
www.allitebooks.com

http://www.allitebooks.org

Machine Learning with R

Learn how to use R to apply powerful machine learning
methods and gain an insight into real-world applications

Brett Lantz

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Machine Learning with R

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-214-8

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Brett Lantz

Reviewers
Jia Liu

Mzabalazo Z. Ngwenya

Abhinav Upadhyay

Acquisition Editor
James Jones

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Pooja Arondekar

Pratik More

Anusri Ramchandran

Harshad Vairat

Project Coordinator
Anugya Khurana

Proofreaders
Simran Bhogal

Ameesha Green

Paul Hindle

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Brett Lantz has spent the past 10 years using innovative data methods to
understand human behavior. A sociologist by training, he was first enchanted by
machine learning while studying a large database of teenagers' social networking
website profiles. Since then, he has worked on interdisciplinary studies of cellular
telephone calls, medical billing data, and philanthropic activity, among others. When
he's not spending time with family, following college sports, or being entertained by
his dachshunds, he maintains dataspelunking.com, a website dedicated to sharing
knowledge about the search for insight in data.

This book could not have been written without the support of my
family and friends. In particular, my wife Jessica deserves many
thanks for her patience and encouragement throughout the past
year. My son Will (who was born while Chapter 10 was underway),
also deserves special mention for his role in the writing process;
without his gracious ability to sleep through the night, I could
not have strung together a coherent sentence the next morning. I
dedicate this book to him in the hope that one day he is inspired to
follow his curiosity wherever it may lead.

I am also indebted to many others who supported this book
indirectly. My interactions with educators, peers, and collaborators
at the University of Michigan, the University of Notre Dame, and the
University of Central Florida seeded many of the ideas I attempted
to express in the text. Additionally, without the work of researchers
who shared their expertise in publications, lectures, and source code,
this book might not exist at all. Finally, I appreciate the efforts of the
R team and all those who have contributed to R packages, whose
work ultimately brought machine learning to the masses.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jia Liu holds a Master's degree in Statistics from the University of Maryland,
Baltimore County, and is presently a PhD candidate in statistics from Iowa State
University. Her research interests include mixed-effects model, Bayesian method,
Boostrap method, reliability, design of experiments, machine learning and data
mining. She has two year's experience as a student consultant in statistics and two
year's internship experience in agriculture and pharmaceutical industry.

Mzabalazo Z. Ngwenya has worked extensively in the field of statistical
consulting and currently works as a biometrician. He holds an MSc in Mathematical
Statistics from the University of Cape Town and is at present studying for a PhD
(at the School of Information Technology, University of Pretoria), in the field of
Computational Intelligence. His research interests include statistical computing,
machine learning, and spatial statistics. Previously, he was involved in reviewing
Learning RStudio for R Statistical Computing (Van de Loo and de Jong, 2012), and
R Statistical Application Development by Example beginner's guide (Prabhanjan
Narayanachar Tattar , 2013).

www.allitebooks.com

http://www.allitebooks.org

Abhinav Upadhyay finished his Bachelor's degree in 2011 with a major in
Information Technology. His main areas of interest include machine learning and
information retrieval.

In 2011, he worked for the NetBSD Foundation as part of the Google Summer of
Code program. During that period, he wrote a search engine for Unix manual pages.
This project resulted in a new implementation of the apropos utility for NetBSD.

Currently, he is working as a Development Engineer for SocialTwist. His day-to-day
work involves writing system level tools and frameworks to manage the product
infrastructure.

He is also an open source enthusiast and quite active in the community. In his free
time, he maintains and contributes to several open source projects.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introducing Machine Learning	 5

The origins of machine learning	 6
Uses and abuses of machine learning	 8

Ethical considerations	 9
How do machines learn?	 10

Abstraction and knowledge representation	 11
Generalization	 14
Assessing the success of learning	 16

Steps to apply machine learning to your data	 17
Choosing a machine learning algorithm	 18

Thinking about the input data	 18
Thinking about types of machine learning algorithms	 20
Matching your data to an appropriate algorithm	 22

Using R for machine learning	 23
Installing and loading R packages	 24

Installing an R package	 24
Installing a package using the point-and-click interface	 25
Loading an R package	 27

Summary	 27
Chapter 2: Managing and Understanding Data	 29

R data structures	 30
Vectors	 30
Factors	 31

Lists	 32
Data frames	 35
Matrixes and arrays	 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Managing data with R	 39
Saving and loading R data structures	 39
Importing and saving data from CSV files	 40
Importing data from SQL databases	 41

Exploring and understanding data	 42
Exploring the structure of data	 43
Exploring numeric variables	 44

Measuring the central tendency – mean and median	 45
Measuring spread – quartiles and the five-number summary	 47
Visualizing numeric variables – boxplots	 49
Visualizing numeric variables – histograms	 51
Understanding numeric data – uniform and normal distributions	 53
Measuring spread – variance and standard deviation	 54

Exploring categorical variables	 56
Measuring the central tendency – the mode	 57

Exploring relationships between variables	 58
Visualizing relationships – scatterplots	 59
Examining relationships – two-way cross-tabulations	 61

Summary	 63
Chapter 3: Lazy Learning – Classification Using Nearest Neighbors	 65

Understanding classification using nearest neighbors	 66
The kNN algorithm	 67

Calculating distance	 70
Choosing an appropriate k	 71
Preparing data for use with kNN	 72

Why is the kNN algorithm lazy?	 74
Diagnosing breast cancer with the kNN algorithm	 75

Step 1 – collecting data	 76
Step 2 – exploring and preparing the data	 77

Transformation – normalizing numeric data	 79
Data preparation – creating training and test datasets	 80

Step 3 – training a model on the data	 81
Step 4 – evaluating model performance	 83
Step 5 – improving model performance	 84

Transformation – z-score standardization	 84
Testing alternative values of k	 86

Summary	 87
Chapter 4: Probabilistic Learning – Classification Using
Naive Bayes	 89

Understanding naive Bayes	 90
Basic concepts of Bayesian methods	 91

Probability	 91
Joint probability	 92

Table of Contents

[iii]

Conditional probability with Bayes' theorem	 93
The naive Bayes algorithm	 95

The naive Bayes classification	 96
The Laplace estimator	 98
Using numeric features with naive Bayes	 100

Example – filtering mobile phone spam with the naive Bayes algorithm	101
Step 1 – collecting data	 102
Step 2 – exploring and preparing the data	 103
Data preparation – processing text data for analysis	 104

Data preparation – creating training and test datasets	 108
Visualizing text data – word clouds	 108
Data preparation – creating indicator features for frequent words	 112

Step 3 – training a model on the data	 113
Step 4 – evaluating model performance	 115
Step 5 – improving model performance	 116

Summary	 117
Chapter 5: Divide and Conquer – Classification Using
Decision Trees and Rules	 119

Understanding decision trees	 120
Divide and conquer	 121
The C5.0 decision tree algorithm	 124

Choosing the best split	 125
Pruning the decision tree	 127

Example – identifying risky bank loans using C5.0 decision trees	 128
Step 1 – collecting data	 129
Step 2 – exploring and preparing the data	 130

Data preparation – creating random training and test datasets	 131
Step 3 – training a model on the data	 133
Step 4 – evaluating model performance	 137
Step 5 – improving model performance	 138

Boosting the accuracy of decision trees	 138
Making some mistakes more costly than others	 140

Understanding classification rules	 142
Separate and conquer	 142
The One Rule algorithm	 145
The RIPPER algorithm	 147
Rules from decision trees	 149

Example – identifying poisonous mushrooms with rule learners	 150
Step 1 – collecting data	 150
Step 2 – exploring and preparing the data	 151
Step 3 – training a model on the data	 152
Step 4 – evaluating model performance	 154

Table of Contents

[iv]

Step 5 – improving model performance	 155
Summary	 158

Chapter 6: Forecasting Numeric Data – Regression Methods	 159
Understanding regression	 160

Simple linear regression	 162
Ordinary least squares estimation	 164
Correlations	 167
Multiple linear regression	 168

Example – predicting medical expenses using linear regression	 172
Step 1 – collecting data	 173
Step 2 – exploring and preparing the data	 174

Exploring relationships among features – the correlation matrix	 176
Visualizing relationships among features – the scatterplot matrix	 176

Step 3 – training a model on the data	 179
Step 4 – evaluating model performance	 182
Step 5 – improving model performance	 183

Model specification – adding non-linear relationships	 184
Transformation – converting a numeric variable to a binary indicator	 184
Model specification – adding interaction effects	 185
Putting it all together – an improved regression model	 186

Understanding regression trees and model trees	 187
Adding regression to trees	 188

Example – estimating the quality of wines with regression trees
and model trees	 190

Step 1 – collecting data	 191
Step 2 – exploring and preparing the data	 192
Step 3 – training a model on the data	 194

Visualizing decision trees	 196
Step 4 – evaluating model performance	 197

Measuring performance with mean absolute error	 198
Step 5 – improving model performance	 199

Summary	 203
Chapter 7: Black Box Methods – Neural Networks and
Support Vector Machines	 205

Understanding neural networks	 206
From biological to artificial neurons	 207
Activation functions	 209
Network topology	 211

The number of layers	 212
The direction of information travel	 213
The number of nodes in each layer	 214

Training neural networks with backpropagation	 215

Table of Contents

[v]

Modeling the strength of concrete with ANNs	 217
Step 1 – collecting data	 217
Step 2 – exploring and preparing the data	 218
Step 3 – training a model on the data	 220
Step 4 – evaluating model performance	 222
Step 5 – improving model performance	 224

Understanding Support Vector Machines	 225
Classification with hyperplanes	 226
Finding the maximum margin	 227

The case of linearly separable data	 228
The case of non-linearly separable data	 230

Using kernels for non-linear spaces	 231
Performing OCR with SVMs	 233

Step 1 – collecting data	 234
Step 2 – exploring and preparing the data	 235
Step 3 – training a model on the data	 237
Step 4 – evaluating model performance	 239
Step 5 – improving model performance	 241

Summary	 242
Chapter 8: Finding Patterns – Market Basket Analysis Using
Association Rules	 243

Understanding association rules	 244
The Apriori algorithm for association rule learning	 245

Measuring rule interest – support and confidence	 247
Building a set of rules with the Apriori principle	 248

Example – identifying frequently purchased groceries with
association rules	 249

Step 1 – collecting data	 250
Step 2 – exploring and preparing the data	 251

Data preparation – creating a sparse matrix for transaction data	 252
Visualizing item support – item frequency plots	 255
Visualizing transaction data – plotting the sparse matrix	 256

Step 3 – training a model on the data	 258
Step 4 – evaluating model performance	 260
Step 5 – improving model performance	 263

Sorting the set of association rules	 263
Taking subsets of association rules	 264
Saving association rules to a file or data frame	 265

Summary	 266
Chapter 9: Finding Groups of Data – Clustering with k-means	 267

Understanding clustering	 268
Clustering as a machine learning task	 269

Table of Contents

[vi]

The k-means algorithm for clustering	 271
Using distance to assign and update clusters	 272
Choosing the appropriate number of clusters	 276

Finding teen market segments using k-means clustering	 278
Step 1 – collecting data	 279
Step 2 – exploring and preparing the data	 279

Data preparation – dummy coding missing values	 281
Data preparation – imputing missing values	 283

Step 3 – training a model on the data	 284
Step 4 – evaluating model performance	 287
Step 5 – improving model performance	 289

Summary	 291
Chapter 10: Evaluating Model Performance	 293

Measuring performance for classification	 294
Working with classification prediction data in R	 294
A closer look at confusion matrices	 298
Using confusion matrices to measure performance	 299
Beyond accuracy – other measures of performance	 302

The kappa statistic	 303
Sensitivity and specificity	 307
Precision and recall	 309
The F-measure	 310

Visualizing performance tradeoffs	 311
ROC curves	 312

Estimating future performance	 315
The holdout method	 316
Cross-validation	 319
Bootstrap sampling	 322

Summary	 324
Chapter 11: Improving Model Performance	 325

Tuning stock models for better performance	 326
Using caret for automated parameter tuning	 327

Creating a simple tuned model	 330
Customizing the tuning process	 333

Improving model performance with meta-learning	 337
Understanding ensembles	 337
Bagging	 339
Boosting	 343
Random forests	 344

Training random forests	 346
Evaluating random forest performance	 348

Summary	 350

Table of Contents

[vii]

Chapter 12: Specialized Machine Learning Topics	 351
Working with specialized data	 352

Getting data from the Web with the RCurl package	 352
Reading and writing XML with the XML package	 353
Reading and writing JSON with the rjson package	 353
Reading and writing Microsoft Excel spreadsheets using xlsx	 354
Working with bioinformatics data	 354
Working with social network data and graph data	 355

Improving the performance of R	 355
Managing very large datasets	 356

Making data frames faster with data.table	 356
Creating disk-based data frames with ff	 357
Using massive matrices with bigmemory	 357

Learning faster with parallel computing	 358
Measuring execution time	 359
Working in parallel with foreach	 359
Using a multitasking operating system with multicore	 360
Networking multiple workstations with snow and snowfall	 360
Parallel cloud computing with MapReduce and Hadoop	 361

GPU computing	 362
Deploying optimized learning algorithms	 363

Building bigger regression models with biglm	 363
Growing bigger and faster random forests with bigrf	 363
Training and evaluating models in parallel with caret	 364

Summary	 364
Index	 365

Preface
Machine learning, at its core, is concerned with algorithms that transform
information into actionable intelligence. This fact makes machine learning
well-suited to the present day era of Big Data. Without machine learning, it
would be nearly impossible to keep up with the massive stream of information.

Given the growing prominence of R—a cross-platform, zero-cost statistical
programming environment—there has never been a better time to start using
machine learning. R offers a powerful but easy-to-learn set of tools that can assist
you with finding data insights.

By combining hands-on case studies with the essential theory that you need to
understand how things work under the hood, this book provides all the knowledge
that you will need to start applying machine learning to your own projects.

What this book covers
Chapter 1, Introducing Machine Learning, presents the terminology and concepts that
define and distinguish machine learners, as well as a method for matching a learning
task with the appropriate algorithm.

Chapter 2, Managing and Understanding Data, provides an opportunity to get your
hands dirty working with data in R. Essential data structures and procedures used
for loading, exploring, and understanding data are discussed.

Chapter 3, Lazy Learning – Classification Using Nearest Neighbors, teaches you how
to understand and apply a simple yet powerful learning algorithm to your first
machine learning task: identifying malignant samples of cancer.

Chapter 4, Probabilistic Learning – Classification Using Naive Bayes, reveals the essential
concepts of probability that are used in cutting-edge spam filtering systems. You'll
learn the basics of text mining in the process of building your own spam filter.

Preface

[2]

Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules, explores
a couple of learning algorithms whose predictions are not only accurate but easily
explained. We'll apply these methods to tasks where transparency is important.

Chapter 6, Forecasting Numeric Data – Regression Methods, introduces machine learning
algorithms used for making numeric predictions. As these techniques are heavily
embedded in the field of statistics, you will also learn the essential metrics needed to
make sense of numeric relationships.

Chapter 7, Black Box Methods – Neural Networks and Support Vector Machines, covers
two extremely complex yet powerful machine learning algorithms. Though the
mathematics may appear intimidating, we will work through examples that illustrate
their inner workings in simple terms.

Chapter 8, Finding Patterns – Market Basket Analysis Using Association Rules, exposes
the algorithm for the recommendation systems used at many retailers. If you've ever
wondered how retailers seem to know your purchasing habits better than you know
them yourself, this chapter will reveal their secrets.

Chapter 9, Finding Groups of Data – Clustering with k-means, is devoted to a procedure
that locates clusters of related items. We'll utilize this algorithm to identify segments
of profiles within a web-based community.

Chapter 10, Evaluating Model Performance, provides information on measuring the
success of a machine learning project, and obtaining a reliable estimate of the
learner's performance on future data.

Chapter 11, Improving Model Performance, reveals the methods employed by the
teams found at the top of machine learning competition leader boards. If you have
a competitive streak, or simply want to get the most out of your data, you'll need to
add these techniques to your repertoire.

Chapter 12, Specialized Machine Learning Topics, explores the frontiers of machine
learning. From working with Big Data to making R work faster, the topics covered
will help you push the boundaries of what is possible with R.

What you need for this book
The examples in this book were written for and tested with R Version 2.15.3 on both
Microsoft Windows and Mac OS X, though they are likely to work with any recent
version of R.

Preface

[3]

Who this book is for
This book is intended for anybody hoping to use data for action. Perhaps you already
know a bit about machine learning, but have never used R; or perhaps you know a
little R but are new to machine learning. In any case, this book will get you up and
running quickly. It would be helpful to have a bit of familiarity with basic math and
programming concepts, but no prior experience is required. You need only curiosity.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To fit a linear regression model to data with R, the lm() function can be used."

Any command-line input or output is written as follows:
> pairs.panels(insurance[c("age", "bmi", "children", "charges")])

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Instead,
ham messages use words such as can, sorry, need, and time."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Introducing Machine Learning
If science fiction stories are to be believed, teaching machines to learn will inevitably
lead to apocalyptic wars between machines and their makers. In the early stages,
computers are taught to play simple games of tic-tac-toe and chess. Later, machines
are given control of traffic lights and communications, followed by military drones
and missiles. The machines' evolution takes an ominous turn once the computers
become sentient and learn how to teach themselves. Having no more need for human
programmers, humankind is then "deleted."

Thankfully, at the time of this writing, machines still require user input.

Your impressions of machine learning may be very heavily influenced by these types
of mass media depictions of artificial intelligence. And even though there may be a
hint of truth to such tales; in reality, machine learning is focused on more practical
applications. The task of teaching a computer to learn is tied more closely to a
specific problem that would be a computer that can play games, ponder philosophy,
or answer trivial questions. Machine learning is more like training an employee than
raising a child.

Putting these stereotypes aside, by the end of this chapter, you will have gained a
far more nuanced understanding of machine learning. You will be introduced to
the fundamental concepts that define and differentiate the most commonly used
machine learning approaches.

You will learn:

•	 The origins and practical applications of machine learning
•	 How knowledge is defined and represented by computers
•	 The basic concepts that differentiate machine learning approaches

Introducing Machine Learning

[6]

In a single sentence, you could say that machine learning provides a set of tools that
use computers to transform data into actionable knowledge. To learn more about
how the process works, read on.

The origins of machine learning
Since birth, we are inundated with data. Our body's sensors—the eyes, ears, nose,
tongue, and nerves—are continually assailed with raw data that our brain translates
into sights, sounds, smells, tastes, and textures. Using language, we are able to share
these experiences with others.

The earliest databases recorded information from the observable environment.
Astronomers recorded patterns of planets and stars; biologists noted results from
experiments crossbreeding plants and animals; and cities recorded tax payments,
disease outbreaks, and populations. Each of these required a human being to first
observe and second, record the observation. Today, such observations are increasingly
automated and recorded systematically in ever-growing computerized databases.

The invention of electronic sensors has additionally contributed to an increase in the
richness of recorded data. Specialized sensors see, hear, smell, or taste. These sensors
process the data far differently than a human being would, and in many ways, this
is a benefit. Without the need for translation into human language, the raw sensory
data remains objective.

It is important to note that although a sensor does not have
a subjective component to its observations, it does not
necessarily report truth (if such a concept can be defined).
A camera taking photographs in black and white might
provide a far different depiction of its environment than
one shooting pictures in color. Similarly, a microscope
provides a far different depiction of reality than a telescope.

Between databases and sensors, many aspects of our lives are recorded.
Governments, businesses, and individuals are recording and reporting all manners
of information from the monumental to the mundane. Weather sensors record
temperature and pressure data, surveillance cameras watch sidewalks and subway
tunnels, and all manner of electronic behaviors are monitored: transactions,
communications, friendships, and many others.

Chapter 1

[7]

This deluge of data has led some to state that we have entered an era of Big Data, but
this may be a bit of a misnomer. Human beings have always been surrounded by
data. What makes the current era unique is that we have easy data. Larger and more
interesting data sets are increasingly accessible through the tips of our fingers, only
a web search away. We now live in a period with vast quantities of data that can be
directly processed by machines. Much of this information has the potential to inform
decision making, if only there was a systematic way of making sense from it all.

The field of study interested in the development of computer algorithms for
transforming data into intelligent action is known as machine learning. This field
originated in an environment where the available data, statistical methods, and
computing power rapidly and simultaneously evolved. Growth in data necessitated
additional computing power, which in turn spurred the development of statistical
methods for analyzing large datasets. This created a cycle of advancement allowing
even larger and more interesting data to be collected.

A closely related sibling of machine learning, data mining, is concerned with
the generation of novel insight from large databases (not to be confused with the
pejorative term "data mining," describing the practice of cherry-picking data to
support a theory). Although there is some disagreement over how widely the two
fields overlap, a potential point of distinction is that machine learning tends to be
focused on performing a known task, whereas data mining is about the search for
hidden nuggets of information. For instance, you might use machine learning to
teach a robot to drive a car, whereas you would utilize data mining to learn what
type of cars are the safest.

Machine learning algorithms are virtually a prerequisite for
data mining but the opposite is not true. In other words,
you can apply machine learning to tasks that do not involve
data mining, but if you are using data mining methods, you
are almost certainly using machine learning.

Introducing Machine Learning

[8]

Uses and abuses of machine learning
At its core, machine learning is primarily interested in making sense of complex data.
This is a broadly applicable mission, and largely application agnostic. As you might
expect, machine learning is used widely. For instance, it has been used to:

•	 Predict the outcomes of elections
•	 Identify and filter spam messages from e-mail
•	 Foresee criminal activity
•	 Automate traffic signals according to road conditions
•	 Produce financial estimates of storms and natural disasters
•	 Examine customer churn
•	 Create auto-piloting planes and auto-driving cars
•	 Identify individuals with the capacity to donate
•	 Target advertising to specific types of consumers

For now, don't worry about exactly how the machines learn to perform these tasks;
we will get into the specifics later. But across each of these contexts, the process is
the same. A machine learning algorithm takes data and identifies patterns that can
be used for action. In some cases, the results are so successful that they seem to reach
near-legendary status.

One possibly apocryphal tale is of a large retailer in the United States, which
employed machine learning to identify expectant mothers for targeted coupon
mailings. If mothers-to-be were targeted with substantial discounts, the retailer
hoped they would become loyal customers who would then continue to purchase
profitable items like diapers, formula, and toys.

By applying machine learning methods to purchase data, the retailer believed it
had learned some useful patterns. Certain items, such as prenatal vitamins, lotions,
and washcloths could be used to identify with a high degree of certainty not only
whether a woman was pregnant, but also when the baby was due.

After using this data for a promotional mailing, an angry man contacted the
retailer and demanded to know why his teenage daughter was receiving coupons
for maternity items. He was furious that the merchant seemed to be encouraging
teenage pregnancy. Later on, as a manager called to offer an apology, it was the
father that ultimately apologized; after confronting his daughter, he had discovered
that she was indeed pregnant.

Chapter 1

[9]

Whether completely true or not, there is certainly an element of truth to the preceding
tale. Retailers, do in fact, routinely analyze their customers' transaction data. If you've
ever used a shopper's loyalty card at your grocer, coffee shop, or another retailer, it is
likely that your purchase data is being used for machine learning.

Retailers use machine learning methods for advertising, targeted promotions,
inventory management, or the layout of the items in the store. Some retailers have
even equipped checkout lanes with devices that print coupons for promotions based
on the items in the current transaction. Websites also routinely do this to serve
advertisements based on your web browsing history. Given the data from many
individuals, a machine learning algorithm learns typical patterns of behavior that can
then be used to make recommendations.

Despite being familiar with the machine learning methods working behind the
scenes, it still feels a bit like magic when a retailer or website seems to know me
better than I know myself. Others may be less thrilled to discover that their data
is being used in this manner. Therefore, any person wishing to utilize machine
learning or data mining would be remiss not to at least briefly consider the ethical
implications of the art.

Ethical considerations
Due to the relative youth of machine learning as a discipline and the speed at
which it is progressing, the associated legal issues and social norms are often quite
uncertain and constantly in flux. Caution should be exercised when obtaining or
analyzing data in order to avoid breaking laws, violating terms of service or data use
agreements, abusing the trust, or violating privacy of the customers or the public.

The informal corporate motto of Google, an organization,
which collects perhaps more data on individuals
than any other, is "don't be evil." This may serve as a
reasonable starting point for forming your own ethical
guidelines, but it may not be sufficient.

Certain jurisdictions may prevent you from using racial, ethnic, religious, or other
protected class data for business reasons, but keep in mind that excluding this
data from your analysis may not be enough—machine learning algorithms might
inadvertently learn this information independently. For instance, if a certain segment
of people generally live in a certain region, buy a certain product, or otherwise
behave in a way that uniquely identifies them as a group, some machine learning
algorithms can infer the protected information from seemingly innocuous data.
In such cases, you may need to fully "de-identify" these people by excluding any
potentially identifying data in addition to the protected information.

Introducing Machine Learning

[10]

Apart from the legal consequences, using data inappropriately may hurt your
bottom line. Customers may feel uncomfortable or become spooked if aspects of
their lives they consider private are made public. Recently, several high-profile
web applications have experienced a mass exodus of users who felt exploited when
the applications' terms of service agreements changed and their data was used for
purposes beyond what the users had originally agreed upon. The fact that privacy
expectations differ by context, by age cohort, and by locale, adds complexity to
deciding the appropriate use of personal data. It would be wise to consider the
cultural implications of your work before you begin on your project.

The fact that you can use data for a particular end does not
always mean that you should.

How do machines learn?
A commonly cited formal definition of machine learning, proposed by computer
scientist Tom M. Mitchell, says that a machine is said to learn if it is able to take
experience and utilize it such that its performance improves up on similar experiences
in the future. This definition is fairly exact, yet says little about how machine learning
techniques actually learn to transform data into actionable knowledge.

Although it is not strictly necessary to understand the
theoretical basis of machine learning prior to using it,
this foundation provides an insight into the distinctions
among machine learning algorithms. Because machine
learning algorithms are modeled in many ways
on human minds, you may even discover yourself
examining your own mind in a different light.

Regardless of whether the learner is a human or a machine, the basic learning
process is similar. It can be divided into three components as follows:

•	 Data input: It utilizes observation, memory storage, and recall to provide a
factual basis for further reasoning.

•	 Abstraction: It involves the translation of data into broader representations.
•	 Generalization: It uses abstracted data to form a basis for action.

Chapter 1

[11]

To better understand the learning process, think about the last time you studied for
a difficult test, perhaps for a university final exam or a career certification. Did you
wish for an eidetic (that is, photographic) memory? If so, you may be disappointed
to learn that perfect recall is unlikely to save you much effort. Without a higher
understanding, your knowledge is limited exactly to the data input, meaning only
what you had seen before and nothing more. Therefore, without knowledge of all
the questions that could appear on the exam, you would be stuck attempting to
memorize answers to every question that could conceivably be asked. Obviously,
this is an unsustainable strategy.

Instead, a better strategy is to spend time selectively managing only a smaller set of
key ideas. The commonly used learning strategies of creating an outline or a concept
map are similar to how a machine performs knowledge abstraction. The tools define
relationships among information and in doing so, depict difficult ideas without
needing to memorize them word-for-word. It is a more advanced form of learning
because it requires that the learner puts the topic into his or her own words.

It is always a tense moment when the exam is graded and the learning strategies
are either vindicated or implicated with a high or low mark. Here, one discovers
whether the learning strategies generalized to the questions that the teacher or
professor had selected. Generalization requires a breadth of abstracted data, as well
as a higher-level understanding of how to apply such knowledge to unforeseen
topics. A good teacher can be quite helpful in this regard.

Keep in mind that although we have illustrated the learning process as three distinct
steps, they are merely organized this way for illustrative purposes. In reality, the
three components of learning are inextricably linked. In particular, the stages of
abstraction and generalization are so closely related that it would be impossible
to perform one without the other. In human beings, the entire process happens
subconsciously. We recollect, deduce, induct, and intuit. Yet for a computer, these
processes must be made explicit. On the other hand, this is a benefit of machine
learning. Because the process is transparent, the learned knowledge can be examined
and utilized for future action.

Abstraction and knowledge representation
Representing raw input data in a structured format is the quintessential task for a
learning algorithm. Prior to this point, the data is merely ones and zeros on a disk or
in memory; they have no meaning. The work of assigning a meaning to data occurs
during the abstraction process.

Introducing Machine Learning

[12]

The connection between ideas and reality is exemplified by the famous René Magritte
painting The Treachery of Images shown as follows:

Source: http://collections.lacma.org/node/239578

The painting depicts a tobacco pipe with the caption Ceci n'est pas une pipe
("this is not a pipe"). The point Magritte was illustrating is that a representation of a
pipe is not truly a pipe. In spite of the fact that the pipe is not real, anybody viewing
the painting easily recognizes that the picture is a pipe, suggesting that observers'
minds are able to connect the picture of a pipe to the idea of a pipe, which can then
be connected to an actual pipe that could be held in the hand. Abstracted connections
like this are the basis of knowledge representation, the formation of logical
structures that assist with turning raw sensory information into a meaningful insight.

During the process of knowledge representation, the computer summarizes raw
inputs in a model, an explicit description of the structured patterns among data.
There are many different types of models. You may already be familiar with some.
Examples include:

•	 Equations
•	 Diagrams such as trees and graphs
•	 Logical if/else rules
•	 Groupings of data known as clusters

The choice of model is typically not left up to the machine. Instead, the model is
dictated by the learning task and the type of data being analyzed. Later in this
chapter, we will discuss methods for choosing the type of model in more detail.

Chapter 1

[13]

The process of fitting a particular model to a dataset is known as training. Why
is this not called learning? First, note that the learning process does not end with
the step of data abstraction. Learning requires an additional step to generalize the
knowledge to future data. Second, the term training more accurately describes the
actual process undertaken when the model is fitted to the data. Learning implies
a sort of inductive, bottom-up reasoning. Training better connotes the fact that the
machine learning model is imposed by the human teacher onto the machine student,
providing the computer with a structure it attempts to model after.

When the model has been trained, the data has been transformed into an abstract
form that summarizes the original information. It is important to note that the
model does not itself provide additional data, yet it is sometimes interesting on its
own. How can this be? The reason is that by imposing an assumed structure on the
underlying data, it gives insight into the unseen and provides a theory about how
the data is related. Take for instance the discovery of gravity. By fitting equations
to observational data, Sir Isaac Newton deduced the concept of gravity. But gravity
was always present. It simply wasn't recognized as a concept until the model noted
it in abstract terms—specifically, by becoming the g term in a model that explains
observations of falling objects.

Most models will not result in the development of theories that shake up scientific
thought for centuries. Still, your model might result in the discovery of previously
unseen relationships among data. A model trained on genomic data might find
several genes that when combined are responsible for the onset of diabetes; banks
might discover a seemingly innocuous type of transaction that systematically
appears prior to fraudulent activity; psychologists might identify a combination
of characteristics indicating a new disorder. The underlying relationships were
always present; but in conceptualizing the information in a different format, a model
presents the connections in a new light.

www.allitebooks.com

http://www.allitebooks.org

Introducing Machine Learning

[14]

Generalization
Recall that the learning process is not complete until the learner is able to use its
abstracted knowledge for future action. Yet an issue remains before the learner
can proceed—there are countless underlying relationships that might be identified
during the abstraction process and myriad ways to model these relationships. Unless
the number of potential theories is limited, the learner will be unable to utilize the
information. It would be stuck where it started, with a large pool of information but
no actionable insight.

The term generalization describes the process of turning abstracted knowledge into
a form that can be utilized for action. Generalization is a somewhat vague process
that is a bit difficult to describe. Traditionally, it has been imagined as a search
through the entire set of models (that is, theories) that could have been abstracted
during training. Specifically, if you imagine a hypothetical set containing every
possible theory that could be established from the data, generalization involves the
reduction of this set into a manageable number of important findings.

Generally, it is not feasible to reduce the number of potential concepts by examining
them one-by-one and determining which are the most useful. Instead, machine
learning algorithms generally employ shortcuts that more quickly divide the set
of concepts. Toward this end, the algorithm will employ heuristics, or educated
guesses about the where to find the most important concepts.

Because the heuristics utilize approximations and other
rules of thumb, they are not guaranteed to find the
optimal set of concepts that model the data. However,
without utilizing these shortcuts, finding useful
information in a large dataset would be infeasible.

Heuristics are routinely used by human beings to quickly generalize experience to
new scenarios. If you have ever utilized gut instinct to make a snap decision prior to
fully evaluating your circumstances, you were intuitively using mental heuristics.

For example, the availability heuristic is the tendency for people to estimate the
likelihood of an event by how easily examples can be recalled. The availability
heuristic might help explain the prevalence of the fear of airline travel relative to
automobile travel, despite automobiles being statistically more dangerous. Accidents
involving air travel are highly publicized and traumatic events, and are likely to be
very easily recalled, whereas car accidents barely warrant a mention in the newspaper.

Chapter 1

[15]

The preceding example illustrates the potential for heuristics to result in illogical
conclusions. Browsing a list of common logical fallacies, one is likely to note many
that seem rooted in heuristic-based thinking. For instance, the gambler's fallacy, or
the belief that a run of bad luck implies that a stretch of better luck is due, may be
resultant from the application of the representativeness heuristic, which erroneously
led the gambler to believe that all random sequences are balanced since most random
sequences are balanced.

The folly of misapplied heuristics is not limited to human beings. The heuristics
employed by machine learning algorithms also sometimes result in erroneous
conclusions. If the conclusions are systematically imprecise, the algorithm is said
to have a bias. For example, suppose that a machine learning algorithm learned to
identify faces by finding two circles, or eyes, positioned side-by-side above a line
for a mouth. The algorithm might then have trouble with, or be biased against faces
that do not conform to its model. This may include faces with glasses, turned at
an angle, looking sideways, or with darker skin tones. Similarly, it could be biased
toward faces with lighter eye colors or other characteristics that do not conform to its
understanding of the world.

In modern usage, the word bias has come to carry quite negative connotations. Various
forms of media frequently claim to be free from bias, and claim to report the facts
objectively, untainted by emotion. Still, consider for a moment the possibility that a
little bias might be useful. Without a bit of arbitrariness, might it be a bit difficult to
decide among several competing choices, each with distinct strengths and weaknesses?
Indeed, some recent studies in the field of psychology have suggested that individuals
born with damage to portions of the brain responsible for emotion are ineffectual at
decision making, and might spend hours debating simple decisions such as what color
shirt to wear or where to eat lunch. Paradoxically, bias is what blinds us from some
information while also allowing us to utilize other information for action.

Introducing Machine Learning

[16]

Assessing the success of learning
Bias is a necessary evil associated with the abstraction and generalization process
inherent in any machine learning task. Every learner has its weaknesses and is biased
in a particular way; there is no single model to rule them all. Therefore, the final step
in the generalization process is to determine the model's success in spite of its biases.

After a model has been trained on an initial dataset, the model is tested on a new
dataset, and judged on how well its characterization of the training data generalizes
to the new data. It's worth noting that it is exceedingly rare for a model to perfectly
generalize to every unforeseen case.

In part, the failure for models to perfectly generalize is due to the problem of noise,
or unexplained variations in data. Noisy data is caused by seemingly random events,
such as:

•	 Measurement error due to imprecise sensors that sometimes add or subtract
a bit from the reading

•	 Issues with reporting data, such as respondents reporting random answers to
survey questions in order to finish more quickly

•	 Errors caused when data is recorded incorrectly, including missing, null,
truncated, incorrectly coded, or corrupted values

Trying to model the noise in data is the basis of a problem called overfitting. Because
noise is unexplainable by definition, attempting to explain the noise will result
in erroneous conclusions that do not generalize well to new cases. Attempting to
generate theories to explain the noise also results in more complex models that are
more likely to ignore the true pattern the learner is trying to identify. A model that
seems to perform well during training but does poorly during testing is said to be
overfitted to the training dataset as it does not generalize well.

Solutions to the problem of overfitting are specific to particular machine learning
approaches. For now, the important point is to be aware of the issue. How well models
are able to handle noisy data is an important source of distinction among them.

Chapter 1

[17]

Steps to apply machine learning
to your data
Any machine learning task can be broken down into a series of more manageable
steps. This book has been organized according to the following process:

1.	 Collecting data: Whether the data is written on paper, recorded in text files
and spreadsheets, or stored in an SQL database, you will need to gather it in
an electronic format suitable for analysis. This data will serve as the learning
material an algorithm uses to generate actionable knowledge.

2.	 Exploring and preparing the data: The quality of any machine learning
project is based largely on the quality of data it uses. This step in the machine
learning process tends to require a great deal of human intervention. An
often cited statistic suggests that 80 percent of the effort in machine learning
is devoted to data. Much of this time is spent learning more about the data
and its nuances during a practice called data exploration.

3.	 Training a model on the data: By the time the data has been prepared for
analysis, you are likely to have a sense of what you are hoping to learn from
the data. The specific machine learning task will inform the selection of an
appropriate algorithm, and the algorithm will represent the data in the form
of a model.

4.	 Evaluating model performance: Because each machine learning model
results in a biased solution to the learning problem, it is important to
evaluate how well the algorithm learned from its experience. Depending
on the type of model used, you might be able to evaluate the accuracy of
the model using a test dataset, or you may need to develop measures of
performance specific to the intended application.

5.	 Improving model performance: If better performance is needed, it becomes
necessary to utilize more advanced strategies to augment the performance
of the model. Sometimes, it may be necessary to switch to a different type of
model altogether. You may need to supplement your data with additional
data, or perform additional preparatory work as in step two of this process.

After these steps have been completed, if the model appears to be performing
satisfactorily, it can be deployed for its intended task. As the case may be, you might
utilize your model to provide score data for predictions (possibly in real time), for
projections of financial data, to generate useful insight for marketing or research,
or to automate tasks such as mail delivery or flying aircraft. The successes and
failures of the deployed model might even provide additional data to train the next
generation of your model.

Introducing Machine Learning

[18]

Choosing a machine learning algorithm
The process of choosing a machine learning algorithm involves matching the
characteristics of the data to be learned to the biases of the available approaches. Since
the choice of a machine learning algorithm is largely dependent upon the type of data
you are analyzing and the proposed task at hand, it is often helpful to be thinking
about this process while you are gathering, exploring, and cleaning your data.

It may be tempting to learn a couple of machine learning
techniques and apply them to everything, but resist this
temptation. No machine learning approach is best for every
circumstance. This fact is described by the No Free Lunch
theorem, introduced by David Wolpert in 1996. For more
information, visit: http://www.no-free-lunch.org.

Thinking about the input data
All machine learning algorithms require input training data. The exact format may
differ, but in its most basic form, input data takes the form of examples and features.

An example is literally a single exemplary instance of the underlying concept to be
learned; it is one set of data describing the atomic unit of interest for the analysis. If
you were building a learning algorithm to identify spam e-mail, the examples would
be data from many individual electronic messages. To detect cancerous tumors, the
examples might comprise biopsies from a number of patients.

The phrase unit of observation is used to describe the units that the examples are
measured in. Commonly, the unit of observation is in the form of transactions,
persons, time points, geographic regions, or measurements. Other possibilities
include combinations of these such as person years, which would denote cases where
the same person is tracked over multiple time points.

A feature is a characteristic or attribute of an example, which might be useful for
learning the desired concept. In the previous examples, attributes in the spam
detection dataset might consist of the words used in the e-mail messages. For the
cancer dataset, the attributes might be genomic data from the biopsied cells, or
measured characteristics of the patient such as weight, height, or blood pressure.

Chapter 1

[19]

The following spreadsheet shows a dataset in matrix format, which means that
each example has the same number of features. In matrix data, each row in the
spreadsheet is an example and each column is a feature. Here, the rows indicate
examples of automobiles while the columns record various features of the cars such
as the price, mileage, color, and transmission. Matrix format data is by far the most
common form used in machine learning, though as you will see in later chapters,
other forms are used occasionally in specialized cases.

Features come in various forms as well. If a feature represents a characteristic
measured in numbers, it is unsurprisingly called numeric. Alternatively, if it
measures an attribute that is represented by a set of categories, the feature is called
categorical or nominal. A special case of categorical variables is called ordinal,
which designates a nominal variable with categories falling in an ordered list.
Some examples of ordinal variables include clothing sizes such as small, medium,
and large, or a measurement of customer satisfaction on a scale from 1 to 5. It is
important to consider what the features represent because the type and number
of features in your dataset will assist with determining an appropriate machine
learning algorithm for your task.

Introducing Machine Learning

[20]

Thinking about types of machine learning
algorithms
Machine learning algorithms can be divided into two main groups: supervised
learners that are used to construct predictive models, and unsupervised learners that
are used to build descriptive models. Which type you will need to use depends on
the learning task you hope to accomplish.

A predictive model is used for tasks that involve, as the name implies, the prediction
of one value using other values in the dataset. The learning algorithm attempts to
discover and model the relationship among the target feature (the feature being
predicted) and the other features. Despite the common use of the word "prediction"
to imply forecasting predictive models need not necessarily foresee future events. For
instance, a predictive model could be used to predict past events such as the date of a
baby's conception using the mother's hormone levels; or, predictive models could be
used in real time to control traffic lights during rush hours.

Because predictive models are given clear instruction on what they need to learn and
how they are intended to learn it, the process of training a predictive model is known
as supervised learning. The supervision does not refer to human involvement, but
rather the fact that the target values provide a supervisory role, which indicates to
the learner the task it needs to learn. Specifically, given a set of data, the learning
algorithm attempts to optimize a function (the model) to find the combination of
feature values that result in the target output.

The often used supervised machine learning task of predicting which category an
example belongs to is known as classification. It is easy to think of potential uses for
a classifier. For instance, you could predict whether:

•	 A football team will win or lose
•	 A person will live past the age of 100
•	 An applicant will default on a loan
•	 An earthquake will strike next year

The target feature to be predicted is a categorical feature known as the class and is
divided into categories called levels. A class can have two or more levels, and the
levels need not necessarily be ordinal. Because classification is so widely used in
machine learning, there are many types of classification algorithms.

Chapter 1

[21]

Supervised learners can also be used to predict numeric data such as income,
laboratory values, test scores, or counts of items. To predict such numeric values, a
common form of numeric prediction fits linear regression models to the input data.
Although regression models are not the only type of numeric models, they are by far
the most widely used. Regression methods are widely used for forecasting, as they
quantify in exact terms the association between the inputs and the target, including
both the magnitude and uncertainty of the relationship.

Since it is easy to convert numbers to categories (for example,
ages 13 to 19 are teenagers) and categories to numbers (for
example, assign 1 to all males, 0 to all females), the boundary
between classification models and numeric prediction models
is not necessarily firm.

A descriptive model is used for tasks that would benefit from the insight gained
from summarizing data in new and interesting ways. As opposed to predictive
models that predict a target of interest; in a descriptive model, no single feature is
more important than any other. In fact, because there is no target to learn, the process
of training a descriptive model is called unsupervised learning. Although it can be
more difficult to think of applications for descriptive models—after all, what good is
a learner that isn't learning anything in particular—they are used quite regularly for
data mining.

For example, the descriptive modeling task called pattern discovery is used to
identify frequent associations within data. Pattern discovery is often used for market
basket analysis on transactional purchase data. Here, the goal is to identify items
that are frequently purchased together, such that the learned information can be used
to refine the marketing tactics. For instance, if a retailer learns that swimming trunks
are commonly purchased at the same time as sunscreen, the retailer might reposition
the items more closely in the store, or run a promotion to "up-sell" customers on
associated items.

Originally used only in retail contexts, pattern discovery is now
starting to be used in quite innovative ways. For instance, it can
be used to detect patterns of fraudulent behavior, screen for
genetic defects, or prevent criminal activity.

Introducing Machine Learning

[22]

The descriptive modeling task of dividing a dataset into homogeneous groups is
called clustering. This is sometimes used for segmentation analysis that identifies
groups of individuals with similar purchasing, donating, or demographic
information so that advertising campaigns can be tailored to particular audiences.
Although the machine is capable of identifying the groups, human intervention is
required to interpret them. For example, given five different clusters of shoppers at
a grocery store, the marketing team will need to understand the differences among
the groups in order to create a promotion that best suits each group. However, this is
almost certainly easier than trying to create a unique appeal for each customer.

Matching your data to an appropriate algorithm
The following table lists the general types of machine learning algorithms covered
in this book, each of which may be implemented in several ways. Although this
covers only some of the entire set of all machine learning algorithms, learning these
methods will provide a sufficient foundation for making sense of other methods as
you encounter them.

Model Task Chapter
Supervised Learning Algorithms
Nearest Neighbor Classification Chapter 3
naive Bayes Classification Chapter 4
Decision Trees Classification Chapter 5
Classification Rule Learners Classification Chapter 5
Linear Regression Numeric

prediction
Chapter 6

Regression Trees Numeric
prediction

Chapter 6

Model Trees Numeric
prediction

Chapter 6

Neural Networks Dual use Chapter 7
Support Vector Machines Dual use Chapter 7
Unsupervised Learning Algorithms
Association Rules Pattern detection Chapter 8
k-means Clustering Clustering Chapter 9

Chapter 1

[23]

To match a learning task to a machine learning approach, you will need to begin
with one of the four types of tasks: classification, numeric prediction, pattern
detection, or clustering. Certain tasks make the choice of algorithm simpler. For
instance, if you are undertaking pattern detection, you will likely employ association
rules. Similarly, a clustering problem will likely utilize the k-means algorithm while
numeric prediction will utilize regression analysis or regression trees.

For classification, more thought is needed to match a learning problem to an
appropriate classifier. In these cases, it is helpful to consider the various distinctions
among the algorithms. For instance, within classification problems, decision trees
result in models that are readily understood, while the models of neural networks
are notoriously difficult to interpret. If you were designing a credit-scoring model,
this could be an important distinction because law often requires that the applicant
must be notified about the reasons he or she was rejected for the loan. Even if the
neural network was better at predicting loan defaults if the predictions cannot be
explained, then it is useless.

In each chapter, the key strengths and weaknesses of each approach will be listed.
Although you will sometimes find that these characteristics exclude certain models
from consideration in most cases, the choice of model is arbitrary. In this case, feel
free to use whichever algorithm you are most comfortable with. Other times, when
predictive accuracy is primary, you may need to test several and choose the one that
fits best. In later chapters, we will even look at methods of combining models that
utilize the best properties of each.

Using R for machine learning
Many of the algorithms needed for machine learning in R are not included as
part of the base installation. Thanks to R being free open source software, there
is no additional charge for this functionality. The algorithms needed for machine
learning were added to base R by a large community of experts who contributed to
the software. A collection of R functions that can be shared among users is called a
package. Free packages exist for each of the machine learning algorithms covered
in this book. In fact, this book only covers a small portion of the more popular
machine learning packages.

If you are interested in the breadth of R packages (4,209 packages were available
at the time of writing this), you can view a list at the Comprehensive R Archive
Network (CRAN) collection of web and FTP sites located around the world to
provide the most up-to-date versions of R software and R packages for download.
If you obtained the R software via download, it was most likely from CRAN. The
CRAN website is available at:

http://cran.r-project.org/index.html.

www.allitebooks.com

http://www.allitebooks.org

Introducing Machine Learning

[24]

If you do not already have R, the CRAN website also
provides installation instructions and information on
where to find help if you have trouble.

The Packages link on the left side of the page will take you to a page where you can
browse the packages in alphabetical order or sorted by publication date. Perhaps
even better, the CRAN Task Views provide organized lists of packages by subject
area. The task view for machine learning, which lists the packages covered in this
book (and many more), is available at:

http://cran.r-project.org/web/views/MachineLearning.html

Installing and loading R packages
Despite the vast set of available R add-ons, the package format makes installation
and use a virtually effortless process. To demonstrate the use of packages, we
will install and load the RWeka package, which was developed by Kurt Hornik,
Christian Buchta, and Achim Zeileis (see Open-Source Machine Learning: R Meets Weka
in Computational Statistics 24: 225-232 for more information). The RWeka package
provides a collection of functions that give R access to the machine learning
algorithms in the Java-based Weka software package by Ian H. Witten and Eibe Frank.
For more information on Weka, see:

http://www.cs.waikato.ac.nz/~ml/weka/.

To use the RWeka package, you will need to have Java installed
if it isn't already (many computers come with Java preinstalled).
Java is a set of programming tools, available for free, which
allow for the use of cross-platform applications such as Weka.
For more information and to download Java for your system,
visit: http://java.com.

Installing an R package
The most direct way to install a package is via the install.packages() function.
To install the RWeka package, at the R command prompt simply type:

> install.packages("RWeka")

R will then connect to CRAN and download the package in the correct format for
your operating system. Some packages such as RWeka require additional packages to
be installed before they can be used (these are called dependencies). By default, the
installer will automatically download and install any dependencies.

Chapter 1

[25]

The first time you install a package, R may ask you to choose
a CRAN mirror. If this happens, choose the mirror residing
at a location close to you. This will generally provide the
fastest download speed.

The default installation options are appropriate for most systems. However, in some
cases, you may want to install a package to another location. For example, if you do
not have root or administrator privileges on your system, you may need to specify an
alternative installation path. This can be accomplished using the lib option, as follows:

> install.packages("RWeka", lib="/path/to/library")

The installation function also provides additional options for installing from a local
file, installing from source, or using experimental versions. You can read about these
options in the help file by using the following command:

> ?install.packages

Installing a package using the point-and-click
interface
As an alternative to typing the install.packages() command, R provides a
graphical user interface (GUI) for package installation. On a Microsoft Windows
system, this can be accessed from the Install package(s) command item under the
Packages menu, as shown in the following screenshot. On Mac OS X, the command
is labeled Package Installer and is located under the Packages & Data menu.

Introducing Machine Learning

[26]

On Windows, after launching the package installer (and choosing a CRAN mirror
location if you haven't already), a large list of packages will appear. Simply scroll
to the RWeka package and click on the OK button to install the package and all
dependencies to the default location.

On Mac OS X, the package installer menu provides additional options. To load the
list of packages, click on the Get List button. Scroll to the RWeka package (or use
the Package Search feature) and click on Install Selected. Note that by default,
the Mac OS X Package Installer does not install dependencies unless the Install
Dependencies checkbox is selected, as shown in the following screenshot:

Chapter 1

[27]

Loading an R package
In order to conserve memory, R does not load every installed package by
default. Instead, packages are loaded by users as they are needed using the
library() function.

The name of this function leads some people to incorrectly use
the terms library and package interchangeably. However, to
be precise, a library refers to the location where packages are
installed and never to a package itself.

To load the RWeka package we installed previously, you would type the following:

> library(RWeka)

Aside from RWeka, there are several other R packages that will be used in later
chapters. Installation instructions will be provided as additional packages are used.

