”,”World!”; HelloWorld!

echo Hello World!; Not valid; results in an error message

echo “Hello World!”; Hello World!

echo ‘Hello World!’; Hello World!

echo $string1; Hello

echo $string1,$string2; HelloWorld!

echo “$string1 $string2”; Hello World!

echo “Hello “,$string2; Hello World!

echo “Hello”,” “,$string2; Hello World!

echo ‘$string1’,”$string2”; $string1World!

145Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 145

Double quotes and single quotes have different effects on variables. When you
use single quotes, variable names are echoed as-is. When you use double
quotes, variable names are replaced by the variable values.

You can separate variable names with curly braces ({ }). For instance, the
following statements

$pet = “bird”;
echo “The $petcage has arrived.”;

will not output bird as the $pet variable. In other words, the output will not
be The birdcage has arrived. Rather, PHP will look for the variable
$petcage and won’t be able to find it. You can echo the correct output by
using curly braces to separate the $pet variable:

$pet = “bird”;
echo “The {$pet}cage has arrived.”;

The preceding statement will output

The birdcage has arrived.

echo statements output a line of text that is sent to a browser. The browser
considers the text to be HTML and handles it that way. Therefore, you need
to make sure that your output is valid HTML code that describes the Web
page that you want the user to see.

When you want to display a Web page (or part of a Web page) by using PHP,
you need to consider three stages in producing the Web page:

� The PHP program: PHP echo statements that you write.

� The HTML source code: The source code for the Web page that you see
when you choose View➪Source in your browser. The source code is the
output from the echo statements.

� The Web page: The Web page that your users see. The Web page results
from the HTML source code.

The echo statements send exactly what you echo to the browser — no more,
no less. If you do not echo any HTML tags, none are sent.

PHP allows some special characters that format output, but they are not
HTML tags. The PHP special characters affect only the output from the echo
statement — not the display on the Web page. For instance, if you want to
start a new line in the PHP output, you must include a special character (\n)
that tells PHP to start a new line. However, this special character just starts a
new line in the output; it does not send an HTML tag to start a new line on the
Web page. Table 7-2 shows examples of the three stages.

146 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 146

Table 7-2 Stages of Web Page Delivery
echo Statement HTML Source Code Web Page Display

echo “Hello World!”; Hello World! Hello World!

echo “Hello World!”; Hello World Hello World!Here I am!
echo “Here I am!”; Here I am!

echo “Hello World!\n”; Hello World! Hello World!Here I am!
echo “Here I am!”; Here I am

echo “Hello World!”; Hello World!
 Hello World!
echo “
”; Here I am!” Here I am!
echo “Here I am!”;

echo “Hello”; Hello World!
 Hello World!
echo “ World!
\n”; Here I am!” Here I am!
echo “Here I am!”;

Table 7-2 summarizes the differences between the stages in creating a Web page
with PHP. To look at these differences more closely, consider the following
two echo statements:

echo “Line 1”;
echo “Line 2”;

If you put these lines in a program, you might expect the Web page to display

Line 1
Line 2

However, this is not the output that you would get. The Web page would dis-
play this:

Line 1Line 2

If you look at the source code for the Web page, you see exactly what is sent
to the browser, which is this:

Line 1Line 2

Notice that the line that is output and sent to the browser contains exactly
the characters that you echoed — no more, no less. The character strings
that you echoed did not contain any spaces, so no spaces appear between
the lines. Also notice that the two lines are echoed on the same line. If you
want a new line to start, you have to send a signal indicating the start of a

147Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 147

new line. To signal that a new line starts here in PHP, echo the special charac-
ter \n. Change the echo statements to the following:

echo “line 1\n”;
echo “line 2”;

Now you get what you want, right? Well, no. Now you see the following on the
Web page:

line 1 line 2

If you look at the source code, you see this:

line 1
line 2

So, the \n did its job: It started a new line in the output. However, HTML dis-
plays the output on the Web page as one line. If you want HTML to display
two lines, you must use a tag, such as the
 tag. So, change the PHP
end-of-line special character to an HTML tag, as follows:

echo “line 1
”;
echo “line 2”;

Now you see what you want on the Web page:

line 1
line 2

If you look at the source code for this output, you see this:

line 1
line 2

Use \n liberally. Otherwise, your HTML source code will have some really
long lines. For instance, if you echo a long form, the whole thing might be
one long line in the source code, even though it looks fine in the Web page.
Use \n to break the HTML source code into reasonable lines. It’s much easier
to examine and troubleshoot the source code if it’s not a mile-long line.

Using assignment statements
Assignment statements are statements that assign values to variables. The vari-
able name is listed to the left of the equal sign; the value to be assigned to the
variable is listed to the right of the equal sign. Here is the general format:

$variablename = value;

148 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 148

The value can be a single value or a combination of values, including values
in variables. A variable can hold numbers or characters but not both at the
same time. Therefore, a value cannot be a combination of numbers and char-
acters. The following are valid assignment statements:

$number = 2;
$number = 2+1;
$number = (2 - 1) * (4 * 5) -17;
$number2 = $number + 3;
$string = “Hello World”;
$string2 = $string.” again!”;

If you combine numbers and strings in a value, you won’t get an error message;
you’ll just get unexpected results. For instance, the following statements
combine numbers and strings:

$number = 2;
$string = “Hello”;
$combined = $number + $string;
$combined2 = $number.$string;
echo $combined;
echo
;
echo $combined2;

The output of these statements is

2 ($string is evaluated as 0)
2Hello ($number is evaluated as a character)

Using increment statements
Often a variable is used as a counter. For instance, suppose you want to be
sure that everyone sees your company logo, so you display it three times.
You set a variable to 0. Each time that you display the logo, you add 1 to the
variable. When the value of the variable reaches 3, you know that it’s time to
stop showing the logo. The following statements show the use of a counter:

$counter=0;
$counter = $counter + 1;
echo $counter;

These statements would output 1. Because counters are used so often, PHP
provides shortcuts. The following statements have the same effect as the
preceding statements:

$counter=0;
$counter++;
echo $counter;

149Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 149

This echo statement also outputs 1 because ++ adds 1 to the current value of
$counter. Or you can use the following statement, which subtracts 1 from
the current value of $counter.

$counter--;

Sometimes you may want to do a different arithmetic operation. You can use
any of the following shortcuts:

$counter+=2;
$counter-=3;
$counter*=2;
$counter/=3;

These statements add 2 to $counter, subtract 3 from $counter, multiply
$counter by 2, and divide $counter by 3, respectively.

Using exit
Sometimes you want the program to stop executing — just stop at some
point in the middle of the program. For instance, if the program encounters
an error, often you want it to stop rather than continue with more statements.
The exit statement stops the program. No more statements are executed
after the exit statement. The format of an exit statement is

exit(“message”);

The message is a message that is output when the program exits. For instance,
you might use the statement

exit(“The program is exiting”);

You can also stop the program with the die statement, as follows:

die(“The program is dying”);

The die statement is the same as the exit statement. Sometimes it’s just
more fun to say die.

Using function calls
Functions are blocks of statements that perform certain specified tasks. You can
think of functions as mini-programs or subprograms. The block of statements
is stored under a function name, and you can execute the block of statements
any place you want by calling the function by its name. (For details on how to
use functions, check out the section, “Using Functions,” later in this chapter.)

150 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 150

You can call a function by listing its name followed by parentheses, like this:

functionname();

For instance, you might have a function that gets all the names of customers
that reside in a certain state from the database and displays the names in a
list in the format last name, first name. You write the statements that
do these tasks and store them as a function under the name get_names.
Then when you call the function, you need to specify which state. You can
use the following statement at any location in your program to get the list of
customer names from the given state, which in this case is California:

get_names(‘CA’);

The value in the parentheses is given to the function so it knows which state
you’re specifying. This is passing the value. You can pass one or more values.

PHP provides many built-in functions. For example, in Chapter 6, I discuss a
built-in function called unset. You can uncreate a variable named $testvar
by using this function call:

unset($testvar);

Using PHP Arrays
Arrays are complex variables. An array stores a group of values under a single
variable name. An array is useful for storing related values. For instance, you
can store information about a shirt (such as size, color, and cost) in a single
array named $shirtinfo. Information in an array can be handled, accessed,
and modified easily. For instance, PHP has several methods for sorting an
array. This section gives you the lowdown on arrays.

Creating arrays
The simplest way to create an array is to assign a value to a variable with
square brackets ([]) at the end of its name. For instance, assuming that you
have not referenced $pets at any earlier point in the program, the following
statement creates an array called $pets:

$pets[1] = “dragon”;

At this point, the array named $pets has been created and has only one
value: dragon. Next, you use the following statements:

$pets[2] = “unicorn”;
$pets[3] = “tiger”;

151Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 151

Now the array $pets contains three values: dragon, unicorn, and tiger.

An array can be viewed as a list of key/value pairs. To get a particular value,
you specify the key in the brackets. In the preceding array, the keys are
numbers — 1, 2, and 3. However, you can also use words for keys. For
instance, the following statements create an array of state capitals:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

You can use shortcuts rather than write separate assignment statements for
each number. One shortcut uses the following statements:

$pets[] = “dragon”;
$pets[] = “unicorn”;
$pets[] = “tiger”;

When you create an array using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For exam-
ple, the following statement

echo “$pets[0]”;

outputs dragon.

The first value in an array with a numbered index is 0 unless you deliberately
set it to a different number. One common mistake when working with arrays
is to think of the first number as 1 rather than 0.

An even better shortcut is to use the following statement:

$pets = array(“dragon”,”unicorn”,”tiger”);

This statement creates the same array as the preceding shortcut. It assigns
numbers as keys, starting with 0. You can use a similar statement to create
arrays with words as keys. For example, the following statement creates the
array of state capitals:

$capitals = array(“CA” => “Sacramento”, “TX” => “Austin”,
“OR” => “Salem”);

Viewing arrays
You can echo an array value like this:

152 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 152

echo $capitals[‘TX’];

If you include the array value in a longer echo statement enclosed by double
quotes, you may need to enclose the array value name in curly braces:

echo “The capital of Texas is {$capitals[‘TX’]}
”;

You can see the structure and values of any array by using a print_r or a
var_dump statement. To display the $capitals array, use one of the follow-
ing statements:

print_r($capitals);

var_dump($capitals);

This print_r statement provides the following output:

Array
(
[CA] => Sacramento
[TX] => Austin
[OR] => Salem

)

The var_dump statement provides the following output:

array(3) {
[“CA”]=>
string(10) “Sacramento”
[“TX”]=>
string(6) “Austin”
[“OR”]=>
string(5) “Salem”

}

The print_r output shows the key and the value for each element in the array.
The var_dump output shows the data type, as well as the keys and values.

When you display the output from print_r or var_dump on a Web page, it
displays with HTML, which means that it displays in one long line. To see the
output on the Web in the useful format that I describe here, send HTML tags
that tell the browser to display the text as received, without changing it, by
using the following statements:

echo “<pre>”;
print_r($capitals);
echo “</pre>”;

153Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 153

Removing values from arrays
Sometimes you need to completely remove a value from an array. For exam-
ple, suppose you have the following array:

$pets = array(“dragon”, “unicorn”, “tiger”,
“parrot”, “scorpion”);

This array has five values. Now you decide that you no longer want to carry
scorpions in your pet store, so you use the following statement to try to
remove scorpion from the array:

$pets[4] = “”;

Although this statement sets $pets[4] to an empty string, it does not
remove it from the array. You still have an array with five values, with one of
the five values being empty. To totally remove the item from the array, you
need to unset it with the following statement:

unset($pets[4]);

Now your array has only four values in it.

Sorting arrays
One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them.
If you display the entire array without changing the order, the elements will
be displayed in the order in which they were created. Often, you want to
change this order. For example, you may want to display the array in alpha-
betical order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort statement as follows:

sort($pets);

This statement sorts by the values and assigns new keys that are the appro-
priate numbers. The values are sorted with numbers first, uppercase letters
next, and lowercase letters last. For instance, consider the $pets array cre-
ated in the preceding section:

$pets[0] = “dragon”;
$pets[1] = “unicorn”;
$pets[2] = “tiger”;

154 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 154

After the following sort statement

sort($pets);

the array becomes

$pets[0] = “dragon”;
$pets[1] = “tiger”;
$pets[2] = “unicorn”;

If you use sort() to sort an array with words as keys, the keys will be
changed to numbers, and the word keys will be thrown away.

To sort arrays that have words for keys, use the asort statement. This state-
ment sorts the capitals by value but keeps the original key for each value
instead of assigning a number key. For instance, consider the state capitals
array created in the preceding section:

$capitals[‘CA’] = “Sacramento”;
$capitals[‘TX’] = “Austin”;
$capitals[‘OR’] = “Salem”;

After the following sort statement

asort($capitals);

the array becomes

$capitals[‘TX’] = “Austin”;
$capitals[‘CA’] = “Sacramento”;
$capitals[‘OR’] = “Salem”;

Notice that the keys stayed with the value when the elements were reordered.
Now the elements are in alphabetical order, and the correct state key is still
with the appropriate state capital. If the keys had been numbers, the num-
bers would now be in a different order. For example, if the original array was

$capitals[1] = “Sacramento”;
$capitals[2] = “Austin”;
$capitals[3] = “Salem”;

after an asort statement, the new array would be

$capitals[2] = Austin
$capitals[1] = Sacramento
$capitals[3] = Salem

It’s unlikely that you want to use asort on an array with numbers as a key.

155Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 155

Several other sort statements sort in other ways. Table 7-3 lists all the avail-
able sort statements.

Table 7-3 Ways You Can Sort Arrays
Sort Statement What It Does

sort($arrayname) Sorts by value; assigns new numbers as the keys

asort($arrayname) Sorts by value; keeps the same key

rsort($arrayname) Sorts by value in reverse order; assigns new
numbers as the keys

arsort($arrayname) Sorts by value in reverse order; keeps the same key

ksort($arrayname) Sorts by key

krsort($arrayname) Sorts by key in reverse order

usort($arrayname, Sorts by a function (see “Using Functions,”
functionname) later in this chapter)

Getting values from arrays
You can retrieve any individual value in an array by accessing it directly. Here
is an example:

$CAcapital = $capitals[‘CA’];
echo $CAcapital ;

The output from these statements is

Sacramento

If you use an array element that doesn’t exist in a statement, a notice is
displayed. (Read about notices in Chapter 6.) For example, suppose that
you use the following statement:

$CAcapital = $capitals[‘CAx’];

If the array $capitals exists but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on line 9

156 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 156

Remember that a notice does not cause the script to stop. Statements after
the notice will continue to execute. But because no value has been put into
$CAcapital, any subsequent echo statements will echo a blank space.
You can prevent the notice from being displayed by using the @ symbol:

@$CAcapital = $capitals[‘CAx’];

You can get several values at once from an array using the list statement or
all the values from an array by using the extract statement.

The list statement gets values from an array and puts them into variables.
The following statements include a list statement:

$shirtInfo = array (“large”, “blue”, 12.00);
sort ($shirtInfo);
list($firstvalue,$secondvalue) = $shirtInfo;
echo $firstvalue,”
”;
echo $secondvalue,”
”;

The first line creates the $shirtInfo array. The second line sorts the array.
The third line sets up two variables named $firstvalue and $secondvalue
and copies the first two values in $shirtInfo into the two new variables, as
if you had used the two statements

$firstvalue=$shirtInfo[0];
$secondvalue=$shirtInfo[1];

The third value in $shirtInfo is not copied into a variable because the
list statement includes only two variables. The output from the echo
statements is

blue
large

Notice that the output is in alphabetical order and not in the order in which
the values were entered. It’s in alphabetical order because the array was
sorted after it was created.

You can retrieve all the values from an array with words as keys using extract.
Each value is copied into a variable named for the key. For instance, the fol-
lowing statements get all the information from $shirtInfo and echo it:

extract($shirtInfo);
echo “size is $size; color is $color; cost is $cost”;

The output for these statements is

size is large; color is blue; cost is 12.00;

157Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 157

Walking through an array
You will often want to do something to every value in an array. You might
want to echo each value, store each value in the database, or add 6 to each
value in the array. In technical talk, walking through each and every value in
an array, in order, is iteration. It is also sometimes called traversing. Here are
two ways to walk through an array:

� Manually: Move a pointer from one array value to another

� Using foreach: Automatically walk through the array, from beginning to
end, one value at a time

Manually walking through an array
You can walk through an array manually by using a pointer. To do this, think of
your array as a list. Imagine a pointer pointing to a value in the list. The pointer
stays on a value until you move it. After you move it, it stays there until you
move it again. You can move the pointer with the following instructions:

� current($arrayname): Refers to the value currently under the
pointer; does not move the pointer

� next($arrayname): Moves the pointer to the value after the current
value

� previous($arrayname): Moves the pointer to the value before the
current pointer location

� end($arrayname): Moves the pointer to the last value in the array

� reset($arrayname): Moves the pointer to the first value in the array

The following statements manually walk through an array containing state
capitals:

$value = current ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;
$value = next ($capitals);
echo “$value
”;

Unless you have moved the pointer previously, the pointer is located at the
first element when you start walking through the array. If you think that the
array pointer may have been moved earlier in the script or if your output
from the array seems to start somewhere in the middle, use the reset state-
ment before you start walking, as follows:

reset($capitals);

158 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 158

When using this method to walk through an array, you need an assignment
statement and an echo statement for every value in the array — for each of
the 50 states. The output is a list of all the state capitals.

This method gives you flexibility. You can move through the array in any
manner — not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two next statements in a row, or
whatever method is useful. However, if you want to go through the array from
beginning to end, one value at a time, PHP provides foreach, which does
exactly what you need much more efficiently. foreach is described in the
next section.

Using foreach to walk through an array
foreach walks through the array one value at a time. The current key and
value of the array can be used in the block of statements each time the block
executes. The general format is

foreach($arrayname as $keyname => $valuename)
{

block of statements;
}

Fill in the following information:

� arrayname: The name of the array that you’re walking through.

� keyname: The name of the variable where you want to store the key.
keyname is optional. If you leave out $keyname =>, only the value is
put into a variable that can be used in the block of statements.

� valuename: The name of the variable where you want to store the value.

For instance, the following foreach statement walks through the sample
array of state capitals and echoes a list:

$capitals = array(“CA” => “Sacramento”, “TX” => “Austin”,
“OR” => “Salem”);

ksort($capitals);
foreach($capitals as $state => $city)
{

echo “$city, $state
”;
}

The preceding statements give the following Web page output:

Sacramento, CA
Salem, OR
Austin, TX

159Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 159

You can use the following line in place of the foreach line in the previous
statements:

foreach($capitals as $city)

When using this foreach statement, only the city is available for output.
You would then use the following echo statement:

echo “$city
”;

The output with these changes is

Sacramento
Salem
Austin

When foreach starts walking through an array, it moves the pointer to the
beginning of the array. You don’t need to reset an array before walking
through it with foreach.

Multidimensional arrays
In the earlier sections of this chapter, I describe arrays that are a single list of
key/value pairs. However, on some occasions, you might want to store values
with more than one key. For instance, suppose you want to store these prod-
uct prices together in one variable:

� shirt, 20.00

� pants, 22.50

� blanket, 25.00

� bedspread, 50.00

� lamp, 44.00

� rug, 75.00

You can store these products in an array as follows:

$productPrices[‘shirt’] = 20.00;
$productPrices[‘pants’] = 22.50;
$productPrices[‘blanket’] = 25.00;
$productPrices[‘bedspread’] = 50.00;
$productPrices[‘lamp’] = 44.00;
$productPrices[‘rug’] = 75.00;

Your program can easily look through this array whenever it needs to know a
price. But suppose that you have 3000 products. Your program would need to
look through 3000 products to find the one with shirt or rug as the key.

160 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 160

Notice that the list of products and prices includes a wide variety of products
that can be classified into groups: clothing, linens, and furniture. If you classify
the products, the program would need to look through only one classification
to find the correct price. Classifying the products would be much more efficient.
You can classify the products by putting the costs in a multidimensional
array as follows:

$productPrices[‘clothing’][‘shirt’] = 20.00;
$productPrices[‘clothing’][‘pants’] = 22.50;
$productPrices[‘linens’][‘blanket’] = 25.00;
$productPrices[‘linens’][‘bedspread’] = 50.00;
$productPrices[‘furniture’][‘lamp’] = 44.00;
$productPrices[‘furniture’][‘rug’] = 75.00;

This kind of array is a multidimensional array because it’s like an array of
arrays. Figure 7-1 shows the structure of $productPrices as an array of
arrays. The figure shows that $productPrices has three key/value pairs.
The keys are clothing, linens, and furniture. The value for each key is an array
with two key/value pairs. For instance, the value for the key clothing is an
array with the two key/value pairs: shirt/20.00 and pants/22.50.

$productPrices is a two-dimensional array. PHP can also understand multi-
dimensional arrays that are four, five, six, or more levels deep. However, my
head starts to hurt if I try to comprehend an array that is more than three
levels deep. The possibility of confusion increases when the number of
dimensions increases.

You can get values from a multidimensional array by using the same proce-
dures that you use with a one-dimensional array. For instance, you can
access a value directly with this statement:

$shirtPrice = $productPrices[‘clothing’][‘shirt’];

You can also echo the value:

echo $productPrices[‘clothing’][‘shirt’];

$productPrices key

clothing 20.00shirt
22.50pants

linens 25.00blanket
50.00bedspread

furniture 44.00lamp
75.00rug

key value

value

Figure 7-1:
An array of

arrays.

161Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 161

However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable
name must follow the { immediately, without a space, as follows:

echo “The price of a shirt is \${$productPrices[‘clothing’][‘shirt’]}”;

Notice the backslash (\) in front of the first dollar sign ($). The backslash
tells PHP that $ is a literal dollar sign and not the beginning of a variable
name. The output is

The price of a shirt is $20

You can walk through a multidimensional array by using foreach statements
(described in the preceding section). You need a foreach statement for each
array. One foreach statement is inside the other foreach statement.
Putting statements inside other statements is called nesting.

Because a two-dimensional array, such as $productPrices, contains two
arrays, it takes two foreach statements to walk through it. The following
statements get the values from the multidimensional array and output them
in an HTML table:

echo “<table border=1>”;
foreach($productPrices as $category)
{

foreach($category as $product => $price)
{
$f_price = sprintf(“%01.2f”, $price);
echo “<tr><td>$product:</td>

<td>\$$f_price</td></tr>”;
}

}
echo “</table>”;

Figure 7-2 shows the Web page produced with these PHP statements.

Figure 7-2:
The Web

page output
for the

multidimen-
sional array.

162 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 162

Here is how the program interprets these statements:

1. Outputs the table tag.

2. Gets the first key/value pair in the $productPrices array and stores
the value in the variable $category. The value is an array.

3. Gets the first key/value pair in the $category array. Stores the key in
$product and stores the value in $price.

4. Formats the value in $price into the correct format for money.

5. Echoes one table row for the product and its price.

6. Goes to the next key/value pair in the $category array.

7. Formats the price and echoes the next table row for the product and its
price.

8. Because there are no more key/value pairs in $category, the inner
foreach statement ends.

9. Goes to the next key/value pair in the outer foreach statement. Puts the
next value in $category, which is an array.

10. Repeats the procedure in Steps 2–9 until the last key/value pair in the
last $category array is reached. The inner foreach statement ends.
The outer foreach statement ends.

11. Outputs the /table tag to end the table.

In other words, the outer foreach starts with the first key/value pair in the
array. The key is clothing, and the value of this pair is an array that is put
into the variable $category. The inner foreach then walks through the array
in $category. When it reaches the last key/value pair in $category, it ends.
The program is then back in the outer loop, which goes on to the second
key/value pair . . . and so on until the outer foreach reaches the end of the
array.

Useful Conditional Statements
A conditional statement executes a block of statements only when certain con-
ditions are met. Here are two useful types of conditional statements:

� if statement: Sets up a condition and tests it. If the condition is true, a
block of statements is executed.

� switch statement: Sets up a list of alternative conditions. Tests for the
true condition and executes the appropriate block of statements.

I describe these statements in more detail in the following two sections.

163Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 163

Using if statements
An if statement asks whether certain conditions exist. A block of statements
executes depending on which conditions are met. The general format of an
if conditional statement is

if (condition ...)
{

block of statements
}
elseif (condition ...)
{

block of statements
}
else
{

block of statements
}

The if statement consists of three sections:

� if: This section is required. It tests a condition.

• If condition is true: The block of statements is executed. After the
statements are executed, the program moves to the next instruction
following the conditional statement; if the conditional statement
contains any elseif or else sections, the program skips over them.

• If condition is not true: The block of statements is not executed.
The program skips to the next instruction, which can be an elseif,
an else, or the next instruction after the if conditional statement.

� elseif: This section is optional. It tests a condition. You can use more
than one elseif section if you want.

• If condition is true: The block of statements is executed. After exe-
cuting the block of statements, the program goes to the next
instruction following the conditional statement; if the if statement
contains any additional elseif sections or an else section, the
program skips over them.

• If condition is not true: The block of statements is not executed.
The program skips to the next instruction, which can be an elseif,
an else, or the next instruction after the if conditional statement.

� else: This section is optional. Only one else section is allowed. This sec-
tion does not test a condition; rather, it executes the block of statements.
If the program has entered this section, it means that the if section and
all the elseif sections are not true.

Each section of the if conditional statement tests a condition that consists
of one or more comparisons. A comparison asks a question that can be true
or false. Some conditions are

164 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 164

$a == 1;
$a < $b
$c != “Hello”

The first comparison asks whether $a is equal to 1; the second comparison
asks whether $a is smaller than $b; the third comparison asks whether $c is
not equal to “Hello”. You can use two or more comparisons in a condition
by connecting the comparisons with and, or, or xor. I discuss comparing
values and using more than one comparison in detail in Chapter 6.

The following example uses all three sections of the if conditional state-
ment. Suppose that you have German, French, Italian, and English versions of
your product catalog. You want your program to display the correct language
version, based on where the customer lives. The following statements set a
variable to the correct catalog version (depending on the country where the
customer lives) and set a message in the correct language. You can then dis-
play a message in the appropriate language.

if ($country == “Germany”)
{

$version = “German”;
$message = “ Sie sehen unseren Katalog auf Deutsch”;

}
elseif ($country == “France”)
{

$version = “French”;
$message = “ Vous verrez notre catalogue en francais”;

}
elseif ($country == “Italy”)
{

$version = “Italian”;
$message = “ Vedrete il nostro catalogo in Italiano”;

}
else
{
$version = “English”;
$message = “You will see our catalog in English”;

}
echo “$message
”;

The if conditional statement proceeds as follows:

1. Compares the variable $country to “Germany”. If they are the same,
$version is set to “German”, $message is set in German, and the pro-
gram skips to echo. If $country does not equal Germany, $version
and $message are not set, and the program skips to the elseif section.

2. Compares the variable $country to “France”. If they are the same,
$version and $message are set, and the program skips to the echo
statement. If $country does not equal France, $version and $message
are not set, and the program skips to the second elseif section.

165Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 165

3. Compares the variable $country to “Italy”. If they are the same,
$version is set to “Italian”, and the program skips to the echo
statement. If $country does not equal Italy, $version and
$message are not set, and the program skips to the else section.

4. $version is set to English, and $message is set in English. The pro-
gram continues to the echo statement.

Notice that only the message is echoed in this example. However, the vari-
able $version is stored because the version is useful information that can
be used later in the program.

When the block to be executed by any section of the if conditional statement
contains only one statement, the curly braces are not needed. For instance, if
the preceding example had only one statement in the blocks

if ($country == “France”)
{

$version = “French”;
}

you could write it as follows:

if ($country == “France”)
$version = “French”;

This shortcut can save some typing, but it can lead to confusion when sev-
eral if statements are used.

You can have an if conditional statement inside another if conditional
statement. Putting one statement inside another is nesting. For instance, sup-
pose that you need to contact all your customers who live in Idaho. You plan
to send e-mail to those who have an e-mail address and send a letter to those
who do not have an e-mail address. You can identify the groups of customers
by using the following nested if statements:

if ($custState == “ID”)
{

if ($EmailAdd != “”)
{
$contactMethod = “email”;

}
else
{
$contactMethod = “letter”;

}
}
else
{

$contactMethod = “none needed”;
}

166 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 166

These statements first check to see whether the customer lives in Idaho. If the
customer does live in Idaho, the program tests for an e-mail address. If the
e-mail address is not blank, the contact method is set to email. If the e-mail
address is blank, the contact method is letter. If the customer does not live
in Idaho, the else section sets the contact method to indicate that the cus-
tomer will not be contacted at all.

Using switch statements
For most situations, the if conditional statement works best. Sometimes,
however, you have a list of conditions and want to execute different state-
ments for each of the conditions. For instance, suppose that your program
computes sales tax. How do you handle the different state sales tax rates?
The switch statement was designed for such situations.

The switch statement tests the value of one variable and executes the block
of statements for the matching value of the variable. The general format is

switch ($variablename)
{
case value :

block of statements;
break;

case value :
block of statements;
break;

...
default:

block of statements;
break;

}

The switch statement tests the value of $variablename. The program then
skips to the case section for that value and executes statements until it reaches
a break statement or the end of the switch statement. If there is no case
section for the value of $variablename, the program executes the default
section. You can use as many case sections as you need. The default sec-
tion is optional. If you use a default section, it’s customary to put the
default section at the end, but it can go anywhere.

The following statements set the sales tax rate for different states:

switch ($custState)
{
case “OR” :

$salestaxrate = 0;
break;

case “CA” :
$salestaxrate = 1.0;

167Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 167

break;
default:

$salestaxrate = .5;
break;

}
$salestax = $orderTotalCost * $salestaxrate;

In this case, the tax rate for Oregon is 0, the tax rate for California is 100 percent,
and the tax rate for all the other states is 50 percent. The switch statement
looks at the value of $custState and skips to the section that matches the
value. For instance, if $custState is TX, the program executes the default
section and sets $salestaxrate to .5. After the switch statement, the
program computes $salestax at .5 times the cost of the order.

The break statements are essential in the case section. If a case section
does not include a break statement, the program does not stop executing at
the end of the case section. The program continues executing statements
past the end of the case section, on to the next case section, and continues
until it reaches a break statement in a later case section or the end of the
switch statement.

The last case section in a switch statement doesn’t actually require a break
statement. You can leave it out, but it’s a good idea to include it for clarity.

Using Loops
Loops, which are used frequently in programs, set up a block of statements that
repeat. Sometimes, the loop repeats a specified number of times. For instance,
a loop to echo all the state capitals needs to repeat 50 times. Sometimes, the
loop repeats until a certain condition exists. For instance, a loop that displays
product information for all the products needs to repeat until it has displayed
all the products, regardless of how many products there are. Here are three
types of loops:

� Basic for loop: Sets up a counter; repeats a block of statements until
the counter reaches a specified number

� while loop: Sets up a condition; checks the condition; and if it is true,
repeats a block of statements

� do..while loop: Sets up a condition; executes a block of statements;
checks the condition; if the condition is true, repeats the block of
statements

I describe each of these loops in detail in the following few sections.

168 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 168

Using for loops
The most basic for loops are based on a counter. You set the beginning value
for the counter, set the ending value, and set how the counter is incremented.
The general format is

for(startingvalue;endingcondition;increment)
{

block of statements;
}

Fill in the following values:

� startingvalue: A statement that sets up a variable to be your counter
and sets it to your starting value. For instance, the statement $i=1; sets
$i as the counter variable and sets it equal to 1. Frequently, the counter
variable is started at 0 or 1. The starting value can be a combination of
numbers (2 + 2) or a variable.

� endingcondition: A statement that sets your ending value. As long as
this statement is true, the block of statements keeps repeating. When this
statement is not true, the loop ends. For instance, the statement $i<10;
sets the ending value for the loop to 10. When $i is equal to 10, the state-
ment is no longer true (because $i is no longer less than 10), and the loop
stops repeating. The statement can include variables, such as $i<$size;.

� increment: A statement that increments your counter. For instance,
the statement $i++; adds 1 to your counter at the end of each block of
statements. You can use other increment statements, such as $I+=1; or
$i--;.

The basic for loop sets up a variable — for example, a variable called $i, —
that is a counter. This variable has a value during each loop. The variable $i
can be used in the block of statements that is repeating. For instance, the fol-
lowing simple loop displays Hello World! three times:

for($i=1;$i<=3;$i++)
{
echo “$i. Hello World!
”;

}

PHP doesn’t care whether the statements in the block are indented. However,
indenting the blocks makes it much easier for you to understand the program.

The output from these statements is

1. Hello World!
2. Hello World!
3. Hello World!

169Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 169

for loops are particularly useful for looping through an array. Suppose that
you have an array of customer names and want to display them all. You can
do this easily with a loop:

for($i=0;$i<100;$i++)
{
echo “$customerNames[$i]
”;

}

The output displays a Web page with a list of all customer names, one on
each line. In this case, you know that you have 100 customer names. But sup-
pose that you don’t know how many customers are in this list. You can ask
PHP how many values are in the array and use that value in your for loop.
For example, you can use the following statements:

for($i=0;$i<sizeof($customerNames);$i++)
{

echo “$customerNames[$i]
”;
}

Notice that the ending value is sizeof($customerNames). This statement
finds out the number of values in the array and uses that number. That way,
your loop repeats exactly the number of times that there are values in the
array.

The first value in an array with a numbered index is 0 unless you deliberately
set it to a different number. One common mistake when working with arrays
is to think of the first number as 1 rather than 0.

Using while loops
A while loop continues repeating as long as certain conditions are true.
The loop works as follows:

1. You set up a condition.

2. The condition is tested at the top of each loop.

3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The general format of a while loop is

while(condition)
{

block of statements
}

170 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 170

A condition is any expression that can be found to be true or false. Comparisons,
such as the following, are often used as conditions. (For detailed information
on using comparisons, see Chapter 6.)

$test <= 10
$test1 == $test2
$a == “yes” and $b != “yes”
$name != “Smith”

As long as the condition is found to be true, the loop repeats. When the con-
dition tests false, the loop stops. The following statements set up a while
loop that looks through an array for a customer named Smith:

$customers = array(“Huang”, “Smith”, “Jones”);
$testvar = “no”;
$k = 0;
while ($testvar != “yes”)
{
if ($customers[$k] == “Smith”)
{
$testvar = “yes”;
echo “Smith
”;

}
else
{
echo “$customers[$k], not Smith
”;

}
$k++;

}

These statements display the following on a Web page:

Huang, not Smith
Smith

The program executes the previous statements as follows:

1. Sets the variables before starting the loop: $customers (an array with
three values), $testvar (a test variable set to “no”), and $k (a counter
variable set to 0).

2. Starts the loop by testing whether $testvar != “yes” is true. Because
$testvar was set to “no”, the statement is true, so the loop continues.

3. Tests the if statement. Is $customers[$k] == “Smith” true?
At this point, $k is 0, so the program checks $customers[0].
Because $customers[0] is “Huang”, the statement is not true.
The statements in the if block are not executed, so the program skips
to the else statement.

171Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 171

4. Executes the statement in the else block. The else block outputs the
line “Huang, not Smith”. This is the first line of the output.

5. Adds 1 to $k, which now becomes equal to 1.

6. Reaches the bottom of the loop.

7. Goes to the top of the loop.

8. Tests the condition again. Is $testvar != “yes” true? Because
$testvar has not been changed and is still set to “no”, it is true, so
the loop continues.

9. Tests the if statement. Is $customers[$k] == “Smith” true?
At this point, $k is 1, so the program checks $customers[1]. Because
$customers[1] is “Smith”, the statement is true. So the loop enters
the if block.

10. Executes the statements in the if block. Sets $testvar to “yes”.
Outputs “Smith”. This is the second line of the output.

11. Adds 1 to $k which now becomes equal to 2.

12. Reaches the bottom of the loop.

13. Goes to the top of the loop.

14. Tests the condition again. Is $testvar != “yes” true? Because
$testvar has been changed and is now set to “yes”, it is not true.
The loop stops.

It’s possible to write a while loop that is infinite — that is, a loop that loops
forever. Without intending to, you can easily write a loop in which the condi-
tion is always true. If the condition never becomes false, the loop never ends.
For a discussion of infinite loops, see the “Infinite loops” section, later in this
chapter.

Using do..while loops
A do..while loop is similar to a while loop. A do..while loop continues
repeating as long as certain conditions are true. You set up a condition.
The condition is tested at the bottom of each loop. If the condition is true,
the loop repeats. When the condition is not true, the loop stops.

The general format for a do..while loop is

do
{

block of statements
} while(condition);

172 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 172

The following statements set up a loop that looks for the customer named
Smith. This program does the same thing as a program in the preceding
section using a while loop:

$customers = array(“Huang”, “Smith”, “Jones”);
$testvar = “no”;
$k = 0;
do
{
if ($customers[$k] == “Smith”)
{
$testvar = “yes”;
echo “Smith
”;

}
else
{
echo “$customers[$k], not Smith
”;

}
$k++;

} while ($testvar != “yes”);

The output of these statements in a browser is

Huang, not Smith
Smith

This is the same output shown for the while loop example. The difference
between a while loop and a do..while loop is where the condition is
checked. In a while loop, the condition is checked at the top of the loop.
Therefore, the loop will never execute if the condition is never true. In the
do..while loop, the condition is checked at the bottom of the loop. Therefore,
the loop always executes at least once even if the condition is never true.

For instance, in the preceding loop that checks for the name Smith, suppose
the original condition is set to yes, instead of no, by using this statement:

$testvar = “yes”;

The condition would test false from the beginning. It would never be true. In a
while loop, there would be no output. The statement block would never run.
However, in a do..while loop, the statement block would run once before
the condition was tested. Thus, the while loop would produce no output,
but the do..while loop would produce the following output:

Huang, not Smith

The do..while loop produces one line of output before the condition is tested.
It does not produce the second line of output because the condition tests false.

173Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 173

Infinite loops
You can easily set up loops so that they never stop. These are infinite loops.
They repeat forever. However, seldom does anyone create an infinite loop
intentionally. It is usually a mistake in the programming. For instance, a
slight change to the program that sets up a while loop can make it into an
infinite loop.

Here is the program shown in the “Using while loops” section, earlier in this
chapter:

$customers = array (“Huang”, “Smith”, “Jones”);
$testvar = “no”;
$k = 0;
while ($testvar != “yes”)
{
if ($customers[$k] == “Smith”)
{
$testvar = “yes”;
echo “Smith
”;

}
else
{
echo “$customers[$k], not Smith
”;

}
$k++;

}

Here is the program with a slight change:

$customers = array (“Huang”, “Smith”, “Jones”);
$testvar = “no”;
while ($testvar != “yes”)
{
$k = 0;
if ($customers[$k] == “Smith”)
{
$testvar = “yes”;
echo “Smith
”;

}
else
{
echo “$customers[$k], not Smith
”;

}
$k++;

}

174 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 174

The small change is moving the statement $k = 0; from outside the loop to
inside the loop. This small change makes it into an endless loop. The output
of this changed program is

Huang, not Smith
Huang, not Smith
Huang, not Smith
Huang, not Smith
...

This will repeat forever. Every time the loop runs, it resets $k to 0. Then it
gets $customers[0] and echoes it. At the end of the loop, $k is incremented
to 1. However, when the loop starts again, $k is set back to 0. Consequently,
only the first value in the array, Huang, is ever read. The loop never gets to
the name Smith, and $testvar is never set to “yes”. The loop is endless.

Don’t be embarrassed if you write an infinite loop. I guarantee that the best
programming guru in the world has written many infinite loops. It’s not a big
deal. If you are testing a program and get output in your Web page repeating
endlessly, it will stop by itself in a short time. The default time is 30 seconds,
but the timeout period may have been changed by the PHP administrator.
You can also click the Stop button on your browser to stop the display in
your browser. Then figure out why the loop is repeating endlessly and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean a double equal sign (==). The single equal sign
stores a value in a variable; the double equal sign tests whether two values
are equal. If you write the following condition with a single equal sign:

while ($testvar = “yes”)

it is always true. The condition simply sets $testvar equal to “yes”. This is
not a question that can be false. What you probably meant to write is this:

while ($testvar == “yes”)

This is a question asking whether $testvar is equal to “yes”, which can be
answered either true or false.

You can bulletproof your programs against this error by changing the condi-
tion to “yes” == $testvar. It’s less logical to read but protects against the
single-equal-sign problem. If you use a single equal sign instead of a double
equal sign in this condition, you get an error and your program fails to run.

175Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 175

Another common mistake is to leave out the statement that increments the
counter. For instance, in the program earlier in this section, if you leave out
the statement $k++;, $k is always 0 and the result is an infinite loop.

Breaking out of a loop
Sometimes you want your program to break out of a loop. PHP provides two
statements for this purpose:

� break: Breaks completely out of a loop and continues with the program
statements after the loop.

� continue: Skips to the end of the loop where the condition is tested.
If the condition tests positive, the program continues from the top of
the loop.

break and continue are usually used in a conditional statement. break, in
particular, is used most often in switch statements, as I discuss earlier in
the chapter.

The following two sets of statements show the difference between continue
and break. The first statements use the break statement:

$counter = 0;
while($counter < 5)
{
$counter++;
If($counter == 3)
{

echo “break
”;
break;

}
echo “End of while loop: counter=$counter
”;

}
echo “After the break loop<p>”;

The following statements use the continue statement:

$counter = 0;
while($counter < 5)
{
$counter++;
if($counter == 3)
{

176 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 176

echo “continue
”;
continue;

}
echo “End of while loop: counter=$counter
”;

}
echo “After the continue loop
”;

These statements build two loops that are the same, except the first uses
break and the second uses continue. The output from the first set of
statements that uses the break statement displays in your browser as
follows:

End of while loop: counter=1
End of while loop: counter=2
break
After the break loop

The output from the second set of statements, with the continue statement, is

End of while loop: counter=1
End of while loop: counter=2
continue
End of while loop: counter=4
End of while loop: counter=5
After the continue loop

The first loop ends at the break statement. It stops looping and jumps imme-
diately to the statement after the loop. The second loop does not end at the
continue statement. It just stops the third repeat of the loop and jumps
back up to the top of the loop. It then finishes the loop, with the fourth and
fifth repeats, before it goes to the statement after the loop.

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

$test4infinity++;
if ($test4infinity > 100)
{

break;
}

If you’re sure that your loop should never repeat more than 100 times, these
statements will stop the loop if it becomes endless. Use whatever number
seems reasonable for the loop that you’re building.

177Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 177

Using Functions
Applications often perform the same task at different points in the program
or in different programs. For instance, your application might display the
company logo on several Web pages or in different parts of the program.
Suppose that you use the following statements to display the company logo:

echo “<hr style=’width: 50’ align=’left’ />”,”\n”;
echo “<img src=’/images/logo.jpg’ width=’50’

height=’50’ />”,”\n”;
echo “<hr style=’width: 50’ align=’left’ />”,”\n”;

You can create a function that contains the preceding statements and name it
display_logo. Then whenever the program needs to display the logo, you
can just call the function display_logo with a simple function call, as follows:

display_logo();

Notice the parentheses after the function name. These are required in a func-
tion call because they tell PHP that this is a function.

Using a function offers several advantages:

� Less typing: You have to type the statements only once — in the func-
tion. Forever after, you just use the function call and never have to type
the statements again.

� Easier to read: The line display_logo() is much easier for a person
to understand at a glance.

� Fewer errors: After you have written your function and fixed all its prob-
lems, it runs correctly wherever you use it.

� Easier to change: If you decide to change how the task is performed, you
need to change it in only one place. You just change the function instead
of finding all the different places in your program where you performed
the task and changing the code in all those places. For instance, suppose
that you changed the name of the graphics file that holds the company
logo. You just change the filename in one place — the function — and it
works correctly everywhere.

You can create a function by putting the code into a function block. The gen-
eral format is as follows:

178 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 178

function functionname()
{

block of statements;
return;

}

For instance, you create the function to display the company logo with the
following statements:

function display_logo()
{

echo “<hr style=’width: 50’ align=’left’ />”,”\n”;
echo “<img src=’/images/logo.jpg’ width=’50’

height=’50’ />”,”\n”;
echo “<hr style=’width: 50’ align=’left’ />”,”\n”;
return;

}

The return statement stops the function and returns to the main program.
The return statement at the end of the function is not required, but it makes
the function easier to understand. The return statement is often used for a
conditional end to a function.

Suppose that your function displays an electronics catalog. You might use the
following statement at the beginning of the function:

if ($age < 13)
return;

If the customer’s age is less than 13, the function stops, and the electronics
catalog isn’t displayed.

You can put functions anywhere in the program, but the usual practice is to
put all the functions at the beginning or the end of the program file. Functions
that you plan to use in more than one program can be in a separate file. Each
program accesses the functions from the external file. For more on organizing
applications into files and accessing separate files, see Chapter 10.

Notice that the sample function is quite simple. It doesn’t use variables, and
it doesn’t share any information with the main program. It just performs an
independent task when called. You can use variables in functions and pass
information between the function and the main program as long as you know
the rules and limitations. The remaining sections in this chapter explain how
to use variables and pass values.

179Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 179

Using variables in functions
You can create and use variables that are local to the function. That is, you
can create and use a variable inside your function. However, the variable is
not available outside the function; it’s not available to the main program.
You can make the variable available at any location in the program by using a
special statement called global. For instance, the following function creates
a variable:

function format_name()
{

$first_name = “Goliath”;
$last_name = “Smith”;
$name = $last_name.”, “.$first_name;

}
format_name();
echo “$name”;

These statements produce no output. In the echo statement, $name doesn’t
contain any value. The variable $name was created inside the function, so it
doesn’t exist outside the function.

To create a variable inside a function that does exist outside the function,
you use the global statement. The following statements contain the same
function with a global statement added:

function format_name()
{

$first_name = “Goliath”;
$last_name = “Smith”;
global $name;
$name = $last_name.”, “.$first_name;

}
format_name();
echo “$name”;

The program now echoes this:

Smith, Goliath

The global statement makes the variable available at any location in the
program. You must make the variable global before you can use it. If the
global statement follows the $name assignment statement, the program
does not produce any output.

180 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 180

The same rules apply when you’re using a variable created in the main pro-
gram. You can’t use a variable in a function that was created outside the
function unless the variable is global, as shown in the following statements:

$first_name = “Goliath”;
$last_name = “Smith”;
function format_name()
{

global $first_name, $last_name;
$name = $last_name.”, “.$first_name;
echo “$name”;

}
format_name();

If you don’t use the global statement, $last_name and $first_name
inside the function are different variables, created when you name them.
They have no values. The program would produce no output without the
global statement.

Passing values between a function
and the main program
You can pass values into the function and receive values from the function.
For instance, you might write a function to add the correct sales tax to an
order. The function would need to know the cost of the order and which state
the customer resides in. The function would need to send back the amount of
the sales tax.

Passing values to a function
You can pass values to a function by putting the values between the paren-
theses when you call the function, as follows:

functionname(value,value,...);

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variable names for the values that
it’s expecting, as follows:

function functionname($varname1,$varname2,...)
{

statements
return;

}

181Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 181

For example, the following function computes the sales tax:

function compute_salestax($amount,$custState)
{
switch ($custState)
{
case “OR” :
$salestaxrate = 0;
break;

case “CA” :
$salestaxrate = 1.0;
break;

default:
$salestaxrate = .5;
break;

}
$salestax = $amount * $salestaxrate;
echo “$salestax
”;

}
$cost = 2000.00;
$custState = “CA”;
compute_salestax($cost,$custState);

The first line shows that the function expects two values, as follows:

function compute_salestax($amount,$custState)

The last line is the function call, which passes two values to the function
compute_salestax, as it expects. The amount of the order and the state
in which the customer resides are passed. The output from this program is
2000 because the tax rate for California is 100 percent.

You can pass as many values as you need to. Values can be variables or
values, including computed values. The following function calls are valid:

compute_salestax(2000,”CA”);
compute_salestax(2*1000,””);
compute_salestax(2000,”C”.”A”);

Values can be passed in an array. The function receives the variable as an
array. For instance, the following statements pass an array:

$arrayofnumbers = array(100, 200);
addnumbers($arrayofnumbers);

The function receives the entire array. For instance, suppose the function
starts with the following statement:

function addnumbers($numbers)

182 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 182

The variable $numbers is an array. The function can include statements
such as

return $numbers[0] + $numbers[1];

The values passed are passed by position. That is, the first value in the list
that you pass is used as the first value in the list that the function expects,
the second is used for the second, and so forth. If your values aren’t in the
same order, the function uses the wrong value when performing the task.
For instance, for compute_salestax, you might call compute_salestax
passing values in the wrong order:

compute_salestax($custState,$orderCost);

The function uses the state as the cost of the order, which it sets to 0 because
the value passed is a string. It sets the state to the number in $orderCost,
which would not match any of its categories. The output would be 0.

If you do not send enough values, the function sets the missing value to an
empty string for a string variable or to 0 for a number. If you send too many
values, the function ignores the extra values.

If you pass the wrong number of values to a function, you might get a warning
message, depending on the error message level that PHP is set to:

Warning: Missing argument 2 for compute_salestax() in /test7.php on line 5

For the lowdown on warning messages, check out Chapter 6.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function by assigning a default value for the value(s)
that it is expecting, as follows:

function add_2_numbers($num1=1,$num2=1)
{

$total = $num1 + $num2;
return $total;

}

If one or both values are not passed, the function uses the assigned defaults.
But if a value is passed, it is used instead of the default. For example, you
could use one of the following calls:

add_2_numbers(2,2);
add_2_numbers(2);
add_2_numbers();

183Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 183

The results, in consecutive order, are as follows:

$total = 4
$total = 3
$total = 2

Getting a value from a function
When you call a function, you can pass values as just described. The function
can also pass a value back to the program that called it. Use the return
statement to pass a value back to the calling program. The program can store
the value in a variable or use the value directly, such as using it in a conditional
statement. The return statement also returns control to the main program;
that is, it stops the function.

The general format of the return statement is

return value;

For instance, in the tax program from the preceding section, I echo the sales
tax by using the following statements:

$salestax = $amount * $salestaxrate;
echo “$salestax
”;

I could return the sales tax to the main program, rather than echoing it, by
using the following statement:

$salestax = $amount * $salestaxrate;
return $salestax;

In fact, I could use a shortcut and send it back to the main program with one
statement:

return $amount * $salestaxrate;

The return statement sends the salestax back to the main program and
ends the function. The main program can use the value in any of the usual
ways. The following statements use the function call in valid ways:

$salestax = compute_salestax($cost,$custState);

$totalcost = $cost + compute_salestax($cost,$custState);

if(compute_salestax($cost,$custState) > 100000.00)
$echo “Thank you very, very, very much”;

184 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 184

foreach($customerOrder as $amount)
{

$total = $amount +
compute_salestax($amount,$custState);

echo “Your total is $total”;
}

A return statement can return only one value. However, the value returned
can be an array, so you can actually return many values from a function.

You can use return statements in a conditional statement to return different
values for different conditions. For example, the following function returns
one of two different strings:

function compare_values($value1,$value2)
{
if($value1 < $value2)
{

return “less than”;
}
else
{

return “not less than”;
}

}

Although the function contains two return statements, only one is going to
be executed, depending on the values in $value1 and $value2.

Using built-in functions
PHP’s many built-in functions are one reason why PHP is so powerful and
useful for Web pages. The functions included with PHP are normal functions.
They are no different than functions that you create yourself. It’s just that
PHP already did all the work for you.

I discuss some of the built-in functions in this chapter and the earlier chap-
ters. For example, see Chapter 6 for more on the functions unset and
number_format. Some useful functions for interacting with your MySQL
database are discussed in Chapter 8. Other useful functions are listed in Part
V. And all the functions are listed and described in the PHP documentation on
the PHP Web site at www.php.net/docs.php.

185Chapter 7: PHP Building Blocks for Programs

13_096004 ch07.qxp 10/11/06 9:25 PM Page 185

186 Part III: PHP

13_096004 ch07.qxp 10/11/06 9:25 PM Page 186

Chapter 8

Data In, Data Out
In This Chapter
� Connecting to the database

� Getting information from the database

� Using HTML forms with PHP

� Getting data from an HTML form

� Processing the information that users type into HTML forms

� Storing data in the database

� Using functions to move data into and out of the database

P HP and MySQL work well together. This dynamic partnership is what
makes PHP and MySQL so attractive for Web database application

development. Whether you have a database full of information that you want
to make available to users (such as a product catalog) or a database waiting
to be filled up by users (for example, a membership database), PHP and
MySQL work together to implement your application.

One of PHP’s strongest features is its ability to interact with databases. It pro-
vides functions that make communicating with MySQL extremely simple.
You use PHP functions to send SQL queries to the database. You don’t need
to know the details of communicating with MySQL; PHP handles the details.
You only need to know the SQL queries and how to use the PHP functions.

In previous chapters, I describe the tools that you use to build your Web
database application. You find out how to build SQL queries in Chapter 4
and how to construct and use the building blocks of the PHP language in
Chapters 6 and 7. In this chapter, you find out how to use these tools for the
specific tasks that a Web database application needs to perform.

PHP and MySQL Functions
You use built-in PHP functions to interact with MySQL. These functions con-
nect to the MySQL server, select the correct database, send SQL queries, and
perform other communication with MySQL databases. You don’t need to

14_096004 ch08.qxp 10/11/06 9:25 PM Page 187

know the details of interacting with the database because PHP handles all the
details. You need to know only how to use the functions.