Summary
Machine learning originated at the intersection of statistics, database science, and
computer science. It is a powerful tool, capable of finding actionable insight in large
quantities of data. Still, caution must be used in order to avoid common abuses of
machine learning in the real world.

In conceptual terms, learning involves the abstraction of data into a structured
representation, and the generalization of this structure into action. In more practical
terms, a machine learner uses data containing examples and features of the concept
to be learned, and summarizes this data in the form of a model, which is then used
for predictive or descriptive purposes. These can be further divided into specific
tasks including classification, numeric prediction, pattern detection, and clustering.
Among the many options, machine learning algorithms are chosen on the basis of the
input data and the learning task.

R provides support for machine learning in the form of community-authored
packages. These powerful tools are free to download, but need to be installed
before they can be used. In the next chapter, we will further introduce the basic R
commands that are used to manage and prepare data for machine learning.

Managing and
Understanding Data

A key early component of any machine learning project involves managing and
understanding the data you have collected. Although you may not find it as
gratifying as building and deploying models—the stages in which you begin to see
the fruits of your labor—you cannot ignore the preparatory work.

Any learning algorithm is only as good as its input data, and in many cases, input
data is complex, messy, and spread across multiple sources and formats. Because of
this complexity, the largest portion of effort invested in machine learning projects is
spent on the data preparation and exploration process.

This chapter is divided into three main sections. The first section discusses the
basic data structures R uses to store data. You will become very familiar with these
structures as you create and manipulate datasets. The second section is practical, as
it covers several functions that are useful for getting data in and out of R. In the third
section, methods for understanding data are illustrated throughout the process of
exploring a real-world dataset.

By the end of this chapter, you will understand:

•	 The basic R data structures and how to use them to store and extract data
•	 How to get data into R from a variety of source formats
•	 Common methods for understanding and visualizing complex data

Since the way R thinks about data will define the way you think about data, it is
helpful to understand the basic R data structures before jumping into data preparation.
However, if you are already familiar with R data structures, feel free to skip ahead to
the section on data preprocessing.

Managing and Understanding Data

[30]

R data structures
There are numerous types of data structures across programming languages, each
with strengths and weaknesses specific to particular tasks. Since R is a programming
language used widely for statistical data analysis, the data structures it utilizes
are designed to make it easy to manipulate data for this type of work. The R data
structures used most frequently in machine learning are vectors, factors, lists, arrays,
and data frames. Each of these data types is specialized for a specific data management
task, which makes it important to understand how they will interact in your R project.

Vectors
The fundamental R data structure is the vector, which stores an ordered set of
values called elements. A vector can contain any number of elements. However, all
the elements must be of the same type; for instance, a vector cannot contain both
numbers and text.

There are several vector types commonly used in machine learning: integer
(numbers without decimals), numeric (numbers with decimals), character (text data),
or logical (TRUE or FALSE values). There are also two special values: NULL, which is
used to indicate the absence of any value, and NA, which indicates a missing value.

It is tedious to enter large amounts of data manually, but simple vectors can be
created by using the combine function c(). The vector can also be given a name
using the arrow <- operator, which is R's assignment operator, used in a similar
way to the = assignment operator in many other programming languages.

For example, let's construct a set of vectors containing data on three medical patients.
We'll create a character vector named subject_name, which contains the three
patient names, a numeric vector named temperature containing each patient's body
temperature, and a logical vector flu_status containing each patient's diagnosis;
TRUE if he or she has influenza, FALSE otherwise. As shown in the following listing,
the three vectors are:
> subject_name <- c("John Doe", "Jane Doe", "Steve Graves")

> temperature <- c(98.1, 98.6, 101.4)

> flu_status <- c(FALSE, FALSE, TRUE)

Because R vectors are inherently ordered, the records can be accessed by counting
the item's number in the set, beginning at 1, and surrounding this number with
square brackets (for example, [and]) after the name of the vector. For instance, to
obtain the body temperature for patient Jane Doe, or element 2 in the temperature
vector simply type:
> temperature[2]

[1] 98.6

Chapter 2

[31]

R offers a variety of convenient methods for extracting data from vectors. A range
of values can be obtained using the colon operator. For instance, to obtain the body
temperature of Jane Doe and Steve Graves, type:

> temperature[2:3]

[1] 98.6 101.4

Items can be excluded by specifying a negative item number. To exclude Jane Doe's
temperature data, type:

> temperature[-2]

[1] 98.1 101.4

Finally, it is also sometimes useful to specify a logical vector indicating whether each
item should be included. For example, to include the first two temperature readings
but exclude the third, type:

> temperature[c(TRUE, TRUE, FALSE)]

[1] 98.1 98.6

As you will see shortly, the vector provides the foundation for many other R data
structures. Therefore, knowing the various vector operations is crucial for working
with data in R.

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Factors
If you recall from Chapter 1, Introducing Machine Learning, features that represent a
characteristic with categories of values are known as nominal. Although it is possible
to use a character vector to store nominal data, R provides a data structure known as
a factor specifically for this purpose. A factor is a special case of vector that is solely
used for representing nominal variables. In the medical dataset we are building,
we might use a factor to represent gender, because it uses two categories: MALE
and FEMALE.

Managing and Understanding Data

[32]

Why not use character vectors? An advantage of using factors is that they are
generally more efficient than character vectors because the category labels are
stored only once. Rather than storing MALE, MALE, FEMALE, the computer may store
1, 1, 2. This can save memory. Additionally, certain machine learning algorithms
use special routines to handle categorical variables. Coding categorical variables as
factors ensures that the model will treat this data appropriately.

To create a factor from a character vector, simply apply the factor() function.
For example:

> gender <- factor(c("MALE", "FEMALE", "MALE"))

> gender

[1] MALE FEMALE MALE

Levels: FEMALE MALE

Notice that when the gender data was displayed, R printed additional information
indicating the levels of the gender factor. The levels comprise the set of possible
categories the data could take, in this case MALE or FEMALE.

When factors are created, we can add additional levels that may not appear in the data.
Suppose we added another factor for blood type as shown in the following example :

> blood <- factor(c("O", "AB", "A"),

 levels = c("A", "B", "AB", "O"))

> blood

[1] O AB A

Levels: A B AB O

Notice that when we defined the blood factor for the three patients, we specified an
additional vector of four possible blood types using the levels = statement. As a
result, even though our data include only types O, AB, and A, all four types are stored
with the blood factor as indicated by the output Levels: A B AB O. Storing the
additional level allows for the possibility of adding data with the other blood type in
the future. It also ensures that if we were to create a table of blood types, we would
know that type B exists, despite it not being recorded in our data.

Lists
Another special type of vector, a list, is used for storing an ordered set of values.
However, unlike a vector that requires all elements to be the same type, a list allows
different types of values to be collected. Due to this flexibility, lists are often used to
store various types of input and output data and sets of configuration parameters for
machine learning models.

Chapter 2

[33]

To illustrate lists, consider the medical patient dataset we have been constructing,
with data for three patients stored in five vectors. If we wanted to display all the data
on John Doe (subject 1), we would need to enter five R commands:

> subject_name[1]

[1] "John Doe"

> temperature[1]

[1] 98.1

> flu_status[1]

[1] FALSE

> gender[1]

[1] MALE

Levels: FEMALE MALE

> blood[1]

[1] O

Levels: A B AB O

This seems like a lot of work to display one patient's medical data. The list structure
allows us to group all of a patient's data into one object we can use repeatedly.

Similar to creating a vector with c(), a list is created using the list() function
as shown in the following example. One notable difference is that when a list is
constructed, you have the option of providing names (fullname in the following
example), for each value in the sequence of items. The names are not required, but
allow the list's values to be accessed later on by name, rather than by the numbered
position as with vectors:

> subject1 <- list(fullname = subject_name[1],

 temperature = temperature[1],

 flu_status = flu_status[1],

 gender = gender[1],

 blood = blood[1])

Printing a patient's data is now a matter of typing a single command:

> subject1

$fullname

[1] "John Doe"

$temperature

[1] 98.1

www.allitebooks.com

http://www.allitebooks.org

Managing and Understanding Data

[34]

$flu_status

[1] FALSE

$gender

[1] MALE

Levels: FEMALE MALE

$blood

[1] O

Levels: A B AB O

Note that the values are labeled with the names we specified in the preceding
command. Although a list can be accessed using the same methods as a vector,
the names give additional clarity for accessing the values, rather than needing to
remember the position of the temperature value, like this:

> subject1[2]

$temperature

[1] 98.1

It is often easier to access temperature directly, by appending a $ and the value's
name to the name of the list:

> subject1$temperature

[1] 98.1

Accessing the value by name also ensures that if you add or remove values from the
list, you will not accidentally retrieve the wrong list item when the ordering changes.

It is possible to obtain several items in a list by specifying a vector of names:

> subject1[c("temperature", "flu_status")]

$temperature

[1] 98.1

$flu_status

[1] FALSE

Although entire datasets could be constructed using lists (or lists of lists),
constructing a dataset is common enough that R provides a specialized data
structure specifically for this task.

Chapter 2

[35]

Data frames
By far the most important R data structure utilized in machine learning is the data
frame, a structure analogous to a spreadsheet or database since it has both rows and
columns of data. In R terms, a data frame can be understood as a list of vectors or
factors, each having exactly the same number of values. Because the data frame is
literally a list of vectors, it combines aspects of both vectors and lists.

Let's create a data frame for our patient dataset. Using the patient data vectors we
created previously, the data.frame() function combines them into a data frame:

> pt_data <- data.frame(subject_name, temperature, flu_status,
 gender, blood, stringsAsFactors = FALSE)

You might notice something new in the preceding code; we included an additional
parameter: stringsAsFactors = FALSE. If we do not specify this option, R will
automatically convert every character vector to a factor; this a feature which is
occasionally useful, but is also sometimes excessive. Here, for example, the
subject_name field is definitely not categorical data; names are not categories
of values. Therefore, setting the stringsAsFactors option to FALSE allows us to
convert to factors only where it makes sense for the project.

When we display the pt_data data frame, we see that the structure is quite different
from the data structures we worked with previously:

> pt_data

 subject_name temperature flu_status gender blood

1 John Doe 98.1 FALSE MALE O

2 Jane Doe 98.6 FALSE FEMALE AB

3 Steve Graves 101.4 TRUE MALE A

Compared to the one-dimensional vectors, factors, and lists, a data frame has
two dimensions and it is therefore displayed in matrix format. The data frame
has one column for each vector of patient data and one row for each patient. In
machine learning terms, the columns are the features or attributes and the rows
are the examples.

To extract entire columns (vectors) of data, we can take advantage of the fact that a
data frame is simply a list of vectors. Similar to lists, the most direct way to extract a
single element, in this case a vector or column of data, is by referring to it by name.
For example, to obtain the subject_name vector, type:

> pt_data$subject_name

[1] "John Doe" "Jane Doe" "Steve Graves"

Managing and Understanding Data

[36]

Also similar to lists, a vector of names can be used to extract several columns from
a data frame:

> pt_data[c("temperature", "flu_status")]

 temperature flu_status

1 98.1 FALSE

2 98.6 FALSE

3 101.4 TRUE

When we access the data frame in this way, the result is a data frame containing
all rows of data for the requested columns. You could also enter pt_data[2:3] to
extract the temperature and flu_status columns, but listing the columns by name
results in clear and easy-to-maintain R code.

To extract values in the data frame, we can use methods like those we learned for
accessing values in vectors, with an important exception; because the data frame is
two-dimensional, you will need to specify the position of both the rows and columns
you would like to extract. Rows are specified first, followed by a comma, followed by
the columns in a format like this: [rows, columns], starting from the number 1.

For instance, to extract the value in the first row and second column of the patient
data frame (the temperature value for John Doe), you would enter:

> pt_data[1, 2]

[1] 98.1

If you would like more than one row or column of data, this can be done by
specifying vectors for the row and column numbers you would like. The following
statement will pull data from rows 1 and 3, and columns 2 and 4:

> pt_data[c(1, 3), c(2, 4)]

 temperature gender

1 98.1 MALE

3 101.4 MALE

To extract all of the rows or columns, rather than listing every one, simply leave the
row or column portion blank. For example, to extract all rows of the first column:

> pt_data[, 1]

[1] "John Doe" "Jane Doe" "Steve Graves"

Chapter 2

[37]

To extract all columns for the first row:
> pt_data[1,]

 subject_name temperature flu_status gender blood

1 John Doe 98.1 FALSE MALE O

And to extract everything:
> pt_data[,]

 subject_name temperature flu_status gender blood

1 John Doe 98.1 FALSE MALE O

2 Jane Doe 98.6 FALSE FEMALE AB

3 Steve Graves 101.4 TRUE MALE A

The methods we have learned for accessing values in lists and vectors can also be
used for retrieving data frame rows and columns. For example, columns can be
accessed by name rather than position, and negative signs can be used to exclude
rows or columns of data. Therefore, the statement:
> pt_data[c(1, 3), c("temperature", "gender")]

Is equivalent to:
> pt_data[-2, c(-1, -3, -5)]

To become familiar working with data frames, try practicing these operations with
the patient data, or better yet, use your own dataset. These types of operations are
crucial to much of the work we will do in later chapters.

Matrixes and arrays
In addition to data frames, R provides other structures that store values in tabular form.
A matrix is a data structure that represents a two-dimensional table, with rows and
columns of data. R matrixes can contain any single type of data, although they are most
often used for mathematical operations and therefore typically store only numeric data.

To create a matrix, simply supply a vector of data to the matrix() function, along
with a parameter specifying the number of rows (nrow) or number of columns (ncol).
For example, to create a 2x2 matrix storing the first four letters of the alphabet, we can
use the nrow parameter to request the data to be divided into two rows:
> m <- matrix(c('a', 'b', 'c', 'd'), nrow = 2)

> m

 [,1] [,2]

[1,] "a" "c"

[2,] "b" "d"

Managing and Understanding Data

[38]

This is equivalent to the matrix produced using ncol = 2:

> m <- matrix(c('a', 'b', 'c', 'd'), ncol = 2)

> m

 [,1] [,2]

[1,] "a" "c"

[2,] "b" "d"

You will notice that R loaded the first column of the matrix first, then loaded the
second column. This is called column-major order. To illustrate this further, let's
see what happens if we add a few more values to the matrix.

With six values, requesting two rows creates a matrix with three columns:

> m <- matrix(c('a', 'b', 'c', 'd', 'e', 'f'), nrow = 2)

> m

 [,1] [,2] [,3]

[1,] "a" "c" "e"

[2,] "b" "d" "f"

Similarly, requesting two columns creates a matrix with three rows:

> m <- matrix(c('a', 'b', 'c', 'd', 'e', 'f'), ncol = 2)

> m

 [,1] [,2]

[1,] "a" "d"

[2,] "b" "e"

[3,] "c" "f"

As with data frames, values in matrixes can be extracted using [row, column]
notation. For instance, m[1, 1] will return the value a and m[3, 2] will extract f
from the m matrix. Similarly, entire rows or columns can be requested:

> m[1,]

[1] "a" "d"

> m[, 1]

[1] "a" "b" "c"

Closely related to the matrix structure is the array, which is a multi-dimensional table
of data. Where a matrix has rows and columns of values, an array has rows, columns,
and any number of additional layers of values. Although we will occasionally use
matrixes in later chapters, the use of arrays is outside the scope of this book.

Chapter 2

[39]

Managing data with R
One of the challenges faced when working with massive datasets involves gathering,
preparing, and otherwise managing data from a variety of sources. This task is
facilitated by R's tools for loading data from many common formats.

Saving and loading R data structures
When you have spent a lot of time getting a particular data frame into the format
that you want, you shouldn't need to recreate your work each time you restart your
R session. To save a particular data structure to a file that can be reloaded later or
transferred to another system, you can use the save() function. The save() function
writes R data structures to the location specified by the file parameter. R data files
have the file extension .RData.

If we had three objects named x, y, and z, we could save them to a file mydata.RData
using the following command:

> save(x, y, z, file = "mydata.RData")

Regardless of whether x, y, and z are vectors, factors, lists, or data frames, they will
be saved to the file.

The load() command will recreate any data structures already saved that were
to an .RData file. To load the mydata.RData file we saved in the preceding code,
simply type:

> load("mydata.RData")

This will recreate the x, y, and z data structures.

Be careful what you are loading! All data structures stored in
the file you are importing with the load() command will be
added to your workspace, even if they overwrite something
else you are working on.

If you need to wrap up your R session in a hurry, the save.image() command will
write your entire session to a file simply called .RData. By default, R will look for
this file the next time when you start R, and your session will be recreated just as you
had left it.

Managing and Understanding Data

[40]

Importing and saving data from CSV files
It is very common for publically-available data to be stored in text files. Text files
can be read on virtually any computer or operating system, making the format
nearly universal. They can also be exported and imported from/to programs such as
Microsoft Excel, providing a quick and easy way to work with spreadsheet data.

A tabular (as in "table") data file is structured in matrix form, in such a way that each
line of text reflects one example, and each example has the same number of features.
The feature values on each line are separated by a predefined symbol known as a
delimiter. Often, the first line of a tabular data file lists the names of the columns of
data. This is called a header line.

Perhaps the most common tabular text file format is the Comma-Separated Values
(CSV) file, which as the name suggests, uses the comma as a delimiter. The CSV
files can be imported to and exported from many common applications. A CSV file
representing the medical dataset constructed previously would look as follows:

subject_name,temperature,flu_status,gender,blood_type

John Doe,98.1,FALSE,MALE,O

Jane Doe,98.6,FALSE,FEMALE,AB

Steve Graves,101.4,TRUE,MALE,A

To load this CSV file into R, the read.csv() is used as follows:

> pt_data <- read.csv("pt_data.csv", stringsAsFactors = FALSE)

Given a patient data file named pt_data.csv located in the R working directory,
this will read the CSV file into a data frame titled pt_data. Just as we had done
previously when constructing a data frame, we need to use the stringsAsFactors
= FALSE parameter to prevent R from converting all text variables to factors; this
step is better left to you, not R, to perform.

If your data reside outside the R working directory, you can specify the path to
the CSV file by specifying the full path, for example, /path/to/mydata.csv when
calling the read.csv() function.

By default, R assumes that the CSV file includes a header line listing the names of
the features in the dataset. If a CSV file does not have a header, specify the option
header = FALSE as shown in the following command, and R will assign default
feature names in the form V1, V2, and so on:

> mydata <- read.csv("mydata.csv", stringsAsFactors = FALSE,
 header = FALSE)

Chapter 2

[41]

The read.csv() function is a special case of the read.table() function, which can
read tabular data in many different forms, including other delimited formats such as
Tab-Separated Value (TSV). For more detailed information on the read.table()
family of functions, refer to the R help page using the command ?read.table.

To save a data frame to a CSV file, use the write.csv() function. If your data frame
is named pt_data, simply enter:

> write.csv(pt_data, file = "pt_data.csv")

This will write a CSV file with the name pt_data.csv to the R working folder.

Importing data from SQL databases
If your data is stored in an ODBC (Open Database Connectivity) SQL (Structured
Query Language) database such as Oracle, MySQL, PostgreSQL, Microsoft SQL, or
SQLite, the RODBC package created by Brian Ripley can be used to import this data
directly into an R data frame.

ODBC is a standard protocol for connecting to databases regardless of operating
system or DBMS (Database Management System). If you have previously
connected to a database via ODBC, you most likely will have referred to it via its
DSN (Data Source Name). You will need the DSN, plus a username and password
(if your database requires it) for using RODBC.

The instructions for configuring an ODBC connection are
highly specific to the combination of operating system
and DBMS. If you are having trouble setting up an ODBC
connection, check with your database administrator.
Another way to obtain help is the RODBC package
vignette, which you can access in R with the command
print(vignette("RODBC")).

If you have not already done so, you will need to install and load the RODBC package:
> install.packages("RODBC")

> library(RODBC)

Next, we will open a connection called mydb to the database with the DSN my_dsn:
> mydb <- odbcConnect("my_dsn")

Alternatively, if your ODBC connection requires a username and password, they
should be specified when calling the odbcConnect() function:

> mydb <- odbcConnect("my_dsn", uid = "my_username"
 pwd = "my_password")

Managing and Understanding Data

[42]

Now that we have an open database connection, we can use the sqlQuery() function
to create an R data frame from the database rows pulled by SQL queries. This function,
like many functions that create data frames, allows us to specify stringsAsFactors =
FALSE, which prevents R from converting character data to factors.

The sqlQuery() function uses typical SQL queries as shown in the following
command:

> patient_query <- "select * from patient_data where alive = 1"

> patient_data <- sqlQuery(channel = mydb, query = patient_query,
 stringsAsFactors = FALSE)

The resulting patient_data variable will be a data frame containing all of the rows
selected using the SQL query stored in patient_query.

When you are done using the database, the connection can be closed as shown in the
following command:

> odbcClose(mydb)

This will close the mydb connection. Although R will automatically close ODBC
connections at the end of an R session, it is better practice to do so explicitly.

Exploring and understanding data
After collecting data and loading it into R data structures, the next step in the
machine learning process involves examining the data in detail. It is during this
step that you will begin to explore the data's features and examples, and realize the
peculiarities that make your data unique. The better you understand your data, the
better you will be able to match a machine learning model to your learning problem.

The best way to understand the process of data exploration is by example. In this
section, we will explore the usedcars.csv dataset, which contains actual data about
used cars recently advertised for sale on a popular U.S. website.

The usedcars.csv dataset is available for download
on Packt's website. If you are following along with the
examples, be sure that this file has been downloaded and
saved to your R working directory.

Since the dataset is stored in CSV form, we can use the read.csv() function to load
the data into an R data frame:

usedcars <- read.csv("usedcars.csv", stringsAsFactors = FALSE)

Chapter 2

[43]

Given the usedcars data frame, we will now assume the role of a data scientist, who
has the task of understanding the used car data. Although data exploration is a fluid
process, the steps can be imagined as a sort of investigation in which questions about
the data are answered. The exact questions may vary across projects, but the types
of questions are always similar. You should be able to adapt the basic steps of this
investigation to any dataset you like, large or small.

Exploring the structure of data
One of the first questions to ask in your investigation should be about how data
is organized. If you are fortunate, your source will provide a data dictionary, a
document that describes the data's features. In our case, the used car data does not
come with this documentation, so we'll need to create our own.

The str() function provides a method for displaying the structure of a data frame,
or any R data structure including vectors and lists. It can be used to create the basic
outline for our data dictionary:

> str(usedcars)

'data.frame':	150 obs. of 6 variables:

 $ year : int 2011 2011 2011 2011 ...

 $ model : chr "SEL" "SEL" "SEL" "SEL" ...

 $ price : int 21992 20995 19995 17809 ...

 $ mileage : int 7413 10926 7351 11613 ...

 $ color : chr "Yellow" "Gray" "Silver" "Gray" ...

 $ transmission: chr "AUTO" "AUTO" "AUTO" "AUTO" ...

For such a simple command, we learn a wealth of information about the dataset.
The statement 150 obs tells us that the data includes 150 observations, or examples.
The number of observations is often simply abbreviated as n. Since we know that
the data describes used cars, we can now presume that we have examples of n = 150
automobiles for sale.

The 6 variables statement refers to the six features that were recorded in the data.
These features are listed by name on separate lines. Looking at the line for the feature
called color, we note some additional details:

$ color : chr "Yellow" "Gray" "Silver" "Gray" ...

www.allitebooks.com

http://www.allitebooks.org

Managing and Understanding Data

[44]

After the variable's name, the chr tells us that the feature is character type. In this
dataset, three of the variables are character while three are noted as int, which
indicates integer type. Although this dataset includes only character and integer
variables, you are also likely to encounter num, or numeric type, when using
non-integer data (for example, numbers with decimal places). Any factors would
be listed as Factor type. Following each variable's type, R presents a sequence of
the first few values for the feature. The values "Yellow" "Gray" "Silver" "Gray"
are the first four values of the color feature.

Applying a bit of subject-area knowledge to the feature names and values allows
us to make some assumptions about what the variables represent. The variable
year could refer to the year the vehicle was manufactured, or it could specify the
year the advertisement was posted. We will have to investigate this feature in more
detail later, since the four example values (2011 2011 2011 2011) could be used
to argue for either possibility. The variables model, price, mileage, color, and
transmission most likely refer to the characteristics of the car for sale.

Although our data seems to have been given meaningful variable names, this is not
always the case. Sometimes, datasets have features with nonsensical names, codes,
or simply a number like V1. It may be necessary to do additional sleuthing to
determine what a feature actually represents. Still, even with helpful feature names,
it is always prudent to be skeptical about the labels you have been provided with.
Let's investigate further.

Exploring numeric variables
To investigate the numeric variables in the used car data, we will employ a
commonly-used set of measurements for describing values known as summary
statistics. The summary() function displays several common summary statistics.
Let's take a look at a single feature, year:

> summary(usedcars$year)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2000 2008 2009 2009 2010 2012

Even if you aren't already familiar with summary statistics, you may be able to guess
some of them from the heading above the summary() output. Ignoring the meaning
of the values for now, the fact that we see numbers such as 2000, 2008, and 2009
could lead us to believe that the year variable indicates the year of manufacture
rather than the year the advertisement was posted, since we know the vehicles were
recently listed for sale.

Chapter 2

[45]

We can also use the summary() function to obtain summary statistics for several
numeric variables at the same time:

> summary(usedcars[c("price", "mileage")])

 price mileage

 Min. : 3800 Min. : 4867

 1st Qu.:10995 1st Qu.: 27200

 Median :13592 Median : 36385

 Mean :12962 Mean : 44261

 3rd Qu.:14904 3rd Qu.: 55125

 Max. :21992 Max. :151479

The six summary statistics that the summary() function provides are simple, yet
powerful tools for investigating data. The summary statistics can be divided into two
types: measures of center and measures of spread.

Measuring the central tendency – mean and median
Measures of central tendency are a class of statistics used to identify a value that falls
in the middle of a set of data. You are most likely already familiar with one common
measure of center: the average. In common use, when something is deemed average,
it falls somewhere between the extreme ends of the scale. An average student might
have marks falling in the middle of his or her classmates; an average weight is neither
unusually light nor heavy. An average item is typical, and not too unlike the others in
the group. You might think of it as an exemplar by which all others are judged.

In statistics, the average is also known as the mean, a measurement defined as
the sum of all values divided by the number of values. For example, to calculate
the mean income in a group of three people with incomes of $35,000, $45,000, and
$55,000 we could type:

> (36000 + 44000 + 56000) / 3

[1] 45333.33

R also provides a mean() function, which calculates the mean for a vector of numbers:

> mean(c(36000, 44000, 56000))

[1] 45333.33

The mean income of this group of people is $45,333.33. Conceptually, you can
imagine this amount as the income each person would have if the total amount of
income was divided equally across every person.

Managing and Understanding Data

[46]

Recall that the preceding summary() output listed mean values for the price and
mileage variables. The mean price of 12962 and mean mileage of 44261 suggests
that the typical used car in this dataset was listed at a price of $12,962 and had an
odometer reading of 44,261. What does this tell us about our data? Since the average
price is relatively low, we might expect that the data includes economy-class cars.
Of course, the data can also include late-model luxury cars with high mileage, but
the relatively low mean mileage statistic doesn't provide evidence to support this
hypothesis. On the other hand, it doesn't provide evidence to ignore the possibility
either. We'll need to keep this in mind as we examine the data further.

Although the mean is by far the most commonly cited statistic for measuring the
center of a dataset, it is not always the most appropriate. Another commonly-used
measure of central tendency is the median, which is the value that occurs halfway
through an ordered list of values. As with the mean, R provides a median() function,
which we can apply to our salary data as shown in the following example:
> median(c(36000, 44000, 56000))

[1] 44000

Because the middle value is 44000, the median income is $44,000.

If a dataset has an even number of values, there is no middle
value. In this case, the median is commonly calculated as the
average of the two values at the center of the ordered list. For
example, the median of the values 1, 2, 3, 4 is 2.5.

At first glance, it seems like the median and mean are very similar measures. Certainly,
the mean value of $45,333 and the median value of $44,000 are not very different.
Why have two measures of central tendency? The reason is due to the fact that the
mean and median are affected differently by values falling at far ends of the range. In
particular, the mean is highly sensitive to outliers, or values that are atypically high or
low relative to the majority of data. Because the mean is sensitive to outliers, it is more
likely to be shifted higher or lower by a small number of extreme values.

Recall again the reported median values in the summary() output for the used car
dataset. Although the mean and median for price are fairly similar (differing by
approximately 5 percent), there is a much larger difference between the mean and
median for mileage. For mileage, the mean of 44261 is more than 20 percent larger
than the median of 36385. Since the mean is more sensitive to extreme values than
the median, the fact that the mean is much higher than the median might lead us
to suspect that there are some used cars in the dataset with extremely high mileage
values. To investigate this further, we'll need to add additional summary statistics
to our analysis.

Chapter 2

[47]

Measuring spread – quartiles and the
five-number summary
Measuring the mean and median of our data provides one way to quickly
summarize the values, but these measures of center tell us little about whether or not
there is diversity in the measurements. To measure the diversity, we need to employ
another type of summary statistics that are concerned with the spread of the data,
or how tightly or loosely the values are spaced. Knowing about the spread provides
a sense of the data's highs and lows, and whether most values are like or unlike the
mean and median.

The five-number summary is a set of five statistics that roughly depict the spread
of a dataset. All five of the statistics are included in the output of the summary()
function. Written in order, they are:

1.	 Minimum (Min.)
2.	 First quartile, or Q1 (1st Qu.)
3.	 Median, or Q2 (Median)
4.	 Third quartile, or Q3 (3rd Qu.)
5.	 Maximum (Max.)

As you would expect, the minimum and maximum are the most extreme values
found in the dataset, indicating the smallest and largest values respectively. R
provides the min() and max() functions to calculate these values on a vector of data.

The span between the minimum and maximum value is known as the range. In R,
the range() function returns both the minimum and maximum value. Combining
range() with the difference function, diff() allows you to examine the range of
data with a single command:

> range(usedcars$price)

[1] 3800 21992

> diff(range(usedcars$price))

[1] 18192

The first and third quartiles, Q1 and Q3, refer to the value below or above which
one quarter of the values are found. Along with the median (Q2), the quartiles divide
a dataset into four portions, each with the same number of values.

Managing and Understanding Data

[48]

Quartiles are a special case of a type of statistic called quantiles,
which are numbers that divide data into equally-sized
quantities. In addition to quartiles, commonly-used quantiles
include tertiles (three parts), quintiles (five parts), deciles (10
parts), and percentiles (100 parts). Percentiles are often used to
describe the ranking of a value; for instance, a student whose
test score was ranked at the 99th percentile performed better
than 99 percent of the other test takers.

The middle 50 percent of data between Q1 and Q3 is of particular interest because it
itself is a simple measure of spread. The difference between Q1 and Q3 is known as
the interquartile range (IQR), and can be calculated with the IQR() function:

> IQR(usedcars$price)

[1] 3909.5

We could have also calculated this value by hand from the summary output for the
usedcars$price variable by computing 14904 – 10995 = 3909. The small difference
between our calculation and the IQR() output is due to the fact that R automatically
rounds the summary()output.

The quantile() function provides a robust tool for identifying quantiles for a set
of values. By default, the quantile() function returns the five-number summary.
Applying the function to the used car data results in the same statistics as before:

> quantile(usedcars$price)

 0% 25% 50% 75% 100%

 3800.0 10995.0 13591.5 14904.5 21992.0

When computing quantiles, there are many methods for handling
ties among values and datasets with no middle value. The
quantile() function allows you to specify among nine different
algorithms by specifying the type parameter. If your project
requires a precisely-defined quantile, it is important to read the
function documentation using the ?quantile command.

If we specify an additional probs parameter using a vector denoting cut points, we
can obtain arbitrary quantiles, such as the 1st and 99th percentiles:

> quantile(usedcars$price, probs = c(0.01, 0.99))

 1% 99%

 5428.69 20505.00

Chapter 2

[49]

The sequence function seq() is used for generating vectors of evenly-spaced values.
This makes it easy to obtain other slices of data, such as the quintiles (five groups), as
shown in the following command:

> quantile(usedcars$price, seq(from = 0, to = 1, by = 0.20))

 0% 20% 40% 60% 80% 100%

 3800.0 10759.4 12993.8 13992.0 14999.0 21992.0

Equipped with an understanding of the five-number summary, we can re-examine
the used car summary() output. On the price variable, the minimum was $3,800
and the maximum was $21,992. Interestingly, the difference between the minimum
and Q1 is about $7,000, as is the difference between Q3 and the maximum; yet, the
difference from Q1 to the median to Q3 is roughly $2,000. This suggests that the
lower and upper 25 percent of values are more widely dispersed than the middle 50
percent of values, which seem to be more tightly grouped around the center. We see
a similar trend with the mileage variable, which is not unsurprising. As you will
learn later in this chapter, this pattern of spread is common enough that it has been
called a "normal" distribution of data.

The spread of the mileage variable also exhibits another interesting property:
the difference between Q3 and the maximum is far greater than that between the
minimum and Q1. In other words, the larger values are far more spread out than
the smaller values.

This finding explains why the mean value is much greater than the median. Because
the mean is sensitive to extreme values, it is pulled higher, while the median stays
in relatively the same place. This is an important property, which becomes more
apparent when the data is presented visually.

Visualizing numeric variables – boxplots
Visualizing numeric variables can be helpful for diagnosing many problems
with data. A common visualization of the five-number summary is a boxplot or
box-and-whiskers plot. The boxplot displays the center and spread of a numeric
variable in a format that allows you to quickly obtain a sense of the range and skew
of a variable, or compare it to other variables.

Managing and Understanding Data

[50]

Let's take a look at a boxplot for the used car price and mileage data. To obtain a
boxplot for a variable, we will use the boxplot() function. We will also specify a
couple of extra parameters, main and ylab, to add a title to the figure and label the
y axis (the vertical axis), respectively. The commands for creating price and mileage
boxplots are:

> boxplot(usedcars$price, main="Boxplot of Used Car Prices",
 ylab="Price ($)")

> boxplot(usedcars$mileage, main="Boxplot of Used Car Mileage",

 ylab="Odometer (mi.)")

R will produce figures as follows:

The box-and-whiskers plot depicts the five-number summary values using
horizontal lines. The horizontal lines forming the box in the middle of each figure
represent Q1, Q2 (the median), and Q3 when reading the plot from bottom-to-top.
The median is denoted by the dark line, which lines up with $13,592 on the vertical
axis for price and 36,385 mi. on the vertical axis for mileage.

In simple boxplots such as those in the preceding diagram,
the width of the box-and-whiskers is arbitrary and does not
illustrate any characteristic of the data. For more sophisticated
analyses, it is possible to use the shape and size of the boxes
to facilitate comparisons of the data across several groups.
To learn more about such features, begin by examining
the notch and varwidth options in the R boxplot()
documentation by typing the ?boxplot command.

Chapter 2

[51]

The minimum and maximum are illustrated using the whiskers that extend below
and above the box; however, it is convention to only allow the whiskers to extend
to a minimum or maximum of 1.5 times the IQR below Q1 or above Q3. Any values
that fall beyond this threshold are considered outliers and are denoted as circles
or dots. For example, recall that the IQR for the price variable was 3909 with
Q1 of 10995 and Q3 of 14904. An outlier is therefore any value that is less than
10995 - 1.5 * 3905 = 5137.5 or greater than 14904 + 1.5 * 3905 = 20761.5.

The plot shows two such outliers on both the high and low ends. On the mileage
boxplot, there are no outliers on the low end and thus the bottom whisker extends
to the minimum value, 4867. On the high end, we see several outliers beyond the
100,000 mile mark. These outliers are responsible for our earlier finding, which noted
that the mean value was much greater than the median.

Visualizing numeric variables – histograms
A histogram is another way to graphically depict the spread of a numeric variable.
It is similar to a boxplot in that it divides the variable's values into a predefined
number of portions, or bins that act as containers for values. A boxplot requires that
each of four portions of data must contain the same number of values, and widens
or narrows the bins as needed. In contrast, a histogram uses any number of bins of
identical width, but allows the bins to contain different numbers of values.

We can create a histogram for the used car price and mileage data using the hist()
function. As we had done with the boxplot, we will specify a title for the figure using
the main parameter and label the x axis with the xlab parameter. The commands for
creating the histograms are:

> hist(usedcars$price, main = "Histogram of Used Car Prices",

 xlab = "Price ($)")

> hist(usedcars$mileage, main = "Histogram of Used Car Mileage",

 xlab = "Odometer (mi.)")

Managing and Understanding Data

[52]

This produces the following diagram:

The histogram is composed of a series of bars with heights indicating the count, or
frequency, of values falling within each of the equally-sized bins partitioning the
values. The vertical lines that separate the bars, as labeled on the horizontal axis,
indicate the start and end points of the range of values for the bin.

For example, on the price histogram, each of the 10 bars spans an interval of $2,000,
beginning at $2,000 and ending at $22,000. The tallest bar in the center of the figure
covers the range $12,000 to $14,000, and has a frequency of 50. Since we know that our
data includes 150 cars, we know that one-third of all the cars are priced from $12,000
to $14,000. Nearly 90 cars—more than half—are priced from $12,000 to $16,000.

The mileage histogram includes eight bars indicating bins of 20,000 miles each,
beginning at 0 and ending at 160,000 miles. Unlike the price histogram, the tallest
bar is not in the center of the data, but on the left-hand side of the diagram. The 70
cars contained in this bin have odometer readings from 20,000 to 40,000 miles.

Chapter 2

[53]

You might also notice that the shape of the two histograms is somewhat different. It
seems that the used car prices tend to be evenly divided on both sides of the middle,
while the car mileages stretch further to the right. This characteristic is known as
skew, specifically right skew, because the values on the high end (right side) are far
more spread out than the values on the low end (left side). As shown in the following
diagram, histograms of skewed data look stretched on one of the sides:

The ability to quickly diagnose such patterns in our data is one of the strengths of the
histogram as a data exploration tool. This will become even more important as we
start examining other patterns of spread in numeric data.

Understanding numeric data – uniform and
normal distributions
Histograms, boxplots, and statistics describing the center and spread all provide
ways to examine the distribution of a variable's values. A variable's distribution
describes how likely a value is to fall within various ranges.

If all values are equally likely to occur, say for instance, in a dataset recording the
values rolled on a fair six-sided die, the distribution is said to be uniform. A uniform
distribution is easy to detect with a histogram because the bars are approximately
the same height. When visualized with a histogram, it may look something like the
following diagram:

It's important to note that not all random events are uniform. For instance, rolling a
weighted six-sided trick die would result in some numbers coming up more often
than others. While each roll of the die results in a randomly-selected number, they
are not equally likely.

www.allitebooks.com

http://www.allitebooks.org

Managing and Understanding Data

[54]

Take, for instance, the used car data. This is clearly not uniform, since some values
are seemingly far more likely to occur than others. In fact, on the price histogram,
it seems that values grow less likely to occur as they are further away from both sides
of the center bar, resulting in a bell-shaped distribution of data. This characteristic
is so common in real-world data that it is the hallmark of the so-called normal
distribution. The stereotypical bell-curve is shown in the following diagram:

Although there are numerous types of non-normal distributions, many phenomena
generate data that can be described by the normal distribution. Therefore, the normal
distribution's properties have been studied in great detail.

Measuring spread – variance and standard
deviation
Distributions allow us to characterize a large number of values using a smaller
number of parameters. The normal distribution, which describes many types of
real-world data, can be defined with just two: center and spread. The center of the
normal distribution is defined by its mean value, which we have used before. The
spread is measured by a statistic called the standard deviation.

In order to calculate the standard deviation, we must first obtain the variance, which
is defined as the average of the squared differences between each value and the
mean value. In mathematical notation, the variance of a set of n values of x is defined
by the following formula. The Greek letter mu (similar in appearance to an m)
denotes the mean of the values, and the variance itself is denoted by the Greek letter
sigma squared (similar to a b turned sideways):

()22

1

1Var(X)
n

i
i
x

n
σ µ

=

= = −∑

Chapter 2

[55]

The standard deviation is the square root of the variance, and is denoted by sigma as
shown in the following formula:

()2

1

1StdDev(X)
n

i
i
x

n
σ µ

=

= = −∑

To obtain the variance and standard deviation in R, the var() and sd() functions
can be used. For example, computing the variance and standard deviation on our
price and mileage variables, we find:

> var(usedcars$price)

[1] 9749892

> sd(usedcars$price)

[1] 3122.482

> var(usedcars$mileage)

[1] 728033954

> sd(usedcars$mileage)

[1] 26982.1

When interpreting the variance, larger numbers indicate that the data are spread
more widely around the mean. The standard deviation indicates, on average, how
much each value differs from the mean.

If you compute these statistics by hand using the
formulae in the preceding diagrams, you will obtain a
slightly different result than the built-in R functions. This
is because the preceding formulae use the population
variance (which divides by n), while R uses the sample
variance (which divides by n - 1). Except for very small
datasets, the distinction is minor.

Managing and Understanding Data

[56]

The standard deviation can be used to quickly estimate how extreme a given value
is under the assumption that it came from a normal distribution. The 68-95-99.7 rule
states that 68 percent of values in a normal distribution fall within one standard
deviation of the mean, while 95 percent and 99.7 percent of values fall within two and
three standard deviations, respectively. This is illustrated in the following diagram:

Applying this information to the used car data, we know that since the mean price
was $12,962, approximately 68 percent of cars in our data were advertised at prices
between $9,840 and $16,804. Although the 68-95-99.7 rule only strictly applies to
normal distributions, the basic principle applies to any data; values more than three
standard deviations away from the mean are exceedingly rare events.

Exploring categorical variables
If you recall, the used car dataset had three categorial variables: model, color,
and transmission. Because we used the stringsAsFactors = FALSE parameter
when loading the data, R has left them as character (chr) variables rather than
automatically converting them into factors. Additionally, we might consider treating
year as categorical; although it is as a numeric (int), each year value is a category
that could apply to multiple cars.

In contrast to numeric data, categorical data is examined using tables rather than
summary statistics. A table that presents a single categorical variable is known as a
one-way table. The table() function can be used to generate one-way tables for our
used car data:

> table(usedcars$year)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

 3 1 1 1 3 2 6 11 14 42 49 16 1

> table(usedcars$model)

 SE SEL SES

 78 23 49

Chapter 2

[57]

> table(usedcars$color)

 Black Blue Gold Gray Green Red Silver White Yellow

 35 17 1 16 5 25 32 16 3

The table output lists the categories of the nominal variable and a count of the
number of values falling into that category. Since we know that there are 150 used
cars in the dataset, we can determine that roughly one-third of all the cars were
manufactured in 2010, since 49/150 is about 33 percent.

R can also perform the calculation of table proportions directly by using the
prop.table() command on a table produced by the table() function:

> model_table <- table(usedcars$model)

> prop.table(model_table)

 SE SEL SES

0.5200000 0.1533333 0.3266667

The proportion of model SE cars is 0.5200000, so 52 percent of the cars are SE type.

The results of the prop.table() can be combined with other R functions to
transform the output. Suppose that we would like to display the results in
percentages with a single decimal place. We can do this by multiplying the
proportions by 100, then using the round() function while specifying digits = 1,
as shown in the following example:

> color_table <- table(usedcars$color)

> color_pct <- prop.table(color_table) * 100

> round(color_pct, digits = 1)

Black Blue Gold Gray Green Red Silver White Yellow

 23.3 11.3 0.7 10.7 3.3 16.7 21.3 10.7 2.0

Although this includes the same information as the default prop.table() output,
it is a bit easier to read. The results show that black is the most common color, since
nearly a quarter (23.3 percent) of all advertised cars are black. Silver is a close second
with 21.3 percent and red is third with 16.7 percent.

Measuring the central tendency – the mode
In statistics terms, the mode of a feature is the value occurring most often. Like the
mean and median, the mode is another measure of central tendency. It is often used
for categorical data, since the mean and median are not defined for nominal variables.

Managing and Understanding Data

[58]

For example, in the used car data, the mode of the year variable is 2010, while the
modes for model and color are SE and Black, respectively. A variable may have more
than one mode; a variable with a single mode is unimodal, while a variable with two
modes is bimodal. Data having multiple modes is more generally called multimodal.

Although you might suspect that you could use the mode()
function, R uses this to refer to the type of variable (as in
numeric, list, and so on) rather than the statistical mode.
Instead, to find the statistical mode, simply look at the table
output for the category with the greatest number of values.

The mode(s) is/are used in a qualitative sense to gain an understanding of important
values in a dataset. Yet, it would be dangerous to place too much emphasis on
the mode since the most common value is not necessarily a majority. For instance,
although Black was the mode of the used car color variable, black cars were only
about a quarter of all advertised cars.

It is best to think about the modes in relation to the other categories. Is there one
category that dominates all others, or are there several? From there, we may ask
what the most common values tell us about the variable being measured. If black
and silver are common used car colors, we might assume that the data are for
luxury cars, which tend to be sold in more conservative colors, or they could also be
economy cars, which are sold with fewer color options. We will keep this question in
mind as we continue to examine this data.

Thinking about the modes as common values allows us to apply the concept of the
statistical mode to numeric data. Strictly speaking, it would be unlikely to have a mode
for a continuous variable, since no two values are likely to repeat. Yet if we think about
modes as the highest bars on a histogram, we can discuss the modes of variables such
as price and mileage. It can be helpful to consider the mode when exploring numeric
data, particularly to examine whether or not the data is multimodal.

Exploring relationships between variables
So far, we have examined variables one at a time, calculating only univariate
statistics. During our investigation, we raised questions that we were unable to
answer at the time:

•	 Does the price data imply that we are examining only economy-class cars,
or are there also luxury cars with high-mileage?

•	 Do relationships between the model and color data provide insight into the
types of cars we are examining?

Chapter 2

[59]

These types of questions can be addressed by looking at bivariate relationships,
which consider the relationship between two variables. Relationships of more than
two variables are called multivariate relationships Let's begin with the bivariate case.

Visualizing relationships – scatterplots
A scatterplot is a diagram that visualizes a bivariate relationship. It is a
two-dimensional figure in which dots are drawn on a coordinate plane using the
values of one feature to provide the horizontal x coordinates, and the values of
another feature to provide the vertical y coordinates. Patterns in the placement
of dots reveal underlying associations between the two features.

To answer our question about the relationship between price and mileage, we will
examine a scatterplot. We'll use the plot() function, along with the main, xlab, and
ylab parameters used in previous plots to label the diagram.

To use plot(), we need to specify x and y vectors containing the values used
to position the dots on the figure. Although the conclusions would be the same
regardless of which variable is used to supply the x and y coordinates, convention
dictates that the y variable is the one that is presumed to depend on the other (and
is thus known as the dependent variable). Since an odometer reading cannot be
modified by the seller, it is unlikely to be dependent on the car's price. Instead, our
hypothesis is that price depends on the odometer mileage. Therefore, we will use
price as the y, or dependent, variable.

The full command for creating our scatterplot is:

> plot(x = usedcars$mileage, y = usedcars$price,

 main = "Scatterplot of Price vs. Mileage",

 xlab = "Used Car Odometer (mi.)",

 ylab = "Used Car Price ($)")

Managing and Understanding Data

[60]

This results in the following scatterplot:

Using the scatterplot, we notice a clear relationship between the price of a used
car and the odometer reading. To read the plot, examine how values of the y axis
variable change as the values on the x axis increase. In this case, the values of price
tend to be lower as the values of mileage increase, implying that advertised prices
are lower for cars with higher mileage. If you have ever sold or shopped for a used
car, this is not a profound insight.

Perhaps a more interesting finding is the fact that there are very few cars that have
both high price and high mileage, aside from a lone outlier at about 125,000 miles
and $14,000. The absence of more points like this provides evidence to support a
conclusion that our data is unlikely to include any high mileage luxury cars. All of
the most expensive cars in the data, particularly those above $17,500, seem to have
extraordinarily low mileage, implying that we could be looking at a type of car
retailing for about $20,000, which is new.

The relationship between price and mileage is known as a negative association
because it forms a pattern of dots in a line sloping downward. A positive association
would appear to form a line sloping upward. A flat line, or a seemingly-random
scattering of dots, is evidence that the two variables are not associated at all. The
strength of a linear association between two variables is measured by a statistic
known as correlation. Correlations are discussed in detail in Chapter 6, Forecasting
Numeric Data – Regression Methods, which covers the use of regression methods for
modeling linear relationships.

Chapter 2

[61]

Keep in mind that not all associations form straight lines.
Sometimes the dots form a U-shape or a V-shape; sometimes
the pattern seems to be weaker or stronger for increasing
values of the x or y variable. Such patterns imply that the
relationship between the two variables is not linear.

Examining relationships – two-way
cross-tabulations
To examine a relationship between two nominal variables, a two-way cross-tabulation
is used (also known as a crosstab or a contingency table). A cross-tabulation is similar
to a scatterplot in that it allows you to examine how the values of one variable vary
by the values of another. The format is a table in which the rows are the levels of one
variable while the columns are the levels of another. Counts in each of the table's cells
indicate the number of values falling into the particular row and column combination.

To answer our question about the relationship between model and color, we will
examine a crosstab. There are several functions to produce two-way tables in R,
including table(), which we also used for one-way tables. The CrossTable()
function in the gmodels package created by Gregory R. Warnes is perhaps the most
user-friendly because it presents the row, column, and margin percentages in
a single table, saving us the trouble of combining this data ourselves. To install
the gmodels package, type:

> install.packages("gmodels")

After the package installs, simply type library(gmodels) to load the package. You
will need to load the package during each R session in which you plan on using the
CrossTable() function.

Before proceeding with our analysis, let's simplify our project by reducing the number
of levels in the color variable. This variable has nine levels, but we don't really need
this much detail. What we are really interested in is whether or not the car's color
is conservative. Toward this end, we'll divide the nine colors into two groups: the
first group will include the conservative colors Black, Gray, Silver, and White;
the second group will include Blue, Gold, Green, Red, and Yellow. We will create a
binary indicator variable (often called a dummy variable), indicating whether or not
the car's color is conservative by our definition. Its value will be 1 if true, 0 otherwise:

> usedcars$conservative <-

 usedcars$color %in% c("Black", "Gray", "Silver", "White")

Managing and Understanding Data

[62]

You may have noticed a new command here: the %in% operator returns TRUE or FALSE
for each value in the vector on the left-hand side of the operator, depending on whether
the value is found in the vector on the right-hand side. In simple terms, you can
translate this line as "is the used car color in the set of black, gray, silver, and white?"