The MySQL Web site, as of this writing, offers versions 4.1, 5.0, and 5.1.
Version 5.0 is the current stable version — the version most people should
install and use. MySQL versions 4.0 and 3.23 may still be in use on some Web
sites. As of PHP 5, PHP offers two sets of functions for communicating with
MySQL: one set of functions (the mysqli functions) for use with MySQL 4.1
or later and another set of functions (the mysql functions) for use with
MySQL 4.0 and earlier versions.

If you are using Windows with PHP 5 or 6, you can enable the correct func-
tion set by activating the correct extension in your php.ini file. See the
“Configuring PHP” section in Appendix B. If you are using Linux, Unix, or Mac,
you need to use a configuration option to activate the correct set of functions,
as explained in Step 10 of the installation instructions in Appendix B.

If you are using PHP 4, the mysqli functions are not available. Instead, you
use the mysql functions, even with later versions of MySQL. The mysql func-
tions can communicate with the later versions of MySQL, but they cannot
access some of the new features added in the later versions of MySQL. The
mysql functions are activated automatically in PHP 4.

Throughout the book, my examples and programs use MySQL 5.0 and use the
mysqli functions to communicate with MySQL. The PHP functions for use
with MySQL 5.0 have the following general format:

mysqli_function(value,value,...);

The i in the function name stands for improved (MySQL Improved). The second
part of the function name is specific to the function, usually a word that
describes what the function does. In addition, the function requires one or
more values to be passed, specifying things such as the database connection
or the data location. Following are two of the functions discussed in this
chapter:

mysqli_connect(connection information);
mysqli_query($cxn,”SQL statement”);

If you are using PHP 4 or are communicating with MySQL 4.0 or earlier, the
corresponding mysql functions are

mysql_connect(connection information);
mysql_query(“SQL statement”);

The functionality and syntax of the functions are similar but not identical for
all functions. If you need to use the mysql functions rather than the mysqli
functions, you will need to edit the programs in this book, replacing the
mysqli functions with mysql functions. Table 8-1 shows the equivalent
mysql functions and their syntax.

188 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 188

Table 8-1 Syntax for mysql and mysqli Functions
mysqli Function mysql Function

mysqli_connect($host, mysql_connect($host,
$user,$passwd,$dbname) $user,$passwd) followed by

mysql_select_db($dbname)

mysqli_errno($cxn) mysql_errno() or
mysql_errno($cxn)

mysqli_error($cxn) mysql_error() or
mysql_error($cxn)

mysqli_fetch_array($result) mysql_fetch_array($result)

mysqli_fetch_assoc($result) mysql_fetch_assoc($result)

mysqli_fetch_row($result) mysql_fetch_row($result)

mysqli_insert_id($cxn) mysql_insert_id($cxn)

mysqli_num_rows($result) mysql_num_rows($result)

mysqli_query($cxn,$sql) mysql_query($sql) or
mysql_query($sql,$cxn)

mysqli_select_db mysql_select_db($dbname)
($cxn,$dbname)

mysqli_real_escape_string mysql_real_escape_string
($cxn,$data) ($data)

Making a Connection
Before you can store any data or get any data, you need to connect to the data-
base. The database might be on the same computer with your PHP programs,
or it might be on a different computer. You don’t need to know the details of
connecting to the database because PHP handles all the details. All you need to
know is the name and location of the database. Think of a database connection
in the same way that you think of a telephone connection. You don’t need to
know the details about how the connection is made — that is, how your words
move from your telephone to another telephone — you need to know only
the area code and phone number. The phone company handles the details.

After connecting to the database, you send SQL queries to the MySQL data-
base by using a PHP function designed for this purpose. You can send as
many queries as you need. The connection remains open until you close it
or the program ends. Similarly, in a telephone conversation, the connection
remains open until you terminate it by hanging up the phone.

189Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 189

Connecting to the MySQL server
The first step in communicating with your MySQL database is connecting to
the MySQL server. To connect to the server, you need to know the name of the
computer where the database is located, the name of your MySQL account,
and the password to your MySQL account. To open the connection, use the
mysql_connect function as follows:

$cxn=mysqli_connect(“addr”,”acct”,”password”,”dbname”)
or die (“message”);

Fill in the following information:

� addr: The name of the computer where MySQL is installed — for exam-
ple, databasehost.mycompany.com. If the MySQL database is on the
same computer as your Web site, you can use localhost as the com-
puter name. If this information is blank (“”), PHP assumes localhost.

� acct: The name of any valid MySQL account. (I discuss MySQL accounts
in detail in Chapter 5.)

� password: The password for the MySQL account specified by acct.
If the MySQL account does not require a password, don’t type anything
between the quotes: “”.

� dbname: The name of the database you want to communicate with.
This parameter is optional. You can select the database later, with a
separate command if you prefer. You can select a different database at
any point in your program.

If you are using the mysql functions, you cannot select the database in
the connect function. You must use a separate function — mysql_
select_db — to select the database.

� message: The message sent to the browser if the connection fails.
The connection fails if the computer or network is down or the MySQL
server isn’t running. It also may fail if the information provided isn’t
correct — for example, if the password contains a typo.

You might want to use a descriptive message during development, such
as Couldn’t connect to server, but use a more general message
suitable for customers after the application is in use, such as The Pet
Catalog is not available at the moment. Please try
again later.

The addr includes a port number that is needed for the connection. Almost
always, the port number is 3306. On rare occasions, the MySQL administrator
needs to set up MySQL to connect on a different port. In these cases, the port
number is required for the connection. The port number is specified as
hostname:portnumber. For instance, you might use localhost:8808.

190 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 190

With these statements, mysqli_connect attempts to open a connection to
the named computer, using the account name and password provided. If the
connection fails, the program stops running at this point and sends message
to the browser.

The following statement connects to the MySQL server on the local computer
by using a MySQL account named catalog that does not require a password:

$cxn = mysqli_connect(“localhost”,”catalog”,
“”,”PetCatalog)

or die (“Couldn’t connect to server.”);

For security reasons, it’s a good idea to store the connection information in
variables and use the variables in the connection statement, as follows:

$host=”localhost”;
$user=”catalog”;
$password=””;
$dbname = “PetCatalog”;
$cxn = mysqli_connect($host,$user,$password,$dbname)

or die (“Couldn’t connect to server.”);

For even more security, you can put the assignment statements for the con-
nection information in a separate file in a hidden location so that the account
name and password aren’t even in the program. I explain how to do this in
Chapter 10.

The variable $cxn contains information that identifies the connection. You can
have more than one connection open at a time by using more than one vari-
able name. A connection remains open until you close it or until the program
ends. You close a connection as follows:

mysqli_close($connectionname);

For instance, to close the connection in the preceding example, use this
statement:

mysqli_close($cxn);

Selecting the right database
If you do not select the database with the connect function, you can select the
database using the mysqli_select_db function. You can also use this func-
tion to select a different database at any time in your program. The format is

mysqli_select_db($connectionname,”databasename”)
or die (“message”);

191Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 191

192 Part III: PHP

Handling MySQL errors
You use the mysqli functions of the PHP language, such as mysqli_connect and
mysqli_query, to interact with the MySQL database. If one of these functions fails to execute
correctly, a MySQL error message is returned with information about the problem. However, this
error message isn’t sent to the browser unless the program deliberately sends it. Here are the three
usual ways to call the mysqli functions:

� Calling the function without error handling. The function is called without any statements that
provide error messages. For instance, the mysqli_connect function can be called as follows:

$cxn = mysqli_connect($host,$user,$password,$dbname);

If this statement fails (for instance, the account is not valid), the connection is not made, but the
remaining statements in the program continue to execute. In most cases, this isn’t useful
because some of the statements in the rest of the program might depend on having an open
connection, such as getting or storing data in the database.

� Calling the function with a die statement. The function is called with a die statement that
sends a message to the browser. For instance, the mysqli_connect function can be called
as follows:

$cxn = mysqli_connect($host,$user,$password,$dbname)
or die (“Couldn’t connect to server”);

If this statement fails, the connection is not made, and the die statement is executed. The die
statement stops the program and sends the message to the browser. If the connection can’t be
established, no more statements are executed. You can put any message that you want in the
die statement.

� Calling the function in an if statement. The function is called by using an if statement that
executes a block of statements if the connection fails. For instance, the mysqli_connect
function can be called as follows:

if (!$cxn = mysqli_connect($host,$user,$password,$dbname))
{

$message = mysqli_error($cxn);
echo “$message”;
die();

}

If this statement fails, the statements in the if block are executed. The mysqli_error
function returns the MySQL error message and saves it in the variable $message. The error
message is then echoed. The die statement ends the program so that no more statements
are executed. Notice the ! (exclamation point) in the if statement. !means “not”. In other
words, the if statement is true if the assignment statement is not true.

The type of error handling you want to include in your program depends on what you expect to
happen in the program. When you’re developing the program, you expect some errors to happen.
Therefore, during development, you probably want error handling that is more descriptive, such as

14_096004 ch08.qxp 10/11/06 9:25 PM Page 192

Fill in the following information:

� connectionname: The variable that contains the connection information.

� databasename: The name of the database.

� message: The message that is sent to the browser if the database can’t
be selected. The selection might fail because the database can’t be
found, which is usually the result of a typo in the database name.

For instance, you can select the database PetCatalog with the following
statement:

mysqli_select_db($cxn,”PetCatalog”)
or die (“Couldn’t select database.”);

If mysqli_select_db is unable to select the database, the program stops
running at this point, and the message Couldn’t select database. is
sent to the browser.

For security reasons, it’s a good idea to store the database name in a variable
and use the variable in the connection statement, as follows:

$database = “PetCatalog”;
mysql_select_db($cxn,$database)

or die (“Couldn’t select database.”);

193Chapter 8: Data In, Data Out

the third method in the preceding list. For instance, suppose that you’re using an account called
root to access your database and that you make a typo as in the following statements:

$host = “localhost”;
$user = “rot”;
$password = “”;
if (!$cxn = mysqli_connect($host,$user,$password))

{
$message = mysqli_error($cxn);
echo “$message”;
die();

}

Because you typed “rot” instead of “root”, you would see an error message similar to the fol-
lowing one:

Access denied for user: ‘rot@localhost’ (Using password: NO)

This error message has the information that you need to figure out what the problem is; it shows your
account name with the typo. However, after your program is running and customers are using it, you
probably don’t want your users to see a technical error message like the preceding one. Instead, you
probably want to use the second method with a general statement in the diemessage, such as The
Pet Catalog is not available at the moment. Please try again later.

14_096004 ch08.qxp 10/11/06 9:25 PM Page 193

For more security, you can put the assignment statement for the database
name in a separate file in a hidden location — as suggested for the assignment
statements for the connection information — so that the database name isn’t
in the program. I explain how to do this in Chapter 10.

The database stays selected until you select a different database. To select a
different database, just use a new mysqli_select_db function statement.

Sending SQL queries
After you have an open connection to the MySQL server and PHP knows which
database you want to interact with, you send your SQL query. The query is
a request to the MySQL server to store some data, update some data, or
retrieve some data. (See Chapter 4 for more on the SQL language and how to
build SQL queries.)

To interact with the database, put your SQL query into a variable and send it
to the MySQL server by using the function mysqli_query, as in the follow-
ing example:

$query = “SELECT * FROM Pet”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

The query is executed on the currently selected database for the specified
connection.

The variable $result holds information on the result of executing the query.
The information depends on whether or not the query gets information from
the database:

� For queries that don’t get any data: The variable $result contains
information on whether the query executed successfully or not. If it’s
successful, $result is set to TRUE; if it’s not successful, $result is set
to FALSE. Some queries that don’t return data are INSERT and UPDATE.

� For queries that return data: The variable $result contains a result iden-
tifier that identifies where the returned data is located, not the returned
data itself. Some queries that do return data are SELECT and SHOW.

Beginning with MySQL 4.1, if you use PHP 5 and the mysqli functions, you
can send multiple queries to the server at once, separated by semicolons.
You use the mysqli_multiple_query function for this purpose. However,
sending more than one query at once can make your program less secure.
Use multiple queries seldom and carefully.

194 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 194

The use of single and double quotes can be a little confusing when assigning
the query string to $query. You are actually using quotes on two levels: the
quotes needed to assign the string to $query and the quotes that are part of
the SQL language query itself. The following rules will help you avoid any
problems with quotes:

� Use double quotes at the beginning and end of the string.

� Use single quotes before and after variable names.

� Use single quotes before and after literal values.

The following are examples of assigning query strings:

$query = “SELECT firstName FROM Member”;
$query = “SELECT firstName FROM Member WHERE lastName=’Smith’”;
$query = “UPDATE Member SET lastName=’$last_name’”;

The query string itself does not include a semicolon (;), so don’t put a semi-
colon inside the final quote. The only semicolon is at the very end; this is the
PHP semicolon that ends the statement.

Getting Information from a Database
Getting information from a database is a common task for Web database
applications. Here are two common uses for information from the database:

� Use the information to conditionally execute statements. For instance,
you might get the state of residence from the Member Directory and
send different messages to members who live in different states.

� Display the information in a Web page. For instance, you might want to
display product information from your database.

To use the database information in a program, you need to put the informa-
tion in variables. Then you can use the variables in conditional statements,
echo statements, or other statements. Getting information from a database is
a two-step process:

1. You build a SELECT query and send the query to the database. When the
query is executed, the selected data is stored in a temporary location.

2. You move the data from the temporary location into variables and use it
in your program.

195Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 195

Sending a SELECT query
You use the SELECT query to get data from the database. SELECT queries are
written in the SQL language. (I discuss the SELECT query in detail in Chapter 4.)

To get data from the database, build the SELECT query that you need, storing it
in a variable, and then send the query to the database. The following statements
select all the information from the Pet table in the PetCatalog database:

$query = “SELECT * FROM Pet”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

The mysqli_query function gets the data requested by the SELECT query and
stores it in a temporary location. You can think of this data as being stored in
a table, similar to a MySQL table, with the information in rows and columns.

The function returns a result identifier that contains the information needed
to find the temporary location where the data is stored. In the preceding state-
ments, the result identifier is put into the variable $result. If the function
fails (because, for example, the query is incorrect), $result contains FALSE.

The next step after executing the function is to move the data from its tempo-
rary location into variables that can be used in the program.

Getting and using the data
You use the mysqli_fetch_assoc function or the mysqli_fetch_row func-
tion to get the data from the temporary location. The mysqli_fetch_assoc
function returns the data in an associative array; mysqli_fetch_row
returns the data in a numeric array. Occasionally, you might need to fetch
the data in both an associative and a numeric array, which you can do with
mysqli_fetch_array.

The functions get one row of data from the temporary location. The tempo-
rary data table might contain only one row of data or, more likely, your
SELECT query resulted in more than one row of data. If you need to fetch
more than one row of data from the temporary location, you use the
mysqli_fetch_assoc or mysqli_fetch_row function in a loop.

Getting one row of data
To move the data from its temporary location and put it into variables that
you can use in your program, you use the PHP function mysqli_fetch_assoc
or mysql_fetch_row. The general format for these functions is

196 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 196

$row = mysqli_fetch_assoc($resultidentifier);

This statement gets one row from the data table in the temporary location
and puts it in an array variable called $row. resultidentifier is the vari-
able that points to the temporary location of the results.

The mysql_fetch_array function gets one row of data from the temporary
location. In some cases, one row is all you selected. For instance, to check
the password entered by a user, you only need to get the user’s password
from the database and compare it with the password that the user entered.
The following statements check a password:

$userEntry = “secret”; // password user entered in form
$query = “SELECT password FROM Member

WHERE loginName=’gsmith’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$row = mysqli_fetch_assoc($result);
if ($userEntry == $row[‘password’])
{

echo “Login accepted”;
statements that display Members Only Web pages

}
else
{

echo “Invalid password”;
statements that allow user to try another password

}

Note the following points about the preceding statements:

� The SELECT query requests only one field (password) from one row
(row for gsmith).

� The mysqli_fetch_assoc function returns an array called $row with
column names as keys.

� The if statement uses two equal signs (==) to compare the password
that the user typed in ($userEntry) with the password obtained
from the database ($row[‘password’]) to see whether they are
the same.

� If the comparison is true, the passwords match, and the if block
(which displays the Members Only Web pages) is executed.

� If the comparison is not true, the user did not enter a password that
matches the password stored in the database, and the else block is
executed. The user sees an error message stating that the password is
not correct and is returned to the login Web page.

197Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 197

PHP provides a convenient shortcut for using the variables retrieved with the
mysqli_fetch_assoc function. You can use the extract function, which
splits the array into variables that have the same name as the key. For instance,
you can use the extract function to rewrite the previous statements that
test the password. Here’s how:

$userEntry = “secret”; #password entered in a form
$query = “SELECT password FROM Member

WHERE loginName=’gsmith’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$row = mysqli_fetch_assoc($result);
extract($row);
if ($userEntry == $password)
{

echo “Login accepted
”;
statements that display Members Only Web pages

}
else
{

echo “Invalid password
”;
statements that allow user to try another password

}

Using a loop to get all the rows of data
If you selected more than one row of data, use a loop to get all the rows from
the temporary location. The statements in the loop block get one row of data
and process it. The loop repeats until all rows have been retrieved. You can
use a while loop or a for loop to retrieve this information. (For more on
while loops and for loops, check out Chapter 7.)

The most common way to process the information is to use a while loop as
follows:

while ($row = mysqli_fetch_assoc($result))
{

block of statements
}

This loop repeats until it has fetched the last row. If you just want to echo all
the data, for example, you would use a loop similar to the following:

while ($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “$petType: $petName
”;

}

Now, take a look at an example of how to get information for the Pet Catalog
application. Assume the Pet Catalog has a table called Pet with four columns:
petName, petType, petDescription, and price. Table 8-2 shows a sample
set of data in the Pet table.

198 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 198

Table 8-2 Sample Data in Pet Table
petName petType petDescription price

Unicorn Horse Spiral horn centered in forehead 10000

Pegasus Horse Flying; wings sprouting from back 15000

Pony Horse Very small; half the size of standard horse 500

Asian dragon Dragon Serpentine body 30000

Medieval dragon Dragon Lizard-like body 30000

Lion Cat Large; maned 2000

Gryphon Cat Lion body; eagle head; wings 25000

The petDisplay.php program in Listing 8-1 selects all the horses from the
Pet table and displays the information in an HTML table in the Web page.
The variable $pettype contains information that a user typed into a form.

Listing 8-1: Displaying Items from the Pet Catalog

/* Program: petDisplay.php
* Desc: Displays all pets in selected category.
*/
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
$user=”catalog”;
$host=”localhost”;
$password=””;
$database = “PetCatalog”;
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“couldn’t connect to server”);
$pettype = “horse”; //horse was typed in a form by user

$query = “SELECT * FROM Pet WHERE petType=’$pettype’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

/* Display results in a table */
$pettype = ucfirst($pettype).”s”;
echo “<h1>$pettype</h1>”;
echo “<table cellspacing=’15’>”;
echo “<tr><td colspan=’3’><hr /></td></tr>”;
while($row = mysqli_fetch_assoc($result))
{

extract($row);
$f_price = number_format($price,2);

(continued)

199Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 199

Listing 8-1 (continued)
echo “<tr>\n

<td>$petName</td>\n
<td>$petDescription</td>\n
<td style=’text-align: right’>\$$f_price</td>\n
</tr>\n”;

echo “<tr><td colspan=’3’><hr /></td></tr>\n”;
}
echo “</table>\n”;

?>
</body></html>

Figure 8-1 shows the Web page displayed by the program in Listing 8-1. The
Web page shows the Pet items for the petType horse, with the display for-
matted in an HTML table.

The program in Listing 8-1 uses a while loop to get all the rows from the
temporary location. In some cases, you might need to use a for loop. For
instance, if you need to use a number in your loop, a for loop is more useful
than a while loop. To use a for loop, you need to know how many rows of
data were selected. You can find out how many rows are in temporary stor-
age by using the PHP function mysqli_num_rows:

$nrows = mysqli_num_rows($result);

Figure 8-1:
The Web

page result-
ing from

petDisplay.
php.

200 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 200

The variable $nrows contains the number of rows in the temporary storage
location. By using this number, you can build a for loop to get all the rows:

for ($i=0;$i<$nrows;$i++)
{

$row = mysqli_fetch_assoc($result))
block of statements;

}

For instance, the program in Listing 8-1 displays the Pet items of the type
horse. Suppose that you want to number each item. Listing 8-2, the
petDescripFor.php program, displays a numbered list with a for loop.

Listing 8-2: Displaying a Numbered List of Items from the Pet Catalog

/* Program: petDescripFor.php
* Desc: Displays a numbered list of all pets in
* selected category.
*/
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
$user=”catalog”;
$host=”localhost”;
$password=””;
$database = “PetCatalog”;
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“Couldn’t connect to server”);
$pettype = “horse”; //horse was typed in a form by user
$query = “SELECT * FROM Pet WHERE petType=’$pettype’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$nrows = mysqli_num_rows($result);

/* Display results in a table */
echo “<h1>Horses</h1>”;
echo “<table cellspacing=’15’>”;
echo “<tr><td colspan=’4’><hr /></td></tr>”;
for ($i=0;$i<$nrows;$i++)
{

$n = $i + 1; #add 1 so that numbers don’t start
with 0

$row = mysqli_fetch_assoc($result);
extract($row);
$f_price = number_format($price,2);
echo “<tr>\n

<td>$n.</td>\n
<td>$petName</td>\n
<td>$petDescription</td>\n

(continued)

201Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 201

Listing 8-2 (continued)
<td style=’text-align: right’>\$$f_price</td>\n
</tr>\n”;

echo “<tr><td colspan=’4’><hr></td></tr>\n”;
}
echo “</table>\n”;

?>
</body></html>

Figure 8-2 shows the Web page that results from using the for loop in this
program. Notice that a number appears before the listing for each Pet item
on this Web page.

Using functions to get data
In most applications, you get data from the database. Often you get the data
in more than one location in your program or more than one program in your
application. Functions — blocks of statements that perform specified tasks —
are designed for such situations. (I explain functions in detail in Chapter 7.)

A function to get data from the database can be really useful. Whenever the
program needs to get data, you call the function. Functions not only save you
a lot of typing but also make the program easier for you to follow. For example,

Figure 8-2:
The Web

page result-
ing from

petDescrip
For.php.

202 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 202

consider a product catalog, such as the Pet Catalog. You will need to get
information about a specific product many times. You can write a function
that gets the data and then use that function whenever you need data.

Listing 8-3 for program getdata.php shows how to use a function to get data.
The function in Listing 8-3 will get the information for any single pet in the Pet
Catalog. The pet information is put into an array, and the array is returned to
the main program. The main program can then use the information any way
that it wants. In this case, it echoes the pet information to a Web page.

Listing 8-3: Using a Function to Get Data from a Database

/* Program: getdata.php
* Desc: Gets data from a database using a function
*/
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php

$petInfo = getPetInfo(“Unicorn”); //call function

$f_price = number_format($petInfo[‘price’],2);
echo “<p>{$petInfo[‘petName’]}
\n

Description: {$petInfo[‘petDescription’]}
\n
Price: \${$petInfo[‘price’]}\n”

?>
</body></html>

<?php
function getPetInfo($petName)
{
$user=”catalog”;
$host=”localhost”;
$password=””;
$dbname = “PetCatalog”;
$cxn = mysqli_connect($host,$user,$password,$dbname)

or die (“Couldn’t connect to server”);
$query = “SELECT * FROM Pet WHERE petName=’$petName’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

return mysqli_fetch_assoc($result);
}
?>

The Web page displays

Unicorn
Description: spiral horn centered in forehead
Price: $10,000.00

203Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 203

Note the following about the program in Listing 8-3:

� The program is easier to read with the function call than it would be if all
the statements in the function were in the main program.

� The function call sends the string “Unicorn”. In most cases, the func-
tion call will use a variable name.

� The program creates the variable $petInfo to receive the data from the
function. $petInfo is an array because the information stored in it is an
array.

The preceding function is very simple — it returns one row of the results as
an array. But functions can be more complex. The preceding section provides
a program to get all the pets of a specified type. The program getPets.php
in Listing 8-4 uses a function for the same purpose. The function returns a
multidimensional array with the pet data for all the pets of the specified type.

Listing 8-4: Using a Function to Display a Numbered List of Pets

/* Program: getPets.php
* Desc: Displays list of items from a database.
*/
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php

$type = “Horse”;
$petInfo = getPetsOfType($type); //call function

/* Display results in a table */
echo “<h1>{$type}s</h1>”;
echo “<table cellspacing=’15’>”;
echo “<tr><td colspan=’4’><hr /></td></tr>”;
for($i=1;$i<=sizeof($petInfo);$i++)
{

$f_price = number_format($petInfo[$i][‘price’],2);
echo “<tr>\n

<td>$i.</td>\n
<td>{$petInfo[$i][‘petName’]}</td>\n
<td>{$petInfo[$i][‘petDescription’]}</td>\n
<td style=’text-align: right’>\$$f_price</td>\n
</tr>\n”;

echo “<tr><td colspan=’4’><hr /></td></tr>\n”;
}
echo “</table>\n”;

?>
</body></html>

<?php
function getPetsOfType($petType)

204 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 204

{
$user=”catalog”;
$host=”localhost”;
$passwd=””;
$cxn = mysqli_connect($host,$user,$passwd,”PetCatalog”)

or die (“Couldn’t connect to server”);
$query = “SELECT * FROM Pet WHERE petType=’$petType’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

$j = 1;
while ($row=mysqli_fetch_assoc($result))
{
foreach ($row as $colname => $value)
{

$array_multi[$j][$colname] = $value;
}
$j++;

}
return $array_multi;

}
?>

The program in Listing 8-4 proceeds as follows:

1. It calls the function getPetsOfType. It passes “horse” in a variable
$type containing the type of pet. It also sets up $petInfo to receive
the data returned by the function.

2. The function connects to the database and selects the database
PetCatalog.

3. The function sends a query to get all the rows with $petType in the
petType column. $petType is passed to the function in the function
call. The data is stored in a table in a temporary location. The variable
$result identifies the location of the temporary table.

4. It sets up a counter. $j is a counter that is incremented in each loop.
It starts at 1 before the loop.

5. It starts a while loop. The function attempts to get a row from the tem-
porary data table and is successful. If there were no rows to get in the
temporary location, the while loop would end.

6. It starts a foreach loop. The loop walks through the row, processing
each field.

7. It stores values in a multidimensional array. $array_multi is a multi-
dimensional array. Its first key is a number, which is set by the counter.
Because this is the first time through the while loop, the counter — $j —
is now equal to 1. All the fields in the row are stored in $array_multi
with the column name as the key. (I explain multidimensional arrays in
detail in Chapter 7.)

8. It increments the counter. $j is incremented by 1.

205Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 205

9. It reaches the end of the while loop.

10. It returns to the top of the while loop.

11. It repeats Steps 5–10 for every row in the results.

12. It returns $array_multi to the main program. $array_multi con-
tains all the data for all the selected rows.

13. $petInfo receives data from the function. All the data is passed.
Figure 8-3 shows the structure of $petInfo after the function has
finished executing.

14. The main program sends Pet Descriptions to the browser in an HTML
table.

The appropriate data is inserted from the $petInfo array.

The Web page that results from the program in Listing 8-4 is identical to the
Web page shown in Figure 8-2, which is produced by a program that does not
use a function. Functions do not produce different output. Any program that
you can write that includes a function, you can also write without using a
function. Functions just make programming easier.

Getting Information from the User
Many applications are designed to ask questions that users answer by typing
information. Sometimes the information is stored in a database; sometimes
the information is used in conditional statements to deliver an individual
Web page. Some of the most common application tasks that require users to
answer questions are

� Online ordering: Customers need to select products and enter shipping
and payment information.

� Registering: Many sites require users to provide some information before
they receive certain benefits, such as access to special information or
downloadable software.

Figure 8-3:
The

structure of
the multi-

dimensional
array

$petInfo.

206 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 206

� Logging in: Many sites restrict access to their pages. Users must enter
an account name and password before they can see the Web pages.

� Viewing selected information: Many sites allow users to specify what
information they want to see. For instance, an online catalog might allow
users to type the name of the product or select a product category that
they want to see.

You ask questions by displaying HTML forms. The user answers the questions
by typing information into the form or selecting items from a list. The user
then clicks a button to submit the form information. When the form is sub-
mitted, the information in the form is passed to a second, separate program,
which processes the information.

In the next few sections, I don’t tell you about the HTML required to display
a form; I assume that you already know HTML. (If you don’t know HTML or
need a refresher, check out HTML 4 For Dummies, 4th Edition, by Ed Tittel
and Natanya Pitts; Wiley. What I do tell you is how to use PHP to display
HTML forms and to process the information that users type into the form.

Using HTML forms
HTML forms are very important for interactive Web sites. (If you are unfamil-
iar with HTML forms, you need to read the forms section of an HTML book.)
To display a form with PHP, you can do one of the following:

� Use echo statements to echo the HTML for a form. For example:

<?php
echo “<form action=’processform.php’

method=’POST’>\n
<input type=’text’ name=’name’>\n
<input type=’submit’ value=’Submit Name’>\n
</form>\n”;

?>

� Use plain HTML outside the PHP sections. For a plain static form, there
is no reason to include it in a PHP section. For example:

<?php
statements in PHP section

?>
<form action=”processform.php” method=”POST”>
<input type=”text” name=”fullname”>
<input type=”submit” value=”Submit Name”>

</form>
<?php
statements in PHP section

?>

207Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 207

Either of these methods produces the form displayed in Figure 8-4.

Joe Customer fills in the HTML form. He clicks the submit button. You now
have the information that you wanted — his name. So where is it? How do
you get it?

You get the form information by running a program that receives the form
information. When the submit button is clicked, PHP automatically runs a pro-
gram. The action parameter in the form tag tells PHP which program to run.
For instance, in the preceding program, the parameter action=processform.
php tells PHP to run the program processform.php when the user clicks
the submit button. The program processform.php can display, store, or
otherwise use the form data it receives when the form is submitted.

When the user clicks the submit button, the program specified in the action
attribute runs, and statements in this program can get the form information
from PHP built-in arrays and use the information in PHP statements. The built-
in arrays that contain form information are $_POST, $_GET, and $_REQUEST,
which are superglobal arrays. When the form uses the POST method, the infor-
mation from the form fields is stored in the $_POST array. The $_GET array
contains the variables passed as part of the URL, including fields passed from
a form using the GET method. The $_REQUEST array contains all the array
elements together that are contained in the $_POST, $_GET, and $_COOKIES
arrays. Cookies are explained in Chapter 9.

When the form is submitted, the program that runs can get the form informa-
tion from the appropriate built-in array. In these built-in arrays, each array
index is the name of the input field in the form. For instance, if the user typed
Goliath Smith in the input field shown in Figure 8-4 and clicked the submit
button, the program processform.php runs and can use an array variable
in the following format:

$_POST[‘fullname’]

Figure 8-4:
A form

produced
by HTML

statements.

208 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 208

Notice that the name typed into the form is available in the $_POST array
because the form tag specified method=’POST’. Also, note that the array
key is the name given the field in the HTML form with the name attribute
name=”fullname”.

The superglobal arrays, including $_POST and $_GET, were introduced in
PHP 4.1. Up until that time, form information was passed in old arrays named
$HTTP_POST_VARS and $HTTP_GET_VARS. If you are using PHP 4.0 or ear-
lier, you must use the long arrays. Both types of built-in arrays exist up until
PHP 5. The long arrays no longer exist in PHP 6. If you are working with some
old programs that use the long array names, you need to change the array
names from the long names, such as $HTTP_POST_VARS, to the superglobal
array names, such as $_POST. In most cases, a search-and-replace in a text
editor will make the change with one command per array.

A program that displays all the fields in a form is a useful program for testing
a form. You can see what values are passed from the form to be sure that
your form is formatted properly and sends the field names and values that
you expect. All the fields in a POST type form are displayed by the program in
Listing 8-5, named processform.php. When the form shown in Figure 8-4 is
submitted, the following program is run.

Listing 8-5: A Script That Displays All the Fields from a Form

<?php
/* Script name: processform.php
* Description: Script displays all the information
* passed from a form.
*/
echo “<html>

<head><title>Customer Address</title></head>
<body>”;

foreach ($_POST as $field => $value)
{

echo “$field = $value
”;
}

?>
</body></html>

If the user types the name Goliath Smith into the form in Figure 8-4, the follow-
ing output is displayed:

fullname = Goliath Smith

The output displays only one line because there is only one field in the form
in Figure 8-4.

The program in Listing 8-5 is written to process the form information from
any form that uses the POST method. Suppose that you have a slightly more
complicated form, such as the program in Listing 8-6, which displays a form
with several fields.

209Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 209

Listing 8-6: Displaying a Phone Number Form

/* Program name: displayForm
* Description: Script displays a form that asks for the
* customer phone number.
*/
echo “<html>

<head><title>Customer Phone Number</title></head>
<body>”;

$labels = array (“first_name” => “First Name”,
“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

echo “<h3>Please enter your phone number below.</h3>”;
echo “<form action=’processform.php’ method=’POST’>

<table>\n”;
/* Loop that displays the form fields */
foreach($labels as $field => $label)
{
echo “<tr>

<td style=’text-align: right;
font-weight: bold’>

$label</td>
<td><input type=’text’ name=’$field’ size=’65’

maxlength=’65’ ></td>
</tr>”;

}
echo “<tr>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’

value=’Submit Phone Number’>”;
echo “</td></tr></table>

</form>”;
?>
</body></html>

Notice the following in displayForm.php, as shown in Listing 8-6:

� An array is created that contains the labels used in the form. The keys
are the field names. Setting up your fields in an array at the top of the
program makes it easy to see what fields are displayed in the form and
to add, remove, or modify fields.

� The script processform.php is named as the script that runs when the
form is submitted. The information in the form is sent to processform.
php, which processes the information.

� The form is formatted with an HTML table. Tables are an important
part of HTML. If you’re not familiar with HTML tables, check out HTML 4
For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts (Wiley).

� The script loops through the $labels array with a foreach statement.
The HTML code for a table row is output in each loop. The appropriate
array values are used in the HTML code.

210 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 210

For security reasons, always include maxlength — which defines the number
of characters that users are allowed to type into the field — in your HTML
statement. Limiting the number of characters helps prevent the bad guys
from typing malicious code into your form fields. If the information will be
stored in a database, set maxlength to the same number as the width of the
column in the database table.

When Goliath Smith fills in the form shown in Figure 8-5 (created by the pro-
gram in Listing 8-6) and submits it, the program processform.php runs and
produces the following output:

firstName = Goliath
midName =
lastName = Smith
phone = 555-5555

In processform.php, all elements of the $_POST built-in array are displayed
because both of the forms shown in this section used the POST method, as
do most forms.

Making forms dynamic
PHP brings new capabilities to HTML forms. Because you can use variables in
PHP forms, your forms can now be dynamic. Here are the major capabilities
that PHP brings to forms:

� Using variables to display information in input text fields

� Using variables to build dynamic lists for users to select from

� Using variables to build dynamic lists of radio buttons

� Using variables to build dynamic lists of check boxes

Figure 8-5:
A form for
entering a

customer’s
phone

number.

211Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 211

Displaying dynamic information in form fields
When you display a form on a Web page, you can put information into the
fields rather than just displaying a blank field. For example, if most of your
customers live in the United States, you might automatically enter US in the
country field when you ask customers for their address. If the customer does
indeed live in the United States, you’ve saved the customer some typing.
And if the customer doesn’t live in the United States, he or she can just replace
US with the appropriate country. Also, the text automatically entered into the
field doesn’t have any typos — well, unless you included some yourself.

To display a text field that contains information, you use the following format
for the input field HTML statements:

<input type=”text” name=”country” value=”US”>

By using PHP, you can use a variable to display this information with either of
the following statements:

<input type=”text” name=”country”
value=”<?php echo $country ?>”>

echo “<input type=’text’ name=’country’
value=’$country’>”;

The first example creates an input field in an HTML section, using a short
PHP section for the value only. The second example creates an input field by
using an echo statement inside a PHP section. If you’re using a long form
with only an occasional variable, using the first format is more efficient.
If your form uses many variables, it’s more efficient to use the second format.

If you have user information stored in a database, you might want to display
the information from the database in the form fields. For instance, you might
show the information to the user so that he or she can make any needed
changes. Or you might display the shipping address for the customer’s last
online order so that he or she doesn’t need to retype the address. Listing 8-7
shows the program displayAddress.php, which displays a form with infor-
mation from the database. This form is similar to the form shown in Figure 8-5,
except that this form has information in it (retrieved from the database) and
the fields in the form in Figure 8-5 are blank.

Listing 8-7: Displaying an HTML Form with Information

<?php
/* Program name: displayAddress
* Description: Script displays a form with address
* information obtained from the database.

212 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 212

*/
echo “<html>

<head><title>Customer Address</title></head>
<body>”;

$labels = array(“firstName”=>”First Name:”,
“lastName”=>”Last Name:”,
“street”=>”Street Address:”,
“city”=>”City:”,

“state”=>”State:”,
“zip”=>”Zipcode:”);

$user=”admin”;
$host=”localhost”;
$password=””;
$database = “MemberDirectory”;
$loginName = “gsmith”; // user login name

$cxn = mysqli_connect($host,$user,$password,$database)
or die (“couldn’t connect to server”);

$query = “SELECT * FROM Member
WHERE loginName=’$loginName’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$row = mysqli_fetch_assoc($result);

echo “<div style=’text-align: center’>
<h1>Address for $loginName</h1>\n”;

echo “<p style=’font-size: large; font-weight: bold’>
Please check the information below and change
any information that is incorrect.</p><hr />”;

echo “<form action=’processAddress.php’ method=’POST’>
<p><table align=’center’>\n”;

foreach($labels as $field=>$label)
{
echo “<tr>

<td style=’text-align: right;
font-weight: bold’>$label</td>

<td><input type=’text’ name=’$field’
value=’$row[$field]’ size=’65’
maxlength=’65’>

</td></tr>”;
}
echo “<tr><td> </td>

<td style=’text-align: center’>
<input type=’submit’ value=’Submit Address’>”;

echo “</td></tr></table>
</div>
</form>”;

?>
</body></html>

213Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 213

Notice the following in the program in Listing 8-7:

� The form statement transfers the action to the program process
Address.php. This program processes the information in the form
and updates the database with any information that the user changed.
This is a program that you write yourself. Checking data in a form and
saving information in the database are discussed later in this chapter in
the sections “Checking the information” and “Putting Information into a
Database,” respectively.

� Each input field in the form is given a name. The information in the
input field is stored in a variable that has the same name as the input field.

� The program gives the field names in the form the same names as the
columns in the database. This simplifies moving information between
the database and the form, requiring no transfer of information from one
variable to another.

� The values from the database are displayed in the form fields with the
value parameter in the input field statement. The value parameter
displays the appropriate value from the array $row, which contains data
from the database.

For security reasons, always include maxlength in your HTML statement.
maxlength defines the number of characters that a user is allowed to type into
the field. If the information is going to be stored in a database, set maxlength
to the same number as the width of the column in the database table.

Figure 8-6 shows the Web page resulting from the program in Listing 8-7.
The information in the form is the information stored in the database.

214 Part III: PHP

Registering long arrays
A php.ini setting, introduced in PHP 5, allows
you to prevent the older, long arrays from being
created automatically by PHP. It’s very unlikely
that you will need to use them unless you’re
using some old scripts containing the long vari-
ables.

The following line in php.ini controls this
setting:

register_long_arrays = On

In PHP 5, this setting is On by default. Unless
you’re running old scripts that need the old
arrays, you should change the setting to Off so
that PHP doesn’t do this extra work.

In PHP 6, the register_long_arrays
setting is removed from php.ini. The long
arrays no longer exist. If you’re using old scripts,
you must change the long array names, such as
$HTTP_POST_VARS, to the newer global
array names, such as $_POST.

14_096004 ch08.qxp 10/11/06 9:25 PM Page 214

Building selection lists
One type of field that you can use in an HTML form is a selection list. Instead
of typing into a field, your users select from a list. For instance, in a product
catalog, you might provide a list of categories from which users select what
they want to view. Or the form for users’ addresses might include a list of
states that users can select. Or users might enter a date by selecting a month,
day, and year from a list.

Use selection lists whenever feasible. When the user selects an item from a
list, you can be sure that the item is accurate, with no misspellings, odd
characters, or other problems introduced by users’ typing errors.

An HTML selection list for the categories in the Pet Catalog is formatted as
follows:

<form action=”processform.php” method=”POST”>
<select name=”petType”>
<option value=”horse”>horse
<option value=”cat” selected>cat
<option value=”dragon”>dragon

</select>
<input type=”submit” value=”Select Type of Pet”>
</form>;

Figure 8-6:
A form

showing
the user’s
address.

215Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 215

Figure 8-7 shows the selection list that these HTML statements produce.
Notice that cat is the choice that is selected when the field is first displayed.
You determine this default selection by including selected in the option tag.

When the user clicks the arrow on the select drop-down list box, the entire
list drops down, as shown in Figure 8-8, and the user can select any item in
the list. Notice that cat is selected until the user selects a different item.

When using PHP, your options can be variables. This capability allows you
to build dynamic selection lists. For instance, you must maintain the static
list of pet categories shown in the preceding example. If you add a new pet
category, you must add an option tag manually. However, with PHP vari-
ables, you can build the list dynamically from the categories in the database.
When you add a new category to the database, the new category is automati-
cally added to your selection list without your having to change the PHP
program. Listing 8-8 for program buildSelect.php builds a selection list
of pet categories from the database.

Figure 8-8:
A selection
field for the
Pet Catalog
with a drop-

down list.

Figure 8-7:
A selection
field for the

Pet Catalog.

216 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 216

Listing 8-8: Building a Selection List

/* Program name: buildSelect.php
* Description: Program builds a selection list
* from the database.
*/
?>
<html>
<head><title>Pet Types</title></head>
<body>
<?php
$user=”catalog”;
$host=”localhost”;
$password=””;
$database = “PetCatalog”;

$cxn = mysqli_connect($host,$user,$password,$database)
or die (“couldn’t connect to server”);

$query = “SELECT DISTINCT petType FROM Pet ORDER BY petType”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

/* create form containing selection list */
echo “<form action=’processform.php’ method=’POST’>

<select name=’petType’>\n”;

while ($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<option value=’$petType’>$petType\n”;

}
echo “</select>\n”;
echo “<input type=’submit’ value=’Select Type of Pet’>

</form>\n”;
?>
</body></html>

Notice the following in the program in Listing 8-8:

� Using DISTINCT in the query: DISTINCT causes the query to get each
pet type only once. Without DISTINCT, the query would return each pet
type several times if it appeared several times in the database.

� Using ORDER BY in the query: The pet types are sorted alphabetically.

� echo statements before the loop: The form and select tags are echoed
before the while loop starts because they are echoed only once.

� echo statements in the loop: The option tags are echoed in the loop —
one for each pet type in the database. No item is marked as selected, so
the first item in the list is selected automatically.

� echo statements after the loop: The end form and select tags are
echoed after the loop because they are echoed only once.

217Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 217

The selection list produced by this program is initially the same as the selec-
tion list shown in Figure 8-7, with cat selected. However, cat is selected in this
program because it is the first item in the list — not because it’s specifically
selected as it is in the HTML tags that produce Figure 8-7. The drop-down list
produced by this program is in alphabetical order, as shown in Figure 8-9.

You can use PHP variables also to set up which option is selected when the
selection box is displayed. For instance, suppose that you want the user to
select a date from month, day, and year selection lists. You believe that
most people will select today’s date, so you want today’s date to be selected
by default when the box is displayed. Listing 8-9 shows the program
dateSelect.php, which displays a form for selecting a date and selects
today’s date automatically.

Listing 8-9: Building a Date Selection List

/* Program name: dateSelect.php
* Description: Program displays a selection list that
* customers can use to select a date.
*/
echo “<html>

<head><title>Select a date</title></head>
<body>”;

$monthName = array(1=> “January”, “February”, “March”,
“April”, “May”, “June”, “July”,
“August”, “September”, “October”,
“November”, “December”);

$today = time(); //stores today’s date
$f_today = date(“M-d-Y”,$today); //formats today’s date

echo “<div style = ‘text-align: center’>\n”;

Figure 8-9:
A selection
field for the
Pet Catalog

produced by
the program
buildSelect.

php.

218 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 218

/* display today’s date */
echo “<h3>Today is $f_today</h3><hr>\n”;

/* create form containing date selection list */
echo “<form action=’processform.php’ method=’POST’>\n”;

/* build selection list for the month */
$todayMO = date(“n”,$today); //get the month from $today
echo “<select name=’dateMO’>\n”;
for ($n=1;$n<=12;$n++)
{
echo “<option value=$n\n”;
if ($todayMO == $n)
{
echo “ selected”;

}
echo “> $monthName[$n]\n”;

}
echo “</select>”;

/* build selection list for the day */
$todayDay= date(“d”,$today); //get the day from $today
echo “<select name=’dateDay’>\n”;
for ($n=1;$n<=31;$n++)
{
echo “ <option value=$n”;
if ($todayDay == $n)
{
echo “ selected”;

}
echo “> $n\n”;

}
echo “</select>\n”;

/* build selection list for the year */
$startYr = date(“Y”, $today); //get the year from $today
echo “<select name=’dateYr’>\n”;
for ($n=$startYr;$n<=$startYr+3;$n++)
{
echo “ <option value=$n”;
if ($startYr == $n)
{
echo “ selected”;

}
echo “> $n\n”;

}
echo “</select>\n”;

echo “</form>\n”;
?>
</body></html>

219Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 219

The Web page produced by the program in Listing 8-9 is shown in Figure 8-10.
The date appears above the form so that you can see that the select list shows
the correct date. The selection list for the month shows all 12 months when it
drops down. The selection list for the day shows 31 days when it drops down.
The selection list for year shows four years.

The program in Listing 8-9 produces the Web page in Figure 8-10 by following
these steps:

1. Creates an array containing the names of the months. The keys for the
array are the numbers. The first month, January, starts with the key 1 so
that the keys of the array match the numbers of the months.

2. Creates variables containing the current date. $today contains the
date in a system format and is used in the form. $f-today is a format-
ted date that is used to display the date in the Web page.

3. Displays the current date at the top of the Web page.

4. Builds the selection field for the month:

i. Creates a variable containing today’s month.

ii. Echoes the select tag, which should be echoed only once.

iii. Starts a for loop that repeats 12 times.

iv. Inside the loop, echoes the option tag by using the first value
from the $monthName array.

v. If the number of the month being processed is equal to the number of
the current month, adds the word “selected” to the option tag.

vi. Repeats the loop 11 more times.

vii. Echoes the closing select tag for the selection field, which should
be echoed only once.

Figure 8-10:
A selection
field for the

date with
today’s date

selected.

220 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 220

5. Builds the selection field for the day. Uses the procedure described in
Step 4 for the month. However, only numbers are used for this selection
list. The loop repeats 31 times.

6. Builds the selection field for the year:

i. Creates the variable $startYr, containing today’s year.

ii. Echoes the select tag, which should be echoed only once.

iii. Starts a for loop. The starting value for the loop is $startYr.
The ending value for the loop is $startYr+3.

iv. Inside the loop, echoes the option tag, using the starting value of
the for loop, which is today’s year.

v. If the number of the year being processed is equal to the number
of the current year, adds the word “selected” to the option tag.

vi. Repeats the loop until the ending value equals $startYr+3.

vii. Echoes the closing select tag for the selection field, which should
be echoed only once.

7. Echoes the ending tag for the form.

Building lists of radio buttons
You might want to use radio buttons instead of selection lists. For instance,
you can display a list of radio buttons for your Pet Catalog and have users
select the button for the pet category that they’re interested in.

The format for radio buttons in a form is

<input type=”radio” name=”name” value=”value”>

You can build a dynamic list of radio buttons representing all the pet types in
your database in the same manner that you build a dynamic selection list in
the preceding section. Listing 8-10 shows the program buildRadio.php,
which creates a list of radio buttons based on pet types.

Listing 8-10: Building a List of Radio Buttons

/* Program name: buildRadio.php
* Description: Program displays a list of radio
* buttons from database info.
*/
echo “<html>

<head><title>Pet Types</title></head>
<body>”;

$user=”catalog”;
$host=”localhost”;
$password=””;

(continued)

221Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 221

Listing 8-10 (continued)
$database = “PetCatalog”;

$cxn = mysqli_connect($host,$user,$password,$database)
or die (“Couldn’t connect to server”);

$query = “SELECT DISTINCT petType FROM Pet
ORDER BY petType”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

echo “<div style=’margin-left: .5in; margin-top: .5in’>
<p style=’font-weight: bold’>
Which type of pet are you interested in?</p>
<p>Please choose one type of pet from the

following list:</p>\n”;

/* create form containing radio buttons */
echo “<form action=’processform.php’ method=’POST’>\n”;

while ($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<input type=’radio’ name=’interest’

value=’$petType’>$petType\n”;
echo “
\n”;

}
echo “<p><input type=’submit’ value=’Select Type of Pet’>

</form>\n”;
?>
</div></body></html>

This program is similar to the program in Listing 8-9. The Web page produced
by this program is shown in Figure 8-11.

Figure 8-11:
List of radio

buttons
produced

by the
program in
buildRadio.

php.

222 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 222

Building lists of check boxes
You might want to use check boxes in your form. Check boxes are different
from selection lists and radio buttons because they allow users to select more
than one option. For instance, if you display a list of pet categories by using
check boxes, a user can select two or three or more pet categories. The pro-
gram buildCheckbox.php in Listing 8-11 creates a list of check boxes.

Listing 8-11: Building a List of Check Boxes

<?php
/* Program name: buildCheckbox.php
* Description: Program displays a list of
* check boxes from database info.
*/
echo “<html>

<head><title>Pet Types</title></head>
<body>”;

$user=”catalog”;
$host=”localhost”;
$password=””;
$database = “PetCatalog”;

$cxn = mysqli_connect($host,$user,$password,$database)
or die (“couldn’t connect to server”);

$query = “SELECT DISTINCT petType FROM Pet
ORDER BY petType”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

echo “<div style=’margin-left: .5in; margin-top: .5in’>
<p style=’font-weight: bold’>

Which type of pet are you interested in?</p>
<p>Choose as many types of pets as you want:</p>\n”;

/* create form containing checkboxes */
echo “<form action=’processform.php’ method=’POST’>\n”;

while ($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<input type=’checkbox’

name=’interest[$petType]’
value=’$petType’>$petType\n”;

echo “
\n”;
}
echo “<p><input type=’submit’

value=’Select Type of Pet’>
</form>\n”;

?>
</div></body></html>

223Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 223

This program is similar to the program in Listing 8-10, which builds a list of
radio buttons. However, notice that the input field uses an array $interest
as the name for the field. This is because more than one check box can be
selected. This program will create an element in the array with a key/value
pair for each check box that’s selected. For instance, if the user selects both
horse and dragon, the following array is created:

$interest[horse]=horse
$interest[dragon]=dragon

The program that processes the form has the selections available in the POST
array, as follows:

$_POST[‘interest’][‘horse’]
$_POST[‘interest’][‘dragon’]

Figure 8-12 shows the Web page produced by buildCheckbox.php.

Using the information from the form
As I discuss earlier in this section, Joe Customer fills in an HTML form, select-
ing from lists and typing information into text fields. He clicks the submit
button. In the form tag, you tell PHP which program to run when the submit
button is clicked. You do this by including action=”programname” in the
form tag. For instance, in most of the example listings in this chapter, I use
action=”processform.php”. When the user clicks the submit button, the

Figure 8-12:
A list of

check boxes
produced

by the
program in
buildCheck

box.php.

224 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 224

program runs and receives the information from the form. Handling form
information is one of PHP’s best features. You don’t need to worry about the
form data — just get it from one of the built-in arrays and use it.

The form data is available in the processing program in arrays, such as
$_POST or $_GET. The key for the array element is the name of the input
field in the form. For instance, if you echo the following field in your form

echo “<input type=’text’ name=’firstName’>”;

the processing program can use the variable $_POST[firstName], which con-
tains the text that the user typed into the field. The information that the user
selects from selection drop-down lists or radio buttons is similarly available
for use. For instance, if your form includes the following list of radio buttons

echo “<input type=’radio’ name=’interest’
value=’dog’>dog\n”;

echo “<input type=’radio’ name=’interest’
value=’cat’>cat\n”;

you can access the variable $_POST[interest], which contains either dog
or cat, depending on what the user selected.

You handle check boxes in a slightly different way because the user can select
more than one check box. As shown in Listing 8-11, the data from a list of
check boxes can be stored in an array so that all the check boxes are avail-
able. For instance, if your form includes the following list of check boxes

echo “<input type=’checkbox’ name=’interest[dog]’
value=’dog’>dog\n”;

echo “<input type=’checkbox’ name=’interest[cat]’
value=’cat’>cat\n”;

you can access the data by using the multidimensional variable $_POST
[interest], which contains the following:

$_POST[interest][dog] = dog
$_POST[interest][cat] = cat

In some cases, you might want to access all the fields in the form. Perhaps
you want to check them all to make sure that the user didn’t leave any fields
blank. As shown in the program processform.php, earlier in this chapter
(see Listing 8-5), you can use foreach to walk through the $_POST or $_GET
built-in array. Most of the sample programs and statements in this book use
the POST method. The keys are the field names. See the sidebar “Post versus
get” for more on the two methods.

225Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 225

For instance, suppose your program includes the following statements to dis-
play a form:

echo “<form action=’processform.php’ method=’POST’>\n”;
echo “<input type=’text’ name=’lname’

value=’Smith’>
\n”;
echo “<input type=’radio’ name=’interest’

value=’dog’>dog\n”;
echo “<input type=’radio’ name=’interest’

value=’cat’>cat\n”;
echo “<input type=’hidden’ name=’hidvar’ value=’3’>\n”;
echo “
<input type=’submit’ value=’Select Type of Pet’>

</form>\n”;

The program processform.php contains the following statements, which
will list all the variables received from the form:

foreach($_POST as $field => $value)
{

echo “$field, $value
”;
}

The output from the foreach loop is

lname, Smith
interest, dog
hidvar, 3

The output shows three variables with these three values for the following
reasons:

� The user didn’t change the text in the text field. The value “Smith”
that the program displayed is still the text in the text field.

� The user selected the radio button for dog. The user can select only
one radio button.

� The program passed a hidden field named hidvar. The program sets
the value for hidden fields. The user can’t affect the hidden fields.

Checking the information
Joe Customer fills in an HTML form, selecting from lists and typing information
into text fields. He clicks the submit button. You now have all the information
that you wanted. Well, maybe. Joe might have typed information that con-
tains a typo. Or he might have typed nonsense. Or he might even have typed
malicious information that can cause problems for you or other people using
your Web site. Before you use Joe’s information or store it in your database,
you want to check it to make sure it’s the information you asked for. Checking
the data is validating the data.

226 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 226

Validating the data includes the following:

� Checking for empty fields: You can require users to enter information
in a field. If the field is blank, the user is told that the information is
required, and the form is displayed again so the user can type the miss-
ing information.

� Checking the format of the information: You can check the information
to see that it is in the correct format. For instance, ab3&*xx is clearly
not a valid zip code.

Checking for empty fields
When you create a form, you can decide which fields are required and which
are optional. Your decision is implemented in the PHP program. You check
the fields that require information. If a required field is blank, you send a mes-
sage to the user, indicating that the field is required, and you then redisplay
the form.

The general procedure to check for empty fields is

if ($last_name == “”)
{

echo “You did not enter your last name.
Last name is required.
\n”;

display the form;
exit();

}
echo “ Welcome to the Members Only club.

You may select from the menu below.
\n”;
display the menu;

Notice the exit statement, which ends the program. Without the exit state-
ment, the program would continue to the statements after the if statement.
In other words, without the exit statement, the program would display the
form and then continue to echo the welcome statement and the menu as well.

In many cases, you want to check all the fields in the form. You can do this
by looping through the array $ _POST. The following statements check the
array for any empty fields:

foreach($_POST as $value)
{

if ($value == “”)
{
echo “You have not filled in all the fields
\n”;
display the form;
exit();

}
}
echo “Welcome”;

227Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 227

When you redisplay the Web form, make sure that it contains the information
that the user already typed. If users have to retype correct information, they
are likely to get frustrated and leave your Web site.

In some cases, you might require the user to fill in most but not all fields.
For instance, you might request a fax number in the form or provide a field
for a middle name, but you don’t really mean to restrict registration on your
Web site to users with middle names and faxes. In this case, you can make an
exception for fields that are not required, as follows:

foreach($_POST as $field => $value)
{
if($field != “fax” and $field != “middle_name”)
{

if($value == “”)
{
echo “You have not filled in all the fields
\n”;
display the form;
exit();

}
}

}
echo “Welcome”;

228 Part III: PHP

Post versus get
You use one of two methods to submit form
information. The methods pass the form data
differently and have different advantages and
disadvantages.

� get method: The form data is passed by
adding it to the URL that calls the form-pro-
cessing program. For instance, the URL
might look like this:

processform.php?lname=Smith
&fname=Goliath

The advantages of this method are simplicity
and speed. The disadvantages are that less
data can be passed and that the information
is displayed in the browser, which can be a
security problem in some situations.

� post method: The form data is passed as
a package in a separate communication

with the processing program. The advan-
tages of this method are unlimited informa-
tion passing and security of the data. The
disadvantages are the additional overhead
and slower speed.

For CGI programs that are not PHP, the program
that processes the form must find the informa-
tion and put the data into variables. In this case,
the get method is much simpler and easier to
use. Many programmers use the get method
for this reason. However, PHP does all this work
for you. The get and post methods are
equally easy to use in PHP programs. Therefore,
when using PHP, it’s almost always better to use
the postmethod because you have the advan-
tages of the postmethod (unlimited data pass-
ing, better security) without its main
disadvantage (more difficult to use).

14_096004 ch08.qxp 10/11/06 9:25 PM Page 228

Notice that the outside if conditional statement is true only if the field is not
the fax field and is not the middle name field. For those two fields, the pro-
gram does not reach the inside if statement, which checks for blank fields.

In most cases, the program should create two arrays: one that contains the
names of the fields that are inappropriately blank and one that contains the
data that is correct, so you can display or store it. The need for an array of
correct data becomes clearer later in this section, when I discuss checking
the format of data and cleaning data.

In some cases, you might want to tell the user exactly which fields need to be
filled in. The checkBlank.php program in Listing 8-12 processes the form
produced by the program displayForm, shown in Listing 8-6, which has four
fields: first_name, middle_name, last_name, and phone. All the fields
are required except middle_name.

To use the program in Listing 8-12, first edit the displayForm program, shown
in Listing 8-6, so that checkBlank.php is shown in the action attribute in
the form tag. Replace processform.php with checkBlank.php, as follows:

echo “<form action=’checkBlank.php’ method=’POST’>

Then run the displayForm.php program, fill in the form, and click the
submit button, which runs the checkBlank.php program.

Listing 8-12: Checking for Blank Fields

<?php
/* Program name: checkBlank.php
* Description: Program checks all the form fields for
* blank fields.
*/
?>
<html>
<head><title>Empty fields</title></head>
<body>
<?php
/* set up array with all the fields */
$labels = array(“first_name” => “First Name”,

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

/* check each field except middle name for
blank fields */

foreach($_POST as $field => $value)
{
if($field != “middle_name”)
{
if($value == “”)
{

(continued)

229Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 229

Listing 8-12 (continued)
$blank_array[] = $field;

}
}

} // end of foreach loop for $_POST
/* if any fields were blank, display error message and

redisplay form */
if(@sizeof($blank_array) > 0) //blank fields are found
{
echo “You didn’t fill in one or more required

fields. You must enter:
”;
/* display list of missing information */
foreach($blank_array as $value)
{
echo “ {$labels[$value]}
”;

}
/* redisplay form */
echo “<p>”;
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>

<table>”;
foreach($labels as $field => $label)
{
$good_data[$field]=strip_tags(trim($_POST[$field]));
echo “<tr>

<td style=’text-align: right;
font-weight: bold’>
{$labels[$field]}</td>

<td><input type=’text’ name=’$field’
size=’65’ maxlength=’65’
value=’$good_data[$field]’></td>

</tr>”;
}
echo “<tr>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’

value=’Submit Name and Phone Number’>”;
echo “</td></tr></table>

</form>”;
exit();

}
echo “All required fields contain information”;

?>
</body></html>

To check for blanks, the program does the following:

1. Sets up an array of field labels. These labels are used as labels in the
form, to display the list of missing information and to display the form.

2. Loops through all the variables passed from the form, checking for
blanks. The variables are in the array $ _POST. The field middle_name
is not checked for blanks because it is not a required field. Any blank
fields are added to an array of blank fields, $blank_array.

230 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 230

3. Checks whether any blank fields were found. Checks the number of
items in $blank_array.

4. If zero blank fields were found, jumps to the message; all required
fields contain information.

5. If one or more blank fields were found:

i. Displays an error message. This message explains to the user that
some required information is missing.

ii. Displays a list of missing information. Loops through $blank_
array and displays the label(s).

iii Creates an array of good data. The data is cleaned so it can be
safely displayed in the form.

iv. Redisplays the form. Because the form includes variable names
in the value attribute, the information that the user previously
entered is retrieved from $good_data and displayed.

v. Exits. Stops after the form displays. The user must click the submit
button to continue.

Remember, programs that process forms use the information from the form.
If you run them by themselves, they don’t have any information passed from
the form and will not run correctly. These programs are intended to run when
the user clicks the submit button for a form.

Don’t forget the exit statement. Without the exit statement, the program
would continue and would display the welcome message after displaying
the form.

Figure 8-13 shows the Web page that results if the user didn’t enter a first or a
middle name. Notice that the list of missing information doesn’t include Middle
Name because Middle Name is not required. Also, notice that the information
the user originally typed into the form is still displayed in the form fields.

Figure 8-13:
The result of

processing
a form with

missing
information.

231Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 231

Checking the format of the information
Whenever users must type information in a form, you can expect a certain
number of typos. You can detect some of these errors when the form is sub-
mitted, point out the error(s) to the user, and then request that he or she
retype the information. For instance, if the user types 8899776 in the zip
code field, you know this is not correct. This information is too long to be a
zip code and too short to be a zip+4 code.

You also need to protect yourself from malicious users — users who might
want to damage your Web site or your database or steal information from you
or your users. You don’t want users to enter HTML tags into a form field —
something that might have unexpected results when sent to a browser.
A particularly dangerous tag would be a script tag that allows a user to
enter a program into a form field.

If you check each field for its expected format, you can catch typos and pre-
vent most malicious content. However, checking information is a balancing
act. You want to catch as much incorrect data as possible, but you don’t want
to block any legitimate information. For instance, when you check a phone
number, you might limit it to numbers. The problem with this check is that it
would screen out legitimate phone numbers in the form 555-5555 or (888)
555-5555. So you also need to allow hyphens (-), parentheses (), and spaces.
You might limit the field to a length of 14 characters, including parentheses,
spaces, and hyphens, but this screens out overseas numbers or numbers that
include an extension. The bottom line: You need to think carefully about what
information you want to accept or screen out for any field.

You can check field information by using regular expressions, which are patterns.
You compare the information in the field against the pattern to see whether it
matches. If it doesn’t match, the information in the field is incorrect, and the
user must type it over. (See Chapter 6 for more on regular expressions.)

In general, these are the statements that you use to check fields:

if(!ereg(“pattern”,$variablename))
{

echo error message;
redisplay form;
exit();

}
echo “Welcome”;

Notice that the condition in the if statement is negative. That is, the !
(exclamation mark) means “not”. So, the if statement actually says:
If the variable does not match the pattern, execute the if block.

232 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 232

For example, suppose that you want to check an input field that contains the
user’s last name. You can expect names to contain letters, not numbers, and
possibly apostrophe and hyphen characters (as in O’Hara and Smith-Jones) and
also spaces (as in Van Dyke). Also, it’s difficult to imagine a name longer than
50 characters. Thus, you can use the following statements to check a name:

if(!ereg(“[A-Za-z’ -]{1,50}”,$last_name)
{

echo error message;
redisplay form;
exit();

}
echo “Welcome”;

If you want to list a hyphen (-) as part of a set of allowable characters that
are surrounded by square brackets ([]), you must list the hyphen at the
beginning or at the end of the list. Otherwise, if you put it between two char-
acters, the program will interpret it as the range between the two characters,
such as A–Z.

You also need to check multiple-choice fields. Although multiple choice pre-
vents honest users from entering mistakes, it doesn’t prevent clever users
with malicious intentions from entering unexpected data into the fields.
You can check multiple-choice fields for acceptable output with the following
type of regex:

if(!ereg(“(male|female)”,$gender)

If the field contains anything except the value male or the value female, the
if block executes.

In the preceding section, you find out how to check every form field to ensure
that it isn’t blank. In addition to that, you will probably also want to check all
the fields that have data to be sure the data is in an acceptable format. You can
check the format by making a few simple changes to the program in Listing 8-12.
Listing 8-13 shows the modified program, called checkAll.php.

The program in Listing 8-13, like the program in Listing 8-12, processes data
submitted from the form produced by the displayForm program in Listing 8-6.
To use the program in Listing 8-13, first edit the displayForm program, shown
in Listing 8-6, so that checkAll.php is shown in the action attribute in the
form tag. Replace processform.php with checkAll.php, as follows:

echo “<form action=’checkAll.php’ method=’POST’>

Then run the displayForm.php program, fill in the form, and click the
submit button, which runs the checkAll.php program.

233Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 233

Listing 8-13: Checking All the Data in Form Fields

<?php
/* Program name: checkAll.php
* Description: Program checks all the form fields for
* blank fields and incorrect format.
*/
?>
<html>
<head><title>Check fields</title></head>
<body>
<?php
/* set up array containing all the fields */
$labels = array (“first_name” => “First Name”,

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

foreach ($_POST as $field => $value)
{
/* check each field except middle name for blank fields */
if ($value == “”)
{

if ($field != “middle_name”)
{

$blank_array[] = $field;
}

}
/* check names for invalid formats. */
elseif ($field == “first_name” or $field == “middle_name”

or $field == “last_name”)
{

if (!ereg(“^[A-Za-z’ -]{1,50}$”,$_POST[$field]))
{

$bad_format[] = $field;
}

}
/* check phone for invalid format. */
elseif ($field == “phone”)
{
if(!ereg(“^[0-9)(-]{7,20}(([xX]|(ext)|(ex))?[-]?[0-9]{1,7})?$”,$value))
{

$bad_format[] = $field;
}

}
}
/* if any fields are not okay, display error message and form */
if(@sizeof($blank_array) > 0 or @sizeof($bad_format) > 0)
{
if(@sizeof($blank_array) > 0)
{

/* display message for missing information */
echo “You didn’t fill in one or more required

fields. You must enter:
”;
/* display list of missing information */
foreach($blank_array as $value)

234 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 234

{
echo “ {$labels[$value]}
”;

}
}
if(@sizeof($bad_format) > 0)
{

/* display message for bad information */
echo “One or more fields have information that appears to be

incorrect. Correct the format for:
”;
/* display list of bad information */
foreach($bad_format as $value)
{

echo “ {$labels[$value]}
”;
}

}
/* redisplay form */
echo “<p>”;
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>

<table>”;
foreach($labels as $field => $label)
{
$good_data[$field]=strip_tags(trim($_POST[$field]));
echo “<tr>

<td style=’text-align: right; font-weight: bold’>
{$labels[$field]}</td>

<td><input type=’text’ name=’$field’ size=’65’
maxlength=’65’ value=’$good_data[$field]’></td>

</tr>”;
}
echo “<tr>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’ value=’Submit Name and Phone Number’>”;

echo “</td></tr></table>
</form>”;

exit();
}
/* if data is good */
echo “All data is good”;

?>
</body></html>

Here are the differences between this program and the program in Listing 8-12:

� This program creates two arrays for problem data. It creates $blank_
array, as did the previous program. But this program also creates
$bad_format for fields that contain information that is not in an
acceptable format.

� This program loops through $bad_format to create a separate list of
problem data. If any fields are blank, it creates one error message and a
list of problem fields, as did the previous program. If any fields are in an
unacceptable format, this program also creates a second error message
and a list of problem fields.

235Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 235

The Web page in Figure 8-14 results when the user accidentally types his or her
first name into the Middle Name field and also types nonsense for his or her
phone number. Notice that two error messages appear, showing that the First
Name field is blank and that the Phone field contains incorrect information.

Giving users a choice with
multiple submit buttons
You can use more than one submit button in a form. For instance, in a cus-
tomer order form, you might use a button that reads Submit Order and
another button that reads Cancel Order. However, you can list only one pro-
gram in the action=programname part of your form tag, meaning that the
two buttons run the same program. PHP solves this problem. By using PHP,
you can process the form differently, depending on which button the user
clicks. The program in Listing 8-14 displays a form with two buttons.

Listing 8-14: Displaying a Form with Two Submit Buttons

<?php
/* Program name: displayTwoButtons.php
* Description: Program displays a form with two
* buttons.
*/
?>
<html>
<head><title>Two Buttons</title></head>
<body>
<?php
echo “<form action=’processTwoButtons.php’ method=’POST’>

Last Name: <input type=’text’ name=’last_name’
maxlength=’50’>

Figure 8-14:
The result of

processing
a form

with both
missing and

incorrect
information.

236 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 236

<input type=’submit’ name=’display_button’
value=’Show Address’>

<input type=’submit’ name=’display_button’
value=’Show Phone Number’>

</form>”;
?>
</body></html>

Notice that the submit button fields have a name: display_button. The fields
each have a different value. Whichever button the user clicks sets the value for
$display_button. The program processTwoButtons.php in Listing 8-15
processes the preceding form.

Listing 8-15: Processing Two Submit Buttons

<?php
/* Program name: processTwoButtons.php
* Description: Program displays different information
* depending on which submit button was
* pushed.
*/
?>
<html>
<head><title>Member Address or Phone Number</title></head>
<body>
<?php
$user=”admin”;
$host=”localhost”;
$password=””;
$database = “MemberDirectory”;
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“Couldn’t connect to server”);
if ($_POST[‘display_button’] == “Show Address”)
{

$query = “SELECT street,city,state,zip FROM Member
WHERE lastName=’$_POST[last_name]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$row = mysqli_fetch_assoc($result);
extract($row);
echo “$street
$city, $state $zip
”;

}
else
{

$query = “SELECT phone FROM Member
WHERE lastName=’$_POST[last_name]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$row = mysqli_fetch_assoc($result);
echo “Phone: {$row[‘phone’]}”;

}
?>
</body></html>

237Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 237

The program executes different statements, depending on which button is
clicked. If the user clicks the button for the address, the program outputs the
address for the name submitted in the form; if the user clicks the Show Phone
Number button, the program outputs the phone number.

Putting Information into a Database
Your application probably needs to store data in your database. For example,
your database might store information that a user typed into a form for your
use — a Member Directory is an example of this. Or your database might
store data temporarily during the application. Either way, you store data by
sending SQL queries to MySQL. (I explain SQL queries in detail in Chapter 4.)

Preparing the data
You need to prepare the data before storing it in the database. Preparing the
data includes the following:

� Putting the data into variables

� Making sure that the data is in the format expected by the database

� Cleaning the data

� Escaping the data

Putting the data into variables
You store the data by sending it to the database in an SQL query. You add the
data to the query by including the variable names in the query. Most of the
data that you want to store is typed by the user into a form. As I discuss ear-
lier in this chapter, PHP stores the form data in a built-in array, with the name
of the form field as the array key. You just use the PHP built-in array elements
in the query. Occasionally, you’ll want to store information that you generate
yourself, such as today’s date or a customer order number. You just need to
assign this data to a variable so that you can include it in a query.

Using the correct format
When you design your database, you set the data type for each column. The
data that you want to store must match the data type of the column that you
want to store it in. For instance, if the column expects a data type integer, the
data sent must be numbers. Or if the column expects data that’s a date, the
data that you send must be in a format that MySQL recognizes as a date. If you
send incorrectly formatted data, MySQL still stores the data, but it might not
store the value that you expected. Here’s a rundown of how MySQL stores
data for the most frequently used data types:

238 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 238

� CHAR or VARCHAR: Stores strings. MySQL stores pretty much any data
sent to a character column, including numbers and dates, as strings.
When you created the column, you specified a length. For example, if
you specified CHAR(20), only 20 characters can be stored. If you send a
string longer than 20 characters, only the first 20 characters are stored.
The remaining characters are dropped.

Set the maxlength for any text input fields in a form to the same length
as the column width in the database where the data will be stored.
That way, the user can’t enter any more characters than the database
can store.

� INT or DECIMAL: Stores numbers. MySQL will try to interpret any data
sent to a number column as a number, whether it makes sense or not.
For instance, it might interpret a date as a number, and you could end up
with a number like 2001.00. If MySQL is unable to interpret the data sent
as a number, it stores 0 (zero) in the column.

� DATE: Stores dates. MySQL expects dates as numbers, with the year
first, month second, and day last. The year can be two or four digits
(2006 or 06). The date can be a string of numbers, or each part can be
separated by a hyphen (-), a period (.), or a forward slash (/). Some valid
date formats are 20061203, 980103, 2006-3-2, and 2000.10.01. If MySQL
cannot interpret the data sent as a date, it stores the date as 0000-00-00.

� ENUM: Stores only the values that you allowed when you created the
column. If you send data that is not allowed, MySQL stores a 0.

In many cases, the data is collected in a form and stored in the database as is.
For instance, users type their names in a form, and the program stores them.
However, in some cases, the data needs to be changed before you store it.
For instance, if a user enters a date into a form in three separate selection lists
for month, day, and year (as I describe in the section, “Building selection lists,”
earlier in this chapter), the values in the three fields must be put together
into one variable. The following statements put the fields together:

$expDate = $_POST[‘expYear’].”-”;
$expDate .= $_POST[‘expMonth’].”-”;
$expDate .= $_POST[‘expDay’];

Another case in which you might want to change the data before storing it is
when you’re storing phone numbers. Users enter phone numbers in a variety
of formats, using parentheses, dashes, dots, or spaces. Rather than storing
these varied formats in your database, you might just store the numbers.
Then when you retrieve a phone number from the database, you can format
the number however you want before you display it. The following statement
removes characters from the string:

$phone = ereg_replace(“[)(.-]”,””,$_POST[‘phone’]);

239Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 239

The function ereg_replace uses regular expressions to search for a pattern.
The first string passed is the regular expression to match. If any part of the
string matches the pattern, it is replaced by the second string. In this case,
the regular expression is [)(.-], which means any one of the characters in
the square brackets. The second string is “”, which is a string with nothing
in it. Therefore, any spaces, parentheses, dots, or hyphens in the string
(characters that you might consider valid and allow when checking the data)
are replaced by nothing.

Cleaning the data
The earlier section “Getting Information from the User,” which describes the use
of HTML forms, discusses checking the data in forms. Users can type data into
a text field, either accidentally or maliciously, that can cause problems for your
application, your database, or your users. Checking the data and accepting only
the characters expected for the information requested can prevent many prob-
lems. However, you can miss something. Also, in some cases, the information
that the user enters needs to allow pretty much anything. For instance, you
normally wouldn’t allow the characters < and > in a field. However, there might
be a situation in which the user needs to enter these characters — perhaps
the user needs to enter a technical formula or specification that requires them.

PHP has two functions that can clean the data, thus rendering it harmless:

� strip_tags: This function removes all text enclosed by < and > from
the data. It looks for an opening < and removes it and everything else,
until it finds a closing > or reaches the end of the string. You can include
specific tags that you want to allow. For instance, the following state-
ment removes all tags from a character string except and <i>:

$last_name = strip_tags($last_name,”<i>”);

� htmlspecialchars: This function changes some special characters
with meaning to HTML into an HTML format that allows them to be dis-
played without any special meaning. The changes are

• < becomes <

• > becomes >

• & becomes &

In this way, the characters < and > can be displayed on a Web page with-
out HTML interpreting them as tags. The following statement changes
these special characters:

$last_name = htmlspecialchars($last_name);

If you’re positive that you don’t want to allow your users to type any < or >
characters into a form field, use strip_tags. However, if you want to allow
< or > characters, you can safely store them after they have been processed
by htmlspecialchars.

240 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 240

Another function that you should use before storing data in your database is
trim. Users often type spaces at the beginning or end of a text field without
meaning to. Trim removes any leading or trailing spaces so they don’t get
stored. Use the following statement to remove these spaces:

$last_name = trim($_POST[‘last_name’]);

Escaping the data
A user can type information into your form that, when used in your query,
changes your query so that it operates differently than you expect. Some of
these damaging queries are created by manipulating the quotes in your
query. You can protect against this kind of attack, called an SQL injection, by
escaping any quotes sent in form fields. Escaping special characters, such as
quotes, means to place a backslash (\) in front of the character. The special
character is then treated as any other character, not as a special character
with special meaning, rendering the query safe. Escaping characters is dis-
cussed in Chapter 6.

PHP versions before version 6 provide a feature called magic quotes that auto-
matically escapes all strings in the $_POST and $_GET arrays. Single quotes,
double quotes, backslashes, and null characters are escaped. This feature,
designed to help beginning users, is controlled by the magic_quotes-gpc
setting in php.ini and is turned on by default in PHP 4 and PHP 5. In PHP 6,
the magic quotes feature is no longer available.

The magic quotes feature is convenient and protects beginning users from
SQL injection attacks that they may be unaware of. However, all $_POST
and $_GET data is escaped, even if it is not going to be stored in a database.
This unnecessary escaping is inefficient. In addition, if you just display the
form data or use it in an e-mail, the backslashes in front of the quotes are dis-
played or added to the e-mail, unless you remove them first.

Most experienced users turn off magic quotes and escape quotes using PHP
functions. Even if you use magic quotes in programs you run on PHP 4 or 5,
you must modify your programs before they run correctly on PHP 6.

PHP provides the mysqli_real_escape_string() function (and the
mysql_real_escape_string function) to escape form data for use in a
MySQL query. The function is used after a connection is made to the MySQL
server. The connection is passed to the function, along with the unescaped
string, and the function escapes the string with respect to the connection.
If magic quotes is on when you use the function, the string will already be
escaped by magic quotes, resulting in a double escaped string.

In this book, all escaping is accomplished using the PHP function mysqli_
real_escape_string. To use the programs in this book with PHP 4 or 5,
turn magic_quotes-gpc off in your php.ini file.

241Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 241

If you plan to use your scripts on other computers, it may not be safe to
assume that magic quotes is turned on or off. To write portable code, you
need to test whether magic quotes is on or off in the script and then use the
code that fits the status. You can use the PHP escape functions if magic quotes
is turned off or just store the data as if magic quotes is turned on. You can
test whether magic quotes is on or off using the get_magic_quotes_gpc()
function in a conditional statement. The function returns 0 if magic quotes is
off and 1 if magic quotes is turned on.

Adding new information
You use the INSERT query (described in Chapter 4) to add new information
to the database. INSERT adds a new row to a database table. The general
format is

$query = “INSERT INTO tablename (col,col,col...)
VALUES (‘var’,’var’,’var’...)”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

For instance, the statements to store the name and phone number that a user
enters in a form are

$query = “INSERT INTO Member (lastName,firstName,phone)
VALUES (‘$_POST[lastName]’,’$_POST[firstName]’,

‘$_POST[phone]’)”;
$result = mysqli_query($query)

or die (“Couldn’t execute query.”);

You would never insert data directly from the form field in the $_POST array.
Always check its format first and clean it, as discussed earlier in this chapter.

Listing 8-16 shows a program that displays a form, and Listing 8-17 lists a
program called savePhone.php that processes the form in Listing 8-16
and stores a name and a phone number from the form in a database.

Listing 8-16: Displaying a Form

<?php
/* Program name: displayPhone
* Description: Script displays a form that asks for the
* customer phone number.
*/
echo “<html>

<head><title>Customer Phone Number</title></head>
<body>”;

242 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 242

$labels = array (“first_name” => “First Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

echo “<h3>Please enter your phone number below.</h3>”;
echo “<form action=’savePhone.php’ method=’POST’>

<table>\n”;
/* Loop that displays the form fields */
foreach($labels as $field => $label)
{
echo “<tr>

<td style=’text-align: right;
font-weight: bold’> $label</td>

<td><input type=’text’ name=’$field’ size=’65’
maxlength=’65’ ></td>

</tr>”;
}
echo “<tr>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’

value=’Submit Phone Number’>”;
echo “</td></tr></table>

</form>”;
?>
</body></html>

The displayed form provides three fields: first_name, last_name, and
phone.

Listing 8-17: Storing Data from a Form

<?php
/* Program name: savePhone.php
* Description: Program checks all the form fields for
* blank fields and incorrect format. Saves the
* correct fields in a database.
*/
?>
<html>
<head><title>Member Phone Number</title></head>
<body>
<?php
/* set up array of field labels */
$labels = array(“first_name” => “First Name”,

“last_name” => “Last Name”,
“phone” => “Phone”);

/* Check information from form */
foreach($_POST as $field => $value)
{
/* check each field for blank fields */
if($value == “”)
{

(continued)

243Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 243

Listing 8-17 (continued)
$blank_array[] = $field;

}
/* check format of each field */

elseif(ereg(“(name)”,$field))
{

if(!ereg(“^[A-Za-z’ -]{1,50}$”,$value))
{

$bad_format[] = $field;
}

}
elseif($field == “phone”)
{
if(!ereg(“^[0-9)(-]{7,20}(([xX]|(ext)|(ex))?[-]?[0-9]{1,7})?$”,$value))
{

$bad_format[] = $field;
}

}
} // end of foreach for $_POST
/* if any fields were not okay, display error message and form */
if(@sizeof($blank_array) > 0 or @sizeof($bad_format) > 0)
{
if(@sizeof($blank_array) > 0)
{

/* display message for missing information */
echo “You didn’t fill in one or more required fields.

You must enter:
”;
/* display list of missing information */
foreach($blank_array as $value)
{

echo “ {$labels[$value]}
”;
}

}
if(@sizeof($bad_format) > 0)
{

/* display message for bad information */
echo “One or more fields have information that appears to

be incorrect. Correct the format for:
”;
/* display list of bad information */
foreach($bad_format as $value)
{

echo “ {$labels[$value]}
”;
}

}
/* redisplay form */
echo “<p><hr />”;
echo “<h3>Please enter your phone number below.</h3>”;
echo “<form action=’savePhone.php’ method=’POST’>

<table>”;
foreach($labels as $field => $label)

244 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 244

{
$good_data[$field]=strip_tags(trim($_POST[$field]));
echo “<tr>

<td style=’text-align: right; font-weight: bold’>
$label</td>

<td><input type=’text’ name=’$field’ size=’65’
maxlength=’65’ value=’$good_data[$field]’></td>

</tr>”;
}
echo “<tr>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’ value=’Submit Phone Number’>”;

echo “</td></tr></table>
</form>”;

exit();
}
else //if data is okay
{
$user=”admin”;
$host=”localhost”;
$password=””;
$database = “MemberDirectory”;
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“couldn’t connect to server”);

$fields_all = array_keys($labels);
foreach($fields_all as $field)
{
$good_data[$field] = strip_tags(trim($_POST[$field]));
if($field == “phone”)
{

$good_data[$field] = ereg_replace(“[)(.-]”,””,$good_data[$field]);
}
$good_data[$field] = mysqli_real_escape_string($cxn,$good_data[$field]);

}

$query = “INSERT INTO Phone (lastName,firstName,phone)
VALUES (‘$good_data[last_name]’,’$good_data[first_name]’,

‘$good_data[phone]’)”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
echo “<h4>New Member added to database</h4>”;

}
?>
</body></html>

This program builds on the program checkAll.php in Listing 8-13. It checks
the data from the form for blank fields and incorrect formats, asking the user
to retype the data when it finds a problem. If the data is okay, the program
trims the data, cleans it, and stores it in the database.

245Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 245

Your application might need to store data in several places. A function that
stores data from a form can be very useful. The following is a function that
stores all the data in a form:

function storeForm($formdata,$tablename,$cxn)
{

if(!is_array($formdata))
{
return FALSE;
exit();

}
foreach($formdata as $field => $value)
{

$formdata[$field] = trim($formdata[$field]);
$formdata[$field] = strip_tags($formdata[$field]);
if($field == “phone”)
{

$formdata[$field] =
ereg_replace(“[)(.-]”,””,$formdata[$field]);

}
$field_array[]=$field;
$value_array[]=$formdata[$field];

}
$fields=implode(“,”,$field_array);
$values=implode(‘“,”’,$value_array);
$query = “INSERT INTO $tablename ($fields)

VALUES (\”$values\”)”;
if($result = mysqli_query($cxn,$query))

return TRUE;
else

return FALSE;
}

The function returns TRUE if it finishes inserting the data without an error or
FALSE if it is unable to insert the data. At the beginning, the function checks
that the data passed to it is actually an array. If $formdata is not an array,
the function stops and returns FALSE.

Notice that this function works only if the field names in the form are the same
as the column names in the database table. Also notice that this function
assumes you’re already connected to the MySQL server and have selected
the correct database. The database connection is passed to the function.

The following code shows how you can call the function:

else //if data is okay
{
$user=”admin”;
$host=”localhost”;
$password=””;
$database = “MemberDirectory”;
$cxn = mysqli_connect($host,$user,$password,$database)

246 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 246

or die (“couldn’t connect to server”);
if(storeForm($good_data,”Phone”,$cxn))

echo “New Member added to database
”;
else

echo “New Member was not added to the database
”;
}
?>
</body></html>

Notice how much easier this program is to read with the majority of the state-
ments in the function. Furthermore, this function works for any form as long as
the field names in the form are the same as the column names in the database
table. If the function is unable to execute the query, it stops execution at that
point and prints the error message “Couldn’t execute query”. If the query
might fail in certain circumstances, you need to take these into consideration.

Updating existing information
You update existing information with the UPDATE query, as I describe in
Chapter 4. Updating means changing data in the columns of rows that are
already in the database — not adding new rows to the database table.
The general format is

$query = “UPDATE tablename SET col=value WHERE col=value”;
$result = mysql_query($query)

or die (“Couldn’t execute query.”);

For instance, the statements to update the phone number for Goliath Smith are

$query = “UPDATE Member SET phone=’$_POST[‘phone],
WHERE lastName=’$_POST[lastName]’,
AND firstName=’$_POST[firstName]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

If you don’t use a WHERE clause in an UPDATE query, the field that is SET is
set for all the rows. That is seldom what you want to do.

You would never update data using data directly from the form field in the
$_POST array. Always check its format first and clean it, as discussed earlier.

Listing 8-18 shows a program called updatePhone.php, which updates a
phone number in an existing database record. updatePhone.php processes
data from the same form as storePhone.php — the form displayed by
displayPhone.php listed in Listing 8-16. You just need to change the form tag
so that the program in the action attribute is updatePhone.php, as follows:

echo “<form action=’updatePhone.php’ method=’POST’>

247Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 247

Listing 8-18: Updating Data

<?php
/* Program name: updatePhone.php
* Description: Program checks the phone number for incorrect format. Updates
* the phone number in the database for the specified name.
*/
?>
<html>
<head><title>Update Member Phone Number</title></head>
<body>
<?php
/* set up array of field labels */
$labels = array (“first_name” => “First Name”,

“last_name” => “Last Name”,
“phone” => “Phone”);

/* check each field for blank fields */
foreach ($_POST as $field => $value)
{
if ($value == “”)
{

$blank_array[] = $field;
}

}
/* check format of phone number */
if(!ereg(“^[0-9)(-]{7,20}(([xX]|(ext)|(ex))?[-]?[0-9]{1,7})?$”,

$_POST[‘phone’]))
{

$bad_format[] = “phone”;
}
/* if any fields were not okay, display error message and form */
if (@sizeof($blank_array) > 0 or @sizeof($bad_format) > 0)
{
if (@sizeof($blank_array) > 0)
{

/* display message for missing information */
echo “You didn’t fill in one or more required

fields. You must enter:
”;
/* display list of missing information */
foreach($blank_array as $value)
{
echo “ {$labels[$value]}
”;
}

}
if (@sizeof($bad_format) > 0)
{

/* display message for bad phone number */
echo “Your phone number appears to be incorrect.
”;

}

248 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 248

/* redisplay form */
echo “<p><hr>”;
echo “<h3>Please enter your phone number below.</h3>”;
echo “<form action=’updatePhone.php’ method=’POST’>

<table>”;
foreach($labels as $field=>$label)
{
$good_data[$field] = strip_tags(trim($_POST[$field]));
echo “<tr>

<td style=’text-align: right; font-weight: bold’>
{$labels[$field]}</td>

<td><input type=’text’ name=’$field’ size=’65’
maxlength=’65’ value=’$_POST[$field]’></td>

</tr>”;
}
echo “<tr>

<td colspan=’2’ style=’text-align: center’>
<input type=’submit’ value=’Submit Phone Number’>”;

echo “</td></tr></table>
</form>”;

exit();
}
else //if data is okay
{
$good_data[‘phone’] = strip_tags(trim($_POST[‘phone’]));
$good_data[‘phone’] = ereg_replace(“[)(.-]”,””,$good_data[‘phone’]);

$user=”admin”;
$host=”localhost”;
$password=””;
$database = “MemberDirectory”;

$cxn = mysqli_connect($host,$user,$password,$database)
or die (“Couldn’t connect to server”);

$query = “UPDATE Phone SET phone=’$good_data[phone]’
WHERE lastName=’$_POST[last_name]’
AND firstName=’$_POST[first_name]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query: “.mysqli_error($cxn));

if(mysqli_affected_rows($cxn) > 0)
{

echo “<h3>The phone number for {$_POST[‘first_name’]}
{$_POST[‘last_name’]} has been updated</h3>”;

}
else
echo “No record updated”;

}
?>
</body></html>

249Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 249

The program in Listing 8-18, which updates the database, is almost identical
to the program in Listing 8-17, which adds new data. Using an UPDATE query
in this program — instead of the INSERT query you used to add new data —
is the major difference. Both programs check the data and then clean it
because both programs store the data in the database.

If you see backslashes (\) in the database after you have inserted or updated
the record, your data was escaped twice. This probably means you have magic
quotes turned on and also used mysqli_real_escape_quotes. Turn off
magic quotes. When your strings are escaped correctly, the escapes make sure
the query is executed correctly, but the escapes are not stored in the database.

Getting Information in Files
Sometimes you want to receive an entire file of information from a user, such
as user résumés for your job-search Web site or pictures for your photo
album Web site. Or, suppose you’re building the catalog from information
supplied by the Sales department. In addition to descriptive text about the
product, you want Sales to provide a picture of the product. You can supply
a form that Sales can use to upload an image file.

Using a form to upload the file
You can display a form that allows a user to upload a file by using an HTML
form designed for that purpose. The general format of the form is as follows:

<form enctype=”multipart/form-data”
action=”processfile.php” method=”POST”>

<input type=”hidden” name=”MAX_FILE_SIZE” value=”30000”>
<input type=”file” name=”user_file”>
<input type=”submit” value=”Upload File”>

</form>

Notice the following points regarding the form:

� The enctype attribute is used in the form tag. You must set this attribute
to multipart/form-data when uploading a file to ensure that the file
arrives correctly.

� A hidden field is included that sends a value (in bytes) for MAX_FILE_
SIZE. If the user tries to upload a file that is larger than this value, it
won’t upload. You can set this value as high as 2MB. If you need to
upload a file larger than that, you must change the default setting for
upload_max_filesize in php.ini to a larger number before sending
a value larger than 2MB for MAX_FILE_SIZE in the hidden field.

250 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 250

� The input field that uploads the file is of type file. Notice that the
field has a name — user_file — as do other types of fields in a form.
The filename that the user enters into the form is sent to the processing
program and is available in the built-in array called FILES. I explain the
structure and information in FILES in the following section.

When the user submits the form, the file is uploaded to a temporary location.
The script that processes the form needs to copy the file to another location
because the temporary file is deleted as soon as the script is finished.

Processing the uploaded file
Information about the uploaded file is stored in the PHP built-in array called
$_FILES. An array of information is available for each file that was uploaded,
resulting in $_FILES being a multidimensional array. As with any other form,
you can obtain the information from the array by using the name of the field.
The following is the array available from $_FILES for each uploaded file:

$_FILES[‘fieldname’][‘name’]
$_FILES[‘fieldname’][‘type’]
$_FILES[‘fieldname’][‘tmp_name’]
$_FILES[‘fieldname’][‘size’]

For example, suppose that you use the following field to upload a file, as
shown in the preceding section:

<input type=”file” name=”user_file”>

If the user uploads a file named test.txt by using the form, the resulting
array that can be used by the processing program looks something like this:

$_FILES[user_file][name] = test.txt
$_FILES[user_file][type] = text/plain
$_FILES[user_file][tmp_name] = D:\WINNT\php92C.tmp
$_FILES[user_file][size] = 435

In this array, name is the name of the file that was uploaded, type is the type
of file, tmp_name is the path/filename of the temporary file, and 435 is the
size of the file. Notice that name contains only the filename, but tmp_name
includes the path to the file as well as the filename.

If the file is too large to upload, the tmp_name in the array is set to none, and
the size is set to 0. The processing program must move the uploaded file
from the temporary location to a permanent location. The general format of
the statement that moves the file is as follows:

move_uploaded_file(path/tempfilename,path/permfilename);

251Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 251

The path/tempfilename is available in the built-in array element $_FILES
[‘fieldname’][‘tmp_file’]. The path/permfilename is the path to
the file where you want to store the file. The following statement moves the
file uploaded in the input field, given the name user_file, shown earlier in
this section:

move_uploaded_file($_FILES[‘user_file’][‘tmp_name’],
‘c:\data\new_file.txt’);

The destination directory (in this case, c:\data) must exist before the file
can be moved to it. This statement doesn’t create the destination directory.

Security can be an issue when uploading files. Allowing strangers to load files
onto your computer is risky; malicious files are possible. You want to check
the files for as many factors as possible after they’re uploaded, using condi-
tional statements to check file characteristics, such as expected file type and
size. In some cases, for even more security, it might be a good idea to change
the name of the file to something else so that users don’t know where their
files are or what they’re called.

Putting it all together
A complete example script is shown in Listing 8-19. This program displays a
form for the user to upload a file, saves the uploaded file, and then displays a
message after the file has been successfully uploaded. That is, this program
both displays the form and processes the form. This program expects the
uploaded file to be an image file and tests to make sure that it is an image file,
but any type of file can be uploaded. The HTML code that formats and displays
the form is in a separate file — the include file shown in Listing 8-20. A Web
page displaying the form is shown in Figure 8-15.

Listing 8-19: Uploading a File with a POST Form

<?php
/* Script name: uploadFile.php
* Description: Uploads a file via HTTP with a POST form.
*/
if(!isset($_POST[‘Upload’])) #5
{
include(“form_upload.inc”);

}
else #9
{
if($_FILES[‘pix’][‘tmp_name’] == “none”) #11
{

252 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 252

echo “<p style=’font-weight: bold’>
File did not successfully upload. Check the

file size. File must be less than 500K.</p>”;
include(“form_upload.inc”);
exit();

}
if(!ereg(“image”,$_FILES[‘pix’][‘type’])) #19
{
echo “<p style=’font-weight: bold’>
File is not a picture. Please try another

file.</p>”;
include(“form_upload.inc”);
exit();

}
else #27
{
$destination=’c:\data’.”\\”.$_FILES[‘pix’][‘name’];
$temp_file = $_FILES[‘pix’][‘tmp_name’];
move_uploaded_file($temp_file,$destination);
echo “<p style=’font-weight: bold’>
The file has successfully uploaded:

{$_FILES[‘pix’][‘name’]}
({$_FILES[‘pix’][‘size’]})</p>”;

}
}

?>

I have added line numbers at the end of some of the lines in the script. The
script is discussed with reference to these line numbers:

5 This line is an if statement that tests whether the form has been sub-
mitted. If not, the form is displayed by including the file containing
the form code. The include file is shown in Listing 8-20.

9 This line starts an else block that executes if the form has been sub-
mitted. This block contains the rest of the script and processes the
submitted form and uploaded file.

11 This line begins an if statement that tests whether the file was suc-
cessfully uploaded. If not, an error message is displayed, and the form
is redisplayed.

19 This line is an if statement that tests whether the file is a picture.
If not, an error message is displayed, and the form is redisplayed.

27 This line starts an else block that executes if the file has been suc-
cessfully uploaded. The file is moved to its permanent destination,
and a message is displayed that the file has been uploaded.

Listing 8-20 shows the include file used to display the upload form.

253Chapter 8: Data In, Data Out

14_096004 ch08.qxp 10/11/06 9:25 PM Page 253

Listing 8-20: An Include File That Displays the File Upload Form

<!-- Program Name: form_upload.inc
Description: Displays a form to upload a file -->

<html>
<head><title>File Upload</title></head>
<body>
Enter the file name of the product picture you

want to upload or use the browse button
to navigate to the picture file.

When the path to the picture file shows in the
text field, click the Upload Picture button.

<div align=”center”><hr />
<form enctype=”multipart/form-data”

action=”uploadFile.php” method=”POST”>
<input type=”hidden” name=”MAX_FILE_SIZE”

value=”500000”>
<input type=”file” name=”pix” size=”60”>
<p><input type=”submit” name=”Upload”

value=”Upload Picture”>
</form>
</div></body></html>

Notice that the include file contains no PHP code — just HTML code.

The form that allows users to select a file to upload is shown in Figure 8-15.
The form has a text field for inputting a filename and a Browse button that
enables the user to navigate to the file and select it.

Figure 8-15:
A form that

allows users
to upload an

image file.

254 Part III: PHP

14_096004 ch08.qxp 10/11/06 9:25 PM Page 254

Chapter 9

Moving Information from One
Web Page to the Next

In This Chapter
� Moving your user from one page to the next

� Moving information from one page to the next

� Adding information to a URL

� Taking a look at cookies

� Using hidden form fields

� Discovering PHP sessions

Most Web sites consist of more than one Web page. This includes the
static Web pages that you may have developed in the past. With static

Web pages, users click links to move from one page to the next. Users click
a link in one Web page, and a new Web page appears in their browser. When
users move from page to page this way, no information is transferred from
the first page to the second. Each new page that is sent to the user’s browser
is independent of any other pages the user may have seen previously. With
dynamic Web pages, you may need to transfer information from one page to
the next. If you are an advanced HTML developer, you may have experience
with limited methods for transferring information from one page to the
next using HTML forms and CGI (Common Gateway Interface) or cookies.
However, PHP is a more powerful method for passing information from Web
page to Web page.

15_096004 ch09.qxp 10/11/06 9:28 PM Page 255

Moving Your User from
One Page to Another

When using only HTML, you provide links so that a visitor can go from one
page to another in your Web site. When using PHP, you have three options for
moving your user from one page to the next:

� Links: You can echo the HTML tags that display a link. The general
format of an HTML statement that displays a link is

Text user sees as a link

When users click the link, the program newpage.php is sent to their
browser. This method is used extensively in HTML Web pages. You’re
likely familiar with creating links from your HTML experience, but if you
need a refresher, find out more about links in any HTML book, such as
HTML 4 For Dummies Quick Reference, 2nd Edition, by Deborah S. Ray
and Eric J. Ray (Wiley).

� Form submit buttons: You can use an HTML form with one or more
submit buttons. When the user clicks a submit button, the program
in the form tag runs and sends a new Web page to the user’s browser.
You can create a form with no fields — only a submit button — but the
user must click the submit button to move to the next page. I discuss
forms and submit buttons thoroughly in Chapter 8.

� The header function: You can send a message to the Web server with
the PHP header function that tells the server to send a new page. When
using this method, you can display a new page in the user’s browser
without the user having to click a link or a button.

The PHP header function can be used to send a new page to the user’s
browser. The program uses a header statement and displays the new Web
page without needing any user action. When the header statement is exe-
cuted, the new page is displayed. The format of the header function that
requests a new page is

header(“Location: URL”);

The file located at URL is sent to the user’s browser. Either of the following
statements are valid header statements:

header(“Location: newpage.php”);
header(“Location: http://company.com/cat/catalog.php”);

256 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 256

257Chapter 9: Moving Information from One Web Page to the Next

URLs
A URL (Uniform Resource Locator) is an address
on the Web. Every Web page has its own URL or
address. The URL is used by the Web server to
find the Web page and send it to a browser.

The format of a URL is

HTTP://servername:portnumber/
path#target?string=string

Here’s a breakdown of the parts that make up
the URL:

� HTTP://servername: This tells the
server that the address is a Web site and
gives the name of the computer where the
Web site is located. Other types of transfer
can be specified, such as FTP (File Transfer
Protocol), but these aren’t related to the
subject of this book. If this part of the URL is
left out, the Web server assumes that the
computer is the same computer that the URL
is typed on. Valid choices for this part might
be HTTP://amazon.com or HTTP://
localhost. Note: HTTP doesn’t have to
be in uppercase letters.

� :portnumber: The Web server exchanges
information with the Internet at a particular
port on the computer. Most of the time, the
Web server is set up to communicate via
port 80. If the port number isn’t specified,
port 80 is assumed. In some unusual circum-
stances, a Web server may use a different
port number, in which case the port number
must be specified. The most common reason
for using a different port number is to set up a
test Web site on another port that’s available
only to developers and testers, not customers.

When the site is ready for customers, it is
made available on port 80.

� path: This is the path to the file, which fol-
lows the rules of any path. The root of the path
is the main Web site directory. If the path
points to a directory, rather than a file, the
Web server searches for a default filename,
such as default.html or index.
html. The person who administers the
Web site sets the default filename. The path
/catalog/show.php indicates a direc-
tory called catalog in the main Web site
directory and a file named show.php. The
path catalog/show.php indicates a
directory called catalog in the current
directory.

� #target: An HTML tag defines a target.
This part of the URL displays a Web page at
the location where the target tag is located.
For instance, if the tag <a name=
”target”> is in the middle of the file
somewhere, the Web page will be displayed
at the tag rather than at the top of the file.

� ?string=string: The question mark
allows information to be attached to the end
of the URL. The information in forms that use
the getmethod is passed at the end of the
URL in the format fieldname=value.
You can add information to the end of a URL
to pass it to another page. PHP automati-
cally gets information from the URL and puts
it into built-in arrays. You can pass more
than one string=string pair by sepa-
rating each pair with an ampersand (&): for
example, ?state=CA&city=home.

15_096004 ch09.qxp 10/11/06 9:28 PM Page 257

The header function has a major limitation, however. The header statement
can only be used before any other output is sent. You cannot send a message
requesting a new page in the middle of a program after you have echoed
some output to the Web page. See the sidebar “Statements that must come
before output” for a discussion.

258 Part III: PHP

Statements that must come before output
Some PHP statements can only be used before sending any output. header statements, setcookie
statements, and session functions, all described in this chapter, must all come before any output
is sent. If you use one of these statements after sending output, you may see the following message:

Cannot add header information - headers already sent

The message will also provide the name of the file and indicate which line sent the previous output.
Or you might not see a message at all; the new page might just not appear. (Whether you see an
error message depends on what error message level is set in PHP; see Chapter 6 for details.) The
following statements will fail because the header message is not the first output:

<body>
<?php

header(“Location: http://company.com”);
?>
</body>

One line of HTML code is sent before the header statement. The following statements will work,
although they don’t make much sense:

<?php
header(“Location: http://company.com”);

?>
<body>
</body>

The following statements will fail:

<?php
header(“Location: http://company.com”);

?>
<html>

The reason why these statements fail is not easy to see, but if you look closely, you’ll notice a single
blank space before the opening PHP tag. This blank space is output to the browser, although the
resulting Web page looks empty. Therefore, the header statement fails because there is output
before it. This is a common mistake and difficult to spot.

15_096004 ch09.qxp 10/11/06 9:28 PM Page 258

In spite of its limitation, the header function can be useful. You can have as
many PHP statements as you want before the header function as long as
they don’t send output. Therefore, the following statements will work:

<?php
if ($customer_age < 13)
{

header(“Location: ToyCatalog.php”);
}
else
{

header(“Location: ElectronicsCatalog.php”);
}

?>

These statements run a program that displays a toy catalog if the customer’s
age is less than 13 but run a program that displays an electronics catalog if
the customer’s age is 13 or older.

Moving Information from Page to Page
HTML pages are independent from one another. When a user clicks a link,
the Web server sends a new page to the user’s browser, but the Web server
doesn’t know anything about the previous page. For static HTML pages, this
process works fine. However, many dynamic applications need information to
pass from page to page. For instance, you might want to store a user’s name
and refer to that person by name on another Web page.

Dynamic Web applications often consist of many pages and expect the user
to view several different pages. The period beginning when a user views the
first page and ending when a user leaves the Web site is a session. Often you
want information to be available for a complete session. The following are
examples of sessions that necessitate sharing information among pages:

� Restricting access to a Web site: Suppose that your Web site is restricted
and users log in with a password to access the site. You don’t want users
to have to log in on every page. You want them to log in once and then
be able to see all the pages that they want. You want users to bring infor-
mation with them to each page showing that they have logged in and are
authorized to view the page.

� Providing Web pages based on the browser: Because browsers inter-
pret some HTML features differently, you might want to provide different
versions of your Web pages for different browsers. You want to check
the user’s browser when the user views the first page and then deliver
all the other pages based on the user’s browser type and version.

259Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 259

With PHP, you can move information from page to page by using any of the
following methods:

� Adding information to the URL: You can add certain information to the
end of the URL of the new page, and PHP will put the information into
built-in arrays that you can use in the new page. This method is most
appropriate when you need to pass only a small amount of information.

� Storing information via cookies: You can store cookies — small
amounts of information containing variable=value pairs — on the
user’s computer. After the cookie is stored, you can get it from any
Web page. However, users can refuse to accept cookies. Therefore, this
method works only in environments where you know for sure that the
user will have cookies turned on.

� Passing information using HTML forms: You can pass information to
a specific program by using a form tag. When the user clicks the
submit button, the information in the form is sent to the next program.
This method is useful when you need to collect information from users.

� Using PHP session functions: Beginning with PHP 4, PHP functions are
available that set up a user session and store session information on the
server; this information can be accessed from any Web page. This method
is useful when you expect users to view many pages in a session.

Adding information to the URL
A simple way to move information from one page to the next is to add the
information to the URL. Put the information in the following format:

variable=value

The variable is a variable name, but do not use a dollar sign ($) in it. The
value is the value to be stored in the variable. You can add the variable=
value pair anywhere that you use a URL. You signal the start of the informa-
tion with a question mark (?). The following statements are all valid ways of
passing information in the URL:

<form action=”nextpage.php?state=CA” method=”POST”>

go to next page

header(“Location: nextpage.php?state=CA”);

260 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 260

You can add several variable=value pairs, separating them with amper-
sands (&) as follows:

<form action=”next.php?state=CA&city=home” method=”POST”>

Here are two reasons why you might not want to pass information in
the URL:

� Security: The URL is shown in the address line of the browser, which
means that the information that you attach to the URL is also shown.
If the information needs to be secure, you don’t want it shown so
publicly. For example, if you’re moving a password from one page
to the next, you probably don’t want to pass it in the URL. Also, the
URL can be bookmarked by the user. There may be reasons why
you don’t want your users to save the information that you add to
the URL.

� Length of the string: There is a limit on the length of the URL. The limit
differs for various browsers and browser versions, but there is always a
limit. Therefore, if you’re passing a lot of information, there may not be
room for it in the URL.

Adding information to the URL is useful for quick, simple data transfer. For
instance, suppose that you want to provide a Web page where users can
update their phone numbers. You want the form to behave as follows:

1. When the user first displays the form, the phone number from the data-
base is shown in the form so that the user can see what number is cur-
rently stored in the database.

2. When the user submits the form, the program checks the phone number
to see whether the field is blank or whether the field is in a format that
could not possibly be a phone number.

3. If the phone number checks out okay, it is stored in the database.

4. If the phone number is blank or has bad data, the program redisplays
the form. However, this time you don’t want to show the data from the
database. Instead, you want to show the bad data that the user typed
and submitted in the form field.

The changePhone.php program in Listing 9-1 shows how to use the URL to
determine whether this is the first showing of the form or a later showing.
The program displays the phone number for the user’s login name and allows
the user to change the phone number.

261Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 261

Listing 9-1: Displaying a Phone Number in a Form
<?php
/* Program name: changePhone.php
* Description: Displays a phone number retrieved from the database
* and allows the user to change the phone number.
*/
?>
<html>
<head><title>Change phone number</title></head>
<body>
<?php
$host=”localhost”;
$user=”admin”;
$password=””;
$database=”MemberDirectory”;
$loginName = “gsmith”; // passed from previous page
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“couldn’t connect to server”);

if (@$_GET[‘first’] == “no”) #19
{
$phone = trim($_POST[‘phone’]);
if (!ereg(“^[0-9)(-]{7,20}$”,$phone) or $phone == “”) #22
{

echo “<h3 style=’text-align: center’>
Phone number does not appear to be valid.</h3>”;

display_form($loginName,$phone); #26
}
else // phone number is okay #28
{

$query = “UPDATE Member SET phone=’$phone’
WHERE loginName=’$loginName’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

echo “<h3>Phone number has been updated.</h3>”;
exit();

}
}
else // first time form is displayed #38
{
$query = “SELECT phone FROM Member WHERE loginName=’$loginName’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$row = mysqli_fetch_row($result);
$phone = $row[0];
display_form($loginName,$phone); #45

}

262 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 262

function display_form($loginName,$phone) #48
{
echo “<div style=’text-align: center’>”;
echo “<form action=’changePhone.php?first=no’ method=’POST’>

<h4>Please check the phone number
below and correct it if necessary.</h4><hr />

<p>$loginName <input type=’text’ name=’phone’
maxlength=’20’ value=’$phone’></p>

<p><input type=’submit’ value=’Submit phone number’></p>
</form>”;

echo “</div>”;
}
?>
</body></html>

Notice the following key points about this program:

� The same program displays and processes the form. The name of this
program is changePhone.php. The form tag on line 51 includes
action=changePhone.php, meaning that when the user clicks the
submit button, the same program runs again.

� Information is added to the URL. The form tag on line 51 includes
action=changePhone.php?first=no. When the user clicks the
submit button and changePhone.php runs the second time, a variable
$first is passed with the value “no”.

� The value that was passed for first in the built-in $_GET array is
checked at the beginning of the program on line 19. This checks
whether this is the first time the program has run.

� If $_GET[first] equals “no”, the phone number is checked. $_GET
[first] equals no only if the form is being submitted. $_GET[first]
does not equal no if this is the first time through the program.

• If the phone number is not okay, an error message is printed and
the form is redisplayed. This block of code starts on line 22.

• If the phone number is okay, it is stored in the database and the
program ends. This block of code starts on line 28.

� If $_GET[first] does not equal “no”, the phone number is retrieved
from the database. In other words, if $_GET[first] doesn’t equal no,
it is the first time that the program has run. The program should get the
phone number from the database. This block of code starts on line 38.

� The program includes a function that displays the form. The function
is defined beginning on line 48. Whenever the form needs to be displayed,
the function is called (lines 26 and 45).

263Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 263

The form displayed by the program in Listing 9-1 is shown in Figure 9-1. This
shows what the Web page looks like the first time it’s displayed. The URL in
the browser address field doesn’t have any added information.

Figure 9-2 shows the results when a user types a nonsense phone number in
the form in Figure 9-1 and clicks the submit button. Notice that the URL in the
browser address field now has ?first=no added to the end of it.

Storing information via cookies
You can store information as cookies. Cookies are small amounts of informa-
tion containing variable=value pairs, similar to the pairs that you can add
to a URL. The user’s browser stores cookies on the user’s computer. Your appli-
cation can then get the cookie from any Web page. Why these are called cook-
ies is one of life’s great mysteries. Perhaps they’re called cookies because
they seem at first glance to be a wonderful thing, but on closer examination,
you realize that they aren’t that good for you. For some people in some situa-
tions, cookies are not helpful at all.

Figure 9-2:
HTML form

when a user
submits a
nonsense

phone
number.

Figure 9-1:
HTML form
to update a

phone
number.

264 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 264

At first glance, cookies seem to solve the entire problem of moving data from
page to page. Just stash a cookie on the user’s computer and get it whenever
you need it. In fact, the cookie can be stored so that it remains there after the
user leaves your site and will still be available when the user enters your Web
site again a month later. Problem solved! Well, not exactly. Cookies are not
under your control: They’re under the user’s control. The user can at any
time delete the cookie. In fact, users can set their browsers to refuse to allow
any cookies. And many users do refuse cookies or routinely delete them.
Many users aren’t comfortable with the whole idea of a stranger storing
things on their computers, especially files that remain after they leave the
stranger’s Web site. It’s an understandable attitude. However, it definitely
limits the usefulness of cookies. If your application depends on cookies and
the user has turned off cookies, your application won’t work for that user.

Cookies were originally designed for storing small amounts of information for
short periods of time. Unless you specifically set the cookie to last a longer
period of time, the cookie will disappear when the user closes his or her
browser. Although cookies are useful in some situations, you’re unlikely to
need them for your Web database application for the following reasons:

� Users may set their browsers to refuse cookies. Unless you know for
sure that all your users will have cookies turned on or you can request
that they turn on cookies (and expect them to follow your request),
cookies are a problem. If your application depends on cookies, it won’t
run if cookies are turned off.

� PHP has features that work better than cookies. Beginning with PHP 4,
PHP includes functions that create sessions and store information that’s
available for the entire session. The session feature is more reliable and
much easier to use than cookies for making information available to all
the Web pages in a session. Sessions don’t work for long-term storage of
information, but MySQL databases can be used for that.

� You can store data in your database. Your application includes a data-
base where you can store and retrieve data, which is usually a better
solution than a cookie. Users can’t delete the data in your database
unexpectedly. Because you’re using a database in this application, you
can use it for any data storage needed, especially long-term data stor-
age. Cookies are more useful for applications that don’t make use of a
database.

You store cookies by using the setcookie function. The general format is

setcookie(“variable”,”value”);

The variable is the variable name, but do not include the dollar sign ($).
This statement stores the information only until the user leaves your Web
site. For instance, the following statement

setcookie(“state”,”CA”);

265Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 265

stores CA in a cookie variable named state. After you set the cookie, the
information is available to your other PHP programs in the element of a built-
in array as $_COOKIE[state]. You don’t need to do anything to get the
information from the cookie. PHP does this automatically. The cookie is not
available in the program where it is set. The user must go to another page or
redisplay the current page before the cookie information can be used.

If you are using a version of PHP earlier than PHP 4.1, you must get the data
from the long array called $HTTP_COOKIE_VARS. However, long arrays are
no longer available in PHP 6. To run old scripts in PHP 6, you must change
the array name in your code from $HTTP_COOKIE_VARS to $_COOKIE.

If you want the information stored in a cookie to remain in a file on the user’s
computer after the user leaves your Web site, set your cookie with an expira-
tion time, as follows:

setcookie(“variable”,”value”,expiretime);

The expiretime value sets the time when the cookie will expire. expiretime
is usually set by using the time or mktime function, as follows:

� time: This function returns the current time in a format that the computer
can understand. You use the time function plus a number of seconds to
set the expiration time of the cookie, as follows:

setcookie(“state”,”CA”,time()+3600); //expires in 1 hour
setcookie(“Name”,$Name,time()+(3*86400)) // exp in 3 days

� mktime: This function returns a date and time in a format that the com-
puter can understand. You must provide the desired date and time in the
following order: hour, minute, second, month, day, and year. If any value
is not included, the current value is used. You use the mktime function
to set the expiration time of the cookie, as follows:

setcookie(“state”,”CA”,mktime(3,0,0,4,1,2003));
//expires at 3:00 AM on April 1, 2003.

setcookie(“state”,”CA”,mktime(12,0,0,,,));
//expires at noon today

You can remove a cookie by setting its value to nothing. Either of the follow-
ing statements removes the cookie:

setcookie(“name”);
setcookie(“name”,””);

The setcookie function has a major limitation. The setcookie function can
only be used before any other output is sent. You cannot set a cookie in the
middle of a program after you have echoed output to the Web page. See the
sidebar “Statements that must come before output” elsewhere in this chapter.

266 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 266

Passing information with HTML forms
The most common way to pass information from one page to another is with
HTML forms. An HTML form is displayed with a submit button. When the
user clicks the submit button, the information in the form fields is passed to
the program designated in the form tag. The general format is

<form action=”processform.php” method=”POST”>
tags for one or more fields
<input type=”submit” value=”string”>

</form>

The most common use of a form is to collect information from users (which I
discuss in detail in Chapter 8). However, forms can also be used to pass other
types of information using hidden fields — fields that are not displayed in the
form. In fact, you can create a form that has only hidden fields. You always
need a submit button, and the new page doesn’t display until the user clicks
the submit button, but you don’t need to include any fields for the user to
fill in.

For instance, the following statements pass the user’s preferred background
color to the next page when the user clicks a button named Next Page:

<?php
$color = “blue”; //passed to this program via a user

form
echo “<form action=’nextpage.php’ method=’POST’>

<input type=’hidden’ name=’color’ value=’$color’>
<input type=’submit’ value=’Next Page’>
</form>\n”;

?>

The Web page shows a submit button labeled Next Page, but it doesn’t ask
the user for any information. When the user clicks the button, nextpage.
php runs and can use the array element $_POST[color], which contains
“blue”.

Using PHP Sessions
A session is the time that a user spends at your Web site. Users can view
many Web pages between the time they enter your site and leave it. Often
you want information to follow the user around your site so that it’s available
on every page. PHP, beginning with version 4.0, provides a way to do this.

267Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 267

PHP enables you to set up a session on one Web page and save variables as
session variables. Then you open the session in any other page, and the ses-
sion variables are available for your use in the built-in array $_SESSION.
To do this, PHP does the following:

1. Assigns a session ID number. The number is a long, nonsense number that
is unique for the user and that no one could possibly guess. The session ID
is stored in a PHP system variable named PHPSESSID.

2. Stores session variables in a file on the server. The file is named with
the session ID number. The file is stored in \tmp on Unix and Linux; in
Windows, it’s stored in a directory called sessiondata under the direc-
tory where PHP is installed.

If you have access to edit php.ini, you can change the location where
the session files are stored by changing the setting for session.save_
path. Change the path to the location where you want to store the files.

3. Passes the session ID number to every page. If the user has cookies
turned on, PHP passes the session ID using cookies. If the user has
cookies turned off, PHP passes the session ID in the URL for links or
in a hidden variable for forms that use the post method.

4. Gets the variables from the session file for each new session page.
Whenever a user opens a new page that is part of the session, PHP gets
the variables from the file, using the session ID number that was passed
from the old page, and puts them into the built-in array $_SESSION.
You can use the array elements with the variable name as the key, and
they have the value that you assigned in the previous page.

Sessions do not work unless track_vars is enabled. As of PHP 4.0.3, track-
vars is always turned on. For versions before 4.0.3, the option --enable-
track-vars should be used when installing PHP.

If users have cookies turned off, sessions do not work unless trans-sid
is turned on. You find out how to turn trans-sid on and off later, in the
“Using PHP session variables” section.

Opening sessions
You should open a session on each Web page. Open the session with the
session_start function, as follows:

session_start();

The function first checks for an existing session ID number. If it finds one, it
sets up the $_SESSION array. If it doesn’t find one, it starts a new session by
creating a new session ID number.

268 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 268

Because sessions use cookies if the user has them turned on, session_start
is subject to the same limitation as cookies. That is, the session_start
function must be called before any output is sent. For complete details, see
the sidebar “Statements that must come before output,” elsewhere in this
chapter.

Using PHP session variables
When you want to save a variable as a session variable — that is, available to
other Web pages that the user might visit — save it in the $_SESSION array
as follows:

$_SESSION[‘variablename’] = value;

The value is then available in $_SESSION on other Web pages. For example,
you can store the state where the user lives with the following statement:

$_SESSION[‘state’] = “CA”;

You can then use $_SESSION[‘state’] in any other Web page, and it will
have the value CA.

The following two programs show how to use sessions to pass information
from one page to the next. The first program, sessionTest1.php in Listing
9-2, shows the first page where the session begins. Listing 9-3 shows the pro-
gram sessionTest2.php for the second page in a session.

Listing 9-2: Starting a Session

<?php
session_start();

?>
<html>
<head><title>Testing Sessions page 1</title></head>
<body>
<?php
$_SESSION[‘session_var’] = “testing”;
echo “This is a test of the sessions feature.

<form action=’sessionTest2.php’ method=’POST’>
<input type=’hidden’ name=’form_var’

value=’testing’>
<input type=’submit’ value=’go to next page’>
</form>”;

?>
</body></html>

269Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 269

Note that this program sets two variables to be passed to the second page.
The session variable session_var is created. In addition, a form is displayed
with a hidden variable form_var, which is also passed to the second page
when the submit button is pressed. Both variables are set to “testing”.

Listing 9-3: The Second Page of a Session

<?php
session_start();

?>
<html>
<head><title>Testing Sessions page 2</title></head>
<body>
<?php
echo “session_var = {$_SESSION[‘session_var’]}
\n”;
echo “form_var = {$_POST[‘form_var’]}
\n”;

?>
</body></html>

Point your browser at sessionTest1.php and then click the submit
button that reads Go to Next Page. You will then see the following output
from sessionTest2.php:

session_var = testing
form_var = testing

Because sessions work differently for users with cookies turned on and for
users with cookies turned off, you should test the two programs in both
conditions. To turn off cookies in your browser, you change the settings for
options or preferences.

To disable cookies in Internet Explorer, follow these steps:

1. Choose Tools➪Internet Options.

2. Click the Security tab in IE 5.5 or the Privacy tab in IE 6.

3. Move the slider to the higher level, which says “Block All Cookies,”
and then click OK.

To disable cookies in Firefox, follow these steps:

1. Choose Tools➪Options.

2. Click the Cookies tab.

3. Deselect the Allow Sites to Set Cookies option, and then click OK.

270 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 270

If the output from sessionTest2 shows a blank value for $session_var
when you turn off cookies in your browser, trans-sid is probably not turned
on. You can turn on trans-sid in your php.ini file. Find the following line:

session.use_trans_sid = 0

Change the 0 to 1 to turn on trans-sid. If you can’t get this problem fixed,
you can still use sessions, but you must pass the session ID number in your
programming statements; PHP won’t pass the session ID number automati-
cally when cookies are turned off. For details on how to use sessions when
trans-sid is not turned on, check out the next section.

For PHP 4.1.2 or earlier, trans-sid is not available unless it was enabled by
using the option --enable-trans-sid when PHP was compiled.

Sessions without cookies
Many users turn off cookies in their browsers. PHP checks the user’s browser
to see whether cookies are allowed and behaves accordingly. If the user’s
browser allows cookies, PHP does the following:

� Sets the variable $PHPSESSID equal to the session ID number

� Uses cookies to move $PHPSESSID from one page to the next

If the user’s browser is set to refuse cookies, PHP does the following:

� Sets a constant called SID. The constant contains a variable=value
pair that looks like PHPSESSID=longstringofnumbers.

� Might or might not move the session ID number from one page to the
next, depending on whether trans-sid is turned on. If it is turned on,
PHP passes the session ID number; if it is not turned on, PHP does not
pass the session ID number.

Turning on trans-sid has advantages and disadvantages. The advantages
are that sessions work seamlessly even when users turn off cookies and it’s
much easier to program sessions. The disadvantage is that the session ID
number is often passed in the URL. In some situations, the session ID number
should not be shown in the browser address. Also, when the session ID
number is in the URL, it can be bookmarked by the user. Then, if the user
returns to your site by using the bookmark with the session ID number in it,
the new session ID number from the current visit can get confused with the
old session ID number from the previous visit and possibly cause problems.

271Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 271

Sessions with trans-sid turned on
When trans-sid is turned on and the user has cookies turned off, PHP auto-
matically sends the session ID number in the URL or as a hidden form field. If
the user moves to the next page by using a link, a header function, or a form
with the get method, the session ID number is added to the URL. If the user
moves to the next page by using a form with the post method, the session ID
number is passed in a hidden field. PHP recognizes $PHPSESSID as the ses-
sion ID number and handles the session without any special programming on
your part.

The session ID number is added only to the URLs for pages on your own Web
site. If the URL of the next page includes a server name, PHP assumes that
the URL is on another Web site and doesn’t add the session ID number.
For instance, here are two link statements:

PHP adds the session ID number to the first link, but not to the second link.

Sessions without trans-sid turned on
When trans-sid is not turned on, PHP does not send the session ID number
to the next page when users have cookies turned off. Rather, you must send
the session ID number yourself.

Fortunately, PHP provides a constant that you can use to send the session ID
yourself. A constant is a variable that contains information that can’t be
changed. (Constants are described in Chapter 6.) The constant that PHP pro-
vides is named SID and contains a variable=value pair that you can add
to the URL, as follows:

<a href=”nextpage.php?<?php echo SID?>” > next page

This link statement adds a question mark (?) and the constant SID to the
URL. SID contains the session ID number formatted as variable=value.
Therefore, the URL that is sent is

next page

For one of several reasons (which I discuss in the section “Adding information
to the URL,” earlier in this chapter), you may not want the session ID number to
appear in the URL shown by the browser. To prevent that, you can send the
session ID number in a hidden field in a form that uses the post method.
First, get the session ID number; then send it in a hidden field. The statements
to do this are

272 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 272

<?php
$PHPSESSID = session_id();
echo “<form action=’nextpage.php’ method=’POST’>

<input type=’hidden’ name=’PHPSESSID’
value=’$PHPSESSID’>

<input type=’submit’ value=’Next Page’>
</form>”;

?>

These statements do the following:

1. Store the session ID number in a variable called $PHPSESSID. Use the
function session_id, which returns the current session ID number.

2. Send $PHPSESSID in a hidden form field.

On the new page, PHP automatically uses $PHPSESSID to get any session
variables without any special programming needed from you.

Making sessions private
PHP session functions are ideal for restricted Web sites that require users to
log in with a login name and password. Those Web sites undoubtedly have
many pages, and you don’t want the user to have to log in to each page. PHP
sessions can keep track of whether the user has logged in and refuse access
to users that aren’t logged in. You can use PHP sessions to do the following:

1. Show users a login page.

2. If a user logs in successfully, set and store a session variable.

3. Whenever a user goes to a new page, check the session variable to
see whether the user has logged in.

4. If the user has logged in, show the page.

5. If the user has not logged in, bring up the login page.

To check whether a user has logged in, add the following statements to the
top of every page:

<?php
session_start()
if (@$_SESSION[‘login’] != “yes”)
{
header(“Location: loginPage.php”);
exit();

}
?>

273Chapter 9: Moving Information from One Web Page to the Next

15_096004 ch09.qxp 10/11/06 9:28 PM Page 273

In these statements, $_SESSION[login] is a session variable that’s set to
“yes” when the user logs in. The statements check whether $_SESSION
[login] is equal to “yes”. If it is not, the user is not logged in and is sent to
the login page. If $_SESSION[login] equals “yes”, the program proceeds
with the rest of the statements on the Web page.

Closing PHP sessions
For restricted sessions that users log into, you often want users to log out
when they’re finished. To close a session, use the following statement:

session_destroy();

This statement gets rid of all the session variable information stored in the
session file. PHP no longer passes the session ID number to the next page.
However, the statement does not affect the variables currently set on the
current page: They still equal the same values. If you want to remove the
variables from the current page — as well as prevent them from being passed
to the next page — unset them with this statement:

unset($_SESSION);

274 Part III: PHP

15_096004 ch09.qxp 10/11/06 9:28 PM Page 274

Part IV
Applications

16_096004 pt04.qxp 10/11/06 9:21 PM Page 275

In this part . . .

In this part, you find out how to take the planning and
getting started information from Part I, the MySQL

information from Part II, and the PHP information from
Part III and put it all together into a dynamic Web data-
base application. Chapters 11 and 12 present two sample
applications, complete with their databases and all their
PHP programs.

16_096004 pt04.qxp 10/11/06 9:21 PM Page 276

Chapter 10

Putting It All Together
In This Chapter
� Organizing your whole application

� Organizing individual programs

� Making your application secure

� Documenting your application

The previous chapters provide you with the tools you need to build your
Web database application. In Part I, you find out how PHP and MySQL

work and how to get access to them. In addition, you discover what you need
to do to build your application and in what order. In Part II, you find out how
to build and use a MySQL database. In Part III, you discover what features
PHP has and how to use them. In addition, this part also explains how to
show information in a Web page, collect information from users, and store
information in a database. Now here, in the first chapter in Part IV, you’re
ready to put all the pieces together into a complete application. To do this,
you need to

� Organize the application

� Make sure that the application is secure

� Document the application

I describe each of these steps in detail.

Organizing the Application
Organizing the application is for your benefit. As far as PHP is concerned, the
application could be 8 million PHP statements all on one line of one computer
file. PHP doesn’t care about lines, indents, or files. However, humans write

17_096004 ch10.qxp 10/11/06 9:28 PM Page 277

and maintain the programs for the application, and humans need organiza-
tion. Applications require two levels of organization:

� The application level: Most applications need more than one program
to deliver complete functionality. You must divide the functions of the
application into an organized set of programs.

� The program level: Most programs perform more than one specific task.
You must divide the tasks of the program into sections within the program.

Organizing at the application level
In general, Web database applications consist of one program per Web page.
For instance, you might have a program that provides a form to collect infor-
mation and a program that stores the information in a database and tells the
user that the data has been stored.

Another basis for organization is one program per major task. For instance,
you might have a program to present the form and a program that stores the
data in a database. For Web applications, most major tasks involve sending a
Web page. Collecting data from the user requires a Web page for the HTML
form; providing product information to customers requires Web pages; and
when you store data in a database, you usually want to send a confirmation
page to the user that the data was stored.

One program per Web page or one program per major task is not a rule but
merely a guideline. The only rule regarding organization is that it must be
clear and easy to understand. And that’s subjective. Still, the organization
of an application such as the Pet Catalog need not be overly complicated.
Suppose that the Pet Catalog design calls for the first page to list all the pet
types — such as cat, dog, and bird — that the user can select from. Then, after
the user selects a type, all the pets in the catalog for that type are shown on the
next Web page. A reasonable organization would be two programs: one to
show the page of pet types and one to show the pets based on the pet type
that was chosen.

Here are a few additional pointers for organizing your programs:

� Choose descriptive names for the programs in your application.
Program names are part of the documentation that makes your appli-
cation understandable. For instance, useful names for the Pet Catalog
programs might be ShowPetTypes.php and ShowPets.php. It’s usual,
but not a requirement, to begin program names with an uppercase letter.
Case isn’t important for program names on Windows computers, but it’s
important on Unix and Linux computers. Pay attention to the uppercase
and lowercase letters so that your programs can run on any computer if
needed.

278 Part IV: Applications

17_096004 ch10.qxp 10/11/06 9:28 PM Page 278

� Put program files into subdirectories with meaningful names. For
instance, put all the graphic files into a directory called images. If you
have only three files, you may be okay with only one directory, but look-
ing through dozens of files for a specific file can waste a lot of time.

Organizing at the program level
A well-organized individual program is important for the following reasons:

� It’s easier for you to write. The better organized your program is, the
easier it is for you to read and understand it. You can see what the pro-
gram is doing and find and correct problems faster.

� It’s easier for others to understand. Others may need to understand
your program. After you claim that big inheritance and head off to the
South Sea Island that you purchased, someone else will have to maintain
your application.

� It’s easier for you to maintain. No matter how thoroughly you test your
application, it’s likely to have a problem or two. The better organized
your program is, the easier it is for you to find and correct problems,
especially later.

� It’s easier to change. At some point, you or someone else will need to
change the program. The needs of the user may change. The needs of
the business may change. The technology may change. The ozone layer
may change. Figuring out what the program does and how it does it so that
you can change it is much easier if it is well organized. I guarantee that you
won’t remember the details; you just need to be able to understand the
program.

The following rules will produce well-organized programs. I hesitate to call
them rules because there can be reasons in a specific environment to break
one or more of them — but I strongly recommend that you think carefully
before doing so.

� Divide the statements into sections for each specific task. Start each
section with a comment describing what the section does. Separate sec-
tions from each other by adding blank lines. For instance, for the Pet
Catalog, the first program might have three sections for three tasks:

1. Echo introductory text, such as the page heading and instruc-
tions. The comment before the section might be /* opening
text */. If the program echoes a lot of complicated text and
graphics, you might make it into more than one section, such as
/* title and logo */ and /* instructions */.

279Chapter 10: Putting It All Together

17_096004 ch10.qxp 10/11/06 9:28 PM Page 279

2. Get a list of pet types from the database. If this section is long and
complicated, you can divide it into smaller sections, such as a)
connect to database; b) execute SELECT query; and c) put data
into variables.

3. Create a form that displays a selection list of the pet types. Forms
are often long and complicated. It can be useful to have a section
for each part of the form.

� Use indents. Indent blocks in the PHP statements. For instance, indent
if blocks and while blocks as I did in the sample code for this book.
If blocks are nested inside other blocks, indent the nested block even
further. It’s much easier to see where blocks begin and end when they’re
indented, which in turn makes it easier to understand what the program
does. Indenting the HTML statements can also be helpful. For instance,
if you indent the lines between the open and close tags for a form or
between the <table> and </table> tags, you can more easily see what
the statements are doing.

� Use comments liberally. Definitely add comments at the beginning that
explain what the program does. And add comments for each section.
Also, comment any statements that aren’t obvious or where you may
have done something in an unusual way. If it took you a while to figure
out how to do it, it’s probably worth commenting. Don’t forget short
comments on the end of lines; sometimes just a word or two can help.

� Use simple statements. Sometimes programmers get carried away with
the idea of concise code to the detriment of readability. Nesting six func-
tion calls inside each other may save some lines and keystrokes, but it
also makes the program more difficult to read.

� Reuse blocks of statements. If you find yourself typing the same ten
lines of PHP statements in several places in the program, you can move
that block of statements into another file and call it when you need it.
One line in your program that reads getData() is much easier to read
than ten lines that get the data. Not only that, if you need to change some-
thing within those lines, you can change it in one external file instead of
having to find and change it a dozen different places in your program.
You can reuse statements in two ways: functions and include state-
ments. Chapter 7 explains how to write and use functions. The following
two sections explain the use of functions and include statements in
program organization.

� Use constants. If your program uses the same value many times, such as
the sales tax for your state, you can define a constant in the beginning
of the program that creates a constant called CA_SALES_TAX that is .97
and use it whenever it’s needed. Defining a constant that gives the number
a name helps anyone reading the program understand what the number
is — plus, if you ever need to change it, you have to change it in only
one place. Constants are described in detail in Chapter 6.

280 Part IV: Applications

17_096004 ch10.qxp 10/11/06 9:28 PM Page 280

Using include statements
PHP allows you to put statements into an external file — that is, a file separate
from your program — and insert the file wherever you want in the program
by using an include statement. include files are useful for storing a block
of statements that is repeated. You add an include statement wherever you
want to use the statements instead of adding the entire block of statements
at several locations. It makes your program shorter and easier to read.
The format for an include statement is

include(“filename”);

The file can have any name. I like to use the extension .inc. The statements
in the file are included, as-is, at the point where the include statement is
used. The statements are included as HTML, not PHP. Therefore, if you want
to use PHP statements in your include file, you must include PHP tags in the
include file. Otherwise, all the statements in the include file are seen as
HTML and output to the Web page as-is.

Here are some ways to use include files to organize your programs:

� Put all or most of your HTML into include files. For instance, if your
program sends a form to the browser, put the HTML for the form into an
external file. When you need to send the form, use an include statement.
Putting the HTML into an include file is a good idea if the form is shown
several times. It is even a good idea if the form is shown only once
because it makes your program much easier to read. The programs in
Chapters 11 and 12 put HTML code for forms into separate files and
include the files when the forms are displayed.

� Store the information needed to access the database in a file separate
from your program. Store the variable names in the file as follows:

<?php
$host=”localhost”;
$user=”phpuser”;
$password=”secret”;
?>

Notice that this file needs the php tags in it because the include
statement inserts the file as HTML. Include this file at the top of every
program that needs to connect to the database. If any of the information
(such as the password) changes, just change the password in the
include file. You don’t need to search through every program file to
change the password. For a little added security, use a misleading file-
name, rather than something obvious like secret_passwords.inc.

281Chapter 10: Putting It All Together

17_096004 ch10.qxp 10/11/06 9:28 PM Page 281

� Put your functions in include files. You don’t need the statements for
functions in the program; you can put them in an include file. If you
have a lot of functions, organize related functions into several include
files, such as data_functions.inc and form_functions.inc.
Use include statements at the top of your programs, reading in the
functions that are used in the program.

� Store statements that all the files on your Web site have in common.
Most Web sites have many Web pages with many elements in common.
For instance, all Web pages start with <html>, <head>, and <body>
tags. If you store the common statements in an include file, you can
include them in every Web page, ensuring that all your pages look
alike. For instance, you might have the following statements in an
include file:

<html>
<head><title><?php echo $title ?></title></head>
<body topmargin=”0”>
<p style=”text-align: center”>

<hr color=”red” />

If you include this file at the top of every program on your Web site, you
save a lot of typing, and you know that all your pages match. In addition,
if you want to change anything about the look of all your pages, you only
have to change it in one place — in the include file.

PHP provides a related statement — the include_once statement. If the
specified file has already been included in a previous statement, the file is
not included again. The format is as follows:

include_once(“filename”);

This statement prevents include files with similar variables from overwriting
each other. Use include_once when you include your functions.

You can use a variable name for the filename as follows:

include(“$filename”);

For example, you might want to display different messages on different days.
You might store these messages in files that are named for the day on which
the message should appear. For instance, you could have a file named
Sun.inc with the following content

<p>Go ahead. Sleep in. No work today.</p>

282 Part IV: Applications

17_096004 ch10.qxp 10/11/06 9:28 PM Page 282

and similar files for all days of the week. The following statements can be
used to display the correct message for the current day:

$today = date(“D”);
include(“$today”.”.inc”);

After the first statement, $today contains the day of the week, in abbreviation
form. The date statement is discussed in Chapter 6. The second statement
includes the correct file, using the day stored in $today. If $today contains
Sun, the statement includes a file called Sun.inc.

Protecting your include files is important. The best way to protect them is
to store them in a directory outside your Web space so they can’t be accessed
by visitors to your Web site.

You can set up an include directory where PHP looks for any files specified
in an include statement. If you are the PHP administrator, you can set up an
include directory in the php.ini file (the PHP configuration file in your
system directory, as I describe in Appendix B). Find the setting for include_
path and change it to the path to your preferred directory. If a semicolon
appears at the beginning of the line, before include_path, remove it.
The following are examples of include_path settings in the php.ini file:

include_path=”.;d:\include”; # for Windows

include_path=”.:/user/include”; # for Unix/Linux/Mac

Both statements specify two directories where PHP looks for include files.
The first directory is . (dot) (meaning the current directory), followed by the
second directory path. You can specify as many include directories as you
want, and PHP will search them for the include file in the order in which
they are listed. The directory paths are separated by a semicolon for Windows
and a colon for Unix and Linux.

If you don’t have access to php.ini, you can set the path in each individual
script by using the following statement:

ini_set(“include_path”,”d:\hidden”);

This statement sets the include_path to the specified directory only while
the program is running. It doesn’t set the directory for your entire Web site.

To access a file from an include directory, just use the filename, as follows.
You don’t need to use the full path name.

include(“secretpasswords.inc”);

283Chapter 10: Putting It All Together

17_096004 ch10.qxp 10/11/06 9:28 PM Page 283

If your include file is not in an include directory, you may need to use the
entire path name in the include statement. If the file is in the same direc-
tory as the program, the filename alone is sufficient. However, if the file is
located in another directory, such as a subdirectory of the directory that the
program is in or a hidden directory outside the Web space, you need to use
the full path name to the file, as follows:

include(“d:/hidden/secretpasswords.inc”);

Using functions
Make frequent use of functions to organize your programs. (In Chapter 7, I
discuss creating and using functions.) Functions are useful when your pro-
gram needs to perform the same task at repeated locations in a program or in
different programs in the application. After you write a function that does the
task and you know it works, you can use it anywhere that you need it.

Look for opportunities to use functions. Your program is much easier to read
and understand with a line like this:

getMemberData();

than with 20 lines of statements that actually get the data. In fact, after you’ve
been writing PHP programs for a while, you will have a stash of functions that
you’ve written for various programs. Very often the program that you’re writing
can use a function that you wrote for an application two jobs ago. For instance,
I often have a need for a list of the states. Rather than include a list of all
50 states every time I need it, I have a function called getStateNames()
that returns an array that holds the 50 state names in alphabetical order and
a function called getStateCodes() that returns an array with all 50 two-
letter state codes in the same order.

Use descriptive function names. The function calls in your program should
tell you exactly what the functions do. Long names are okay. You don’t want
to see a line in your program that reads

function1();

Even a line like the following is less informative than it could be:

getData();

You want to see a line like this:

getAllMemberNames();

284 Part IV: Applications

17_096004 ch10.qxp 10/11/06 9:28 PM Page 284

Keeping It Private
You need to protect your Web database application. People out there may
have nefarious designs on your Web site for purposes such as

� Stealing stuff: They hope to find a file sitting around full of valid credit
card numbers or the secret formula for eternal youth.

� Trashing your Web site: Some people think this is funny. Some people
do it to prove that they can.

� Harming your users: A malicious person can add things to your Web
site that harm or steal from the people who visit your site.

This is not a security book. Security is a large, complex issue, and I am not a
security expert. Nevertheless, I want to call a few issues to your attention and
make some suggestions. The following measures will increase the security of
your Web site, but if your site handles important, secret information, read
some security books and talk to some experts:

� Ensure the security of the computer that hosts your Web site. This is
probably not your responsibility, but you may want to talk to the people
responsible and discuss your security concerns. You’ll feel better if you
know that someone is worrying about security.

� Don’t let the Web server display filenames. Users don’t need to know
the names of the files on your Web site.

� Hide things. Store your information so that it can’t be easily accessed
from the Web.

� Don’t trust information from users. Always clean any information that
you didn’t generate yourself.

� Use a secure Web server. This requires extra work, but it’s important if
you have top-secret information.

Ensure the security of the computer
First, the computer itself must be secure. The system administrator of the
computer is responsible for keeping unauthorized visitors and vandals out of
the system. Security measures include such things as firewalls, encryption,
password shadowing, and scan detectors. In most cases, the system admin-
istrator is not you. If it is, you need to do some serious investigation into
security issues. If you are using a Web-hosting company, you may want to
discuss security with those folks to reassure yourself that they are using
sufficient security measures.

285Chapter 10: Putting It All Together

17_096004 ch10.qxp 10/11/06 9:28 PM Page 285

Don’t let the Web server display filenames
You may have noticed that sometimes you get a list of filenames when you
point at a URL. If you point at a directory (rather than a specific file) and the
directory doesn’t contain a file with the default filename (such as index.html),
the Web server may display a list of files for you to select from. You probably
don’t want your Web server to do this; your site won’t be very secure if a visi-
tor can look at any file on your site. On other Web sites, you may have seen
an error message that reads

Forbidden
You don’t have permission to access /secretdirectory on this server.

On those sites, the Web server is set so that it doesn’t display a list of filenames
when the URL points to a directory. Instead, it delivers this error message.
This is more secure than listing the filenames. If the filename is being sent
from your Web site, a setting for the Web server needs to be changed. If you
aren’t the administrator for your Web server, request a change. If you are the
administrator, it’s up to you to change this behavior. For instance, in Apache,
this behavior is controlled by an option called Indexes, which can be turned
on or off in the httpd.conf file as follows:

Options Indexes // turns it on
Options -Indexes // turns it off

See the documentation for your Web server to allow or not allow directory
listings in the user’s Web browser.

Hide things
Keep information as private as possible. Of course, the Web pages that you
want visitors to see must be stored in your public Web space directory.
But not everything needs to be stored there. For instance, you can store
include files in another location altogether — in space on the computer
that can’t be accessed from the Web. Your database certainly isn’t stored in
your Web space, but it might be even more secure if it was stored on a differ-
ent computer.

Another way to hide things is to give them misleading names. For instance, the
include file containing the database variables shouldn’t be called passwords.
inc. A better name might be UncleHenrysChickenSoupRecipe.inc.
I know this suggestion violates other sections of the book where I promote
informative filenames, but this is a special case. Malicious people sometimes
do obvious things like typing www.yoursite.com/passwords.html into
their browser to see what happens.

286 Part IV: Applications

17_096004 ch10.qxp 10/11/06 9:28 PM Page 286

Don’t trust information from users
Malicious users can use the forms in your Web pages to send dangerous text
to your Web site. Therefore, never store information from forms directly into
a database without checking, cleaning, and escaping it first. Check the infor-
mation that you receive for reasonable formats and dangerous characters.
In particular, you don’t want to accept HTML tags, such as <script> tags,
from forms. By using script tags, a user could enter an actual script — perhaps
a malicious one. If you accept the form field without checking it and store it
in your database, you could have any number of problems, particularly if the
stored script was sent in a Web page to a visitor to your Web site. For more
on checking, cleaning, and escaping data from forms, see Chapter 8.

Use a secure Web server
Communication between your Web site and its visitors is not totally secure.
When the files on your Web site are sent to the user’s browser, someone on
the Internet between you and the user can read the contents of these files as
they pass by. For most Web sites, this isn’t an issue; however, if your site col-
lects or sends credit card numbers or other secret information, use a secure
Web server to protect this data.

Secure Web servers use Security Sockets Layer (SSL) to protect communi-
cation sent to and received from browsers. This is similar to the scrambled
telephone calls that you hear about in spy movies. The information is
encrypted (translated into coded strings) before it is sent across the Web.
The receiving software decrypts it into its original content. In addition, your
Web site uses a certificate that verifies your identity. Using a secure Web
server is extra work, but it’s necessary for some applications.

You can tell when you are communicating using SSL. The URL begins with
HTTPS, rather than HTTP.

Information about secure Web servers is specific to the Web server that
you’re using. To find out more about using SSL, look at the Web site for
your Web server. For instance, if you are using Apache, check out two open
source projects that implement SSL for Apache at www.modssl.org and
www.apache-ssl.org. Commercial software is also available that provides
a secure server based on the Apache Web server. If you’re using Microsoft
Internet Information Server (IIS), search for SSL on the Microsoft Web site at
www.microsoft.com.

287Chapter 10: Putting It All Together

17_096004 ch10.qxp 10/11/06 9:28 PM Page 287

Completing Your Documentation
I’m making one last pitch here. Documenting your Web database application
is essential. You start with a plan describing what the application is supposed
to do. Based on your plan, you create a database design. Keep the plan and
the design up to date. Often, as a project moves along, changes are made.
Make sure that your documentation changes to match the new decisions.

While you design your programs, associate the tasks in the application plan
with the programs that you plan to write. List the programs and what each
one will do. If the programs are complicated, you may want to include a brief
description of how the program will perform its tasks. If this is a team effort,
list who is responsible for each program. When you complete your applica-
tion, you should have the following documents:

� Application plan: Describes what the application is supposed to do, list-
ing the tasks that it will perform

� Database design: Describes the tables and fields in the database

� Program design: Describes how the program(s) will perform the tasks in
the application plan

� Program comments: Describe the details of how the individual program
works

Pretend that it’s five years in the future and you’re about to do a major rewrite
of your application. What will you need to know about the application to
change it? Be sure that you include all the information that you need in your
documentation.

288 Part IV: Applications

17_096004 ch10.qxp 10/11/06 9:28 PM Page 288

Chapter 11

Building an Online Catalog
In This Chapter
� Designing an online catalog

� Building the database for the Pet Catalog

� Designing the Web pages for the Pet Catalog

� Writing the programs for the Pet Catalog

O nline catalogs are everywhere on the Web. Every business that has
products for sale can use an online catalog. Some businesses use online

catalogs to sell their products online, and some use them to show the quality
and worth of their products to the world. Many customers have come to
expect businesses to be online and provide information about their products.
Customers often begin their search for a product online, researching its avail-
ability and cost through the Web.

In this chapter, you find out how to build an online catalog. I chose a pet store
catalog for no particular reason except that it sounded like more fun than a cat-
alog of socks or light bulbs. And looking at the pictures for a pet catalog was
much more fun than looking at pictures of socks. I introduce the Pet Catalog
example in Chapter 3 and use it for many of the examples throughout this book.

In general, all catalogs do the same thing: provide product information to
potential customers. The general purpose of the catalog is to make it as easy
as possible for customers to see information about the products. In addition,
you want to make the products look as attractive as possible so that cus-
tomers will want to purchase them.

Designing the Application
The first step in design is to decide what the application should do. The obvi-
ous purpose of the Pet Catalog is to show potential customers information
about the pets. A pet store might also want to show information about pet

18_096004 ch11.qxp 10/11/06 9:28 PM Page 289

products, such as pet food, cages, fish tanks, and catnip toys . . . but you
decide not to include such items in your catalog. The purpose of your online
catalog application is to show just pets.

For the customer, displaying the information is the sole function of the catalog.
From your perspective, however, the catalog also needs to be maintained;
that is, you need to add items to the catalog. So, you must include the task of
adding items to the catalog as part of the catalog application. Thus, the appli-
cation has two distinct functions:

� Show pets to the customers

� Add pets to the catalog

Showing pets to the customers
The basic purpose of your online catalog is to let customers look at pets.
Customers can’t purchase pets online, of course. Sending pets through the
mail isn’t feasible. But a catalog can showcase pets in a way that motivates
customers to rush to the store to buy them.

If your catalog contains only three pets, your catalog can be pretty simple —
one page showing the three pets. However, most catalogs have many more
items than that. Usually, a catalog opens with a list of the types of products,
such as cat, dog, horse, and dragon. Customers select the type of pet they
want to see, and the catalog then displays the individual pets of that type.
For example, if the customer selects dog, the catalog would then show col-
lies, spaniels, and wolves. Some types of products might have more levels of
categories before you see individual products. For instance, furniture might
have three levels rather than two. The top level might be the room, such as
kitchen or bedroom. The second level might be type, such as chairs or tables.
The third level would be the individual products.

The purpose of a catalog is to motivate those who look at it to make a purchase
immediately. For the Pet Catalog, pictures are a major factor in motivating
customers to make a purchase. Pictures of pets make people go ooooh and
aaaah and say, “Isn’t he cuuuute!” This generates sales. The main purpose
of your Pet Catalog is to show pictures of pets. In addition, the catalog also
should show descriptions and prices.

To show the pets to customers, the Pet Catalog will do the following:

1. Show a list of the types of pets and allow the customer to select a type.

2. Show information about the pets that match the selected type. The infor-
mation includes the description, the price, and a picture of the pet.

290 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 290

Adding pets to the catalog
You can add items to your catalog in several ways, but the easiest way is to
use an application designed for the purpose. In many cases, you won’t be the
person who will be adding products to your catalog. One reason for adding
maintenance functionality to your catalog application is so someone else can
do those boring maintenance tasks. The easier it is to maintain your catalog,
the less likely that errors will sneak into it.

An application to add a pet to your catalog should do the following:

1. Prompt the user to enter a pet type for the pet. A selection list of possi-
ble pet types would eliminate many errors, such as alternate spellings
(dog and dogs) and misspellings. The application also needs to allow the
user to add new categories when needed.

2. Prompt the user to enter a name for the pet, such as collie or shark.
A selection list of names would help prevent mistakes. The application
also needs to allow the user to add new names when needed.

3. Prompt the user to enter the pet information for the new pet. The appli-
cation should clearly specify what information is needed.

4. Store the information in the catalog.

The catalog entry application can check the data for mistakes and enter the
data into the correct locations. The person entering the new pet doesn’t need
to know the inner workings of the catalog.

Building the Database
The catalog itself is a database. It doesn’t have to be a database; it’s possible
to store a catalog as a series of HTML files that contain the product informa-
tion in HTML tags and display the appropriate file when the customer clicks a
link. However, it makes my eyes cross to think of maintaining such a catalog.
Imagine the tedium of adding and removing catalog items manually — or
finding the right location for each item by searching through many files. Ugh.
For these reasons, putting your Pet Catalog in a database is better.

The PetCatalog database contains all the information about pets. It uses
three tables:

� Pet table

� PetType table

� Color table

291Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 291

The first step in building the Pet Catalog is to build the database. It’s pretty
much impossible to write programs without a working database to test
the programs on. First you design your database; then you build it; then
you add the data (or at least some sample data to use while developing the
programs).

Building the Pet table
In your design for the Pet Catalog, the main table is the Pet table. It contains
the information about the individual pets that you sell. The following SQL
query creates the Pet table:

CREATE TABLE Pet (
petID INT(5) SERIAL,
petName CHAR(25) NOT NULL,
petType CHAR(15) NOT NULL DEFAULT “Misc”,
petDescription VARCHAR(255),
price DECIMAL(9,2),
pix CHAR(15) NOT NULL DEFAULT “na.gif”,
PRIMARY KEY(petID));

Each row of the Pet table represents a pet. The columns are as follows:

� petID: A sequence number for the pet. In another catalog, this might
be a product number, a serial number, or a number used to order the
product. The petID column is the primary key, which must be unique.
MySQL will not allow two rows to be entered with the same petID.

The CREATE query defines the petID column as SERIAL (added in
MySQL 4.1). SERIAL is a keyword that defines the column in the follow-
ing ways:

• BIGINT: The data in the field is expected to be a numeric integer,
with a range up to 18446744073709551615. The database won’t
accept a character string in this field.

• UNSIGNED: The integer in the field can’t be a negative number.

• NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

• AUTO-INCREMENT: This definition means that the field will auto-
matically be filled with a sequential number if you don’t provide
a specific number. For example, if a row is added with 98 for a
petID, the next row will be added with 99 for the petID unless
you specify a different number. This is a useful way of specifying a
column with a unique number, such as a product number or an
order number. You can always override the automatic sequence
number with a number of your own, but if you don’t provide a
number, a sequential number is stored.

292 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 292

� petName: The name of the pet, such as lion, collie, or unicorn. The
CREATE query defines the petName column in the following ways:

• CHAR(25): The data in this field is expected to be a character
string that’s 25 characters long. If the stored string is less than
25 characters, the field will be padded so that it always takes
up 25 characters of storage.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. After all, it wouldn’t make much sense to
have a pet in the catalog without a name.

• No default value: If you try to add a new row to the Pet table with-
out a petName, it won’t be added. It doesn’t make sense to have a
default name for a pet.

� petType: The type of pet, such as dog or fish. The CREATE query
defines the petType column in the following ways:

• CHAR(15): The data in this field is expected to be a character
string that’s 15 characters long. If the stored string is less than
15 characters, the field will be padded so that it always takes
up 15 characters of storage.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. The online catalog application will show
categories first and then pets within a category, so a pet with
no category will never be shown on the Web page.

• DEFAULT “Misc”: The value “Misc” is stored if you don’t pro-
vide a value for petType. This ensures that a value is always
stored for petType.

� petDescription: A description of the pet. The CREATE query defines
petDescription in the following way:

• VARCHAR(255): This data type defines the field as a variable char-
acter string that can be up to 255 characters long. The field is
stored in its actual length.

� price: The price of the pet. The CREATE query defines price in the fol-
lowing way:

• DECIMAL(9,2): This data type defines the field as a decimal
number that can be up to nine digits and has two decimal places.
If you store an integer in this field, it will be returned with two deci-
mal places, such as 9.00 or 2568.00.

� pix: The filename of the picture of the pet. Pictures on a Web site are
stored in graphic files with names like dog.jpg, dragon.gif, or
cat.png. This field stores the filename for the picture that you want to
show for this pet. The CREATE query defines pix in the following ways:

• CHAR(15): The data in this field is expected to be a character
string that’s 15 characters long. For some applications, the picture
files might be in other directories or on other Web sites requiring a

293Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 293

longer field, but for this application, the pictures are all in a direc-
tory on the Web site and have short names. If the stored string is
less than 15 characters, the field will be padded so that it always
takes up 15 characters of storage.

• NOT NULL: This definition means that this field can’t be empty. It
must have a value. You need a picture for the pet. When a Web site
tries to show a picture that can’t be found, it displays an ugly error
message in the browser window where the graphic would go.
You don’t want your catalog to do that, so your database should
require a value. In this case, you define a default value so that a
value will always be placed in this field.

• DEFAULT “na.gif”: The value “na.gif” is stored if you don’t
provide a value for pix. In this way, a value is always stored for
pix. The na.gif file might be a graphic that reads something like:
“picture not available”.

Notice the following points about this database table design:

� Some fields are CHAR, and some are VARCHAR. CHAR fields are faster,
whereas VARCHAR fields are more efficient. Your decision on which to
use will depend on whether disk space or speed is more important for
your application in your environment.

In general, shorter fields should be CHAR because shorter fields don’t
waste much space. For instance, if your CHAR is 5 characters, the most
space that you could possibly waste is 4. However, if your CHAR is 200,
you could waste 199. Therefore, for short fields, use CHAR for speed with
very little wasted space.

� The petID field means different things for different pets. The petID
field assigns a unique number to each pet. However, a unique number is
not necessarily meaningful in all cases. For example, a unique number is
meaningful for an individual kitten but not for an individual goldfish.

There are really two kinds of pets. One is the unique pet, such as a
puppy or a kitten. After all, the customer buys a specific dog — not just a
generic dog. The customer needs to see the picture of the actual animal.
On the other hand, some pets are not especially unique, such as a gold-
fish or a parakeet. When customers purchase a goldfish, they see a tank
full of goldfish and point at one. The only real distinguishing characteris-
tic of a goldfish is its color. The customer just needs to see a picture of a
generic goldfish, perhaps showing the possible colors — not a picture of
the individual fish.

In your catalog, you have both kinds of pets. The catalog might contain
several pets with the name cat but with different petIDs. The picture
would show the individual pet. The catalog also contains pets that aren’t
individuals but that represent generic pets, such as goldfish. In this
case, there’s only one entry with the name goldfish, with a single petID.

294 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 294

I’ve used both kinds of pets in this catalog to demonstrate the different
kinds of products that you might want to include in a catalog. The unique
item catalog might include such products as artwork or vanity license
plates. When the unique item is sold, it’s removed from the catalog. Most
products are more generic, such as clothing or automobiles. Although a
picture shows a particular shirt, many identical shirts are available. You
can sell the shirt many times without having to remove it from the catalog.

Building the PetType table
You assign each pet a type, such as dog or dragon. The first Web page of the
catalog lists the types for the customer to select from. A description of each
type is also helpful. You don’t want to put the type description in the main
Pet table because the description would be the same for all pets with the
same category. Repeating information in a table violates good database design.

The PetCatalog database includes a table called PetType that holds the
type descriptions. The following SQL query creates the PetType table:

CREATE TABLE PetType (
petType CHAR(15) NOT NULL,
typeDescription VARCHAR(255),
PRIMARY KEY(petType));

Each row of this table represents a pet type. These are the columns:

� petType: The type name. Notice that the petType column is defined
the same in the Pet table (which I describe in the preceding section)
and in this table. This makes table joining possible and makes matching
rows in the tables much easier. However, petType is the primary key
in this table but not in the Pet table. The CREATE query defines the
petType column in the following ways:

• CHAR(15): The data in this field is expected to be a character
string that’s 15 characters long.