Examining the table() output for our newly-created variable, we see that
about two-thirds of cars have conservative colors while one-third do not have
conservative colors:

> table(usedcars$conservative)

FALSE TRUE

 51 99

Now, let's look at a cross-tabulation to see how the proportion of conservative
colored cars varies by model. Since we're assuming that the model of car dictates
the choice of color, we'll treat conservative as the dependent (y) variable. The
CrossTable() command is therefore:

> CrossTable(x = usedcars$model, y = usedcars$conservative)

Which results in the following table:

Chapter 2

[63]

There is a wealth of data in the CrossTable() output. The legend at the top
(labeled Cell Contents) indicates how to interpret each value. The rows in the table
indicate the three models of used cars: SE, SEL, and SES (plus an additional row for
the total across all models). The columns indicate whether or not the car's color is
conservative (plus a column totaling across both types of color). The first value in
each cell indicates the number of cars with that combination of model and color.
The proportions indicate that cell's proportion relative to the Chi-square statistic,
the row's total, the columns total, and the table's total.

What we are most interested in is the row proportion for conservative cars for
each model. The row proportions tell us that 0.654 (65 percent) of SE cars are
colored conservatively, in comparison to 0.696 (70 percent) of SEL cars, and 0.653
(65 percent) of SES. These differences are relatively small, which suggests that there
are no substantial differences in the types of colors chosen by model of car.

The Chi-square values refer to the cell's contribution in the Pearson's Chi-squared
test for independence between two variables. This test measures how likely it is that
the difference in cell counts in the table is due to chance alone. If the probability is
very low, it provides strong evidence that the two variables are associated.

You can obtain the Chi-squared test results by adding an additional parameter
specifying chisq = TRUE when calling the CrossTable() function. In our case,
the probability is about 93 percent, suggesting that it is very likely that the variations
in cell count are due to chance alone, and not due to a true association between
model and color.

Summary
In this chapter, we learned about the basics of managing data in R. We started by
taking an in-depth look at the structures used for storing various types of data.
The foundational R data structure is the vector, which is extended and combined
into more complex data types such as lists and data frames. The data frame is an
R data structure that corresponds to the notion of a dataset, having both features
and examples.

We also learned about how to get data into R from a variety of sources. R provides
functions for reading from and saving to CSV files; SQL databases can be queried
with the RODBC package.

Managing and Understanding Data

[64]

Finally, we applied these skills while exploring a real-world dataset containing
data on used car prices. We examined numeric variables using common summary
statistics of center and spread, and visualized relationships between prices and
odometer readings with a scatterplot. We examined nominal variables using tables.
In examining the used car data, we followed an exploratory process that can be used
to understand any dataset.

Now that we have spent some time understanding the basics of data management
with R, you are ready to begin using machine learning to solve real-world
problems. In the next chapter, we will tackle our first classification task using
nearest neighbor methods.

Lazy Learning – Classification
Using Nearest Neighbors

Recently, I read an article describing a new type of dining experience. Patrons are
served in a completely darkened restaurant by waiters who move carefully around
memorized routes using only their sense of touch and sound. The allure of these
establishments is rooted in the idea that depriving oneself of visual sensory input
will enhance the sense of taste and smell, and foods will be experienced in new and
exciting ways. Each bite is said to be a small adventure in which the diner discovers
the flavors the chef has prepared.

Can you imagine how a diner experiences the unseen food? At first, there might be a
rapid phase of data collection: what are the prominent spices, aromas, and textures?
Does the food taste savory or sweet? Using this data, the customer might then
compare the bite to the food he or she had experienced previously. Briny tastes may
evoke images of seafood, while earthy tastes may be linked to past meals involving
mushrooms. Personally, I imagine this process of discovery in terms of a slightly
modified adage: if it smells like a duck and tastes like a duck, then you are probably
eating duck.

Lazy Learning – Classification Using Nearest Neighbors

[66]

This illustrates an idea that can be used for machine learning—as does another maxim
involving poultry: "birds of a feather flock together." In other words, things that are
alike are likely to have properties that are alike. We can use this principle to classify
data by placing it in the category with the most similar, or "nearest" neighbors. This
chapter is devoted to classification using this approach. You will learn:

•	 The key concepts that define nearest neighbor classifiers and why they are
considered "lazy" learners

•	 Methods to measure the similarity of two examples using distance
•	 How to use an R implementation of the k-Nearest Neighbors (kNN)

algorithm to diagnose breast cancer

If all this talk about food is making you hungry, you may want to grab a snack. Our
first task will be to understand the kNN approach by putting it to use and settling a
long-running culinary debate.

Understanding classification using
nearest neighbors
In a single sentence, nearest neighbor classifiers are defined by their characteristic
of classifying unlabeled examples by assigning them the class of the most similar
labeled examples. Despite the simplicity of this idea, nearest neighbor methods are
extremely powerful. They have been used successfully for:

•	 Computer vision applications, including optical character recognition and
facial recognition in both still images and video

•	 Predicting whether a person enjoys a movie which he/she has been
recommended (as in the Netflix challenge)

•	 Identifying patterns in genetic data, for use in detecting specific proteins
or diseases

In general, nearest neighbor classifiers are well-suited for classification tasks where
relationships among the features and the target classes are numerous, complicated,
or otherwise extremely difficult to understand, yet the items of similar class type
tend to be fairly homogeneous. Another way of putting it would be to say that if a
concept is difficult to define, but you know it when you see it, then nearest neighbors
might be appropriate. On the other hand, if there is not a clear distinction among the
groups, the algorithm is by and large not well-suited for identifying the boundary.

Chapter 3

[67]

The kNN algorithm
The nearest neighbors approach to classification is utilized by the kNN algorithm.
Let us take a look at the strengths and weaknesses of this algorithm:

Strengths Weaknesses
•	 Simple and effective
•	 Makes no assumptions about

the underlying data distribution
•	 Fast training phase

•	 Does not produce a model, which limits
the ability to find novel insights in
relationships among features

•	 Slow classification phase
•	 Requires a large amount of memory
•	 Nominal features and missing data

require additional processing

The kNN algorithm begins with a training dataset made up of examples that are
classified into several categories, as labeled by a nominal variable. Assume that we
have a test dataset containing unlabeled examples that otherwise have the same
features as the training data. For each record in the test dataset, kNN identifies k
records in the training data that are the "nearest" in similarity, where k is an integer
specified in advance. The unlabeled test instance is assigned the class of the majority
of the k nearest neighbors.

To illustrate this process, let's revisit the blind tasting experience described in the
introduction. Suppose that prior to eating the mystery meal we created a taste
dataset in which we recorded our impressions of a number of ingredients we tasted
previously. To keep things simple, we recorded only two features of each ingredient.
The first is a measure from 1 to 10 of how crunchy the ingredient is, and the second is
a 1 to 10 score of how sweet the ingredient tastes. We then labeled each ingredient as
one of three types of food: fruits, vegetables, or proteins. The first few rows of such a
dataset might be structured as follows:

ingredient sweetness crunchiness food type
apple 10 9 fruit
bacon 1 4 protein
banana 10 1 fruit
carrot 7 10 vegetable
celery 3 10 vegetable
cheese 1 1 protein

Lazy Learning – Classification Using Nearest Neighbors

[68]

The kNN algorithm treats the features as coordinates in a multidimensional feature
space. As our dataset includes only two features, the feature space is two-dimensional.
We can plot two-dimensional data on a scatterplot, with the x dimension indicating the
ingredient's sweetness and the y dimension indicating the crunchiness. After adding a
few more ingredients to the taste dataset, the scatterplot might look like this:

Did you notice the pattern? Similar types of food tend to be grouped closely together.
As illustrated in the next figure, vegetables tend to be crunchy but not sweet, fruits
tend to be sweet and either crunchy or not crunchy, while proteins tend to be neither
crunchy nor sweet:

Chapter 3

[69]

Suppose that after constructing this dataset, we decide to use it to settle the age-old
question: is a tomato a fruit or a vegetable? We can use a nearest neighbor approach
to determine which class is a better fit as shown in the following figure:

Lazy Learning – Classification Using Nearest Neighbors

[70]

Calculating distance
Locating the tomato's nearest neighbors requires a distance function, or a formula
that measures the similarity between two instances.

There are many different ways to calculate distance. Traditionally, the kNN
algorithm uses Euclidean distance, which is the distance one would measure
if you could use a ruler to connect two points, illustrated in the previous figure
by the dotted lines connecting the tomato to its neighbors.

Euclidean distance is measured "as the crow flies," implying the
shortest direct route. Another common distance measure is Manhattan
distance, which is based on the paths a pedestrian would take by
walking city blocks. If you are interested in learning more about other
distance measures, you can read the documentation for R's distance
function (a useful tool in its own right), using the ?dist command.

Euclidean distance is specified by the following formula, where p and q are the
examples to be compared, each having n features. The term p1 refers to the value of the
first feature of example p, while q1 refers to the value of the first feature of example q:

() () () ()2 2 2
1 1 2 2dist , ... n np q p q p q p q= − + − + + −

The distance formula involves comparing the values of each feature. For example, to
calculate the distance between the tomato (sweetness = 6, crunchiness = 4), and the
green bean (sweetness = 3, crunchiness = 7), we can use the formula as follows:

() () ()2 2dist , 6 3 4 7 4.2tomato green bean = − + − =

In a similar vein, we can calculate the distance between the tomato and several of its
closest neighbors as follows:

ingredient sweetness crunchiness food type distance to the tomato
grape 8 5 fruit sqrt((6 - 8)^2 + (4 - 5)^2) = 2.2
green bean 3 7 vegetable sqrt((6 - 3)^2 + (4 - 7)^2) = 4.2
nuts 3 6 protein sqrt((6 - 3)^2 + (4 - 6)^2) = 3.6
orange 7 3 fruit sqrt((6 - 7)^2 + (4 - 3)^2) = 1.4

To classify the tomato as a vegetable, protein, or fruit, we'll begin by assigning the
tomato, the food type of its single nearest neighbor. This is called 1NN classification
because k = 1. The orange is the nearest neighbor to the tomato, with a distance of
1.4. As orange is a fruit, the 1NN algorithm would classify tomato as a fruit.

Chapter 3

[71]

If we use the kNN algorithm with k = 3 instead, it performs a vote among the three
nearest neighbors: orange, grape, and nuts. Because the majority class among these
neighbors is fruit (2 of the 3 votes), the tomato again is classified as a fruit.

Choosing an appropriate k
Deciding how many neighbors to use for kNN determines how well the model
will generalize to future data. The balance between overfitting and underfitting the
training data is a problem known as the bias-variance tradeoff. Choosing a large k
reduces the impact or variance caused by noisy data, but can bias the learner such
that it runs the risk of ignoring small, but important patterns.

Suppose we took the extreme stance of setting a very large k, equal to the total
number of observations in the training data. As every training instance is
represented in the final vote, the most common training class always has a majority
of the voters. The model would, thus, always predict the majority class, regardless of
which neighbors are nearest.

On the opposite extreme, using a single nearest neighbor allows noisy data or
outliers, to unduly influence the classification of examples. For example, suppose
that some of the training examples were accidentally mislabeled. Any unlabeled
example that happens to be nearest to the incorrectly labeled neighbor will be
predicted to have the incorrect class, even if the other nine nearest neighbors would
have voted differently.

Obviously, the best k value is somewhere between these two extremes.

The following figure illustrates more generally how the decision boundary (depicted
by a dashed line) is affected by larger or smaller k values. Smaller values allow more
complex decision boundaries that more carefully fit the training data. The problem is
that we do not know whether the straight boundary or the curved boundary better
represents the true underlying concept to be learned.

Lazy Learning – Classification Using Nearest Neighbors

[72]

In practice, choosing k depends on the difficulty of the concept to be learned and the
number of records in the training data. Typically, k is set somewhere between 3 and
10. One common practice is to set k equal to the square root of the number of training
examples. In the food classifier we developed previously, we might set k = 4, because
there were 15 example ingredients in the training data and the square root of 15 is 3.87.

However, such rules may not always result in the single best k. An alternative
approach is to test several k values on a variety of test datasets and choose the one
that delivers the best classification performance. On the other hand, unless the data
is very noisy, larger and more representative training datasets can make the choice
of k less important. This is because even subtle concepts will have a sufficiently large
pool of examples to vote as nearest neighbors.

A less common, but interesting solution to this problem is
to choose a larger k, but apply a weighted voting process
in which the vote of closer neighbors is considered more
authoritative than the vote of far away neighbors.

Preparing data for use with kNN
Features are typically transformed to a standard range prior to applying the kNN
algorithm. The rationale for this step is that the distance formula is dependent
on how features are measured. In particular, if certain features have much larger
values than others, the distance measurements will be strongly dominated by the
larger values. This wasn't a problem for us before with the food tasting data, as both
sweetness and crunchiness were measured on a scale from 1 to 10.

Suppose that we added an additional feature indicating spiciness, which we
measured using the Scoville scale. The Scoville scale is a standardized measure
of spice heat, ranging from zero (not spicy) to over a million (for the hottest chili
peppers). Because the difference between spicy foods and non-spicy foods can be over
a million, while the difference between sweet and non-sweet is at most ten, we might
find that our distance measures only differentiate foods by their spiciness; the impact
of crunchiness and sweetness would be dwarfed by the contribution of spiciness.

What we need is a way of "shrinking" or rescaling the various features such that
each one contributes relatively equally to the distance formula. For example, if
sweetness and crunchiness are both measured on a scale from 1 to 10, we would
also like spiciness to be measured on a scale from 1 to 10. There are several ways to
accomplish such scaling.

Chapter 3

[73]

The traditional method of rescaling features for kNN is min-max normalization.
This process transforms a feature such that all of its values fall in a range between 0
and 1. The formula for normalizing a feature is as follows. Essentially, the formula
subtracts the minimum of feature X from each value and divides by the range of X:

()
() ()

min
max minnew

X X
X

X X
−

=
−

Normalized feature values can be interpreted as indicating how far, from 0 percent
to 100 percent, the original value fell along the range between the original minimum
and maximum.

Another common transformation is called z-score standardization. The following
formula subtracts the mean value of feature X and divides by the standard
deviation of X:

()
()

X Mean XXX
StdDev Xnew

µ
σ

−−
= =

This formula, which is based on properties of the normal distribution covered in
Chapter 2, Managing and Understanding Data, rescales each of a feature's values in
terms of how many standard deviations they fall above or below the mean value.
The resulting value is called a z-score. The z-scores fall in an unbounded range
of negative and positive numbers. Unlike the normalized values, they have no
predefined minimum and maximum.

The Euclidean distance formula is not defined for nominal data. Therefore, to
calculate the distance between nominal features, we need to convert them into
a numeric format. A typical solution utilizes dummy coding, where a value of 1
indicates one category, and 0 indicates the other. For instance, dummy coding for
a gender variable could be constructed as:

1 if x male
male

0 otherwise
=

= 


Notice how dummy coding of the two-category (binary) gender variable results in a
single new feature named male. There is no need to construct a separate feature for
female; as the two sexes are mutually exclusive, knowing one or the other is enough.

Lazy Learning – Classification Using Nearest Neighbors

[74]

This is true more generally as well. An n-category nominal feature can be dummy
coded by creating binary indicator variables for (n - 1) levels of the feature. For
example, dummy coding for a three-category temperature variable (for example,
hot, medium, or cold) could be set up as (3 - 1) = 2 features, as shown:

1 if x hot
 hot

0 otherwise

1 if x medium
medium

0 otherwise

=
= 


=
= 


Here, knowing that hot and medium are both 0 is enough to know that the
temperature is cold. We, therefore, do not need a third feature for the cold attribute.

A convenient aspect of dummy coding is that the distance between dummy
coded features is always one or zero, and thus, the values fall on the same scale
as normalized numeric data. No additional transformation is necessary.

If your nominal feature is ordinal, (one could make such an
argument for the temperature variable that we just saw) an
alternative to dummy coding would be to number the categories
and apply normalization. For instance, cold, warm, and hot
could be numbered as 1, 2, and 3, which normalizes to 0, 0.5,
and 1. A caveat to this approach is that it should only be used if
you believe that the steps between categories are equivalent. For
instance, you could argue that although, poor, middle class, and
wealthy are ordered, the difference between poor and middle
class is greater (or lesser) than the difference between middle class
and wealthy. In this case, dummy coding is a safer approach.

Why is the kNN algorithm lazy?
Classification algorithms based on nearest neighbor methods are considered lazy
learning algorithms because, technically speaking, no abstraction occurs. The
abstraction and generalization processes are skipped altogether, which undermines
the definition of learning presented in Chapter 1, Introducing Machine Learning.

Chapter 3

[75]

Using the strict definition of learning, a lazy learner is not really learning anything.
Instead, it merely stores the training data verbatim. This allows the training phase
to occur very rapidly, with a potential downside being that the process of making
predictions tends to be relatively slow. Due to the heavy reliance on the training
instances, lazy learning is also known as instance-based learning or rote learning.

As instance-based learners do not build a model, the method is said to be in a class
of non-parametric learning methods—no parameters are learned about the data.
Without generating theories about the underlying data, non-parametric methods
limit our ability to understand how the classifier is using the data. On the other hand,
this allows the learner to find natural patterns rather than trying to fit the data into a
preconceived form.

Although kNN classifiers may be considered lazy, they are still quite powerful. As
you will soon see, the simple principles of kNN can be used to automate the process
of screening for cancer.

Diagnosing breast cancer with the
kNN algorithm
Routine breast cancer screening allows the disease to be diagnosed and treated
prior to it causing noticeable symptoms. The process of early detection involves
examining the breast tissue for abnormal lumps or masses. If a lump is found, a
fine-needle aspiration biopsy is performed, which utilizes a hollow needle to extract
a small portion of cells from the mass. A clinician then examines the cells under a
microscope to determine whether the mass is likely to be malignant or benign.

If machine learning could automate the identification of cancerous cells, it would
provide considerable benefit to the health system. Automated processes are likely
to improve the efficiency of the detection process, allowing physicians to spend less
time diagnosing and more time treating the disease. An automated screening system
might also provide greater detection accuracy by removing the inherently subjective
human component from the process.

We will investigate the utility of machine learning for detecting cancer by applying
the kNN algorithm to measurements of biopsied cells from women with abnormal
breast masses.

Lazy Learning – Classification Using Nearest Neighbors

[76]

Step 1 – collecting data
We will utilize the "Breast Cancer Wisconsin Diagnostic" dataset from the UCI
Machine Learning Repository, which is available at http://archive.ics.uci.edu/ml.
This data was donated by researchers of the University of Wisconsin and includes
measurements from digitized images of fine-needle aspirate of a breast mass. The
values represent characteristics of the cell nuclei present in the digital image.

To read more about the Wisconsin breast cancer data,
refer to the authors' publication: Nuclear feature extraction
for breast tumor diagnosis. IS&T/SPIE 1993 International
Symposium on Electronic Imaging: Science and Technology,
volume 1905, pp 861-870 by W.N. Street, W.H. Wolberg,
and O.L. Mangasarian, 1993.

The breast cancer data includes 569 examples of cancer biopsies, each with 32 features.
One feature is an identification number, another is the cancer diagnosis, and 30 are
numeric-valued laboratory measurements. The diagnosis is coded as M to indicate
malignant or B to indicate benign.

The 30 numeric measurements comprise the mean, standard error, and worst
(that is, largest) value for 10 different characteristics of the digitized cell nuclei.
These include:

•	 Radius
•	 Texture
•	 Perimeter
•	 Area
•	 Smoothness
•	 Compactness
•	 Concavity
•	 Concave points
•	 Symmetry
•	 Fractal dimension

Based on their names, all of the features seem to relate to the shape and size of the
cell nuclei. Unless you are an oncologist, you are unlikely to know how each relates
to benign or malignant masses. These patterns will be revealed as we continue in the
machine learning process.

Chapter 3

[77]

Step 2 – exploring and preparing the data
Let's explore the data and see if we can shine some light on the relationships. At the
same time, we will prepare the data for use with the kNN learning method.

If you plan on following along, download the
wisc_bc_data.csv file from the Packt website and save
it to your R working directory. The dataset was modified
very slightly for this book. In particular, a header line was
added and the rows of data were randomly ordered.

We'll begin by importing the CSV data file as we have done previously, saving the
Wisconsin breast cancer data to the wbcd data frame:

> wbcd <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)

Using the command str(wbcd), we can confirm that the data is structured with
569 examples and 32 features as we expected. The first several lines of output are
as follows:

'data.frame': 569 obs. of 32 variables:

 $ id : int 87139402 8910251 905520 ...

 $ diagnosis : chr "B" "B" "B" "B" ...

 $ radius_mean : num 12.3 10.6 11 11.3 15.2 ...

 $ texture_mean : num 12.4 18.9 16.8 13.4 13.2 ...

 $ perimeter_mean : num 78.8 69.3 70.9 73 97.7 ...

 $ area_mean : num 464 346 373 385 712 ...

The first variable is an integer variable named id. As this is simply a unique
identifier (ID) for each patient in the data, it does not provide useful information
and we will need to exclude it from the model.

Regardless of the machine learning method, ID variables
should always be excluded. Neglecting to do so can lead to
erroneous findings because the ID can be used to uniquely
"predict" each example. Therefore, a model that includes an
identifier will most likely suffer from overfitting, and is not
likely to generalize well to other data.

Let's drop the id feature altogether. As it is located in the first column, we can
exclude it by making a copy of the wbcd data frame without column 1:

> wbcd <- wbcd[-1]

Lazy Learning – Classification Using Nearest Neighbors

[78]

The next variable, diagnosis, is of particular interest, as it is the outcome we
hope to predict. This feature indicates whether the example is from a benign or
malignant mass. The table() output indicates that 357 masses are benign while
212 are malignant:

> table(wbcd$diagnosis)

 B M

357 212

Many R machine learning classifiers require that the target feature is coded as a factor,
so we will need to recode the diagnosis variable. We will also take this opportunity
to give the B and M values more informative labels using the labels parameter:

> wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"),

 labels = c("Benign", "Malignant"))

Now, when we look at the prop.table() output, we notice that the values have
been labeled Benign and Malignant, with 62.7 percent and 37.3 percent of the
masses, respectively:

> round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)

 Benign Malignant

 62.7 37.3

The remaining 30 features are all numeric, and as expected, consist of three different
measurements of ten characteristics. For illustrative purposes, we will only take a
closer look at three of the features:

> summary(wbcd[c("radius_mean", "area_mean", "smoothness_mean")])

 radius_mean area_mean smoothness_mean

 Min. : 6.981 Min. : 143.5 Min. :0.05263

 1st Qu.:11.700 1st Qu.: 420.3 1st Qu.:0.08637

 Median :13.370 Median : 551.1 Median :0.09587

 Mean :14.127 Mean : 654.9 Mean :0.09636

 3rd Qu.:15.780 3rd Qu.: 782.7 3rd Qu.:0.10530

 Max. :28.110 Max. :2501.0 Max. :0.16340

Looking at the features side-by-side, do you notice anything problematic about the
values? Recall that the distance calculation for kNN is heavily dependent upon the
measurement scale of the input features. As smoothness_mean ranges from 0.05 to
0.16, while area_mean ranges from 143.5 to 2501.0, the impact of area is going to be
much larger than smoothness in the distance calculation. This could potentially cause
problems for our classifier, so let's apply normalization to rescale the features to a
standard range of values.

Chapter 3

[79]

Transformation – normalizing numeric data
To normalize these features, we need to create a normalize() function in R. This
function takes a vector x of numeric values, and for each value in x, subtract the
minimum value in x and divide by the range of values in x. Finally, the resulting
vector is returned. The code for the function is as follows:

> normalize <- function(x) {

 return ((x - min(x)) / (max(x) - min(x)))

 }

After executing the previous code, the normalize() function is available for use.
Let's test the function on a couple of vectors:

> normalize(c(1, 2, 3, 4, 5))

[1] 0.00 0.25 0.50 0.75 1.00

> normalize(c(10, 20, 30, 40, 50))

[1] 0.00 0.25 0.50 0.75 1.00

The function appears to be working correctly. Despite the fact that the values in the
second vector are 10 times larger than the first vector, after normalization, they both
appear exactly the same.

We can now apply the normalize() function to the numeric features in our data
frame. Rather than normalizing each of the 30 numeric variables individually, we
will use one of R's functions to automate the process.

The lapply() function of R takes a list and applies a function to each element of the
list. As a data frame is a list of equal-length vectors, we can use lapply() to apply
normalize() to each feature in the data frame. The final step is to convert the list
returned by lapply() to a data frame using the as.data.frame() function. The full
process looks like this:

> wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))

In plain English, this command applies the normalize() function to columns 2
through 31 in the wbcd data frame, converts the resulting list to a data frame, and
assigns it the name wbcd_n. The _n suffix is used here as a reminder that the values
in wbcd have been normalized.

To confirm that the transformation was applied correctly, let's look at one variable's
summary statistics:

> summary(wbcd_n$area_mean)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 0.0000 0.1174 0.1729 0.2169 0.2711 1.0000

Lazy Learning – Classification Using Nearest Neighbors

[80]

As expected, the area_mean variable, which originally ranged from 143.5 to 2501.0,
now ranges from 0 to 1.

Data preparation – creating training and
test datasets
Although all 569 biopsies are labeled with a benign or malignant status, it is not
very interesting to predict what we already know. Additionally, any performance
measures we obtain during training may be misleading, as we do not know the
extent to which cases has been overfitted, or how well it will generalize to unseen
cases. A more interesting question is how well our learner performs on a dataset
of unlabeled data. If we had access to a laboratory, we could apply our learner to
measurements taken from the next 100 masses of unknown cancer status and see
how well the machine learner's predictions compare to diagnoses obtained using
conventional methods.

In the absence of such data, we can simulate this scenario by dividing our data into
two portions: a training dataset that will be used to build the kNN model and a test
dataset that will be used to estimate the predictive accuracy of the model. We will
use the first 469 records for the training dataset and the remaining 100 to simulate
new patients.

Using the data extraction methods presented in Chapter 2, Managing and
Understanding Data, we will split the wcbd_n data frame into the wbcd_train
and wbcd_test data frames:

> wbcd_train <- wbcd_n[1:469,]

> wbcd_test <- wbcd_n[470:569,]

If the previous code is confusing, remember that data is extracted from data frames
using the [row, column] syntax. A blank value for the row or column value
indicates that all rows or columns should be included. Hence, the first line of code
takes rows 1 to 469 and all columns, and the second line takes 100 rows from 470 to
569 and all columns.

When constructing training and test datasets, it is important
that each dataset is a representative subset of the full set of
data. In the case that we just saw, the records were already
sorted in a random order, so we could simply extract 100
consecutive records to create a test dataset. This would not be
an appropriate method if the data was ordered in a non-random
pattern such as chronologically, or in groups of similar values.
In these cases, random sampling methods would be needed.

Chapter 3

[81]

When we constructed our training and test data, we excluded the target variable,
diagnosis. For training the kNN model, we will need to store these class labels in
factor vectors, divided to the training and test datasets:

> wbcd_train_labels <- wbcd[1:469, 1]

> wbcd_test_labels <- wbcd[470:569, 1]

This code takes the diagnosis factor in column 1 of the wbcd data frame and creates
the vectors, wbcd_train_labels and wbcd_test_labels. We will use these in the
next steps of training and evaluating our classifier.

Step 3 – training a model on the data
Equipped with our training data and labels vector, we are now ready to classify our
unknown records. For the kNN algorithm, the training phase actually involves no
model building—the process of training a lazy learner like kNN simply involves
storing the input data in a structured format.

To classify our test instances, we will use a kNN implementation from the class
package, which provides a set of basic R functions for classification. If this package is
not already installed on your system, you can install it by typing:

> install.packages("class")

To load the package during any session in which you wish to use the functions,
simply enter the command library(class).

The knn() function in the class package provides a standard, classic
implementation of the kNN algorithm. For each instance in the test data, the
function will identify the k-nearest neighbors, using Euclidean distance, where k is
a user-specified number. The test instance is classified by taking a "vote" among the
k-Nearest Neighbors—specifically, this involves assigning the class of the majority of
the k neighbors. A tie vote is broken at random.

There are several other kNN functions in other R
packages, providing more sophisticated or more efficient
implementations. If you run into limits with knn(), take a
look at the Comprehensive R Archive Network (CRAN) to
see what else is out there. With that said, you may be surprised
how well the basic knn() function works out of the box.

Lazy Learning – Classification Using Nearest Neighbors

[82]

Training and classification using the knn() function is performed in a single function
call, using four parameters as shown in the following table:

We already have nearly everything that we need to apply the kNN algorithm to this
data. We split our data into training and test datasets, each with exactly the same
numeric features. The labels for the training data are stored in a separate factor
vector. The only remaining parameter is k, which specifies the number of neighbors
to include in the vote.

As our training data includes 469 instances, we might try k = 21, an odd number
roughly equal to the square root of 469. Using an odd number will reduce the
chance of ending with a tie vote.

Now we can use the knn() function to classify the test data:

> wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,

 cl = wbcd_train_labels, k=21)

The knn() function returns a factor vector of predicted labels for each of the
examples in the test dataset, which we have assigned to wbcd_test_pred.

Chapter 3

[83]

Step 4 – evaluating model performance
The next step of the process is to evaluate how well the predicted classes in the
wbcd_test_pred vector match up with the known values in the wbcd_test_labels
vector. To do this, we can use the CrossTable() function in the gmodels
package, which was introduced in Chapter 2, Managing and Understanding Data.
If you haven't done so already, please install this package using the command
install.packages("gmodels").

After loading the package with the library(gmodels) command, we can create a cross
tabulation indicating the agreement between the two vectors. Specifying prop.chisq
= FALSE will remove the chi-square values that are not needed, from the output:

> CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,

 prop.chisq=FALSE)

The resulting table looks like this:

The cell percentages in the table indicate the proportion of values that fall into four
categories. In the top-left cell (labeled TN), are the true negative results. These 61
of 100 values indicate cases where the mass was benign, and the kNN algorithm
correctly identified it as such. The bottom-right cell (labeled TP), indicates the true
positive results, where the classifier and the clinically determined label agree that
the mass is malignant. A total of 37 of 100 predictions were true positives.

Lazy Learning – Classification Using Nearest Neighbors

[84]

The cells falling on the other diagonal contain counts of examples where the kNN
approach disagreed with the true label. The 2 examples in the lower-left FN cell are
false negative results; in this case, the predicted value was benign but the tumor
was actually malignant. Errors in this direction could be extremely costly, as they
might lead a patient to believe that she is cancer-free, when in reality the disease
may continue to spread. The cell labeled FP would contain the false positive results,
if there were any. These values occur when the model classifies a mass as malignant
when in reality it was benign. Although such errors are less dangerous than a false
negative result, they should also be avoided as they could lead to additional financial
burden on the health care system, or additional stress for the patient, as additional
tests or treatment may have to be provided.

If we desired, we could totally eliminate false negatives
by classifying every mass as malignant. Obviously,
this is not a realistic strategy. Still, it illustrates the fact
that prediction involves striking a balance between the
false positive rate and the false negative rate. In Chapter
10, Evaluating Model Performance, you will learn more
sophisticated methods for measuring predictive accuracy
that can be used to identify places where the error rate can
be optimized depending on the costs of each type of error.

A total of 2 percent, that is, 2 out of 100 masses were incorrectly classified by the
kNN approach. While 98 percent accuracy seems impressive for a few lines of R
code, we might try another iteration of the model to see if we can improve the
performance and reduce the number of values that have been incorrectly classified,
particularly, as the errors were dangerous false negatives.

Step 5 – improving model performance
We will attempt two simple variations on our previous classifier. First, we will
employ an alternative method for rescaling our numeric features. Second, we will
try several different values for k.

Transformation – z-score standardization
Although normalization is traditionally used for kNN classification, it may not always
be the most appropriate way to rescale features. Because z-score standardized values
have no predefined minimum and maximum, extreme values are not compressed
towards the center. One might suspect that with a malignant tumor, we might see
some very extreme outliers, as the tumors grow uncontrollably. It might, therefore, be
reasonable to allow the outliers to be weighted more heavily in the distance calculation.
Let's see whether z-score standardization can improve our predictive accuracy.

Chapter 3

[85]

To standardize a vector, we can use R's built in scale() function, which by default
rescales values using the z-score standardization. The scale() function offers the
additional benefit that it can be applied directly to a data frame, so we can avoid use
of the lapply() function. To create a z-score standardized version of the wbcd data,
we can use the following command, which rescales all features with the exception of
diagnosis, and stores the result as a data frame in the wbcd_z variable. The _z suffix
is a reminder that the values were z-score transformed.

> wbcd_z <- as.data.frame(scale(wbcd[-1]))

To confirm that the transformation was applied correctly, we can look at the
summary statistics:

> summary(wbcd_z$area_mean)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.4530 -0.6666 -0.2949 0.0000 0.3632 5.2460

The mean of a z-score standardized variable should always be zero, and the range
should be fairly compact. A z-score greater than 3 or less than -3 indicates an
extremely rare value. The previous summary seems reasonable.

As we had done before, we need to divide the data into training and test sets, then
classify the test instances using the knn() function. We'll then compare the predicted
labels to the actual labels using CrossTable():

> wbcd_train <- wbcd_z[1:469,]

> wbcd_test <- wbcd_z[470:569,]

> wbcd_train_labels <- wbcd[1:469, 1]

> wbcd_test_labels <- wbcd[470:569, 1]

> wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,

 cl = wbcd_train_labels, k=21)

> CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,

 prop.chisq=FALSE)

Lazy Learning – Classification Using Nearest Neighbors

[86]

Unfortunately, in the following table, the results of our new transformation show a
slight decline in accuracy. The instances where we had correctly classified 98 percent
of examples previously, we classified only 95 percent correctly this time. Making
matters worse, we did no better at classifying the dangerous false negatives.

Testing alternative values of k
We may be able do even better by examining performance across various values of k.
Using the normalized training and test datasets, the same 100 records were classified
using several different k values. The number of false negatives and false positives are
shown for each iteration:

k value # false negatives # false positives Percent classified Incorrectly
1 1 3 4 percent
5 2 0 2 percent
11 3 0 3 percent
15 3 0 3 percent
21 2 0 2 percent
27 4 0 4 percent

Although the classifier was never perfect, the 1NN approach was able to avoid some
of the false negatives at the expense of adding false positives. It is important to keep
in mind, however, that it would be unwise to tailor our approach too closely to
our test data; after all, a different set of 100 patient records is likely to be somewhat
different from those used to measure our performance.

If you need to be certain that a learner will generalize to
future data, you might create several sets of 100 patients at
random and repeatedly retest the result. Methods to carefully
evaluate the performance of machine learning models are
discussed further in Chapter 10, Evaluating Model Performance.

Chapter 3

[87]

Summary
In this chapter, we learned about classification using k-nearest neighbors. Unlike
many classification algorithms, kNN does not do any learning. It simply stores the
training data verbatim. Unlabeled test examples are then matched to the most similar
records in the training set using a distance function, and the unlabeled example is
assigned the label of its neighbors.

In spite of the fact that kNN is a simple algorithm, it is capable of tackling extremely
complex tasks, such as identifying cancerous masses. In a few simple lines of R
code, we were able to correctly identify whether a mass was malignant or benign 98
percent of the time.

In the next chapter, we will examine a classification method that uses probability
to estimate the likelihood that an observation falls into certain categories. It will be
interesting to compare how this approach differs from kNN. Later on, in Chapter 9,
Finding Groups of Data – Clustering with k-means, we will learn about a close relative to
kNN, which uses distance measures for a completely different learning task.

Probabilistic
Learning – Classification

Using Naive Bayes
When a meteorologist provides a weather forecast, precipitation is typically
predicted using terms such as "70 percent chance of rain." These forecasts are known
as probability of precipitation reports. Have you ever considered how they are
calculated? It is a puzzling question, because in reality, it will either rain or it will not.

These estimates are based on probabilistic methods, or methods concerned with
describing uncertainty. They use data on past events to extrapolate future events. In
the case of weather, the chance of rain describes the proportion of prior days with
similar measurable atmospheric conditions in which precipitation occurred. A 70
percent chance of rain therefore implies that in 7 out of 10 past cases with similar
weather patterns, precipitation occurred somewhere in the area.

This chapter covers a machine learning algorithm called naive Bayes, which also
uses principles of probability for classification. Just as meteorologists forecast
weather, naive Bayes uses data about prior events to estimate the probability of
future events. For instance, a common application of naive Bayes uses the frequency
of words in past junk email messages to identify new junk mail. While studying how
this works, you will learn:

•	 Basic principles of probability that are utilized for naive Bayes
•	 Specialized methods, visualizations, and data structures used for analyzing

text data with R
•	 How to employ an R implementation of naive Bayes classifier to build an

SMS message filter

Probabilistic Learning – Classification Using Naive Bayes

[90]

If you've taken a statistics class before, some of the material in this chapter may
seem like a bit of a review of the subject. Even so, it may be helpful to refresh your
knowledge of probability, as these principles are the basis of how naive Bayes got
such a strange name.

Understanding naive Bayes
The basic statistical ideas necessary to understand the naive Bayes algorithm have
been around for centuries. The technique descended from the work of the 18th
century mathematician Thomas Bayes, who developed foundational mathematical
principles (now known as Bayesian methods) for describing the probability of
events, and how probabilities should be revised in light of additional information.

We'll go more in depth later, but for now it suffices to say that the probability of an
event is a number between 0 percent and 100 percent that captures the chance that
the event will occur given the available evidence. The lower the probability, the
less likely the event is to occur. A probability of 0 percent indicates that the event
definitely will not occur, while a probability of 100 percent indicates that the event
certainly will occur.

Classifiers based on Bayesian methods utilize training data to calculate an observed
probability of each class based on feature values. When the classifier is used later on
unlabeled data, it uses the observed probabilities to predict the most likely class for the
new features. It's a simple idea, but it results in a method that often has results on par
with more sophisticated algorithms. In fact, Bayesian classifiers have been used for:

•	 Text classification, such as junk email (spam) filtering, author identification,
or topic categorization

•	 Intrusion detection or anomaly detection in computer networks
•	 Diagnosing medical conditions, when given a set of observed symptoms

Typically, Bayesian classifiers are best applied to problems in which the information
from numerous attributes should be considered simultaneously in order to estimate
the probability of an outcome. While many algorithms ignore features that have
weak effects, Bayesian methods utilize all available evidence to subtly change the
predictions. If a large number of features have relatively minor effects, taken together
their combined impact could be quite large.

Chapter 4

[91]

Basic concepts of Bayesian methods
Before jumping into the naive Bayes algorithm, it's worth spending some time
defining the concepts that are used across Bayesian methods. Summarized in a
single sentence, Bayesian probability theory is rooted in the idea that the estimated
likelihood of an event should be based on the evidence at hand. Events are possible
outcomes, such as sunny and rainy weather, a heads or tails result in a coin flip, or
spam and not spam email messages. A trial is a single opportunity for the event to
occur, such as a day's weather, a coin flip, or an email message.

Probability
The probability of an event can be estimated from observed data by dividing the
number of trials in which an event occurred by the total number of trials. For
instance, if it rained 3 out of 10 days, the probability of rain can be estimated as 30
percent. Similarly, if 10 out of 50 email messages are spam, then the probability
of spam can be estimated as 20 percent. The notation P(A) is used to denote the
probability of event A, as in P(spam) = 0.20.

The total probability of all possible outcomes of a trial must always be 100 percent.
Thus, if the trial only has two outcomes that cannot occur simultaneously, such
as heads or tails, or spam and ham (non-spam), then knowing the probability of
either outcome reveals the probability of the other. For example, given the value
P(spam) = 0.20, we are able to calculate P(ham) = 1 – 0.20 = 0.80. This works because
the events spam and ham are mutually exclusive and exhaustive. This means that
the events cannot occur at the same time and are the only two possible outcomes.
As shorthand, the notation P(¬A) can be used to denote the probability of event
A not occurring, as in P(¬spam) = 0.80.

For illustrative purposes, it is often helpful to imagine probability as a
two-dimensional space that is partitioned into event probabilities for events.
In the following diagram, the rectangle represents the set of all possible outcomes
for an email message. The circle represents the probability that the message is spam.
The remaining 80 percent represents the messages that are not spam:

Probabilistic Learning – Classification Using Naive Bayes

[92]

Joint probability
Often, we are interested in monitoring several non-mutually exclusive events for the
same trial. If some events occur with the event of interest, we may be able to use them
to make predictions. Consider, for instance, a second event based on the outcome that
the email message contains the word Viagra. For most people, this word is only likely
to appear in a spam message; its presence in a message is therefore a very strong piece
of evidence that the email is spam. The preceding diagram, updated for this second
event, might appear as shown in the following diagram:

Notice in the diagram that the Viagra circle does not completely fill the spam circle,
nor is it completely contained by the spam circle. This implies that not all spam
messages contain the word Viagra, and not every email with the word Viagra is spam.

To zoom in for a closer look at the overlap between the spam and Viagra circles, we'll
employ a visualization known as a Venn diagram. First used in the late 19th century
by John Venn, the diagram uses circles to illustrate the overlap between sets of items.
In most Venn diagrams such as the following one, the size of the circles and the
degree of the overlap is not important. Instead, it is used as a way to remind you to
allocate probability to all possible combinations of events.

Chapter 4

[93]

We know that 20 percent of all messages were spam (the left circle), and 5 percent of all
messages contained spam (the right circle). Our job is to quantify the degree of overlap
between these two proportions. In other words, we hope to estimate the probability of
both P(spam) and P(Viagra) occurring, which can be written as P(spam ∩ Viagra).

Calculating P(spam ∩ Viagra) depends on the joint probability of the two events, or
how the probability of one event is related to the probability of the other. If the two
events are totally unrelated, they are called independent events. For instance, the
outcome of a coin flip is independent from whether the weather is rainy or sunny.

If all events were independent, it would be impossible to predict any event using
the data obtained by another. On the other hand, dependent events are the basis of
predictive modeling. For instance, the presence of clouds is likely to be predictive of
a rainy day, and the appearance of the word Viagra is predictive of a spam email.

With the knowledge that P(spam) and P(Viagra) were independent, we could then
easily calculate P(spam ∩ Viagra); the probability of both events happening at the same
time. Because 20 percent of all messages are spam, and 5 percent of all emails contain
the word Viagra, we could assume that 5 percent of 20 percent (0.05 * 0.20 = 0.01), or
1 percent of all messages are spam containing the word Viagra. More generally, for
independent events A and B, the probability of both happening is P(A ∩ B) = P(A) * P(B).

In reality, it is far more likely that P(spam) and P(Viagra) are highly dependent, which
means that this calculation is incorrect. We need to use a more careful formulation of
the relationship between these two events.

Conditional probability with Bayes' theorem
The relationships between dependent events can be described using Bayes'
theorem, as shown in the following formula. The notation P(A|B) can be read as
the probability of event A given that event B occurred. This is known as conditional
probability, since the probability of A is dependent (that is, conditional) on what
happened with event B.

() () ()
()

()
()

|
|

P B A P A P A B
P A B

P B P B
= =

I

To understand how Bayes' theorem works in practice, suppose that you were tasked
with guessing the probability that an incoming email was spam. Without any
additional evidence, the most reasonable guess would be the probability that any
prior message was spam (that is, 20 percent in the preceding example). This estimate
is known as the prior probability.

Probabilistic Learning – Classification Using Naive Bayes

[94]

Now, also suppose that you obtained an additional piece of evidence; you were told
that the incoming message used the term Viagra. The probability that the word Viagra
was used in previous spam messages is called the likelihood and the probability that
Viagra appeared in any message at all is known as the marginal likelihood.

By applying Bayes' theorem to this evidence, we can compute a posterior
probability that measures how likely the message is to be spam. If the posterior
probability is greater than 50 percent, the message is more likely to be spam than
ham, and it should be filtered. The following formula is the Bayes' theorem for the
given evidence:

P
P P

P
spam Viagra

Viagra spam spam

Viagra
|

|
� � �

� � � �

� �

likelihood

posterior
probability marginal

likelihood

prior
probability

To calculate the components of Bayes' theorem, we must construct a frequency
table (shown on the left in the following diagram) that records the number of times
Viagra appeared in spam and ham messages. Just like a two-way cross-tabulation,
one dimension of the table indicates levels of the class variable (spam or ham), while
the other dimension indicates levels for features (Viagra: yes or no). The cells then
indicate the number of instances having the particular combination of class value
and feature value. The frequency table can then be used to construct a likelihood
table, as shown on right in the following diagram:

The likelihood table reveals that P(Viagra|spam) = 4/20 = 0.20, indicating that the
probability is 20 percent that a spam message contains the term Viagra. Additionally,
since the theorem says that P(B|A) * P(A) = P(A ∩ B), we can calculate P(spam ∩
Viagra) as P(Viagra|spam) * P(spam) = (4/20) * (20/100) = 0.04. This is four times
greater than the previous estimate under the faulty independence assumption
illustrating the importance of Bayes' theorem when calculating joint probability.

Chapter 4

[95]

To compute the posterior probability, P(spam|Viagra), we simply take
P(Viagra|spam) * P(spam) / P(Viagra), or (4/20) * (20/100) / (5/100) = 0.80. Therefore,
the probability is 80 percent that a message is spam, given that it contains the word
Viagra. Therefore, any message containing this term should be filtered.

This is very much how commercial spam filters work, although they consider a
much larger number of words simultaneously when computing the frequency and
likelihood tables. In the next section, we'll see how this concept is put to use when
additional features are involved.

The naive Bayes algorithm
The naive Bayes (NB) algorithm describes a simple application using Bayes' theorem
for classification. Although it is not the only machine learning method utilizing
Bayesian methods, it is the most common, particularly for text classification where
it has become the de facto standard. Strengths and weaknesses of this algorithm are
as follows:

Strengths Weaknesses
•	 Simple, fast, and very effective
•	 Does well with noisy and missing data
•	 Requires relatively few examples for

training, but also works well with very
large numbers of examples

•	 Easy to obtain the estimated
probability for a prediction

•	 Relies on an often-faulty
assumption of equally important
and independent features

•	 Not ideal for datasets with large
numbers of numeric features

•	 Estimated probabilities are less
reliable than the predicted classes

The naive Bayes algorithm is named as such because it makes a couple of "naive"
assumptions about the data. In particular, naive Bayes assumes that all of the
features in the dataset are equally important and independent. These assumptions
are rarely true in most of the real-world applications.

For example, if you were attempting to identify spam by monitoring email messages,
it is almost certainly true that some features will be more important than others.
For example, the sender of the email may be a more important indicator of spam
than the message text. Additionally, the words that appear in the message body are
not independent from one another, since the appearance of some words is a very
good indication that other words are also likely to appear. A message with the word
Viagra is probably likely to also contain the words prescription or drugs.

Probabilistic Learning – Classification Using Naive Bayes

[96]

However, in most cases when these assumptions are violated, naive Bayes still
performs fairly well. This is true even in extreme circumstances where strong
dependencies are found among the features. Due to the algorithm's versatility
and accuracy across many types of conditions, naive Bayes is often a strong first
candidate for classification learning tasks.

The exact reason why naive Bayes works well in spite of its
faulty assumptions has been the subject of much speculation.
One explanation is that it is not important to obtain a careful
estimate of probability so long as the predicted class values
are true. For instance, if a spam filter correctly identifies
spam, does it matter that it was 51 percent or 99 percent
confident in its prediction? For more information on this
topic, refer to On the optimality of the simple Bayesian classifier
under zero-one loss in Machine Learning, by Pedro Domingos
and Michael Pazzani (1997).

The naive Bayes classification
Let's extend our spam filter by adding a few additional terms to be monitored:
money, groceries, and unsubscribe. The naive Bayes learner is trained by
constructing a likelihood table for the appearance of these four words (W1, W2, W3,
and W4), as shown in the following diagram for 100 emails:

As new messages are received, the posterior probability must be calculated to
determine whether they are more likely spam or ham, given the likelihood of the
words found in the message text. For example, suppose that a message contains the
terms Viagra and Unsubscribe, but does not contain either Money or Groceries.

Using Bayes' theorem, we can define the problem as shown in the following formula,
which captures the probability that a message is spam, given that Viagra = Yes,
Money = No, Groceries = No, and Unsubscribe = Yes:

() () ()
()

1 2 3 4
1 2 3 4

1 2 3 4

| spam spam
Spam |

P W W W W P
P W W W W

P W W W W
¬ ¬

¬ ¬ =
¬ ¬

I I I
I I I

I I I

Chapter 4

[97]

For a number of reasons, this formula is computationally difficult to solve. As
additional features are added, tremendous amounts of memory are needed to store
probabilities for all of the possible intersecting events; imagine the complexity
of a Venn diagram for the events for four words, let alone for hundreds or more.
Enormous training datasets would be required to ensure that enough data is
available to model all of the possible interactions.

The work becomes much easier if we can exploit the fact that naive Bayes assumes
independence among events. Specifically, naive Bayes assumes class-conditional
independence, which means that events are independent so long as they are
conditioned on the same class value. Assuming conditional independence allows
us to simplify the formula using the probability rule for independent events, which
you may recall is P(A ∩ B) = P(A) * P(B). This results in a much easier-to-compute
formulation, shown as follows:

() () () () () ()
() () () ()

1 2 3 4
1 2 3 4

1 2 3 4

| spam | spam | spam | spam spam
Spam |

P W P W P W P W P
P W W W W

P W P W P W P W
¬ ¬

¬ ¬ =
¬ ¬

I I I

The result of this formula should be compared to the probability that the message
is ham:

() () () () () ()
() () () ()

1 2 3 4
1 2 3 4

1 2 3 4

| ham | ham | ham | ham ham
ham |

P W P W P W P W P
P W W W W

P W P W P W P W
¬ ¬

¬ ¬ =
¬ ¬

I I I

Using the values in the likelihood table, we can start filling numbers in these
equations. Because the denominator is the same in both cases, it can be ignored
for now. The overall likelihood of spam is then:

(4/20) * (10/20) * (20/20) * (12/20) * (20/100) = 0.012

While the likelihood of ham given this pattern of words is:

(1/80) * (66/80) * (71/80) * (23/80) * (80/100) = 0.002

Because 0.012 / 0.002 = 6, we can say that this message is six times more likely to be
spam than ham. However, to convert these numbers to probabilities, we need one
last step.

The probability of spam is equal to the likelihood that the message is spam divided
by the likelihood that the message is either spam or ham:

0.012 / (0.012 + 0.002) = 0.857

Probabilistic Learning – Classification Using Naive Bayes

[98]

Similarly, the probability of ham is equal to the likelihood that the message is ham
divided by the likelihood that the message is either spam or ham:

0.002 / (0.012 + 0.002) = 0.143

Given the pattern of words in the message, we expect that the message is spam with
85.7 percent probability, and ham with 14.3 percent probability. Because these are
mutually exclusive and exhaustive events, the probabilities sum up to one.