• PRIMARY KEY(petType): This definition sets the petType column
as the primary key. This is the field that must be unique. MySQL
will not allow two rows to be entered with the same petType.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be NOT NULL.

� typeDescription: A description of the pet type. The CREATE query
defines the typeDescription in the following way:

• VARCHAR(255): The string in this field is expected to be a variable
character string that can be up to 255 characters long. The field is
stored in its actual length.

295Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 295

Building the Color table
When I discuss building the Pet table (see “Building the Pet table,” earlier in
this chapter), I discuss the different kinds of pets: pets that are unique (such
as puppies) and pets that are not unique (such as goldfish). For unique pets,
the customer needs to see a picture of the actual pet. For pets that aren’t
unique, the customer needs to see only a generic picture.

In some cases, generic pets come in a variety of colors, such as blue parakeets
and green parakeets. You might want to show two pictures for parakeets: a
picture of a blue parakeet and a picture of a green parakeet. However, because
most pets aren’t this kind of generic pet, you don’t want to add a color column
to your main Pet table because it would be blank for most of the rows.
Instead, you create a separate table containing only pets that come in more
than one color. Then when the catalog application is showing pets, it can
check the Color table to see whether there’s more than one color available —
and if there is, it can show the pictures from the Color table.

The Color table points to pictures of pets when the pets come in different
colors so that the catalog can show pictures of all the available colors.
The following SQL query creates the Color table:

CREATE TABLE Color (
petName CHAR(25) NOT NULL,
petColor CHAR(15) NOT NULL,
pix CHAR(15) NOT NULL DEFAULT “na.gif”,
PRIMARY KEY(petName,petColor));

Each row represents a pet type. The columns are as follows:

� petName: The name of the pet, such as lion, collie, or Chinese bearded
dragon. Notice that the petName column is defined the same in the Pet
table and in this table. This makes table joining possible and makes
matching rows in the tables much easier. However, the petName is the
primary key in this table but not in the Pet table. The CREATE query
defines the petName in the following ways:

• CHAR(25): The data in this field is expected to be a character
string that’s 25 characters long.

• PRIMARY KEY(petName,petColor): The primary key must be
unique. For this table, two columns together are the primary key —
this column and the petColor column. MySQL won’t allow two
rows to be entered with the same petName and petColor.

296 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 296

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be NOT NULL.

� petColor: The color of the pet, such as orange or purple. The CREATE
query defines the petColor in the following ways:

• CHAR(15): This data type defines the field as a character string
that’s 15 characters long.

• PRIMARY KEY(petName,petColor): The primary key must be
unique. For this table, two columns together are the primary key —
this column and the petName column. MySQL won’t allow two
rows to be entered with the same petName and petColor.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be NOT NULL.

� pix: The filename containing the picture of the pet. The CREATE query
defines pix in the following ways:

• CHAR(15): This data type defines the field as a character string
that’s 15 characters long.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. You need a picture for the pet. When a Web
site tries to show a picture that can’t be found, it displays an ugly
error message in the browser window where the graphic would go.
You don’t want your catalog to do that, so your database should
require a value. In this case, the CREATE query defines a default
value so that a value will always be placed in this field.

• DEFAULT “na.gif”: The value “na.gif” is stored if you don’t
provide a value for pix. In this way, a value is always stored for
pix. The file na.gif might contain a graphic that reads something
like picture not available.

Adding data to the database
You can add the data to the database in many ways. You can use SQL queries
to add pets to the database, or you can use the application that I describe in
this chapter. My personal favorite during development is to add a few sample
items to the catalog by reading the data from a file. Then, whenever my data
becomes totally bizarre during development (as a result of programming errors
or my weird sense of humor), I can re-create the data in a moment. Just DROP
the table, re-create it with the SQL query, and reread the sample data.

297Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 297

For example, the data file for the Pet table might look like this:

<TAB>Pekinese<TAB>Dog<TAB>Small, cute, energetic. Good
alarm system.<TAB>100.00<TAB>peke.jpg

<TAB>House cat<TAB>Cat<TAB>Yellow and white cat. Extremely
playful. <TAB>20.00<TAB>catyellow.jpg

<TAB>House cat<TAB>Cat<TAB>Black cat. Sleek, shiny. Likes
children. <TAB>20.00<TAB>catblack.jpg

<TAB>Chinese Bearded Dragon<TAB>Lizard<TAB>Grows up to 2
feet long. Fascinating to watch. Likes to be
held.<TAB>100.00<TAB>lizard.jpg

<TAB>Labrador Retriever<TAB>Dog<TAB>Black dog. Large,
intelligent retriever. Often selected as guide
dogs for the blind.<TAB>100.00<TAB>lab.jpg

<TAB>Goldfish<TAB>Fish<TAB>Variety of colors. Inexpensive.
Easy care. Good first pet for small
children.<TAB>2.00<TAB>goldfish.jpg

<TAB>Shark<TAB>Fish<TAB>Sleek. Powerful. Handle with
care.<TAB>200.00<TAB>shark.jpg

<TAB>Asian Dragon<TAB>Dragon<TAB>Long and serpentine.
Often gold or red.<TAB>10000.00<TAB>dragona.jpg

<TAB>Unicorn<TAB>Horse<TAB>Beautiful white steed with
spiral horn on forehead.<TAB>20000.00<TAB>
unicorn.jpg

These are the data file rules:

� The <TAB> tags represent real tabs — the kind that you create by press-
ing the Tab key.

� Each line represents one pet and must be entered without pressing the
Enter or Return key. The lines in the preceding example are shown
wrapped to more than one line so that you can see the entire line.
However, in the actual file, the data lines are one on each line.

� A tab appears at the beginning of each line because the first field is not
being entered. The first field is the petID, which is entered automati-
cally; you don’t need to enter it. However, you do need to use a tab so
that MySQL knows there’s a blank field at the beginning.

You can then use an SQL query to read the data file into the Pet table:

LOAD DATA LOCAL INFILE “pets” INTO TABLE Pet;

Any time the data table gets odd, you can re-create it and read in the data again.

The LOAD DATA LOCAL query might not be available in your version of
MySQL. This query must be enabled before you can use it. If it’s not enabled,
you will see an error that reads The used command is not allowed with
this MySQL version. I mention LOAD DATA LOCAL also in Chapter 4.

298 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 298

Designing the Look and Feel
After you know what the application is going to do and what information the
database contains, you can design the look and feel of the application. The look
and feel includes what the user sees and how the user interacts with the appli-
cation. Your design should be attractive and easy to use. You can plan out this
design on paper, indicating what the user sees, perhaps with sketches or with
written descriptions. In your design, include the user interaction components,
such as buttons or links, and describe their actions. You should include each
page of the application in the design. If you’re lucky, you know a graphic
designer who can develop beautiful Web pages for you. If you’re me, you
just do your best with a limited amount of graphic know-how.

The Pet Catalog has two look and feel designs: one for the catalog that the
customer sees, and another, less fancy one for the part of the application that
you or whoever is adding pets to the catalog uses.

Showing pets to the customers
The application includes three pages that customers see:

� The storefront page: This is the first page that customers see. It states
the name of the business and the purpose of the Web site.

� The pet type page: This page lists all the types of pets and allows cus-
tomers to select which type of pet they want to see.

� The pets page: This page shows all the pets of the selected type.

Storefront page
The storefront page is the introductory page for the Pet Store. Because most
people already know what a pet store is, this page doesn’t need to provide
much explanation. Figure 11-1 shows the storefront page. The only customer
action available on this page is a link that the customer can click to see the
Pet Catalog.

Pet type page
The pet type page lists all the types of pets in the catalog. Each pet type is
listed with its description. Figure 11-2 shows the pet type page. Radio buttons
appear next to each pet type so that customers can select the type of pet that
they want to see.

299Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 299

Figure 11-2:
The pet type
page of the

Pet Store
Web site.

Figure 11-1:
The opening

page of the
Pet Store
Web site.

300 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 300

Pets page
The pets page lists all the pets of the selected type. Each pet is listed with its
pet ID, description, price, and picture. The pets page appears in a different
format, depending on the information in the catalog database.

Figures 11-3, 11-4, and 11-5 show some possible pets pages.

Figure 11-3 shows a page listing three different dogs from the catalog. Figure 11-4
shows that more than one pet can have the same pet name. Notice that the
house cats have different pet ID numbers. Figure 11-5 shows the output when
pets are found in the Color table, indicating that more than one color is
available.

On all these pages, a line at the top reads Click on any picture to see
a larger version. If the customer clicks the picture, a larger version of
the picture is displayed.

Figure 11-3:
This pets

page shows
three differ-

ent dogs.

301Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 301

Figure 11-5:
This pets

page shows
goldfish that

are avail-
able in two

colors.

Figure 11-4:
This pets

page shows
three cats

with the
same pet

name.

302 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 302

Adding pets to the catalog
The application includes three pages that customers don’t see; these are the
pages used to add pets to the Pet Catalog. The three pages work in sequential
order to add a single pet:

1. Get pet type page. The person adding a pet to the catalog selects the
radio button for the pet type. The user can also enter a new pet type.

2. Get pet information page. The user selects the radio button for the pet
being added and fills in the pet description, price, and picture filename.
The user can also enter a new pet name.

3. Feedback page. A page is displayed showing the pet information that
was added to the catalog.

Get pet type page
The first page gets the pet type for the pet that needs to be added to the cata-
log. Figure 11-6 shows the get pet type page. Notice that all the pet types
currently in the catalog are listed, and a section is provided where the
user can enter a new pet type if it’s needed.

Figure 11-6:
The first
page for
adding a

pet to the
catalog.

303Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 303

Get pet information page
Figure 11-7 shows the second page. This page lets the user type the informa-
tion about the pet that goes in the catalog. This page lists all the pet names in
the catalog for the selected pet type so that the user can select one. It also
provides a section where the user can type a new pet name if needed.

Feedback page
When the user submits the pet information, that information is added to the
PetCatalog database. Figure 11-8 shows a page that verifies the information
that was added to the database. The user can click a link to return to the first
page and add another pet.

Get missing information page
The application checks the data to see that the user entered the required
information and prompts the user for any information that isn’t entered. For
instance, if the user selects New Category on the first page, the user must
type a category name and description. If the user doesn’t type the name or
the description, a page is displayed that points out the problem and requests
the information. Figure 11-9 shows the page that users see if they forget to
type the category name and description.

Figure 11-7:
The second

page asks
for the pet

name.

304 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 304

Figure 11-9:
This page

requests a
new cate-

gory and
description.

Figure 11-8:
The last

page
provides

feedback.

305Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 305

Writing the Programs
After you know what the pages are going to look like and what they are going
to do, you can write the programs. In general, you write a program for each
page, although sometimes it makes sense to separate programs into more
than one file or to combine programs on a page. (For details on how to orga-
nize applications, see Chapter 10.)

As I discuss in Chapter 10, keep the information needed to connect to the
database in a separate file and include that file in all the programs that need
to access the database. The file should be stored in a secure location and
with a misleading name for security reasons. For this application, the follow-
ing information is stored in a file named misc.inc:

<?php
$user=”catalog”;
$host=”localhost”;
$password=””;
$database=”PetCatalog”;

?>

The Pet Catalog application has two independent sets of programs: one set
to show the Pet Catalog to customers and one set to enter new pets into the
catalog.

Showing pets to the customers
The application that shows the Pet Catalog to customers has three basic tasks:

� Show the storefront page, with a link to the catalog.

� Show a page where users select the pet type.

� Show a page with pets of the selected pet type.

Showing the storefront
The storefront page doesn’t need any PHP statements. It simply displays a
Web page with a link. HTML statements are sufficient to do this. Listing 11-1
shows the HTML file that describes the storefront page.

Listing 11-1: HTML File for the Storefront Page

<?php
/* Program: PetShopFront.php
* Desc: Displays opening page for Pet Store.
*/

306 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 306

?>
<html>
<head><title>Pet Store Front Page</title></head>
<body style=”margin: 0”>
<table width=”100%” height=”100%” border=”0”

cellspacing=”0” cellpadding=”0”>
<tr>
<td style=”text-align: center” valign=”top”>

</td>
</tr>
<tr>
<td style=”text-align: center” valign=”top”>

<p style=”margin-top: 40pt”>
<img src=”../images/lizard-front.jpg”

alt=”animal picture”
height=”186” width=”280” />

<h2>Looking for a new friend?</h2>
<p>Check out our

Pet Catalog.

 We may have just what you’re looking for.</p>

</td>
</tr>

</table>
</body></html>

Notice that the link is to a PHP program called PetCatalog.php. When
the customer clicks the link, the Pet Catalog program (PetCatalog.php)
begins.

Showing the pet types
The pet type page (refer to Figure 11-2) shows the customer a list of all the
types of pets currently in the catalog. Listing 11-2 shows the program that
produces the pet type Web page.

Listing 11-2: Displaying Pet Types

<?php
/* Program: PetCatalog.php
* Desc: Displays a list of pet categories from the

PetType table. Includes descriptions.
* Displays radio buttons for user to check.
*/

?>
<html>
<head><title>Pet Types</title></head>
<body>
<?php

(continued)

307Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 307

Listing 11-2 (continued)
include(“misc.inc”); #12

$cxn = mysqli_connect($host,$user,$passwd,$dbname) #14
or die (“couldn’t connect to server”);

/* Select all categories from PetType table */
$query = “SELECT * FROM PetType ORDER BY petType”; #18
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”); #20

/* Display text before form */
echo “<div style=’margin-left: .1in’>\n
<h1 style=’text-align: center’>Pet Catalog</h1>\n
<h2 style=’text-align: center’>The following animal

friends are waiting for you.</h2>\n
<p style=’text-align: center’>Find just what you want

and hurry in to the store to pick up your
new friend.</p>

<h3>Which pet are you interested in?</h3>\n”;

/* Create form containing selection list */
echo “<form action=’ShowPets.php’ method=’POST’>\n”; #33
echo “<table cellpadding=’5’ border=’1’>”;
$counter=1; #35
while($row = mysqli_fetch_assoc($result)) #36
{

extract($row); #38
echo “<tr><td valign=’top’ width=’15%’

style=’font-weight: bold;
font-size: 1.2em’\n”;

echo “<input type=’radio’ name=’interest’
value=’$petType’\n”; #43

if($counter == 1) #44
{

echo “checked”;
}
echo “>$petType</td>”; #48
echo “<td>$typeDescription</td></tr>”; #49
$counter++; #50

}
echo “</table>”;
echo “<p><input type=’submit’ value=’Select Pet Type’>

</form></p>\n”; #54
?>
</div>
</body></html>

The program in Listing 11-2 has line numbers at the end of some of the lines.
The line numbers are a reference so that I can refer to particular parts of the
program. The numbers in the following list correspond to the line numbers in
the listing. Here is a brief explanation of what the following lines do:

308 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 308

12 The include statement brings in a file that contains the information
necessary to connect to the database. I call it misc.inc because that
seems more secure than calling it passwords.inc.

14 Connects to the MySQL server.

18 A query that selects all the information from the PetType table and
puts it in alphabetical order based on pet type.

20 Executes the query on line 18.

33 The opening tag for a form that will hold all the pet types. The action
target is ShowPets.php, which is the program that shows the pets of
the chosen type.

35 Creates a counter with a starting value of 1. The counter keeps-
track of how many pet types are found in the database.

36 Starts a while loop that gets the rows containing the pet type and
pet description that were selected from the database on lines 19 and
20. The loop executes once for each pet type that was retrieved.

38 Separates the row into two variables: $petType and
$petDescription.

42 Lines 42–43 echo a form field tag for a radio button. The value is the
value in $petType. This statement executes once in each loop, creat-
ing a radio button for each pet type. This statement echoes only part
of the form field tag.

44 Starts an if block that executes only in the first loop. It echoes the
word “checked” as part of the form field. This ensures that one of the
radio buttons is selected in the form so that the form can’t be submitted
with no button selected, which would result in unsightly error mes-
sages or warnings. The counter was set up solely for this purpose.

Although adding “checked” to every radio button works in some
browsers, it confuses other browsers. However, the extra program-
ming required to add “checked” to only one radio button can pre-
vent potential problems.

48 Echoes the remaining part of the form field tag for the radio button —
the part that closes the tag and displays the pet type.

49 Echoes the pet description in a second cell in the table row.

50 Adds 1 to the counter to keep track of the number of times that the
loop has executed.

53 Adds the submit button to the form.

54 Closes the form.

When the user selects a radio button and then clicks the submit button, the
next program — named ShowPets.php in the form tag — runs, showing the
pets for the selected pet type.

309Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 309

Showing the pets
The pets page (refer to Figures 11-3, 11-4, and 11-5) shows the customer a list
of all the pets of the selected type that are currently in the catalog. Listing 11-3
shows the program that produces the pet Web page.

Listing 11-3: Displaying a List of Pets

<?php
/* Program: ShowPets.php
* Desc: Displays all the pets in a category.
* Category is passed in a variable from a
* form. The information for each pet is
* displayed on a single line, unless the pet
* comes in more than one color. If the pet
* comes in colors, a single line is displayed
* without a picture, and a line for each color,
* with pictures, is displayed following the
* single line. Small pictures are displayed,
* which are links to larger pictures.
*/

?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
include(“misc.inc”);

$cxn = mysqli_connect($host,$user,$passwd,$dbname)
or die (“couldn’t connect to server”);

/* Select pets of the given type */
$query = “SELECT * FROM Pet

WHERE petType=\”{$_POST[‘interest’]}\””; #26
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

/* Display results in a table */
echo “<table cellspacing=’10’ border=’0’ cellpadding=’0’

width=’100%’>”;
echo “<tr><td colspan=’5’ style=’text-align: right’>

Click on any picture to see a larger
version. <hr /></td></tr>\n”;

while($row = mysqli_fetch_assoc($result)) #36
{
$f_price = number_format($row[‘price’],2);

310 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 310

/* check whether pet comes in colors */
$query = “SELECT * FROM Color

WHERE petName=’{$row[‘petName’]}’”; #42
$result2 = mysqli_query($cxn,$query)

or die(mysqli_error($cxn)); #44
$ncolors = mysqli_num_rows($result2); #45

/* display row for each pet */
echo “<tr>\n”;
echo “ <td>{$row[‘petID’]}</td>\n”;
echo “ <td style=’font-weight: bold;

font-size: 1.1em’>{$row[‘petName’]}</td>\n”;
echo “ <td>{$row[‘petDescription’]}</td>\n”;
/* display picture if pet does not come in colors */
if($ncolors <= 1) #54
{

echo “<td><a href=’../images/{$row[‘pix’]}’
border=’0’>

<img src=’../images/{$row[‘pix’]}’
border=’0’ width=’100’ height=’80’ />

</td>\n”;
}
echo “<td align=’center’>\$$f_price</td>\n

</tr>\n”;
/* display row for each color */
if($ncolors > 1) #65
{

while($row2 = mysqli_fetch_assoc($result2)) #67
{
echo “<tr><td colspan=2> </td>

<td>{$row2[‘petColor’]}</td>
<td><a href=’../images/{$row2[‘pix’]}’

border=’0’>
<img src=’../images/{$row2[‘pix’]}’

border=’0’ width=’100’
height=’80’ /></td>\n”;

}
}
echo “<tr><td colspan=’5’><hr /></td></tr>\n”;

}
echo “</table>\n”;
echo “<div style=’text-align: center’>

<h3>See more pets</h3></div>”;

?>
</body></html>

311Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 311

The following numbers correspond to the line numbers shown as comments
at the end of lines in Listing 11-3. I document only some of the lines in this
program. Many of the tasks in the listing are also in most of the programs
in this application, such as connecting to the database, creating forms, and
executing queries. Because I document these common tasks for Listing 11-2,
I don’t repeat them here. Following is a brief explanation of what some of the
other lines do in the program:

25 Lines 25–26 select all the pets in the catalog that match the chosen
type, which was passed in a form from the previous page.

36 Sets up a while loop that runs once for each pet selected. The loop
creates a line of information for each pet found.

42 Lines 42–45 check whether the pet has any entries in the Color table.
Notice that the query results are put in $result2. They couldn’t be put
in $result because this variable name is already in use. $ncolors
stores the number of rows found in the Color table for the pet. Every
pet name is checked for colors when it’s processed in the loop.

54 Starts an if block that is executed only if zero or one row for the pet
was found in the Color table. The if block displays the picture of
the pet. If the program found more than one color for the pet in the
Color table, the pet is available in more than one color, and the picture
shouldn’t be shown here. Instead, a picture for each color will be shown
in later lines. Refer to Figures 11-3 and 11-4 for pet pages that display
the pictures and information on a single row, as in this if block.

65 Starts an if block that’s executed if more than one pet color was found.
The if block echoes a row for each color found in the Color table.

67 Sets up a while loop within the if block that runs once for each
color found in the Color table. The loop displays a line, including a
picture, for each color. Refer to Figure 11-5 for a pet page that displays
separate lines with pictures for each color.

The page has a link to more pets at the bottom. The link points to the previ-
ous program that displays the pet types.

Adding pets to the catalog
The application that adds a new pet to the catalog should do the following
tasks:

1. Create a form that asks for a pet category. The person adding the pet
can choose one of the existing pet types or create a new one. To create
a new type, the user needs to type a category name and description.

312 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 312

2. If a new type is created, check that the name and description were
typed in.

3. Create a form that asks for pet information — name, description, price,
picture filename, and color. The person adding the pet can choose one
of the existing pet names for the selected category or create a new name.
To create a new pet name, the user needs to type a pet name.

4. If new is selected for the pet name, check that the name was typed in.

5. Store the new pet in the PetCatalog database.

6. Send a feedback page that shows what information was just added to
the catalog.

The tasks are performed in three programs:

� ChoosePetCat.php: Creates the pet type form (task 1)

� ChoosePetName.php: Checks the pet category data and creates the pet
information form (tasks 2 and 3)

� AddPet.php: Checks the pet name field, stores the new pet in the cata-
log database, and provides feedback (tasks 4, 5, and 6)

Writing ChoosePetCat
The first program, ChoosePetCat.php, produces a Web page with an HTML
form in which the person adding a pet can select a pet type for the pet. To
make the program easier to read and maintain, as I discuss in Chapter 10, I kept
some of the HTML statements used by the program in a separate file that
I bring into the program with an include statement. ChoosePetCat.php
is shown in Listing 11-4.

Listing 11-4: Selecting a Pet Type

<?php
/* Program: ChoosePetCat.php
* Desc: Allows users to select a pet type. All the
* existing pet types from the PetType table
* are displayed. A section to enter a new
* pet type is provided. Selections are
* provided as radio buttons, with text
* fields for new category name and
* description.
*/

?>
<html>
<head><title>Pet Types</title></head>

(continued)

313Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 313

Listing 11-4 (continued)
<body>
<?php
include(“misc.inc”);
$cxn = mysqli_connect($host,$user,$passwd,$dbname)

or die (“couldn’t connect to server”);

/*gets types from PetType table in alphabetical order*/
$query=”SELECT petType FROM PetType

ORDER BY petType”; #22
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

/* Display text before form */
echo “<div style=’margin-left: .1in’>

<h3>Select a category for the pet you’re adding.</h3>
If you are adding a pet in a category that is not
listed, choose New Category and type the
Name and description of the category. Press
Submit Category when you have finished
selecting an existing category or typing a new
category.\n”;

/* Display form for selecting pet type */
echo “<p><form action=’ChoosePetName.php’

method=’POST’></p>\n”;
$counter=0;
while($row = mysqli_fetch_assoc($result)) #40
{

extract($row);
echo “<input type=’radio’ name=’category’

value=’$petType’”;
if($counter == 0) #45
{

echo “checked”;
}

echo “>$petType</td>\n”; #49
$counter++; #50

}

include(“NewCat_table.inc”); #53

echo “<input type=’submit’ value=’Submit Category’>\n”;
echo “</form>\n”;

?>
</div>
</body></html>

314 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 314

The following numbers correspond to the line numbers shown as comments
at the end of lines in Listing 11-4. Only some of the lines are documented in
the following list. Many of the tasks in the listing, such as connecting to the
database, creating forms, and executing queries, are found in most of the pro-
grams in this application; refer to Listing 11-2 for an explanation. The following
list provides a brief explanation of what the following lines do.

21 A query (lines 21 and 22) that selects all the pet types from the
PetType table and sorts them in alphabetical order.

39 Creates a counter with a starting value of 0. The counter keeps track
of how many pet types are found in the database.

40 Starts a while loop that executes once for each pet type. The loop
creates a list of radio buttons for the pet types, with one button
selected. Here are the details of the while loop:

43 Echoes a form field tag (lines 43 and 44) for a radio button with
the value equal to $petType. This statement executes once in
each loop, creating a radio button for each pet type. This state-
ment echoes only the first part of the form field tag.

45 An if block that executes only in the first loop. It echoes the
word “checked” as part of the form field. This ensures that
one of the radio buttons is selected when displayed so that the
form can’t be submitted with no button selected, which would
result in unsightly error messages. The counter was set up
solely for this purpose.

Although adding “checked” to every radio button works in
some browsers, it causes problems in other browsers. The extra
programming required to add “checked” to only one radio
button can prevent problems.

49 Echoes the remaining part of the form field tag for the radio
button — the part that closes the tag.

50 Adds 1 to the counter to keep track of the number of times the
loop has executed. This is the last line in the while loop.

53 Creates a table that asks for the new pet type name and description.
The HTML for the table is read in from another file called NewCat_
table.inc. As I discuss in Chapter 10, the HTML — especially HTML
that describes a form — is often kept in a separate file to make the
main program easier to read and to make the form easier to modify
when necessary. This file is shown in Listing 11-5.

315Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 315

Listing 11-5: File Containing the New Type Form

<?php
/* Program: NewCat_table.inc
* Desc: HTML code that displays a table for
* input of a new category
*/

?>
<table width=”100%”>
<tr><td colspan=”3”><hr /></td></tr>
<tr>
<td style=”text-align: center”>
<input type=”radio” name=”category”

value=”new”>
</td>
<td style=”text-align: right”>Category name:</td>
<td><input type=”text” name=”newCat” size=”20”

maxlength=”20”></td>
</tr>
<tr><td style=”text-align: center;

font-weight: bold”>New Category</td>
<td style=”text-align: right”>

Category description:</td>
<td><input type=”text” name=”newDesc” size=”70%”

maxlength=”255”>
</td>

</tr>
<tr><td colspan=”3”><hr /></td></tr>

</table>

This file is all HTML except for a section of PHP at the top that holds the
header as comments. I could have used HTML comments, but I like the PHP
comment style better.

Writing ChoosePetName
The second program, ChoosePetName.php, accepts the data from the form
in the first program. It checks the information and asks for missing information.
After the pet type information is received correctly, the program creates a form
in which a user can select a pet name for the new pet being added to the cat-
alog and type the information for the pet. This program, as in the preceding
program, brings in some of the HTML forms and tables from separate files with
include statements. This program also calls a function that’s in an include
file. This program brings in two files. Listing 11-6 shows ChoosePetName.php.

Listing 11-6: Asking the User for the Pet Name

<?php
/* Program: ChoosePetName.php
* Desc: Allows the user to enter the information for
* the pet. First, the program checks for and

316 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 316

* enters a new category into the petType
* table. Then, all pets in the selected
* category are displayed with radio buttons.
* The user can enter a new name. Fields are
* provided to enter the description, price,
* and picture file name.
*/

if (@$_POST[‘newbutton’] == “Return to category page”
or @$_POST[‘newbutton’] == “Cancel”) #14

{
header(“Location: ChoosePetCat.php”);

}

echo “<html>
<head><title>Add Pet</title></head>
<body>”;

include(“misc.inc”);
include(“functions.inc”);

$cxn = mysqli_connect($host,$user,$passwd,$dbname)
or die (“Couldn’t connect to server”);

$category = $_POST[‘category’];
/* If new was selected for pet category, check if text

fields were filled in. If not, display again for the
user to enter the category name and category
description. When the fields are filled in, store
the new category in the PetType table.*/

if($category == “new”) #34
{
if ($_POST[‘newCat’] == “”

or $_POST[‘newDesc’] == “”) #37
{

include(“NewCat_form.inc”); #39
exit(); #40

}
/* add new pet type to PetType table */

else #43
{

addNewType($_POST[‘newCat’],$_POST[‘newDesc’],$cxn);
$category = trim($_POST[‘newCat’]); #46

}
} #48

/* Select pet names from table with given category. If
user entered a new category, it is searched for. */
$query = “SELECT DISTINCT petName FROM Pet

WHERE petType=’$category’
ORDER BY petName”; #54

$result = mysqli_query($cxn,$query)
or die(“Couldn’t execute select query”);

(continued)

317Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 317

Listing 11-6 (continued)
$nrow = mysqli_num_rows($result); #57

/* create form */
echo “<div style=’margin-left: .1in’>”;
echo “<form action=’AddPet.php’ method=’POST’>\n”;
echo “<h4>Pet Name</h4>\n”;
if($nrow < 1) #63
{
echo “<hr />No pet names are currently in the

database for the category $category<hr />\n”;
}
else #68
{
while($row = mysqli_fetch_assoc($result)) #70
{

extract($row);
echo “<input type=’radio’ name=’petName’

value=’$petName’”;
echo “>$petName\n”;

}
}
include (“NewName_table.inc”); #78

$petDescription=””;$price = “”;$pix = “”;$petColor = “”;
include(“PetInfo_table.inc”); #81

echo “<input type=’hidden’ name=’category’
value=’$category’>\n”;

echo “<p><input type=’submit’ value=’Submit Pet Name’>
<input type=’submit’ name=’newbutton’ value=’Cancel’>
</form>\n”;

?>
</div>
</body></html>

The following numbers correspond to the line numbers shown as comments
at the end of lines in Listing 11-6. Only some of the lines are documented in
the following list because many of the tasks in the listing are found in most
of the programs in this application. The common tasks are documented for
Listing 11-2 and explained in other parts of the book, so I don’t repeat them
here. Here’s a brief explanation of what the following lines do in the program:

14 Checks whether the user clicked the submit button labeled Cancel or
Return to category page. If so, it returns to the first page.

34 Starts an if block that executes only if the user selected the radio
button for New Category in the form from the previous program. This
block checks whether the new category name and description are filled
in. If the user forgot to type them in, he or she is asked for the pet type
name and description again. After the name and description are filled in,

318 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 318

the program calls a function that adds the new category to the PetType
table. The following lines describe this if block in more detail:

36 Starts an if block that executes only if the category name or
the category description is blank. Because this if block is
inside the if block for a new category, this block executes only
if the user selected New Category for pet type but did not fill in
the new category name and description.

39 Creates a form that asks for the category name and description.
The HTML for the form is included from a file. This executes only
when the if statement on line 36 is true — that is, if the cate-
gory is new and the category name and/or description is blank.

40 Stops the program after displaying the form on line 43. The pro-
gram can’t proceed until the category name and description are
typed in. This block repeats until a category name and descrip-
tion are filled in.

43 Starts an else block that executes only if both the category name
and description are filled in. Because this block is inside the if
block for the new radio button, this block executes when the user
selected new and filled in the new category name and description.

45 Calls a function that adds the new category to the PetType table.

46 Up to this point, the category is still set to “new”. This line sets
$category to the new category name.

48 This line ends the if block. If the user selected one of the exist-
ing pet types, the statements between line 36 and this line did
not execute.

52 A query (lines 52–54) that selects one of each pet name with the
chosen pet type and sorts them alphabetically.

57 Checks whether any pet names were found for the chosen pet type.

63 Starts an if block that executes only if no pets were found for the pet
type. The block echoes a message to the user that no pets were found
for the pet type.

68 Starts an else block that executes if pets were found for the pet type.
The else block creates a list of radio buttons for the pet names
found. The list is created with a while loop (starting on line 70) in
the same manner that the list of categories was created, as explained
in Listing 11-4.

78 Lines 78 and 81 create tables that ask for the new pet name and informa-
tion, bringing the HTML in from separate files with include statements.

This program brings in three files containing HTML using include state-
ments. Listings 11-7, 11-8, and 11-9 show the three files that are included:
NewCat_form.inc, NewName_table.inc, and PetInfo_table.inc.

319Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 319

Listing 11-7: HTML Code That Creates New Pet Type Form

<?php
/* Program: NewCat_form.inc
* Desc: Displays a form to collect a category name
* and description.
*/

?>
<h4>Either the category name or the category description

was left blank. You must enter both.</h4>
<form action=”ChoosePetName.php” method=”POST”>
<table>
<tr>
<td style=”text-align: right”>Category name:</td>
<td><input type=”text” name=”newCat”

value=”<?php echo $_POST[‘newCat’] ?>”
size=”20” maxlength=”20”>

</td></tr>
<tr>
<td style=”text-align: right”>

Category description:</td>
<td><input type=”text” name=”newDesc”

value=”<?php echo $_POST[‘newDesc’] ?>”
size=”70%” maxlength=”255”>

</td></tr>
</table>
<input type=”hidden” name=”category” value=”new”>
<p><input type=”submit” name=”newbutton”

value=”Enter new category”>
<input type=”submit” name=”newbutton”

value=”Return to category page”>
</form>

This program is almost all HTML code. Note the following points:

� This form is created only when the user selects the radio button for
New Category on the pet type Web page but does not type the pet type
name or description. This form is displayed to give the user a second
chance to type the name or description.

� Most of the file is HTML, with only two small PHP sections that echo
values for the two fields.

� The form returns to the program that generated it for processing.
It is processed in the same manner as the form that was sent from the
first page. The field names are the same and are checked again to see
whether they are blank.

� A hidden field is included that sends $category with a value of “new”.
If this form didn’t send $category, the program that processes it — the
same program that generated it — wouldn’t know that the pet type was
new and wouldn’t execute the if block that should be executed when
a new category is selected.

320 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 320

Listing 11-8: HTML File That Creates Table for New Name

<?php
/* Program: NewName_table.inc
* Desc: Displays table to enter new pet name
*/

?>
<p><table border=”0”>

<tr><td>
<input type=”radio” name=”petName”

value=”new” checked >New Name</td>
<td><input type=”text” name=”newName” size=”25”

maxlength=”25”> (type new name)</td>
</tr>
<tr><td colspan=”2”><hr /></td></tr>

</table>

This file is all HTML with no PHP. It displays the section of the pet name Web
page where the user can enter a new pet name.

Listing 11-9: HTML File That Creates Table for Pet Info

<?php
/* Program: PetInfo_table.inc
* Desc: Displays table to collect pet information
*/

?>
<h4>Pet Information</h4>
<p><table>
<tr><td style=”text-align: right”>Pet Category:</td>
<td style=”font-weight: bold”>

<?php echo $category ?></td>
</tr>
<tr><td style=”text-align: right”>Pet Description:</td>
<td><input type=”text” name=”petDescription”

value=”<?php echo $petDescription ?>”
size=”65” maxlength=”255”>

</td></tr>
<tr><td style=”text-align: right”>Price:</td>
<td><input type=”text” name=”price”

value=”<?php echo $price ?>” size=”15”
maxlength=”15”>

</td></tr>
<tr><td style=”text-align: right”>Picture file name:</td>
<td><input type=”text” name=”pix”

value=”<?php echo $pix ?>” size=”25”
maxlength=”25”>

</td></tr>
<tr>
<td style=”text-align: right”>Pet color (optional):</td>
<td><input type=”text” name=”petColor”

value=”<?php echo $petColor ?>” size=”25”
maxlength=”25”>

</td></tr>
</table>

321Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 321

This file is all HTML, except for small PHP sections for the variable values.

In addition to HTML for tables and forms, the ChoosePetName.php
program in Listing 11-6 calls a function. The function is stored in a file
named functions.inc and is included in the beginning of the program.
Listing 11-10 shows the function.

Listing 11-10: Function addNewType()

<?php
/* Function addNewType
* Desc Adds a new pet type and description to the
* PetType table. Checks for the new pet type
* first and does not add it to the table if
* it is already there.
*/

function addNewType($petType,$typeDescription,$cxn)
{
/* Check whether new category is in PetType table.

If it is not in table, add it to table. */
$query = “SELECT petType FROM PetType

WHERE petType=’$petType’”;
$result = mysqli_query($cxn,$query) or

die(“Couldn’t execute select query”);
$ntype = mysqli_num_rows($result); //
if ($ntype < 1) // if new type is not in table

{
$petType = ucfirst(strip_tags(trim($petType)));
$typeDescription =

ucfirst(strip_tags(trim($typeDescription)));
$petType = mysqli_real_escape_string($cxn,$petType);
$typeDescription =

mysqli_real_escape_string($cxn,$typeDescription);

$query=”INSERT INTO PetType (petType,typeDescription)
VALUES (‘$petType’,’$typeDescription’)”;

$result = mysqli_query($cxn,$query)
or die(“Couldn’t execute insert query”);

}
return;

}
?>

The function checks whether the pet type is already in the PetType table.
If it is not, the function cleans the data and adds it to the table.

Writing AddPet
The last program, AddPet.php, accepts the data from the form in the second
program. If new was selected for the pet name, the program checks to see
that a new name was typed and prompts for it again if it was left blank.
After the pet name is filled in, the program stores the pet information from

322 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 322

the previous page. Notice that it does not check the other information
because the other information is optional. This program, as in Listing 11-6,
brings in some of the HTML forms and tables from two separate files by using
an include statement. Listing 11-11 shows AddPet.php.

Listing 11-11: Adding a New Pet to the Catalog

<?php
/* Program: AddPet.php
* Desc: Adds new pet to the database. A confirmation
* screen is sent to the user.
*/

if (@$_POST[‘newbutton’] == “Cancel”) #7
{

header(“Location: ChoosePetCat.php”);
}

include(“misc.inc”); #12
$cxn = mysqli_connect($host,$user,$passwd,$dbname)

or die (“Couldn’t connect to server”);

foreach($_POST as $field => $value) #16
{

if($field != “newName” and $field != “newbutton”
and $field != “petColor”) #19

{
if($field == “petName”) #21
{

if($value == “new”) #23
{

if($_POST[‘newName’] == “”) #25
{

include(“NewName_form.inc”);
exit();

}
else #30
{

$value=$_POST[‘newName’];
}

}
}
if($field == “category”) #36
{

$field = “petType”;
}
if(!empty($value)) #40
{
$fields_form[$field] =

ucfirst(strtolower(strip_tags(trim($value))));
$fields_form[$field] =

mysqli_real_escape_string($cxn,

(continued)

323Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 323

Listing 11-11 (continued)
$fields_form[$field]);

}
if(!empty($_POST[‘petColor’])) #48
{
$petColor = strip_tags(trim($_POST[‘petColor’]));
$petColor = ucfirst(strtolower($petColor));
$petColor =

mysqli_real_escape_string($cxn,$petColor);
}

}
}

?>
<html>
<head><title>Add Pet</title></head>
<body>
<?php
$field_array = array_keys($fields_form); #62
$fields=implode(“,”,$field_array);
$values=implode(‘“,”’,$fields_form);
$query = “INSERT INTO Pet ($fields)

VALUES (\”$values\”)”; #66
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

$petID = mysqli_insert_id($cxn); #70
$query = “SELECT * from Pet WHERE petID=’$petID’”; #71
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$row = mysqli_fetch_assoc($result);
extract($row);
$category=$petType;
echo “The following pet has been added to the

Pet Catalog:

Category: $category
Pet Name: $petName
Pet Description: $petDescription
Price: $price
Picture file: $pix \n”;

if (@$petColor != “”) #86
{

$query = “SELECT petName FROM Color
WHERE petName=’$petName’
AND petColor=’$petColor’”;

$result = mysqli_query($cxn,$query)
or die(“Couldn’t execute query.”);

$num = mysqli_num_rows($result);
if ($num < 1)
{
$query = “INSERT INTO Color (petName,petColor,pix)

VALUES (‘$petName’,’$petColor’,’$pix’)”;

324 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 324

$result = mysqli_query($cxn,$query)
or die(“Couldn’t execute query.”);

echo “Color: $petColor\n”;
}

} #102
echo “”;
echo “Add Another Pet\n”;

?>
</body></html>

Notice the line numbers shown as comments at the end of lines in Listing 11-11.
The numbers in the following list correspond to the line numbers in the list-
ing. I document only some of the lines in the following list because many of
the most common tasks, such as connecting to the database, have been doc-
umented for the previous programs in this chapter.

7 Checks whether the user clicked the Cancel button. If so, returns to
the first page.

12 Connects to the database.

16 Starts a foreach block that walks through the new pet information
submitted on the previous Web page. This block checks and cleans the
data. The following line numbers describe the processing in detail.

19 Does not process the data in the fields newName, newbutton,
and petColor.

23 Starts an if block that executes only if the user selected new
for the pet name. If the new name is blank, it displays a form
that asks for the new pet name (line 27) repeatedly until the
user types one. After the new name is filled in, $petName is set
to the new name (line 32).

36 If the field is category, changes the field name to petType.

40 Lines 40–54 clean the data.

56 End of the foreach loop that processes the data in $_POST.

62 Lines 62–66 build the query that inserts the data for the new pet into
the database.

70 Lines 70–84 retrieve the data that was just entered into the database
and display it on a Web page so the user can see what data was entered.

86 Starts an if block that executes only if the color was filled in.
The Color table is checked to see whether the name and color are
already there. If not, they are added to the Color table. The if block
ends on line 102.

This program brings in an HTML file that creates the form to prompt the user
for the pet name if the user forgot to type it in. Listing 11-12 shows the file
that is included: NewName_form.inc.

325Chapter 11: Building an Online Catalog

18_096004 ch11.qxp 10/11/06 9:28 PM Page 325

Listing 11-12: HTML That Asks User for a New Pet Name

<?php
/* Program: NewName_form.inc
* Desc: Displays form to collect a pet name
*/
extract($_POST);

?>
<h4>You must type a pet name.</h4>
<form action=”AddPet.php” method=”POST”>
<table><tr>
<td style=”text-align: right”>Pet name:</td>
<td><input type=”text” name=”newName”

value=”<?php echo $newName ?>”
size=”25” maxlength=”25”>

</td></tr>
</table>
<input type=”hidden” name=”category”

value=”<?php echo $category ?>”>
<input type=”hidden” name=”petName”

value=”<?php echo $petName ?>”>
<input type=”hidden” name=”petDescription”

value=”<?php echo $petDescription ?>”>
<input type=”hidden” name=”price”

value=”<?php echo $price ?>”>
<input type=”hidden” name=”pix”

value=”<?php echo $pix ?>”>
<input type=”hidden” name=”petColor”

value=”<?php echo $petColor ?>”>
<p><input type=”submit” name=”newbutton”

value=”Enter new pet name”>
<input type=”submit” name=”newbutton”

value=”Cancel”>
</form>

This file creates the form that’s displayed if the user forgets to type the new
pet name. It is very similar to the program in Listing 11-7 that’s displayed
when a user forgets to type a new category. Notice that hidden fields are used
to pass on any other information that the user may have entered. When the
form is filled in, the values are needed to store the pet information.

At the end, this program provides a link to the first page so that the user can
add another new pet to the catalog if desired.

326 Part IV: Applications

18_096004 ch11.qxp 10/11/06 9:28 PM Page 326

Chapter 12

Building a Members
Only Web Site

In This Chapter
� Designing the Members Only Web site

� Building the database for the member directory

� Designing the Web pages for the Members Only section

� Writing the programs for logging in to the Members Only section

Many Web sites require users to log in. Sometimes users can’t view any
Web pages without entering a password, while sometimes just part of

the Web site requires a login. Here are some reasons why you might want to
require a user login:

� The information is secret. You don’t want anyone except a few authorized
people to see the information. Or perhaps only your own employees
should see the information.

� The information or service is for sale. The information or service that
your Web site provides is your product, and you want to charge people
for it. For instance, you might have a corner on some survey data that
researchers are willing to pay for. For example, AAA Automobile Club
offers some of its information for free, but you have to be a member to
see its hotel ratings.

� You can provide better service. If you know who your customers are or
have some of their information, you can make their interaction with
your Web site easier. For instance, if you have an account with Barnes
and Noble or the Gap and log into their site, they use your stored ship-
ping address, and you don’t have to type it in again.

� You can find out more about your customers. Marketing would like to
know who is looking at your Web site. A list of customers with addresses
and phone numbers and perhaps some likes and dislikes is useful. If your
Web site offers some attractive features, customers may be willing to
provide some information to access your site.

19_096004 ch12.qxp 10/11/06 9:14 PM Page 327

Typically, a login requires the user to enter a user ID and a password. Often,
users can create their own accounts on the Web site, choosing their own user
ID and password. Sometimes users can maintain their accounts — for exam-
ple, change their password or phone number — online.

In Chapter 11, you find out how to build an online catalog for your Pet Store
Web site. Now, you want to add a section to your Web site for Members Only.
You plan to offer discounts, a newsletter, a database of pet information, and
more in the Members Only section. You hope that customers will see the sec-
tion as so valuable that they’ll be willing to provide their addresses and phone
numbers to get a member account that lets them use the services in the
restricted section. In this chapter, you build a login section for the Pet Store.

Designing the Application
The first step in design is to decide what the application should do. Its basic
function is to gather customer information and store it in a database. It offers
customers access to valuable information and services to motivate them to
provide information for the database. Because state secrets or credit card
numbers aren’t at risk, you should make it as easy as possible for customers
to set up and access their accounts.

The application that provides access to the Members Only section of the Pet
Store should do the following:

� Provide a means for customers to set up their own accounts with
member IDs and passwords. This includes collecting from the customer
the information that’s required to become a member.

� Provide a page where customers type their member ID and password
and then check whether they are valid. If so, the customer enters the
Members Only section. If not, the customer can try another login.

� Show the pages in the Members Only section to anyone who is logged in.

� Refuse to show the pages in the Members Only section to anyone who
is not logged in.

� Keep track of member logins, so you know who logs in and how often.

Building the Database
The database is the core and purpose of this application. It holds the customer
information that’s the goal of the Members Only section and the Member ID
and password that allow the user to log into the Members Only section.

328 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 328

The Members Only application database contains two tables:

� Member table

� Login table

The first step in building the login application is to build the database.
It’s pretty much impossible to write programs without a working database to
test the programs on. First design your database, then build it, and then add
some sample data for use while developing the programs.

Building the Member table
In your design for the login application, the main table is the Member table.
It holds all the information entered by the customer, including the customer’s
personal information (name, address, and so on) and the Member ID and
password. The following SQL query creates the Member table:

CREATE TABLE Member (
loginName VARCHAR(20) NOT NULL,
createDate DATE NOT NULL,
password VARCHAR(255) NOT NULL,
lastName VARCHAR(50),
firstName VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15),

PRIMARY KEY(loginName));

Each row represents a member. The columns are

� loginName: A Member ID for the member to use when logging in.
The customer chooses and types in the login name. The CREATE
query defines the loginName in the following ways:

• CHAR(20): This data type defines the field as a character string
that’s 20 characters long. If the stored string is less than 20 charac-
ters, the field is padded so that it always takes up 20 characters of
storage. If a string longer than 20 characters is stored, any charac-
ters after 20 are dropped.

• PRIMARY KEY(loginName): The primary key identifies the row
and must be unique. MySQL will not allow two rows to be entered
with the same loginName.

• NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be NOT NULL.

329Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 329

� createDate: The date when the row was added to the database — that
is, the date when the customer created the account. The query defines
createDate as

• DATE: This is a string that’s treated as a date. Dates are displayed
in the format YYYY-MM-DD. They can be entered in that format or
a similar format, such as YY/M/D or YYYYMMDD.

• NOT NULL: This definition means this field can’t be empty. It must
have a value. Because the program, not the user, creates the date
and stores it, this field won’t ever be blank.

� password: A password for the member to use when logging in. The cus-
tomer chooses and types in the password. The CREATE query defines
the password in the following ways:

• VARCHAR(255): This statement defines the field as a variable charac-
ter string that can be up to 255 characters long. The field is stored
in its actual length. You don’t expect the password to be 255 char-
acters long. In fact, you expect it to be pretty short. However, you
intend to use the MySQL md5 function to encrypt it rather than
store it in plain view. After it’s encrypted, the string will be longer,
so you’re allowing room for the longer string.

• NOT NULL: This statement means that this field can’t be empty.
It must have a value. You’re not going to allow an empty password
in this application.

� lastName: The customer’s last name, as typed by the customer. The
CREATE query defines the field as

• VARCHAR(50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

� firstName: The customer’s first name, as typed by the customer. The
CREATE query defines the field as

• VARCHAR(40): This data type defines the field as a variable char-
acter string that can be up to 40 characters long. The field is stored
in its actual length.

� street: The customer’s street address, as typed by the customer. The
CREATE query defines the field as

• VARCHAR(50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

� city: The city in the customer’s address, as typed by the customer. The
CREATE query defines the field as

• VARCHAR(50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

330 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 330

� state: The state in the customer’s address. The string is the two-letter
state code. The customer selects the data from a drop-down list contain-
ing all the states. The CREATE query defines the field as

• CHAR(2): This data type defines the field as a character string
that’s 2 characters long. The field will always take up 2 characters
of storage.

� zip: The zip code that the customer types in. The CREATE query defines
the field as

• CHAR(10): This data type defines the field as a character string
that’s 10 characters long. The field will always take up 10 charac-
ters of storage, with padding if the actual string stored is less than
ten characters. The field is long enough to hold a zip+4 code, such
as 12345–1234.

� email: The e-mail address that the customer types in. The CREATE
query defines the field as

• VARCHAR(50): This data type defines the field as a variable char-
acter string that can be up to 50 characters long. The field is stored
in its actual length.

� phone: The phone number that the customer types in. The CREATE
query defines the field as

• CHAR(15): This data type defines the field as a character string
that’s 15 characters long. The field will always take up 15 charac-
ters of storage, with padding if the actual string stored is less than
15 characters.

� fax: The fax number that the customer types in. The CREATE query
defines the field as

• CHAR(15): This data type defines the field as a character string
that’s 15 characters long. The field will always take up 15 charac-
ters of storage, with padding if the actual string stored is less than
15 characters.

Notice that some fields are CHAR and some are VARCHAR. CHAR fields are faster,
whereas VARCHAR fields are more efficient in using disk space. Your decision
on which to use will depend on whether disk space or speed is more impor-
tant for your application in your environment.

In general, shorter fields should be CHAR because they don’t waste much
space. For instance, if your CHAR is 5 characters, the most space that could
possibly be wasted is 4 characters. However, if your CHAR is 200, you could
waste 199 characters. Therefore, for short fields, use CHAR for speed with
very little wasted space.

331Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 331

Building the Login table
The Login table keeps track of member logins by recording the date and
time every time a member logs in. Because each member has multiple logins,
the login data requires its own table. The CREATE query that builds the
Login table is

CREATE TABLE Login (
loginName VARCHAR(20) NOT NULL,
loginTime DATETIME NOT NULL,

PRIMARY KEY(loginName,loginTime));

The Login table has only two columns, as follows:

� loginName: The Member ID that the customer uses to log in with. The
loginName is the connection between the Member table (which I describe
in the preceding section) and this table. Notice that the loginName
column is defined the same in the Member table and in this table. This
makes table joining possible and makes matching rows in the tables much
easier. The CREATE query defines the loginName in the following ways:

• CHAR(20): This data type defines the field as a character string
that’s 20 characters long. The field will always take up 20 charac-
ters of storage, with padding if the actual string stored is less than
20 characters. If a string longer than 20 characters is stored, any
characters after 20 are dropped.

• PRIMARY KEY(loginName,loginTime): The primary key identi-
fies the row and must be unique. For this table, two columns
together are the primary key. MySQL will not allow two rows to
be entered with the same loginName and loginDate.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be NOT NULL.

� loginTime: The date and time when the member logged in. This field uses
both the date and time because the field needs to be unique. It’s unlikely
that two users would log in at the same second at the Pet Store Web site.
However, in some busy Web sites, two users might log in during the
same second. At such a site, you might have to create a sequential login
number to be the unique primary key for the site. The CREATE query
defines the loginTime in the following ways:

• DATETIME: This is a string that’s treated as a date and time.
The string is displayed in the format YYYY-MM-DD HH:MM:SS.

• PRIMARY KEY(loginName,loginTime): The primary key
identifies the row and must be unique. For this table, two columns
together are the primary key. MySQL will not allow two rows to be
entered with the same loginName and loginDate.

• NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be NOT NULL.

332 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 332

Adding data to the database
This database is intended to hold data entered by customers — not by you.
It will be empty when the application is first made available to customers
until customers add data. However, to test the programs while you write
them, you need to have at least a few members in the database. You need a
few Member IDs and passwords to test the login program. You can add some
fake members for testing — by using an INSERT SQL query — and remove
them when you’re ready to go live with your Members Only application.

Designing the Look and Feel
After you know what the application is going to do and what information you
want to get from customers and store in the database, you can design the
look and feel. The look and feel includes what the user sees and how the user
interacts with the application. Your design should be attractive and easy to
use. You can create your design on paper, indicating what the user sees, per-
haps with sketches or with written descriptions. You should also show the
user interaction components, such as buttons or links, and describe their
actions. Include each page of the application in the design.

The Pet Store Members Only application has three pages that are part of the
login procedures. In addition, the application includes all the pages that are
part of the Members Only section, such as the page that shows the special
discounts and the pages that provide discussions of pet care. In this chapter,
you build only the pages that are part of the login procedure. You don’t build
the pages that are part of the Members Only section, but I do discuss what
needs to be included in them to protect them from viewing by nonmembers.

The login application includes three pages, plus the group of pages that com-
prise the Members Only section, as follows:

� Storefront page: The first page that a customer sees. It provides the
name of the business and the purpose of the Web site. In Chapter 11,
I introduce a storefront page; in this chapter, you modify the page to
provide access to the Members Only section.

� Login page: Allows the customer to either log in or create a new
member account. It displays a form for the customer to fill in to get a
new account.

� New Member Welcome page: Welcomes the new users by name, letting
them know that their accounts have been created. Provides any infor-
mation that they need to know. Provides a button so that users can
continue to the Members Only section or return to the main page.

� Members Only section: A group of Web pages that contain the content
of the Members Only section.

333Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 333

Storefront page
The storefront page is the introductory page for the Pet Store. Because most
people know what a pet store is, the page doesn’t need to provide much
explanation. Figure 12-1 shows the storefront page. Two customer actions are
available on this page: a link that the customer can click to see the Pet Catalog
and a link to the Members Only section.

Login page
The login page, shown in Figure 12-2, allows the customer to log in or create a
new member account. It includes the form that customers need to fill out to
get a member account. This page has two submit buttons: one to log in with
an existing member account and one to create a new member account.

If a customer makes a mistake on the login page, either in the login section or
the new member section, the form is displayed again with an error message.
For instance, suppose that a customer makes an error when typing her
e-mail address: She forgot to type the .com at the end of the e-mail address.
Figure 12-3 shows the screen that she sees after she submits the form with
the mistake in it. Notice the error message printed right above the form.

Figure 12-1:
The opening

page of the
Pet Store
Web site.

334 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 334

Figure 12-3:
Page

showing a
message
resulting

from a
mistake in

the form.

Figure 12-2:
The page

where cus-
tomers log

in or create
a new

member
account.

335Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 335

When members successfully log in with a valid Member ID and password,
they go to the first page of the Members Only section. When new members
successfully submit a form with information that looks reasonable, they go to
a New Member Welcome page (see the next section). In addition, an e-mail
message is sent to the new member with the following contents:

A new Member Account has been set up for you. Your new
Member ID and password are:

gsmith
secret

We appreciate your interest in Pet Store at PetStore.com.

If you have any questions or problems, email
webmaster@petstore.com

This e-mail message contains the customer’s password. I think that it’s help-
ful to both the customer and the business to provide customers with a hard
copy of their password. Customers will forget their password. It seems to be
one of the rules. An e-mail message with their password might help them
when they forget it, saving both them and you some trouble. Of course, e-mail
messages aren’t necessarily secure, so sending passwords via e-mail isn’t a
good idea for some accounts, such as an online bank account. But, for this
Pet Store application, with only unauthorized discounts and pet care informa-
tion at risk, sending the password via e-mail is a reasonable risk.

New Member Welcome page
The New Member Welcome page greets the customer and offers useful
information. The customer sees that the account has been created and can
then enter the Members Only section immediately. Figure 12-4 shows a wel-
come page.

Members Only section
One or more Web pages make up the contents of the Members Only section.
Whatever the content is, the pages are no different than any other Web pages
or PHP programs, except for some PHP statements in the beginning of each
file that prevent nonmembers from viewing the pages.

336 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 336

Writing the Programs
After you know what the pages are going to look like and what they are going
to do, you can write the programs. In general, you create a program for each
page, although sometimes it makes sense to separate programs into more
than one file or to combine programs on a page. (See Chapter 10 for details
on how to organize applications.)

As I discuss in Chapter 10, keep the information needed to connect to the data-
base in a separate file and include it in the programs that need to access the
database. Store the file in a secure location, with a misleading name. For this
application, the following information is stored in a file named dogs.inc:

<?php
$user=”catalog”;
$host=”localhost”;
$password=””;
$database=”MemberDirectory”;

?>

Figure 12-4:
A page

welcoming
new

members.

337Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 337

The member login application has several basic tasks:

1. Show the storefront page. This provides a link to the login page.

2. Show a page where customers can fill in a Member ID and a password
to log in.

3. Check the Member ID and the password that the customer types
against the Member ID and password stored in the database. If the ID
and password are okay, the customer enters the Members Only section.
If the ID and/or password are not okay, the customer is returned to the
login page.

4. Show a page where customers can fill in the information needed to
obtain a member account.

5. Check the information the customer typed for blank fields or incor-
rect formats. If bad information is found, show the form again so that
the customer can correct the information.

6. When good information is entered, add the new member to the
database.

7. Show a welcoming page to the new member.

The tasks are performed in three programs:

� PetShopFront.php: Shows the storefront page (task 1).

� Login.php: Performs both the login and create new member account
tasks (tasks 2–6).

� New_member.php: Shows the page that welcomes the new member
(task 7).

Writing PetShopFront
The storefront page doesn’t need any PHP statements. It simply displays a
Web page with two links — one link to the Pet Catalog and one link to the
Members Only section of the Web site. HTML statements are sufficient to do
this. Listing 12-1 shows the HTML file that describes the storefront page.

Listing 12-1: HTML File for the Storefront Page

<?php
/* Program: PetShopFrontMembers.php
* Desc: Displays opening page for Pet Store.

338 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 338

*/
?>
<html>
<head><title>Pet Store Front Page</title></head>
<body style=”margin: 0”>
<table width=”100%” height=”100%” border=”0”

cellspacing=”0” cellpadding=”0”>
<tr>
<td align=”center” valign=”top” height=”30”

colspan=”2”>

</td>
</tr>
<tr>
<td align=”center” valign=”top” colspan=”2”>

</td></tr>
<tr>
<td width=”80%” align=”center”>
<p style=”margin-top: 40pt”>
<img src=”../images/lizard-front.jpg”

alt=”lizard picture”
height=”186” width=”280”>

<p><h2>Looking for a new friend?</h2>
<p>Check out our

Pet Catalog.

 We may have just what you’re looking for.</p>

</td>
<td style=”width: 20%; background-color: black”>

<div style=”color: white; link: white”>
<p style=”text-align: center; font-size: 15pt”>
Looking for
more?</p>

special deals?
pet information?
good conversation?

<p style=”text-align: center”>Try the

<a href=”login.php”
style=”color: white”>Members Only

section
of our store
<p style=”text-align: center”>It’s free!</p>

</td>
</tr>

</table>
</body></html>

Notice the link to the login PHP program. When the customer clicks the link,
the login page appears.

339Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 339

Writing Login
The login page (refer to Figure 12-2) is produced by the program Login.php,
shown in Listing 12-2. The program uses a switch to create two sections: one
for the login and one for creating a new account. The program creates a ses-
sion that’s opened in all the Members Only Web pages. The login form itself
isn’t included in this program; it’s in a separate file, login_form.inc, and is
called into the program, using include statements, when the form is needed.

Listing 12-2: Logging into the Members Only Section

<?php
/* Program: Login.php
* Desc: Login program for the Members Only section of
* the pet store. It provides two options:
* (1) login using an existing Login Name and
* (2) enter a new login name. Login Names and
* passwords are stored in a MySQL database.
*/
session_start(); #9
include(“dogs.inc”); #10
switch (@$_POST[‘do’]) #11
{
case “login”: #13
$cxn = mysqli_connect($host, $user,$passwd,$dbname)

or die (“Couldn’t connect to server.”); #15

$sql = “SELECT loginName FROM Member
WHERE loginName=’$_POST[fusername]’”; #18

$result = mysqli_query($cxn,$sql)
or die(“Couldn’t execute query.”); #20

$num = mysqli_num_rows($result); #21
if ($num > 0) // login name was found #22
{

$sql = “SELECT loginName FROM Member
WHERE loginName=’$_POST[fusername]’
AND password=md5(‘$_POST[fpassword]’)”;

$result2 = mysqli_query($cxn,$sql)
or die(“Couldn’t execute query 2.”);

$num2 = mysqli_num_rows($result2);
if ($num2 > 0) // password is correct #30
{

$_SESSION[‘auth’]=”yes”; #32
$logname=$_POST[‘fusername’];
$_SESSION[‘logname’] = $logname; #34
$today = date(“Y-m-d h:i:s”); #35
$sql = “INSERT INTO Login (loginName,loginTime)

VALUES (‘$logname’,’$today’)”;
$result = mysqli_query($cxn,$sql)

or die(“Can’t execute insert query.”);
header(“Location: Member_page.php”); #40

}

340 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 340

else // password is not correct #42
{

$message=”The Login Name, ‘$_POST[fusername]’
exists, but you have not entered the
correct password! Please try again.
”;

include(“login_form.inc”); #47
}

} #49
elseif ($num == 0) // login name not found #50
{

$message = “The Login Name you entered does not
exist! Please try again.
”;

include(“login_form.inc”);
}

break; #56

case “new”:
/* Check for blanks */ #59
foreach($_POST as $field => $value) #60
{

if ($field != “fax”) #62
{

if ($value == “”) #64
{

$blanks[] = $field;
}

}
}
if(isset($blanks)) #70
{

$message_new = “The following fields are blank.
Please enter the required information: “;

foreach($blanks as $value)
{

$message_new .= “$value, “;
}
extract($_POST);
include(“login_form.inc”);
exit();

}

/* Validate data */
foreach($_POST as $field => $value) #84
{

if(!empty($value)) #86
{

if(eregi(“name”,$field) and
!eregi(“login”,$field))

{
if (!ereg(“^[A-Za-z’ -]{1,50}$”,$value))
{

$errors[]=”$value is not a valid name.”;

(continued)

341Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 341

Listing 12-2 (continued)
}

}
if(eregi(“street”,$field) or
eregi(“addr”,$field) or eregi(“city”,$field))

{
if(!ereg(“^[A-Za-z0-9.,’ -]{1,50}$”,$value))
{

$errors[] = “$value is not a valid
address or city.”;

}
}
if(eregi(“state”,$field))
{

if(!ereg(“[A-Za-z]{2}”,$value))
{
$errors[]=”$value is not a valid state.”;

}
}
if(eregi(“email”,$field))
{

if(!ereg(“^.+@.+\\..+$”,$value))
{

$errors[] = “$value is not a valid
email address.”;

}
}
if(eregi(“zip”,$field))
{

if(!ereg(“^[0-9]{5,5}(\-[0-9]{4,4})?$”,
$value))

{
$errors[]=”$value is not a valid

zipcode.”;
}

}
if(eregi(“phone”,$field)

or eregi(“fax”,$field))
{

if(!ereg(“^[0-9)(xX -]{7,20}$”,$value))
{

$errors[] = “$value is not a valid
phone number. “;

}
}

} // end if empty #138
} // end foreach
if(@is_array($errors)) #140
{

$message_new = “”;
foreach($errors as $value)

342 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 342

{
$message_new .= $value.” Please try

again
”;
}
extract($_POST);
include(“login_form.inc”);
exit();

}

/* clean data */
$cxn = mysqli_connect($host,$user,$passwd,$dbname);

foreach($_POST as $field => $value) #156
{

if($field != “Button” and $field != “do”)
{

if($field == “password”)
{

$password = strip_tags(trim($value));
}
else
{

$fields[]=$field;
$value = strip_tags(trim($value));
$values[] =

mysqli_real_escape_string($cxn,$value);
$$field = $value;

}
}

}

/* check whether user name already exists */
$sql = “SELECT loginName FROM Member

WHERE loginName = ‘$loginName’”; #177
$result = mysqli_query($cxn,$sql)

or die(“Couldn’t execute select query.”);
$num = mysqli_num_rows($result); #180
if ($num > 0) #181
{

$message_new = “$loginName already used.
Select another User Name.”;

include(“login_form.inc”);
exit();

}
/* Add new member to database */
else #189
{

$today = date(“Y-m-d”);
$fields_str = implode(“,”,$fields);
$values_str = implode(‘“,”’,$values);
$fields_str .=”,createDate”;

(continued)

343Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 343

Listing 12-2 (continued)
$values_str .=’”’.”,”.’”’.$today;
$fields_str .=”,password”;
$values_str .= ‘“‘.”,”.”md5”.”(‘“.$password.”’)”;
$sql = “INSERT INTO Member “;
$sql .= “(“.$fields_str.”)”;

$sql .= “ VALUES “;
$sql .= “(“.’”’.$values_str.”)”;
$result = mysqli_query($cxn,$sql)

or die(“Couldn’t execute insert query.”);
$_SESSION[‘auth’]=”yes”; #204
$_SESSION[‘logname’] = $loginName; #205

/* send email to new member */ #207
$emess = “A new Member Account has been set up. “;
$emess.= “Your new Member ID and password are: “;
$emess.= “\n\n\t$loginName\n\t$password\n\n”;
$emess.=”We appreciate your interest in Pet”;
$emess.= “ Store at PetStore.com. \n\n”;
$emess.= “If you have any questions or problems,”;
$emess.= “ email webmaster@petstore.com”;
$ehead=”From: member-desk@petstore.com\r\n”; #215
$subj = “Your new Member Account from Pet Store”;
$mailsnd=mail(“$email”,”$subj”,”$emess”,”$ehead”);
header(“Location: New_member.php”); #218

}
break; #220

default: #222
include(“login_form.inc”);

}
?>

The ends of some of the lines in Listing 12-2 have line numbers. The following
list refers to the line numbers in the listing to discuss the program and how it
works:

9 Starts a session. The session has to be started at the beginning of the
program, even though the user hasn’t logged in yet.

10 Reads in the file that sets the variables needed to connect to the data-
base. The program is called dogs.inc, which is a misleading name
that seems more secure than calling the program mypasswords.inc.

11 Starts a switch statement. The switch statement contains three
sections, based on the value passed for the hidden variable $do in
the form, obtained from the built-in array $_POST. The first section
runs when the value passed for do is login; the second section runs

344 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 344

when the value passed for do is new; and the third section is the
default that runs if no value is passed for do. The third section just
displays the login page and runs only when the customer first links to
the login page.

13 Starts the case block for the login section — the section that runs
when the customer logs in. The login section of the form sends the
hidden variable $do with the value login, which causes this section
of the switch statement to run.

14 Lines 14 and 15 connect to MySQL and select the database.

17 Lines 17–20 look in the database table Member for a row with the
login name typed by the customer.

21 Checks to see whether a row was found with a loginName field con-
taining the Member ID typed by the customer. $num equals 0 or 1,
depending on whether the row was found.

22 Starts an if block that executes if the Member ID was found. This
means the user submitted a Member ID that is in the database. This
block then checks to see whether the password submitted by the
user is correct for the given Member ID. This block is documented
in more detail in the following list:

24 Lines 24–26 create a query that looks for a row with both the
Member ID and the password submitted by the customer.
Notice that the password submitted in the form ($fpassword)
is encrypted by using the MySQL function md5(). Passwords in
the database are encrypted, so the password you’re trying to
match must also be encrypted, or it won’t match.

27 Lines 27–29 execute the query and check whether a match was
found. $num2 equals 1 or 0, depending on whether a row with
both the Member ID and the password is found.

30 Starts an if block that executes if the password is correct. This is
a successful login. Lines 32–40 are executed, performing the fol-
lowing tasks: 1) The two session variables, auth and logname,
are stored in the SESSION array. 2) $today is created with
today’s date and time in the correct format expected by the data-
base table. 3) A row for the login is entered into the Login table. 4)
The first page of the Members Only section is sent to the member.

42 Starts an else block that executes if the password is not cor-
rect. This is an unsuccessful login. Lines 44–47 are executed,
performing the following tasks: 1) The appropriate error mes-
sage is set in $message. 2) The login page is displayed again.
The login page will show the error message.

345Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 345

Notice that the block starting on line 42 lets the user know
when he or she has a real login name but the wrong password.
If the security of your data is important, you may want to write
this loop differently. Providing that information may be helpful
to someone who is trying to break in because now the cracker
needs to find only the password. For more security, just have
one condition that gives the same error message whenever
either the login name or the password is incorrect. In this exam-
ple, I prefer to provide the information because it is helpful to
the legitimate member (who may not remember whether he or
she installed an account at all), and I’m not protecting any vital
information.

49 Ends the block that executes when the Member ID is found in
the database.

50 Starts an if block that executes when the Member ID is not found in
the database. This could actually be an else, instead of an elseif,
but I think it’s clearer to humans with the if condition in the statement.
This block creates the appropriate error message and shows the login
page again, which includes the error message.

56 Ends the case block that executes when the customer submits a
Member ID and password to log in. The login block extends from
line 13 to this line.

58 Starts the case block that executes when the customer fills out the
form to get a new member account. The form sends the hidden vari-
able $do with the value new, causing the program to jump to this
section of the switch statement.

60 Starts a foreach loop that loops through every field in the new
member form. The loop checks for empty required fields. The state-
ments in the loop are documented in more detail in the following list:

62 Checks whether the field is the fax field. The fax field is not
required, so it isn’t checked to see whether it is blank.

64 Checks whether the field is blank. If it is, the if block adds the
field name to an array named $blanks.

70 Starts an if statement that executes if any blank fields were found.
The if block creates an error message and redisplays the login form,
including the error message.

84 Starts a foreach loop that loops through every field in the new
member form. The loop checks the field contents for invalid formats.
The program doesn’t reach this loop until all the required fields con-
tain some data. The nonrequired fields that are blank are not checked
(line 86).

346 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 346

This loop contains a series of if blocks that check the fields for the
correct format. The if block tests the content of the field against a
regular expression. If the field content is not valid, an information
error message is added to an array named $errors.

140 Starts an if statement that executes when invalid data was found.
That is, it executes if the $errors array contains any elements. The
if block creates an error message and redisplays the form, including
the error message, so the user can enter the correct information.

156 Begins a foreach loop that loops all the New Member form fields to
clean the data. The program does not reach this loop until all the
required fields are not blank and all the fields contain valid data.
The if block creates an array of fields to use in the SQL query that
inserts the data. It cleans and escapes the field values and adds them
to an array of values for use in the SQL INSERT query. The if block
also creates a variable for each field name that contains the cleaned
data. The field password is not added to the array because its value
needs to be encrypted.

176 Lines 176–180 create and execute a query that checks whether the user
name entered by the user already exists. loginName must be unique.

181 Starts an if statement that executes if the user name already exists.
An error message is created and the new member form is redisplayed,
with the error message, so that the user can enter a different user name.

189 Starts an else statement that executes if the user name was not
found in the database. Lines 192–204 create and execute an SQL
query that adds the new member to the database, as follows:

191 Sets $today to today’s date in the correct format for the
createDate field in the Member table.

192 Converts the array of field names to a string that contains the
field names separated by commas.

193 Converts the array of values to a string that contains the values
separated by commas and enclosed in quotes.

194 Adds createDate to the string of field names.

195 Adds $today to the string of values.

196 Adds password to the string of field names.

197 Adds the function that encrypts the password to the string of
values.

198 Lines 198–203 create and execute the SQL query.

204 Lines 204 and 205 store variables in the session. These variables are
available to all pages in the user session. The session variables can be
tested on every session page to determine whether the user is logged in.

347Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 347

207 Lines 207–217 create and send an e-mail message to the new member,
letting the user know that his or her new account was successfully
created. Notice that the e-mail message is created in the variable
$emess over several lines — beginning on line 208, adding text (using
.=) on each line, and ending on line 214. This format is needed to
make it easier for humans to read — not because PHP needs it. In an
e-mail message, unlike in HTML content, extra spaces and line ends
have an effect. For instance, if I created one long message and used
extra spaces for indentation, those spaces would appear in the e-mail.
So I set the message on several lines that I can indent for readability
in the program. Line 215 uses the PHP function mail to send the
e-mail message.

218 Sends the welcome message page for new members to the user’s
browser.

220 Ends the case statement section for the new member form.

222 Starts the case block for the default condition. If $do is not set to
either “login” or “new”, the program skips to this block. Because
both forms on the login page send $do, this block executes only the
first time this program runs — when the user links to it from the
storefront page and has not yet submitted either form. This section
has only one statement: a statement that displays the login page.

This program shows the login page in many places, using include statements
that call the file login_form.inc. This file includes the HTML that produces
the login page. The program Login.php does not produce any output. All the
output is produced by login_form.inc. This type of application organiza-
tion is discussed in Chapter 10. This is a good example of the use of include
files. Just imagine if the statements in login_form.inc, shown in Listing 12-3,
were included in the Login program at each place where login_form is
included. Whew, that would be a mess that only a computer could understand.

Listing 12-3: File That Creates the Login Page

<?php
/* File: login_form.inc
* Desc: Displays login page. Page displays two forms:
* one form for entering an existing login name
* and password and another form for the
* information needed to apply for a new account.

*/
include(“function12.inc”); #8
?>
<html>
<head>
<title>Members Only Login</title>
<style type=”text/css”><!--
.bold_right {font-weight: bold; text-align: right;}
.gray_banner { font-weight: bold; color: white;

348 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 348

background-color: gray;
text-align: center; font-size: 3em;}

.bold_large {font-size: 1.1em; font-weight: bold;}
--></style>
</head>
<body style=”margin: 0”>
<table border=”0” cellpadding=”5” cellspacing=”0”>

<tr><td colspan=”3” class=”gray_banner”>
Members Only Section</td></tr>

<tr><td width=”33%” valign=”top” class=”bold_large”>
Are you a member?
<!-- form for Member login -->
<form action=”Login.php” method=”POST”>
<p><table border=”0”>

<?php #30
if (isset($message))
{

echo “<tr><td style=’color: red’
colspan=’2’ >$message
</td></tr>”;

}
?>

<tr><td class=”bold_right”>Username</td>
<td><input type=”text” name=”fusername”

size=”20” maxsize=”20”></td></tr>
<tr><td class=”bold_right”>Password</td>

<td><input type=”password” name=”fpassword”
size=”20” maxsize=”20”></td></tr>

<input type=”hidden” name=”do”
value=”login”>

<tr><td style=”text-align: center” colspan=”2”>

<input type=”submit” name=”log”

value=”Enter”></td></tr>
</table>
</form>

</td>
<td style=”width: 1; background-color: gray”></td>
<td style=”width: 67%”><p>
Not a member yet?
Get discounts, a newsletter, advance notice
of new pets, much more. Fill in the information
below and join. It’s easy and free!</p>

<!-- form for new member to fill in -->
<form action=”Login.php” method=”POST”>
<table border=”0” width=”100%”>

<?php #60
if (isset($message_new))
{

echo “<tr><td style=’color: red;
font-weight: bold’ colspan=’2’>
<p>$message_new</p></td></tr>”;

}
?>

(continued)

349Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 349

Listing 12-3 (continued)
<tr><td class=”bold_right”>Member ID</td>

<td><input type=”text” name=”loginName”
value=”<?php echo @$loginName ?>”
size=”20” maxlength=”20”></td></tr>

<tr><td class=”bold_right”>Password</td>
<td><input type=”password” name=”password”

value=”<?php echo @$password ?>”
size=”10” maxlength=”8”></td></tr>

<tr><td class=”bold_right”>First Name</td>
<td><input type=”text” name=”firstName”

value=”<?php echo @$firstName ?>”
size=”40” maxlength=”40”></td></tr>

<tr><td class=”bold_right”>Last Name</td>
<td><input type=”text” name=”lastName”

value=”<?php echo @$lastName ?>”
size=”40” maxlength=”40”></td></tr>

<tr><td class=”bold_right”>Street</td>
<td><input type=”text” name=”street”

value=”<?php echo @$street ?>”
size=”55” maxlength=”50”></td></tr>

<tr><td class=”bold_right”>City</td>
<td><input type=”text” name=”city”

value=”<?php echo @$city ?>”
size=”40” maxlength=”40”></td></tr>

<tr><td class=”bold_right”>State</td>
<td><select name=”state”>

<?php
$stateName=getStateName(); #95
$stateCode=getStateCode(); #96
for ($n=1;$n<=50;$n++)
{

$state=$stateName[$n];
$scode=$stateCode[$n];
echo “<option value=’$scode’”;
if ($scode== “AL”)

echo “ selected”;
echo “>$state\n”;

}
?>

</select>
 Zip
<input type=”text” name=”zip”

value=”<?php echo @$zip ?>”
size=”10” maxsize=”10”>

</td></tr>
<tr><td class=”bold_right”>Phone</td>

<td><input type=”text” name=”phone”

350 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 350

value=”<?php echo @$phone ?>”
size=”15” maxlength=”20”>

 Fax
<input type=”text” name=”fax”

value=”<?php echo @$fax ?>”
size=”15” maxlength=”20”></td></tr>

<tr><td class=”bold_right”>Email Address</td>
<td><input type=”text” name=”email”

value=”<?php echo @$email ?>”
size=”55” maxlength=”67”></td></tr>

<input type=”hidden” name=”do” value=”new”>
<tr><td> </td>

<td style=”text-align: center”>
<input type=”submit”

value=”Become a Member”></td>
</tr>

</table>
</form>
</td>

</tr>
<tr><td colspan=”3”

style=”background-color: gray”> </td></tr>
</table>
<div style=”text-align: center; font-size: .8em”>

All comments and suggestions are appreciated. Please
send comments to

webmaster@petstore.com</div>

</body></html>

Notice the following points about login_form:

� Most of the statements are HTML, with a few small PHP sections here
and there.

� The two forms that start on lines 27 and 57 set action to the same pro-
gram and send the same hidden variable, but send a different value for
the hidden variable: do=login or do=new.

� The error messages are shown on the login page by using small PHP sec-
tions. Each form has a section, and the message has different names for
the two forms: $message and $message_new. On line 31, the variable
$message is tested to determine whether it contains a value. A value
(an error message) was assigned to $message only if an error was found
in the form. If $message has a value, the message is displayed; if it has
no value, the message is not shown. A similar statement on line 61 shows
error messages for the new member form.

351Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 351

� A selection drop-down list (started on line 93) is provided for the customer
to select the state, guarding against typing errors by the customer.
Note that lines 95 and 96 call functions. These functions — my func-
tions, not PHP — are included in the program on line 8. The functions
create arrays from a list of state names and a list of two-letter state
codes. The functions eliminate the need to include the two 50-state
lists in the program. The functions can be used repeatedly for many
programs. The function12.inc file contains the two functions,
as follows:

<?php
function getStateCode()
{
$stateCode = array(1=> “AL” ,

“AK” ,
“AZ” ,
...
“WY”);

return $stateCode;
}

function getStateName()
{
$stateName = array(1=> “Alabama”,

“Alaska”,
“Arizona”,
...
“Wyoming”);

return $stateName;
}
?>

A for loop then creates 50 options for the select list, using the two state
arrays.

After running Login.php, if the user is successful with a login, the first page
of the Members Only section of the Web site is shown. If the user successfully
obtains a new user account, the New_member.php program runs.

Writing New_member
The New Member Welcome page greets new members by name and provides
information about their accounts. Members then have the choice of entering
the Members Only section or returning to the main page. Listing 12-4 shows
the program that displays the page that new members see.

352 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 352

Listing 12-4: Welcoming New Members

<?php
/* Program: New_member.php
* Desc: Displays the new member welcome page. Greets

member by name and gives user choice to enter
* restricted section or go back to main page.
*/
session_start(); #7

if (@$_SESSION[‘auth’] != “yes”) #9
{

header(“Location: login.php”);
exit();

}
include(“dogs.inc”); #14
$cxn = mysqli_connect($host,$user,$passwd,$dbname)

or die (“Couldn’t connect to server.”); #16
$sql = “SELECT firstName,lastName FROM Member

WHERE loginName=’{$_SESSION[‘logname’]}’”;
$result = mysqli_query($cxn,$sql)

or die(“Couldn’t execute query”);
$row = mysqli_fetch_assoc($result);
extract($row);
echo “<html>

<head><title>New Member Welcome</title></head>
<body>
<h2 style=’margin-top: .7in; text-align: center’>
Welcome $firstName $lastName</h2>\n”; #27

?>
<p>Your new Member Account lets you enter the Members Only
section of our web site. You’ll find special discounts and
bargains, a huge database of animal facts and stories,
advice from experts, advance notification of new pets for
sale, a message board where you can talk to other Members,
and much more.</p>
<p>Your new Member ID and password were emailed to you.

Store them carefully for future use.</p>
<div style=”text-align: center”>
<p style=”margin-top: .5in; font-weight: bold”>

Glad you could join us!</p>
<form action=”member_page.php” method=”POST”>

<input type=”submit”
value=”Enter the Members Only Section”>

</form>
<form action=”PetShopFrontMembers.php” method=”POST”>

<input type=”submit” value=”Go to Pet Store Main Page”>
</form>
</div>
</body></html>

353Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 353

Notice the following points about New_member.php:

� A session is started on line 7. This makes the session variables stored in
Login.php available to this program.

� Beginning on line 9, the program checks whether the customer is logged
in. When the customer successfully logs in or creates a new account in
Login.php, $auth is set to yes and stored in the $_SESSION array.
Therefore, if $auth doesn’t equal yes, the customer isn’t logged in. If a
customer tries to run the New_member.php program without running
the Login.php program first, $_SESSION[auth] won’t equal yes, and
the user will be sent to the login page.

� The program gets the customer’s first and last names from the database,
beginning with the database connection statement on line 15. On lines 17
and 18, the query is created by using $_SESSION[logname] to search
for the member’s information. The session variable logname that con-
tains the Member ID was set in the login program.

� The PHP section ends on line 28. The remainder of the program is HTML.

� The program uses two different forms to provide two different submit
buttons. The form statements on lines 40 and 44 start different programs.

The customer controls what happens next. If the customer clicks the button
to return to the main page, the PetShopFront.php program runs. If the cus-
tomer clicks the Members Only Section submit button, the first page of the
Members Only section of your Web site is shown.

Writing the Members Only section
The Web pages in the Members Only section are no different than any other
Web pages. You just want to restrict them to members who are logged in.
To do this, you start a session and check whether they’re logged in at the
top of every page. The statements for the top of each program are

session_start();
if (@$_SESSION[‘auth’] != “yes”)
{

header(“Location: Login.php”);
exit();

}

354 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 354

When session_start executes, PHP checks for an existing session. If one
exists, it sets up the session variables. When a user logs in, $_SESSION
[auth] is set to yes. Therefore, if $_SESSION[auth] is not set to yes, the
user is not logged in, and the program takes the user to the login page.

Planning for Growth
The original plan for an application usually includes every wonderful thing
that the user might want it to do. Realistically, it’s usually important to make
the application available to the users as quickly as possible. Consequently,
applications usually go public with a subset of the planned functionality.
More functionality is added later. That’s why it’s important to write your
application with growth in mind.

Looking at the login application in this chapter, I’m sure you can see many
things that could be added to it. Here are some possibilities:

� E-mail a forgotten password. Users often forget their passwords.
Many login applications have a link that users can click to have their
passwords e-mailed to them.

� Change the password. Members might want to change their password.
The application could offer a form for password changes.

� Update information. Members might move or change their phone number
or e-mail address. The application could provide a way for members to
change their own information.

� Create a member list. You might want to output a nicely formatted list
of all members in the database. This probably is something you want to
make available only for yourself. In some situations, however, you might
want to make the list available to all members.

You can easily add any of these abilities to the application. For instance, you
can add to the login form a Forgot my password button that, when clicked,
e-mails the password to the e-mail address in the database. The button can
run the login program with a section for e-mailing the password or run a
different program that e-mails the password. In the same manner, you can
add buttons for changing the password or updating customer information.
You don’t need to wait until an application has all its bells and whistles to
let your customers use it. You can write it one step at a time.

355Chapter 12: Building a Members Only Web Site

19_096004 ch12.qxp 10/11/06 9:14 PM Page 355

356 Part IV: Applications

19_096004 ch12.qxp 10/11/06 9:14 PM Page 356

Part V
The Part of Tens

20_096004 pt05.qxp 10/27/06 11:23 AM Page 357

In this part . . .

The chapters in this part contain hints, tips, and warn-
ings based on my experience. Perhaps they can serve

as a shortcut for you on your journey to becoming a confi-
dent Web developer. I sincerely hope so.

20_096004 pt05.qxp 10/11/06 9:14 PM Page 358

Chapter 13

Ten Things You Might Want to
Do Using PHP Functions

In This Chapter
� Finding out about many useful functions

� Understanding what functions can do

O ne of the strongest aspects of PHP is its many built-in functions. In this
chapter, I list the PHP functions that I use most often. I describe some of

them elsewhere in this book, some I mention only in passing, and some I don’t
mention at all. There are many hundreds of functions in the PHP language.
For a complete list, see the PHP documentation at www.php.net/manual/
en/funcref.php.

Communicate with MySQL
PHP has many functions designed specifically for interacting with MySQL.
I describe the following MySQL functions thoroughly in this book:

mysqli_connect();mysqli_fetch_assoc()
mysqli_num_rows(); mysqli_query()

The following functions could be useful, but I either don’t discuss them or
discuss them only briefly:

� mysqli_insert_id($cxn): For use with an AUTO-INCREMENT MySQL
column. This function gets the last number inserted into the column.

� mysqli_select_db($cxn,$database): Selects a database. The
currently selected database is changed to the specified database.
All succeeding queries are executed on the selected database.

21_096004 ch13.qxp 10/11/06 9:28 PM Page 359

� mysqli_fetch_row($result): Gets one row from the temporary
results location. The row is put into an array with numbers as the keys.

� mysqli_affected_rows($result): Returns the number of rows that
were affected by a query — for instance, the number of rows deleted or
updated.

� mysqli_num_fields($result): Returns the number of fields in a
result.

� mysqli_field_name($result, N): Returns the name of the row indi-
cated by N. For instance, mysqli_field_name($result,1) returns
the name of the second column in the result. The first column is 0.

If you use any of the preceding functions with MySQL 4.0 or older, the func-
tion’s name begins with mysql_s rather than mysqli_.

Send E-Mail
PHP provides a function that sends e-mail from your PHP program. The
format is

mail(address,subject,message,headers);

These are the values that you need to fill in:

� address: The e-mail address that will receive the message.

� subject: A string that goes on the subject line of the e-mail message.

� message: The content that goes inside the e-mail message.

� headers: A string that sets values for headers. For instance, you might
have a headers string as follows:

“From: member-desk@petstore.com\r\nbcc: mom@hercompany.com”

The header would set the From header to the given e-mail address, plus
send a blind copy of the e-mail message to mom.

The following is an example of PHP statements that you can use in your
script to set up and send an e-mail message:

$to = “janet@valade.com”;
$subj = “Test”;
$mess = “This is a test of the mail function”;
$headers = bcc:techsupport@mycompany.com\r\n
$mailsend = mail($to,$subj,$mess,$headers);

360 Part V: The Part of Tens

21_096004 ch13.qxp 10/11/06 9:28 PM Page 360

Sometimes you might have a problem with your e-mail. PHP has a configura-
tion setting that must be correct before the mail function can connect to your
system e-mail software. The default is usually correct, but if your e-mail doesn’t
seem to be getting to its destination, check the PHP configuration mail setting
by looking for the following in the output of phpinfo():

Sendmail_path (on Unix/Linux)
SMTP (on Windows)

You can change the setting by editing the php.ini file. Look for the following
lines:

[mail function]
; For Win32 only.
SMTP = localhost

; For Win32 only.
sendmail_from = me@localhost.com

; For Unix only.
;sendmail_path =

Windows users need to change the first two settings. The first setting is where
you put the name of your outgoing mail server. However you send e-mail —
using a LAN at work, a cable modem at home, an ISP via a modem — you send
your mail with an SMTP server, which has an address that you need to know.

If you send directly from your computer, you should be able to find the name
of the outgoing mail server in your e-mail software. For instance, in Microsoft
Outlook Express, choose Tools➪Accounts➪Properties and then click the
Servers tab. If you can’t find the name of your outgoing mail server, ask your
e-mail administrator for the name. If you use an ISP, you can ask the ISP. The
name is likely to be in a format similar to the following:

mail.ispname.net

The second setting is the return address sent with all your e-mail. Change the
setting to the e-mail address that you want to use for your return address, as
follows:

sendmail_from = Janet@Valade.com

The third setting is for Unix users. The default is usually correct. If it doesn’t
work, talk to your system administrator about the correct path to your outgo-
ing mail server. This setting usually refers to Linux as well.

Don’t forget to remove the semicolon at the beginning of the lines. The semi-
colon makes the line into a comment, so the setting isn’t active until you
remove the semicolon.

361Chapter 13: Ten Things You Might Want to Do Using PHP Functions

21_096004 ch13.qxp 10/11/06 9:28 PM Page 361

Use PHP Sessions
The functions to open or close a session follow. I explain these functions in
Chapter 9.

session_start(); session_destroy()

Stop Your Program
Sometimes you just want your program to stop, cease, and desist. Two func-
tions do this: exit() and die(). Actually, these are two names for the same
function, but sometimes it’s just more fun to say “die.” Both print a message
when they stop if you provide one. The format is

exit(“message string”);

When exit executes, message string is output.

Handle Arrays
Arrays are useful in PHP, particularly for getting the results from database
functions and for form variables. I explain the following array functions else-
where in the book, mainly in Chapter 7:

array(); extract(); sort(); asort();
rsort(); arsort(); ksort(); krsort();

Here are some other useful functions:

� array_reverse($varname): Returns an array with the values in
reverse order.

� array_unique($varname): Removes duplicate values from an array.

� in_array(“string”,$varname): Looks through an array $varname
for a string “string”.

� range(value1,value2): Creates an array containing all the values
between value1 and value2. For instance, range(‘a’,’z’) creates
an array containing all the letters between a and z.

362 Part V: The Part of Tens

21_096004 ch13.qxp 10/11/06 9:28 PM Page 362

� explode(“sep”,”string”): Creates an array of strings in which
each item is a substring of string, separated by sep. For example,
explode(“ “,$string) creates an array in which each word in
$string is a separate value. This is similar to split in Perl.

� implode(“glue”,$array): Creates a string containing all the values in
$array with glue between them. For instance, implode(“, “,$array)
creates a string: value1, value2, value3, and so on. This is similar to
the join function in Perl.

There are many more useful array functions. PHP can do almost anything
with an array.

Check for Variables
Sometimes you just need to know whether a variable exists. These functions
can be used to test whether a variable is currently set:

isset($varname); // true if variable is set
!isset($varname); // true if variable is not set
empty($varname); // true if value is 0 or is not set

Format Values
Sometimes you need to format the values in variables. In Chapter 6, I explain
how to format numbers into dollar format by using number_format() and
sprintf(). In Chapter 6, I also discuss unset(), which removes the values
from a variable. In this section, I describe additional capabilities of sprintf().

The function sprintf() allows you to format any string or number, includ-
ing variable values. The general format is

$newvar = sprintf(“format”,$varname1,$varname2,...);

where format gives instructions for the format and $varname contains the
value(s) to be formatted. format can contain both literals and instructions
for formatting the values in $varname. In addition, a format containing only
literals is valid, such as the following statement:

$newvar = sprintf(“I have a pet”);

363Chapter 13: Ten Things You Might Want to Do Using PHP Functions

21_096004 ch13.qxp 10/11/06 9:28 PM Page 363

This statement outputs the literal string. However, you can also add vari-
ables, using the following statements:

$ndogs = 5;
$ncats = 2;
$newvar = sprintf(“I have %s dogs and %s cats”,$ndogs,$ncats);

The %s is a formatting instruction that tells sprintf to insert the value in the
variable as a string. Thus, the output is I have 5 dogs and 2 cats. The %
character signals sprintf that a formatting instruction starts here. The for-
matting instruction has the following format:

%pad-width.dectype

These are the components of the formatting instructions:

� %: Signals the start of the formatting instruction.

� pad: A padding character used to fill out the number when necessary.
If you don’t specify a character, a space is used. pad can be a space, a 0,
or any character preceded by a single quote (‘). It’s common to pad
numbers with 0 — for example, 01 or 0001.

� -: A symbol meaning to left-justify the characters. If this isn’t included,
the characters are right-justified.

� width: The number of characters to use for the value. If the value doesn’t
fill the width, the padding character is used to pad the value. For instance,
if width is 5, pad is 0, and the value is 1, the output is 00001.

� .dec: The number of decimal places to use for a number.

� type: The type of value. Use s for most values. Use f for numbers that
you want to format with decimal places.

Some possible sprintf statements are

sprintf(“I have $%03.2f. Does %s have any?”,$money,$name);
sprintf(“%’.-20s%3.2f”,$product,$price);

The output of these statements is

I have $030.00. Does Tom have any?
Kitten.............. 30.00

364 Part V: The Part of Tens

21_096004 ch13.qxp 10/11/06 9:28 PM Page 364

Compare Strings to Patterns
In earlier chapters in this book, I use regular expressions as patterns to
match strings. (I explain regular expressions in Chapter 6.) The following
functions use regular expressions to find and sometimes replace patterns
in strings:

� ereg(“pattern”,$varname): Checks whether the pattern is found
in $varname. eregi is the same function except it ignores uppercase
and lowercase.

� ereg_replace(“pattern”,”string”,$varname): Searches for
pattern in $varname and replaces it with string. eregi_replace
is the same function except it ignores uppercase and lowercase.

Find Out about Strings
Sometimes you need to know things about a string, such as its length or
whether the first character is an uppercase O. PHP offers many functions
for checking out your strings:

� strlen($varname): Returns the length of the string.

� strpos(“string”,”substring”): Returns the position in string
where substring begins. For instance, strpos(“hello”,”el”)
returns 1. Remember that the first position for PHP is 0. strrpos()
finds the last position in string where substring begins.

� substr(“string”,n1,n2): Returns the substring from string
that begins at n1 and is n2 characters long. For instance,
substr(“hello”,2,2) returns ll.

� strtr($varname,”str1”,”str2”): Searches through the string
$varname for str1 and replaces it with str2 every place that it’s
found.

� strrev($varname): Returns the string with the characters reversed.

Many more string functions exist. See the documentation at www.php.net.

365Chapter 13: Ten Things You Might Want to Do Using PHP Functions

21_096004 ch13.qxp 10/11/06 9:28 PM Page 365

Change the Case of Strings
Changing uppercase letters to lowercase and vice versa is not so easy. Bless
PHP for providing functions to do this for you:

� strtolower($varname): Changes any uppercase letters in the string
to lowercase letters

� strtoupper($varname): Changes any lowercase letters in the string
to uppercase letters

� ucfirst($varname): Changes the first letter in the string to uppercase

� ucwords($varname): Changes the first letter of each word in the string
to uppercase

366 Part V: The Part of Tens

21_096004 ch13.qxp 10/11/06 9:28 PM Page 366

Chapter 14

Ten PHP Gotchas
In This Chapter
� Recognizing common PHP errors

� Interpreting error messages

I guarantee that you will do all the things that I mention in this chapter. It’s
not possible to write programs without making these mistakes. The trick is

to find out how to recognize them, roll your eyes, say, “Not again,” and then
correct your mistakes. One error message that you will see many times is

Parse error: parse error in c:\test.php on line 7

This is PHP’s way of saying, “Huh?” It means it doesn’t understand some-
thing. This message helpfully points to the file and the line number where
PHP got confused. Sometimes it points directly at the error, but sometimes
PHP’s confusion results from an error earlier in the program.

Missing Semicolons
Every PHP statement ends with a semicolon (;). PHP doesn’t stop reading a
statement until it reaches a semicolon. If you leave out the semicolon at the
end of a line, PHP continues reading the statement on the following line.
For instance, consider the following statement:

$test = 1
echo $test;

The statement doesn’t make sense to PHP when it reads the two lines as one
statement, so it complains with an error message, such as the annoying

Parse error: parse error in c:\test.php on line 2

Before you know it, you’ll be writing your home address with semicolons at
the end of each line.

22_096004 ch14.qxp 10/11/06 9:27 PM Page 367

Not Enough Equal Signs
When you ask whether two values are equal in a comparison statement, you
need two equal signs (==). Using one equal sign is a common mistake. It’s
perfectly reasonable because you have been using one equal sign to mean
equal since the first grade, when you discovered that 2 + 2 = 4. This is a
difficult mistake to recognize because it doesn’t cause an error message.
It just makes your program do odd things, like infinite loops. I’m continually
amazed at how long I can stare at the following and not see why it’s looping
endlessly:

$test = 0;
while ($test = 0)
{

$test++;
}

Misspelled Variable Names
An incorrectly spelled variable name is another PHP gotcha that doesn’t
result in an error message, just odd program behavior. If you misspell a vari-
able name, PHP considers it a new variable and does what you ask it to do.
Here’s another clever way to write an infinite loop:

$test = 0;
while ($test == 0)
{

$Test++;
}

To PHP, $test is not the same variable as $Test.

Missing Dollar Signs
A missing dollar sign in a variable name is hard to see, but at least it most
likely results in an error message telling you where to look for the problem.
It usually results in the old familiar parse error:

Parse error: parse error in test.php on line 7

368 Part V: The Part of Tens

22_096004 ch14.qxp 10/11/06 9:27 PM Page 368

Troubling Quotes
You can have too many, too few, or the wrong kind of quotes. You have too
many when you put quotes inside of quotes, such as

$test = “<table width=”100%”>”;

PHP sees the second double quote (“) — before 100 — as the ending double
quote (“) and reads the 1 as an instruction, which makes no sense. Voilà!
Another parse error. The line must be either

$test = “<table width=’100%’>”;

or

$test = “<table width=\”100%\”>”;

You have too few quotes when you forget to end a quoted string, such as

$test = “<table width=’100%’>;

PHP will continue reading the lines as part of the quoted string until it
encounters another double quote (“), which might not occur for several
lines. This is one occasion when the parse error pointing to where PHP got
confused is not pointing to the actual error. The error occurred some lines
previously, when you forgot to end the string.

You have the wrong kind of quotes when you use a single quote (‘) when you
meant a double quote (“) or vice versa. The difference between single and
double quotes is sometimes important, as I explain in Chapter 6.

Invisible Output
Some statements, such as the header statement, must execute before the pro-
gram produces any output. If you try to use such statements after sending
output, they fail. The following statements will fail because the header mes-
sage isn’t the first output:

<html>
<?php

header(“Location: http://company.com”);
?>

369Chapter 14: Ten PHP Gotchas

22_096004 ch14.qxp 10/11/06 9:27 PM Page 369

<html> is not in a PHP section and is therefore sent as HTML output.
The following statements will work:

<?php
header(“Location: http://company.com”);

?>
<html>

The following statements will fail

<?php
header(“Location: http://company.com”);

?>
<html>

because there’s one single blank space before the opening PHP tag. The blank
space is output to the browser, although the resulting Web page looks empty.
Therefore, the header statement fails because there is output before it. This is
a common mistake and difficult to spot.

Numbered Arrays
In PHP, the first value in an array is numbered zero (0). Of course, humans
tend to believe that lists start with the number one (1). This fundamentally
different way of viewing lists results in us humans believing an array isn’t
working correctly when it’s working just fine. For instance, consider the fol-
lowing statements:

$test = 1;
while ($test <= 3)
{

$array[] = $test;
$test++;

}
echo $array[3];

Nothing is displayed by these statements. I leap to the conclusion that there’s
something wrong with my loop. Actually, it’s fine. It just results in the follow-
ing array:

$array[0]=1
$array[1]=2
$array[2]=3

and doesn’t set anything into $array[3].

370 Part V: The Part of Tens

22_096004 ch14.qxp 10/11/06 9:27 PM Page 370

Including PHP Statements
When a file is read in using an include statement in a PHP section, it seems
reasonable to me that the statements in the file will be treated as PHP state-
ments. After all, PHP adds the statements to the program at the point where
I include them. However, PHP doesn’t see it my way. If a file named file1.inc
contains the following statements:

if ($test == 1)
echo “Hi”;

and I read it in with the following statements in my main program:

<?php
$test = 1;
include (“file1.inc”);
?>

I expect the word Hi to appear on the Web page. However, the Web page dis-
plays this:

if ($test == 1) echo “Hi”;

Clearly, the file that is included is seen as HTML. To send Hi to the Web page,
file1.inc needs to contain the following statements:

<?php
if ($test == 1)

echo “Hi”;
?>

Missing Mates
Parentheses and curly brackets come in pairs and must be used that way.
Opening with a (that has no closing) or a { without a } will result in an
error message. One of my favorites is using one closing parenthesis where
two are needed, as in the following statement:

if (isset($test)

This statement needs a closing parenthesis at the end. It’s much more diffi-
cult to spot that one of your blocks didn’t get closed when you have blocks
inside blocks inside blocks. For instance, consider the following:

371Chapter 14: Ten PHP Gotchas

22_096004 ch14.qxp 10/11/06 9:27 PM Page 371

while ($test < 3)
{
if ($test2 != “yes”)
{
if ($test3 > 4)
{
echo “go”;
}
}

You can see there are three opening curly brackets and only two closing
ones. Imagine that 100 lines of code are inside these blocks. It can be difficult
to spot the problem — especially if you think the last closing bracket is
closing the while loop, but PHP sees it as closing the if loop for $test2.
Somewhere later in your program, PHP might be using a closing bracket to
close the while loop that you aren’t even looking at. It can be difficult to
trace the problem in a large program.

Indenting blocks makes it easier to see where closing brackets belong. Also, I
often use comments to keep track of where I am, such as

while ($test < 3)
{
if ($test2 != “yes”)
{
if ($test3 > 4)
{
echo “go”;
} // closing if block for $test3
} // closing if block for $test2
} // closing while block

Confusing Parentheses and Brackets
I’m not sure whether mistaking parentheses for brackets and vice versa is a
problem for everyone or just for me because I refuse to admit that I can’t see as
well as I used to. Although PHP has no trouble distinguishing between paren-
theses and curly brackets, my eyes are not so reliable. Especially while staring
at a computer screen at the end of a ten-hour programming marathon, I can
easily confuse (and {. Using the wrong one gets you a parse error message.

372 Part V: The Part of Tens

22_096004 ch14.qxp 10/11/06 9:27 PM Page 372

Part VI
Appendixes

23_096004 pt06.qxp 10/11/06 9:27 PM Page 373

In this part . . .

Appendix A provides instructions for installing MySQL,
and Appendix B does the same for PHP. Appendix C

provides installation and configuration information that
could be helpful if you need to install Apache.

23_096004 pt06.qxp 10/11/06 9:27 PM Page 374

Appendix A

Installing MySQL

Although MySQL runs on many platforms, I describe how to install it on
Linux, Unix, Windows, and Mac, which together account for the majority

of Web sites on the Internet. Be sure to read the instructions all the way
through before beginning the installation.

MySQL can be installed most easily from binaries — precompiled, ready-to-
install packages. Binaries are available for most operating systems: Linux,
Windows, Mac, FreeBSD, many flavors of Unix, and others. If such a package
is available for your operating system, use it. Only install MySQL from source
if it’s necessary, such as when there’s no binary for your operating system or
you need some functionality that’s not compiled into the binaries (for exam-
ple, a different character set).

If you have trouble starting the MySQL server after installing it, check the
error log for useful information. The error log is located in the data directory
and has the extension .err.

On Windows
In most cases, when you download and install MySQL, the server is started
automatically. If it isn’t or if you need to stop and start it for another reason,
you can start it manually as I describe in the section, “Starting and stopping
the MySQL server.” You can also set up MySQL so that it starts every time
your computer starts.

Downloading and installing MySQL
To install MySQL on Windows, follow these steps:

1. Point your Web browser to www.mysql.com, the MySQL home page.

2. Click Downloads in the lower-right corner of the Web page.

3. Scroll down the screen until you come to the MySQL Community Edition
heading, and click the link for the version you want to download.

24_096004 appa.qxp 10/11/06 9:27 PM Page 375

At present, MySQL 5.0 is shown as the recommended version. Most people
should download the recommended version. The Downloads page for
the selected version opens, such as the MySQL 5.0 Downloads page.

4. Scroll down the screen until you come to the Windows Downloads
heading, and click Pick a Mirror by the version you want to download.

For most people, Windows Essentials is the best choice. The Select a
Mirror page opens.

5. Scroll down the page to locate the mirror closest to your location, and
click HTTP by the selected mirror.

A dialog box opens.

6. Select the option to save the file.

A dialog box opens that lets you select where you want the file saved.

7. Navigate to where you want to save the file (for example, c:\
downloads), and then click Save.

After the download, you see a file in the download location (for example,
c:\downloads) containing the MySQL installer. The file is named
mysql-essential-, followed by the version number, followed by
-win32.msi — for instance, mysql-essential-5.0.22-win32.msi.

8. Verify the file you just downloaded.

See the “Verifying a Downloaded File” section, later in this appendix.

9. Double-click the installer (.msi) file.

The opening screen shown in Figure A-1 is displayed. Note: If you’re
installing from a Windows NT/2000/XP system, be sure that you’re
logged into an account with administrative privileges.

Figure A-1:
The opening

screen of
the MySQL

setup
wizard.

376 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 376

10. Click Next.

You see a screen for choosing the type of installation.

11. Select Typical and then click Next.

The Ready to Install Program window opens. The current settings are
displayed.

12. Click Install.

The installation of MySQL begins. When the installation in complete, a
Sign-Up dialog box opens.

13. Click Skip Signup and then click Next.

The Wizard Completed window opens, as shown in Figure A-2.