The naive Bayes classification algorithm we used in the preceding example can be
summarized by the following formula. Essentially, the probability of level L for class
C, given the evidence provided by features F1 through Fn, is equal to the product of
the probabilities of each piece of evidence conditioned on the class level, the prior
probability of the class level, and a scaling factor 1 / Z, which converts the result to
a probability:

() () ()1
1

1| ,..., |
n

L n L i L
i

P C F F p C p F C
Z =

= ∏

The Laplace estimator
Let's look at one more example. Suppose we received another message, this time
containing the terms: Viagra, Groceries, Money, and Unsubscribe. Using the naive
Bayes algorithm as before, we can compute the likelihood of spam as:

(4/20) * (10/20) * (0/20) * (12/20) * (20/100) = 0

And the likelihood of ham is:

(1/80) * (14/80) * (8/80) * (23/80) * (80/100) = 0.00005

Therefore, the probability of spam is:

0 / (0 + 0.0099) = 0

And the probability of ham is:

0.00005 / (0 + 0. 0.00005) = 1

These results suggest that the message is spam with 0 percent probability and ham
with 100 percent probability. Does this prediction make sense? Probably not. The
message contains several words usually associated with spam, including Viagra,
which is very rarely used in legitimate messages. It is therefore very likely that the
message has been incorrectly classified.

Chapter 4

[99]

This problem might arise if an event never occurs for one or more levels of the class.
For instance, the term Groceries had never previously appeared in a spam message.
Consequently, P(spam|groceries) = 0%.

Because probabilities in naive Bayes are multiplied, this 0 percent value causes
the posterior probability of spam to be zero, giving the word Groceries the ability
to effectively nullify and overrule all of the other evidence. Even if the email was
otherwise overwhelmingly expected to be spam, the absence of the word Groceries
will always result in a probability of spam being zero.

A solution to this problem involves using something called the Laplace estimator,
which is named after the French mathematician Pierre-Simon Laplace. The Laplace
estimator essentially adds a small number to each of the counts in the frequency
table, which ensures that each feature has a nonzero probability of occurring with
each class. Typically, the Laplace estimator is set to 1, which ensures that each
class-feature combination is found in the data at least once.

The Laplace estimator can be set to any value, and does
not necessarily even have to be the same for each of the
features. If you were a devoted Bayesian, you could use a
Laplace estimator to reflect a presumed prior probability
of how the feature relates to the class. In practice, given a
large enough training dataset, this step is unnecessary, and
the value of 1 is almost always used.

Let's see how this affects our prediction for this message. Using a Laplace value of
1, we add one to each numerator in the likelihood function. The total number of 1s
must also be added to each denominator. The likelihood of spam is therefore:

(5/24) * (11/24) * (1/24) * (13/24) * (20/100) = 0.0004

And the likelihood of ham is:

(2/84) * (15/84) * (9/84) * (24/84) * (80/100) = 0.0001

This means that the probability of spam is 80 percent and the probability of ham
is 20 percent; a more plausible result than the one obtained when Groceries alone
determined the result.

Probabilistic Learning – Classification Using Naive Bayes

[100]

Using numeric features with naive Bayes
Because naive Bayes uses frequency tables for learning the data, each feature must be
categorical in order to create the combinations of class and feature values comprising
the matrix. Since numeric features do not have categories of values, the preceding
algorithm does not work directly with numeric data. There are, however, ways that
this can be addressed.

One easy and effective solution is to discretize numeric features, which simply means
that the numbers are put into categories known as bins. For this reason, discretization
is also sometimes called binning. This method is ideal when there are large amounts
of training data, a common condition when working with naive Bayes.

There are several different ways to discretize a numeric feature. Perhaps the most
common is to explore the data for natural categories or cut points in the distribution of
data. For example, suppose that you added a feature to the spam dataset that recorded
the time of night or day the email was sent, from 0 to 24 hours past midnight.

Depicted using a histogram, the time data might look something like the following
diagram. In the early hours of morning, message frequency is low. Activity picks
up during business hours, and tapers off in the evening. This seems to create four
natural bins of activity, as partitioned by the dashed lines indicating places where
the numeric data are divided into levels of a new nominal feature, which could then
be used with naive Bayes:

Keep in mind that the choice of four bins was somewhat arbitrary, based on the
natural distribution of data and a hunch about how the proportion of spam might
change throughout the day. We might expect that spammers operate in the late
hours of the night, or they may operate during the day, when people are likely to
check their email. That said, to capture these trends, we could have just as easily
used three bins or twelve.

Chapter 4

[101]

If there are no obvious cut points, one option is to
discretize the feature using quantiles. You could divide
the data into three bins with tertiles, four bins with
quartiles, or five bins with quintiles.

One thing to keep in mind is that discretizing a numeric feature always results in a
reduction of information, as the feature's original granularity is reduced to a smaller
number of categories. It is important to strike a balance, since too few bins can result
in important trends being obscured, while too many bins can result in small counts
in the naive Bayes frequency table.

Example – filtering mobile phone spam
with the naive Bayes algorithm
As worldwide use of mobile phones has grown, a new avenue for electronic junk
mail has been opened for disreputable marketers. These advertisers utilize Short
Message Service (SMS) text messages to target potential consumers with unwanted
advertising known as SMS spam. This type of spam is particularly troublesome
because, unlike email spam, many cellular phone users pay a fee per SMS received.
Developing a classification algorithm that could filter SMS spam would provide a
useful tool for cellular phone providers.

Since naive Bayes has been used successfully for email spam filtering, it seems likely
that it could also be applied to SMS spam. However, relative to email spam, SMS
spam poses additional challenges for automated filters. SMS messages are often
limited to 160 characters, reducing the amount of text that can be used to identify
whether a message is junk. The limit, combined with small mobile phone keyboards,
has led many to adopt a form of SMS shorthand lingo, which further blurs the line
between legitimate messages and spam. Let's see how well a simple naive Bayes
classifier handles these challenges.

Probabilistic Learning – Classification Using Naive Bayes

[102]

Step 1 – collecting data
To develop the naive Bayes classifier, we will use data adapted from the SMS Spam
Collection at http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/.

To read more about the SMS Spam Collection, refer to
the authors' full publication: On the Validity of a New SMS
Spam Collection by J.M. Gómez Hidalgo, T.A. Almeida, and
A. Yamakami in Proceedings of the 11th IEEE International
Conference on Machine Learning and Applications, (2012.)

This dataset includes the text of SMS messages along with a label indicating whether
the message is unwanted. Junk messages are labeled spam, while legitimate
messages are labeled ham. Some examples of spam and ham are shown in the
following example:

The following is a sample ham messages:

Better. Made up for Friday and stuffed myself like a pig yesterday. Now I feel
bleh. But at least its not writhing pain kind of bleh.

If he started searching he will get job in few days. He have great potential
and talent.

I got another job! The one at the hospital doing data analysis or something, starts
on monday! Not sure when my thesis will got finished

The following is a sample spam messages:

Congratulations ur awarded 500 of CD vouchers or 125gift guaranteed & Free
entry 2 100 wkly draw txt MUSIC to 87066

December only! Had your mobile 11mths+? You are entitled to update to the latest
colour camera mobile for Free! Call The Mobile Update Co FREE on 08002986906

Valentines Day Special! Win over £1000 in our quiz and take your partner on the
trip of a lifetime! Send GO to 83600 now. 150p/msg rcvd.

Looking at the preceding sample messages, do you notice any distinguishing
characteristics of spam? One notable characteristic is that two of the three spam
messages use the word "free", yet the word does not appear in any of the ham
messages. On the other hand, two of the ham messages cite specific days of week,
when compared to zero spam messages.

Chapter 4

[103]

Our naive Bayes classifier will take advantage of such patterns in the word frequency
to determine whether the SMS messages seem to better fit the profile of spam or ham.
While it's not inconceivable that the word "free" would appear outside of a spam
SMS, a legitimate message is likely to provide additional words providing context.
For instance, a ham message might state "are you free on Sunday?", whereas a
spam message might use the phrase "free ringtones." The classifier will compute
the probability of spam and ham given the evidence provided by all the words in
the message.

Step 2 – exploring and preparing the data
The first step towards constructing our classifier involves processing the raw data for
analysis. Text data are challenging to prepare because it is necessary to transform the
words and sentences into a form that a computer can understand. We will transform
our data into a representation known as bag-of-words, which ignores the order
that words appear in and simply provides a variable indicating whether the word
appears at all.

The data used here have been modified slightly from the original in
order to make it easier to work with in R. If you plan on following
along with the example, download the sms_spam.csv file from the
Packt Publishing's website and save it to your R working directory.

We'll begin by importing the CSV data using the read.csv() function and saving it
to a data frame titled sms_raw:

> sms_raw <- read.csv("sms_spam.csv", stringsAsFactors = FALSE)

Using the structure function str(), we see that the sms_raw data frame includes 5,559
total SMS messages with two features: type and text. The SMS type has been coded
as either ham or spam, and the text variable stores the full raw SMS message text.

> str(sms_raw)

'data.frame':	5559 obs. of 2 variables:

 $ type: chr "ham" "ham" "ham" "spam" ...

 $ text: chr "Hope you are having a good week. Just checking in" "K..
give back my thanks." "Am also doing in cbe only. But have to pay."
"complimentary 4 STAR Ibiza Holiday or £10,000 cash needs your URGENT
collection. 09066364349 NOW from Landline not to lose out"| __truncated__
...

Probabilistic Learning – Classification Using Naive Bayes

[104]

The type variable is currently a character vector. Since this is a categorical variable,
it would be better to convert it to a factor, as shown in the following code:

> sms_raw$type <- factor(sms_raw$type)

Examining the type variable with the str() and table() functions, we see that the
variable has now been appropriately recoded as a factor. Additionally, we see that
747 (or about 13 percent) of SMS messages in our data were labeled spam, while the
remainder were labeled ham:

> str(sms_raw$type)

 Factor w/ 2 levels "ham","spam": 1 1 1 2 2 1 1 1 2 1 ...

> table(sms_raw$type)

 ham spam

4812 747

For now, we will leave the text variable alone. As you will learn in the next section,
processing the raw SMS messages will require the use of a new set of powerful tools
designed specifically for processing text data.

Data preparation – processing text data
for analysis
SMS messages are strings of text composed of words, spaces, numbers, and
punctuation. Handling this type of complex data takes a large amount of thought
and effort. One needs to consider how to remove numbers, punctuation, handle
uninteresting words such as and, but, and or, and how to break apart sentences into
individual words. Thankfully, this functionality has been provided by members of
the R community in a text mining package titled tm.

The tm package was originally created by Ingo Feinerer
as a dissertation project at the Vienna University
of Economics and Business. To learn more, visit
http://tm.r-forge.r-project.org/.

The tm text mining package can be installed via the install.packages("tm")
command and loaded with library(tm).

Chapter 4

[105]

The first step in processing text data involves creating a corpus, which refers to a
collection of text documents. In our project, a text document refers to a single SMS
message. We'll build a corpus containing the SMS messages in the training data
using the following command:

> sms_corpus <- Corpus(VectorSource(sms_raw$text))

This command uses two functions. First, the Corpus() function creates an R object
to store text documents. This function takes a parameter specifying the format of
the text documents to be loaded. Since we have already read the SMS messages and
stored them in an R vector, we specify VectorSource(), which tells Corpus() to use
the messages in the vector sms_train$text. The Corpus() function stores the result
in an object named sms_corpus.

The Corpus() function is extremely flexible and can read
documents from many different sources such as PDFs and
Microsoft Word documents. To learn more, examine the
Data Import section in the tm package vignette using the
command: print(vignette("tm"))

If we print() the corpus we just created, we will see that it contains documents for
each of the 5,559 SMS messages in the training data:

> print(sms_corpus)

A corpus with 5559 text documents

To look at the contents of the corpus, we can use the inspect() function.
By combining this with methods for accessing vectors, we can view specific
SMS messages. The following command will view the first, second, and third
SMS messages:

> inspect(sms_corpus[1:3])

[[1]]

Hope you are having a good week. Just checking in

[[2]]

K..give back my thanks.

[[3]]

Am also doing in cbe only. But have to pay.

The corpus now contains the raw text of 5,559 text messages. Before splitting the text
into words, we will need to perform some common cleaning steps in order to remove
punctuation and other characters that may clutter the result. For example, we would
like to count hello!, HELLO..., and Hello as instances of the word hello.

Probabilistic Learning – Classification Using Naive Bayes

[106]

The function tm_map() provides a method for transforming (that is, mapping) a
tm corpus. We will use this to clean up our corpus using a series of transformation
functions, and save the result in a new object called corpus_clean.

First, we will convert all of the SMS messages to lowercase and remove any numbers:

> corpus_clean <- tm_map(sms_corpus, tolower)

> corpus_clean <- tm_map(corpus_clean, removeNumbers)

A common practice when analyzing text data is to remove filler words such as to,
and, but, and or. These are known as stop words. Rather than define a list of stop
words ourselves, we will use the stopwords() function provided by the tm package.
It contains a set of numerous stop words. To see them all, type stopwords() at
the command line. As we did before, we'll use the tm_map() function to apply this
function to the data:

> corpus_clean <- tm_map(corpus_clean, removeWords, stopwords())

We'll also remove punctuation:

> corpus_clean <- tm_map(corpus_clean, removePunctuation)

Now that we have removed numbers, stop words, and punctuation, the text
messages are left with blank spaces where these characters used to be. The last step
then is to remove additional whitespace, leaving only a single space between words.

> corpus_clean <- tm_map(corpus_clean, stripWhitespace)

The following table shows the first three messages in SMS corpus before and after
the cleaning process. The messages have been limited to the most interesting words
and punctuation and capitalization have been removed:

SMS messages before cleaning SMS messages after cleaning
> inspect(sms_corpus[1:3])

[[1]]

Hope you are having a good week.
Just checking in

[[2]]

K..give back my thanks.

[[3]]

Am also doing in cbe only. But have
to pay.

> inspect(corpus_clean[1:3])

[[1]]

hope good week just checking

[[2]]

kgive back thanks

[[3]]

also cbe pay

Now that the data are processed to our liking, the final step is to split the messages
into individual components through a process called tokenization. A token is a
single element of a text string; in this case, the tokens are words.

Chapter 4

[107]

The example here was tested using R 2.15.3 on Microsoft
Windows 7, with tm package Version 0.5-9.1. Because these
projects are ever-changing the results may differ slightly if
you are using another version or another platform.

As you might assume, the tm package provides functionality to tokenize the SMS
message corpus. The DocumentTermMatrix() function will take a corpus and
create a data structure called a sparse matrix, in which the rows of the matrix
indicate documents (that is, SMS messages) and the columns indicate terms (that is,
words). Each cell in the matrix stores a number indicating a count of the times the
word indicated by the column appears in the document indicated by the row. The
following screenshot illustrates a small portion of the document term matrix for the
SMS corpus, as the complete matrix has 5,559 rows and over 7,000 columns:

The fact that each cell in the table is zero implies that none of the words listed at
the top of the columns appears in any of the first five messages in the corpus.
This highlights the reason why this data structure is called a sparse matrix; the
vast majority of cells in the matrix are filled with zeros. Although each message
contains some words, the probability of any specific word appearing in a given
message is small.

Creating a sparse matrix given a tm corpus involves a single command:

> sms_dtm <- DocumentTermMatrix(corpus_clean)

This will tokenize the corpus and return the sparse matrix with the name sms_dtm.
From here, we'll be able to perform analyses involving word frequency.

Probabilistic Learning – Classification Using Naive Bayes

[108]

Data preparation – creating training and
test datasets
Since our data have been prepared for analysis, we now need to split the data into a
training dataset and test dataset so that the spam classifier can be evaluated on data
it had not seen previously. We'll divide the data into two portions: 75 percent for
training and 25 percent for testing. Since the SMS messages are sorted in a random
order, we can simply take the first 4,169 for training and leave the remaining 1,390
for testing.

We'll begin by splitting the raw data frame:

> sms_raw_train <- sms_raw[1:4169,]

> sms_raw_test <- sms_raw[4170:5559,]

Then the document-term matrix:

> sms_dtm_train <- sms_dtm[1:4169,]

> sms_dtm_test <- sms_dtm[4170:5559,]

And finally, the corpus:

> sms_corpus_train <- corpus_clean[1:4169]

> sms_corpus_test <- corpus_clean[4170:5559]

To confirm that the subsets are representative of the complete set of SMS data, let's
compare the proportion of spam in the training and test data frames:

> prop.table(table(sms_raw_train$type))

 ham spam

0.8647158 0.1352842

> prop.table(table(sms_raw_test$type))

 ham spam

0.8683453 0.1316547

Both the training data and test data contain about 13 percent spam. This suggests
that the spam messages were divided evenly between the two datasets.

Visualizing text data – word clouds
A word cloud is a way to visually depict the frequency at which words appear in text
data. The cloud is made up of words scattered somewhat randomly around the figure.
Words appearing more often in the text are shown in a larger font, while less common
terms are shown in smaller fonts. This type of figure has grown in popularity recently
since it provides a way to observe trending topics on social media websites.

Chapter 4

[109]

The wordcloud package provides a simple R function to create this type of diagram.
We'll use it to visualize the types of words in SMS messages. Comparing the word
clouds for spam and ham messages will help us gauge whether our naive Bayes
spam filter is likely to be successful. If you haven't already done so, install the
package by typing install.packages("wordcloud") and load the package by
typing library(wordcloud) at the R command line.

The wordcloud package was written by Ian Fellows,
a professional statistician out of the University of
California, Los Angeles. For more information about
this package, visit http://cran.r-project.org/
web/packages/wordcloud/index.html.

A word cloud can be created directly from a tm corpus object using the syntax:

> wordcloud(sms_corpus_train, min.freq = 40, random.order = FALSE)

This will create a word cloud from sms_corpus_train corpus. Since we specified
random.order = FALSE, the cloud will be arranged in non-random order, with
the higher-frequency words placed closer to the center. If we do not specify
random.order, the cloud would be arranged randomly by default. The min.freq
parameter specifies the number of times a word must appear in the corpus before
it will be displayed in the cloud. A general rule is to begin by setting min.freq to
a number roughly 10 percent of the number of documents in the corpus; in this
case 10 percent is about 40. Therefore, words in the cloud must appear in at least 40
SMS messages.

You might get a warning message noting that R
was unable to fit all of the words on the figure. If so,
try adjusting the min.freq value up, reduce the
number of words in the cloud. It may also help to use
the scale parameter to reduce the font size.

Probabilistic Learning – Classification Using Naive Bayes

[110]

The resulting word cloud is as follows:

Another interesting visualization involves comparing the clouds for SMS spam
and ham. Since we did not construct separate corpora for spam and ham, this is an
appropriate time to note a very helpful feature of the wordcloud() function. Given
raw text, it will automatically apply text transformation processes before building a
corpus and displaying the cloud.

Let's use R's subset() function to take a subset of the sms_raw_train data by SMS
type. First, we'll create a subset where type is equal to spam:

> spam <- subset(sms_raw_train, type == "spam")

Next, we'll do the same thing for the ham subset:

> ham <- subset(sms_raw_train, type == "ham")

Be careful to note the double equal sign. Like many
programming languages, R uses == to test equality.
If you accidently use a single equal sign, you'll end
up with a subset much larger than you expected!

Chapter 4

[111]

We now have two data frames, spam and ham, each with a text feature containing
the raw text strings for SMS messages. Creating word clouds is as simple as before.
This time, we'll use the max.words parameter to look at the 40 most common words
in each of the two sets. The scale parameter allows us to adjust the maximum and
minimum font size for words in the cloud. Feel free to adjust these parameters as
you see fit. This is illustrated in the following code:

> wordcloud(spam$text, max.words = 40, scale = c(3, 0.5))

> wordcloud(ham$text, max.words = 40, scale = c(3, 0.5))

The resulting word clouds are shown in the following diagram. Do you have a hunch
which one is the spam cloud and which represents ham?

Because of the randomization process, each word
cloud may look slightly different. Running the
wordcloud() function several times allows
you to choose the cloud that is the most visually
appealing for presentation purposes.

If you hadn't already guessed, the spam cloud is on the left. Spam SMS messages
include words such as urgent, free, mobile, call, claim, and stop; these terms do not
appear in the ham cloud at all. Instead, ham messages use words such as can, sorry,
need, and time. These stark differences suggest that our naive Bayes model will have
some strong key words to differentiate between the classes.

Probabilistic Learning – Classification Using Naive Bayes

[112]

Data preparation – creating indicator features for
frequent words
The final step in the data preparation process is to transform the sparse matrix into a
data structure that can be used to train a naive Bayes classifier. Currently, the sparse
matrix includes over 7,000 features a feature for every word that appears in at least
one SMS message. It's unlikely that all of these are useful for classification. To reduce
the number of features, we will eliminate any words that appear in less than five
SMS messages, or less than about 0.1 percent of records in the training data.

Finding frequent words requires use of the findFreqTerms() function in the tm
package. This function takes a document term matrix and returns a character vector
containing the words appearing at least a specified number of times. For instance, the
following command will display a character vector of the words appearing at least 5
times in the sms_dtm_train matrix:

> findFreqTerms(sms_dtm_train, 5)

To save this list of frequent terms for use later, we'll use the Dictionary() function:

> sms_dict <- Dictionary(findFreqTerms(sms_dtm_train, 5))

A dictionary is a data structure allowing us to specify which words should appear in
a document term matrix. To limit our training and test matrixes to only the words in
the preceding dictionary, use the following commands:

> sms_train <- DocumentTermMatrix(sms_corpus_train,

 list(dictionary = sms_dict))

> sms_test <- DocumentTermMatrix(sms_corpus_test,

 list(dictionary = sms_dict))

The training and test data now includes roughly 1,200 features corresponding only to
words appearing in at least five messages.

The naive Bayes classifier is typically trained on data with categorical features. This
poses a problem since the cells in the sparse matrix indicate a count of the times a
word appears in a message. We should change this to a factor variable that simply
indicates yes or no depending on whether the word appears at all.

The following code defines a convert_counts() function to convert counts to factors:

> convert_counts <- function(x) {

 x <- ifelse(x > 0, 1, 0)

 x <- factor(x, levels = c(0, 1), labels = c(""No"", ""Yes""))

 return(x)

 }

Chapter 4

[113]

By now, some of the pieces of the preceding function should look familiar. The
first line defines the function. The statement ifelse(x > 0, 1, 0) will transform
the values in x so that if the value is greater than 0, then it will be replaced with 1,
otherwise it will remain at 0. The factor command simply transforms the 1 and 0
values to a factor with labels No and Yes. Finally, the newly-transformed vector x
is returned.

Now, we just need to apply convert_counts to each of the columns in our sparse
matrix. You may be able to guess the R function can do exactly that; it's stated in the
preceding sentence. The function is simply called apply().

The apply() function is part of a family of functions
including lapply() and sapply() that perform
operations on each element of an R data structure. These
functions are one of the key idioms of the R language.
Experienced R coders use these functions rather than
using loops such as for or while as you would in other
programming languages because they result in more
readable (and sometimes more efficient) code.

The apply() function allows a function to be used on each of the rows or columns
in a matrix. It uses a MARGIN parameter to specify either rows or columns. Here, we'll
use MARGIN = 2 since we're interested in the columns (MARGIN = 1 is used for rows).
The full commands to convert the training and test matrixes are as follows:

> sms_train <- apply(sms_train, MARGIN = 2, convert_counts)

> sms_test <- apply(sms_test, MARGIN = 2, convert_counts)

The result will be two matrixes, each with factor type columns indicating Yes or No
for whether each column's word appears in the messages comprising the rows.

Step 3 – training a model on the data
Now that we have transformed the raw SMS messages into a format that can be
represented by a statistical model, it is time to apply the naive Bayes algorithm.
The algorithm will use the presence or absence of words to estimate the probability
that a given SMS message is spam.

The naive Bayes implementation we will employ is in the e1071 package. This
package was developed at the statistics department at the Vienna University of
Technology (TU Wien), and includes a variety of functions for machine learning.
If you have not done so already, be sure to prepare the package using the commands,
install.packages("e1071") and library(e1071) before continuing.

Probabilistic Learning – Classification Using Naive Bayes

[114]

Many machine learning approaches are implemented in more
than one R package, and naive Bayes is no exception. Another
commonly-cited naive Bayes function is NaiveBayes() in the
klaR package, which is nearly identical to the one described in
this text. Feel free to use whichever you prefer.

Unlike the kNN algorithm we used for classification in the previous chapter, training
a naive Bayes learner and using it for classification occur in separate stages. Still, as
shown in the following table, classification is fairly straightforward:

To build our model on the sms_train matrix, we'll use the following command:

> sms_classifier <- naiveBayes(sms_train, sms_raw_train$type)

The sms_classifier variable now contains a naiveBayes classifier object that can
be used to make predictions.

Chapter 4

[115]

Step 4 – evaluating model performance
To evaluate the SMS message classifier, we need to test its predictions on the unseen
messages in the test data. Recall that the unseen message features are stored in a
matrix named sms_test, while the class labels spam or ham are stored in a vector
named type in the sms_raw_test data frame. The classifier that we trained has
been named sms_classifier. We will use this to generate predictions, and we will
compare the predictions to the true values.

The predict() function is used to make the predictions. We will store these in a
vector named sms_test_pred:

> sms_test_pred <- predict(sms_classifier, sms_test)

To compare the predicted values to the actual values, we'll use the CrossTable()
function in the gmodels package, which we have used previously. This time, we'll
add some additional parameters to eliminate unnecessary cell proportions, and use
the dnn parameter (dimension names) to relabel the rows and columns, as shown in
the following code:

> library(gmodels)

> CrossTable(sms_test_pred, sms_raw_test$type,

 prop.chisq = FALSE, prop.t = FALSE,

 dnn = c('predicted', 'actual'))

This produces the following table:

Looking at the table, we can see that 4 of 1207 ham messages (0.3 percent) were
incorrectly classified as spam, while 32 of 183 spam messages (17.5 percent) were
incorrectly classified as ham. Considering the little effort we put into the project, this
level of performance seems quite impressive. This case study exemplifies the reason
why naive Bayes is the standard for text classification; directly out of the box, it
performs surprisingly well.

Probabilistic Learning – Classification Using Naive Bayes

[116]

On the other hand, the four legitimate messages that were incorrectly classified as
spam could cause significant problems for the deployment of our filtering algorithm.
If the filter caused a person to miss an important text message for an appointment
or emergency, they would quickly abandon the product. We should investigate the
incorrectly classified SMS messages to see where things went wrong.

Step 5 – improving model performance
You may have noticed that we didn't set a value for the Laplace estimator when
training our model. This allows words that appeared in zero spam or zero ham
messages to have an indisputable say in the classification process. Just because the
word "ringtone" only appeared in spam messages in the training data, it does not
mean that every message with that word should be classified as spam.

We'll build a naive Bayes model as before, but this time set laplace = 1:

> sms_classifier2 <- naiveBayes(sms_train, sms_raw_train$type,

 laplace = 1)

Next, we'll make predictions:

> sms_test_pred2 <- predict(sms_classifier2, sms_test)

Finally, we'll compare the predicted classes to the actual classifications using
a cross tabulation:

> CrossTable(sms_test_pred2, sms_raw_test$type,

 prop.chisq = FALSE, prop.t = FALSE, prop.r = FALSE,

 dnn = c('predicted', 'actual'))

This results in the following table:

Chapter 4

[117]

In spite of reducing the number of false positives (ham messages erroneously
classified as spam) from four to three, we also reduced the number of false negatives
from 32 to 31. Although this seems like a small improvement, we must also be aware
of the potential for important messages to be missed if we are too aggressive at
filtering spam.

Summary
In this chapter, we learned about classification using naive Bayes. This algorithm
constructs tables of probabilities that are used to estimate the likelihood that new
examples belong to various classes. The probabilities are calculated using a formula
known as Bayes' theorem, which specifies how dependent events are related.
Although Bayes' theorem can be computationally expensive to process, a simplified
version that makes so-called "naive" assumptions about the independence of features
is capable of being used with extremely large datasets.

The naive Bayes classifier is often used for text classification. To illustrate its
effectiveness, we employed naive Bayes on a classification task involving filtering
spam SMS messages. Preparing the text data for analysis required the use of
specialized R packages for text processing and visualization. Ultimately, the model
was able to classify nearly 98 percent of all SMS messages correctly as spam or ham.

In the next chapter, we will examine a set of two more machine learning methods.
Each performs classification by partitioning data into groups of similar values.

Divide and
Conquer – Classification

Using Decision Trees
and Rules

To make a difficult decision, some people weigh their options by making lists of pros
and cons for each possibility. Suppose a job seeker was deciding between several
offers, some closer or further from home, with various levels of pay and benefits. He
or she might create a list with the features of each position. Based on these features,
rules can be created to eliminate some options. For instance, "if I have a commute
longer than an hour, then I will be unhappy", or "if I make less than $50k, I won't be
able to support my family." The difficult decision of predicting future happiness can
be reduced to a series of small, but increasingly specific choices.

This chapter covers decision trees and rule learners—two machine learning methods
that apply a similar strategy of dividing data into smaller and smaller portions to
identify patterns that can be used for prediction. The knowledge is then presented
in the form of logical structures that can be understood without any statistical
knowledge. This aspect makes these models particularly useful for business strategy
and process improvement.

By the end of this chapter, you will learn:

•	 The strategy each method employs to tackle the problem of partitioning data
into interesting segments

•	 Several implementations of decision trees and classification rule learners,
including the C5.0, 1R, and RIPPER algorithms

Divide and Conquer – Classification Using Decision Trees and Rules

[120]

•	 How to use these algorithms for performing real-world classification tasks
such as identifying risky bank loans and poisonous mushrooms

We will begin by examining decision trees and follow with a look at classification
rules. Lastly, we'll wrap up with a summary of what we learned and preview later
chapters, which discuss methods that use trees and rules as a foundation for other
advanced machine learning techniques.

Understanding decision trees
As you might intuit from the name, decision tree learners build a model in the form
of a tree structure. The model itself comprises a series of logical decisions, similar to
a flowchart, with decision nodes that indicate a decision to be made on an attribute.
These split into branches that indicate the decision's choices. The tree is terminated
by leaf nodes (also known as terminal nodes) that denote the result of following a
combination of decisions.

Data that is to be classified begin at the root node where it is passed through the
various decisions in the tree according to the values of its features. The path that the
data takes funnels each record into a leaf node, which assigns it a predicted class.

As the decision tree is essentially a flowchart, it is particularly appropriate for
applications in which the classification mechanism needs to be transparent for legal
reasons or the results need to be shared in order to facilitate decision making. Some
potential uses include:

•	 Credit scoring models in which the criteria that causes an applicant to be
rejected need to be well-specified

•	 Marketing studies of customer churn or customer satisfaction that will be
shared with management or advertising agencies

•	 Diagnosis of medical conditions based on laboratory measurements,
symptoms, or rate of disease progression

Although the previous applications illustrate the value of trees for informing decision
processes, that is not to suggest that their utility ends there. In fact, decision trees are
perhaps the single most widely used machine learning technique, and can be applied
for modeling almost any type of data—often with unparalleled performance.

In spite of their wide applicability, it is worth noting some scenarios where trees may
not be an ideal fit. One such case might be a task where the data has a large number
of nominal features with many levels or if the data has a large number of numeric
features. These cases may result in a very large number of decisions and an overly
complex tree.

Chapter 5

[121]

Divide and conquer
Decision trees are built using a heuristic called recursive partitioning. This approach
is generally known as divide and conquer because it uses the feature values to split
the data into smaller and smaller subsets of similar classes.

Beginning at the root node, which represents the entire dataset, the algorithm
chooses a feature that is the most predictive of the target class. The examples are
then partitioned into groups of distinct values of this feature; this decision forms the
first set of tree branches. The algorithm continues to divide-and-conquer the nodes,
choosing the best candidate feature each time until a stopping criterion is reached.
This might occur at a node if:

•	 All (or nearly all) of the examples at the node have the same class
•	 There are no remaining features to distinguish among examples
•	 The tree has grown to a predefined size limit

To illustrate the tree building process, let's consider a simple example. Imagine that
you are working for a Hollywood film studio, and your desk is piled high with
screenplays. Rather than read each one cover-to-cover, you decide to develop a
decision tree algorithm to predict whether a potential movie would fall into one of
three categories: mainstream hit, critic's choice, or box office bust.

To gather data for your model, you turn to the studio archives to examine the
previous ten years of movie releases. After reviewing the data for 30 different movie
scripts, a pattern emerges. There seems to be a relationship between the film's
proposed shooting budget, the number of A-list celebrities lined up for starring roles,
and the categories of success. A scatter plot of this data might look something like
the following diagram:

Divide and Conquer – Classification Using Decision Trees and Rules

[122]

To build a simple decision tree using this data, we can apply a divide-and-conquer
strategy. Let's first split the feature indicating the number of celebrities, partitioning
the movies into groups with and without a low number of A-list stars:

Next, among the group of movies with a larger number of celebrities, we can make
another split between movies with and without a high budget:

At this point we have partitioned the data into three groups. The group at the top-left
corner of the diagram is composed entirely of critically-acclaimed films. This group
is distinguished by a high number of celebrities and a relatively low budget. At the
top-right corner, the majority of movies are box office hits, with high budgets and a
large number of celebrities. The final group, which has little star power but budgets
ranging from small to large, contains the flops.

Chapter 5

[123]

If we wanted, we could continue to divide the data by splitting it based on
increasingly specific ranges of budget and celebrity counts until each of the
incorrectly classified values resides in its own, perhaps tiny partition. Since the data
can continue to be split until there are no distinguishing features within a partition, a
decision tree can be prone to be overfitting for the training data with overly-specific
decisions. We'll avoid this by stopping the algorithm here since more than 80 percent
of the examples in each group are from a single class.

You might have noticed that diagonal lines could have split the
data even more cleanly. This is one limitation of the decision
tree's knowledge representation, which uses axis-parallel splits.
The fact that each split considers one feature at a time prevents
the decision tree from forming more complex decisions such
as "if the number of celebrities is greater than the estimated
budget, then it will be a critical success".

Our model for predicting the future success of movies can be represented in a simple
tree as shown in the following diagram. To evaluate a script, follow the branches
through each decision until its success or failure has been predicted. In no time, you
will be able to classify the backlog of scripts and get back to more important work
such as writing an awards acceptance speech.

Divide and Conquer – Classification Using Decision Trees and Rules

[124]

Since real-world data contains more than two features, decision trees quickly become
far more complex than this, with many more nodes, branches, and leaves. In the
next section you will learn about a popular algorithm for building decision tree
models automatically.

The C5.0 decision tree algorithm
There are numerous implementations of decision trees, but one of the most well-
known is the C5.0 algorithm. This algorithm was developed by computer scientist J.
Ross Quinlan as an improved version of his prior algorithm, C4.5, which itself is an
improvement over his ID3 (Iterative Dichotomiser 3) algorithm. Although Quinlan
markets C5.0 to commercial clients (see http://www.rulequest.com/ for details),
the source code for a single-threaded version of the algorithm was made publically
available, and has therefore been incorporated into programs such as R.

To further confuse matters, a popular Java-based
open-source alternative to C4.5, titled J48, is included in the
RWeka package. Because the differences among C5.0, C4.5,
and J48 are minor, the principles in this chapter will apply
to any of these three methods and the algorithms should be
considered synonymous.

The C5.0 algorithm has become the industry standard for producing decision trees,
because it does well for most types of problems directly out of the box. Compared
to other advanced machine learning models (such as those described in Chapter 7,
Black Box Methods – Neural Networks and Support Vector Machines) the decision trees
built by C5.0 generally perform nearly as well but are much easier to understand and
deploy. Additionally, as shown in the following table, the algorithm's weaknesses
are relatively minor and can be largely avoided.

Chapter 5

[125]

Strengths Weaknesses

•	 An all-purpose classifier that
does well on most problems

•	 Highly-automatic learning
process can handle numeric or
nominal features, missing data

•	 Uses only the most important
features

•	 Can be used on data with
relatively few training examples
or a very large number

•	 Results in a model that can
be interpreted without a
mathematical background
(for relatively small trees)

•	 More efficient than other
complex models

•	 Decision tree models are often biased
toward splits on features having a large
number of levels

•	 It is easy to overfit or underfit the model
•	 Can have trouble modeling some

relationships due to reliance on axis-
parallel splits

•	 Small changes in training data can result
in large changes to decision logic

•	 Large trees can be difficult to interpret
and the decisions they make may seem
counterintuitive

Earlier in this chapter, we followed a simple example illustrating how a decision tree
models data using a divide-and-conquer strategy. Let's explore this in more detail to
examine how this heuristic works in practice.

Choosing the best split
The first challenge that a decision tree will face is to identify which feature to split
upon. In the previous example, we looked for feature values that split the data in
such a way that partitions contained examples primarily of a single class. If the
segments of data contain only a single class, they are considered pure. There are
many different measurements of purity for identifying splitting criteria.

C5.0 uses entropy for measuring purity. The entropy of a sample of data indicates
how mixed the class values are; the minimum value of 0 indicates that the sample is
completely homogenous, while 1 indicates the maximum amount of disorder. The
definition of entropy is specified by:

() ()2
1

Entropy
c

i i
i

S p log p
=

= −∑

Divide and Conquer – Classification Using Decision Trees and Rules

[126]

In the entropy formula, for a given segment of data (S), the term c refers to the
number of different class levels, and pi refers to the proportion of values falling into
class level i. For example, suppose we have a partition of data with two classes: red
(60 percent), and white (40 percent). We can calculate the entropy as:

> -0.60 * log2(0.60) - 0.40 * log2(0.40)

[1] 0.9709506

We can examine the entropy for all possible two-class arrangements. If we know the
proportion of examples in one class is x, then the proportion in the other class is 1 - x.
Using the curve() function, we can then plot the entropy for all possible values of x:

> curve(-x * log2(x) - (1 - x) * log2(1 - x),

 col="red", xlab = "x", ylab = "Entropy", lwd=4)

This results in the following figure:

As illustrated by the peak in entropy at x = 0.50, a 50-50 split results in the
maximum entropy. As one class increasingly dominates the other, the entropy
reduces to zero.

Given this measure of purity, the algorithm must still decide which feature to split
upon. For this, the algorithm uses entropy to calculate the change in homogeneity
resulting from a split on each possible feature. The calculation is known as
information gain. The information gain for a feature F is calculated as the difference
between the entropy in the segment before the split (S1), and the partitions resulting
from the split (S2):

() () ()1 2InfoGain = Entropy EntropyF S S−

Chapter 5

[127]

The one complication is that after a split, the data is divided into more than one
partition. Therefore, the function to calculate Entropy(S2) needs to consider the total
entropy across all of the partitions. It does this by weighing each partition's entropy by
the proportion of records falling into that partition. This can be stated in a formula as:

() ()
1

Entropy Entropy
n

i i
i

S w P
=

=∑

In simple terms, the total entropy resulting from a split is the sum of entropy
of each of the n partitions weighted by the proportion of examples falling in that
partition (wi).

The higher the information gain, the better a feature is at creating homogeneous
groups after a split on that feature. If the information gain is zero, there is no
reduction in entropy for splitting on this feature. On the other hand, the maximum
information gain is equal to the entropy prior to the split. This would imply the
entropy after the split is zero, which means that the decision results in completely
homogeneous groups.

The previous formulae assume nominal features, but decision trees use information
gain for splitting on numeric features as well. A common practice is testing various
splits that divide the values into groups greater than or less than a threshold. This
reduces the numeric feature into a two-level categorical feature and information gain
can be calculated easily. The numeric threshold yielding the largest information gain
is chosen for the split.

Though it is used by C5.0, information gain is not the only
splitting criterion that can be used to build decision trees.
Other commonly used criteria are Gini index, Chi-Squared
statistic, and gain ratio. For a review of these (and many more)
criteria, refer to: An Empirical Comparison of Selection Measures
for Decision-Tree Induction, Machine Learning, Vol. 3, pp. 319-342,
by J. Mingers (1989).

Pruning the decision tree
A decision tree can continue to grow indefinitely, choosing splitting features and
dividing into smaller and smaller partitions until each example is perfectly classified
or the algorithm runs out of features to split on. However, if the tree grows overly
large, many of the decisions it makes will be overly specific and the model will have
been overfitted to the training data. The process of pruning a decision tree involves
reducing its size such that it generalizes better to unseen data.

Divide and Conquer – Classification Using Decision Trees and Rules

[128]

One solution to this problem is to stop the tree from growing once it reaches a
certain number of decisions or if the decision nodes contain only a small number of
examples. This is called early stopping or pre-pruning the decision tree. As the tree
avoids doing needless work, this is an appealing strategy. However, one downside
is that there is no way to know whether the tree will miss subtle, but important
patterns that it would have learned had it grown to a larger size.

An alternative, called post-pruning involves growing a tree that is too large, then
using pruning criteria based on the error rates at the nodes to reduce the size of
the tree to a more appropriate level. This is often a more effective approach than
pre-pruning because it is quite difficult to determine the optimal depth of a decision
tree without growing it first. Pruning the tree later on allows the algorithm to be
certain that all important data structures were discovered.

The implementation details of pruning operations are very
technical and beyond the scope of this book. For a comparison
of some of the available methods, see: A comparative analysis of
methods for pruning decision trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 19, pp. 476-491, by F.
Esposito, D. Malerba, and G. Semeraro (1997).

One of the benefits of the C5.0 algorithm is that it is opinionated about pruning—it
takes care of many of the decisions, automatically using fairly reasonable defaults.
Its overall strategy is to postprune the tree. It first grows a large tree that overfits the
training data. Later, nodes and branches that have little effect on the classification
errors are removed. In some cases, entire branches are moved further up the tree or
replaced by simpler decisions. These processes of grafting branches are known as
subtree raising and subtree replacement, respectively.

Balancing overfitting and underfitting a decision tree is a bit of an art, but if model
accuracy is vital it may be worth investing some time with various pruning options
to see if it improves performance on the test data. As you will soon see, one of the
strengths of the C5.0 algorithm is that it is very easy to adjust the training options.

Example – identifying risky bank loans
using C5.0 decision trees
The global financial crisis of 2007-2008 has highlighted the importance of
transparency and rigor in banking practices. As the availability of credit has been
limited, banks are increasingly tightening their lending systems and turning to
machine learning to more accurately identify risky loans.

Chapter 5

[129]

Decision trees are widely used in the banking industry due to their high accuracy
and ability to formulate a statistical model in plain language. Since government
organizations in many countries carefully monitor lending practices, executives
must be able to explain why one applicant was rejected for a loan while others were
approved. This information is also useful for customers hoping to determine why
their credit rating is unsatisfactory.

It is likely that automated credit scoring models are employed for instantly
approving credit applications on the telephone and the web. In this section, we will
develop a simple credit approval model using C5.0 decision trees. We will also see
how the results of the model can be tuned to minimize errors that result in a financial
loss for the institution.

Step 1 – collecting data
The idea behind our credit model is to identify factors that make an applicant at
higher risk of default. Therefore, we need to obtain data on a large number of
past bank loans and whether the loan went into default, as well as information
about the applicant.

Data with these characteristics are available in a dataset donated to the UCI Machine
Learning Data Repository (http://archive.ics.uci.edu/ml) by Hans Hofmann
of the University of Hamburg. They represent loans obtained from a credit agency
in Germany.

The data presented in this chapter has been modified
slightly from the original one for eliminating some
preprocessing steps. To follow along with the examples,
download the credit.csv file from Packt Publishing's
website and save it to your R working directory.

The credit dataset includes 1,000 examples of loans, plus a combination of numeric
and nominal features indicating characteristics of the loan and the loan applicant.
A class variable indicates whether the loan went into default. Let's see if we can
determine any patterns that predict this outcome.

Divide and Conquer – Classification Using Decision Trees and Rules

[130]

Step 2 – exploring and preparing the data
As we have done previously, we will import the data using the read.csv() function.
We will ignore the stringsAsFactors option (and therefore use the default value,
TRUE) as the majority of features in the data are nominal. We'll also look at the
structure of the credit data frame we created:

> credit <- read.csv("credit.csv")

> str(credit)

The first several lines of output from the str() function are as follows:

'data.frame':1000 obs. of 17 variables:

 $ checking_balance : Factor w/ 4 levels "< 0 DM","> 200 DM",..

 $ months_loan_duration: int 6 48 12 ...

 $ credit_history : Factor w/ 5 levels "critical","good",..

 $ purpose : Factor w/ 6 levels "business","car",..

 $ amount : int 1169 5951 2096 ...

We see the expected 1,000 observations and 17 features, which are a combination of
factor and integer data types.

Let's take a look at some of the table() output for a couple of features of loans that
seem likely to predict a default. The checking_balance and savings_balance
features indicate the applicant's checking and savings account balance, and are
recorded as categorical variables:

> table(credit$checking_balance)

 < 0 DM > 200 DM 1 - 200 DM unknown

 274 63 269 394

> table(credit$savings_balance)

 < 100 DM > 1000 DM 100 - 500 DM 500 - 1000 DM unknown

 603 48 103 63 183

Since the loan data was obtained from Germany, the currency is recorded in
Deutsche Marks (DM). It seems like a safe assumption that larger checking and
savings account balances should be related to a reduced chance of loan default.

Chapter 5

[131]

Some of the loan's features are numeric, such as its term (months_loan_duration),
and the amount of credit requested (amount).

> summary(credit$months_loan_duration)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 4.0 12.0 18.0 20.9 24.0 72.0

> summary(credit$amount)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 250 1366 2320 3271 3972 18420

The loan amounts ranged from 250 DM to 18,420 DM across terms of 4 to 72 months,
with a median duration of 18 months and amount of 2,320 DM.

The default variable indicates whether the loan applicant was unable to meet the
agreed payment terms and went into default. A total of 30 percent of the loans went
into default:

> table(credit$default)

 no yes

700 300

A high rate of default is undesirable for a bank because it means that the bank is
unlikely to fully recover its investment. If we are successful, our model will identify
applicants that are likely to default, so that this number can be reduced.

Data preparation – creating random training and
test datasets
As we have done in previous chapters, we will split our data into two portions:
a training dataset to build the decision tree and a test dataset to evaluate the
performance of the model on new data. We will use 90 percent of the data for
training and 10 percent for testing, which will provide us with 100 records to
simulate new applicants.

As prior chapters used data that had been sorted in a random order, we simply
divided the dataset into two portions by taking the first 90 percent of records for
training, and the remaining 10 percent for testing. In contrast, our data here is not
randomly ordered. Suppose that the bank had sorted the data by the loan amount,
with the largest loans at the end of the file. If we use the first 90 percent for training
and the remaining 10 percent for testing, we would be building a model on only
the small loans and testing the model on the big loans. Obviously, this could be
problematic.

Divide and Conquer – Classification Using Decision Trees and Rules

[132]

We'll solve this problem by randomly ordering our credit data frame prior to
splitting. The order() function is used to rearrange a list of items in ascending or
descending order. If we combine this with a function to generate a list of random
numbers, we can generate a randomly-ordered list. For random number generation,
we'll use the runif() function, which by default generates a sequence of random
numbers between 0 and 1.

If you're trying to figure out where the runif() function
gets its name, the answer is due to the fact that it chooses
numbers from a uniform distribution, which we learned
about in Chapter 2, Managing and Understanding Data.

The following command creates a randomly-ordered credit data frame. The
set.seed() function is used to generate random numbers in a predefined sequence,
starting from a position known as a seed (set here to the arbitrary value 12345). It
may seem that this defeats the purpose of generating random numbers, but there
is a good reason for doing it this way. The set.seed() function ensures that if the
analysis is repeated, an identical result is obtained.

> set.seed(12345)

> credit_rand <- credit[order(runif(1000)),]

The runif(1000) command generates a list of 1,000 random numbers. We need
exactly 1,000 random numbers because there are 1,000 records in the credit data
frame. The order() function then returns a vector of numbers indicating the sorted
position of the 1,000 random numbers. We then use these positions to select rows in
the credit data frame and store in a new data frame named credit_rand.

To better understand how this function works, note that
order(c(0.5, 0.25, 0.75, 0.1)) returns the sequence
4 1 2 3 because the smallest number (0.1) appears fourth,
the second smallest (0.25) appears first, and so on.

To confirm that we have the same data frame sorted differently, we'll compare
values on the amount feature across the two data frames. The following code shows
the summary statistics:

> summary(credit$amount)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 250 1366 2320 3271 3972 18420

> summary(credit_rand$amount)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 250 1366 2320 3271 3972 18420

Chapter 5

[133]

We can use the head() function to examine the first few values in each data frame:

> head(credit$amount)

[1] 1169 5951 2096 7882 4870 9055

> head(credit_rand$amount)

[1] 1199 2576 1103 4020 1501 1568

Since the summary statistics are identical while the first few values are different, this
suggests that our random shuffle worked correctly.

If your results do not match exactly with the previous ones,
ensure that you run the command set.seed(214805)
immediately prior to creating the credit_rand data frame.

Now, we can split into training (90 percent or 900 records), and test data (10 percent
or 100 records) as we have done in previous analyses:

> credit_train <- credit_rand[1:900,]

> credit_test <- credit_rand[901:1000,]

If all went well, we should have about 30 percent of defaulted loans in each of
the datasets.

> prop.table(table(credit_train$default))

 no yes

0.7022222 0.2977778

> prop.table(table(credit_test$default))

 no yes

0.68 0.32

This appears to be a fairly equal split, so we can now build our decision tree.

Step 3 – training a model on the data
We will use the C5.0 algorithm in the C50 package for training our decision
tree model. If you have not done so already, install the package with
install.packages("C50") and load it to your R session using library(C50).

Divide and Conquer – Classification Using Decision Trees and Rules

[134]

The following syntax box lists some of the most commonly used commands for
building decision trees. Compared to the machine learning approaches we have
used previously, the C5.0 algorithm offers many more ways to tailor the model to a
particular learning problem, but even more options are available. The ?C5.0Control
command displays the help page for more details on how to finely-tune the algorithm.

For the first iteration of our credit approval model, we'll use the default C5.0
configuration, as shown in the following code. The 17th column in credit_train is
the class variable, default, so we need to exclude it from the training data frame as
an independent variable, but supply it as the target factor vector for classification:

> credit_model <- C5.0(credit_train[-17], credit_train$default)

Chapter 5

[135]

The credit_model object now contains a C5.0 decision tree object. We can see some
basic data about the tree by typing its name:

> credit_model

Call:

C5.0.default(x = credit_train[-17], y = credit_train$default)

Classification Tree

Number of samples: 900

Number of predictors: 16

Tree size: 67

The preceding text shows some simple facts about the tree, including the function
call that generated it, the number of features (that is, predictors), and examples
(that is, samples) used to grow the tree. Also listed is the tree size of 67, which
indicates that the tree is 67 decisions deep—quite a bit larger than the trees we've
looked at so far!