14. If you are installing this version of the server for the first time, select
Configure the MySQL Server Now.

If you are upgrading the MySQL server, such as from MySQL 5.0.18 to
5.0.22, you may not need to configure the server. The wizard will give it
the same configuration as the existing version. However, if you are
upgrading to a new major version, such as from MySQL 5.0 to MySQL 5.1,
you will need to run the configuration wizard.

15. Click Finish.

If you selected Configure the MySQL Server Now, the configuration wizard
starts immediately. Running the MySQL configuration wizard is explained in
the next section. If you did not select it, the installation wizard stops running.

Figure A-2:
The Wizard
Completed

screen of
the MySQL

setup
wizard.

377Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 377

Running the MySQL configuration wizard
MySQL must be configured after it is installed. You need to assign a password
to the MySQL account, named root, which is installed automatically. You need
to start the server and set it up so that it automatically starts when your
computer boots.

MySQL provides a configuration wizard. The configuration wizard starts
immediately after installation if you selected Configure the MySQL Server
Now in the final installation screen. You can also start the configuration
wizard at any time using a menu item in the MySQL Start Menu.

1. Choose Start➪All Programs➪MySQL➪MySQL Server 5.0➪MySQL
Server instance config wizard.

The configuration wizard starts.

2. If you have more than one version of MySQL installed, a screen appears
and you can click the version you want to configure. Then, click Next.

The MySQL Server Configuration Types window opens.

3. Click Standard Configuration and then click Next.

The Windows Options dialog box opens.

4. Select Install as a Windows Service.

If you are using Windows 98/Me, installing as a Windows service is not
possible. Instead, select Add bin Directory to Windows PATH and skip to
Step 7.

Figure A-3:
The first

screen in
the MySQL
configura-

tion wizard.

378 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 378

5. In the Service Name box, type mysql50.

6. Select Launch the MySQL Server Automatically.

7. Click Next.

The security options dialog box opens, as shown in Figure A-4.

8. Select Modify Security Settings.

9. In the New Root Password box, type a password. In the Confirm box,
retype the same password.

You are now setting the password for the root account for your MySQL
server. You must use the root account to access your MySQL database.
You need to remember the password you type here.

10. If you are setting up a development environment that no one can
access but you, you can select Create an Anonymous Account.

An anonymous account is handy. However, if there is any access to your
MySQL server from the Internet, do not create an anonymous account.
It’s a security risk.

11. Click Next.

The Ready to Execute window opens.

12. Click Execute.

A message appears when the configuration is complete.

Figure A-4:
The security

options
screen in

the MySQL
configura-

tion wizard.

379Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 379

Starting and stopping the MySQL server
With your MySQL server set up to be running whenever your computer is run-
ning, you may sometimes need to stop or start the server. For instance, if you
upgrade MySQL, you must shut down the server before starting the upgrade.

Windows NT/2000/XP
To stop or start the MySQL server, do the following:

1. Choose Start➪Control Panel➪Administrative Tools➪Services.

A list of all current services appears.

2. Scroll down the alphabetical listing, and click the MySQL service you
want to stop or start.

Stop or Start links appear to the left of the service name.

3. Click Stop or Start.

If you do not find the MySQL server in the list, you can set it up as a service
using the configuration wizard described in the previous section.

Windows 98/Me
If you are using Windows 98/Me, setting up MySQL as a service is not possi-
ble. However, you can start the server manually as follows:

1. Open a Command Prompt (perhaps called DOS) window.

Choose Start➪Programs➪Accessories➪Command Prompt.

2. Change to the bin directory in the directory where MySQL is installed.

For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

3. Type mysqld.

If this command fails, type mysqld-nt. Which program name you type
depends on the MySQL version.

If the server starts, no message is displayed. You must leave this window
open while the server is running. If you close the window, the server
will shut down, although it sometimes does not shut down immediately.
An error message is displayed if the server is unable to start.

4. Test whether the server is running.

To test whether the server is running correctly, open another command
prompt window, as described in Step 1. Change to the directory you
changed to in Step 2 and type mysql. If the server is not running, you
will see an error message.

380 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 380

Manual shutdown
Sometimes you may have difficulty shutting down the server. You can shut
the server down manually as follows:

1. Open a Command Prompt (perhaps called DOS) window.

Choose Start➪Programs➪Accessories➪Command Prompt.

2. Change to the bin directory in the directory where MySQL is
installed.

For instance, you might type cd c:\Program Files\MySQL\MySQL
Server 5.0\bin.

3. Type mysqladmin -u root -p shutdown.

In this command, the account is root. The -p means password, so you
will be prompted to type a password. If the account you specify does not
require a password, leave out the -p.

On Linux and Unix
Many Linux computers come with MySQL already installed. Many Linux
systems install, or give you the option to install, MySQL when Linux is
installed. Many Linux systems, such as Fedora, SuSE, and Ubuntu, include
built-in utilities that download and install MySQL for you, often the most
recent version. In many cases, installing MySQL provided by the Linux dis-
tribution is an easier, more efficient choice than downloading and installing
MySQL from the MySQL Web site. Check the Web site for your Linux distrib-
ution to see whether they offer an easy way to install a current version of
MySQL.

If you are installing MySQL on a Linux computer, you can install it from
RPM files that you download from the MySQL Web site. Using RPM is the
easiest way to install on Linux. See the following section, “Using RPM
(Linux only).” For Unix, you can install from a binary file — a file specific
to your operating system. The file is formatted for the installation software
your operating system uses. As of this writing, MySQL binary files are avail-
able for Solaris, HP-UX, AIX, SCO, SGI Irix, OpenBSD, FreeBSD, and other Unix
flavors.

If neither an RPM file nor a binary works for you, you can always install MySQL
from source files. To do this, follow the instructions in the “From source files”
section.

381Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 381

Using RPM (Linux only)
MySQL can be installed on Linux using RPM. Although RPM stands for Red
Hat Package Manager, RPM is available on most flavors of Linux, not just
Red Hat. You can download the RPM file using the following instructions.
However, the RPM file might already be on the CD that your Linux operating
system came on. Installing the RPM file from a CD saves you the trouble of
downloading (you can skip Steps 1–9 in the following list), but if the version
of MySQL on your CD is not the most recent, you might want to download an
RPM file anyway.

To install MySQL on Linux from an RPM file provided on the MySQL Web site,
follow these steps:

1. Point your Web browser to www.mysql.com, the MySQL home page.

2. Click Downloads in the lower-right corner of the Web page.

The MySQL Downloads page opens.

3. Scroll down the screen until you come to the MySQL Community Edition
heading, and click the link for the version you want to download.

At present, MySQL 5.0 is shown as the recommended version. Most people
should download the recommended version. The Downloads page for
the selected version opens, such as the MySQL 5.0 Downloads page.

4. Scroll down the screen until you come to the Downloads heading for
the appropriate version of Linux, and select Pick a Mirror by the RPM
file you want to download.

At present, you can find RPMs for Red Hat, SuSE, and Ubuntu, and also
generic RPMs for other flavors of Linux. You need to download both the
server RPM and the client RPM. The Select a Mirror page opens.

5. Scroll down the page to locate the mirror closest to your location, and
click HTTP by the selected mirror.

A dialog box opens.

6. Select the option to save the file.

A box opens that lets you select where you want to save the file.

7. Navigate to where you want to save the RPM (for example,
/usr/src/mysql) and then click Save.

8. Repeat Steps 4–7 to download the RPM file for Client Programs into
the same download location.

9. Change to the directory where you saved the downloads.

382 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 382

For instance, you might type cd /usr/src/mysql. You see two files in
the directory — one file named MySQL-server-, followed by the version
number and .i386.rpm, and a second file named similarly with client
embedded in its name. For example, MySQL-server-5.0.22-
0.i386.rpm and MySQL-client-5.0.22-0.i386.rpm.

10. Verify the downloaded files.

See the “Verifying a Downloaded File” section, later in this appendix.

11. Install the RPM by entering this command:

rpm -i listofpackages

For instance, using the example in Step 9, the command would be this:

rpm -i MySQL-server-5.0.22-0.i386.rpm MySQL-client-
5.0.22-0.i386.rpm

This command installs the MySQL packages. It sets the MySQL account
and group name that you need, and creates the data directory at /var/
lib/mysql. It also starts the MySQL server and creates the appropriate
entries in /etc/rc.d so that MySQL starts automatically whenever
your computer starts.

You need to be using an account that has permissions to successfully
run the rpm command, such as a root account.

12. To test that MySQL is running okay, type this:

bin/mysqladmin --version

You should see the version number of your MySQL server.

From source files
Before you decide to install MySQL from source files, check for RPMs or binary
files for your operating system. MySQL RPMs and binary files are precompiled,
ready-to-install packages for installing MySQL and are convenient and reliable.

You install MySQL by downloading source files, compiling the source files,
and installing the compiled programs. This process sounds technical and
daunting, but it’s not. However, read all the way through the following steps
before you begin the installation procedure. To install MySQL from source
code, follow these steps:

1. Point your Web browser to www.mysql.com, the MySQL home page.

2. Click Downloads in the lower-right corner of the Web page.

The MySQL Downloads page opens.

383Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 383

3. Scroll down the screen until you come to the MySQL Community Edition
heading, and then click the link for the version you want to download.

At present, MySQL 5.0 is shown as the recommended version. Most people
should download the recommended version. The Downloads page for
the selected version opens, such as the MySQL 5.0 Downloads page.

4. Scroll to the bottom of the screen to the Source Downloads heading,
and click Pick a Mirror by the tarball version (currently the first file
in the Source Downloads section).

The Select a Mirror page opens.

5. Scroll down the page to locate the mirror closest to your location, and
click HTTP by the selected mirror.

A dialog box opens.

6. Select the option to save the file.

A box opens that lets you select where the file will be saved.

7. Navigate to where you want to install MySQL and then click Save.

The standard location is /usr/local. It’s best to use the standard loca-
tion if possible.

8. After the download is complete, change to the download directory —
for instance, cd-/usr/local.

You see a file named mysql-, followed by the version number and
.tar.gz. — for instance, mysql-5.0.22.tar.gz. This file is a tarball,
a file that is a container for many files and subdirectories.

9. Verify the file you just downloaded.

See the “Verifying a Downloaded File” section, later in this appendix.

10. Create a user and group ID for MySQL to run under by using the fol-
lowing commands:

groupadd mysql
useradd -g mysql mysql

The syntax for the commands might differ slightly on different versions
of Unix, or they might be called addgroup and adduser.

Note: You must be using an account authorized to add users and groups.

11. Unpack the tarball by typing

gunzip -c filename | tar -xvf –

For example:

gunzip -c mysql-5.0.22.tar.gz | tar -xvf –

384 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 384

You see a new directory named mysql-version — for instance,
mysql-5.0.22 — which contains many files and subdirectories. You
must be using an account that is allowed to create files in /usr/local.

12. Change to the new directory.

For instance, you might type cd mysql-5.0.22.

13. Type the following:

./configure --prefix=/usr/local/mysql

You see several lines of output. The output will tell you when configure
has finished. This might take some time.

14. Type make.

You see many lines of output. The output will tell you when make has fin-
ished. make might run for some time.

15. Type make install.

make install will finish quickly.

Note: You might need to run this command as root.

16. Type the following: scripts/mysql_install_db.

This command runs a script that initializes your MySQL databases.

17. Make sure that the ownership and group membership of your MySQL
directories are correct. Set the ownership with these commands:

chown -R root /usr/local/mysql
chown -R mysql /usr/local/mysql/data
chgrp -R mysql /usr/local/mysql

These commands make root the owner of all the MySQL directories
except data and make mysql the owner of data. All MySQL directories
belong to group mysql.

18. Set up your computer so that MySQL starts automatically when your
machine starts by copying the file mysql.server from /usr/local/
mysql/support-files to the location where your system has its
startup files.

19. To test MySQL, you can start your server manually, without restarting
your computer, by typing the following:

bin/safe_mysqld --user=mysql &

20. To test that MySQL is running okay, type:

bin/mysqladmin --version

You should see the version number of your MySQL server.

385Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 385

On Mac
You can download MySQL using a Mac OS X 10.2 (Jaguar) or later PKG binary
package. If your operating system is OS X 10.1 or earlier, you can’t use this
package. You will need to download a tarball and install MySQL from source
code, as described in the previous section.

1. Point your Web browser to www.mysql.com, the MySQL home page.

2. Click Downloads in the lower-right corner of the Web page.

The MySQL Downloads page opens.

3. Scroll down the screen until you come to the MySQL Community Edition
heading, and click the link for the version you want to download.

At present, MySQL 5.0 is shown as the recommended version. Most people
should download the recommended version. The Downloads page for
the selected version opens, such as the MySQL 5.0 Downloads page.

4. Scroll down to the Mac OS X Downloads heading. Locate the section for
your version of OS X, and click Pick a Mirror by the standard version.

The Downloads heading is in the bottom half of the Downloads page.
The Select a Mirror page opens.

5. Scroll down the page and locate the mirror closest to your location,
and click HTTP by the selected mirror.

A dialog box opens.

6. Select the option to save the file.

A box opens that lets you select where the file will be saved.

7. Navigate to where you want to install MySQL and then click Save.

The standard location is /usr/local. It is best to use the standard
location if possible.

8. After the download is complete, change to the download directory —
for instance, /usr/local.

You see a package named mysql-standard-, followed by the version
number and the OS number and dmg, such as mysql-standard-
5.0.22-osx10.3-powerpc.dmg. If the downloaded file does not have
the extension .dmg, change the filename to give it the .dmg extension.

9. Verify the file you just downloaded.

See the “Verifying a Downloaded File” section, later in this appendix.

386 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 386

10. Create a user and a group named mysql for MySQL to run under.

In most newer Mac versions, this user and group already exist.

11. Mount the disk image by double-clicking its icon in the Finder.

12. Double-click the package icon to install the MySQL PKG.

The package installer runs and installs the package. It installs MySQL in
the directory /usr/local/mysql-, followed by the version number.
It also installs a symbolic link, /usr/local/mysql/, pointing to the
directory where MySQL is installed. It also initializes the database by
running the script mysql_install_db, which creates a MySQL account
called root.

13. If necessary, change the owner of the mysql directory.

The directory where MySQL is installed (for example, /usr/local/
mysql-5.0.22) should be owned by root. The data directory (such as
/usr/local/mysql-5.0.22/data) should be owned by the account
mysql. Both directories should belong to the group mysql. If the user
and group are not correct, change them with the following commands:

sudo chown -R root /usr/local/mysql-5.0.22
sudo chown -R mysql /usr/local/mysql-5.0.22/data
sudo chown -R root /usr/local/mysql-5.0.22/bin

14. Start the MySQL server using the following commands:

cd /usr/local/mysql
sudo ./bin/mysqld_safe
if necessary, enter your password
Press Ctrl-Z
bg
Press Ctrl-D or type exit

This starts the server manually, meaning you must start the MySQL
server every time you restart your computer. To have your server start
every time the computer starts, you need to install the MySQL Startup
Item, which is included in the installation disk image in a separate
installation package. To install the Startup Item, double-click the
MySQLStartupItem.pkg icon.

To stop the MySQL server, change to the bin subdirectory in the directory
where MySQL is installed and type

mysqladmin –u root –p shutdown

The -p causes mysqladmin to prompt you for a password. If the account
doesn’t require a password, don’t include -p.

387Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 387

Verifying a Downloaded File
As a security precaution, the MySQL Web site provides methods to verify the
software after you download it, to make sure the file has not been altered by
bad guys. You can verify using either the MD5 method or the PGP method.
The MD5 method is simpler and is described in this section.

Next to the file you downloaded, on the download Web page, a long string,
called a signature, is displayed, similar to the following:

MD5: 6112f6a730c680a4048dbab40e4107b3

The downloaded MySQL file needs to provide the same MD5 signature shown
on the download page. You use software on your computer to check the MD5
signature of the downloaded file. Your Linux or Mac system includes software
to check the MD5 signature. On Windows, you may need to download and
install MD5 software. You can find software that checks MD5 signatures at
www.formilab.ch/md5/.

To check the MD5 signature of the downloaded file, type the following at a
command-line prompt, such as in a command prompt window in Windows,
in the directory where the downloaded file resides:

md5 filename

where filename is the name of the file that you downloaded, such as md5
mysql-essential-5.0.22-win32.msi. In Windows, you may need to
copy the downloaded file to the directory where the MD5 software (such as
md5.exe) is installed, change to this directory using the cd command, and
then type the preceding command.

A signature appears that should be the same signature displayed by the file-
name on the download page of the MySQL Web site.

A simple, open source (free) Windows program with a graphical interface
that allows you to check MD5 signatures by clicking buttons and dragging
filenames, rather than by typing commands in a command prompt window,
can be obtained at www.nullriver.com/index/products/winmd5sum.

You can verify the downloads for Apache and PHP with a similar procedure.

388 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 388

Configuring MySQL
MySQL reads a configuration file when it starts up. If you use the defaults or
an installer, you probably don’t need to add anything to the configuration file.
However, if you install MySQL in a nonstandard location or want the data-
bases to be stored somewhere other than the default, you might need to edit
the configuration file. The configuration file is named my.ini or my.cnf.
It’s located in your system directory (such as Windows or Winnt) if you are
using Windows and in /etc on Linux, Unix, and Mac. The file contains sev-
eral sections and commands. The following commands in the mysqld section
sometimes need to be changed:

[mysqld]

The TCP/IP Port the MySQL Server will listen on
port=3306

#Path to installation directory. All paths are
usually resolved relative to this.
basedir=”C:/Program Files/MySQL/MySQL Server 5.0/”

#Path to the database root
datadir=”C:/Program Files/MySQL/MySQL Server 5.0/Data/”

The # at the beginning of the line makes the line into a comment. The basedir
line tells the MySQL server where MySQL is installed. The datadir line tells
the server where the databases are located. You can change the port number
to tell the server to listen for database queries on a different port.

389Appendix A: Installing MySQL

24_096004 appa.qxp 10/11/06 9:27 PM Page 389

390 Part VI: Appendixes

24_096004 appa.qxp 10/11/06 9:27 PM Page 390

Appendix B

Installing PHP

Although PHP runs on many platforms, I describe installing it on Unix,
Linux, Mac, and Windows, which includes the majority of Web sites on

the Internet. PHP runs with several Web servers, but these instructions focus
mainly on Apache and Internet Information Servers (IIS) because together
they power almost 90 percent of the Web sites on the Internet. If you need
instructions for other operating systems or Web servers, see the PHP Web
site, at www.php.net. This appendix provides installation instructions for
PHP 5 and 6. If you’re installing an earlier version, there are some small differ-
ences, so read the install.txt file provided with the PHP distribution.

Installing PHP on Unix, Linux,
or Mac with Apache

In this section, I provide instructions on installing PHP versions 5 and 6 on
Unix, Linux, and Mac.

On Unix and Linux
You can install PHP as an Apache module or as a stand-alone interpreter.
If you’re using PHP as a scripting language in Web pages to interact with a
database, install PHP as an Apache module. PHP is faster and more secure as
a module. I don’t discuss PHP as a stand-alone interpreter in this book.

You install PHP by downloading source files, compiling these files, and
installing the compiled programs. This process isn’t as technical and
daunting as it sounds. I provide step-by-step instructions in the next few
sections. Read all the way through the steps before you begin the installation
procedure.

25_096004 appb.qxp 10/11/06 9:27 PM Page 391

For Linux users only: PHP for Linux is available in an RPM as well as in
source files. It might be in RPM format on your distribution CD. However,
when you install PHP from an RPM, you can’t control the options that PHP
is installed with. For instance, you need to install PHP with MySQL support
enabled, but the RPM may not have MySQL support enabled. MySQL is
popular, so many RPMs enable support for it, but it is out of your control.
Also, an RPM usually enables all the most popular options, so an RPM might
enable options that you don’t need. Consequently, the simplest and most
efficient way to install PHP could be from the source. If you’re familiar with
RPMs, feel free to find an RPM and install it. RPMs are available. However, I
am providing steps for source code installation, not RPMs.

Before installing
Before beginning to install PHP, check the following:

� The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd --l

You might have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules.
All you need to be concerned with for PHP is mod_so. If mod_so is not
loaded, Apache must be reinstalled using the enable-module=so
option.

� The apxs utility is installed. apxs is installed when Apache is installed.
You should be able to find a file called apxs. If Apache was installed on
Linux from an RPM, apxs might not have been installed. Some RPMs for
Apache consist of two RPMs: one for the basic Apache server and one
for Apache development tools. Possibly the RPM with the development
tools, which installs apxs, needs to be installed.

� The Apache version is recent. See Appendix C for information about
Apache versions. To check the version, type the following:

httpd --v

You might have to be in the directory where httpd is located before the
command will work.

As of this writing, the PHP Web site does not recommend using Apache 2
with PHP on Linux/Unix. For use on production Web sites, it might be
better to use Apache 1.3 than Apache 2. See Appendix C for a discussion
of Apache versions. Keep updated on the status of PHP with Apache 2 by
checking www.php.net/manual/en/install.unix.apache2.php.

392 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 392

Installing
To install PHP on Unix or Linux with an Apache Web server, follow these steps:

1. Point your Web browser to www.php.net, the PHP home page.

2. Click Downloads at the left end of the top menu bar.

3. Click the latest version of the PHP source code, such as version 5.2.0
or 6.0.0.

A dialog box opens. The file you are about to download contains many
files compressed into one file — a tarball.

4. Select the option to save the file.

A dialog box opens that lets you select where the file will be saved.

5. Navigate to where you want to save the source code (for example,
/usr/src), and then click Save.

6. After the download, change to the download directory (for instance,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.

7. Verify the file you just downloaded.

See the “Verifying a Downloaded File” section in Appendix A.

8. Unpack the tarball. The command for PHP version 6.0.0 is

gunzip -c php-6.0.0.tar.gz | tar -xf –

A new directory called php-6.0.0 is created with several subdirectories.

9. Change to the new directory that was created when you unpacked the
tarball.

For example, type cd php-6.0.0.

10. Type the configure command.

Use one of the two following configure commands:

./configure --with-mysqli=DIR --with-apxs

./configure --with-mysql=DIR --with-apxs

When using with-mysqli, use the path to the file named mysql_config.

Use mysql if you’re using MySQL 4.0 or earlier; use mysqli if you’re
using MySQL 4.1 or later. DIR is the path to the appropriate MySQL
directory. When using with-mysql, use the path to the directory where
mysql is installed, for instance:

--with-mysql=/user/local/mysql

393Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 393

If you’re using Apache 2, use the option with-apxs2. (See Appendix C
for information on using Apache 2.)

You will see many lines of output. Wait until the configure command
has finished. This might take a few minutes. If the configure command
fails, it provides an informative message. Usually, the problem is missing
software. You see an error message indicating that xyz software can’t
be found or that xyz version 5.6 is required but xyz version 4.2 is found.
You need to install or update the software that PHP needs.

If the apxs utility isn’t installed in the expected location, you see an error
message indicating that apxs couldn’t be found. If you get this message,
check the location where apxs is installed (find / -name apxs) and
include the path in the with-apxs option of the configure command:
--with-apxs=/usr/sbin/apxs or /usr/local/apache/bin/apxs.
If you’re using Apache 2, the option is --with-apxs2=/usr/sbin/apxs.

11. Type make.

You will see many lines of output. Wait until it’s finished. This might take
a few minutes.

12. Type make install.

On Mac OS X
With the release of PHP 4.3, you can install PHP on Mac OS X as easily as on
Unix and Linux. You install PHP by downloading source files, compiling the
source files, and installing the compiled programs. This process isn’t as tech-
nical and daunting as it might appear. I provide step-by-step instructions in
the next few sections. Read all the way through the steps before you begin to
be sure that you understand it all clearly and have everything prepared so
you don’t have to stop in the middle of the installation.

Before installing
If you want to use PHP with Apache for your Web site, Apache must be installed.
Most Mac OS X systems come with Apache already installed. For more infor-
mation on Apache, see Appendix C.

Before beginning to install PHP, check the following:

� The Apache version is recent: See Appendix C for a discussion of Apache
versions. To check the version, type the following on the command line:

httpd --v

You might have to be in the directory where httpd is located before the
command will work.

394 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 394

As of this writing, the PHP Web site does not recommend using Apache 2
with PHP. For use on production Web sites, it might be better to use
Apache 1.3 than Apache 2. See Appendix C for a discussion of Apache
versions. Keep updated on the status of PHP with Apache 2 by checking
the PHP Web site at www.php.net/manual/en/install.unix.
apache2.php.

� The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd --l

You might have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules.
All you need to be concerned with for PHP is mod_so. If mod_so is not
loaded, Apache must be reinstalled.

� The apxs utility is installed. apxs is normally installed when Apache is
installed. To determine whether it’s installed on your computer, you
should look for a file called apxs, usually in the /usr/sbin/apxs
directory. If you can find the file, apxs is installed; if not, it’s not.

� The files from the Developer’s Tools CD are installed. This CD is sup-
plemental to the main Mac OS X distribution. If you can’t find the CD,
you can download the tools from the Apple Developer Connection Web
site at developer.apple.com/tools/macosxtools.html.

Installing
To install PHP on Mac, follow these steps:

1. Point your Web browser to www.php.net, which is the PHP home page.

2. Click Downloads at the left end of the top menu bar.

3. Click the latest version of the PHP source code, which may be
version 6.0.0.

A dialog box opens.

4. Select the option to save the file.

A dialog box opens that lets you select where the file is to be saved.

5. Navigate to where you want to save the source code (for example,
/usr/src), and then click Save.

6. After the download, change to the download directory (for example,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file contains several files compressed into one file. The file might
have been unpacked by the StuffIt Expander automatically so that you
see the directory php-6.0.0. If so, skip to Step 8.

395Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 395

7. Verify the file you just downloaded.

See the “Verifying a Downloaded File” section in Appendix A.

8. Unpack the tarball.

The command to unpack the tarball for PHP version 6.0.0 is

tar xvfz php-6.0.0.tar.gz

A new directory called php-6.0.0 is created with several subdirectories.

9. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:

cd php-6.0.0

10. Type the configure command:

The configure command consists of ./configure followed by all the
necessary options. The minimum set of options follows:

• Location options: Because the Mac stores files in different loca-
tions than the PHP default locations, you need to tell PHP where
files are located. Use the following options:

--prefix=/usr
--sysconfdir=/etc
--localstatedir=/var
--mandir=/usr/share/man

• zlib option: --with-zlib.

• Apache option: If you are installing PHP for use with Apache, use
the following option: --with-apxs or --with-apxs2.

The most likely configuration command is

./configure --prefix=/usr --sysconfdir=/etc
--localstatedir=/var --mandir=/usr/share/man
--with-apxs –-with-zlib

You also need to use an option to include MySQL support. Use one of the
following options:

--with-mysql=DIR

--with-mysqli=DIR

When using with-mysqli, use the path to the mysql_config file.

396 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 396

Use mysql if you’re using MySQL 4.0 or earlier; use mysqli if you’re
using MySQL 4.1 or later. DIR is the path to the appropriate MySQL
directory. When using with-mysql, use the path to the directory where
mysql is installed, as follows:

--with-mysql=/user/local/mysql

You can type the configure command on one line. If you use more than
one line, type a \ at the end of each line.

You will see many lines of output. Wait until the configure command
has finished. This may take a few minutes.

If the apxs utility isn’t installed in the expected location, you see an
error message, indicating that apxs could not be found. If you get this
error message, check the location where apxs is installed (find /
-name apxs) and include the path in the with-apxs option of the
configure command: --with-apxs=/usr/sbin/apxs.

You might need to use many other options, such as options that change
the directories where PHP is installed. These configure options are
discussed in the “Installation options” section, later in this appendix.

11. Type make.

You will see many lines of output. Wait until it is finished. This might
take a few minutes.

12. Type sudo make install.

Alternative installation methods for Mac
Most Mac OS X versions since X.3 come with PHP already installed but it may
not be enabled. If PHP is installed but doesn’t seem to be working, try follow-
ing the instructions in “Configuring Apache for PHP,” later in this appendix.
Editing the httpd.conf file may be all that’s needed to get your PHP up and
running.

A PHP compiled package is available for some versions of OS X. If a package
is available for your operating system, it is easier than non-package software
to install. However, you have no control over the support that is compiled
into PHP. It may not have the support you need or it may have extra support
that you will not use. If you are unfamiliar with compiling and installing
source code on the Mac, go to http://www.entropy.ch/software/
macosx/php/ and check out what’s available. You might make life easier
for yourself.

397Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 397

Installation options
The previous sections give you steps to quickly install PHP with the options
needed for the applications in this book. However, you might want to install
PHP differently. For instance, all the PHP programs and files are installed
in their default locations, but you might need to install PHP in different
locations. Or you might be planning applications using additional software.
You can use additional command-line options if you need to configure PHP
for your specific needs. Just add the options to the command shown in
Step 10 of the Unix and Mac installation instructions. In general, the order of
the options in the command line doesn’t matter. Table B-1 shows the most
commonly used options for PHP. To see a list of all possible options, type
./configure --help.

Table B-1 PHP Configure Options
Option Tells PHP To

prefix=PREFIX Set main PHP directory to PREFIX. Default PREFIX is
/usr/local.

exec-prefix= Install architecture dependent files in EPREFIX.
EPREFIX Default EPREFIX is PREFIX.

bindir=DIR Install user executables in DIR. Default is
EPREFIX/bin.

infodir=DIR Install info documentation in DIR. Default is
PREFIX/info.

mandir=DIR Install man files in DIR. Default is PREFIX/man.

with-config-file- Look for the configuration file (php.ini) in DIR.
path=DIR Without this option, PHP looks for the configuration

file in a default location, usually /usr/local/lib.

disable-libxml Disable XML support that’s included by default.

enable-ftp Enable FTP support.

enable-magic- Enable automatic escaping of quotes with a backslash.

with-apxs=FILE Build a shared Apache module using the apxs utility
located at FILE. Default FILE is apxs.

with-apxs2=FILE Build a shared Apache 2 module using the apxs
utility located at FILE. Default FILE is apxs.

398 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 398

Option Tells PHP To

with-mysql=DIR Enable support for MySQL 4.0 or earlier databases.
Default DIRwhere MySQL is located is /usr/local.

with-mysqli=DIR Enable support for MySQL 4.1 or later databases. DIR
needs to be the path to the file named mysql_
config that was installed with 4.1. Available only
with PHP 5 or later.

with-openssl=DIR Enable OpenSSL support for a secure server. Requires
OpenSSL version 0.9.5 or later.

with-oci8=DIR Enable support for Oracle 7 or later. Default DIR is con-
tained in the environmental variable, ORACLE_HOME.

with-oracle=DIR Enable support for earlier versions of Oracle. Default
DIR is contained in the environmental variable,
ORACLE_HOME.

with-pgsql=DIR Enable support for PostgreSQL databases. Default DIR
where PostgreSQL is located is /usr/local/pgsql.

with-servlet=DIR Include servlet support. DIR is the base install direc-
tory for the JSDK. The Java extension must be built as
a shared .dll.

Configuring Apache for PHP
You must configure Apache to recognize and run PHP files. An Apache config-
uration file, httpd.conf, is on your system, possibly in /etc or in /usr/
local/apache/conf. You must edit this file before PHP can run properly.

Follow these steps to configure your system for PHP:

1. Open the httpd.conf file so you can make changes.

2. Configure Apache to load the PHP module.

Find the list of LoadModule statements. Look for the following line:

LoadModule php6_module libexec/libphp6.so

If this line isn’t there, add it. If a pound sign (#) is at the beginning of the
line, remove the pound sign.

399Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 399

For PHP 5, the line would be:

LoadModule php5_module libexec/libphp5.so

3. Configure Apache to recognize PHP extensions.

You need to tell Apache which files might contain PHP code. Look for a
section describing AddType. You might see one or more AddType lines
for other software. Look for the AddType line for PHP, as follows:

AddType application/x-httpd-php .php

If you find it with a pound sign (#) at the beginning of the line, remove
the pound sign (#). If you don’t find this line, add it to the AddType
statements. This line tells Apache to look for PHP code in all files with a
.php extension. You can specify any extension or series of extensions.

4. Start the Apache httpd server (if it is not running) or restart the
Apache httpd server (if it is running).

You can start or restart the server by using a script that was installed
on your system during installation. This script might be apachectl
or httpd.apache, and might be located in /bin or /usr/local/
apache/bin. For example, you might be able to start the server by
typing apachectl start, restart it by using apachectl restart,
or stop it by using apachectl stop. Sometimes restarting is not suffi-
cient; you must stop the server first and then start it.

Installing PHP on Windows
PHP runs on Windows 98/Me and Windows NT/2000/XP. Windows 98/Me can
be used for development on a local computer but cannot support a public
Web site. Windows 95 is no longer supported as of PHP 4.3.0. PHP does not
run on Windows 3.1.

To install PHP 5/6 on Windows with MySQL support, you download a Zip file
that contains all the necessary files for PHP. The following steps show how to
install PHP on Windows:

1. Point your Web browser at www.php.net.

2. Click Download on the left end of the top menu bar.

3. Go to the Windows Binaries section. Click the download link for the zip
package for the most recent version of PHP (as of this writing, 6.0.0).

4. Click the link for a mirror Web site from which to download the file
and choose the site closest to your location.

A dialog box opens.

5. Select the option to save the file.

A dialog box opens that lets you select where the file will be saved.

400 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 400

6. Navigate to where you want the file to be downloaded. (This should be
a temporary location, such as a download directory.) Then click Save.

After the download is complete, you see a file in the download location
containing all the files needed. The file is named php-, followed by the
version number and -Win32.zip. For example, the file might be named
php-6.0.0-Win32.zip.

7. Verify the file you just downloaded.

See the “Verifying a Downloaded File” section in Appendix A.

8. Extract the files from the .zip file into the directory where you want
PHP to be installed, such as c:\php.

If you double-click the .zip file, it should open in the software on your
computer that extracts files from .zip files, such as WinZip or PKZIP.
Select the menu item for extract and select the directory into which
the files are to be extracted. C:\php is a good choice for installation
because many configuration files assume that’s where PHP is installed,
so the default settings are more likely to be correct.

It’s best not to install PHP in a directory with a space in the path, such
as in Program Files/PHP. Doing so can cause problems.

You now have a directory and several subdirectories that contain all the
files from the zip file.

9. Copy the file required for MySQL to the PHP main directory.

The file is located in the ext subdirectory in the directory where PHP is
installed. Copy one of the following files, depending on which version of
MySQL you’re using:

ext\php_mysqli.dll (for MySQL 4.1 or later)
ext\php_mysql.dll (for MySQL 4.0 or earlier)

Copy the file into the main PHP directory, such as c:\php.

Another file, named libmysql.dll, is required for MySQL support.
This file should already be located in the main PHP directory. If it isn’t,
you need to find it and copy it there. If it’s not in your PHP directory, it’s
usually installed with MySQL, so find it in the directory where MySQL
was installed, perhaps in a bin subdirectory, such as c:\Program
Files\MySQL\MySQL Server 5.0\bin.

Occasionally PHP needs DLL files that it can’t find. When this happens,
PHP displays an error message when you run a PHP program, saying
that it can’t find a particular DLL. You can usually find the DLL in the
ext subdirectory and copy it into the main PHP directory.

10. Configure your Web server.

The next section provides instructions for configuring your Web server.

11. Configure PHP.

Follow the directions in the “Configuring PHP” section, later in this
appendix.

401Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 401

Configuring your Web server for PHP
Your Web server needs to be configured to recognize PHP scripts and run them.
You can’t have Apache and IIS running at the same time using the same port
number. Either shut down one Web server or tell them to listen on different
ports.

Follow the steps in the section for your Web server.

Configuring Apache
You must edit an Apache configuration file, called httpd.conf, before PHP
can run properly. To configure Apache for PHP, follow these steps:

1. Open httpd.conf for editing.

You might be able to edit it by choosing Start➪Programs➪Apache
HTTPD Server➪Configure Apache Server➪Edit Configuration. If Edit
Configuration isn’t on your Start menu, find the httpd.conf file on
your hard drive, usually in the directory where Apache is installed, in a
conf subdirectory (for example, c:\program files\Apache group\
Apache\conf). Open this file in an editor, such as Notepad or WordPad.

2. Activate the PHP module.

Look for the module statement section in the file and locate the follow-
ing line:

#LoadModule php6_module “c:/php/php6apache2.dll”

Remove the # from the beginning of the line to activate the line. If you
are installing PHP 5, you need the following line:

LoadModule php5_module “c:/php/php5apache2.dll”

If you are using Apache 1.3, rather than Apache 2, the module name is
php6apache.dll or php5apache.dll.

3. Tell Apache which files are PHP programs.

Look for a section describing AddType. This section might contain one
or more AddType lines for other software. The AddType line for PHP is

AddType application/x-httpd-php .php

Look for this line. If you find it with a pound sign (#) at the beginning of
the line, remove the pound sign. If you don’t find the line, add it to the
list of AddType statements. You can specify any extension or series of
extensions.

402 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 402

This line tells Apache that files with the .php extension are files of the
type application/x-httpd-php. Apache then knows to send files
with .php extensions to the PHP module.

4. Start Apache (if it is not running) or restart Apache (if it is running).

You can start it as a service on Windows NT/2000/XP by choosing
Start➪Programs➪Apache HTTPD Server➪Control Apache Server and
then selecting Start or Restart. You can start it on Windows 98/Me by
choosing Start➪Programs➪Apache Web Server➪Management.

Sometimes restarting Apache is not sufficient; you must stop it first and
then start it. In addition, your computer is undoubtedly set up so that
Apache will start whenever the computer starts. Therefore, you can shut
down and then start your computer to restart Apache.

Configuring IIS
To configure IIS to work with PHP, follow these steps:

1. Enter the IIS Management Console.

You should be able to enter by choosing Start➪Programs➪
Administrative Tools➪Internet Services Manager or Start➪
Control Panel➪Administrative Tools➪Internet Services Manager.

2. Right-click your Web site (such as Default Web Site).

3. Select Properties.

4. Click the Home Directory tab.

5. Click the Configuration button.

6. Click the App Mappings tab.

7. Click Add.

8. In the Executable box, type the path to the PHP interpreter.

For example, type c:\php\php-cgi.exe.

9. In the Extension box, type .php.

This will be the extension associated with PHP scripts.

10. Select the Script Engine check box.

11. Click OK.

Repeat Steps 6–10 if you want any extensions in addition to .php to be
processed by PHP, such as .phtml.

403Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 403

Configuring PHP
PHP uses settings in a file named php.ini to control some of its behavior. PHP
looks for php.ini when it begins and uses the settings that it finds. If PHP
can’t find the file, it uses a set of default settings. The default location for the
php.ini file is one of the following unless you change it during installation:

� Windows: The system directory, depending on the Windows version:
on Windows 98/Me/XP, windows; on Windows NT/2000 (and sometimes
XP), winnt

� Unix, Linux, and Mac: /usr/local/lib

If the php.ini file isn’t installed during installation, you need to install it
now. A configuration file with default settings, called php.ini-dist, is
included in the PHP distribution. Copy this file into the appropriate location,
such as the default locations just mentioned, changing its name to php.ini.

If you have a previous version of PHP installed (such as PHP 4.3), make a
backup copy of the php.ini file before you overwrite it with the php.ini
file for PHP 6. You can then see the settings you are currently using and
change the settings in the new php.ini file to match the current settings.

To configure PHP, follow these steps:

1. Open the php.ini file for editing.

2. Change the settings you want to change.

Steps 3, 4, and 5 mention some specific settings that should always be
changed if you are using the specified environment.

3. Only if you are using PHP 5 or earlier, turn off magic quotes.

Look for the following line:

magic_quotes-gpc On

Change On to Off.

4. Only if you are using PHP 5/6 on Windows, activate mysqli or mysql
support.

Look for a list of extensions. Find the line for the mysqli extension, as
follows:

;extension=php_mysqli.dll

404 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 404

If you are using a version of PHP earlier than 5.0 or a MySQL version ear-
lier than 4.1, find the following line:

;extension=php_mysql.dll

Notice the semicolon (;) at the beginning of the lines. To activate the
extension, remove the semicolon. If the extension line isn’t in your
php.ini file, add it.

5. Only if you’re using PHP on Windows with the IIS Web server, turn
off force redirect. Find the line:

;cgi.force_redirect = 1

You need to remove the semicolon so that the setting is active, and also
change the 1 to 0. After the changes, the line looks as follows:

cgi.force_redirect = 0

6. Save the php.ini file.

7. Restart the Apache server so that the new settings go into effect.

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. I discuss set-
tings in the php.ini file throughout the book when I discuss a topic that
might require you to change settings. For example, PHP error-handling actions
can be changed by settings in the php.ini file. The possible settings for
error handling and their effects are discussed in Chapter 4.

If you change settings in your php.ini file but the changes don’t seem to
have the expected effect on PHP operations, one of two things is probably
the cause. First, you must restart the Web server before the changes go
into effect. Second, you may not be editing the php.ini file in the location
where PHP is reading it. You can check which php.ini file PHP is reading.
You may have more than one php.ini file or you may have it stored in the
wrong location. When you test PHP using the phpinfo() statement, as
shown in Chapter 2 in the “Testing PHP” section, PHP outputs many variable
values and settings. One of the settings close to the top is Configuration File
Path, which shows the path to the location where PHP is looking for the con-
figuration file. If the path ends in a filename, that’s the file PHP is using for
its configurations. If the path ends in a directory name, PHP is looking in the
directory for the configuration file but can’t find it, so PHP is using its default
configurations.

405Appendix B: Installing PHP

25_096004 appb.qxp 10/11/06 9:27 PM Page 405

406 Part VI: Appendixes

25_096004 appb.qxp 10/11/06 9:27 PM Page 406

Appendix C

Installing and Configuring Apache

Apache is an open source Web server. A Web server delivers the files on
the Web site to the visitor who wants to see the Web pages. All recent

versions of Mac OS X come with Apache already installed. Most Linux distrib-
utions include Apache. However, you may want to install Apache yourself to
install a newer version or to install with different options. Windows does not
come with Apache installed. You must install it yourself.

Selecting a Version of Apache
Apache is currently available in three versions: Apache 1.3, Apache 2.0, and
Apache 2.2. All three versions are supported and upgraded. The PHP soft-
ware runs with all three versions, but some other software related to PHP
might have problems with Apache 2.0 or 2.2. On Windows, Apache 2.0 and 2.2
are not supported on Windows 9x installations; they require Windows NT,
2000, or XP.

Apache 2 changed considerably from Apache 1.3; Apache 2.2 changed
from Apache 2.0. Some third-party modules may not work correctly on all
three versions. Third-party modules that run on 1.3 will not work correctly
with Apache 2, and modules that work on Apache 2.0 may not work cor-
rectly with Apache 2.2. Therefore, only modules that have been modified for
Apache 2 or 2.2 can run on Apache 2 or 2.2.

On the PHP Web site, the recommended setup at present is to use PHP 4.3.0
or later with the most recent version of Apache 2.0. Check the Web page for
the current status of PHP with Apache versions at

www.php.net/manual/en/install.apache2.php#install.apache2.unix

At this time, the current releases are Apache 2.2.2, 2.0.58, and 1.3.36.

Try to install the most current release of the Apache version you choose so
that your Apache server includes all the latest security and bug fixes. New
features are no longer being added to Apache 1.3, but bugs are still being
fixed and security issues are being addressed. New versions of Apache 1.3
continue to be released but on a less frequent basis than for Apache 2.0 or 2.2.

26_096004 appc.qxp 10/11/06 9:27 PM Page 407

408 Part VI: Appendixes

Installing Apache on Linux and Unix
Apache can be downloaded and installed on your Web server for free. It’s avail-
able for almost every operating system, including Windows, Linux, many flavors
of Unix, and Mac.

To install Apache on Linux or Unix, you download the source code, compile
it, and install it. This is much easier than it sounds.

Before installing
Before installing Apache, check the following requirements:

� Disk space: You may need as much as 50MB of disk space while installing.
Apache will probably use 10MB after installation, although the amount
varies depending on the options used and modules installed.

� C compiler: Your computer has an ANSI-compliant C compiler installed.
GNU C (gcc) is a good choice.

Installing
To install Apache from source files, follow these steps:

1. Point your Web browser to httpd.apache.org, the Apache server
home page.

2. On the left side of the page, under Downloads, click the From a
Mirror link.

3. Scroll down to the Mirror section.

A specific mirror is selected for you. If you don’t want to use this mirror,
select another. Or if you have problems downloading from this mirror,
return to this page and select another.

4. Scroll farther down the same page to the section for Apache 2, Apache
1.3, or Apache 2.2, whichever you want to install. Locate and highlight
the file you want to download.

For instance, at this time, the most recent version of Apache 2.0 for
Linux is apache-2.0.58.tar.gz.

5. Click the latest version to download it.

6. Select the option to save the file.

26_096004 appc.qxp 10/11/06 9:27 PM Page 408

7. Navigate to where you want to save the source code (for example,
/usr/src), and click Save.

8. After the download, change to the download directory (for example,
cd-/usr/src).

You see a file named apache-, followed by the version name and
tar.gz. This file is called a tarball because it contains many files
compressed by a program called tar.

Be sure you’re using an account that has permission to write into
/usr/src, such as root.

9. Verify the downloaded file to be sure it hasn’t been tampered with.

See the “Verifying a downloaded file” section in Appendix A. Click MD5
to see the MD5 signature referred to in the section in Appendix A.

10. Unpack the tarball.

The command to unpack the tarball for version 2.0.58 is the following:

gunzip -c apache-2.0.58.tar.gz | tar -xf –

A new directory called apache-2.0.58 is created with several subdi-
rectories containing all the files that you unpacked from the tarball.

11. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:

cd apache-2.0.58

12. Type the configure command.

The configure command consists of ./configure followed by all the
necessary options. If you can use all the default options, you can use
configure without any options. However, to use Apache with PHP as
a module, use the configure command as follows:

./configure --enable-module=so

One of the more important installation options you may want to use is
prefix, which sets a different location where you want Apache to be
installed. By default, Apache is installed at /usr/local/apache or
usr/local/apache2. You can change the installation location with the
following line:

./configure -–prefix=/software/apache

You can see a list of all available options by typing the following line:

./configure -–help

This script may take a while to finish running. As it runs, it displays output.
When the script is finished, the system prompt is displayed. If configure
encounters a problem, it displays a descriptive error message.

409Appendix C: Installing and Configuring Apache

26_096004 appc.qxp 10/11/06 9:27 PM Page 409

13. Type the following command: make.

This command builds the Apache server. It may take several minutes to
finish running. As it runs, it displays messages telling you what it’s doing.
There may be occasional, longer pauses as it completes some action.
When it’s finished, it returns to the system prompt. If it has a problem,
it displays a descriptive error message.

14. Type the following command: make install.

This command installs the Apache software in the proper locations,
based on the configure command you used in Step 12.

15. Start the Apache Web server.

See the following section, “Starting and stopping Apache,” for details.

16. Type the URL for your Web site (for example, www.mysite.com or
localhost) into a browser to test Apache.

If all goes well, you see a Web page telling you that Apache is working.

Starting and stopping Apache
A script named apachectl is available to control the server. By default, the
script is stored in a subdirectory called bin in the directory where Apache is
installed. Some Linux distributions may put it in another directory.

The script requires a keyword. The most common keywords are start,
stop, and restart. The general syntax is as follows:

path/apachectl keyword

For example, if Apache was installed in the default directory, type the follow-
ing line to start Apache:

/usr/local/apache/bin/apachectl start

Starting Apache
The apachectl script starts the Apache server, which then runs in the back-
ground, listening for HTTP requests. By default, the compiled Apache server
is named httpd and is stored in the same directory as the apachectl script,
unless you changed the name or location during installation. The apachectl
script serves as an interface to the compiled server, called httpd.

You can run the httpd server directly, but it’s better to use apachectl as
an interface. The apachect1 script manages and checks data that httpd
commands require. Use the apachectl script to start Apache with the fol-
lowing command:

410 Part VI: Appendixes

26_096004 appc.qxp 10/11/06 9:27 PM Page 410

/usr/local/apache/bin/apachectl start

The apachectl script contains a line that runs httpd. By default, apachectl
looks for httpd in the default location — /usr/local/apache/bin or /usr/
local/apache2/bin. If you installed Apache in a nonstandard location, you
may need to edit apachectl to use the correct path. Open apachectl and
then search for the following line:

HTTPD=’/usr/local/apache2/bin/httpd’

Change the path to the location where you installed httpd. For example, the
new line might be this:

HTTPD=’/usr/mystuff/bin/httpd’

After you start Apache, you can check whether Apache is running by looking
at the processes on your computer. Type the following command to display a
list of the processes that are running:

ps –A

If Apache is running, the list of processes includes some httpd processes.

Restarting Apache
Whenever you change the configuration file, the new directives take effect
the next time Apache starts. If Apache is shut down when you make the
changes, you can start Apache as described earlier in “Starting Apache.”
However, if Apache is running, you can’t use start to restart it. Using start
results in an error message saying that Apache is already running. You can
use the following command to restart Apache when it’s currently running:

/usr/local/apache2/bin/apachectl restart

Although the restart command usually works, sometimes it doesn’t. If you
restart Apache and the new settings don’t seem to be in effect, try stopping
Apache and starting it again. Sometimes this solves the problem.

Stopping Apache
To stop Apache, use the following command:

/usr/local/apache/bin/apachectl stop

You can check to see whether Apache is stopped by checking the processes
running on your computer using the following command:

ps –A

The output from ps should not include any httpd processes.

411Appendix C: Installing and Configuring Apache

26_096004 appc.qxp 10/11/06 9:27 PM Page 411

Getting information from Apache
You can use options with the httpd server to obtain information about
Apache. For instance, you can find out what version of Apache is installed
by changing to the directory with httpd and typing one of the following:

httpd -v
./httpd –v

You can find out what modules are installed with Apache by typing

httpd -l

To see all the options that are available, type

httpd -h

Installing Apache on Windows
You can install Apache on almost any version of Windows, although Windows
NT, 2000, and XP are preferred.

You cannot install Apache with the following directions if IIS (Internet
Information Services) is already running on port 80. If IIS is running, you will
find the IIS console at Start➪Control Panel➪Administrative Tools➪Internet
Services Manager. If you do not find this menu item, IIS is not installed. If IIS is
already running, you must shut it down before installing Apache or install
Apache on a different port.

Installing
To install Apache, follow these steps:

1. Point your Web browser to httpd.apache.org, the Apache server
home page.

2. On the left side of the page, under Download, click the From a Mirror
link.

3. Scroll down to the Mirror section.

A specific mirror is selected for you. If you don’t want to use this mirror,
select another. Or if you have problems downloading from this mirror,
return to this page and select another.

412 Part VI: Appendixes

26_096004 appc.qxp 10/11/06 9:27 PM Page 412

4. Scroll further down the same page to the section for Apache 2,
Apache 1.3, or Apache 2.2, whichever you want to install. Locate
and highlight the line for Win 32 Binary (MSI installer).

For instance, at this time, the most recent version of Apache 2.0 for
Windows is apache_2.0.58.

5. Click the filename to download it.

6. Select the option to save the file.

7. Navigate to where you want to save the installer. (This should be a
temporary directory, such as a download directory.) Then click Save.

After the download is complete, you see a file in the download location
containing all the files needed. The file is named apache_, followed by
the version number and win32-x86-no_ssl.msi. For the current ver-
sion, the file is named apache_2.0.58-win32-x86-no_ssl.msi.

8. Verify the downloaded file to be sure it hasn’t been tampered with.

See the “Verifying a Downloaded File” section in Appendix A. Click MD5
to see the MD5 signature referred to in the section in Appendix A.

9. Double-click the downloaded file.

The Apache installation wizard begins, and a welcome screen appears.

10. Click Next.

The license agreement is displayed.

11. Select I Accept the Terms in the License Agreement, and then click Next.

If you don’t accept the terms, you can’t install the software. A screen of
information about Apache is displayed.

12. Click Next.

A screen is displayed asking for information.

13. Enter the requested information, and then click Next.

The information requested is

• Domain Name: Type your domain name, such as MyFineCompany.
com. If you’re installing Apache for testing and plan to access it
only from the machine where it’s installed, you can enter localhost.

• Server Name: Type the name of the server where you’re installing
Apache, such as www.MyFineCompany.com or s1.mycompany.com.
If you’re installing Apache for testing and plan to access it only
from the machine where it’s installed, you can enter localhost.

• E-mail Address: Type the e-mail address where you want to receive
e-mail messages about the Web server, such as WebServer@
MyFineCompany.com.

413Appendix C: Installing and Configuring Apache

26_096004 appc.qxp 10/11/06 9:27 PM Page 413

• Run Mode: Select whether you want Apache to run as a service
(starting automatically when the computer boots up) or whether
you want to start Apache manually when you want to use it. In
most cases, you want to run Apache as a service.

The Installation Type screen is displayed.

14. Select an installation type, and then click Next.

In most cases, you should select Complete. Only advanced users who
understand Apache well should select Custom. A screen showing where
Apache will be installed is displayed.

15. Select the directory where you want Apache installed, and click Next.

You see the default installation directory for Apache, usually C:\Program
Files\Apache Group. If this is okay, click Next. If you want Apache
installed in a different directory, click Change and select a different
directory, click OK, and click Next. A screen is displayed that says the
wizard is ready to install Apache.