To see the decisions, we can call the summary() function on the model:

> summary(credit_model)

This results in the following output:

Divide and Conquer – Classification Using Decision Trees and Rules

[136]

The preceding output shows some of the first branches in the decision tree. The first
four lines could be represented in plain language as:

1.	 If the checking account balance is unknown, then classify as not likely
to default.

2.	 Otherwise, if the checking account balance is less than zero DM, between
one and 200 DM, or greater than 200 DM and…

3.	 The credit history is very good or perfect, and…
4.	 There is more than one dependent, then classify as likely to default.

The numbers in parentheses indicate the number of examples meeting the criteria
for that decision, and the number incorrectly classified by the decision. For instance,
on the first line, (358/44) indicates that of the 358 examples reaching the decision,
44 were incorrectly classified as no, that is, not likely to default. In other words, 44
applicants actually defaulted in spite of the model's prediction to the contrary.

Some of the tree's decisions do not seem to make logical sense.
Why would an applicant whose credit history is very good
be likely to default, while those whose checking balance is
unknown are not likely to default? Contradictory rules like this
occur sometimes. They might reflect a real pattern in the data,
or they may be a statistical anomaly.

After the tree output, the summary(credit_model) displays a confusion matrix,
which is a cross-tabulation that indicates the model's incorrectly classified records in
the training data:

Evaluation on training data (900 cases):

 Decision Tree

 Size Errors

 66 125(13.9%) <<

 (a) (b) <-classified as

 ---- ----

 609 23 (a): class no

102 166 (b): class yes

Chapter 5

[137]

The Errors field notes that the model correctly classified all but 125 of the 900
training instances for an error rate of 13.9 percent. A total of 23 actual no values were
incorrectly classified as yes (false positives), while 102 yes values were misclassified
as no (false negatives).

Decision trees are known for having a tendency to overfit the model to the training
data. For this reason, the error rate reported on training data may be overly
optimistic, and it is especially important to evaluate decision trees on a test dataset.

Step 4 – evaluating model performance
To apply our decision tree to the test dataset, we use the predict() function as
shown in the following line of code:

> credit_pred <- predict(credit_model, credit_test)

This creates a vector of predicted class values, which we can compare to the actual
class values using the CrossTable() function in the gmodels package. Setting the
prop.c and prop.r parameters to FALSE removes the column and row percentages
from the table. The remaining percentage (prop.t) indicates the proportion of
records in the cell out of the total number of records.

> library(gmodels)

> CrossTable(credit_test$default, credit_pred,

 prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

 dnn = c('actual default', 'predicted default'))

This results in the following table:

Divide and Conquer – Classification Using Decision Trees and Rules

[138]

Out of the 100 test loan application records, our model correctly predicted that 57
did not default and 16 did default, resulting in an accuracy of 73 percent and an error
rate of 27 percent. This is somewhat worse than its performance on the training data,
but not unexpected, given that a model's performance is often worse on unseen data.
Also note that the model only correctly predicted 50 percent of the 32 loan defaults
in the test data. Unfortunately, this type of error is a potentially very costly mistake.
Let's see if we can improve the result with a bit more effort.

Step 5 – improving model performance
Our model's error rate is likely to be too high to deploy it in a real-time credit scoring
application. In fact, if the model had predicted "no default" for every test case, it
would have been correct 68 percent of the time—a result not much worse than our
model, but requiring much less effort! Predicting loan defaults from 900 examples
seems to be a challenging problem.

Making matters even worse, our model performed especially poorly at identifying
applicants who default. Luckily, there are a couple of simple ways to adjust the C5.0
algorithm that may help to improve the performance of the model, both overall and
for the more costly mistakes.

Boosting the accuracy of decision trees
One way the C5.0 algorithm improved upon the C4.5 algorithm was by adding
adaptive boosting. This is a process in which many decision trees are built, and the
trees vote on the best class for each example.

The idea of boosting is based largely upon research by
Rob Schapire and Yoav Freund. For more information,
try searching the web for their publications or their
recent textbook: Boosting: Foundations and Algorithms
Understanding Rule Learners (The MIT Press, 2012).

As boosting can be applied more generally to any machine learning algorithm, it is
covered in more detail later in this book in Chapter 11, Improving Model Performance.
For now, it suffices to say that boosting is rooted in the notion that by combining
a number of weak performing learners, you can create a team that is much
stronger than any one of the learners alone. Each of the models has a unique set of
strengths and weaknesses, and may be better or worse at certain problems. Using a
combination of several learners with complementary strengths and weaknesses can
therefore dramatically improve the accuracy of a classifier.

Chapter 5

[139]

The C5.0() function makes it easy to add boosting to our C5.0 decision tree. We
simply need to add an additional trials parameter indicating the number of
separate decision trees to use in the boosted team. The trials parameter sets an
upper limit; the algorithm will stop adding trees if it recognizes that additional trials
do not seem to be improving the accuracy. We'll start with 10 trials—a number that
has become the de facto standard, as research suggests that this reduces error rates
on test data by about 25 percent.

> credit_boost10 <- C5.0(credit_train[-17], credit_train$default,

 trials = 10)

While examining the resulting model, we can see that some additional lines have
been added indicating the changes:

> credit_boost10

Number of boosting iterations: 10

Average tree size: 56

Across the 10 iterations, our tree size shrunk. If you would like, you can see all 10
trees by typing summary(credit_boost10) at the command prompt.

Let's take a look at the performance on our training data:

> summary(credit_boost10)

 (a) (b) <-classified as

 ---- ----

 626 6 (a): class no

 25 243 (b): class yes

The classifier made 31 mistakes on 900 training examples for an error rate of 3.4
percent. This is quite an improvement over the 13.9 percent training error rate we
noted before adding boosting! However, it remains to be seen whether we see a
similar improvement on the test data. Let's take a look:

> credit_boost_pred10 <- predict(credit_boost10, credit_test)

> CrossTable(credit_test$default, credit_boost_pred10,

 prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

 dnn = c('actual default', 'predicted default'))

Divide and Conquer – Classification Using Decision Trees and Rules

[140]

The resulting table is as follows:

Here, we reduced the total error rate from 27 percent prior to boosting down to 23
percent in the boosted model. It does not seem like a large gain, but it is reasonably
close to the 25 percent reduction we hoped for. On the other hand, the model is still
not doing well at predicting defaults, getting 15 / 32 = 47% wrong. The lack of an
even greater improvement may be a function of our relatively small training dataset,
or it may just be a very difficult problem to solve.

That said, if boosting can be added this easily, why not apply it by default to every
decision tree? The reason is twofold. First, if building a decision tree once takes
a great deal of computation time, building many trees may be computationally
impractical. Secondly, if the training data is very noisy, then boosting might not
result in an improvement at all. Still, if greater accuracy is needed, it's worth giving
it a try.

Making some mistakes more costly than others
Giving a loan out to an applicant who is likely to default can be an expensive
mistake. One solution to reduce the number of false negatives may be to reject a
larger number of borderline applicants. The few years' worth of interest that the bank
would earn from a risky loan is far outweighed by the massive loss it would take if
the money was never paid back at all.

The C5.0 algorithm allows us to assign a penalty to different types of errors in order
to discourage a tree from making more costly mistakes. The penalties are designated
in a cost matrix, which specifies how many times more costly each error is, relative to
any other. Suppose we believe that a loan default costs the bank four times as much
as a missed opportunity. Our cost matrix then could be defined as:

> error_cost <- matrix(c(0, 1, 4, 0), nrow = 2)

Chapter 5

[141]

This creates a matrix with two rows and two columns, arranged somewhat
differently than the confusion matrixes we have been working with. The
value 1 indicates no and the value 2 indicates yes. Rows are for predicted values
and columns are for actual values:

> error_cost

 [,1] [,2]

[1,] 0 4

[2,] 1 0

As defined by this matrix, there is no cost assigned when the algorithm classifies a
no or yes correctly, but a false negative has a cost of 4 versus a false positive's cost of
1. To see how this impacts classification, let's apply it to our decision tree using the
costs parameter of the C5.0() function. We'll otherwise use the same steps as before:

> credit_cost <- C5.0(credit_train[-17], credit_train$default,

 costs = error_cost)

> credit_cost_pred <- predict(credit_cost, credit_test)

> CrossTable(credit_test$default, credit_cost_pred,

 prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

 dnn = c('actual default', 'predicted default'))

This produces the following confusion matrix:

Compared to our best boosted model, this version makes more mistakes overall: 32
percent here versus 23 percent in the boosted case. However, the types of mistakes
vary dramatically. Where the previous models incorrectly classiifed nearly half of the
defaults incorrectly, in this model, only 25 percent of the defaults were predicted to
be non-defaults. This trade resulting in a reduction of false negatives at the expense
of increasing false positives may be acceptable if our cost estimates were accurate.

Divide and Conquer – Classification Using Decision Trees and Rules

[142]

Understanding classification rules
Classification rules represent knowledge in the form of logical if-else
statements that assign a class to unlabeled examples. They are specified in terms
of an antecedent and a consequent; these form a hypothesis stating that "if this
happens, then that happens." A simple rule might state that "if the hard drive is
making a clicking sound, then it is about to fail." The antecedent comprises certain
combinations of feature values, while the consequent specifies the class value to
assign if the rule's conditions are met.

Rule learners are often used in a manner similar to decision tree learners. Like
decision trees, they can be used for applications that generate knowledge for future
action, such as:

•	 Identifying conditions that lead to a hardware failure in mechanical devices
•	 Describing the defining characteristics of groups of people for customer

segmentation
•	 Finding conditions that precede large drops or increases in the prices of

shares on the stock market

On the other hand, rule learners offer some distinct advantages over trees for some
tasks. Unlike a tree, which must be applied from top-to-bottom, rules are facts that
stand alone. The result of a rule learner is often more parsimonious, direct, and easier
to understand than a decision tree built on the same data.

As you will see later in this chapter, rules can be generated
using decision trees. So, why bother with a separate group
of rule learning algorithms? The reason is that decision trees
bring a particular set of biases to the task that a rule learner
avoids by identifying the rules directly.

Rule learners are generally applied to problems where the features are primarily
or entirely nominal. They do well at identifying rare events, even if the rare event
occurs only for a very specific interaction among features.

Separate and conquer
Classification rule learning algorithms utilize a heuristic known as separate and
conquer. The process involves identifying a rule that covers a subset of examples
in the training data, and then separating this partition from the remaining data. As
rules are added, additional subsets of data are separated until the entire dataset has
been covered and no more examples remain.

Chapter 5

[143]

The difference between divide and conquer and
separate and conquer is subtle. Perhaps the best way to
distinguish the two is by considering that each decision
node in a tree is affected by the history of past decisions.
There is no such lineage for rule learners; once the algorithm
separates a set of examples, the next set might split on
entirely different features, in an entirely different order.

One way to imagine the rule learning process is to think about drilling down into
data by creating increasingly specific rules for identifying class values. Suppose
you were tasked with creating rules for identifying whether or not an animal is a
mammal. You could depict the set of all animals as a large space, as shown in the
following diagram:

A rule learner begins by using the available features to find homogeneous groups.
For example, using a feature that measured whether the species travels via land, sea,
or air, the first rule might suggest that any land-based animals are mammals:

Divide and Conquer – Classification Using Decision Trees and Rules

[144]

Do you notice any problems with this rule? If you look carefully, you might note
that frogs are amphibians, not mammals. Therefore, our rule needs to be a bit more
specific. Let's drill down further by suggesting that mammals walk on land and
have a tail:

As shown in the previous figure, our more specific rule results in a subset of animals
that are entirely mammals. Thus, this subset can be separated from the other data
and additional rules can be defined to identify the remaining mammal bats. A
potential feature distinguishing bats from the other remaining animals would be
the presence of fur. Using a rule built around this feature, we have then correctly
identified all the animals:

Chapter 5

[145]

At this point, since all of the training instances have been classified, the rule learning
process would stop. We learned a total of three rules:

•	 Animals that walk on land and have tails are mammals
•	 If the animal has fur, it is a mammal
•	 Otherwise, the animal is not a mammal

The previous example illustrates how rules gradually consume larger and larger
segments of data to eventually classify all instances. Divide-and-conquer and
separate-and-conquer algorithms are known as greedy learners because data is used
on a first-come, first-served basis.

Greedy algorithms are generally more efficient, but are not
guaranteed to generate the best rules or minimum number
of rules for a particular dataset.

As the rules seem to cover portions of the data, separate-and-conquer algorithms are
also known as covering algorithms, and the rules are called covering rules. In the
next section, we will learn how covering rules are applied in practice by examining a
simple rule-learning algorithm. We will then examine a more complex rule learner,
and apply both to a real-world problem.

The One Rule algorithm
Suppose that as part of a television game show, there was a wheel with ten
evenly-sized colored slices. Three of the segments were colored red, three were
blue, and four were white. Prior to spinning the wheel, you are asked to choose one
of these colors. When the wheel stops spinning, if the color shown matches your
prediction, you win a large cash prize. What color should you pick?

If you choose white, you are of course more likely to win the prize—this is the most
common color on the wheel. Obviously, this game show is a bit ridiculous, but it
demonstrates the simplest classifier, ZeroR, a rule learner that literally learns no
rules (hence the name). For every unlabeled example, regardless of the values of its
features, it predicts the most common class.

Divide and Conquer – Classification Using Decision Trees and Rules

[146]

The One Rule algorithm (1R or OneR), improves over ZeroR by selecting a single
rule. Although this may seem overly simplistic, it tends to perform better than you
might expect. As Robert C. Holte showed in a 1993 paper, Very Simple Classification
Rules Perform Well on Most Commonly Used Datasets (in Machine Learning, Vol. 11, pp.
63-91), the accuracy of this algorithm can approach that of much more sophisticated
algorithms for many real-world tasks. The strengths and weaknesses of this
algorithm are shown in the following table:

Strengths Weaknesses
•	 Generates a single, easy-to-understand,

human-readable rule-of-thumb
•	 Often performs surprisingly well
•	 Can serve as a benchmark for more

complex algorithms

•	 Uses only a single feature
•	 Probably overly simplistic

The way this algorithm works is simple. For each feature, 1R divides the data into
groups based on similar values of the feature. Then, for each segment, the algorithm
predicts the majority class. The error rate for the rule based on each feature is
calculated, and the rule with the fewest errors is chosen as the one rule.

The following tables show how this would work for the animal data we looked at
earlier in this section:

Chapter 5

[147]

For the Travels By feature, the data was divided into three groups: Air, Land, and
Sea. Animals in the Air and Sea groups were predicted to be non-mammal, while
animals in the Land group were predicted to be mammals. This resulted in two
errors: bats and frogs. The Has Fur feature divided animals into two groups. Those
with fur were predicted to be mammals, while those without were not. Three errors
were counted: pigs, elephants, and rhinos. As the Travels By feature resulted in
fewer errors, the 1R algorithm would return the following "one rule" based on
Travels By:

•	 If the animal travels by air, it is not a mammal
•	 If the animal travels by land, it is a mammal
•	 If the animal travels by sea, it is not a mammal

The algorithm stops here, having found the single most important rule.

Obviously, this rule learning algorithm may be too basic for some tasks. Would
you want a medical diagnosis system to consider only a single symptom, or an
automated driving system to stop or accelerate your car based on only a single
factor? For these types of tasks a more sophisticated rule learner might be useful.
We'll learn about one in the following section.

The RIPPER algorithm
Early rule-learning algorithms were plagued by a couple of problems. First, they were
notorious for being slow, making them ineffective for the increasing number of Big
Data problems. Secondly, they were often prone to being inaccurate on noisy data.

A first step toward solving these problems was proposed in a 1994 paper by Johannes
Furnkranz and Gerhard Widmer, Incremental Reduced Error Pruning (in Proceedings of
the 11th International Conference on Machine Learning, pp. 70-77). The Incremental
Reduced Error Pruning algorithm (IREP) uses a combination of pre-pruning
and post-pruning methods that grow very complex rules and prune them before
separating the instances from the full dataset. Although this strategy helped the
performance of rule learners, decision trees often still performed better.

Rule learners took another step forward in 1995 with the publication of a landmark
paper by William W. Cohen, Fast Effective Rule Induction (in Proceedings of the 12th
International Conference on Machine Learning, pp. 115-123). This paper introduced the
RIPPER algorithm (Repeated Incremental Pruning to Produce Error Reduction),
which improved upon IREP to generate rules that match or exceed the performance
of decision trees.

Divide and Conquer – Classification Using Decision Trees and Rules

[148]

The evolution of classification rule learners didn't stop
here. New rule-learning algorithms are being proposed
rapidly. A survey of literature shows algorithms called
IREP++, SLIPPER, TRIPPER, among many others.

As outlined in the following table, the strengths and weaknesses of RIPPER rule
learners are generally comparable to decision trees. The chief benefit is that they may
result in a slightly more parsimonious model.

Strengths Weaknesses
•	 Generates easy-to-understand,

human-readable rules
•	 Efficient on large and noisy datasets
•	 Generally produces a simpler

model than a comparable
decision tree

•	 May result in rules that seem to
defy common sense or expert
knowledge

•	 Not ideal for working with
numeric data

•	 Might not perform as well as more
complex models

Having evolved from several iterations of rule-learning algorithms, the RIPPER
algorithm is a patchwork of efficient heuristics for rule learning. Due to its
complexity, a discussion of the technical implementation details is beyond the scope
of this book. However, it can be understood in general terms as a three-step process:

1.	 Grow
2.	 Prune
3.	 Optimize

The growing process uses separate-and-conquer technique to greedily add
conditions to a rule until it perfectly classifies a subset of data or runs out of
attributes for splitting. Similar to decision trees, the information gain criterion is
used to identify the next splitting attribute. When increasing a rule's specificity
no longer reduces entropy, the rule is immediately pruned. Steps one and two are
repeated until reaching a stopping criterion, at which point the entire set of rules are
optimized using a variety of heuristics.

The rules from RIPPER can be more complex than 1R, with multiple antecedents.
This means that it can consider multiple attributes like "if an animal flies and has fur,
then it is a mammal." This improves the algorithm's ability to model complex data,
but just like decision trees, it means that the rules can quickly become more difficult
to comprehend.

Chapter 5

[149]

Rules from decision trees
Classification rules can also be obtained directly from decision trees. Beginning at a
leaf node and following the branches back to the root, you will have obtained a series
of decisions. These can be combined into a single rule. The following figure shows
how rules could be constructed from the decision tree for predicting movie success:

Following the paths from the root to each leaf, the rules would be:

1.	 If the number of celebrities is low, then the movie will be a Box Office Bust.
2.	 If the number of celebrities is high and the budget is high, then the movie

will be a Mainstream Hit.
3.	 If the number of celebrities is high and the budget is low, then the movie will

be a Critical Success.

The chief downside to using a decision tree to generate rules is that the resulting
rules are often more complex than those learned by a rule-learning algorithm. The
divide-and-conquer strategy employed by decision trees biases the results differently
than that of a rule learner. On the other hand, it is sometimes more computationally
efficient to generate rules from trees.

The C5.0() function will generate a model using
classification rules if you specify rules = TRUE
when training the model.

Divide and Conquer – Classification Using Decision Trees and Rules

[150]

Example – identifying poisonous
mushrooms with rule learners
Each year, many people fall ill and sometimes even die from ingesting poisonous,
wild mushrooms. Since many mushrooms are very similar to each other in
appearance, occasionally even experienced mushroom gatherers are poisoned.

Unlike the identification of harmful plants such as a poison oak or poison ivy, there
are no clear rules like "leaves of three, let them be" for identifying whether a wild
mushroom is poisonous or edible. Complicating matters, many traditional rules such
as "poisonous mushrooms are brightly colored" provide dangerous or misleading
information. If simple, clear, and consistent rules were available for identifying
poisonous mushrooms, they could save the lives of foragers.

As one of the strengths of rule-learning algorithms is the fact that they generate easy
to understand rules, they seem like an appropriate fit for this classification task.
However, the rules will only be as useful as they are accurate.

Step 1 – collecting data
To identify rules for distinguishing poisonous mushrooms, we will utilize the
Mushroom dataset donated by Jeff Schlimmer of Carnegie Mellon University to the
UCI Machine Learning Repository. The raw data is available at http://archive.
ics.uci.edu/ml/datasets/Mushroom.

The dataset includes information on 8,124 mushroom samples from 23 species
of gilled mushrooms listed in the Audubon Society Field Guide to North American
Mushrooms (1981). In the Field Guide, each of mushroom species is identified as
"definitely edible", "definitely poisonous", "likely poisonous, and not recommended
to be eaten". For the purposes of this dataset, the latter group was combined with
the definitely poisonous group to make two classes: poisonous and non-poisonous.
The data dictionary available on the UCI website describes the 22 features of the
mushroom samples, including characteristics such as cap shape, cap color, odor, gill
size and color, stalk shape, and habitat.

This chapter uses a slightly-modified version of
the mushroom data. If you plan on following
along with the example, download the
mushrooms.csv file from the Packt Publishing's
website and save to your R working directory.

Chapter 5

[151]

Step 2 – exploring and preparing the data
We begin by using read.csv(), to import the data for our analysis. Since all 22
features and the target class are nominal, in this case we will set stringsAsFactors
= TRUE and take advantage of the automatic factor conversion:

> mushrooms <- read.csv("mushrooms.csv", stringsAsFactors = TRUE)

The output of the str(mushrooms) command notes that the data contain 8124
observations of 23 variables as the data dictionary had described. While most of
the str() output is unremarkable, one feature is worth mentioning. Do you notice
anything peculiar about the veil_type variable in the following line?

$ veil_type : Factor w/ 1 level "partial": 1 1 1 1 1 1 ...

If you think it is odd that a factor variable has only one level, you are correct. The
data dictionary lists two levels for this feature: partial and universal, however
all examples in our data are classified as partial. It is likely that this variable was
somehow coded incorrectly. In any case, since veil_type does not vary across
samples, it does not provide any useful information for prediction. We will drop
this variable from our analysis using the following command:

> mushrooms$veil_type <- NULL

By assigning NULL to veil_type, R eliminates the feature from the mushrooms
data frame.

Before going much further, we should take a quick look at the distribution of the
class variable in our dataset, mushroom type. If the class levels are distributed
very unevenly—meaning they are heavily imbalanced—some models, such as rule
learners, can have trouble predicting the minority class:

> table(mushrooms$type)

 edible poisonous

 4208 3916

About 52 percent of the mushroom samples (N = 4,208) are edible, while 48 percent
(N = 3,916) are poisonous. As the class levels are split into about 50/50, we do not
need to worry about imbalanced data.

For the purposes of this experiment, we will consider the 8,214 samples in the
mushroom data to be an exhaustive set of all the possible wild mushrooms. This
is an important assumption because it means that we do not need to hold some
samples out of the training data for testing purposes. We are not trying to develop
rules that cover unforeseen types of mushrooms; we are merely trying to find rules
that accurately depict the complete set of known mushroom types. Therefore, we can
build and test the model on the same data.

Divide and Conquer – Classification Using Decision Trees and Rules

[152]

Step 3 – training a model on the data
If we trained a hypothetical ZeroR classifier on this data, what would it predict?
Since ZeroR ignores all of the features and simply predicts the target's mode, in plain
language its rule would state that "all mushrooms are edible." Obviously, this is not
a very helpful classifier because it would leave a mushroom gatherer sick or dead
for nearly half of the mushroom samples. Our rules will need to do much better than
this benchmark in order to provide safe advice that can be published. At the same
time, we need simple rules that are easy to remember.

Since simple rules can often be extremely predictive, let's see how a very simple
rule learner performs on the mushroom data. Toward this end, we will apply the 1R
classifier, which identifies the single feature that is the most predictive of the target
class and uses this feature to construct a set of rules.

We will use the 1R implementation in the RWeka package, called OneR(). You may
recall that we had installed RWeka in Chapter 1, Introducing Machine Learning, as part of
the tutorial on installing and loading packages. If you haven't installed the package per
those instructions, you will need to use the command install.packages("RWeka"),
and have Java installed on your system (refer to the installation instructions for more
details). With those steps complete, load the package by typing library(RWeka).

Chapter 5

[153]

OneR() uses the R formula syntax for specifying the model to be trained. The formula
syntax uses the ~ operator (known as the tilde), to express the relationship between
a target variable and its predictors. The class variable to be learned goes to the left of
the tilde, and the predictor features are written on the right, separated by + operators.
I you would like to model the relationship between the class y and predictors x1 and
x2, you would write the formula as: y ~ x1 + x2. If you would like to include all
variables in the model, the special term '.' is used. For example, y ~ . specifies the
relationship between y and all other features in the dataset.

The R formula syntax is used across many R functions and
offers some powerful features to describe the relationships
among predictor variables. We will explore some of these
features in later chapters. However, if you're eager for a
sneak peak, feel free to read the documentation using the
?formula command.

Using the formula type ~ ., we will allow our first OneR() rule learner to consider
all possible features in the mushroom data when constructing its rules to predict type:

> mushroom_1R <- OneR(type ~ ., data = mushrooms)

To examine the rules it created, we can type the name of the classifier object, in this
case mushroom_1R:

> mushroom_1R

odor:

 almond -> edible

 anise -> edible

 creosote -> poisonous

 fishy -> poisonous

 foul -> poisonous

 musty -> poisonous

 none -> edible

 pungent -> poisonous

 spicy -> poisonous

(8004/8124 instances correct)

Divide and Conquer – Classification Using Decision Trees and Rules

[154]

On the first line of the output, we see that the odor feature was selected for rule
generation. The categories of odor, such as almond, anise, and so on, specify
rules for whether the mushroom is likely to edible or poisonous. For instance, if
the mushroom smells fishy, foul, musty, pungent, spicy, or like creosote, the
mushroom is likely to be poisonous. On the other hand, more pleasant smells like
almond and anise (or none, that is, no smell at all), indicate edible mushrooms. For the
purposes of a field guide for mushroom gathering, these rules could be summarized in
a single, simple rule-of-thumb: "if the mushroom smells unappetizing, then it is likely
to be poisonous."

Step 4 – evaluating model performance
The last line of the output notes that the rules correctly specify 8,004 of the 8,124
mushroom samples, or nearly 99 percent. We can obtain additional details about the
classifier using the summary() function, as shown in the following example:

> summary(mushroom_1R)

=== Summary ===

Correctly Classified Instances 8004 98.5229 %

Incorrectly Classified Instances 120 1.4771 %

Kappa statistic 0.9704

Mean absolute error 0.0148

Root mean squared error 0.1215

Relative absolute error 2.958 %

Root relative squared error 24.323 %

Coverage of cases (0.95 level) 98.5229 %

Mean rel. region size (0.95 level) 50 %

Total Number of Instances 8124

=== Confusion Matrix ===

 a b <-- classified as

 4208 0 | a = edible

 120 3796 | b = poisonous

The section labeled Summary lists a number of different ways to measure the
performance of our 1R classifier. We will cover many of these statistics later on in
Chapter 10, Evaluating Model Performance, so we will ignore them for now.

Chapter 5

[155]

The section labeled Confusion Matrix is similar to those used before. Here, we can
see where our rules went wrong. The columns in the table indicate the true class of
the mushroom while the rows in the table indicate the predicted values. The key is
displayed on the right, with a = edible and b = poisonous. The 120 values in the
lower-left corner indicate mushrooms that are actually edible but were classified as
poisonous. On the other hand, there were zero mushrooms that were poisonous but
erroneously classified as edible.

Based on this information, it seems that our 1R rule actually plays it safe—if you
avoid unappetizing smells when foraging for mushrooms, you will avoid eating
any poisonous mushrooms. However, you might pass up some mushrooms that are
actually edible. Considering that the learner utilized only a single feature, we did
quite well; the publisher of the next field guide to mushrooms should be very happy.
Still, let's see if we can add a few more rules and develop an even better classifier.

Step 5 – improving model performance
For a more sophisticated rule learner, we will use JRip(), a Java-based
implementation of the RIPPER rule learning algorithm. As with the 1R implementation
we used previously, JRip() is included in the RWeka package. If you have not done so
yet, be sure to load the package using the library(RWeka) command.

Divide and Conquer – Classification Using Decision Trees and Rules

[156]

As shown in the syntax box, the process of training a JRip() model is very similar
to how we previously trained a OneR() model. This is one of the pleasant benefits of
the functions in the RWeka package; the syntax is consistent across algorithms, which
makes the process of comparing a number of different models very simple.

Let's train the JRip() rule learner as we had done with OneR(), allowing it to choose
rules from all available features:

> mushroom_JRip <- JRip(type ~ ., data = mushrooms)

To examine the rules, type the name of the classifier:

> mushroom_JRip

JRIP rules:

===========

(odor = foul) => type=poisonous (2160.0/0.0)

(gill_size = narrow) and (gill_color = buff) => type=poisonous
(1152.0/0.0)

(gill_size = narrow) and (odor = pungent) => type=poisonous (256.0/0.0)

(odor = creosote) => type=poisonous (192.0/0.0)

(spore_print_color = green) => type=poisonous (72.0/0.0)

(stalk_surface_below_ring = scaly) and (stalk_surface_above_ring = silky)
=> type=poisonous (68.0/0.0)

(habitat = leaves) and (cap_color = white) => type=poisonous (8.0/0.0)

(stalk_color_above_ring = yellow) => type=poisonous (8.0/0.0)

 => type=edible (4208.0/0.0)

Number of Rules : 9

The JRip() classifier learned a total of nine rules from the mushroom data. An easy
way to read these rules is to think of them as a list of if-else statements similar to
programming logic. The first three rules could be expressed as:

•	 If the odor is foul, then the mushroom type is poisonous
•	 If the gill size is narrow and the gill color is buff, then the mushroom type

is poisonous
•	 If the gill size is narrow and the odor is pungent, then the mushroom type

is poisonous

Chapter 5

[157]

Finally, the ninth rule implies that any mushroom sample that was not covered by
the preceding eight rules is edible. Following the example of our programming logic,
this can be read as:

•	 Else, the mushroom is edible

The numbers next to each rule indicate the number of instances covered by the
rule and a count of misclassified instances. Notably, there were no misclassified
mushroom samples using these nine rules. As a result, the number of instances
covered by the last rule is exactly equal to the number of edible mushrooms in the
data (N = 4,208).

The following figure provides a rough illustration of how the rules are applied
to the mushroom data. If you imagine everything within the oval as all species of
mushroom, the rule learner identified features, or sets of features, which create
homogeneous segments within the larger group. First, the algorithm found a large
group of poisonous mushrooms uniquely distinguished by their foul odor. Next, it
found smaller and more specific groups of poisonous mushrooms. By identifying
covering rules for each of the varieties of poisonous mushrooms, all of the remaining
mushrooms were edible. Thanks to Mother Nature, each variety of mushrooms was
unique enough that the classifier was able to achieve 100 percent accuracy.

Divide and Conquer – Classification Using Decision Trees and Rules

[158]

Summary
This chapter covered two classification methods that partition the data according
to values of the features. Decision trees use a divide-and-conquer strategy to create
flowcharts, while rule learners separate-and-conquer data to identify logical if-else
rules. Both methods produce models that can be understood without a statistical
background.

One popular and highly-configurable decision tree algorithm is C5.0. We used the
C5.0 algorithm to create a tree to predict whether a loan applicant will default. Using
options for boosting and cost-sensitive errors, we were able to improve our accuracy
and avoid risky loans that cost the bank more money.

We also used two rule learners, 1R and RIPPER, to develop rules for identifying
poisonous mushrooms. The 1R algorithm used a single feature to achieve 99 percent
accuracy in identifying potentially-fatal mushroom samples. On the other hand, the
set of nine rules generated by the more sophisticated RIPPER algorithm correctly
identified the edibility of every mushroom.

This chapter merely scratched the surface of how trees and rules can be used. Chapter
6, Forecasting Numeric Data – Regression Methods, describes techniques known as
regression trees and model trees, which use decision trees for numeric prediction.
In Chapter 11, Improving Model Performance, we will discover how the performance
of decision trees can be improved by grouping them together in a model known as
a random forest. And in Chapter 8, Finding Patterns – Market Basket Analysis Using
Association Rules, we will see how association rules—a relative of classification
rules—can be used to identify groups of items in transactional data.

Forecasting Numeric
Data – Regression Methods

Mathematical relationships describe many aspects of everyday life. For example,
a person's body weight can be described in terms of his or her calorie intake; one's
income can be related to years of education and job experience; and the president's
odds of being re-elected can be estimated by popular opinion poll numbers.

In each of these cases, numbers specify precisely how the data elements are related.
An additional 250 kilocalories consumed daily is likely to result in nearly a kilogram
of weight gain per month. Each year of job experience may be worth an additional
$1,000 in yearly salary while years of education might be worth $2,500. A president
is more likely to be re-elected with a high approval rating. Obviously, these types of
equations do not perfectly model every case, but on average, the rules might work
fairly well.

A large body of work in the field of statistics describes techniques for estimating such
numeric relationships among data elements, a field of study known as regression
analysis. These methods can be used for forecasting numeric data and quantifying
the size and strength of a relationship between an outcome and its predictors.

By the end of this chapter, you will have learned how to apply regression methods to
your own data. Along the way, you will learn:

•	 The basic statistical principles that linear regression methods use to fit
equations to data, and how they describe relationships among data elements

•	 How to use R to prepare data for regression analysis, define a linear
equation, and estimate the regression model

•	 How to use hybrid models known as regression trees and model trees, which
allow decision trees to be used for numeric prediction

Forecasting Numeric Data – Regression Methods

[160]

Until now, we have only looked at machine learning methods suitable for
classification. The methods in this chapter will allow you to tackle an entirely
new set of learning tasks. With that in mind, let's get started.

Understanding regression
Regression is concerned with specifying the relationship between a single
numeric dependent variable (the value to be predicted) and one or more numeric
independent variables (the predictors). We'll begin by assuming that the relationship
between the independent and dependent variables follows a straight line.

The origin of the term "regression" to describe the process
of fitting lines to data is rooted in a study of genetics by Sir
Francis Galton in the late 19th century. Galton discovered that
fathers that were extremely short or extremely tall tended to
have sons whose heights were closer to average. He called
this phenomenon "regression to the mean".

You might recall from algebra that lines can be defined in a slope-intercept form
similar to y = a + bx, where y is the dependent variable and x is the independent
variable. In this formula, the slope b indicates how much the line rises for each
increase in x. The variable a indicates the value of y when x = 0. It is known as the
intercept because it specifies where the line crosses the vertical axis.

Regression equations model data using a similar slope-intercept format. The
machine's job is to identify values of a and b such that the specified line is best able to
relate the supplied x values to the values of y. It might not be a perfect match, so the
machine should also have some way to quantify the margin of error. We'll discuss
this in depth shortly.

Regression analysis is commonly used for modeling complex relationships
among data elements, estimating the impact of a treatment on an outcome, and
extrapolating into the future. Some specific use cases include:

•	 Examining how populations and individuals vary by their measured
characteristics, for scientific research across fields as diverse as economics,
sociology, psychology, physics, and ecology

•	 Quantifying the causal relationship between an event and the response, such
as those in clinical drug trials, engineering safety tests, or marketing research

•	 Identifying patterns that can be used to forecast future behavior given known
criteria, such as for predicting insurance claims, natural disaster damage,
election results, and crime rates

Chapter 6

[161]

Regression methods are also used for hypothesis testing, which involves determining
whether data indicate that a presupposition is more likely to be true or false. The
regression model's estimates of the strength and consistency of a relationship
provide information that can be used to assess whether the findings are due to
chance alone.

Because hypothesis testing is technically not a learning
task, we will not cover it in depth. If you are interested
in this topic, an introductory statistics textbook is a good
place to get started.

Unlike the other machine learning methods we've covered thus far, regression analysis
is not synonymous with a single algorithm. Rather, it is an umbrella for a large number
of methods that can be adapted to nearly any machine learning task. If you were
limited to choosing only a single analysis method, regression would be a good choice.
You could devote an entire career to nothing else and perhaps still have much to learn.

In this chapter, we'll focus only on the most basic regression models—those that use
straight lines. This is called linear regression. If there is only a single independent
variable, this is known as simple linear regression, otherwise it is known as
multiple regression. Both of these models assume that the dependent variable is
continuous.

It is possible to use regression for other types of dependent variables and even
for classification tasks. For instance, logistic regression can be used to model a
binary categorical outcome, while Poisson regression—named after the French
mathematician Siméon Poisson—models integer count data. The same basic principles
apply to all regression methods, so once you understand the linear case, you can
move on to the others.

Linear regression, logistic regression, Poisson regression,
and many others fall in a class of models known as
generalized linear models (GLM), which allow regression
to be applied to many types of data. Linear models are
generalized via the use of a link function, which specifies
the mathematical relationship between x and y.

Despite the name, simple linear regression is not too simple to solve complex
problems. In the next section, we'll see how the use of a simple linear regression
model might have averted a tragic engineering disaster.

Forecasting Numeric Data – Regression Methods

[162]

Simple linear regression
On January 28, 1986, seven crewmembers of the United States space shuttle
Challenger were killed when O-rings responsible for sealing the joints of the
rocket booster failed and caused a catastrophic explosion.

The night prior, there had been a lengthy discussion about how the low temperature
forecast might affect the safety of the launch. The shuttle components had never been
tested in such cold weather; therefore, it was unclear whether the equipment could
withstand the strain from freezing temperatures. The rocket engineers believed that
cold temperatures could make the components more brittle and less able to seal
properly, which would result in a higher chance of a dangerous fuel leak. However,
given the political pressure to continue with the launch, they needed data to support
their hypothesis.

This section's analysis is based on data presented in Risk analysis
of the space shuttle: pre-Challenger prediction of failure, Journal of the
American Statistical Association, Vol. 84, pp. 945-957, by S.R. Dalal,
E.B. Fowlkes, and B. Hoadley, (1989).

The scientists' discussion turned to data from 23 previous successful shuttle launches
which recorded the number of O-ring failures versus the launch temperature. Since
the shuttle has a total of six O-rings, each additional failure increases the odds of a
catastrophic leak. The following scatterplot shows this data:

Chapter 6

[163]

Examining the plot, there is an apparent trend between temperature and number
of failures. Launches occurring at higher temperatures tend to have fewer O-ring
failures. Additionally, the coldest launch (62 degrees F) had two rings fail, the most
of any launch. The fact that the Challenger was scheduled to launch at a temperature
about 30 degrees colder seems concerning. To put this risk in quantitative terms, we
can turn to simple linear regression.

Simple linear regression defines the relationship between a dependent variable and
a single independent predictor variable using a line denoted by an equation in the
following form:

y xα β= +

Don't be alarmed by the Greek characters; this equation can still be understood
using the slope-intercept form described previously. The intercept, α (alpha),
describes where the line crosses the y axis, while the slope, β (beta), describes the
change in y given an increase of x. For the shuttle launch data, the slope would tell
us the expected reduction in number of O-ring failures for each degree the launch
temperature increases.

Greek characters are often used in the field of statistics to indicate
variables that are parameters of a statistical function. Therefore,
performing a regression analysis involves finding parameter
estimates for α and β. The parameter estimates for alpha and beta
are typically denoted using a and b, although you may find that
some of this terminology and notation is used interchangeably.

Suppose we know that the estimated regression parameters in the equation for the
shuttle launch data are:

•	 a = 4.30
•	 b = -0.057

Forecasting Numeric Data – Regression Methods

[164]

Hence, the full linear equation is y = 4.30 – 0.057x. Ignoring for a moment how these
numbers were obtained, we can plot the line on the scatterplot:

As the line shows, at 60 degrees Fahrenheit, we predict just under one O-ring failure.
At 70 degrees Fahrenheit, we expect around 0.3 failures. If we extrapolate our
model all the way out to 31 degrees—the forecasted temperature for the Challenger
launch—we would expect about 4.30 – 0.057 * 31 = 2.53 O-ring failures. Assuming
that each O-ring failure is equally likely to cause a catastrophic fuel leak, this means
that the Challenger launch was about three times more risky than the typical launch
at 60 degrees, and over eight times more risky than a launch at 70 degrees.

Notice that the line doesn't predict the data exactly. Instead, it cuts through the data
somewhat evenly, with some predictions lower than expected and some higher. In
the next section, we will learn about why this particular line was chosen.

Ordinary least squares estimation
In order to determine the optimal estimates of α and β, an estimation method known
as ordinary least squares (OLS) was used. In OLS regression, the slope and intercept
are chosen such that they minimize the sum of the squared errors, that is, the vertical
distance between the predicted y value and the actual y value. These errors are
known as residuals, and are illustrated for several points in the preceding diagram:

Chapter 6

[165]

In mathematical terms, the goal of OLS regression can be expressed as the task of
minimizing the following equation:

()2 2ˆi i iy y e− =∑ ∑

In plain language, this equation defines e (the error) as the difference between the
actual y value and the predicted y value. The error values are squared and summed
across all points in the data.

The caret character (^) above the y term is a commonly used
feature of statistical notation. It indicates that the term is an
estimate for the true y value. This is referred to as the y-hat.

Though the proof is beyond the scope of this book, it can be shown using calculus
that the value of b that results in the minimum squared error is:

()()
()2

i i

i

x x y y
b

x x
∑ − −

=
∑ −

While the optimal value of a is:

a y bx= −

Forecasting Numeric Data – Regression Methods

[166]

To understand these equations, you'll need to know
another bit of statistical notation. The horizontal bar
appearing over the x and y terms indicates the mean
value of x or y. This is referred to as the x-bar or y-bar.

To understand these equations, we can break them into pieces. The denominator for
b should look familiar; it is the same as the variance of x, which can be denoted as
Var(x). As we learned in Chapter 2, Managing and Understanding Data, calculating the
variance involves finding the average squared deviation from the mean of x.

We have not computed the numerator before. This involves taking the sum of each
data point's deviation from the mean x value multiplied by that point's deviation
away from the mean y value. This is known as the covariance of x and y, denoted as
Cov(x, y). With this in mind, we can re-write the formula for b as:

()
()

,Cov x y
b

Var x
=

If you would like to follow along with these examples,
download the challenger.csv file from the Packt
Publishing's website and load to a data frame using the
command launch <- read.csv("challenger.csv").

Given this formula, it is easy to calculate the value of b using R functions.
Assume that our shuttle launch data are stored in a data frame named launch,
the independent variable x is temperature, and the dependent variable y is
distress_ct. We can then use R's built-in cov() and var() functions to estimate b:

> b <- cov(launch$temperature, launch$distress_ct) /

 var(launch$temperature)

> b

[1] -0.05746032

From here, we can estimate a using the mean() function:

> a <- mean(launch$distress_ct) - b * mean(launch$temperature)

> a

[1] 4.301587

Chapter 6

[167]

Estimating the regression equation in this way is not ideal, so R of course provides
functions for doing this automatically. We will look at those shortly. First, we will
expand our understanding of regression by learning a method for measuring the
strength of a linear relationship and then see how linear regression can be applied
to data having more than one independent variable.

Correlations
The correlation between two variables is a number that indicates how closely their
relationship follows a straight line. Without additional qualification, correlation
refers to Pearson's correlation coefficient, which was developed by the 20th century
mathematician Karl Pearson. The correlation ranges between -1 and +1. The extreme
values indicate a perfectly linear relationship, while a correlation close to zero
indicates the absence of a linear relationship.

The following formula defines Pearson's correlation:

() ()
,

,
,x y

x y

Cov x y
Corr x yρ

σ σ
= =

Some more Greek notation has been introduced here:
the first symbol (looks like a lowercase 'p') is rho, and it
is used to denote the Pearson correlation statistic. The
characters that look like 'q' turned sideways are sigma,
and they indicate the standard deviation of x or y.

Using this formula, we can calculate the correlation between the launch temperature
and the number of O-ring failures. Recall that the covariance function is cov() and
the standard deviation function is sd(). We'll store the result in r, a letter that is
commonly used to indicate the estimated correlation:

> r <- cov(launch$temperature, launch$distress_ct) /

 (sd(launch$temperature) * sd(launch$distress_ct))

> r

[1] -0.725671

Alternatively, we can use the built in correlation function, cor():

> cor(launch$temperature, launch$distress_ct)

[1] -0.725671

Forecasting Numeric Data – Regression Methods

[168]

Since the correlation is about -0.73, this implies that there is a fairly strong negative
linear association between the temperature and the number of distressed O-rings.
The negative association implies that an increase in temperature is correlated with
fewer distressed O-rings. To the NASA engineers studying the O-ring data, this might
have been a very clear indicator that a low-temperature launch could be problematic.

There are various rules-of-thumb used to interpret correlations. One method assigns
a weak correlation to values between 0.1 and 0.3, moderate for 0.3 to 0.5, and strong
for values above 0.5 (these also apply to similar ranges of negative correlations).
However, these thresholds may be too lax for some purposes. Often, the correlation
must be interpreted in context. For data involving human beings, a correlation of 0.5
may be considered extremely high; for data generated by mechanical processes, a
correlation of 0.5 may be weak.

You have probably heard the expression "correlation
does not imply causation". This is rooted in the fact that a
correlation only describes the association between a pair
of variables, yet there could be other explanations. For
example, there may be a strong association between life
expectancy and time per day spent watching movies, but
before doctors start recommending that we all watch more
movies, we need to rule out another explanation: older
people watch fewer movies and are more likely to die.

Measuring the correlation between two variables gives us a way to quickly gauge
relationships among independent variables and the dependent variable. This will be
increasingly important as we start defining regression models with a larger number
of predictors.

Multiple linear regression
Most real-world analyses have more than one independent variable. Therefore, it
is likely that you will be using multiple linear regression most of the time you use
regression for a numeric prediction task. The strengths and weaknesses of multiple
linear regression are shown in the following table:

Chapter 6

[169]

Strengths Weaknesses
•	 By far the most common approach

for modeling numeric data
•	 Can be adapted to model almost

any data
•	 Provides estimates of the strength

and size of the relationships
among features and the outcome

•	 Makes strong assumptions about the
data

•	 The model's form must be specified by
the user in advance

•	 Does not do well with missing data
•	 Only works with numeric features,

so categorical data require extra
processing

•	 Requires some knowledge of statistics
to understand the model

We can understand multiple regression as an extension of simple linear regression.
The goal in both cases is similar: find values of beta coefficients that minimize the
prediction error of a linear equation. The key difference is that there are additional
terms for the additional independent variables.

Multiple regression equations generally follow the form of the following equation.
The dependent variable y is specified as the sum of an intercept term plus the
product of the estimated β value and the x value for each of i features. An error term
(denoted by the Greek letter epsilon) has been added here as a reminder that the
predictions are not perfect. This is the residual term noted previously.

1 1 2 2 ... i iy x x xα β β β ε= + + + + +

Let's consider for a moment the interpretation of the estimated regression
parameters. You will note that in the preceding equation, a coefficient is estimated
for each feature. This allows each feature to have a separate estimated effect on the
value of y. In other words, y changes by the amount βi for each unit increase in xi. The
intercept is then the expected value of y when the independent variables are all zero.

Since the intercept is really no different than any other regression parameter, it can
also be denoted as β0 (pronounced beta-naught) as shown in the following equation:

0 1 1 2 2 ... i iy x x xβ β β β ε= + + + + +

This can be re-expressed using a condensed formulation:

Y X β ε= +

Forecasting Numeric Data – Regression Methods

[170]

Even though this looks familiar, there are a few subtle changes. The dependent
variable is now a vector, Y, with a row for every example. The independent variables
have been combined into a matrix, X, with a column for each feature plus an
additional column of '1' values for the intercept term. The regression coefficients β
and errors ε are also now vectors.

The following figure illustrates these changes:

The goal now is to solve for the vector β that minimizes the sum of the squared errors
between the predicted and actual y values. Finding the optimal solution requires the
use of matrix algebra; therefore, the derivation deserves more careful attention than
can be provided in this text. However, if you're willing to trust the work of others,
the best estimate of the vector β can be computed as:

() 1T Tˆ X X X Yβ
−

=

This solution uses a pair of matrix operations: the T indicates the transpose of matrix
X, while the negative exponent indicates the matrix inverse. Using built-in R matrix
operations, we can thus implement a simple multiple regression learner. Let's see if
we can apply this formula to the Challenger launch data.

If you are unfamiliar with the preceding matrix
operations, the Wikipedia pages for transpose and
matrix inverse provide a thorough introduction and
are quite understandable, even without a strong
mathematics background.

Chapter 6

[171]

Using the following code, we can create a simple regression function named reg
which takes a parameter y and a parameter x and returns a matrix of estimated
beta coefficients.

> reg <- function(y, x) {

 x <- as.matrix(x)

 x <- cbind(Intercept = 1, x)

 solve(t(x) %*% x) %*% t(x) %*% y

 }

This function uses several R commands we have not used previously. First, since we
will be using the function with sets of columns from a data frame, the as.matrix()
function is used to coerce the data into matrix form. Next, the cbind() function is
used to bind an additional column onto the x matrix; the command Intercept = 1
instructs R to name the new column Intercept and to fill the column with repeating
1 values. Finally, a number of matrix operations are performed on the x and y objects:

•	 solve() takes the inverse of a matrix
•	 t() is used to transpose a matrix
•	 %*% multiplies two matrices

By combining these as shown in the formula for the estimated beta vector, our
function will return estimated parameters for the linear model relating x to y.

Let's apply our reg() function to the shuttle launch data. As shown in the following
code, the data include four features and the outcome of interest, distress_ct
(the number of O-ring failures):

> str(launch)

'data.frame':	23 obs. of 5 variables:

 $ o_ring_ct : int 6 6 6 6 6 6 6 6 6 6 ...

 $ distress_ct: int 0 1 0 0 0 0 0 0 1 1 ...

 $ temperature: int 66 70 69 68 67 72 73 70 57 63 ...

 $ pressure : int 50 50 50 50 50 50 100 100 200 200 ...

 $ launch_id : int 1 2 3 4 5 6 7 8 9 10 ...

We can confirm that our function is working correctly by comparing its result to
the simple linear regression model of O-ring failures versus temperature, which we
found earlier to have parameters a = 4.30 and b = -0.057. Since temperature is
the third column of the launch data, we can run the reg() function as follows:

> reg(y = launch$distress_ct, x = launch[3])
 [,1]

Intercept 4.30158730

temperature -0.05746032

Forecasting Numeric Data – Regression Methods

[172]

These values exactly match our prior result, so let's use the function to build a
multiple regression model. We'll apply it just as before, but this time specifying
three columns of data instead of just one:

> reg(y = launch$distress_ct, x = launch[3:5])
 [,1]

Intercept 3.814247216

temperature -0.055068768

pressure 0.003428843

launch_id -0.016734090

This model predicts the number of O-ring failures versus temperature, pressure,
and the launch ID number. The negative coefficients for the temperature and launch
ID variables suggests that as temperature or the launch ID increases, the number
of expected O-ring failures decreases. Applying the same interpretation to the
coefficient for pressure, we learn that as the pressure increases, the number of O-ring
failures is expected to increase.