16. Click Install.

If you need to, you can go back and change any of the information you
entered before proceeding with the installation. A screen displays the
progress. When the installation is complete, a screen appears saying
that the wizard has successfully completed the installation.

17. Click Finish to exit the installation wizard.

Apache is installed on your computer based on your operating system. If you
install it on Windows NT/2000/XP, it is automatically installed as a service
that automatically starts when your computer starts. If you install it on
Windows 95/98/Me, you need to start it manually or set it up so that it starts
automatically when your computer boots. See the next section, “Starting and
stopping Apache,” for more information.

Starting and stopping Apache
When you install Apache on Windows NT, 2000, or XP, it’s automatically
installed as a service and started. It’s ready to use. You can test it by typing your
Web site name (or localhost) into your browser window. You see a welcome
Web page that reads, “If you can see this, it means that the installation of the
Apache Web server software on this system was successful.” On Windows 95,
98, and Me, you have to start Apache manually, using the menu.

414 Part VI: Appendixes

26_096004 appc.qxp 10/11/06 9:27 PM Page 414

Apache installs menu items for stopping and starting Apache during installa-
tion. To find this menu, choose Start➪Programs➪Apache HTTP Server➪
Control Apache Server. The menu has the following items:

� Start: Used to start Apache when it is not running. If you click this item
when Apache is running, you see an error message saying that Apache
has already been started.

� Stop: Used to stop Apache when it is running. If you click this item when
Apache is not running, you see an error message saying that Apache is
not running.

� Restart: Used to restart Apache when it is running. If you make changes
to Apache’s configuration, you need to restart Apache before the
changes become effective.

Getting information from Apache
Sometimes you want to know information about your Apache installation,
such as the installed version. You can get this information from Apache by
opening a command prompt window (Start➪Programs➪Accessories➪
Command Prompt), changing to the directory where Apache is installed
(such as, cd C:\Apache), and accessing Apache with options. For example,
to find out which version of Apache is installed, type the following in the
command prompt window:

Apache –v

To find out what modules are compiled into Apache, type

Apache –l

You can also start and stop Apache directly, as follows:

Apache -k start
Apache -k stop

You can see all the options available by typing the following:

Apache -h

415Appendix C: Installing and Configuring Apache

26_096004 appc.qxp 10/11/06 9:27 PM Page 415

Installing Apache on Mac
Installing Apache on the Mac is similar to installing Apache on Unix and Linux.
You download the source code and compile it. To install Apache on the Mac,
follow these steps:

1. Download the source code, save it in a directory, and change to the
directory where the downloaded file is saved.

Follow Steps 1–8 of the directions for Unix and Linux. You will see a file
named httpd-, followed by the version name and tar.gz, such as
httpd-2.0.58.tar.gz. This file is the tarball — a single file that
contains all the files needed, compressed into one file.

2. Verify the downloaded file to be sure it hasn’t been tampered with.

See the “Verifying a Downloaded File” section in Appendix A. Click MD5
to see the MD5 signature referred to in the section in Appendix A.

3. Unpack the tarball by using a command similar to the following:

gnutar -xzf /httpd_2.0.58.tar.gz

After unpacking the tarball, you see a directory called httpd_2.0.58.
This directory contains several subdirectories and many files.

4. Use a cd command to change to the new directory created when you
unpacked the tarball (for example, cd httpd_2.0.58).

5. Type the following command:

./configure --enable-module=most --enable-shared=max

This command may take some time to run.

6. Type the following command to build the Apache server: make.

This command may take a few minutes to run. It displays messages while
it is running, with occasional pauses for a process to finish running.

7. Type the following command to install Apache: sudo make install.

8. Start the Apache Web server.

See the “Starting and stopping Apache” section in the “Installing Apache
on Linux and Unix” section for details.

9. Type the URL for your Web site (for example, www.mysite.com or
localhost) into a browser to test Apache.

If all goes well, you see a Web page telling you that Apache is working.

416 Part VI: Appendixes

26_096004 appc.qxp 10/11/06 9:27 PM Page 416

Configuring Apache
When Apache starts, it reads information from a configuration file. If Apache
can’t read the configuration file, it can’t start. Unless you tell Apache to use
a different configuration file, it looks for the file conf/httpd.conf in the
directory where Apache is installed.

Changing settings
Apache behaves according to commands, called directives, in the configuration
file. You can change some of Apache’s behavior by editing the configuration
file and restarting Apache so that it reads the new directives.

The configuration file is a text file containing commands called directives.
Apache behaves according to the directives in this file. In most cases, the
default settings allow Apache to start and run on your system. However, you
may need to change the settings in some cases, such as the following:

� Installing PHP: If you install PHP, you need to configure Apache to rec-
ognize PHP programs. How to change the Apache configuration for PHP
is described in Appendix B.

� Changing your Web space: Apache looks for Web page files in a specific
directory and its subdirectories, often called your Web space. You can
change the location of your Web space.

� Changing the port where Apache listens: By default, Apache listens
for file requests on port 80. You can configure Apache to listen on a dif-
ferent port.

To change any settings, edit the httpd.conf file. On Windows, you can
access this file through the menu at Start➪Programs➪Apache HTTPD
Server➪Configure Apache Server➪Edit the Apache httpd.conf File.
When you click this menu item, the httpd.conf file opens in Notepad.

The httpd.conf file has comments (beginning with #) that describe the
directives, but make sure you understand their functions before changing
any. All directives are documented on the Apache Web site.

When adding or changing filenames and paths, use forward slashes, even
when the directory is on Windows. Apache can figure it out. Also, path names
don’t need to be in quotes unless they include special characters. A colon (:)

417Appendix C: Installing and Configuring Apache

26_096004 appc.qxp 10/11/06 9:27 PM Page 417

is a special character; the underscore (_) and hyphen (-) are not. For instance,
to indicate a Windows directory, you would use something like the following:

“c:/temp/mydir”

The settings don’t go into effect until Apache is restarted. Sometimes using
the restart command doesn’t work to change the settings. If the new set-
tings don’t seem to be in effect, try stopping the server with stop and then
starting it with start.

Changing the location of your Web space
By default, Apache looks for your Web page files in the subdirectory htdocs
in the directory where Apache is installed. You can change this with the
DocumentRoot directive. Look for the line that begins with DocumentRoot,
such as the following:

DocumentRoot “C:/Program Files/Apache Group/Apache/htdocs”

Change the filename and path to the location where you want to store your
Web page files. Don’t include a forward slash (/) on the end of the directory
path. For example, the following might be your new directive:

DocumentRoot /usr/mysrver/Apache2/webpages

Changing the port number
By default, Apache listens on port 80. You might want to change this, for
instance, if you are setting up a second Apache server for testing. The port
is set by using the Listen directive as follows:

Listen 80

With Apache 2.0 and 2.2, the Listen directive is required. If no Listen
directive is included, Apache 2 won’t start.

You can change the port number as follows:

Listen 8080

Remember to restart Apache after you change any directives.

418 Part VI: Appendixes

26_096004 appc.qxp 10/11/06 9:27 PM Page 418

• Symbols and Numerics •
&& (ampersands, double), in joined

comparisons, 141
< > (angle brackets)
<?php ... ?> tag, 17
stripping or cleaning from form data, 240
<? ... ?> tag, 114

* (asterisk)
arithmetic operator in PHP, 123
in patterns, 137

*= (asterisk, equal sign), in increment
statements, 150

@ (at sign), in PHP statements, 121, 157
\ (backslash)

escaping form data using, 241–242, 250
\n in PHP strings, 126, 146–148
in patterns, 137
in PHP strings, 125
\t in PHP strings, 126

{} (braces)
in echo statement output strings, 146
in if statement sections, 164, 166
mismatched, 371–372
in patterns, 137

^ (caret), in patterns, 136
$ (dollar sign)

in patterns, 136
preceding variable names, 119, 368

. (dot)
concatenating strings in PHP, 127
in patterns, 136
separating date format symbols, 129

.= (dot, equal sign), append operator in
PHP, 127

“” (double quotes)
in SQL, 67, 195
around strings in PHP, 125–127, 146, 369

... (ellipses), in examples, 2
= (equal sign)

in PHP statements, 119–120
in WHERE clause, 85

== (equal signs, double), comparison
operator in PHP, 134, 368

!= (exclamation point, equal sign),
comparison operator in PHP, 134

>= (greater than or equal sign)
comparison operator in PHP, 134
in WHERE clause, 85

> (greater than sign)
comparison operator in PHP, 134
in WHERE clause, 85

- (hyphen)
in patterns, 136
separating date format symbols, 129

<> (less than, greater than sign),
comparison operator in PHP, 134

<= (less than or equal sign)
comparison operator in PHP, 134
in WHERE clause, 86

< (less than sign)
comparison operator in PHP, 134
in WHERE clause, 86

- (minus sign)
arithmetic operator in PHP, 123
in strtotime function, 130

-= (minus, equal sign), in increment
statements, 150

- - (minus signs, double), in increment
statements, 150

() (parentheses)
in arithmetic expressions in PHP, 124
in function call, 151, 178
in joined comparisons, 140–141
mismatched, 371–372
in patterns, 136
in WHERE clause, 86–87

Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 419

% (percent sign)
arithmetic operator in PHP, 123
in hostname, 95
in sprintf function, 364

+= (plus, equal sign), in increment
statements, 150

+ (plus sign)
arithmetic operator in PHP, 123
in patterns, 137
in strtotime function, 130

++ (plus signs, double), in increment
statements, 149–150

(pound sign)
preceding comments in PHP, 142
in URLs, 257

? (question mark)
in patterns, 136
in URLs, 257, 260–261

; (semicolon), ending PHP statements, 116,
144, 367

‘ ’ (single quotes)
in SQL, 195
around strings in PHP, 125–127, 146, 369

/ (slash)
arithmetic operator in PHP, 123
separating date format symbols, 129
/* ... */, surrounding comments in PHP,

141–142
/= (slash, equal sign), in increment

statements, 150
// (slashes, double), preceding comments

in PHP, 142
[] (square brackets)
creating arrays using, 151–152
in patterns, 136

| (vertical bar), in patterns, 137
|| (vertical bars, double), in joined

comparisons, 141

• A •
accessibility, usability affected by, 41
accounts, MySQL

creating, 100–101, 102–103
deleting, 103
hostname for, 94–95
IT providing access to, 23

listing existing accounts, 100
name of, 94–95
passwords for, 96–97, 101–102
permissions for, 97–98, 102–104
root account, 70, 96
root@% account, 96
security features for, 93–94

ADD keyword, ALTER TABLE query, 77
ago keyword, in strtotime function, 130
akst keyword, in strtotime function, 131
ALL permission, 98
ALTER keyword, ALTER TABLE query, 77
ALTER permission, 98
ALTER TABLE query, 76–77
am keyword, in strtotime function, 130
ampersands, double (&&), in joined

comparisons, 141
and keyword, in comparisons, 139–141
AND keyword, WHERE clause, 86–87
angle brackets (< >)
<?php ... ?> tag, 17
stripping or cleaning from form data, 240
<? ... ?> tag, 114

announcement lists, 20
Apache Web server

configuring, 399–400, 402–403, 417–418
information about, getting, 412, 415
installing

on Linux and Unix, 408–410
on Mac, 416
reasons for, 29
on Windows, 412–414

location of Web space, changing, 418
port number, changing, 418
starting and stopping

on Linux and Unix, 410–411
on Windows, 414–415

using PHP with, 17
version of, choosing, 407

appending to strings in PHP, 127
application, 10, 11. See also programs; Web

database application
arithmetic operators, PHP, 123–124
array_reverse function, PHP, 362
arrays, PHP

creating, 151–152
definition of, 143
deleting values from, 154

420 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 420

displaying as output, 152–153
duplicate values in, removing, 362
exploding (splitting), 363
fetching data into

functions for, built-in, 196
functions for, writing, 202–206
retrieving all rows of data, 198–202
retrieving one row of data, 196–198

first index value of, 152, 370
imploding (joining), 363
long arrays, 20
multidimensional, 160–163
passing to functions, 182–183
range in, 362
retrieving values from, 156–157
reversing order of, 362
searching for strings in, 362
sorting, 154–156
superglobal arrays, 20, 208–209
walking through (iterating, traversing),

158–160
words as keys of, 152

array_unique function, PHP, 362
arsort statement, PHP, 156
asort statement, PHP, 155–156
assignment statements, PHP

for date values, 130–131
for numeric values, 119–121, 148–149
for strings, 119–121, 125, 148–149

asterisk (*)
arithmetic operator in PHP, 123
in patterns, 137

asterisk, equal sign (*=), in increment
statements, 150

at sign (@), in PHP statements, 121, 157
attributes in database, 47. See also

columns (attributes) in tables
AUTO_INCREMENT definition, CREATE

TABLE query, 75
AVG function, SELECT query, 83

• B •
backslash (\)

escaping form data using, 241–242, 250
\n in PHP strings, 126, 146–148

in patterns, 137
in PHP strings, 125
\t in PHP strings, 126

backups
of database

creating, 104–106
restoring data from, 107–110

provided by Web hosting company, 25
BETWEEN keyword, WHERE clause, 86
BIGINT data type, MySQL, 58
block of statements, PHP

definition of, 118
executing conditionally, 132–133, 143,

163–168, 170–173
functions

built-in functions, 185
calling, 150–151
creating, 178–179
definition of, 178
in include files, 282
naming, 284
passing values to, 181–184
reasons to use, 280, 284
for retrieving data from database,

202–206
returning values from, 184–185
variables in, local and global, 180–181

loops
breaking out of, 176–177
definition of, 144, 168
do..while statement, 172–173
fetching data into arrays using, 198
for statement, 169–170
infinite loops, 172, 174–177
while statement, 170–172

bold text used in this book, 2
books. See publications
braces ({})

in echo statement output strings, 146
in if statement sections, 164, 166
mismatched, 371–372
in patterns, 137

break statement, PHP, 168, 176–177
browsers, differences between, usability

affected by, 41
built-in functions, PHP, 185

421Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 421

• C •
caret (^), in patterns, 136
case of strings, changing, 366
case-sensitivity

of PHP constants, 122
of PHP statements, 118
of PHP variables, 119
of SQL statements, 66

catalog. See Pet Catalog example
CHANGE keyword, ALTER TABLE query, 77
CHAR data type, MySQL, 58, 239, 294, 331
character data types, MySQL, 56, 58
character strings, PHP

appending to, 127
assigning to variables, 119–121, 125,

148–149
case of, changing, 366
comparisons between, 134–139
definition of, 125
escaping characters in, 125
formatting, 363–364
joining (concatenating), 127
length of, 365
new line in, 126
pattern matching using, 135–139, 365
quotes around, types of, 125–127, 146, 369
reversing order of characters in, 365
searching for substrings in, 365
substrings of, 365
tabs in, 126

check boxes in HTML forms, 223–224
Color table, Pet Catalog example, 296–297
columns (attributes) in tables

adding to existing table, 77
changing default value of, 77
changing definition of, 77
default values for, 49
definition of, 47
deleting from existing table, 77, 92
primary key as, 48
renaming, 77
requiring data for, 49

comma-delimited files, 80
comments, in PHP, 141–142, 280, 288
commercial license, for MySQL, 13

company Web site, 22–24
comparisons, PHP

definition of, 133
incorrect operator in, 368
joining, 139–141
matching strings to patterns, 135–139
simple (between two values), 133–135

complex statements, PHP, 118
concatenating (joining) strings, PHP, 127
conditional block, PHP, 118
conditional statements, PHP

comparisons for
definition of, 133
incorrect operator in, 368
joining, 139–141
matching strings to patterns, 135–139
simple (between two values), 133–135

definition of, 132–133, 143, 163
do..while statement, 172–173
if statement, 164–167
switch statement, PHP, 167–168
while statement, 170–172

configuration file, PHP. See php.ini file
connection verification, 94
constants, PHP, 122, 280
continue statement, PHP, 176–177
conventions used in this book, 2, 5
cookies

disabling, 270
sessions without, 271–273
sharing information between pages using,

260, 264–266
$_COOKIES built-in array, 208, 266
COUNT function, SELECT query, 83
cracking passwords, 96
CREATE DATABASE query, 73–74
CREATE permission, 98
CREATE TABLE query, 74–76
CREATE USER query, 101
curly braces ({})

in echo statement output strings, 146
in if statement sections, 164, 166
mismatched, 371–372
in patterns, 137

currency, formatting in PHP, 124–125
current function, PHP, 158
$cxn variable, 191

422 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 422

• D •
data types, MySQL

character, 56, 58
date and time, 57–58, 131–132
enumeration, 57–58
list of, 58–59
numbers, 56–57, 58

data types, PHP. See also arrays, PHP
formatting to prepare for database,

238–239
numbers

arithmetic operators for, 123–125
comparisons between, 134
formatting, 124–125, 363–364

strings
appending to, 127
assigning to variables, 119–121, 125,

148–149
case of, changing, 366
comparisons between, 134–139
definition of, 125
escaping characters in, 125
formatting, 363–364
joining (concatenating), 127
length of, 365
newline in, 126
pattern matching using, 135–139, 365
quotes around, types of, 125–127, 146,

369
reversing order of characters in, 365
searching for substrings in, 365
substrings of, 365
tabs in, 126

timestamp format, 128–131
for variables, 119–120

database. See also MySQL; Web database
application

adding data to, 78–81, 297–298, 303–305,
333

backups of
creating, 104–106
restoring, 107–110

building (creating), 62, 73–77, 291–297,
328–332

connecting to, 189–194
connecting to, failure of, 36, 192–193

data file for, reading in, 297–298
data types for, 56–59
definition of, 10, 11
deleting, 74, 92
deleting data from, 92
designing, 44–50, 288
disconnecting from, 191
displaying existing databases, 74
querying, 194–195
retrieving data from

functions for, 202–206
process for, 195
retrieving all rows of data, 198–202
retrieving one row of data, 196–198
SELECT query for, 82–87, 194, 196

security features for, 93–94
selecting in program, after connecting,

191–194
storing form data in

inserting new data, 242–247
preparing data for, 238–242
updating existing data, 247–250

tables in
changing structure of, 76–77
corrupted, 107
creating, 74–76
deleting, 76, 92
displaying existing tables, 76
displaying structure of, 76
organizing data in, 46–49
relationships between, 49–50
renaming, 77
retrieving data from, 82–87

updating data in, 92
database application. See Web database

application
Database Management System (DBMS), 11
date and time data types, MySQL

definition of, 57
list of, 58
storing values of PHP variables in,

131–132
date and time values in PHP

assigning to variables, 130–131
formatting, 129–130
separator characters for, 129
storing in database, 131–132

423Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 423

date and time values in PHP (continued)
time zone, default, 128
timestamp format for, 128–131

DATE data type, MySQL, 58, 131, 239
date function, PHP, 129–130, 132
date_default_timezone_get function,

PHP, 128
date_default_timezone_set function,

PHP, 128
DATEDIFF function, MySQL, 132
DATETIME data type, MySQL, 58, 131
date.timezone configuration setting, PHP,

128
day keyword, in strtotime function, 130
day names, in strtotime function, 130
DAYNAME function, SELECT query, 84
DBMS (Database Management System), 11
DECIMAL data type, 58, 239
DEFAULT definition, CREATE TABLE

query, 75
define statement, PHP, 122
DELETE permission, 98
DELETE query, 92
DESCRIBE query, 76
die statement, PHP, 150, 192, 362
discussion lists, 12, 13
DISTINCT keyword, SELECT query, 85
document root, Apache, 33
documentation for Web database

application, 288
dollar sign ($)

in patterns, 136
preceding variable names, 119, 368

domain names, 25, 27
dot (.)

concatenating strings in PHP, 127
in patterns, 136
separating date format symbols, 129

dot, equal sign (.=), append operator in
PHP, 127

double quotes (“”)
in SQL, 67, 195
around strings in PHP, 125–127, 146, 369

do..while statement, PHP, 172–173
DROP DATABASE query, 74
DROP keyword, ALTER TABLE query, 77
DROP permission, 98
DROP TABLE query, 76
DROP USER query, 103

“dynamic duo” of MySQL and PHP, 18
dynamic Web site, 9–10. See also Web

database application

• E •
echo statement, PHP, 116, 145–148, 152–153
ellipses (...), in examples, 2
else section, if statement, 164
elseif section, if statement, 164
e-mail discussion lists, 12, 13
e-mail, sending, 360–361
empty form fields, checking for, 227–231
empty function, PHP, 363
encryption, 287
end function, PHP, 158
entities (rows) in tables, 47
ENUM data type, 58, 239
enumeration data types, MySQL, 57–58
equal sign (=)

in PHP statements, 119–120
in WHERE clause, 85

equal signs, double (==), comparison
operator in PHP, 134, 368

ereg function, PHP, 138–139, 232–233, 365
ereg_replace function, PHP, 239–240, 365
Error messages, 117
error_reporting configuration setting,

PHP, 117
errors. See troubleshooting
examples used in this book. See Members

Only example; Pet Catalog example
exclamation point, equal sign (!=),

comparison operator in PHP, 134
exit statement, PHP, 150, 227, 362
explode function, PHP, 363
external files. See include files
extract statement, PHP, 157

• F •
Feedback page, Pet Catalog example, 304,

322–326
FILE permission, 98
files
include files

definition of, 281
including in program, 282–283

424 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 424

location of, 283–284
naming, 286
PHP statements in, 371
security of, 283, 286
uses of, 281–282

loading into database, 80–81
uploading using HTML forms, 250–254

$_FILES built-in array, PHP, 251–253
fonts used in this book, 2
for statement, PHP, 169–170
foreach statement, PHP

nesting for multidimensional arrays, 162
walking through array using, 159–160

format of form fields, checking, 232–236
forms. See HTML forms
fortnight keyword, in strtotime

function, 130
functions in SELECT query, 83–84
functions, PHP

built-in functions, 185
calling, 150–151
creating, 178–179
definition of, 178
in include files, 282
naming, 284
passing values to, 181–184
reasons to use, 280, 284
for retrieving data from database,

202–206
returning values from, 184–185
variables in, local and global, 180–181

• G •
General Public License (GNU GPL), for

MySQL, 12–13
$_GET built-in array, 208–209, 225
get method, 208, 228
Get missing information page, Pet Catalog

example, 304–305
Get pet information page, Pet Catalog

example, 304, 316–322
Get pet type page, Pet Catalog example,

303, 313–316
global variables, in PHP functions, 180
gmt keyword, in strtotime function, 131
GNU GPL (General Public License), for

MySQL, 12–13
GRANT permission, 98

GRANT query, 97–98
grants (permissions) for MySQL accounts

changing, 102
definition of, 97
list of, 98
listing current permissions for account,

102
removing, 103–104
stored in mysql database, 99

graphics, usability affected by, 41
greater than or equal sign (>=)

comparison operator in PHP, 134
in WHERE clause, 85

greater than sign (>)
comparison operator in PHP, 134
in WHERE clause, 85

GROUP BY clause, SELECT query, 84

• H •
header statement, PHP, 256–259, 369–370
hidden fields in HTML forms, 267
hostname, MySQL account, 94–95
hour keyword, in strtotime function, 130
HTML 4 For Dummies, 4th Edition (Tittel

and Pitts), 3
HTML 4 For Dummies Quick Reference (Ray

and Ray), 3, 256
HTML forms

cleaning data from, 240–241, 287
displaying all field contents of, 209–211
displaying with PHP, 207–208
dynamic check box lists in, 223–224
dynamic information in fields of, 212–215
dynamic radio button lists in, 221–222
dynamic selection lists in, 215–221
escaping data from, 241–242
hidden fields in, 267
retrieving data from, 208–211, 224–226
sharing information between pages using,

260, 267
storing data in database

inserting new data, 242–247
preparing data for, 238–242
updating existing data, 247–250

submitting information from
methods for, 208, 224–225, 228
multiple buttons for, 236–238

uploading files using, 250–254

425Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 425

HTML forms (continued)
uses of, 206–207
validating data

checking for empty fields, 227–231
checking format of fields, 232–236

validating data retrieved from, 287
HTML (HyperText Markup Language). See

also Web sites
capabilities of, 113
generating as output with echo

statement, 145–148
learning, 3
PHP embedded in, 16–17, 113–116
removing tags from form data, 240

htmlspecialchars function, PHP, 240
HTTP, in URLs, 257
$HTTP_COOKIE_VARS built-in array, 266
httpd.conf file, 417
$HTTP_GET_VARS built-in array, 209
$HTTP_POST_VARS built-in array, 20, 209
HTTPS, in URLs, 287
hyperlinks, navigation between Web pages

using, 256
HyperText Markup Language. See HTML
hyphen (-)

in patterns, 136
separating date format symbols, 129

• I •
icons used in this book, 5
if statement, PHP, 133, 164–167, 192–193
IIS (Internet Information Server)

configuring for PHP, 403
definition of, 30

implode function, PHP, 363
IN keyword, WHERE clause, 86
in_array function, PHP, 362
include files

definition of, 281
including in program, 282–283
location of, 283–284
naming, 286
PHP statements in, 371
security of, 283, 286
uses of, 281–282

include statement, PHP, 281–284
include_once statement, PHP, 282

include_path configuration setting, PHP,
283

increment statements
for statement, PHP, 169–170
operators for, 149–150

infinite loops, 172, 174–177
ini_set statement, PHP, 283
inner joins, in SELECT query, 89
INSERT permission, 98
INSERT query, 79–80, 242–247
INT data type, MySQL, 58, 239
INT UNSIGNED data type, MySQL, 58
interactive Web site, 9. See also Web

database application
Internet Information Server (IIS)

configuring for PHP, 403
definition of, 30

IP addresses
definition of, 27
hostname given as, 95

isset function, PHP, 363
italic text used in this book, 2

• J •
JavaScript, 10
joining comparisons, 139–141
joining (concatenating) strings, PHP, 127
joins, in SELECT query, 87, 89–91

• K •
krsort statement, PHP, 156
ksort statement, PHP, 156

• L •
last keyword, in strtotime function, 130
LEFT JOIN keyword, SELECT query, 89–90
Lerdorf, Rasmus (developer of PHP), 15
less than, greater than sign (<>),

comparison operator in PHP, 134
less than or equal sign (<=)

comparison operator in PHP, 134
in WHERE clause, 86

less than sign (<)
comparison operator in PHP, 134
in WHERE clause, 86

426 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 426

LIKE keyword, WHERE clause, 86
LIMIT keyword, SELECT query, 85, 87
links, navigation between Web pages using,

256
Linux

installing Apache on, 408–410
installing MySQL on, 381–385
installing PHP on, 391–394
for local Web site, 28
starting and stopping Apache on, 410–411

list manager, 12
list statement, PHP, 157
lists

announcement lists, 20
e-mail discussion lists, 12–13

LOAD query, 79, 80–81, 298
local time zone configuration setting, PHP,

20
local variables, in PHP functions, 180
Login page, Members Only example

file containing HTML for, 348–352
look and feel for, designing, 333–336
program for, 337–338, 340–348

Login table, Members Only example, 332
logins for Web sites

definition of, 328
file containing HTML for, 348–352
look and feel for, designing, 333–336
programs for, 337–338, 340–348
reasons to use, 327

long arrays, PHP, 20, 209, 214
loops, PHP

breaking out of, 176–177
definition of, 144, 168
do..while statement, 172–173
fetching data into arrays using, 198
for statement, 169–170
infinite loops, 172, 174–176, 177
while statement, 170–172

• M •
Mac computers

installing Apache on, 416
installing MySQL on, 386–387
installing PHP on, 394–397
for local Web site, 29
starting and stopping MySQL on, 387

magic quotes configuration setting, PHP,
20, 241–242, 250

mail function, PHP, 360–361
MAX function, SELECT query, 83
MD5 method of verification, 388
Member table, Members Only example,

329–331
Members Only example

application for, designing, 328
database for

adding data to, 333
building, 328–332
designing, 45, 53–55, 60–61

description of, 43–44
enhancements for, planning, 355
login page

file containing HTML for, 348–352
look and feel for, designing, 333–336
program for, 337–338, 340–348

look and feel for, designing, 333–337
programs for

login, 337–338, 340–348
Members Only section, 354–355
New Member Welcome page, 352–354
storefront, 338–339

Members Only section, Members Only
example, 336, 354–355

MIN function, SELECT query, 83
minus, equal sign (-=), in increment

statements, 150
minus sign (-)

arithmetic operator in PHP, 123
in strtotime function, 130

minus signs, double (--), in increment
statements, 150

minute keyword, in strtotime function,
130

MODIFY keyword, ALTER TABLE query, 77
monitor program. See mysql program
month keyword, in strtotime function,

130
month names, in strtotime function, 130
move_uploaded_file statement, PHP,

251–252
multidimensional arrays, PHP, 160–163
my.cnf file, 389
my.ini file, 389

427Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 427

MySQL
advantages of, 13–14
configuring, 389
configuring on Windows, 378–379
data types, 57–59
definition of, 12, 14
determining if running or installed, 30
e-mail discussion lists for, 12–13
installing

checking for existence of, 30–31
on Linux and Unix, 381–385
on Mac, 386–387
on Windows, 375–377

licensing for, 12–13
location of databases for, 23
operating systems supported by, 14
requirements for

on company Web site, 23
from Web hosting company, 24, 26

security of, 14, 93–94
starting

on all systems, 31
on Linux and Unix, 385
on Mac, 387
on Windows, 380

stopping
on Mac, 387
on Windows, 380–381

technical support for, 14
testing, 32–33, 35–36
updates for, 19–20
upgrading, 110
used with PHP, 18–19, 32–33
verification of, after downloading, 388
versions of, 188

MySQL accounts
creating, 100–103
deleting, 103
hostname for, 94–95
IT providing access to, 23
listing existing accounts, 100
name of, 94–95
passwords for, 96–97, 101, 102
permissions for, 97–98, 102–104
root account, 70, 96
root@% account, 96
security features for, 93–94

MySQL Community Edition, 13
mysql database, 98, 99. See also database
mysql functions, PHP, 32–33, 188–189
MySQL Network, 13
mysql program

sending queries in a file using, 109
sending queries on command line using,

72–73
MySQL server

connecting to, 190–191
definition of, 14
sending messages to, 15

mysql_connect function, PHP, 189
mysqldump program, 105–106
mysql_errno function, PHP, 189
mysql_error function, PHP, 189
mysql_fetch_array function, PHP, 189
mysql_fetch_assoc function, PHP, 189
mysql_fetch_row function, PHP, 189
mysql_fix_privileges_tables script,

110
mysqli functions, PHP, 32–33, 188–189,

359–360
mysqli_affected_rows function, PHP, 360
mysqli_close function, PHP, 191
mysqli_connect function, PHP, 189,

190–191, 359
mysqli_errno function, PHP, 189
mysqli_error function, PHP, 189
mysqli_fetch_array function, PHP, 189,

196–198
mysqli_fetch_assoc function, PHP, 189,

196–198, 359
mysqli_fetch_row function, PHP, 189,

196–198, 360
mysqli_field_name function, PHP, 360
mysqli_insert_id function, PHP, 189, 359
mysql_insert_id function, PHP, 189
mysqli_num_fields function, PHP, 360
mysqli_num_rows function, PHP, 189, 359
mysqli_query function, PHP, 189, 194–195,

196, 359
mysqli_real_escape_string function,

PHP, 189, 241
mysqli_select_db function, PHP, 189,

191–194, 359
mysql_num_rows function, PHP, 189

428 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 428

mysql_query function, PHP, 189
mysql_real_escape_string function,

PHP, 189, 241
mysql_select_db function, PHP, 189
mysql_upgrade script, 110

• N •
\n characters in PHP strings, 126, 146–148
navigation

usability affected by, 41
between Web pages, 256–259

new line character (\n) in PHP strings, 126,
146–148

New Member Welcome page, Members
Only example, 333, 336, 352–354

next function, PHP, 158
next keyword, in strtotime function, 130
NOT IN keyword, WHERE clause, 86
NOT LIKE keyword, WHERE clause, 86
NOT NULL definition, CREATE TABLE

query, 75
Notices

for array errors, 156–157
definition of, 117, 121
preventing for current statement, 121, 157
suppressing, 121

NOW function, MySQL, 132
now keyword, in strtotime function, 130
number_format function, PHP, 124–125
numbers, MySQL, 56–58
numbers, PHP

arithmetic operators for, 123–125
comparisons between, 134
formatting, 124–125, 363–364

• O •
objects in database, 46–47. See also tables

in database
open source software

MySQL as, 12–13, 19
PHP as, 19

operating systems
Linux

installing Apache on, 408–410
installing MySQL on, 381–385
installing PHP on, 391–394

for local Web site, 28
starting and stopping Apache on, 410–411

for local Web site, 28–29
Mac

installing Apache on, 416
installing MySQL on, 386–387
installing PHP on, 394–397
for local Web site, 29
starting and stopping MySQL on, 387

Unix
installing Apache on, 408–410
installing MySQL on, 381–385
installing PHP on, 391–394
for local Web site, 28
starting and stopping Apache on,

410–411
Windows

configuring MySQL on, 378–379
installing Apache on, 412–414
installing MySQL on, 375–377
installing PHP on, 400–403
for local Web site, 28
starting and stopping Apache on,

414–415
starting MySQL on, 380
stopping MySQL on, 380–381

or keyword, in comparisons, 139–141
OR keyword, WHERE clause, 86–87
ORDER BY clause, SELECT query, 84
outer joins, in SELECT query, 89–91

• P •
parentheses (())

in arithmetic expressions in PHP, 124
in function call, 151, 178
in joined comparisons, 140–141
mismatched, 371–372
in patterns, 136
in WHERE clause, 86–87

Parse errors, 116, 367
passwords for MySQL accounts

changing, 102
choosing, 96–97
definition of, 96
removing, 101
setting, 101, 102

pattern matching in PHP, 135–139, 232–233

429Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 429

pdt keyword, in strtotime function, 131
percent sign (%)

arithmetic operator in PHP, 123
in hostname, 95
in sprintf function, 364

permissions for MySQL accounts
changing, 102
definition of, 97
list of, 98
listing current permissions for account,

102
removing, 103–104
stored in mysql database, 99

Pet Catalog example
application for, designing, 289–291
database for

adding data to, 297–298, 303–305
building, 291–297
designing, 45, 51–53, 59–60

description of, 42–43
look and feel for, designing, 299–305
program to add pets to catalog

list of tasks for, 312–313
selecting pet name, 316–322
selecting pet type, 313–316
storing new pet, 322–326

program to show pets to customers,
306–312

retrieving data from database, 198–202,
203–206

Pet table, Pet Catalog example, 292–295
Pet type page, Pet Catalog example,

299–300, 307–309
Pets page, Pet Catalog example, 301–302,

310–312
PetType table, Pet Catalog example, 295
PGP method of verification, 388
PHP. See also statements, PHP

advantages of, 16
case-sensitivity of, 118
comments in, 141–142, 280
comparisons, 133–141, 368
configuring, 398–399, 404–405
configuring Apache for, 399–400
constants, 122
databases supported by, 15
date and time values in, 128–132

definition of, 10, 15–17
editors for, 118
e-mail discussion lists for, 12
embedding in HTML, 113–116
file extensions processed by, 23
format of statements, 115–118, 280
installing

checking for existence of, 31–32
on Linux and Unix, 391–394
on Mac, 394–397
options for, 398–399
on Windows, 400–403

numeric operations, 123–125
operating systems supported by, 16
processing of, by Web server, 114
requirements for

on company Web site, 23
from Web hosting company, 24, 26

security of, 16
string operations, 125–127
technical support for, 16
testing, 32–34
updates for, 19–20
used with MySQL, 18–19, 32–33
variables, 119–121
versions of, changes in, 20
Web servers supported by, 17

.php file, 20, 23, 114, 143
PHP interpreter, file name for, 20
PHP sessions

closing, 274, 362
without cookies, 271–273
private, 273–274
sharing information between pages using,

260, 267–274, 362
variables in, 269–271

<?php ... ?> tag, 17, 114–116
.php-cgi file, 20
php.ini file

changing settings in, 34
configuring PHP with, 404–405
date.timezone configuration setting,

128
error_reporting configuration setting,

117
include_path configuration setting, 283
local time zone configuration setting, 20

430 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 430

magic quotes configuration setting, 20,
241–242, 250

trans-sid configuration setting,
271–273

$PHPSESSID system variable, 271–273
$PHPSESSION system variable, 268
.phtml file, 23, 143
Pitts, Natanya (HTML 4 For Dummies, 4th

Edition), 3
plus, equal sign (+=), in increment

statements, 150
plus sign (+)

arithmetic operator in PHP, 123
in patterns, 137
in strtotime function, 130

plus signs, double (++), in increment
statements, 149–150

pm keyword, in strtotime function, 130
port number

for database connection, 190
in URLs, 257

$_POST built-in array, 208–209, 225–226
post method, 208, 228
pound sign (#)

preceding comments in PHP, 142
in URLs, 257

previous function, PHP, 158
primary key, 48
PRIMARY KEY keyword, CREATE TABLE

query, 75
print_r statement, PHP, 153
problems. See troubleshooting
programs. See also Web database

application
designing, 288
ending, 150, 227, 362
including external files in, 281–284
Members Only example

for login, 337–338, 340–348
for Members Only section, 354–355
for New Member Welcome page,

352–354
for storefront, 338–339

naming, 278
number of, 278
organizing, 279–284

Pet Catalog example
to add pets to catalog, 312–326
to show pets to customers, 306–312

subdirectories for, 279
writing (creating), 62

publications
HTML 4 For Dummies, 4th Edition (Tittel

and Pitts), 3
HTML 4 For Dummies Quick Reference

(Ray and Ray), 3, 256

• Q •
queries. See SQL (Structured Query

Language)
question mark (?)

in patterns, 136
in URLs, 257, 260–261

quotes
magic quotes configuration setting, PHP,

20, 241–242, 250
around strings in PHP, 125–127, 146, 369
in SQL, 67, 195

• R •
radio buttons in HTML forms, 221–222
range function, PHP, 362
Ray, Deborah S. (HTML 4 For Dummies

Quick Reference), 3, 256
Ray, Eric J. (HTML 4 For Dummies Quick

Reference), 3, 256
RDBMS (Relational Database Management

System), 11
Red Hat Package Manager (RPM), 382–383
regex (regular expressions), 135, 232–233
register_globals configuration setting,

PHP, 20
Relational Database Management System

(RDBMS), 11
RENAME keyword, ALTER TABLE query, 77
repeating blocks of statements. See loops,

PHP
$_REQUEST built-in array, 208

431Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 431

request verification, 94
reset statement, PHP, 158
resources. See publications; Web site

resources
return statement, PHP, 179, 184–185
REVOKE query, 97–98, 103–104
RIGHT JOIN keyword, SELECT query, 91
root account, MySQL, 70, 96
root@% account, MySQL, 96
rows (entities) in tables, 47
RPM (Red Hat Package Manager), 382–383
rsort statement, PHP, 156

• S •
second keyword, in strtotime function,

130
Secure Sockets Layer (SSL), 287
security. See also MySQL accounts

backups of database
creating, 104–106
restoring, 107–110

of computer, 285
of database connection information, 191
of database name, 193–194
of filenames on server, 286
of HTML form data, 287
of include files, 283, 286
of MySQL, 14, 93–94, 99
of passing information in URLs, 261
of PHP, 16
of PHP Version 4.3.0 or earlier, 20
of Web database application, 285–287
of Web server, 287

SELECT permission, 98
SELECT query

combining tables in, 87–91
functions in, 83–84
limiting rows retrieved by, 85, 87
ordering data retrieved from, 84
retrieving all data, 82
retrieving specific columns, 82–84
retrieving specific rows, 84–87
sending to database, 196

selection lists in HTML forms, 215–221
semicolon (;), ending PHP statements, 116,

144, 367
SERIAL data type, MySQL, 58

$_SESSION built-in array, 268, 269
session function, PHP, 258
session variables, PHP, 269–271
session_destroy statement, PHP, 274, 362
sessions, PHP

closing, 274, 362
without cookies, 271–273
private, 273–274
sharing information between pages using,

260, 267–274, 362
variables in, 269–271

session_start statement, PHP, 268–269,
362

SET PASSWORD query, 101
setcookie statement, PHP, 258, 265–266
short tags, 114
SHOW DATABASES query, 74
SHOW TABLES query, 76
SHUTDOWN permission, 98
SID constant, 271, 272
single quotes (‘ ’)

in SQL, 195
around strings in PHP, 125–127, 146, 369

sizeof function, PHP, 170
slash (/)

arithmetic operator in PHP, 123
separating date format symbols, 129
/* ... */, surrounding comments in PHP,

141–142
slash, equal sign (/=), in increment

statements, 150
slashes, double (//), preceding comments

in PHP, 142
sort statement, PHP, 154–156
sorting arrays, 154–156
sprintf function, PHP, 124, 363–364
SQL (Structured Query Language)
ALTER TABLE query, 76–77
case-sensitivity of, 66
CREATE DATABASE query, 73–74
CREATE TABLE query, 74–76
CREATE USER query, 101
definition of, 15, 66
DELETE query, 92
DESCRIBE query, 76
DROP DATABASE query, 74
DROP TABLE query, 76
DROP USER query, 103

432 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 432

fetching data after querying
functions for, built-in, 196
functions for, writing, 202–206
retrieving all rows of data, 198–202
retrieving one row of data, 196–198

GRANT query, 97–98
INSERT query, 79–80, 242–247
LOAD query, 79–81, 298
quotes in, 67, 195
REVOKE query, 97–98, 103–104
SELECT query

combining tables in, 87–91
functions in, 83–84
limiting rows retrieved by, 85, 87
ordering data retrieved from, 84
retrieving all data, 82
retrieving specific columns, 82–84
retrieving specific rows, 84–87
sending to database, 196

sending queries to MySQL, 67–73,
194–195

SET PASSWORD query, 101
SHOW DATABASES query, 74
SHOW TABLES query, 76
spaces in, 67
UPDATE query, 92, 247–250

SQRT function, SELECT query, 84
square brackets ([])

creating arrays using, 151–152
in patterns, 136

SSL (Secure Sockets Layer), 287
statements, PHP. See also block of

statements, PHP; specific statements
assignment statements, 119–121, 125,

130–131, 148–149
complex, 118
conditional statements, 132–133, 143,

163–168, 170–173
ending program, 150, 227, 362
increment statements, 149–150
simple statements, 144–151

static Web pages, 9, 10
Storefront page

Members Only example, 333–334, 338–339
Pet Catalog example, 299, 306–307

Strict messages, 117

strings, PHP
appending to, 127
assigning to variables, 119–121, 125,

148–149
case of, changing, 366
comparisons between, 134–139
definition of, 125
escaping characters in, 125
formatting, 363–364
joining (concatenating), 127
length of, 365
newline in, 126
pattern matching using, 135–139, 365
quotes around, types of, 125–127, 146, 369
reversing order of characters in, 365
searching for substrings in, 365
substrings of, 365
tabs in, 126

strip_tags function, PHP, 240
strlen function, PHP, 365
strpos function, PHP, 365
strrev function, PHP, 365
strtolower function, PHP, 366
strtotime function, PHP, 130–131
strtoupper function, PHP, 366
strtr function, PHP, 365
Structured Query Language. See SQL
submitting form information

methods for, 208, 224–225, 228
multiple buttons for, 236–238
navigating to another Web page after, 256

substr function, PHP, 365
SUM function, SELECT query, 83
superglobal arrays, PHP, 20, 208–209
switch statement, PHP, 167–168

• T •
tab character (\t) in PHP strings, 126
tab-delimited files, 80
tables in database

changing structure of, 76–77
corrupted, 107
creating, 74–76

433Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 433

tables in database (continued)
deleting, 76, 92
displaying existing tables, 76
displaying structure of, 76
organizing data in, 46–49
relationships between, 49–50
renaming, 77
retrieving data from, 82–87

technical support
by company Web site, 24
by Web hosting company, 25

TEXT data type, MySQL, 58
text files. See files
this keyword, in strtotime function, 130
time and date data types, MySQL

definition of, 57
list of, 58
storing values of PHP variables in,

131–132
time and date values in PHP

assigning to variables, 130–131
formatting, 129–130
separator characters for, 129
storing in database, 131–132
time zone, default, 128
timestamp format for, 128–131

TIME data type, MySQL, 58
time zone, PHP, 128
time zones, in strtotime function, 130
timestamp format, 128–131
Tittel, Ed (HTML 4 For Dummies, 4th

Edition), 3
today keyword, in strtotime function,

130
tomorrow keyword, in strtotime function,

130
trans-sid configuration setting, PHP, 271,

272–273
troubleshooting

array numbering incorrect, 370
corrupted tables, 107
equality operator incorrect, 368
Error messages, 117
header output not first, 369–370
including PHP statements incorrectly, 371
infinite loops, 174–177
level of error messages to report, 117

MySQL connection failed, 36, 192–193
MySQL errors, handling, 192–193
Notices, 117
parentheses and brackets mismatched,

371–372
Parse errors, 116, 367
quotes used incorrectly, 369
semicolons missing, 367
Strict messages, 117
undefined mysql functions, 33
values passed to functions, incorrect

number of, 183
variable names misspelled, 368
Warning messages, 117

typefaces used in this book, 2
types of data. See data types, MySQL

• U •
ucfirst function, PHP, 366
ucwords function, PHP, 366
Uniform Resource Locator (URL)

definition of, 257
HTTP in, 257
HTTPS in, 287
sharing information between pages using,

260–264
UNION keyword, SELECT query, 87–89
Unix

installing Apache on, 408–410
installing MySQL on, 381–385
installing PHP on, 391–394
for local Web site, 28
starting and stopping Apache on, 410–411

unset statement, PHP, 120, 151, 154, 274
UNSIGNED definition, CREATE TABLE query,

75
UPDATE permission, 98
UPDATE query, 92, 247–250
uploading files using HTML forms, 250–254
URL (Uniform Resource Locator)

definition of, 257
HTTP in, 257
HTTPS in, 287
sharing information between pages using,

260–264
usability engineering, 41

434 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 434

USAGE permission, 98
user logins. See logins for Web sites
users, getting information from. See HTML

forms
users of MySQL. See MySQL accounts
usort statement, PHP, 156

• V •
validation of form data

checking for empty fields, 227–231
checking format of fields, 232–236

VARCHAR data type, MySQL, 58, 239, 294,
331

var_dump statement, PHP, 153
variables, in cookies, 264–266
variables, in PHP sessions, 269–271
variables, in URLs, 260–261
variables, PHP

assigning dates to, 130–131
assigning numbers to, 119–121, 148–149
assigning strings to, 119–121, 125,

148–149
checking for existence of, 363
definition of, 119
deleting, 120
dollar sign missing from, 368
enclosing in quotes, 126
in functions, local and global, 180–181
misspelling name of, 368
naming, 119
Notices regarding, 121
storing form data in, 238

vertical bar (|), in patterns, 137
vertical bars, double (||), in joined

comparisons, 141

• W •
Warning messages, 117
Web application, 10
Web database application. See also

Members Only example; Pet Catalog
example

company Web site for, 22–24
definition of, 10–11

developing, tasks for, 61–62
documenting, 288
expansion of, planning for, 41–42
local Web site for, 26–32
logins for

definition of, 328
file containing HTML for, 348–352
look and feel for, designing, 333–336
programs for, 337–338, 340–348

look and feel for, designing, 299–305,
333–337

MySQL functions, 132
organizing, 278–279
planning, 37–42, 277–284, 288–291, 328
programs in

designing, 288
ending, 150, 227, 362
including external files in, 281–284
naming, 278
number of, 278
organizing, 279–284
subdirectories for, 279
writing (creating), 62

purpose of, identifying, 38
security of, 285–287
software required for, 21
tasks performed by, defining, 38–40
usability engineering for, 41
user’s requirements for, defining, 40–41
Web hosting company for, 24–26
Web site options for, 22

Web hosting company, 24–26
Web pages. See Web sites
Web servers

installing, 29–30
PHP processing by, 114
PHP support for, 17
preventing from displaying filenames, 286
security of, 287
in URLs, 257

Web site resources
Apache Web server, 29
MySQL, 13, 31, 375
MySQL announcement lists, 20
MySQL data types, 59
MySQL functions, 84

435Index

27_096004 bindex.qxp 10/11/06 9:27 PM Page 435

Web site resources (continued)
MySQL upgrades, 110
PHP announcement lists, 20
PHP built-in functions, 185
PHP date format symbols, 129
PHP editors, 118
SSL implementations, 287

Web sites. See also Web database
application

company Web site, 22–24
interactive, 9
on local computer, setting up, 26–32
navigation between pages, 256–259
operating systems for, 28–29
sharing information between pages

with cookies, 260, 264–266
with HTML forms, 260, 267
with PHP sessions, 260, 267–274
with URL, 260–264

static, 9, 10
Web space, 33
week keyword, in strtotime function, 130

WHERE clause, SELECT query, 84–87
while statement, PHP, 170–172
Windows

configuring MySQL on, 378–379
installing Apache on, 412–414
installing MySQL on, 375–377
installing PHP on, 400–403
for local Web site, 28
starting and stopping Apache on, 414–415
starting MySQL on, 380
stopping MySQL on, 380–381

• X •
xor keyword, in comparisons, 139–140

Y
year keyword, in strtotime function, 130
yesterday keyword, in strtotime

function, 130

436 PHP & MySQL For Dummies, 3rd Edition

27_096004 bindex.qxp 10/11/06 9:27 PM Page 436

Notes

27_096004 bindex.qxp 10/11/06 9:27 PM Page 437

Notes

27_096004 bindex.qxp 10/11/06 9:27 PM Page 438

	PHP & MySQL For Dummies, 3rd Edition
	About the Author
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You’re Not To Read
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Developing a Web Database Application Using PHP and MySQL
	Chapter 1: Introduction to PHP and MySQL
	What Is a Web Database Application?
	MySQL, My Database
	PHP, a Data Mover
	MySQL and PHP, the Perfect Pair
	Keeping Up with PHP and MySQL Changes

	Chapter 2: Setting Up Your Work Environment
	The Required Tools
	Finding a Place to Work
	Testing, Testing, 1, 2, 3

	Chapter 3: Developing a Web Database Application
	Planning Your Web Database Application
	Presenting the Two Running Examples in This Book
	Designing the Database
	Designing the Sample Databases
	Types of Data
	Taking a Look at the Sample Database Designs
	Developing the Application

	Part II: MySQL Database
	Chapter 4: Building the Database
	Communicating with MySQL
	Building a Database
	Moving Data Into and Out of the Database

	Chapter 5: Protecting Your Data
	Controlling Access to Your Data
	Setting Up MySQL Accounts
	Backing Up Your Data
	Restoring Your Data
	Upgrading MySQL

	Part III: PHP
	Chapter 6: General PHP
	Adding a PHP Section to an HTML Page
	Writing PHP Statements
	Using PHP Variables
	Using PHP Constants
	Working with Numbers
	Working with Character Strings
	Working with Dates and Times
	Comparing Values
	Joining Comparisons with and/or/xor
	Adding Comments to Your Program

	Chapter 7: PHP Building Blocks for Programs
	Useful Simple Statements
	Using PHP Arrays
	Useful Conditional Statements
	Using Loops
	Using Functions

	Chapter 8: Data In, Data Out
	PHP and MySQL Functions
	Making a Connection
	Getting Information from a Database
	Getting Information from the User
	Putting Information into a Database
	Getting Information in Files

	Chapter 9: Moving Information from One Web Page to the Next
	Moving Your User from One Page to Another
	Moving Information from Page to Page
	Using PHP Sessions

	Part IV: Applications
	Chapter 10: Putting It All Together
	Organizing the Application
	Keeping It Private
	Completing Your Documentation

	Chapter 11: Building an Online Catalog
	Designing the Application
	Building the Database
	Designing the Look and Feel
	Writing the Programs

	Chapter 12: Building a Members Only Web Site
	Designing the Application
	Building the Database
	Designing the Look and Feel
	Writing the Programs
	Planning for Growth

	Part V: The Part of Tens
	Chapter 13: Ten Things You Might Want to Do Using PHP Functions
	Communicate with MySQL
	Send E-Mail
	Use PHP Sessions
	Stop Your Program
	Handle Arrays
	Check for Variables
	Format Values
	Compare Strings to Patterns
	Find Out about Strings
	Change the Case of Strings

	Chapter 14: Ten PHP Gotchas
	Missing Semicolons
	Not Enough Equal Signs
	Misspelled Variable Names
	Missing Dollar Signs
	Troubling Quotes
	Invisible Output
	Numbered Arrays
	Including PHP Statements
	Missing Mates
	Confusing Parentheses and Brackets

	Part V: Appendixes
	Appendix A: Installing MySQL
	On Windows
	On Linux and Unix
	On Mac
	Verifying a Downloaded File
	Configuring MySQL

	Appendix B: Installing PHP
	Installing PHP on Unix, Linux, or Mac with Apache
	Installing PHP on Windows
	Configuring PHP

	Appendix C: Installing and Configuring Apache
	Selecting a Version of Apache
	Installing Apache on Linux and Unix
	Installing Apache on Windows
	Installing Apache on Mac
	Configuring Apache

	Index