Even if you are not a rocket scientist, these findings seem
reasonable. Cold temperatures make the O-rings more brittle
and higher pressure will likely increase the strain on the part.
But why would launch ID be associated with fewer O-ring
failures? One explanation is that perhaps later launches used
O-rings composed from a stronger or more flexible material.

So far, we've only scratched the surface of linear regression modeling. Although our
work was useful to help understand exactly how regression models are built, R's
functions for fitting linear regression models are not only likely faster than ours, but
also more informative. Real-world regression packages provide a wealth of output
to aid model interpretation. Let's apply our knowledge of regression to a more
challenging learning task.

Example – predicting medical expenses
using linear regression
In order for an insurance company to make money, it needs to collect more in yearly
premiums than it spends on medical care to its beneficiaries. As a result, insurers
invest a great deal of time and money to develop models that accurately forecast
medical expenses.

Chapter 6

[173]

Medical expenses are difficult to estimate because the most costly conditions are
rare and seemingly random. Still, some conditions are more prevalent for certain
segments of the population. For instance, lung cancer is more likely among smokers
than non-smokers, and heart disease may be more likely among the obese.

The goal of this analysis is to use patient data to estimate the average medical care
expenses for such population segments. These estimates could be used to create
actuarial tables which set the price of yearly premiums higher or lower depending
on the expected treatment costs.

Step 1 – collecting data
For this analysis, we will use a simulated dataset containing medical expenses
for patients in the United States. These data were created for this book using
demographic statistics from the U.S. Census Bureau, and thus approximately
reflect real-world conditions.

If you would like to follow along interactively, download
the insurance.csv file from the Packt Publishing's
website and save it to your R working folder.

The insurance.csv file includes 1,338 examples of beneficiaries currently enrolled
in the insurance plan, with features indicating characteristics of the patient as well as
the total medical expenses charged to the plan for the calendar year. The features are:

•	 age: This is an integer indicating the age of the primary beneficiary (excluding
those above 64 years, since they are generally covered by the government).

•	 sex: This is the policy holder's gender, either male or female.
•	 bmi: This is the body mass index (BMI), which provides a sense of how over

or under-weight a person is relative to their height. BMI is equal to weight (in
kilograms) divided by height (in meters) squared. An ideal BMI is within the
range of 18.5 to 24.9.

•	 children: This is an integer indicating the number of children / dependents
covered by the insurance plan.

•	 smoker: This is yes or no depending on whether the insured regularly
smokes tobacco.

•	 region: This is the beneficiary's place of residence in the U.S., divided into
four geographic regions: northeast, southeast, southwest, or northwest.

Forecasting Numeric Data – Regression Methods

[174]

It is important to give some thought to how these variables may be related to billed
medical expenses. For instance, we might expect that older people and smokers
are at higher risk of large medical expenses. Unlike many other machine learning
methods, in regression analysis, the relationships among the features are typically
specified by the user rather than detected automatically. We'll explore some of these
potential relationships in the next section.

Step 2 – exploring and preparing the data
As we have done before, we will use the read.csv() function to load the data for
analysis. We can safely use stringsAsFactors = TRUE because it is appropriate
to convert the three nominal variables to factors:

> insurance <- read.csv("insurance.csv", stringsAsFactors = TRUE)

The str() function confirms that the data are formatted as we had expected:

> str(insurance)

'data.frame':	1338 obs. of 7 variables:

 $ age : int 19 18 28 33 32 31 46 37 37 60 ...

 $ sex : Factor w/ 2 levels "female","male": 1 2 2 2 2 1 ...

 $ bmi : num 27.9 33.8 33 22.7 28.9 ...

 $ children: int 0 1 3 0 0 0 1 3 2 0 ...

 $ smoker : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 ...

 $ region : Factor w/ 4 levels "northeast","northwest", ...

 $ charges : num 16885 1726 4449 21984 3867 ...

Since the dependent variable is charges, let's take a look to see how it is distributed:

> summary(insurance$charges)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1122 4740 9382 13270 16640 63770

Chapter 6

[175]

Because the mean value is greater than the median, this implies that the distribution
of insurance charges is right-skewed. We can confirm this visually using a histogram:

> hist(insurance$charges)

The large majority of individuals in our data have yearly medical expenses between
zero and $15,000, although the tail of the distribution extends far past these peaks.
Because linear regression assumes a normal distribution for the dependent variable,
this distribution is not ideal. In practice, the assumptions of linear regression are
often violated. If needed, we may be able to correct this later on.

Another problem at hand is that regression models require that every feature is
numeric, yet we have three factor type in our data frame. We will see how
R's linear regression function treats our variables shortly.

The sex variable is divided into male and female levels, while smoker is divided
into yes and no. From the summary() output, we know that region has four levels,
but we need to take a closer look to see how they are distributed.

> table(insurance$region)

northeast northwest southeast southwest

 324 325 364 325

Here, we see that the data have been divided nearly evenly among four
geographic regions.

Forecasting Numeric Data – Regression Methods

[176]

Exploring relationships among
features – the correlation matrix
Before fitting a regression model to data, it can be useful to determine how the
independent variables are related to the dependent variable and each other.
A correlation matrix provides a quick overview of these relationships. Given
a set of variables, it provides a correlation for each pairwise relationship.

To create a correlation matrix for the four numeric variables in the insurance data
frame, use the cor() command:

> cor(insurance[c("age", "bmi", "children", "charges")])

 age bmi children charges

age 1.0000000 0.1092719 0.04246900 0.29900819

bmi 0.1092719 1.0000000 0.01275890 0.19834097

children 0.0424690 0.0127589 1.00000000 0.06799823

charges 0.2990082 0.1983410 0.06799823 1.00000000

At the intersection of each row and column pair, the correlation is listed for the
variables indicated by that row and column. The diagonal is always 1 since there
is always a perfect correlation between a variable and itself. The values above and
below the diagonal are identical since correlations are symmetrical. In other words,
cor(x, y) is equal to cor(y, x).

None of the correlations in the matrix are considered strong, but there are some
notable associations. For instance, age and bmi appear to have a moderate
correlation, meaning that as age increases, so does bmi. There is also a moderate
correlation between age and charges, bmi and charges, and children and
charges. We'll try to tease out these relationships more clearly when we build our
final regression model.

Visualizing relationships among
features – the scatterplot matrix
It can also be helpful to visualize the relationships among features, perhaps by using
a scatterplot. Although we could create a scatterplot for each possible relationship,
doing so for a large number of features might become tedious.

An alternative is to create a scatterplot matrix (sometimes abbreviated as SPLOM),
which is simply a collection of scatterplots arranged in a grid. It is used to detect
patterns among three or more variables. The scatterplot matrix is not a true multi-
dimensional visualization because only two features are examined at a time. Still, it
provides a general sense of how the data may be interrelated.

Chapter 6

[177]

We can use R's graphical capabilities to create a scatterplot matrix for the four numeric
features: age, bmi, children, and charges. The pairs() function is provided in
a default R installation and provides basic functionality for producing scatterplot
matrices. To invoke the function, simply provide it the data frame to present. Here,
we'll limit the insurance data frame to the four numeric variables of interest:

> pairs(insurance[c("age", "bmi", "children", "charges")])

This produces the following diagram:

As with the correlation matrix, the intersection of each row and column holds the
scatterplot of the variables indicated by the row and column pair. The diagrams
above and below the diagonal are transpositions since the x axis and y axis have
been swapped.

Do you notice any patterns in these plots? Although some look like random clouds
of points, a few seem to display some trends. The relationship between age and
charges displays several relatively straight lines, while bmi and charges has two
distinct groups of points. It is difficult to detect trends in any of the other plots.

Forecasting Numeric Data – Regression Methods

[178]

If we add more information to the plot, it can be even more useful. An
enhanced scatterplot matrix can be created with the pairs.panels() function
in the psych package. If you do not have this package installed, type
install packages("psych") to install it on your system then load it using
the library(psych) command. Then, we can create a scatterplot matrix as
we had done previously:

> pairs.panels(insurance[c("age", "bmi", "children", "charges")])

This produces a slightly more informative scatterplot matrix, as follows:

Above the diagonal, the scatterplots have been replaced with a correlation matrix.
On the diagonal, a histogram depicting the distribution of values for each feature
is shown. Finally, the scatterplots below the diagonal now are presented with
additional visual information.

The oval-shaped object on each scatterplot is a correlation ellipse. It provides a
visualization of how strongly correlated the variables are. The dot at the center of the
ellipse indicates the point of the mean value for the x axis variable and y axis variable.
The correlation between the two variables is indicated by the shape of the ellipse; the
more it is stretched, the stronger the correlation. An almost perfectly round oval, as
with bmi and children, indicates a very weak correlation (in this case 0.01).

Chapter 6

[179]

The curve drawn on the scatterplot is called a loess smooth. It indicates the general
relationship between the x axis and y axis variables. It is best understood by
example. The curve for age and children is an upside-down U, peaking around
middle age. This means that the oldest and youngest people in the sample have
fewer children than those around middle age. Because this trend is non-linear, this
finding could not have been inferred from the correlations alone. On the other hand,
the loess smooth for age and bmi is a line sloping gradually up, implying that BMI
increases with age, but we had already inferred this from the correlation matrix.

Step 3 – training a model on the data
To fit a linear regression model to data with R, the lm() function can be used. This
is included in the stats package, which should be included and loaded by default
with your R installation. The lm() syntax is as follows:

Forecasting Numeric Data – Regression Methods

[180]

The following command fits a linear regression model called ins_model, which
relates the six independent variables to the total medical charges. The R formula
syntax uses the tilde character ~ to describe the model; the dependent variable
charges goes to the left of the tilde while the independent variables go to the right,
separated by the + sign. There is no need to specify the regression model's intercept
term, as it is assumed by default:

> ins_model <- lm(charges ~ age + children + bmi + sex +
 smoker + region, data = insurance)

Because the . character can be used to specify all features (excluding those
already specified in the formula), the following command is equivalent to the
preceding command:

> ins_model <- lm(charges ~ ., data = insurance)

After building the model, simply type the name of the model object to see the
estimated beta coefficients:

> ins_model3

Call:

lm(formula = charges ~ age + children + bmi + sex +

 smoker + region, data = insurance)

Coefficients:

 (Intercept) age children

 -11938.5 256.9 475.5

 bmi sexmale smokeryes

 339.2 -131.3 23848.5

 regionnorthwest regionsoutheast regionsouthwest

 -353.0 -1035.0 -960.1

Understanding the regression coefficients is fairly straightforward. The intercept tells
us the value of charges when the independent variables are equal to zero.

As is the case here, quite often the intercept is difficult to
interpret because it is impossible to have values of zero
for all features. For example, since no person exists with
age zero and BMI zero, the slope has no inherent meaning.
For this reason, in practice, the intercept is often ignored.

Chapter 6

[181]

The estimated beta coefficients indicate the increase in charges for an increase of one
in each of the features when the other features are held constant. For instance, for
each year that age increases, we would expect $256.90 higher medical expenses on
average, assuming everything else is equal. Similarly, each additional child results in
an average of $475.50 in additional medical expenses each year, and each unit of BMI
increase is associated with an increase of $339.20 in yearly medical costs.

You might notice that although we only specified six features in our model formula,
there are eight coefficients reported in addition to the intercept. This happened
because the lm() function automatically applied a technique known as dummy
coding to each of the factor type variables we included in the model.

Dummy coding allows a nominal feature to be treated as numeric by creating a
binary variable for each category of the feature, which is set to 1 if the observation
falls into that category or 0 otherwise. For instance, the sex variable has two
categories, male and female. This will be split into two binary values, which R
names sexmale and sexfemale. For observations where sex = male, then sexmale
= 1 and sexfemale = 0; if sex = female, then sexmale = 0 and sexfemale
= 1. The same coding applies to variables with three or more categories. The
four-category feature region can be split into four variables: regionnorthwest,
regionsoutheast, regionsouthwest, and regionnortheast.

When adding a dummy-coded variable to a regression model, one category is always
left out to serve as the reference category. The estimates are then interpreted relative
to the reference. In our model, R automatically held out the sexfemale, smokerno,
and regionnortheast variables, making female non-smokers in the northeast region
the reference group. Thus, males have $131.30 less medical costs each year relative
to females and smokers cost an average of $23,848.50 more than non-smokers.
Additionally, the coefficient for each of the other three regions in the model is
negative, which implies that the northeast region tends to have the highest average
medical expenses.

By default, R uses the first level of the factor variable as the
reference. If you would prefer to use another level, the relevel()
function can be used to specify the reference group manually. Use
the ?relevel command in R for more information.

The results of the linear regression model make logical sense; old age, smoking, and
obesity tend to be linked to additional health issues, while additional family member
dependents may result in an increase in physician visits and preventive care such
as vaccinations and yearly physical exams. However, we currently have no sense of
how well the model is fitting the data. We'll answer this question in the next section.

Forecasting Numeric Data – Regression Methods

[182]

Step 4 – evaluating model performance
The parameter estimates we obtained by typing ins_model tell us about how the
independent variables are related to the dependent variable, but they tell us nothing
about how well the model fits our data. To evaluate the model performance, we can
use the summary() command on the stored model:

> summary(ins_model)

This produces the following output:

The summary() output may seem confusing at first, but the basics are easy to
pick up. As indicated by the numbered labels in the preceding output, the output
provides three key ways to evaluate the performance (that is, fit) of our model:

1.	 The Residuals section provides summary statistics for the errors in our
predictions, some of which are apparently quite substantial. Since a residual
is equal to the true value minus the predicted value, the maximum error
of 29992.8 suggests that the model under-predicted expenses by nearly
$30,000 for at least one observation. On the other hand, 50 percent of errors
fall within the 1Q and 3Q values (the first and third quartile), so the majority
of predictions were between $2,850 over the true value and $1,400 under the
true value.

Chapter 6

[183]

2.	 The stars (for example, ***) indicate the predictive power of each feature
in the model. The significance level (as listed by the Signif. codes in the
footer) provides a measure of how likely the true coefficient is zero given the
value of the estimate. The presence of three stars indicates a significance level
of 0, which means that the feature is extremely unlikely to be unrelated to the
dependent variable. A common practice is to use a significance level of 0.05
to denote a statistically significant variable. If the model had few features
that were statistically significant, it may be cause for concern, since it would
indicate that our features are not very predictive of the outcome. Here, our
model has several significant variables, and they seem to be related to the
outcome in logical ways.

3.	 The Multiple R-squared value (also called the coefficient of determination)
provides a measure of how well our model as a whole explains the values
of the dependent variable. It is similar to the correlation coefficient in that
the closer the value is to 1.0, the better the model perfectly explains the data.
Since the R-squared value is 0.7494, we know that nearly 75 percent of
the variation in the dependent variable is explained by our model. Because
models with more features always explain more variation, the Adjusted
R-squared value corrects R-squared by penalizing models with a large
number of independent variables. It is useful for comparing the performance
of models with different numbers of explanatory variables.

Given the preceding three performance indicators, our model is performing fairly
well. It is not uncommon for regression models of real-world data to have fairly
low R-squared values; a value of 0.75 is actually quite good. The size of some of the
errors is a bit concerning, but not surprising given the nature of medical expense
data. However, as shown in the next section, we may be able to improve the model's
performance by specifying the model in a slightly different way.

Step 5 – improving model performance
As mentioned previously, a key difference between regression modeling and other
machine learning approaches is that regression typically leaves feature selection and
model specification to the user. Consequently, if we have subject matter knowledge
about how a feature is related to the outcome, we can use this information to inform
the model specification and potentially improve the model's performance.

Forecasting Numeric Data – Regression Methods

[184]

Model specification – adding non-linear
relationships
In linear regression, the relationship between an independent variable and the
dependent variable is assumed to be linear, yet this may not necessarily be true.
For example, the effect of age on medical expenditures may not be constant
throughout all age values; the treatment may become disproportionately expensive
for the oldest populations.

If you recall, a typical regression equation follows a form similar to this:

1y xα β= +

To account for a non-linear relationship, we can add a higher order term to the
regression model, treating the model as a polynomial. In effect, we will be modeling
a relationship like this:

2
1 2y x xα β β= + +

The difference between these two models is that a separate beta will be estimated,
which is intended to capture the effect of the x-squared term. This allows the impact
of age to be measured as a function of age squared.

To add the non-linear age to the model, we simply need to create a new variable:

> insurance$age2 <- insurance$age^2

Then, when we produce our improved model, we'll add both age and age2 to the
lm() formula, for example, charges ~ age + age2.

Transformation – converting a numeric variable to
a binary indicator
Suppose we have a hunch that the effect of a feature is not cumulative, but rather it has
an effect only once a specific threshold has been reached. For instance, BMI may have
zero impact on medical expenditures for individuals in the normal weight range, but it
may be strongly related to higher costs for the obese (that is, BMI of 30 or above).

We can model this relationship by creating a binary indicator variable that is 1 if the
BMI is at least 30 and 0 otherwise. The estimated beta for this binary feature would
then indicate the average net impact on medical expenses for individuals with BMI
of 30 or above, relative to those with BMI less than 30.

Chapter 6

[185]

To create the feature, we can use the ifelse() function, which for each element
in a vector tests a specified condition and returns a value depending on whether
the condition is true or false. For BMI greater than or equal to 30, we will return 1,
otherwise 0:

> insurance$bmi30 <- ifelse(insurance$bmi >= 30, 1, 0)

We can then include the bmi30 variable in our improved model, either replacing the
original bmi variable or in addition, depending on whether or not we think the effect
of obesity occurs in addition to a separate BMI effect. Without good reason to do
otherwise, we'll include both in our final model.

If you have trouble deciding whether or not to include a variable,
a common practice is to include it and examine the significance
level. Then, if the variable is not statistically significant, you have
evidence to support excluding it in the future.

Model specification – adding interaction effects
So far, we have only considered each feature's individual contribution to the outcome.
What if certain features have a combined impact on the dependent variable? For
instance, smoking and obesity may have harmful effects separately, but it is reasonable
to assume that their combined effect may be worse than the sum of each one alone.

When two features have a combined effect, this is known as an interaction. If we
suspect that two variables interact, we can test this hypothesis by adding their
interaction to the model. Interaction effects can be specified using the R formula
syntax. To interact the obesity indicator (bmi30) with the smoking indicator (smoker),
we would write a formula in the form charges ~ bmi30*smoker

The * operator is shorthand that instructs R to model charges ~ bmi30 +
smokeryes + bmi30:smokeryes

The : (colon) operator in the expanded form indicates that bmi30:smokeryes is the
interaction between the two variables. Note that the expanded form automatically
also included the bmi30 and smoker variables as well as the interaction.

Interactions should never be included in a model without also
adding each of the interacting variables. If you always create
interactions using the * operator, this will not be a problem since
R will add the required components for you automatically.

Forecasting Numeric Data – Regression Methods

[186]

Putting it all together – an improved regression
model
Based on a bit of subject matter knowledge of how medical costs may be related to
patient characteristics, we developed what we think is a more accurately-specified
regression formula. To summarize the improvements, we:

•	 Added a non-linear term for age
•	 Created an indicator for obesity
•	 Specified an interaction between obesity and smoking

We'll train the model using the lm() function as before, but this time we'll add the
newly constructed variables and the interaction term:

> ins_model2 <- lm(charges ~ age + age2 + children + bmi + sex +

 bmi30*smoker + region, data = insurance)

Next, we summarize the results:

> summary(ins_model2)

Chapter 6

[187]

The model fit statistics help to determine whether our changes improved the
performance of the regression model. Relative to our first model, the R-squared value
has improved from 0.75 to about 0.87. Our model is now explaining 87 percent of the
variation in medical treatment costs. Additionally, our theories about the model's
functional form seem to be validated. The higher-order age2 term is statistically
significant, as is the obesity indicator, bmi30. The interaction between obesity and
smoking suggests a massive effect; in addition to the increased costs of over $13,404
for smoking alone, obese smokers spend another $19,810 per year. This may suggest
that smoking exacerbates diseases associated with obesity.

Understanding regression trees and
model trees
If you recall from Chapter 5, Divide and Conquer – Classification Using Decision Trees and
Rules, a decision tree builds a model much like a flowchart in which decision nodes,
leaf nodes, and branches define a series of decisions that can be used to classify
examples. Such trees can also be used for numeric prediction by making only small
adjustments to the tree growing algorithm. In this section, we will consider only the
ways in which trees for numeric prediction differ from trees used for classification.

Trees for numeric prediction fall into two categories. The first, known as regression
trees, were introduced in the 1980s as part of the seminal Classification and
Regression Tree (CART) algorithm. Despite the name, regression trees do not use
linear regression methods as described earlier in this chapter; rather, they make
predictions based on the average value of examples that reach a leaf.

The CART algorithm is described in detail in Classification and
Regression Trees by L. Breiman, J.H. Friedman, C.J. Stone, and
R.A. Olshen (Chapman & Hall, 1984).

The second type of trees for numeric prediction is known as model trees. Introduced
several years later than regression trees, they are less widely-known but perhaps
more powerful. Model trees are grown in much the same way as regression trees, but
at each leaf, a multiple linear regression model is built from the examples reaching
that node. Depending on the number of leaf nodes, a model tree may build tens
or even hundreds of such models. This may make model trees more difficult to
understand than the equivalent regression tree, with the benefit that they may result
in a more accurate model.

Forecasting Numeric Data – Regression Methods

[188]

The earliest model tree algorithm, M5, is described in
Learning with Continuous Classes, Proceedings of the 5th
Australian Joint Conference on Artificial Intelligence, pp.
343-348, by J.R. Quinlan (1992).

Adding regression to trees
Trees that can perform numeric prediction offer a compelling yet often overlooked
alternative to regression modeling. The strengths and weaknesses of regression trees
and model trees relative to the more common regression methods are listed in the
following table:

Strengths Weaknesses
•	 Combines the strengths of decision

trees with the ability to model
numeric data

•	 Does automatic feature selection,
which allows the approach to be
used with a very large number of
features

•	 Does not require the user to specify
the model in advance

•	 May fit some types of data much
better than linear regression

•	 Does not require knowledge of
statistics to interpret the model

•	 Not as commonly-used as linear
regression

•	 Requires a large amount of training
data

•	 Difficult to determine the overall
net effect of individual features on
the outcome

•	 May be more difficult to interpret
than a regression model

Though traditional regression methods are typically the first choice for numeric
prediction tasks, in some cases, numeric decision trees offer distinct advantages. For
instance, decision trees may be better suited for tasks with many features or many
complex, non-linear relationships among features and the outcome; these situations
present challenges for regression. Regression modeling also makes assumptions
about how numeric data are distributed that are often violated in real-world data;
this is not the case for trees.

Chapter 6

[189]

Trees for numeric prediction are built in much the same way as they are for
classification. Beginning at the root node, the data are partitioned using a divide-
and-conquer strategy according to the feature that will result in the greatest increase
in homogeneity in the outcome after a split is performed. In classification trees, you
will recall that homogeneity is measured by entropy, which is undefined for numeric
data. For numeric decision trees, homogeneity can be measured by statistics such as
variance, standard deviation, or absolute deviation from the mean. Depending on the
tree growing algorithm used, the homogeneity measure may vary, but the principles
are basically the same.

A common splitting criterion is called the standard deviation reduction (SDR). It is
defined by the following formula:

() ()SDR i
i

i

T
sd T sd T

T
= − ×∑

In this formula, the sd(T) function refers to the standard deviation of the values in
set T, while T1, T2, … Tn are sets of values resulting from a split on a feature. The |T|
term refers to the number of observations in set T. Essentially, the formula measures
the reduction in standard deviation from the original value to the weighted standard
deviation post-split.

For example, consider the following case, in which a tree is deciding whether to
perform a split on binary feature A or a split on binary feature B:

Using the groups that would result from the proposed splits, we can compute the
SDR for A and B as follows. The length() function used here returns the number
of elements in a vector. Note that the overall group T is named tee to avoid
overwriting R's built in T() and t() functions.

> tee <- c(1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 6, 7, 7, 7, 7)

> at1 <- c(1, 1, 1, 2, 2, 3, 4, 5, 5)

> at2 <- c(6, 6, 7, 7, 7, 7)

> bt1 <- c(1, 1, 1, 2, 2, 3, 4)

> bt2 <- c(5, 5, 6, 6, 7, 7, 7, 7)

Forecasting Numeric Data – Regression Methods

[190]

> sdr_a <- sd(tee) - (length(at1) / length(tee) * sd(at1) +

 length(at2) / length(tee) * sd(at2))

> sdr_b <- sd(tee) - (length(bt1) / length(tee) * sd(bt1) +

 length(bt2) / length(tee) * sd(bt2))

Let's compare the SDR of A against the SDR of B:

> sdr_a

[1] 1.202815

> sdr_b

[1] 1.392751

The SDR for the split on A was about 1.2 versus 1.4 for the split on B. Since the
standard deviation was reduced more for B, the decision tree would use B first. It
results in slightly more homogeneous sets than does A.

Suppose that the tree stopped growing here using this one and only split. The
regression tree's work is done. It can make predictions for new examples depending
on whether they fall into group T1 or T2. If the example ends up in T1, the model
would predict mean(bt1) = 2, otherwise it would predict mean(bt2) = 6.25.

In contrast, the model tree would go one step further. Using the seven training
examples falling in group bt1 and the eight in bt2, the model tree could build a
linear regression model of the outcome versus feature A. (Feature B is of no help
in the regression model because all examples at the leaf have the same value of B.)
The model tree can then make predictions for new examples using either of the two
linear models.

To further illustrate the differences between these two approaches, let's work
through a real-world example.

Example – estimating the quality of wines
with regression trees and model trees
Winemaking is a challenging and competitive business that offers the potential
for great profit. However, there are numerous factors that contribute to the
profitability of a winery. As an agricultural product, variables as diverse as the
weather and the growing environment impact the quality of a varietal. The bottling
and manufacturing can also affect the flavor, for better or worse. Even the way
the product is marketed, from the bottle design to the price point, can affect the
customer's perception of taste.

Chapter 6

[191]

As a consequence, the winemaking industry has invested heavily in data
collection and machine learning methods that may assist with the decision science
of winemaking. For example, machine learning has been used to discover key
differences in the chemical composition of wines from different regions, or to
identify the chemical factors that lead a wine to taste sweeter.

More recently, machine learning has been employed to assist with rating the quality
of wine—a notoriously difficult task. A review written by a renowned wine critic
often determines whether the product ends up on the top or bottom-shelf, in spite of
the fact that even expert judges are inconsistent when rating a wine in a blinded test.

In this case study, we will use regression trees and model trees to create a system
capable of mimicking expert ratings of wine. Because trees result in a model that
is readily understood, this could allow winemakers to identify key factors that
contribute to better-rated wines. Perhaps more importantly, the system does not
suffer from the human elements of tasting, such as the rater's mood or palate fatigue.
Computer-aided wine testing may therefore result in a better product as well as
more objective, consistent, and fair ratings.

Step 1 – collecting data
To develop the wine rating model, we will use data donated to the UCI Machine
Learning Data Repository by P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis.
The data include examples of red and white Vinho Verde wines from Portugal—one
of the world's leading wine-producing countries. Because the factors that contribute
to a highly-rated wine may differ between the red and white varieties, for this
analysis, we will examine only the more popular white wines.

To follow along with this example, download the
whitewines.csv file from the Packt Publishing's
website and save it to your R working directory.
The redwines.csv file is also available in case you
would like to explore these data on your own.

The white wine data includes information on 11 chemical properties of 4,898 wine
samples. For each wine, a laboratory analysis measured characteristics such as the
acidity, sugar content, chlorides, sulfur, alcohol, pH, and density. The samples were
then rated in a blind tasting by panels of no less than three judges on a quality scale
ranging from zero (very bad) to 10 (excellent). In the case that the judges disagreed
on the rating, the median value was used.

Forecasting Numeric Data – Regression Methods

[192]

The study by Cortez evaluated the ability of three machine learning approaches to
model the wine data: multiple regression, artificial neural networks, and support
vector machines. We covered multiple regression earlier in this chapter, and we will
learn about neural networks and support vector machines in Chapter 7, Black Box
Methods – Neural Networks and Support Vector Machines. The study found that the
support vector machine offered significantly better results than the linear regression
model. However, unlike regression, the support vector machine model is difficult
to interpret. Using regression trees and model trees, we may be able to improve the
regression results while still having a model that is easy to understand.

To read more about the wine study, please refer to the
publication Modeling wine preferences by data mining from
physicochemical properties, Decision Support Systems, Vol. 47,
pp. 547-553, by P. Cortez, A. Cerdeira, F. Almeida, T. Matos,
and J. Reis (2009).

Step 2 – exploring and preparing the data
As usual, we will use the read.csv() function to load the data into R. Since all of
the features are numeric, we can safely ignore the stringsAsFactors parameter.

> wine <- read.csv("whitewines.csv")

The wine data include 11 features and the quality outcome, as follows:

> str(wine)

'data.frame':	4898 obs. of 12 variables:

 $ fixed.acidity : num 6.7 5.7 5.9 5.3 6.4 7 7.9 ...

 $ volatile.acidity : num 0.62 0.22 0.19 0.47 0.29 0.12 ...

 $ citric.acid : num 0.24 0.2 0.26 0.1 0.21 0.41 ...

 $ residual.sugar : num 1.1 16 7.4 1.3 9.65 0.9 ...

 $ chlorides : num 0.039 0.044 0.034 0.036 0.041 ...

 $ free.sulfur.dioxide : num 6 41 33 11 36 22 33 17 34 40 ...

 $ total.sulfur.dioxide: num 62 113 123 74 119 95 152 ...

 $ density : num 0.993 0.999 0.995 0.991 0.993 ...

 $ pH : num 3.41 3.22 3.49 3.48 2.99 3.25 ...

 $ sulphates : num 0.32 0.46 0.42 0.54 0.34 0.43 ...

 $ alcohol : num 10.4 8.9 10.1 11.2 10.9 ...

 $ quality : int 5 6 6 4 6 6 6 6 6 7 ...

Compared to other types of machine learning models, one of the advantages of trees
is that they can handle many types of data without preprocessing. This means we do
not need to normalize or standardize the features.

Chapter 6

[193]

However, a bit of effort to examine the distribution of the outcome variable is needed
to inform our evaluation of the model's performance. For instance, suppose that
there was very little variation in quality from wine-to-wine, or that wines fell into
a bimodal distribution: either very good or very bad. These cases may pose trouble
for our model. To check for such extremes, we can examine the distribution of
quality using a histogram:

> hist(wine$quality)

This produces the following figure:

The wine quality values appear to follow a fairly normal, bell-shaped distribution,
centered around a value of six. This makes sense intuitively, because most wines are
of average quality; few are particularly bad or good. Although the results are not
shown here, it is also useful to examine the summary(wine) output for outliers or other
potential data problems. Even though trees are fairly robust to messy data, it is always
prudent to check for severe problems. For now, we'll assume that the data are reliable.

Our last step then is to divide into training and testing datasets. Since the wine data
were already sorted into random order, we can partition into two sets of contiguous
rows as follows:

> wine_train <- wine[1:3750,]

> wine_test <- wine[3751:4898,]

In order to mirror the conditions used by Cortez, we used sets of 75 percent and 25
percent for training and testing, respectively. We'll evaluate the performance of our
tree-based models on the testing data to see if we can obtain results comparable to
the prior research study.

Forecasting Numeric Data – Regression Methods

[194]

Step 3 – training a model on the data
We will begin by training a regression tree model. Although almost any
implementation of decision trees can be used to perform regression tree modeling,
the rpart (recursive partitioning) package offers perhaps the most faithful
implementation of regression trees as they were described by the CART team. As the
classic R implementation of CART, the rpart package is also well-documented and
supported with functions for visualizing and evaluating rpart models.

Install the rpart package using the install.packages(rpart) command. It can
then be loaded into your R session using the command library("rpart"). The
included rpart() function can fit classification trees or regression trees using the
following syntax. This will train a tree using the default settings, which typically
work fairly well. If you need more finely-tuned settings, refer to the documentation
for the control parameters using the command ?rpart.control.

Chapter 6

[195]

Using the R formula interface, we can specify quality as the outcome variable and
use the dot notation to allow all other columns in the wine_train data frame to be
used as predictors. The resulting model object is named m.rpart to distinguish it
from the model tree we will train later:

> m.rpart <- rpart(quality ~ ., data = wine_train)

For basic information about the tree, simply type the name of the model object:

> m.rpart

n= 3750

node), split, n, deviance, yval

 * denotes terminal node

 1) root 3750 2945.53200 5.870933

 2) alcohol< 10.85 2372 1418.86100 5.604975

 4) volatile.acidity>=0.2275 1611 821.30730 5.432030

 8) volatile.acidity>=0.3025 688 278.97670 5.255814 *

 9) volatile.acidity< 0.3025 923 505.04230 5.563380 *

 5) volatile.acidity< 0.2275 761 447.36400 5.971091 *

 3) alcohol>=10.85 1378 1070.08200 6.328737

 6) free.sulfur.dioxide< 10.5 84 95.55952 5.369048 *

 7) free.sulfur.dioxide>=10.5 1294 892.13600 6.391036

 14) alcohol< 11.76667 629 430.11130 6.173291

 28) volatile.acidity>=0.465 11 10.72727 4.545455 *

 29) volatile.acidity< 0.465 618 389.71680 6.202265 *

 15) alcohol>=11.76667 665 403.99400 6.596992 *

For each node in the tree, the number of examples reaching the decision point is
listed. For instance, all 3750 examples begin at the root node, of which 2372 have
alcohol < 10.85 and 1378 have alcohol >= 10.85. Because alcohol was used
first in the tree, it is the single most important predictor of wine quality.

Nodes indicated by * are terminal or leaf nodes, which means that they result in
a prediction (listed here as yval). For example, node 5 has a yval of 5.971091.
When the tree is used for predictions, any wine samples with alcohol < 10.85
and volatile.acidity < 0.2275 would therefore be predicted to have a quality
value of 5.97.

Forecasting Numeric Data – Regression Methods

[196]

A more detailed summary of the tree's fit, including the mean squared error for each
of the nodes and an overall measure of feature importance, can be obtained using the
command summary(m.rpart).

Visualizing decision trees
Although the tree can be understood using only the preceding output, it is often
more readily understood using visualization. The rpart.plot package by Stephen
Milborrow provides an easy-to-use function that produces publication-quality
decision trees.

For more information on rpart.plot, including
additional examples of the types of decision tree
diagrams the function can produce, refer to the author's
website at http://www.milbo.org/rpart-plot/.

After installing the package using the command install.packages("rpart plot"),
the rpart.plot() function produces a tree diagram from any rpart model object.
The following commands plot the regression tree we built earlier:

> library(rpart.plot)

> rpart.plot(m.rpart, digits = 3)

The resulting tree diagram is as follows:

Chapter 6

[197]

In addition to the digits parameter that controls the number of numeric digits to
include in the diagram, many other aspects of the visualization can be adjusted. The
following command shows just a few of the useful options. The fallen.leaves
parameter forces the leaf nodes to be aligned at the bottom of the plot, while the type
and extra parameters affect the way the decisions and nodes are labeled :

> rpart.plot(m.rpart, digits = 4, fallen.leaves = TRUE,

 type = 3, extra = 101)

The result of these changes is a very different looking tree diagram:

Step 4 – evaluating model performance
To use the regression tree model to make predictions on the test data, we use the
predict() function. By default, this returns the estimated numeric value for the
outcome variable, which we'll save in a vector named p.rpart:

> p.rpart <- predict(m.rpart, wine_test)

Forecasting Numeric Data – Regression Methods

[198]

A quick look at the summary statistics of our predictions suggests a potential
problem; the predictions fall on a much narrower range than the true values:

> summary(p.rpart)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 4.545 5.563 5.971 5.893 6.202 6.597

> summary(wine_test$quality)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 3.000 5.000 6.000 5.901 6.000 9.000

This finding suggests that the model is not correctly identifying the extreme cases, in
particular the best and worst wines. On the other hand, between the first and third
quartile, we may be doing well.

The correlation between the predicted and actual quality values provides a simple
way to gauge the model's performance. Recall that the cor() function can be used
to measure the relationship between two equal-length vectors. We'll use this to
compare how well the predicted values correspond to the true values:

> cor(p.rpart, wine_test$quality)

[1] 0.5369525

A correlation of 0.54 is certainly acceptable. However, the correlation only measures
how strongly the predictions are related to the true value; it is not a measure of how
far off the predictions were from the true values.

Measuring performance with mean absolute error
Another way to think about the model's performance is to consider how far, on
average, its prediction was from the true value. This measurement is called the mean
absolute error (MAE). The equation for MAE is as follows, where n indicates the
number of predictions and e indicates the error for prediction i:

1

1MAE
n

i
i
e

n =

= ∑

Essentially, this equation takes the mean of the absolute value of the errors. Since the
error is just the difference between the predicted and actual values, we can create a
simple MAE() function as follows:

> MAE <- function(actual, predicted) {

 mean(abs(actual - predicted))

}

Chapter 6

[199]

The MAE for our predictions is then:

> MAE(p.rpart, wine_test$quality)

[1] 0.5872652

This implies that, on average, the difference between our model's predictions and the
true quality score was about 0.59. On a quality scale from zero to 10, this seems to
suggest that our model is doing fairly well.

On the other hand, recall that most wines were neither very good nor very bad; the
typical quality score was around 5 to 6. Therefore, a classifier that did nothing but
predict the mean value may still do fairly well according to this metric.

The mean quality rating in the training data is as follows:

> mean(wine_train$quality)

[1] 5.870933

If we predicted the value 5.87 for every wine sample, we would have a mean
absolute error of only about 0.67:

> mean_abserror(5.87, wine_test$quality)

[1] 0.6722474

Our regression tree(MAE = 0.59) comes closer on average to the true quality score
than the imputed mean (MAE = 0.67), but not by much. In comparison, Cortez
reported an MAE of 0.58 for the neural network model and an MAE of 0.45 for the
support vector machine. This suggests that there is room for improvement.

Step 5 – improving model performance
To improve the performance of our learner, let's try to build a model tree. Recall that
a model tree improves on regression trees by replacing the leaf nodes with regression
models. This often results in more accurate results than regression trees, which use
only a single value for prediction at the leaf nodes.

The current state-of-the-art in model trees is the M5' algorithm (M5-prime) by
Wang and Witten, which is an enhancement of the original M5 model tree algorithm
proposed by Quinlan in 1992.

For more information on the M5' algorithm, see Induction of model
trees for predicting continuous classes, Proceedings of the Poster Papers
of the European Conference on Machine Learning by Y. Wang and I.H.
Witten (1997).

Forecasting Numeric Data – Regression Methods

[200]

The M5' algorithm is available in R via the RWeka package and the M5P() function.
The syntax of this function is shown in the following table. Be sure to install
the RWeka package if you have not already; because of its dependence on Java,
installation instructions are included in Chapter 1, Introducing Machine Learning.

We'll fit the model tree using essentially the same syntax as we used for the
regression tree:

> library(RWeka)

> m.m5p <- M5P(quality ~ ., data = wine_train)

The tree itself can be examined by typing its name. In this case, the tree is very large
and only the first few lines of output are shown:

> m.m5p

M5 pruned model tree:

(using smoothed linear models)

Chapter 6

[201]

alcohol <= 10.85 :

| volatile.acidity <= 0.238 :

| | fixed.acidity <= 6.85 : LM1 (406/66.024%)

| | fixed.acidity > 6.85 :

| | | free.sulfur.dioxide <= 24.5 : LM2 (113/87.697%)

You will note that the splits are very similar to the regression tree we built earlier.
Alcohol is the most important variable, followed by volatile acidity and free sulfur
dioxide. A key difference, however, is that the nodes terminate not in a numeric
prediction, but a linear model (shown here as LM1 and LM2).

The linear models themselves are shown later in the output. For instance, the model
for LM1 is as follows. The values can be interpreted exactly the same as the multiple
regression models we built earlier in this chapter. Each number is the net effect of the
associated feature on the predicted wine quality. The coefficient of 0.266 for fixed
acidity implies that for an increase of 1 unit of acidity, the wine quality is expected to
increase by 0.266:

LM num: 1

quality =

 0.266 * fixed.acidity

 - 2.3082 * volatile.acidity

 - 0.012 * citric.acid

 + 0.0421 * residual.sugar

 + 0.1126 * chlorides

 + 0 * free.sulfur.dioxide

 - 0.0015 * total.sulfur.dioxide

 - 109.8813 * density

 + 0.035 * pH

 + 1.4122 * sulphates

 - 0.0046 * alcohol

 + 113.1021

It is important to note that the estimated effects apply only to wine samples reaching
this node; a total of 36 linear models were built in this model tree, each with different
estimations of the impact of fixed acidity and the 10 other features.

Forecasting Numeric Data – Regression Methods

[202]

For statistics on how well the model fits the training data, the summary() function
can be applied to the M5P model. However, keep in mind that since these statistics
are based on the training data, they should be used only as a rough diagnostic:

> summary(m.m5p)

=== Summary ===

Correlation coefficient 0.6666

Mean absolute error 0.5151

Root mean squared error 0.6614

Relative absolute error 76.4921 %

Root relative squared error 74.6259 %

Total Number of Instances 3750

Instead, we'll look at how well the model performs on the unseen test data.
The predict() function gets us a vector of predicted values:

> p.m5p <- predict(m.m5p, wine_test)

The model tree appears to be predicting a wider range of values than the
regression tree:

> summary(p.m5p)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 4.389 5.430 5.863 5.874 6.305 7.437

The correlation also seems to be substantially higher:

> cor(p.m5p, wine_test$quality)

[1] 0.6272973

Furthermore, the model slightly improved the mean absolute error:

> MAE(wine_test$quality, p.m5p)

[1] 0.5463023

Although we did not improve a great deal beyond the regression tree, we surpassed
the performance of the neural network model published by Cortez, and we are
getting closer to the published mean absolute error value of 0.45 for the support
vector machine model, all while using a much simpler learning method.

Chapter 6

[203]

Not surprisingly, we have confirmed that predicting the
quality of wines is a difficult problem; wine tasting, after
all, is inherently subjective. If you would like additional
practice, you may try revisiting this problem after reading
Chapter 11, Improving Model Performance, which covers
additional techniques that may lead to better results.

Summary
In this chapter, two methods for modeling numeric data were presented. The first
method, linear regression, involves fitting straight lines to data. The second method
uses decision trees for numeric prediction. The latter comes in two forms: regression
trees, which use the average value of examples at leaf nodes to make numeric
predictions, and model trees, which build a regression model at each leaf node in a
hybrid approach that is in some ways the best of both worlds.

We used linear regression modeling to calculate the expected medical costs for various
segments of the population. Because the relationship between the features and the
target variable are well-described by the estimated regression model, we were able to
identify certain demographics, such as smokers and the obese, who may need to be
charged higher insurance rates to cover the higher-than-average medical expenses.

Regression trees and model trees were used to model the subjective quality of wines
from measureable characteristics. In doing so, we learned how regression trees offer
a simple way to explain the relationship between features and a numeric outcome,
but the more complex model trees may be more accurate. Along the way, we learned
several methods for evaluating the performance of numeric models.

In stark contrast to this chapter, which covered machine learning methods that
result in a clear understanding of the relationships between the input and the
output, the next chapter covers methods that result in nearly-incomprehensible
models. The upside is that they are extremely powerful techniques—among the
most powerful stock classifiers—that can be applied to both classification and
numeric prediction problems.

Black Box Methods – Neural
Networks and Support

Vector Machines
The late science fiction author Arthur C. Clarke once wrote that "any sufficiently
advanced technology is indistinguishable from magic." This chapter covers a pair
of machine learning methods that may, likewise, appear at first glance to be magic.
As two of the most powerful machine learning algorithms, they are applied to tasks
across many domains. However, their inner workings can be difficult to understand.

In engineering, these are referred to as black box processes because the mechanism
that transforms the input into the output is obfuscated by a figurative box. The reasons
for the opacity can vary; for instance, black box closed source software intentionally
conceals proprietary algorithms, the black box of sausage-making involves a bit of
purposeful (but tasty) ignorance, and the black box of political lawmaking is rooted
in bureaucratic processes. In the case of machine learning, the black box is because the
underlying models are based on complex mathematical systems and the results are
difficult to interpret.

Although it may not be feasible to interpret black box models, it is dangerous to
apply the methods blindly. Therefore, in this chapter, we'll peek behind the curtain
and investigate the statistical sausage-making involved in fitting such models. You'll
discover that:

•	 Neural networks use concepts borrowed from an understanding of human
brains in order to model arbitrary functions

•	 Support Vector Machines use multidimensional surfaces to define the
relationship between features and outcomes

•	 In spite of their complexity, these models can be easily applied to real-world
problems such as modeling the strength of concrete or reading printed text

Black Box Methods – Neural Networks and Support Vector Machines

[206]

With any luck, you'll realize that you don't need a black belt in statistics to tackle
black box machine learning methods—there's no need to be intimidated!

Understanding neural networks
An Artificial Neural Network (ANN) models the relationship between a set of input
signals and an output signal using a model derived from our understanding of how
a biological brain responds to stimuli from sensory inputs. Just as a brain uses a
network of interconnected cells called neurons to create a massive parallel processor,
the ANN uses a network of artificial neurons or nodes to solve learning problems.

The human brain is made up of about 85 billion neurons, resulting in a network
capable of storing a tremendous amount of knowledge. As you might expect, this
dwarfs the brains of other living creatures. For instance, a cat has roughly a billion
neurons, a mouse has about 75 million neurons, and a cockroach has only about a
million neurons. In contrast, many ANNs contain far fewer neurons, typically only
several hundred, so we're in no danger of creating an artificial brain anytime in the
near future—even a fruit fly brain with 100,000 neurons far exceeds the current ANN
state-of-the-art.

Though it may be infeasible to completely model a cockroach's
brain, a neural network might provide an adequate heuristic
model of its behavior, such as in an algorithm that can mimic
how a roach flees when discovered. If the behavior of a
roboroach is convincing, does it matter how its brain works?
This question is the basis of the controversial Turing test,
which grades a machine as intelligent if a human being cannot
distinguish its behavior from a living creature's.

Rudimentary ANNs have been used for over 50 years to simulate the brain's
approach to problem solving. At first, this involved learning simple functions,
like the logical AND function or the logical OR. These early exercises were used
primarily to construct models of how biological brains might function. However,
as computers have become increasingly powerful in recent years, the complexity
of ANNs has likewise increased such that they are now frequently applied to more
practical problems such as:

•	 Speech and handwriting recognition programs like those used by voicemail
transcription services and postal mail sorting machines

•	 The automation of smart devices like an office building's environmental
controls or self-driving cars and self-piloting drones

•	 Sophisticated models of weather and climate patterns, tensile strength, fluid
dynamics, and many other scientific, social, or economic phenomena

Chapter 7

[207]

Broadly speaking, ANNs are versatile learners that can be applied to nearly
any learning task: classification, numeric prediction, and even unsupervised
pattern recognition.

Whether deserving or not, ANN learners are often reported
in the media with great fanfare. For instance, an "artificial
brain" developed by Google was recently touted for its
ability to identify cat videos on YouTube. Such hype may
have less to do with anything unique to ANNs and more to
do with the fact that ANNs are captivating because of their
similarities to living minds.

ANNs are best applied to problems where the input data and output data are
well-understood or at least fairly simple, yet the process that relates the input to
output is extremely complex. As a black box method, they work well for these
types of black box problems.

From biological to artificial neurons
Because ANNs were intentionally designed as conceptual models of human
brain activity, it is helpful to first understand how biological neurons function.
As illustrated in the following figure, incoming signals are received by the cell's
dendrites through a biochemical process that allows the impulse to be weighted
according to its relative importance or frequency. As the cell body begins to
accumulate the incoming signals, a threshold is reached at which the cell fires and
the output signal is then transmitted via an electrochemical process down the axon.
At the axon's terminals, the electric signal is again processed as a chemical signal to
be passed to the neighboring neurons across a tiny gap known as a synapse.

Black Box Methods – Neural Networks and Support Vector Machines

[208]

The model of a single artificial neuron can be understood in terms very similar to
the biological model. As depicted in the following figure, a directed network
diagram defines a relationship between the input signals received by the dendrites
(x variables) and the output signal (y variable). Just as with the biological neuron,
each dendrite's signal is weighted (w values) according to its importance—ignore for
now how these weights are determined. The input signals are summed by the cell
body and the signal is passed on according to an activation function denoted by f.

A typical artificial neuron with n input dendrites can be represented by the formula
that follows. The w weights allow each of the n inputs, (x), to contribute a greater
or lesser amount to the sum of input signals. The net total is used by the activation
function f(x), and the resulting signal, y(x), is the output axon.

()
1

n

i i
i

y x f w x
=

 =  
 
∑

Neural networks use neurons defined in this way as building blocks to construct
complex models of data. Although there are numerous variants of neural networks,
each can be defined in terms of the following characteristics:

•	 An activation function, which transforms a neuron's net input signal into a
single output signal to be broadcasted further in the network

•	 A network topology (or architecture), which describes the number of
neurons in the model as well as the number of layers and manner in which
they are connected

•	 The training algorithm that specifies how connection weights are set in order
to inhibit or excite neurons in proportion to the input signal

Let's take a look at some of the variations within each of these categories to see how
they can be used to construct typical neural network models.

Chapter 7

[209]

Activation functions
The activation function is the mechanism by which the artificial neuron processes
information and passes it throughout the network. Just as the artificial neuron is
modeled after the biological version, so too is the activation function modeled after
nature's design.

In the biological case, the activation function could be imagined as a process that
involves summing the total input signal and determining whether it meets the firing
threshold. If so, the neuron passes on the signal; otherwise, it does nothing. In ANN
terms, this is known as a threshold activation function, as it results in an output
signal only once a specified input threshold has been attained.

The following figure depicts a typical threshold function; in this case, the neuron
fires when the sum of input signals is at least zero. Because of its shape, it is
sometimes called a unit step activation function.

Although the threshold activation function is interesting due to its parallels with
biology, it is rarely used in artificial neural networks. Freed from the limitations
of biochemistry, ANN activation functions can be chosen based on their ability
to demonstrate desirable mathematical characteristics and model relationships
among data.

Black Box Methods – Neural Networks and Support Vector Machines

[210]

Perhaps the most commonly used alternative is the sigmoid activation function
(specifically the logistic sigmoid) shown in the following figure, where e is the base
of natural logarithms (approximately 2.72). Although it shares a similar step or S
shape with the threshold activation function, the output signal is no longer binary;
output values can fall anywhere in the range from 0 to 1. Additionally, the sigmoid
is differentiable, which means that it is possible to calculate the derivative across
the entire range of inputs. As you will learn later, this feature is crucial for creating
efficient ANN optimization algorithms.

Although the sigmoid is perhaps the most commonly used activation function and is
often used by default, some neural network algorithms allow a choice of alternatives.
A selection of such activation functions is as shown:

Chapter 7

[211]

The primary detail that differentiates among these activation functions is the output
signal range. Typically, this is one of (0, 1), (-1, +1), or (-inf, +inf). The choice of
activation function biases the neural network such that it may fit certain types of
data more appropriately, allowing the construction of specialized neural networks.
For instance, a linear activation function results in a neural network very similar to
a linear regression model, while a Gaussian activation function results in a model
called a Radial Basis Function (RBF) network.

It's important to recognize that for many of the activation functions, the range of input
values that affect the output signal is relatively narrow. For example, in the case of the
sigmoid, the output signal is always 0 or always 1 for an input signal below -5 or above
+5, respectively. The compression of the signal in this way results in a saturated signal
at the high and low ends of very dynamic inputs, just as turning a guitar amplifier
up too high results in a distorted sound due to clipping the peaks of sound waves.
Because this essentially squeezes the input values into a smaller range of outputs, such
activation functions (like the sigmoid) are sometimes called squashing functions.

The solution to the squashing problem is to transform all neural network inputs
such that the feature values fall within a small range around 0. Typically, this is
done by standardizing or normalizing the features. By limiting the input values, the
activation function will have action across the entire range, preventing large-valued
features such as household income from dominating small-valued features such as
the number of children in the household. A side benefit is that the model may also
be faster to train, since the algorithm can iterate more quickly through the actionable
range of input values.

Although theoretically a neural network can adapt to a
very dynamic feature by adjusting its weight over many
iterations, in extreme cases many algorithms will stop
iterating long before this occurs. If your model is making
predictions that do not make sense, double-check that
you've correctly standardized the input data.

Network topology
The capacity of a neural network to learn is rooted in its topology, or the patterns
and structures of interconnected neurons. Although there are countless forms of
network architecture, they can be differentiated by three key characteristics:

•	 The number of layers
•	 Whether information in the network is allowed to travel backward
•	 The number of nodes within each layer of the network

Black Box Methods – Neural Networks and Support Vector Machines

[212]

The topology determines the complexity of tasks that can be learned by the network.
Generally, larger and more complex networks are capable of identifying more subtle
patterns and complex decision boundaries. However, the power of a network is not
only a function of the network size, but also the way units are arranged.

The number of layers
To define topology, we need a terminology that distinguishes artificial neurons based
on their position in the network. The figure that follows illustrates the topology of
a very simple network. A set of neurons called Input Nodes receive unprocessed
signals directly from the input data. Each input node is responsible for processing
a single feature in the dataset; the feature's value will be transformed by the node's
activation function. The signals resulting from the input nodes are received by the
Output Node, which uses its own activation function to generate a final prediction
(denoted here as p).

The input and output nodes are arranged in groups known as layers. Because
the input nodes process the incoming data exactly as received, the network has
only one set of connection weights (labeled here as w1, w2, and w3). It is therefore
termed a single-layer network. Single-layer networks can be used for basic
pattern classification, particularly for patterns that are linearly separable, but more
sophisticated networks are required for most learning tasks.

Chapter 7

[213]

As you might expect, an obvious way to create more complex networks is by adding
additional layers. As depicted here, a multilayer network adds one or more hidden
layers that process the signals from the input nodes prior to reaching the output
node. Most multilayer networks are fully connected, which means that every node
in one layer is connected to every node in the next layer, but this is not required.

The direction of information travel
You may have noticed that in the prior examples arrowheads were used to indicate
signals traveling in only one direction. Networks in which the input signal is fed
continuously in one direction from connection-to-connection until reaching the
output layer are called feedforward networks.

In spite of the restriction on information flow, feedforward networks offer a surprising
amount of flexibility. For instance, the number of levels and nodes at each level can be
varied, multiple outcomes can be modeled simultaneously, or multiple hidden layers
can be applied (a practice that is sometimes referred to as deep learning).

Black Box Methods – Neural Networks and Support Vector Machines

[214]

In contrast, a recurrent network (or feedback network) allows signals to travel
in both directions using loops. This property, which more closely mirrors how a
biological neural network works, allows extremely complex patterns to be learned.
The addition of a short term memory (labeled Delay in the following figure)
increases the power of recurrent networks immensely. Notably, this includes the
capability to understand sequences of events over a period of time. This could be
used for stock market prediction, speech comprehension, or weather forecasting.
A simple recurrent network is depicted as shown:

In spite of their potential, recurrent networks are still largely theoretical and
are rarely used in practice. On the other hand, feedforward networks have been
extensively applied to real-world problems. In fact, the multilayer feedforward
network (sometimes called the Multilayer Perceptron (MLP) is the de facto
standard ANN topology. If someone mentions that they are fitting a neural network
without additional clarification, they are most likely referring to a multilayer
feedforward network.

The number of nodes in each layer
In addition to variations in the number of layers and the direction of information
travel, neural networks can also vary in complexity by the number of nodes in each
layer. The number of input nodes is predetermined by the number of features in the
input data. Similarly, the number of output nodes is predetermined by the number of
outcomes to be modeled or the number of class levels in the outcome. However, the
number of hidden nodes is left to the user to decide prior to training the model.

Unfortunately, there is no reliable rule to determine the number of neurons in the
hidden layer. The appropriate number depends on the number of input nodes,
the amount of training data, the amount of noisy data, and the complexity of the
learning task among many other factors.

Chapter 7

[215]

In general, more complex network topologies with a greater number of network
connections allow the learning of more complex problems. A greater number of
neurons will result in a model that more closely mirrors the training data, but this
runs a risk of overfitting; it may generalize poorly to future data. Large neural
networks can also be computationally expensive and slow to train.

A best practice is to use the fewest nodes that result in adequate performance on
a validation dataset. In most cases, even with only a small number of hidden
nodes—often as few as a handful—the neural network can offer a tremendous
amount of learning ability.

It has been proven that a neural network with at least
one hidden layer of sufficiently many neurons is a
universal function approximator. Essentially, this
means that such a network can be used to approximate
any continuous function to an arbitrary precision over
a finite interval.

Training neural networks with
backpropagation
The network topology is a blank slate that by itself has not learned anything. Like a
newborn child, it must be trained with experience. As the neural network processes
the input data, connections between the neurons are strengthened or weakened
similar to how a baby's brain develops as he or she experiences the environment. The
network's connection weights reflect the patterns observed over time.

Training a neural network by adjusting connection weights is very computationally
intensive. Consequently, though they had been studied for decades prior, ANNs
were rarely applied to real-world learning tasks until the mid-to-late 1980s, when an
efficient method of training an ANN was discovered. The algorithm, which used a
strategy of back-propagating errors, is now known simply as backpropagation.

Interestingly, several research teams of the era independently
discovered the backpropagation algorithm. The seminal
paper on backpropagation is arguably Learning representations
by back-propagating errors, Nature Vol. 323, pp. 533-566, by D.E.
Rumelhart, G.E. Hinton, and R.J. Williams (1986).

Black Box Methods – Neural Networks and Support Vector Machines

[216]

Although still notoriously slow relative to many other machine learning algorithms,
the backpropagation method led to a resurgence of interest in ANNs. As a result,
multilayer feedforward networks that use the backpropagation algorithm are now
common in the field of data mining. Such models offer the following strengths
and weaknesses:

Strengths Weaknesses
•	 Can be adapted to classification or

numeric prediction problems
•	 Among the most accurate

modeling approaches
•	 Makes few assumptions about the

data's underlying relationships

•	 Reputation of being
computationally intensive and
slow to train, particularly if the
network topology is complex

•	 Easy to overfit or underfit
training data

•	 Results in a complex black box
model that is difficult if not
impossible to interpret

In its most general form, the backpropagation algorithm iterates through many
cycles of two processes. Each iteration of the algorithm is known as an epoch.
Because the network contains no a priori (existing) knowledge, typically the weights
are set randomly prior to beginning. Then, the algorithm cycles through the
processes until a stopping criterion is reached. The cycles include:

•	 A forward phase in which the neurons are activated in sequence from
the input layer to the output layer, applying each neuron's weights and
activation function along the way. Upon reaching the final layer, an output
signal is produced.

•	 A backward phase in which the network's output signal resulting from the
forward phase is compared to the true target value in the training data. The
difference between the network's output signal and the true value results
in an error that is propagated backwards in the network to modify the
connection weights between neurons and reduce future errors.

Over time, the network uses the information sent backward to reduce the total error
of the network. Yet one question remains: because the relationship between each
neuron's inputs and outputs is complex, how does the algorithm determine how
much (or whether) a weight should be changed?

The answer to this question involves a technique called gradient descent.
Conceptually, it works similarly to how an explorer trapped in the jungle might find
a path to water. By examining the terrain and continually walking in the direction
with the greatest downward slope, he or she is likely to eventually reach the lowest
valley, which is likely to be a riverbed.

Chapter 7

[217]

In a similar process, the backpropagation algorithm uses the derivative of each
neuron's activation function to identify the gradient in the direction of each of the
incoming weights—hence the importance of having a differentiable activation
function. The gradient suggests how steeply the error will be reduced or increased
for a change in the weight. The algorithm will attempt to change the weights that
result in the greatest reduction in error by an amount known as the learning rate.
The greater the learning rate, the faster the algorithm will attempt to descend down
the gradients, which could reduce training time at the risk of overshooting the valley.

Although this process seems complex, it is easy to apply in practice. Let's apply our
understanding of multilayer feedforward networks to a real-world problem.

Modeling the strength of concrete
with ANNs
In the field of engineering, it is crucial to have accurate estimates of the performance
of building materials. These estimates are required in order to develop safety
guidelines governing the materials used in the construction of buildings, bridges,
and roadways.

Estimating the strength of concrete is a challenge of particular interest. Although it is
used in nearly every construction project, concrete performance varies greatly due to
the use of a wide variety of ingredients that interact in complex ways. As a result, it
is difficult to accurately predict the strength of the final product. A model that could
reliably predict concrete strength given a listing of the composition of the input
materials could result in safer construction practices.

Step 1 – collecting data
For this analysis, we will utilize data on the compressive strength of concrete donated
to the UCI Machine Learning Data Repository (http://archive.ics.uci.edu/ml)
by I-Cheng Yeh. As he found success using neural networks to model these data, we
will attempt to replicate Yeh's work using a simple neural network model in R.

For more information on Yeh's approach to this learning task,
refer to: Modeling of strength of high performance concrete using
artificial neural networks, Cement and Concrete Research, Vol. 28,
pp. 1797-1808, by I-C Yeh (1998).

Black Box Methods – Neural Networks and Support Vector Machines

[218]

According to the website, the concrete dataset contains 1,030 examples of concrete,
with eight features describing the components used in the mixture. These features
are thought to be related to the final compressive strength, and they include the
amount (in kilograms per cubic meter) of cement, slag, ash, water, superplasticizer,
coarse aggregate, and fine aggregate used in the product, in addition to the aging
time (measured in days).

To follow along with this example, download the
concrete.csv file from the Packt Publishing's
website and save it to your R working directory.

Step 2 – exploring and preparing the data
As usual, we'll begin our analysis by loading the data into an R object using the
read.csv() function and confirming that it matches the expected structure:

> concrete <- read.csv("concrete.csv")

> str(concrete)

'data.frame':	1030 obs. of 9 variables:

 $ cement : num 141 169 250 266 155 ...

 $ slag : num 212 42.2 0 114 183.4 ...

 $ ash : num 0 124.3 95.7 0 0 ...

 $ water : num 204 158 187 228 193 ...

 $ superplastic: num 0 10.8 5.5 0 9.1 0 0 6.4 0 9 ...

 $ coarseagg : num 972 1081 957 932 1047 ...

 $ fineagg : num 748 796 861 670 697 ...

 $ age : int 28 14 28 28 28 90 7 56 28 28 ...

 $ strength : num 29.9 23.5 29.2 45.9 18.3 ...

The nine variables in the data frame correspond to the eight features and one
outcome we expected, although a problem has become apparent. Neural networks
work best when the input data are scaled to a narrow range around zero, and here
we see values ranging anywhere from zero up to over a thousand.

Chapter 7

[219]

Typically, the solution to this problem is to rescale the data with a normalizing or
standardization function. If the data follow a bell-shaped curve (a normal distribution
as described in Chapter 2, Managing and Understanding Data), then it may make sense
to use standardization via R's built-in scale() function. On the other hand, if the data
follow a uniform distribution or are severely non-normal, then normalization to a 0-1
range may be more appropriate. In this case, we'll use the latter.

In Chapter 3, Lazy Learning – Classification Using Nearest Neighbors, we defined our
own normalize() function as:

> normalize <- function(x) {

 return((x - min(x)) / (max(x) - min(x)))

 }

After executing this code, our normalize() function can be applied to every column
in the concrete data frame using the lapply() function as follows:

> concrete_norm <- as.data.frame(lapply(concrete, normalize))

To confirm that the normalization worked, we can see that the minimum and
maximum strength are now 0 and 1, respectively:

> summary(concrete_norm$strength)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000000 0.2663511 0.4000872 0.4171915 0.5457207 1.0000000

In comparison, the original minimum and maximum values were 2.33 and 82.6:

> summary(concrete$strength)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.33000 23.71000 34.44500 35.81796 46.13500 82.60000

Any transformation applied to the data prior to training the
model will have to be applied in reverse later on in order
to convert back to the original units of measurement. To
facilitate the rescaling, it is wise to save the original data, or
at least the summary statistics of the original data.

Black Box Methods – Neural Networks and Support Vector Machines

[220]

Following the precedent of I-Cheng Yeh in the original publication, we will partition
the data into a training set with 75 percent of the examples and a testing set with 25
percent. The CSV file we used was already sorted in random order, so we simply
need to divide it into two portions:

> concrete_train <- concrete_norm[1:773,]

> concrete_test <- concrete_norm[774:1030,]

We'll use the training dataset to build the neural network and the testing dataset to
evaluate how well the model generalizes to future results. As it is easy to overfit a
neural network, this step is very important.

Step 3 – training a model on the data
To model the relationship between the ingredients used in concrete and the strength
of the finished product, we will use a multilayer feedforward neural network. The
neuralnet package by Stefan Fritsch and Frauke Guenther provides a standard and easy-
to-use implementation of such networks. It also offers a function to plot the network
topology. For these reasons, the neuralnet implementation is a strong choice for
learning more about neural networks, though that's not to say that it cannot be used
to accomplish real work as well—it's quite a powerful tool, as you will soon see.

There are several other commonly used packages to train ANN
models in R, each with unique strengths and weaknesses.
Because it ships as part of the standard R installation, the
nnet package is perhaps the most frequently cited ANN
implementation. It uses a slightly more sophisticated
algorithm than standard backpropagation. Another strong
option is the RSNNS package, which offers a complete suite of
neural network functionality, with the downside being that it
is more difficult to learn.

Chapter 7

[221]

As neuralnet is not included in base R, you will need to install it by typing
install.packages("neuralnet") and load it with the library(neuralnet)
command. The included neuralnet() function can be used for training neural
networks for numeric prediction using the following syntax:

We'll begin by training the simplest multilayer feedforward network with only
a single hidden node:

> concrete_model <- neuralnet(strength ~ cement + slag +

 ash + water + superplastic +

 coarseagg + fineagg + age,

 data = concrete_train)

Black Box Methods – Neural Networks and Support Vector Machines

[222]

We can then visualize the network topology using the plot() function on the
concrete_model object:

 > plot(concrete_model)

In this simple model, there is one input node for each of the eight features, followed
by a single hidden node and a single output node that predicts the concrete strength.
The weights for each of the connections are also depicted, as are the bias terms
(indicated by the nodes with a 1). The plot also reports the number of training steps
and a measure called, the Sum of Squared Errors (SSE). These metrics will be useful
when we are evaluating the model performance.

Step 4 – evaluating model performance
The network topology diagram gives us a peek into the black box of the ANN,
but it doesn't provide much information about how well the model fits our data.
To estimate our model's performance, we can use the compute() function to
generate predictions on the testing dataset:

> model_results <- compute(concrete_model, concrete_test[1:8])

Chapter 7

[223]

Note that the compute() function works a bit differently from the predict()
functions we've used so far. It returns a list with two components: $neurons, which
stores the neurons for each layer in the network, and $net.results, which stores
the predicted values. We'll want the latter:

> predicted_strength <- model_results$net.result

Because this is a numeric prediction problem rather than a classification problem,
we cannot use a confusion matrix to examine model accuracy. Instead, we must
measure the correlation between our predicted concrete strength and the true
value. This provides an insight into the strength of the linear association between
the two variables.

Recall that the cor() function is used to obtain a correlation between two
numeric vectors:

> cor(predicted_strength, concrete_test$strength)

 [,1]

[1,] 0.7170368646

Don't be alarmed if your result differs. Because the neural
network begins with random weights, the predictions can
vary from model to model.

Correlations close to 1 indicate strong linear relationships between two variables.
Therefore, the correlation here of about 0.72 indicates a fairly strong relationship.
This implies that our model is doing a fairly good job, even with only
a single hidden node.

A neural network with a single hidden node can be thought
of as a distant cousin of the linear regression models we
studied in Chapter 6, Forecasting Numeric Data – Regression
Methods. The weight between each input node and the
hidden node is similar to the regression coefficients, and the
weight for the bias term is similar to the intercept. In fact, if
you construct a linear model in the same vein as the previous
ANN, the correlation is 0.74.

Given that we only used one hidden node, it is likely that we can improve the
performance of our model. Let's try to do a bit better.

Black Box Methods – Neural Networks and Support Vector Machines

[224]

Step 5 – improving model performance
As networks with more complex topologies are capable of learning more difficult
concepts, let's see what happens when we increase the number of hidden nodes to
five. We use the neuralnet() function as before, but add the parameter hidden = 5:

> concrete_model2 <- neuralnet(strength ~ cement + slag +

 ash + water + superplastic +

 coarseagg + fineagg + age,

 data = concrete_train, hidden = 5)

Plotting the network again, we see a drastic increase in the number of connections.
How did this impact performance?

> plot(concrete_model2)

Notice that the reported error (measured again by SSE) has been reduced from 6.92
in the previous model to 2.44 here. Additionally, the number of training steps rose
from 3222 to 7230, which is no surprise given how much more complex the model
has become.

Chapter 7

[225]

Applying the same steps to compare the predicted values to the true values, we
now obtain a correlation around 0.80, which is a considerable improvement over
the previous result:

> model_results2 <- compute(concrete_model2, concrete_test[1:8])

> predicted_strength2 <- model_results2$net.result

> cor(predicted_strength2, concrete_test$strength)

 [,1]

[1,] 0.801444583

Interestingly, in the original publication, I-Cheng Yeh reported a mean correlation
of 0.885 using a very similar neural network. For some reason, we fell a bit short. In
our defense, he is a civil engineering professor; therefore, he may have applied some
subject matter expertise to the data preparation. If you'd like more practice with
neural networks, you might try applying the principles learned earlier in this chapter
to beat his result, perhaps by using different numbers of hidden nodes, applying
different activation functions, and so on. The ?neuralnet help page provides more
information on the various parameters that can be adjusted.

Understanding Support Vector Machines
A Support Vector Machine (SVM) can be imagined as a surface that defines a
boundary between various points of data which represent examples plotted in
multidimensional space according to their feature values. The goal of an SVM is
to create a flat boundary, called a hyperplane, which leads to fairly homogeneous
partitions of data on either side. In this way, SVM learning combines aspects of both
the instance-based nearest neighbor learning presented in Chapter 3, Lazy Learning –
Classification Using Nearest Neighbors, and the linear regression modeling described
in Chapter 6, Forecasting Numeric Data – Regression Methods. The combination is
extremely powerful, allowing SVMs to model highly complex relationships.

Although the basic mathematics that drive SVMs have been around for decades, they
have recently exploded in popularity. This is of course rooted in their state-of-the-art
performance, but perhaps also due to the fact that award winning SVM algorithms
have been implemented in several popular and well-supported libraries across
many programming languages, including R. This has led SVMs to be adopted by a
much wider audience who previously might have passed it by due to the somewhat
complex math involved with SVM implementation. The good news is that although
the math may be difficult, the basic concepts are understandable.

Black Box Methods – Neural Networks and Support Vector Machines

[226]

SVMs can be adapted for use with nearly any type of learning task, including both
classification and numeric prediction. Many of the algorithm's key successes have
come in pattern recognition. Notable applications include:

•	 Classification of microarray gene expression data in the field of
bioinformatics to identify cancer or other genetic diseases

•	 Text categorization, such as identification of the language used in a
document or organizing documents by subject matter

•	 The detection of rare yet important events like combustion engine failure,
security breaches, or earthquakes

SVMs are most easily understood when used for binary classification, which is
how the method has been traditionally applied. Therefore, in the remaining sections
we will focus only on SVM classifiers. Don't worry, however, as the same principles
you learn here will apply when adapting SVMs to other learning tasks such as
numeric prediction.

Classification with hyperplanes
As noted previously, SVMs use a linear boundary called a hyperplane to partition
data into groups of similar elements, typically as indicated by the class values. For
example, the following figure depicts a hyperplane that separates groups of circles
and squares in two and three dimensions. Because the circles and squares can be
divided by the straight line or flat surface, they are said to be linearly separable.
At first, we'll consider only the simple case where this is true, but SVMs can also be
extended to problems were the data are not linearly separable.

For convenience, the hyperplane is traditionally depicted as
a line in 2D space, but this is simply because it is difficult to
illustrate space in greater than two dimensions. In reality, the
hyperplane is a flat surface in a high-dimensional space—a
concept that can be difficult to get your mind around.

Chapter 7

[227]

The task of the SVM algorithm is to identify a line that separates the two classes. As
shown in the following figure, there is more than one choice of dividing line between
the groups of circles and squares. Three such possibilities are labeled a, b, and c.
How does the algorithm choose?

Finding the maximum margin
The answer to that question involves a search for the Maximum Margin Hyperplane
(MMH) that creates the greatest separation between the two classes. Although any of
the three lines separating the circles and squares would correctly classify all the data
points, it is likely that the line that leads to the greatest separation will generalize the
best to future data. This is because slight variations in the positions of the points near
the boundary might cause one of them to fall over the line by chance.

The support vectors (indicated by arrows in the figure that follows) are the points
from each class that are the closest to the MMH; each class must have at least one
support vector, but it is possible to have more than one. Using the support vectors
alone, it is possible to define the MMH. This is a key feature of SVMs; the support
vectors provide a very compact way to store a classification model, even if the
number of features is extremely large.

Black Box Methods – Neural Networks and Support Vector Machines

[228]

The algorithm to identify the support vectors relies on vector geometry and involves
some fairly tricky math which is outside the scope of this book. However, the basic
principles of the process are fairly straightforward.

More information on the mathematics of SVMs can be found in
the classic paper: Support-vector network, Machine Learning, Vol.
20, pp. 273-297, by C. Cortes and V. Vapnik (1995). A beginner
level discussion can be found in Support vector machines: hype
or hallelujah, SIGKDD Explorations, Vol. 2, No. 2, pp. 1-13, by
K.P. Bennett and C. Campbell (2003). A more in-depth look can
be found in: Support Vector Machines by I. Steinwart and A.
Christmann (Springer Publishing Company, 2008).

The case of linearly separable data
It is easiest to understand how to find the maximum margin under the assumption
that the classes are linearly separable. In this case, the MMH is as far away as
possible from the outer boundaries of the two groups of data points. These outer
boundaries are known as the convex hull. The MMH is then the perpendicular
bisector of the shortest line between the two convex hulls. Sophisticated computer
algorithms that use a technique known as quadratic optimization are capable of
finding the maximum margin in this way.

An alternative (but equivalent) approach involves a search through the space of
every possible hyperplane in order to find a set of two parallel planes which divide
the points into homogeneous groups yet themselves are as far apart as possible.
Stated differently, this process is a bit like trying to find the largest mattress that can
fit up the stairwell to your bedroom.

Chapter 7

[229]

To understand this search process, we'll need to define exactly what we mean by a
hyperplane. In n-dimensional space, the following equation is used:

0w x b⋅ + =
r r

If you aren't familiar with this notation, the arrows above the letters indicate that
they are vectors rather than single numbers. In particular, w is a vector of n weights,
that is, {w1, w2, …, wn}, and b is a single number known as the bias.

If you're confused or having trouble imagining the plane, don't
worry about the details. Simply think of the equation as a way to
specify a line, much like the slope-intercept form (y = mx + b) is
used to specify lines in 2D space.

Using this formula, the goal of the process is to find a set of weights that specify two
hyperplanes, as follows:

1
1

w x b
w x b
⋅ + ≥ +
⋅ + ≤ −

r r

r r

We will also require that these hyperplanes are specified such that all the points of one
class fall above the first hyperplane and all the points of the other class fall beneath the
second hyperplane. This is possible so long as the data are linearly separable.

Vector geometry defines the distance between these two planes as:

2
wr

Here, ||w|| indicates the Euclidean norm (the distance from the origin to vector w).
Therefore, in order to maximize distance, we need to minimize ||w||. In order to
facilitate finding the solution, the task is typically reexpressed as a set of constraints:

()

21min
2

. . 1,i i i

w

s t y w x b x⋅ − ≥ ∀

r

r r r

Black Box Methods – Neural Networks and Support Vector Machines

[230]

Although this looks messy, it's really not too complicated if you think about it in
pieces. Basically, the idea is to minimize the previous formula subject to (s.t.) the
condition each of the yi data points is correctly classified. Note that y indicates the
class value (transformed to either +1 or -1) and the upside down "A" is shorthand for
"for all."

As with the other method for finding the maximum margin, finding a solution to this
problem is a job for quadratic optimization software. Although it can be processor-
intensive, specialized algorithms are capable of solving these problems quickly even
on fairly large datasets.

The case of non-linearly separable data
As we've worked through the theory behind SVMs, you may be wondering about
the elephant in the room: what happens in the case that the data are not linearly
separable? The solution to this problem is the use of a slack variable, which creates
a soft margin that allows some points to fall on the incorrect side of the margin. The
figure that follows illustrates two points falling on the wrong side of the line with the
corresponding slack terms (denoted with the Greek letter Xi):

A cost value (denoted as C) is applied to all points that violate the constraints, and
rather than finding the maximum margin, the algorithm attempts to minimize the
total cost. We can therefore revise the optimization problem to:

()

2

1

1min
2

. . 1 , , 0

n

i
i

i i i i i

w C

s t y w x b x

ξ

ξ ξ
=

+

⋅ − ≥ − ∀ ≥

∑r

r r r

Chapter 7

[231]

If you're confused by now, don't worry, you're not alone. Luckily, SVM packages
will happily optimize this for you without you having to understand the technical
details. The important piece to understand is the addition of the cost parameter, C.
Modifying this value will adjust the penalty for examples that fall on the wrong side
of the hyperplane. The greater the cost parameter, the harder the optimization will
try to achieve 100 percent separation. On the other hand, a lower cost parameter
will place the emphasis on a wider overall margin. It is important to strike a balance
between these two in order to create a model that generalizes well to future data.

Using kernels for non-linear spaces
In many real-world applications, the relationships between variables are non-linear.
As we just discovered, a SVM can still be trained on such data through the addition
of a slack variable, which allows some examples to be misclassified. However, this
is not the only way to approach the problem of non-linearity. A key feature of SVMs
is their ability to map the problem into a higher dimension space using a process
known as the kernel trick. In doing so, a non-linear relationship may suddenly
appear to be quite linear.

Though this seems like nonsense, it is actually quite easy to illustrate by example.
In the following figure, the scatterplot on the left depicts a non-linear relationship
between a weather class (sunny or snowy) and two features: Latitude and
Longitude. The points at the center of the plot are members of the Snowy class,
while the points at the margins are all Sunny. Such data could have been generated
from a set of weather reports, some of which were obtained from stations near the
top of a mountain, while others were obtained from stations around the base
of the mountain.

Black Box Methods – Neural Networks and Support Vector Machines

[232]

On the right side of the figure, after the kernel trick has been applied, we look at the
data through the lens of a new dimension: Altitude. With the addition of this feature,
the classes are now perfectly linearly separable. This is possible because we have
obtained a new perspective on the data; in the left figure, we are viewing the mountain
from a bird's-eye view, while on the right we are viewing the mountain from ground
level. Here, the trend is obvious: snowy weather is found at higher altitudes.

SVMs with non-linear kernels add additional dimensions to the data in order to
create separation in this way. Essentially, the kernel trick involves a process of
adding new features that express mathematical relationships between measured
characteristics. For instance, the altitude feature can be expressed mathematically as
an interaction between latitude and longitude—the closer the point is to the center of
each of these scales, the greater the altitude. This allows the SVM to learn concepts
that were not explicitly measured in the original data.

SVMs with non-linear kernels are extremely powerful classifiers, although they do
have some downsides as shown in the following table:

Strengths Weaknesses
•	 Can be used for classification or

numeric prediction problems
•	 Not overly influenced by noisy data

and not very prone to overfitting
•	 May be easier to use than neural

networks, particularly due to the
existence of several well-supported
SVM algorithms

•	 Gaining popularity due to its high
accuracy and high-profile wins in
data mining competitions

•	 Finding the best model requires
testing of various combinations of
kernels and model parameters

•	 Can be slow to train, particularly
if the input dataset has a large
number of features or examples

•	 Results in a complex black box
model that is difficult if not
impossible to interpret

Kernel functions, in general, are of the following form. Here, the function denoted by
the Greek letter phi, that is, ϕ(x), is a mapping of the data into another space:

() () ()K ,i j j jx x x xφ φ= ⋅
r r r r

Using this form, kernel functions have been developed for many different domains
of data. A few of the most commonly used kernel functions are listed as follows.
Nearly all SVM software packages will include these kernels, among many others.

Chapter 7

[233]

The linear kernel does not transform the data at all. Therefore, it can be expressed
simply as the dot product of the features:

()K ,i j i jx x x x= ⋅
r r r r

The polynomial kernel of degree d adds a simple non-linear transformation of
the data:

() ()K , 1
d

i j i jx x x x= ⋅ +
r r r r

The sigmoid kernel results in a SVM model somewhat analogous to a neural
network using a sigmoid activation function. The Greek letters kappa and delta
are used as kernel parameters:

() ()K , tanhi j i jx x k x x δ= ⋅ −
r r r r

The Gaussian RBF kernel is similar to a RBF neural network. The RBF kernel
performs well on many types of data and is thought to be a reasonable starting
point for many learning tasks:

()
2

2K ,
2
i j

i j

x x
x x e

σ

− −
=

r r
r r

There is no reliable rule for matching a kernel to a particular learning task. The fit
depends heavily on the concept to be learned as well as the amount of training data
and the relationships among the features. Often, a bit of trial and error is required
by training and evaluating several SVMs on a validation dataset. That said, in many
cases, the choice of kernel is arbitrary, as the performance may vary only slightly. To
see how this works in practice, let's apply our understanding of SVM classification to
a real-world problem.

Performing OCR with SVMs
Image processing is a difficult task for many types of machine learning algorithms.
The relationships linking patterns of pixels to higher concepts are extremely complex
and hard to define. For instance, it's easy for a human being to recognize a face, a
cat, or the letter A, but defining these patterns in strict rules is difficult. Furthermore,
image data is often noisy. There can be many slight variations in how the image was
captured depending on the lighting, orientation, and positioning of the subject.

Black Box Methods – Neural Networks and Support Vector Machines

[234]

SVMs are well-suited to tackle the challenges of image data. Capable of learning
complex patterns without being overly sensitive to noise, they are able to recognize
visual patterns with a high degree of accuracy. Moreover, the key weakness of
SVMs—the black box model representation—is less critical for image processing. If an
SVM can differentiate a cat from a dog, it does not much matter how it is doing so.

In this section, we will develop a model similar to those used at the core of the Optical
Character Recognition (OCR) software often bundled with desktop document
scanners. The purpose of such software is to process paper-based documents by
converting printed or handwritten text into an electronic form to be saved in a
database. Of course, this is a difficult problem due to the many variants in handwriting
style and printed fonts. Even so, software users expect perfection, as errors or typos
can result in embarrassing or costly mistakes in a business environment. Let's see
whether our SVM is up to the task.

Step 1 – collecting data
When OCR software first processes a document, it divides the paper into a matrix
such that each cell in the grid contains a single glyph, which is just a fancy way of
referring to a letter, symbol, or number. Next, for each cell, the software will attempt
to match the glyph to a set of all characters it recognizes. Finally, the individual
characters would be combined back together into words, which optionally could
be spell-checked against a dictionary in the document's language.

In this exercise, we'll assume that we have already developed the algorithm to
partition the document into rectangular regions each consisting of a single character.
We will also assume the document contains only alphabetic characters in English.
Therefore, we'll simulate a process that involves matching glyphs to one of the 26
letters, A through Z.

Toward this end, we'll use a dataset donated to the UCI Machine Learning Data
Repository (http://archive.ics.uci.edu/ml) by W. Frey and D. J. Slate. The
dataset contains 20,000 examples of 26 English alphabet capital letters as printed
using 20 different randomly reshaped and distorted black and white fonts.

For more information about these data, refer to: Letter
recognition using Holland-style adaptive classifiers, Machine
Learning, Vol. 6, pp. 161-182, by W. Frey and D.J. Slate
(1991).

Chapter 7

[235]

The following image, published by Frey and Slate, provides an example of some of
the printed glyphs. Distorted in this way, the letters are challenging for a computer
to identify, yet are easily recognized by a human being:

Step 2 – exploring and preparing the data
According to the documentation provided by Frey and Slate, when the glyphs are
scanned into the computer, they are converted into pixels and 16 statistical attributes
are recorded.

The attributes measure such characteristics as the horizontal and vertical dimensions
of the glyph, the proportion of black (versus white) pixels, and the average
horizontal and vertical position of the pixels. Presumably, differences in the
concentration of black pixels across various areas of the box should provide a way to
differentiate among the 26 letters of the alphabet.

To follow along with this example, download the
letterdata.csv file from the Packt Publishing's
website and save it to your R working directory.

Reading the data into R, we confirm that we have received the data with the 16
features that define each example of the letter class. As expected, letter has 26 levels:

> letters <- read.csv("letterdata.csv")

> str(letters)

'data.frame':	20000 obs. of 17 variables:

 $ letter: Factor w/ 26 levels "A","B","C","D",..

 $ xbox : int 2 5 4 7 2 4 4 1 2 11 ...

 $ ybox : int 8 12 11 11 1 11 2 1 2 15 ...

 $ width : int 3 3 6 6 3 5 5 3 4 13 ...

 $ height: int 5 7 8 6 1 8 4 2 4 9 ...

Black Box Methods – Neural Networks and Support Vector Machines

[236]

 $ onpix : int 1 2 6 3 1 3 4 1 2 7 ...

 $ xbar : int 8 10 10 5 8 8 8 8 10 13 ...

 $ ybar : int 13 5 6 9 6 8 7 2 6 2 ...

 $ x2bar : int 0 5 2 4 6 6 6 2 2 6 ...

 $ y2bar : int 6 4 6 6 6 9 6 2 6 2 ...

 $ xybar : int 6 13 10 4 6 5 7 8 12 12 ...

 $ x2ybar: int 10 3 3 4 5 6 6 2 4 1 ...

 $ xy2bar: int 8 9 7 10 9 6 6 8 8 9 ...

 $ xedge : int 0 2 3 6 1 0 2 1 1 8 ...

 $ xedgey: int 8 8 7 10 7 8 8 6 6 1 ...

 $ yedge : int 0 4 3 2 5 9 7 2 1 1 ...

 $ yedgex: int 8 10 9 8 10 7 10 7 7 8 ...

Recall that SVM learners require all features to be numeric, and moreover, that each
feature is scaled to a fairly small interval. In this case, every feature is an integer, so
we do not need to convert any factors into numbers. On the other hand, some of the
ranges for these integer variables appear fairly wide. This would seem to suggest
that we need to normalize or standardize the data. In fact, we can skip this step
because the R package that we will use for fitting the SVM model will perform the
rescaling for us automatically.

Given that the data preparation has been largely done for us, we can skip directly to
the training and testing phases of the machine learning process. In previous analyses,
we randomly divided the data between the training and testing sets. Although we
could do so here, Frey and Slate have already randomized the data and therefore
suggest using the first 16,000 records (80 percent) for building the model and the next
4,000 records (20 percent) for testing. Following their advice, we can create training
and testing data frames as follows:

> letters_train <- letters[1:16000,]

> letters_test <- letters[16001:20000,]

With our data ready to go, let's start building our classifier.

Chapter 7

[237]

Step 3 – training a model on the data
When it comes to fitting an SVM model in R, there are several outstanding packages
to choose from. The e1071 package from the Department of Statistics at the Vienna
University of Technology (TU Wien) provides an R interface to the award winning
LIBSVM library, a widely-used open source SVM program written in C++. If you are
already familiar with LIBSVM, you may want to start here.

For more information on LIBSVM, refer to the authors' website at:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Similarly, if you're already invested in the SVMlight algorithm, the klaR package
from the Department of Statistics at the Dortmund University of Technology
(TU Dortmund) provides functions to work with this SVM implementation
directly from R.

For information on SVMlight, have a look at
http://svmlight.joachims.org/.

Finally, if you are starting from scratch, it is perhaps best to begin with the SVM
functions in the kernlab package. An interesting advantage of this package is that
it was developed natively in R rather than C or C++, which allows it to be easily
customized; none of the internals are hidden behind the scenes. Perhaps even more
importantly, unlike the other options, kernlab can be used with the caret package,
which allows SVM models to be trained and evaluated using a variety of automated
methods (covered in depth in Chapter 11, Improving Model Performance).

For a more thorough introduction to kernlab,
please refer to the author's paper at:
http://www.jstatsoft.org/v11/i09/

Black Box Methods – Neural Networks and Support Vector Machines

[238]

The syntax for training SVM classifiers with kernlab is as follows. If you do happen
to be using one of the other packages, the commands are largely similar. By default,
the ksvm() function uses the Gaussian RBF kernel, but a number of other options
are provided.

Chapter 7

[239]

To provide a baseline measure of SVM performance, let's begin by training a simple
linear SVM classifier. If you haven't already, install the kernlab package to your
library using the command install.packages("kernlab"). Then, we can call the
ksvm() function on the training data and specify the linear (that is, vanilla) kernel
using the vanilladot option as follows:

> library(kernlab)

> letter_classifier <- ksvm(letter ~ ., data = letters_train,

 kernel = "vanilladot")

Depending on the performance of your computer, this operation may take some time
to complete. When it finishes, type the name of the stored model to see some basic
information about the training parameters and the fit of the model.

> letter_classifier

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

 parameter : cost C = 1

Linear (vanilla) kernel function.

Number of Support Vectors : 7037

Objective Function Value : -14.1746 -20.0072 -23.5628 -6.2009 -7.5524
-32.7694 -49.9786 -18.1824 -62.1111 -32.7284 -16.2209...

Training error : 0.130062

This information tells us very little about how well the model will perform in the real
world. We'll need to examine its performance on the testing dataset to know whether
it generalizes well to unseen data.

Step 4 – evaluating model performance
The predict() function allows us to use the letter classification model to make
predictions on the testing dataset:

> letter_predictions <- predict(letter_classifier, letters_test)

Black Box Methods – Neural Networks and Support Vector Machines

[240]

Because we didn't specify the type parameter, the default type = "response" was
used. This returns a vector containing a predicted letter for each row of values in the
testing data. Using the head() function, we can see that the first six predicted letters
were U, N, V, X, N, and H:

> head(letter_predictions)

[1] U N V X N H

Levels: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In order to examine how well our classifier performed, we need to compare the
predicted letter to the true letter in the testing dataset. We'll use the table()
function for this purpose (only a portion of the full table is shown here):

> table(letter_predictions, letters_test$letter)

letter_predictions A B C D E

 A 144 0 0 0 0

 B 0 121 0 5 2

 C 0 0 120 0 4

 D 2 2 0 156 0

 E 0 0 5 0 127

The diagonal values of 144, 121, 120, 156, and 127 indicate the total number of
records where the predicted letter matches the true value. Similarly, the number of
mistakes is also listed. For example, the value of 5 in row B and column D indicates
that there were five cases where the letter D was misidentified as a B.

Looking at each type of mistake individually may reveal some interesting patterns
about the specific types of letters the model has trouble with, but this is also time
consuming. We can simplify our evaluation by instead calculating the overall
accuracy. This considers only whether the prediction was correct or incorrect and
ignores the type of error.

The following command returns a vector of TRUE or FALSE values indicating
whether the model's predicted letter agrees with (that is, matches) the actual
letter in the test dataset:

> agreement <- letter_predictions == letters_test$letter

Using the table() function, we see that the classifier correctly identified the letter in
3,357 out of the 4,000 test records:

> table(agreement)

agreement

FALSE TRUE

 643 3357

Chapter 7

[241]

In percentage terms, the accuracy is about 84 percent:

> prop.table(table(agreement))

agreement

 FALSE TRUE

0.16075 0.83925

Note that when Frey and Slate published the dataset in 1991, they reported a
recognition accuracy of about 80 percent. Using just a few lines of R code, we were
able to surpass their result, although we also have the benefit of over two decades of
additional machine learning research. With that in mind, it is likely that we are able
to do even better.

Step 5 – improving model performance
Our previous SVM model used the simple linear kernel function. By using a more
complex kernel function, we can map the data into a higher dimensional space and
potentially obtain a better model fit.

It can be challenging, however, to choose from the many different kernel functions. A
popular convention is to begin with the Gaussian RBF kernel, which has been shown
to perform well for many types of data. We can train an RBF-based SVM using the
ksvm() function as shown here:

> letter_classifier_rbf <- ksvm(letter ~ ., data = letters_train,

 kernel = "rbfdot")

From there, we make predictions as before:

> letter_predictions_rbf <- predict(letter_classifier_rbf,

 letters_test)

Finally, we'll compare the accuracy to our linear SVM:

> agreement_rbf <- letter_predictions_rbf == letters_test$letter

> table(agreement_rbf)

agreement_rbf

FALSE TRUE

 281 3719

> prop.table(table(agreement_rbf))

agreement_rbf

 FALSE TRUE

0.07025 0.92975

Black Box Methods – Neural Networks and Support Vector Machines

[242]

By simply changing the kernel function, we were able to increase the accuracy
of our character recognition model from 84 percent to 93 percent. If this level of
performance is still unsatisfactory for the OCR program, other kernels could be
tested or the cost of the constraints parameter C could be varied to modify the
width of the decision boundary. As an exercise, you should experiment with these
parameters to see how they impact the success of the final model.

Summary
In this chapter, we examined two machine learning methods that offer a great deal
of potential but are often overlooked due to their complexity. Hopefully you now
realize that this reputation is at least somewhat undeserved. The basic concepts that
drive ANNs and SVMs are fairly easy to understand.

On the other hand, because ANNs and SVMs have been around for many decades,
each of them has numerous variations. This chapter just scratches the surface of
what is possible with these methods. Yet by utilizing the terminology you learned
here, you should be capable of picking up the nuances that distinguish the many
advancements that are being developed every day.

Now that we have spent some time learning about many different types of predictive
models from simple to sophisticated, in the next chapter we will begin to consider
methods for other types of learning tasks. These unsupervised learning techniques
will bring to light fascinating patterns within the data.

Finding Patterns – Market
Basket Analysis Using

Association Rules
Think back to the last time you made an impulse purchase. Maybe you were waiting
in the grocery store checkout lane and bought a pack of chewing gum or a candy
bar. Perhaps on a late-night trip to a convenience store for diapers and formula you
picked up a caffeinated beverage or a six-pack of beer. You might have even bought
this book on a whim after it was recommended to you by your favorite bookseller.
In any case, it is no coincidence that gum and candy are located in checkout lanes,
convenience stores stock beer in addition to diapers, and the bookstore seems to
know exactly which book will catch your interest.

In years past, these type of recommendation systems were based on the subjective
experience of marketing professionals and inventory managers or buyers. More
recently, machine learning has been used to learn these patterns of purchasing
behavior. Barcode scanners, computerized inventory systems, and online shopping
have led to a wealth of transactional data ripe for such data mining.

This chapter covers machine learning methods for identifying associations among
items in transactional data—a practice commonly known as market basket analysis
due to its widespread use among retail stores. By the time you finish, you will
have learned:

•	 Methods for finding useful associations in large databases using simple
statistical performance measures

•	 How to manage the peculiarities of working with transactional data
•	 The start-to-finish steps needed for using association rules to perform

a market basket analysis on real-world data

Finding Patterns – Market Basket Analysis Using Association Rules

[244]

To learn how machine learning locates interesting patterns, keep reading. From
there, you'll have the foundations to try a market basket analysis of your own.

Understanding association rules
The result of a market basket analysis is a set of association rules that specify
patterns of relationships among items. A typical rule might be expressed in the form:

{ } { }peanut butter, jelly bread→

In plain language, this association rule states that if peanut butter and jelly are
purchased, then bread is also likely to be purchased. In other words, "peanut butter
and jelly imply bread." Groups of one or more items are surrounded by brackets to
indicate that they form a set, or more specifically, an itemset that appears in the data
with some regularity. Association rules are learned from subsets of itemsets. For
example, the preceding rule was identified from the set of {peanut butter, jelly, bread}.

Developed in the context of Big Data and database science, association rules are
not used for prediction, but rather for unsupervised knowledge discovery in large
databases, unlike the classification and numeric prediction algorithms presented in
previous chapters. Even so, you will find that association rule learners are closely
related to and share many features of the classification rule learners presented in
Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules.

Because association rule learners are unsupervised, there is no need for the algorithm
to be trained; data does not need to be labeled ahead of time. The program is
simply unleashed on a dataset in the hope that interesting associations are found.
The downside, of course, is that there isn't an easy way to objectively measure
the performance of a rule learner, aside from evaluating them for qualitative
usefulness—typically an eyeball test of some sort.

Although association rules are most often used for market basket analysis, they
are helpful for finding patterns in many different types of data. Other potential
applications include:

•	 Searching for interesting and frequently occurring patterns of DNA and
protein sequences in an analysis of cancer data

•	 Finding patterns of purchases or medical claims that occur in combination
with fraudulent credit card or insurance use

•	 Identifying combinations of behavior that proceed customers dropping their
cellular phone service or upgrading their cable television package

Chapter 8

[245]

Association rule analysis is used to search for interesting connections among a
very large number of variables. Human beings are capable of such insight quite
intuitively, but it often takes expert-level knowledge or a great deal of experience to
do what a rule-learning algorithm can do in minutes or even seconds. Additionally,
some data is simply too large and complex for a human being to find the needle in
the haystack.

The Apriori algorithm for association
rule learning
The complexity of transactional data is largely what makes association rule mining
a challenging task for computers and humans alike. Transactional datasets are
typically extremely large, both in terms of the number of transactions as well as
the number of features (that is, items) that are monitored. Adding difficulty is the
fact that the number of potential itemsets grows exponentially with the number of
features; given k items that can appear or not appear in a set, there are on the order
of 2^k possible itemsets that must be searched for rules. A retailer that sells only 100
different items could have about 2^100 = 1e+30 itemsets that a learner would have to
evaluate—a seemingly impossible task.

Rather than evaluate each of these itemsets one-by-one, a smarter rule-learning
algorithm takes advantage of the fact that in reality, many of the potential
combinations of items are rarely, if ever, found in practice. For instance, even if a
store sells both automotive items and women's cosmetics, a set of {motor oil, lipstick}
is likely to be extraordinarily uncommon. By ignoring these rare (and therefore
perhaps less important) combinations, it is possible to limit the scope of the search
for rules to a more manageable size.

Much work has been done to identify heuristic algorithms for reducing the
number of itemsets to search. Perhaps the most-widely used approach for
efficiently searching large databases for rules is known as Apriori. This algorithm
was introduced in 1994 by R. Agrawal and R. Srikant, and has become somewhat
synonymous with association rule learning since then. The name is derived from
the fact that the algorithm utilizes a simple prior (that is, a priori) belief about the
properties of frequent itemsets.

Finding Patterns – Market Basket Analysis Using Association Rules

[246]

Before we get into that, it's worth noting that this algorithm, like all learning
algorithms, is not without its strengths and weaknesses. Some of these are listed
as follows:

Strengths Weaknesses
•	 Is ideally suited for working with very

large amounts of transactional data
•	 Results in rules that are easy to

understand
•	 Useful for "data mining" and

discovering unexpected knowledge in
databases

•	 Not very helpful for small datasets
•	 Takes effort to separate the insight

from the common sense
•	 Easy to draw spurious conclusions

from random patterns

As noted earlier, the Apriori algorithm employs a simple a priori belief as guideline
for reducing the association rule search space: all subsets of a frequent itemset must
also be frequent. This heuristic is known as the Apriori property. Using this astute
observation, it is possible to dramatically limit the number of rules to search. For
example, the set {motor oil, lipstick} can only be frequent if both {motor oil} and
{lipstick} occur frequently as well. Consequently, if either motor oil or lipstick is
infrequent, then any set containing these items can be excluded from the search.

For additional details on the Apriori algorithm, refer to: Fast
algorithms for mining association rule, in Proceedings of the 20th
International Conference on Very Large Databases, pp. 487-499,
by R. Agrawal, and R.Srikant, (1994).

To see how this principle can be applied in a more realistic setting, let's consider a
simple transaction database. The following table shows five completed transactions
at an imaginary hospital's gift shop:

Transaction number Purchased items
1 {flowers, get well card, soda}
2 {plush toy bear, flowers, balloons, candy bar}
3 {get well card, candy bar, flowers}
4 {plush toy bear, balloons, soda}
5 {flowers, get well card, soda}

Chapter 8

[247]

By looking at the sets of purchases, one can infer that there are a couple of typical
buying patterns. A person visiting a sick friend or family member tends to buy a get
well card and balloons, while visitors to new mothers tend to buy plush toy bears
and balloons. Such patterns are notable because they appear frequently enough to
catch our interest; we simply apply a bit of logic and subject-matter experience to
explain the rule.

In a similar fashion, the Apriori algorithm uses statistical measures of an itemset's
"interestingness" to locate association rules in much larger transaction databases. In
the sections that follow, we will discover how Apriori computes such measures of
interest, and how they are combined with the Apriori property to reduce the number
of rules to be learned.

Measuring rule interest – support and confidence
Whether or not an association rule is deemed interesting is determined by two
statistical measures: support and confidence. By providing minimum thresholds for
each of these metrics and applying the Apriori principle, it is easy to drastically limit
the number of rules reported, perhaps even to the point where only the obvious,
or common sense, rules are identified. For this reason, it is important to carefully
understand the types of rules that are excluded under these criteria.

The support of an itemset or rule measures how frequently it occurs in the data. For
instance, the itemset {get well card, flowers} has support of 3 / 5 = 0.6 in the hospital
gift shop data as explained previously. Similarly, the support for {get well card} ->
{flowers} is also 0.6. Support can be calculated for any itemset, or even a single item;
for instance, the support for {candy bar} is 2/5 = 0.4, since candy bars appear in 40
percent of purchases. A function defining support for itemset X could be defined as:

() ()count
support

X
X

N
=

Where N is the number of transactions in the database and count(X) indicates the
number of transactions the itemset X appears in.

A rule's confidence is a measurement of its predictive power or accuracy. It is
defined as the support of the itemset containing both X and Y divided by the
support of the itemset containing only X:

() ()
()

support ,
confidence

support
X Y

X Y
X

→ =

Finding Patterns – Market Basket Analysis Using Association Rules

[248]

Essentially, the confidence tells us the proportion of transactions where the presence
of item or itemset X results in the presence of item or itemset Y. Keep in mind that
the confidence that X leads to Y is not the same as the confidence that Y leads to
X. For example, the confidence of {flowers} -> {get well card} is 0.6 / 0.8 = 0.75. In
comparison, the confidence of {get well card} -> {flowers} is 0.6 / 0.6 = 1.0. This means
that a purchase involving flowers results is accompanied by a purchase of a get well
card 75 percent of the time, while a purchase of a get well card is associated with
flowers 100 percent of the time. This information could be quite useful to the gift
shop management.

You may have noticed similarities between support, confidence,
and the Bayesian probability rules covered in Chapter 4,
Probabilistic Learning – Classification Using Naive Bayes. In fact,
support(A, B) is the same as P(A ∩ B) and confidence(A → B) is the
same as P(B | A). It is just the context that differs.

Rules like {get well card} -> {flowers} are known as strong rules because they have
both high support and confidence. One way to find more strong rules would be to
examine every possible combination of items in the gift shop, measure the support
and confidence, and report back only those rules that meet certain levels of interest.
However, as noted before, this strategy is generally not feasible for anything but the
smallest of datasets.

In the next section, you will see how the Apriori algorithm uses minimum levels of
support and confidence with the Apriori principle to quickly find strong rules by
reducing the number of rules to a more manageable level.

Building a set of rules with the Apriori principle
Recall that the Apriori principle states that all subsets of a frequent itemset must
also be frequent. In other words, if {A, B} is frequent, then {A} and {B} both must be
frequent. Recall also that by definition, the support metric indicates how frequently
an itemset appears in the data. Therefore, if we know that {A} does not meet a
desired support threshold, there is no reason to consider {A, B} or any itemset
containing {A}; it cannot possibly be frequent.

The Apriori algorithm uses this logic to exclude potential association
rules prior to actually evaluating them. The actual process of creating rules occurs
in two phases:

•	 Identifying all itemsets that meet a minimum support threshold
•	 Creating rules from these itemsets that meet a minimum confidence threshold

Chapter 8

[249]

The first phase occurs in multiple iterations. Each successive iteration involves
evaluating the support of storing a set of increasingly large itemsets. For instance,
iteration 1 involves evaluating the set of 1-item itemsets (1-itemsets), iteration
2 evaluates the 2-itemsets, and so on. The result of each iteration i is a set of all
i-itemsets that meet the minimum support threshold.

All the itemsets from iteration i are combined in order to generate candidate itemsets
for evaluation in iteration i + 1. But the Apriori principle can eliminate some of them
even before the next round begins. If {A}, {B}, and {C} are frequent in iteration 1 while
{D} is not frequent, then iteration 2 will consider only {A, B}, {A, C}, and {B, C}. Thus,
the algorithm needs to evaluate only three itemsets rather than the six that would
have been evaluated if sets containing D had not been eliminated a priori.

Continuing this thought, suppose during iteration 2 it is discovered that {A, B} and
{B, C} are frequent, but {A, C} is not. Although iteration 3 would normally begin by
evaluating the support for {A, B, C}, this step need not occur at all. Why not? The
Apriori principle states that {A, B, C} cannot possibly be frequent, since the subset
{A, C} is not. Therefore, having generated no new itemsets in iteration 3, the
algorithm may stop.

At this point, the second phase of the Apriori algorithm may begin. Given the set
of frequent itemsets, association rules are generated from all possible subsets. For
instance, {A, B} would result in candidate rules for {A} -> {B} and {B} -> {A}. These
are evaluated against a minimum confidence threshold, and any rules that do not
meet the desired confidence level are eliminated.

Example – identifying frequently
purchased groceries with
association rules
As noted in this chapter's introduction, market basket analysis is used behind the
scenes for the recommendation systems used in many brick-and-mortar and online
retailers. The learned association rules indicate combinations of items that are often
purchased together in a set. The acquired knowledge might provide insight into
new ways for a grocery chain to optimize the inventory, advertise promotions,
or organize the physical layout of the store. For instance, if shoppers frequently
purchase coffee or orange juice with a breakfast pastry, then it may be possible to
increase profit by relocating pastries closer to the coffee and juice.

Finding Patterns – Market Basket Analysis Using Association Rules

[250]

In this tutorial, we will perform a market basket analysis of transactional data from
a grocery store. However, the techniques could be applied to many different types
of problems, from movie recommendations, to dating sites, to finding dangerous
interactions among medications. In doing so, we will see how the Apriori algorithm
is able to efficiently evaluate a potentially massive set of association rules.

Step 1 – collecting data
Our market basket analysis will utilize purchase data from one month of operation
at a real-world grocery store. The data contain 9,835 transactions, or about 327
transactions per day (roughly 30 transactions per hour in a 12 hour business day),
suggesting that the retailer is not particularly large, nor is it particularly small.

The data used here was adapted from the Groceries
dataset in the Apriori R package. For more information
on datasets, see: Implications of probabilistic data modeling
for mining association rules, in Studies in Classification,
Data Analysis, and Knowledge Organization: from Data and
Information Analysis to Knowledge Engineering, pp. 598–605,
by M. Hahsler, K. Hornik, and T. Reutterer, (2006).

In a typical grocery store, there is a huge variety of items. There might be five brands
of milk, a dozen different types of laundry detergent, and three brands of coffee.
Given the moderate size of the retailer, we will assume that they are not terribly
concerned with finding rules that apply only to a specific brand of milk or detergent.
With this in mind, all brand names can be removed from the purchases. This reduces
the number of groceries to a more manageable 169 types, using broad categories such
as chicken, frozen meals, margarine, and soda.

If you hope to identify highly-specific association rules—like
whether customers prefer grape or strawberry jelly with
their peanut butter—you will need a tremendous amount of
transactional data. Massive chain retailers use databases of
many millions of transactions in order to find associations
among particular brands, colors, or flavors of items.

Do you have any guesses about which types of items might be purchased together?
Will wine and cheese be a common pairing? Bread and butter? Tea and honey? Let's
dig into this data and see if we can confirm our guesses.

Chapter 8

[251]

Step 2 – exploring and preparing the data
Unlike the datasets we've used previously, transactional data is stored in a slightly
different format. Most of our prior analyses utilized data in the form of a matrix
where rows indicated example instances and columns indicated features. Given
the structure of the matrix format, all examples are required to have exactly the
same set of features.

In comparison, transactional data is more free-form. As usual, each row in the data
specifies a single example—in this case, a transaction. However, rather than having
a set number of features, each record comprises a comma-separated list of any
number of items, from one to many. In essence, the features may differ from
example to example.

To follow along with this analysis, download the
groceries.csv file from the Packt Publishing's
website and save to your R working directory.

The first five rows of the raw grocery.csv data are as follows:

citrus fruit,semi-finished bread,margarine,ready soups
tropical fruit,yogurt,coffee
whole milk
pip fruit,yogurt,cream cheese,meat spreads
other vegetables,whole milk,condensed milk,long life bakery product

These lines indicate five separate grocery store transactions. The first transaction
included four items: citrus fruit, semi-finished bread, margarine, and ready soups.
In comparison, the third transaction included only one item, whole milk.

Suppose we tried to load the data using the read.csv() function as we had done
in prior analyses. R would happily comply and read the data into a matrix form
as follows:

Finding Patterns – Market Basket Analysis Using Association Rules

[252]

You will notice that R created four variables to store the items in the transactional
data: V1, V2, V3, and V4. Although it was nice of R to do this, if we use the data like
this, we will encounter problems later on. First, R chose to create four variables
because the first line had exactly four comma-separated values. However, we
know that grocery purchases can contain more than four items; these transactions
unfortunately will be broken across multiple rows in the matrix. We could try to
remedy this by putting the transaction with the largest number of items at the top of
the file, but this ignores another, more problematic issue.

The problem is due to the fact that by structuring the data this way, R has constructed
a set of features that record not just the items in the transactions, but also the order
they appear. If we imagine our learning algorithm as an attempt to find a relationship
among V1, V2, V3, and V4, then whole milk in V1 might be treated differently
than whole milk appearing in V2. Instead, we need a dataset that does not treat a
transaction as a set of positions to be filled (or not filled) with specific items, but rather
as a market basket that either contains or does not contain each particular item.

Data preparation – creating a sparse matrix for
transaction data
The solution to this problem utilizes a data structure called a sparse matrix. (You
may recall that we used a sparse matrix for processing text data in Chapter 4,
Probabilistic Learning – Classification Using Naive Bayes.) Similar to the preceding
dataset, each row in the sparse matrix indicates a transaction. However, there is
a column (that is, feature) for every item that could possibly appear in someone's
shopping bag. Since there are 169 different items in our grocery store data, our
sparse matrix will contain 169 columns.

Why not just store this as a data frame like we have done in most of our analyses?
The reason is that as additional transactions and items are added, a conventional data
structure quickly becomes too large to fit into memory. Even with the relatively small
transactional dataset used here, the matrix contains nearly 1.7 million cells, most of
which contain zeros (hence the name "sparse" matrix). Since there is no benefit to
storing all these zero values, sparse matrix does not actually store the full matrix in
memory; it only stores the cells that are occupied by an item. This allows the structure
to be more memory efficient than an equivalently sized matrix or data frame.

In order to create the sparse matrix data structure from transactional data, we
can use functionality provided by the association rules (arules) package. Install
and load the package using the commands install.packages("arules") and
library(arules).

Chapter 8

[253]

For more information on the arules package, refer to:
arules -- A computational environment for mining association
rules and frequent item sets, Journal of Statistical Software
Vol. 14 by M. Hahsler, B. Gruen, and K. Hornik, (2005).

The read.transactions() function we'll employ is similar to read.csv() except
that it results in a sparse matrix suitable for transactional data. The parameter
sep="," specifies that items in the input file are separated by a comma. To read the
groceries.csv data into a sparse matrix named groceries, type:

> groceries <- read.transactions("groceries.csv", sep = ",")

To see some basic information about the groceries dataset we just created, use the
summary() function on the object:

> summary(groceries)

transactions as itemMatrix in sparse format with

 9835 rows (elements/itemsets/transactions) and

 169 columns (items) and a density of 0.02609146

The first block of information in the output (as shown previously) provides a
summary of the sparse matrix we created. 9835 rows refer to the store transactions,
and 169 columns are features for each of the 169 different items that might appear in
someone's grocery basket. Each cell in the matrix is a 1 if the item was purchased for
the corresponding transaction, or 0 otherwise.

The density value of 0.02609146 (2.6 percent) refers to the proportion of non-zero
matrix cells. Since there are 9835 * 169 = 1662115 positions in the matrix, we can
calculate that a total of 1662115 * 0.02609146 = 43367 items were purchased during
the store's 30 days of operation (assuming no duplicate items were purchased). With
an additional step, we can determine that the average transaction contained 43367 /
9835 = 4.409 different grocery items. (Of course, if we look a little further down the
output, we'll see that this has already been computed for us.)

The next block of summary() output (shown as follows) lists the items that were
most commonly found in the transactional data. Since 2513 / 9835 = 0.2555, we
can determine that whole milk appeared in 25.6 percent of transactions. Other
vegetables, rolls/buns, soda, and yogurt round out the list of other common items.

most frequent items:

 whole milk other vegetables rolls/buns

 2513 1903 1809

 soda yogurt (Other)

 1715 1372 34055

Finding Patterns – Market Basket Analysis Using Association Rules

[254]

Finally, we are presented with a set of statistics about the size of transactions. A
total of 2,159 transactions contained only a single item, while one transaction had
32 items. The first quartile and median purchase size are 2 and 3 items respectively,
implying that 25 percent of transactions contained two or fewer items and about half
contained more or less than three items. The mean of 4.409 matches the value we
calculated manually.

element (itemset/transaction) length distribution:

sizes

 1 2 3 4 5 6 7 8 9 10 11 12

2159 1643 1299 1005 855 645 545 438 350 246 182 117

 13 14 15 16 17 18 19 20 21 22 23 24

 78 77 55 46 29 14 14 9 11 4 6 1

 26 27 28 29 32

 1 1 1 3 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.000 2.000 3.000 4.409 6.000 32.000

The arules package includes some useful features for examining transaction data. To
look at the contents of the sparse matrix, use the inspect() function in combination
with vector operators. The first five transactions can be viewed as follows:

> inspect(groceries[1:5])

 items

1 {citrus fruit,

 margarine,

 ready soups,

 semi-finished bread}

2 {coffee,

 tropical fruit,

 yogurt}

3 {whole milk}

4 {cream cheese,

 meat spreads,

 pip fruit,

 yogurt}

5 {condensed milk,

 long life bakery product,

 other vegetables,

 whole milk}

Chapter 8

[255]

These transactions match our look at the original CSV file. To examine a particular
item (that is, a column of data), it is possible use the row, column matrix notion.
Using this with the itemFrequency() function allows us to see the proportion of
transactions that contain the item. This allows us, for instance, to view the support
level for the first three items in the grocery data:

> itemFrequency(groceries[, 1:3])

abrasive cleaner artif. sweetener baby cosmetics

 0.0035587189 0.0032536858 0.0006100661

Notice that the items in the sparse matrix are sorted in columns by alphabetical
order. Abrasive cleaner and artificial sweeteners are found in about 0.3 percent of
transactions while baby cosmetics are found in about 0.06 percent.

Visualizing item support – item frequency plots
To present these statistics visually, use the itemFrequencyPlot() function. This
allows you to produce at a bar chart depicting the proportion of transactions
containing certain items. Since transactional data contains a very large number of
items, you will often need to limit those appearing in the plot in order to produce a
legible chart.

If you would like to require those items to appear in a minimum proportion of
transactions, use itemFrequencyPlot() with the support parameter:

> itemFrequencyPlot(groceries, support = 0.1)

As shown in the following plot, this results in a histogram showing the eight items in
the groceries data with at least 10 percent support:

Finding Patterns – Market Basket Analysis Using Association Rules

[256]

If you would rather limit the plot to a specific number of items, the topN parameter
can be used with itemFrequencyPlot():

> itemFrequencyPlot(groceries, topN = 20)

The histogram is then sorted by decreasing support, as shown in the following
diagram for the top 20 items in the groceries data:

Visualizing transaction data – plotting the
sparse matrix
In addition to looking at items, it's also possible to visualize the entire sparse matrix.
To do so, use the image() function. The sparse matrix for the first five transactions is
as follows:

> image(groceries[1:5])

The resulting diagram depicts a matrix with five rows and 169 columns, indicating
the five transactions and 169 possible items we requested. Cells in the matrix are
filled with black for transactions (rows) where the item (column) was purchased.

Although the figure is small and may be slightly hard to read, you can see that the
first, fourth, and fifth transactions contained four items each, since their rows have
four cells filled in. You can also see that rows three, five, two, and four have an item
in common (on the right side of the diagram).

Chapter 8

[257]

This visualization can be a useful tool for exploring the data. For one, it may help
with the identification of potential data issues. Columns that are filled all the way
down could indicate items that are purchased in every transaction—a problem that
could arise, perhaps, if a retailer's name or identification number was inadvertently
included in the transaction dataset.

Additionally, patterns in the diagram may help reveal interesting segments of
transactions or items, particularly if the data is sorted in interesting ways. For
example, if the transactions are sorted by date, patterns in the black dots could reveal
seasonal effects in the number or types of items people purchase. Perhaps around
Christmas or Hanukkah, toys are more common; around Halloween, perhaps candy
becomes popular. This type of visualization could be especially powerful if the items
were also sorted into categories. In most cases, however, the plot will look fairly
random, like static on a television screen.

Keep in mind that this visualization will not be as useful for extremely large
transaction databases because the cells will be too small to discern. Still, by
combining it with the sample() function, you can view the sparse matrix for a
randomly sampled set of transactions. Here is what a random selection of 100
transactions looks like:

> image(sample(groceries, 100))

This creates a matrix diagram with 100 rows and the same 169 columns, as follows:

A few columns seem fairly heavily populated, indicating some very popular items
at the store, but overall, the distribution of dots seems fairly random. Given nothing
else of note, let's continue with our analysis.

Finding Patterns – Market Basket Analysis Using Association Rules

[258]

Step 3 – training a model on the data
With data preparation taken care of, we can now work at finding the associations
among shopping cart items. We will use an implementation of the Apriori algorithm
in the arules package we've been using for exploring and preparing the groceries
data. You'll need to install and load this package if you have not done so already. The
following table shows the syntax for creating sets of rules with the apriori() function:

Although running the apriori() function is straightforward, there can sometimes
be a fair amount of trial and error when finding support and confidence parameters
to produce a reasonable number of association rules. If you set these levels too high,
then you might find no rules or rules that are too generic to be very useful. On the
other hand, a threshold too low might result in an unwieldy number of rules, or
worse, the operation might take a very long time or run out of memory during the
learning phase.

Chapter 8

[259]

In this case, if we attempt to use the default settings of support = 0.1 and
confidence = 0.8, we end up with a set of zero rules:

> apriori(groceries)

set of 0 rules

Obviously, we need to widen the search a bit.

If you think about it, this outcome should not have been
terribly surprising. With the default support of 0.1, this
means that in order to generate a rule, an item must have
appeared in at least 0.1 * 9385 = 938.5 transactions. Since
only eight items appeared this frequently in our data, it's
no wonder we didn't find any rules.

One way to approach the problem of setting support is to think about the minimum
number of transactions you would need before you would consider a pattern
interesting. For instance, you could argue that if an item is purchased twice a day
(about 60 times) then it may be worth taking a look at. From there, it is possible to
calculate the support level needed to find only rules matching at least that many
transactions. Since 60 out of 9,835 equals 0.006, we'll try setting the support there first.

Setting the minimum confidence involves a tricky balance. On one hand, if
confidence is too low, then we might be overwhelmed with a large number of
unreliable rules—such as dozens of rules indicating items commonly purchased
with batteries. How would we know where to target our advertising budget then?
On the other hand, if we set confidence too high, then we will be limited to rules that
are obvious or inevitable—like the fact that a smoke detector is always purchased
in combination with batteries. In this case, moving the smoke detectors closer to the
batteries is unlikely to generate additional revenue, since the two items were already
almost always purchased together.

The appropriate minimum confidence level depends a
great deal on the goals of your analysis. If you start with
conservative values, you can always reduce them to broaden
the search if you aren't finding actionable intelligence.

We'll start with a confidence threshold of 0.25, which means that in order to be
included in the results, the rule has to be correct at least 25 percent of the time. This
will eliminate the most unreliable rules while allowing some room for us to modify
behavior with targeted promotions.

Finding Patterns – Market Basket Analysis Using Association Rules

[260]

We are now ready to generate some rules. In addition to the minimum support and
confidence, it is helpful to set minlen = 2 to eliminate rules that contain fewer than
two items. This prevents uninteresting rules from being created simply because
the item is purchased frequently, for instance, {} => whole milk. This rule meets
the minimum support and confidence because whole milk is purchased in over 25
percent of transactions, but it isn't a very actionable rule.

The full command for finding a set of association rules using the Apriori algorithm
is as follows:

> groceryrules <- apriori(groceries, parameter = list(support =

 0.006, confidence = 0.25, minlen = 2))

This saves our rules in a rules object, which we can peek into by typing its name:

> groceryrules

set of 463 rules

Our groceryrules object contains a set of 463 association rules. To determine
whether any of them are useful, we'll have to dig deeper.

Step 4 – evaluating model performance
To obtain a high-level overview of the association rules, we can use summary() as
follows. The rule length distribution tells us how many rules have each count of
items. In our rule set, 150 rules have only two items, while 297 have three, and 16
have four. The summary statistics associated with this distribution are also given:

> summary(groceryrules)

set of 463 rules

rule length distribution (lhs + rhs):sizes

 2 3 4

150 297 16

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 2.000 2.000 3.000 2.711 3.000 4.000

As noted in the previous output, the size of the rule is
calculated as the total of both the left-hand side (lhs) and
right-hand side (rhs) of the rule. This means that a rule
like {bread} => {butter} is two items and {peanut
butter, jelly} => {bread} is three.

Chapter 8

[261]

Next, we see summary statistics for the rule quality measures: support, confidence,
and lift. Support and confidence should not be very surprising, since we used these
as selection criteria for the rules. However, we might be alarmed if most or all of the
rules were very near the minimum thresholds—not the case here.

summary of quality measures:

 support confidence lift

 Min. :0.006101 Min. :0.2500 Min. :0.9932

 1st Qu.:0.007117 1st Qu.:0.2971 1st Qu.:1.6229

 Median :0.008744 Median :0.3554 Median :1.9332

 Mean :0.011539 Mean :0.3786 Mean :2.0351

 3rd Qu.:0.012303 3rd Qu.:0.4495 3rd Qu.:2.3565

 Max. :0.074835 Max. :0.6600 Max. :3.9565

The third column, lift, is a metric we have not considered yet. It is a measure of
how much more likely one item is to be purchased relative to its typical purchase
rate, given that you know another item has been purchased. This is defined by the
following equation:

() ()
()

confidence
lift

support
X Y

X Y
Y
→

→ =

Unlike confidence where the item order matters,
lift(X -> Y) is the same as lift(Y -> X).

For example, suppose at a grocery store, most people purchase milk and bread. By
chance alone, we would expect to find many transactions with both milk and bread.
However, if lift(milk -> bread) is greater than 1, this implies that the two items
are found together more often than one would expect by chance. A large lift value
is therefore a strong indicator that a rule is important, and reflects a true connection
between the items.

In the final section of the summary() output, we receive mining information, telling
us about how the rules were chosen. Here, we see that the groceries data, which
contained 9,835 transactions, was used to construct rules with a minimum support of
0.006 and minimum confidence of 0.25:
mining info:

 data ntransactions support confidence

 groceries 9835 0.006 0.25

Finding Patterns – Market Basket Analysis Using Association Rules

[262]

We can take a look at specific rules using the inspect() function. For instance, the
first three rules in the groceryrules object can be viewed as follows:

> inspect(groceryrules[1:3])

The columns indicated by lhs and rhs refer to the left-hand side (LHS) and
right-hand side (RHS) of the rule. The LHS is the condition that needs to be
met in order to trigger the rule, and the RHS is the expected result of meeting
that condition.

The first rule can be read in plain language as "if a customer buys potted plants,
they will also buy whole milk." With a support of about 0.007 and confidence of
0.400, we can determine that this rule covers about 0.7 percent of transactions, and
is correct in 40 percent of purchases involving potted plants. The lift value tells
us how much more likely a customer is to buy whole milk relative to the average
customer, given that he or she bought a potted plant. Since we know that about 25.6
percent of customers bought whole milk (the support) while 40 percent of customers
buying a potted plant bought whole milk (the confidence), we can compute the lift
as 0.40 / 0.256 = 1.56, which matches the value shown. (Note that the column labeled
support indicates the support for the rule, not the support for the lhs or rhs).

In spite of the fact that the confidence and lift are high, does {potted plants} =>
{whole milk} seem like a very useful rule? Probably not—there doesn't seem to be
a logical reason why someone would be more likely to buy milk with a potted plant.
Yet our data suggests otherwise. How can we make sense of this fact?

A common approach is to take the result of learning association rules and divide
them into three categories:

•	 Actionable
•	 Trivial
•	 Inexplicable

Obviously, the goal of a market basket analysis is to find actionable associations, or
rules that provide a clear and useful insight. Some rules are clear, others are useful; it
is less common to find a combination of both of these factors.

Chapter 8

[263]

Trivial rules include any rules that are so obvious that they are not worth
mentioning—they are clear, but not useful. Suppose you were a marketing consultant
being paid large sums of money to identify new opportunities for cross-promoting
items. If you report the finding that {diapers} => {formula}, you probably won't be
invited back for another consulting job.

Trivial rules can also sneak in disguised as more interesting
results. For instance, say you found an association between
a particular brand of children's cereal and a certain DVD
movie. This finding is not very interesting if the movie's
main character is on the front of the cereal box.

Rules are inexplicable if the connection between the items is so unclear that figuring
out how to use the information for action would require additional research. The
rule may simply be a random pattern in the data, for instance, a rule stating that
{pickles} => {chocolate ice cream} may be due to a single customer whose
pregnant wife had regular cravings for strange combinations of foods.

The best rules are the hidden gems—those undiscovered insights into patterns
that seem obvious once discovered. Given enough time, one could evaluate each
of the 463 rules to find the gems. However, we (the one performing the market
basket analysis) may not be the best judge of whether a rule is actionable, trivial, or
inexplicable. In the next section, we'll improve the utility of our work by employing
methods for sorting and sharing the learned rules so that the most interesting results
might float to the top.

Step 5 – improving model performance
Subject matter experts may be able to identify useful rules very quickly, but it would
be a poor use of their time to ask them to evaluate hundreds or thousands of rules.
Therefore, it's useful to be able to sort the rules according to different criteria and get
them out of R into a form that can be shared with marketing teams and examined in
more depth. In this way, we can improve the performance of our rules by making the
results more actionable.

Sorting the set of association rules
Depending upon the objectives of the market basket analysis, the most useful rules
might be those with the highest support, confidence, or lift. The arules package
includes a sort() function that can be used to reorder the list of rules so that those
with the highest or lowest values of the quality measure come first.

Finding Patterns – Market Basket Analysis Using Association Rules

[264]

To reorder the groceryrules, we can apply sort() while specifying a by parameter
of "support", "confidence", or "lift". By combining the sort with vector
operators, we can obtain a specific number of interesting rules. For instance, the best
five rules according to the lift statistic can be examined using the following command:

> inspect(sort(groceryrules, by = "lift")[1:5])

This will look like the following screenshot:

These appear to be more interesting rules than the ones we looked at previously. The
first rule, with a lift of 3.956477, implies that people who buy herbs are nearly four
times more likely to buy root vegetables than the typical customer—perhaps for a
stew of some sort? Rule two is also interesting. Whipped cream is over three times
more likely to be found in a shopping cart with berries versus other carts, suggesting
perhaps a dessert pairing?

By default, the sort order is decreasing, meaning the largest
values come first. To reverse this order, add an additional
parameter decreasing = FALSE.

Taking subsets of association rules
Suppose that given the preceding rule, the marketing team is excited about the
possibilities of creating an advertisement to promote berries, which are now in
season. Before finalizing the campaign, however, they ask you to investigate whether
berries are often purchased with other items. To answer this question, we'll need to
find all the rules that include berries in some form.

The subset() function provides a method for searching for subsets of transactions,
items, or rules. To use it to find any rules with berries appearing in the rule, use the
following command. This will store the rules in a new object titled berryrules:

> berryrules <- subset(groceryrules, items %in% "berries")

We can then inspect the rules as we had done with the larger set:
> inspect(berryrules)

Chapter 8

[265]

The result is the folllowing set of rules:

There are four rules involving berries, two of which seem to be interesting enough to
call actionable. In addition to whipped cream, berries are also purchased frequently
with yogurt—a pairing that could serve well for breakfast or lunch as well as dessert.

The subset() function is very powerful. The criteria for choosing the subset can be
defined with several keywords and operators:

•	 The keyword items, explained previously, matches an item appearing
anywhere in the rule. To limit the subset to where the match occurs only on
the left or right-hand side, use lhs and rhs instead.

•	 The operator %in% means that at least one of the items must be found in the
list you defined. If you wanted any rules matching either berries or yogurt,
you could write items %in% c("berries", "yogurt").

•	 Additional operators are available for partial matching (%pin%) and complete
matching (%ain%). Partial matching allows you to find both citrus fruit
and tropical fruit using one search: items %pin% "fruit". Complete
matching requires that all listed items are present. For instance, items %ain%
c("berries", "yogurt") finds only rules with both berries and yogurt.

•	 Subsets can also be limited by support, confidence, or lift. For instance,
confidence > 0.50 would limit you to rules with confidence greater
than 50 percent.

•	 Matching criteria can be combined with standard R logical operators such as
and (&), or (|), and not (!).

Using these options, you can limit the selection of rules to be as specific or general as
you would like.

Saving association rules to a file or data frame
To share the results of your market basket analysis, you can save the rules to a CSV
file with the write() function. This will produce a CSV file that can be used in most
spreadsheet programs including Microsoft Excel:
> write(groceryrules, file = "groceryrules.csv",

 sep = ",", quote = TRUE, row.names = FALSE)

Finding Patterns – Market Basket Analysis Using Association Rules

[266]

Sometimes it is also convenient to convert the rules to an R data frame. This can be
accomplished easily using the as() function, as follows:

> groceryrules_df <- as(groceryrules, "data.frame")

This creates a data frame with the rules in factor format, and numeric vectors for
support, confidence, and lift:

> str(groceryrules_df)

'data.frame':	463 obs. of 4 variables:

 $ rules : Factor w/ 463 levels "{baking powder} => {other
vegetables}",..: 340 302 207 206 208 341 402 21 139 140 ...

 $ support : num 0.00691 0.0061 0.00702 0.00773 0.00773 ...

 $ confidence: num 0.4 0.405 0.431 0.475 0.475 ...

 $ lift : num 1.57 1.59 3.96 2.45 1.86 ...

You might choose to do this if you want to perform additional processing on the
rules or need to export them to another database.

Summary
Association rules are one solution to the Big Data problem. As an unsupervised
learning algorithm, they are capable of extracting knowledge from large databases
without any prior knowledge of what patterns to seek. The catch is that it takes some
effort to reduce the wealth of information into a smaller and more manageable set of
results. The Apriori algorithm, which we studied in this chapter, does so by setting
minimum thresholds of interestingness, and reporting only the associations meeting
these criteria.

We put the Apriori algorithm to work while performing a market basket analysis
for a month's worth of transactions at a moderately-sized supermarket. Even in this
small example, a wealth of associations were identified. Among these, we noted
several patterns that may be useful for future marketing campaigns. The same
methods applied here are used at much larger retailers on databases many times
this size.

In the next chapter, we will examine another unsupervised learning algorithm,
which just like association rules, is intended to find patterns within data. But unlike
association rules that seek patterns within the features, the methods in the next
chapter are concerned with finding connections among the examples.

Finding Groups of
Data – Clustering

with k-means
Have you ever spent time watching large crowds? As a sociologist, this was one of
my favorite pastimes. I would choose a busy location, such as a coffee shop, library,
or cafeteria, and observe the masses of people for interesting patterns of behavior.
The goal was to look for details that reveal an insight into how people, as a general
rule, relate to each other and their environment.

The more you perform such observational research, the more you may see recurring
personalities. Perhaps a certain type of person, identified by a freshly-pressed
suit and a briefcase, comes to typify the white-collar business executive. A
twenty-something wearing tight jeans, a flannel shirt, and sunglasses might
fall into the hipster category, while a woman unloading children from a minivan
could be labeled a soccer mom.

Of course, these types of stereotypes are dangerous to apply to individuals—no two
people are exactly alike. Used in aggregate, however, the labels may reflect some
underlying pattern of similarity among the individuals falling within the group.

This chapter describes methods to address the machine learning task of clustering,
which involves finding natural groupings of data. As you will see, clustering works
in a process very similar to the observational research described just now. Along the
way, you will learn:

•	 Ways clustering tasks differ from the classification tasks we've examined
previously and how clustering defines groups

Finding Groups of Data – Clustering with k-means

[268]

•	 The basic methods used by k-means, a classic and easy-to-understand
clustering algorithm

•	 How to apply clustering to a real-world task of identifying marketing
segments within teenage social media users

Before jumping into action, let's begin by taking an in-depth look at exactly what
clustering entails.

Understanding clustering
Clustering is an unsupervised machine learning task that automatically divides the
data into clusters, or groupings of similar items. It does this without having been
told what the groups should look like ahead of time. As we may not even know what
we're looking for, clustering is used for knowledge discovery rather than prediction.
It provides an insight into the natural groupings found within data.

Without advance knowledge of what comprises a cluster, how could a computer
possibly know where one group ends and another begins? The answer is simple.
Clustering is guided by the principle that records inside a cluster should be very
similar to each other, but very different from those outside. As you will see later, the
definition of similarity might vary across applications, but the basic idea is always
the same: group the data such that related elements are placed together.

The resulting clusters can then be used for action. For instance, you might find
clustering methods employed in applications such as:

•	 Segmenting customers into groups with similar demographics or buying
patterns for targeted marketing campaigns and/or detailed analysis of
purchasing behavior by subgroup

•	 Detecting anomalous behavior, such as unauthorized intrusions into computer
networks, by identifying patterns of use falling outside known clusters

•	 Simplifying extremely large datasets by grouping a large number of features
with similar values into a much smaller number of homogeneous categories

Overall, clustering is useful whenever diverse and varied data can be exemplified by
a much smaller number of groups. It results in meaningful and actionable structures
within data that reduce complexity and provide insight into patterns of relationships.

Chapter 9

[269]

Clustering as a machine learning task
Clustering is somewhat different from the classification, numeric prediction, and
pattern detection tasks we've examined so far. In each of these cases, the result is a
model that relates features to an outcome or features to other features; the model
identifies patterns within data. In contrast, clustering creates new data. Unlabeled
examples are given a cluster label and inferred entirely from the relationships within
the data. For this reason, you will sometimes see the clustering task referred to as
unsupervised classification because, in a sense, this is classifying unlabeled examples.

The catch is that the class labels obtained from an unsupervised classifier are without
intrinsic meaning. Clustering will tell you which groups of examples are closely
related—for instance, it might return groups A, B, and C—but it's up to you to apply
an actionable and meaningful label. To see how this impacts the clustering task, let's
consider a hypothetical example.

Suppose you were organizing a conference on the topic of data science. To facilitate
professional networking and collaboration, you planned to seat people in groups
according to one of three research specialties: computer and/or database science,
math and statistics, and machine learning. Unfortunately, after sending out the
conference invitations, you realize that you had forgotten to include a survey asking
the discipline the attendee would prefer to be seated with.

In a stroke of brilliance, you realize that you might be able to infer each scholar's
research specialty by examining his or her publication history. Toward this end,
you begin collecting data on the number of articles each attendee published in
computer science-related journals and the number of articles published in math
or statistics-related journals. Using the data collected for several scholars, you
create a scatterplot:

Finding Groups of Data – Clustering with k-means

[270]

As expected, there seems to be a pattern here. We might guess that the upper-left
corner, which represents people with many computer science publications but
few articles on math, could be a cluster of computer scientists. Following this
logic, the lower-right corner might be a group of mathematicians. Similarly, the
upper-right corner, those with both math and computer science experience, may
be machine learning experts.

Rather than defining the group boundaries subjectively, it would be nice to use
machine learning to define them objectively. Given the axis-parallel splits in the
previous figure, this problem seems like an obvious application for decision trees
as described in Chapter 5, Divide and Conquer – Classification Using Decision Trees
and Rules. This would provide us with a clean rule like "if the scholar has few math
publications, then he/she is a computer science expert." Unfortunately, there's a
problem with this plan. As we do not know the true class value for each point, we
cannot deploy supervised learning algorithms.

Our groupings were formed visually; we simply identified clusters as closely grouped
data points. In spite of the seemingly obvious groupings, we have no way to know
whether they are truly homogeneous without personally asking each scholar about
his/her academic specialty. The labels we applied required us to make qualitative,
presumptive judgments about the types of people that would fall into the group. For
this reason, you might imagine the cluster labels in uncertain terms, as follows:

Clustering algorithms use a process very similar to what we did by visually
inspecting the scatterplot. Using a measure of how closely the examples are related,
they can be assigned to homogeneous groups. In the next section, we'll start looking
at how clustering algorithms are implemented.

Chapter 9

[271]

This example highlights an interesting application of clustering.
If you begin with unlabeled data, you can use clustering to create
class labels. From there, you could apply a supervised learner
such as decision trees to find the most important predictors of
these classes. This is called semi-supervised learning.

The k-means algorithm for clustering
The k-means algorithm is perhaps the most often used clustering method. Having
been studied for several decades, it serves as the foundation for many more
sophisticated clustering techniques. If you understand the simple principles it uses,
you will have the knowledge needed to understand nearly any clustering algorithm
in use today. Many such methods are listed on the following site, the CRAN task
view for clustering:

http://cran.r-project.org/web/views/Cluster.html

As k-means has evolved over time, there are many implementations
of the algorithm. One popular approach is described in A k-means
clustering algorithm in Applied Statistics, Vol. 28, pp. 100-108, by
Hartigan, J.A. and Wong, M.A. (1979).

Even though clustering methods have advanced since the inception of k-means, that
does not suggest that it is obsolete. In fact, the method may be more popular now
than ever. The following table lists some reasons why k-means is still used widely:

Strengths Weaknesses
•	 Uses simple principles for identifying

clusters which can be explained in
non-statistical terms

•	 It is highly flexible and can be
adapted to address nearly all of its
shortcomings with simple adjustments

•	 It is fairly efficient and performs
well at dividing the data into useful
clusters

•	 It is less sophisticated than more
recent clustering algorithms

•	 Because it uses an element
of random chance, it is not
guaranteed to find the optimal set
of clusters

•	 Requires a reasonable guess as to
how many clusters naturally exist
in the data

If the name k-means sounds familiar to you, you may be recalling the kNN algorithm
presented in Chapter 3, Lazy Learning – Classification Using Nearest Neighbors. As you
will soon see, k-means shares more in common with k-nearest neighbors than just
the letter k.

Finding Groups of Data – Clustering with k-means

[272]

The k-means algorithm involves assigning each of the n examples to one of the
k clusters, where k is a number that has been defined ahead of time. The goal is
to minimize the differences within each cluster and maximize the differences
between clusters.

Unless k and n are extremely small, it is not feasible to compute the optimal clusters
across all possible combinations of examples. Instead, the algorithm uses a heuristic
process that finds locally optimal solutions. Putting it simply, this means that it
starts with an initial guess for the cluster assignments then modifies the assignments
slightly to see if the changes improve the homogeneity within the clusters.

We will cover the process in depth shortly, but the algorithm essentially involves
two phases. First, it assigns examples to an initial set of k clusters. Then, it updates
the assignments by adjusting the cluster boundaries according to the examples that
currently fall into the cluster. The process of updating and assigning occurs several
times until making changes no longer improves the cluster fit. At this point, the
process stops and the clusters are finalized.

Due to the heuristic nature of k-means, you may end up with
somewhat different final results by making only slight changes
to the starting conditions. If the results vary dramatically, this
could indicate a problem. For instance, the data may not have
natural groupings or the value of k has been poorly chosen.
For this reason, it's a good idea to try a cluster analysis more
than once to test the robustness of your findings.

To see how the process of assigning and updating works in practice, let's revisit the
example data for the data science conference. Though this is a simple example, it will
illustrate the basics of how k-means operates under the hood.

Using distance to assign and update clusters
As with kNN, k-means treats feature values as coordinates in a multidimensional
feature space. For the conference data, there are only two features, so we can
represent the feature space as a two-dimensional scatterplot, as depicted previously.

Chapter 9

[273]

The k-means algorithm begins by choosing k points in the feature space to serve as
the cluster centers. These centers are the catalyst that spurs the remaining examples
to fall into place. Often, the points are chosen by selecting k random examples
from the training dataset. Because we hope to identify three clusters, k = 3 points
are selected. These points are indicated by the star, triangle, and diamond in the
following figure:

There are several other ways to choose the initial cluster centers. One option is to
choose random values occurring anywhere in the feature space (rather than only
selecting among values observed in the data). Another option is to skip this step
altogether; by randomly assigning each example to a cluster, the algorithm can jump
ahead immediately to the update phase. Each of these approaches adds a particular
bias to the final set of clusters, which you may be able to use to tailor your results.

After choosing the initial cluster centers, the other examples are assigned to the
cluster center that is most similar or nearest according to the distance function.
You will remember that we studied distance functions while learning about
kNN. Traditionally, k-means uses Euclidean distance, but Manhattan distance or
Minkowski distance are also sometimes used.

Recall that if n indicates the number of features, the formula for Euclidean distance
between example x and example y is as follows:

() ()2

1
dist ,

n

i i
i

x y x y
=

= −∑

Finding Groups of Data – Clustering with k-means

[274]

For instance, if we are comparing an event guest with five computer science
publications and one math publication to a guest with zero computer science papers
and two math papers, we could compute this in R as:

> sqrt((5 - 0)^2 + (1 - 2)^2)

[1] 5.09902

Using this distance function, we find the distance between each example and each
cluster center. The example is then assigned to the nearest cluster center.

Keep in mind that because we are using distance calculations,
all data need to be numeric, and the values should be
normalized to a standard range ahead of time. The methods
presented in Chapter 3, Lazy Learning – Classification Using
Nearest Neighbors, will prove helpful here.

As shown in the following figure, the three cluster centers partition the examples into
three segments labeled Cluster A, B, and C. The dashed lines indicate the boundaries
for the Voronoi diagram created by the cluster centers. A Voronoi diagram indicates
the areas that are closer to one cluster center than any other; the vertex where all three
boundaries meet is the maximal distance from all three cluster centers. Using these
boundaries, we can easily see the regions claimed by each of the initial k-means seeds:

Chapter 9

[275]

Now that the initial assignment phase has been completed, the k-means algorithm
proceeds to the update phase. The first step of updating the clusters involves shifting
the initial centers to a new location, known as the centroid, which is calculated as
the mean value of the points currently assigned to that cluster. The following figure
illustrates how the cluster centers shift to the new centroids:

Because the cluster boundaries have been adjusted according to the repositioned
centers, Cluster A is able to claim an additional example from Cluster B (indicated
by an arrow). Because of this reassignment, the k-means algorithm will continue
through another update phase. After recalculating the centroids for the clusters, the
figure looks like this:

Finding Groups of Data – Clustering with k-means

[276]

Two more points have been reassigned from Cluster B to Cluster A during this
phase, as they are now closer to the centroid for A than B. This leads to another
update as shown:

As no points were reassigned during this phase, the k-means algorithm stops.
The cluster assignments are now final.

The learned clusters can be reported in one of the two ways. First, you can simply
report the cluster assignments for each example. Alternatively, you could report the
coordinates of the cluster centroids after the final update. Given either reporting
method, you are able to define the cluster boundaries by calculating the centroids
and/or assigning each example to its nearest cluster.

Choosing the appropriate number of clusters
In the introduction to k-means, we learned that the algorithm can be sensitive to
randomly chosen cluster centers. Indeed, if we had selected a different combination
of three starting points in the previous example, we may have found clusters that
split the data differently from what we had expected.

Choosing the number of clusters requires a delicate
balance. Setting the k to be very large will improve the
homogeneity of the clusters, and at the same time, it
risks overfitting the data.

Chapter 9

[277]

Ideally, you will have some a priori knowledge (that is, a prior belief) about the true
groupings, and you can begin applying k-means using this information. For instance,
if you were clustering movies, you might begin by setting k equal to the number of
genres considered for the Academy Awards. In the data science conference seating
problem that we worked through previously, k might reflect the number of academic
fields of study that were invited.

Sometimes the number of clusters is dictated by business requirements or the
motivation for the analysis. For example, the number of tables in the meeting hall
could dictate how many groups of people should be created from the data science
attendee list. Extending this idea to a business case, if the marketing department only
has resources to create three distinct advertising campaigns, it might make sense to
set k = 3 to assign all the potential customers to one of the three appeals.

Without any a priori knowledge at all, one rule of thumb suggests setting k equal
to the square root of (n / 2), where n is the number of examples in the dataset.
However, this rule of thumb is likely to result in an unwieldy number of clusters for
large datasets. Luckily, there are other statistical methods that can assist in finding a
suitable k-means cluster set.

A technique known as the elbow method attempts to gauge how the homogeneity
or heterogeneity within the clusters changes for various values of k. As illustrated
in the following figures, the homogeneity within clusters is expected to increase as
additional clusters are added; similarly, heterogeneity will also continue to decrease
with more clusters. Because you could continue to see improvements until each
example is in its own cluster, the goal is not to maximize homogeneity or minimize
heterogeneity, but rather to find k such that there are diminishing returns beyond that
point. This value of k is known as the elbow point, because it looks like an elbow.

Finding Groups of Data – Clustering with k-means

[278]

There are numerous statistics to measure homogeneity and heterogeneity within
clusters that can be used with the elbow method (have a look at the following
information box). Still, in practice, it is not always feasible to iteratively test a large
number of k values. This is in part because clustering large datasets can be fairly
time consuming; clustering the data repeatedly is even worse. Regardless,
applications requiring the exact optimal set of clusters are fairly rare. In most
clustering applications, it suffices to choose a k based on convenience rather than
strict performance requirements.

For a very thorough review of the vast assortment of
measures of cluster performance, have a look at On
clustering validation techniques, Journal of Intelligent
Information Systems Vol. 17, pp. 107-145, by M. Halkidi, Y.
Batistakis, and M. Vazirgiannis (2001).

The process of setting k itself can sometimes lead to interesting insights. By observing
how the characteristics of the clusters change as k is varied, one might infer where
the data have naturally defined boundaries. Groups that are more tightly clustered
will change little, while less homogeneous groups will form and disband over time.

In general, it may be wise to spend little time worrying about getting k exactly right.
The next example will demonstrate how even a tiny bit of subject-matter knowledge
borrowed from a Hollywood film can be used to set k such that actionable and
interesting clusters are found. Because clustering is unsupervised, the task is really
about what you make of it—the insights you take away from the algorithm's findings.

Finding teen market segments using
k-means clustering
Interacting with friends on social networking sites such as Facebook and MySpace
has become a rite of passage for teenagers around the world. Having a relatively
large amount of disposable income, these adolescents are a coveted demographic for
businesses hoping to sell snacks, beverages, electronics, and hygiene products.

The many millions of teenage consumers browsing such sites have attracted the
attention of marketers struggling to find an edge in an increasingly competitive
market. One way to gain this edge is to identify segments of teenagers who share
similar tastes, so that clients can avoid targeting advertisements to teens with no
interest in the product being sold. For instance, a sports beverage is likely to be a
difficult sell to teens with no interest in sports.

Chapter 9

[279]

Given the text of teenagers' Social Networking Service (SNS) pages, we can identify
groups that share common interests such as sports, religion, or music. Clustering
can automate the process of discovering the natural segments in this population.
However, it will be up to us to decide whether or not the clusters are interesting
and how we can use them for advertising. Let's try this process from start to finish.

Step 1 – collecting data
For this analysis, we will be using a dataset representing a random sample of 30,000
U.S. high school students who had profiles on a well-known SNS in 2006. To protect
the users' anonymity, the SNS will remain unnamed. However, at the time the data
was collected, the SNS was a popular web destination for U.S. teenagers. Therefore,
it is reasonable to assume that the profiles represent a fairly wide cross section of
American adolescents in 2006.

This dataset was compiled while conducting sociological research
on teenage identities at the University of Notre Dame. If you use
the data for research purposes, please cite this book chapter. The
full dataset is available at the Packt Publishing's website with the
filename snsdata.csv. To follow along interactively, this chapter
assumes you have saved this file to your R working directory.

The data was sampled evenly across four high school graduation years (2006
through 2009) representing the senior, junior, sophomore, and freshman classes at
the time of data collection. Using an automated web crawler, the full text of the SNS
profiles were downloaded, and each teen's gender, age, and number of SNS friends
was recorded.

A text mining tool was used to divide the remaining SNS page content into words.
From the top 500 words appearing across all pages, 36 words were chosen to
represent five categories of interests, namely extracurricular activities, fashion,
religion, romance, and antisocial behavior. The 36 words include terms such as
football, sexy, kissed, bible, shopping, death, and drugs. The final dataset indicates,
for each person, how many times each word appeared in the person's SNS profile.

Step 2 – exploring and preparing the data
We can use the default settings of read.csv() to load the data into a data frame:

> teens <- read.csv("snsdata.csv")

Finding Groups of Data – Clustering with k-means

[280]

Let's also take a quick look at the specifics of the data. The first several lines of the
str() output are as follows:

> str(teens)

'data.frame': 30000 obs. of 40 variables:

 $ gradyear : int 2006 2006 2006 2006 2006 2006 2006 2006 ...

 $ gender : Factor w/ 2 levels "F","M": 2 1 2 1 NA 1 1 2 ...

 $ age : num 19 18.8 18.3 18.9 19 ...

 $ friends : int 7 0 69 0 10 142 72 17 52 39 ...

 $ basketball : int 0 0 0 0 0 0 0 0 0 0 ...

As we had expected, the data include 30,000 teenagers with four variables indicating
personal characteristics and 36 words indicating interests.

Do you notice anything strange around the gender variable? If you were looking
carefully, you may have noticed NA, which is out of place compared to the 1 and 2
values. This is R's way of telling us that the record has a missing value—we do not
know the person's gender. Until now, we haven't dealt with missing data, but it can
be a significant problem for many types of analyses.

Let's see how substantial this problem is. One option is to use the table()
command, as follows:

> table(teens$gender)

 F M

22054 5222

Although this tells us how many F and M values are present, the table() function
excluded the NA values rather than treating it as a separate value. To include the NA
values (if there are any), we simply need to add an additional parameter:

> table(teens$gender, useNA = "ifany")

 F M <NA>

22054 5222 2724

Here, we see that 2,724 records (9 percent) have missing gender data. Interestingly,
there are over four times as many females as males in the SNS data, suggesting that
males are not as inclined to use SNSs as females.

If you examine the other variables in the teens data frame, you will find that besides
the gender variable, only age has missing values. For numeric data, the summary()
command tells us the number of missing NA values:

> summary(teens$age)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

 3.086 16.310 17.290 17.990 18.260 106.900 5086

Chapter 9

[281]

A total of 5,086 records (17 percent) have missing values for age. Also concerning is
the fact that the minimum and maximum values seem to be the suspect; it is unlikely
that a 3 year old or a 106 year old is attending high school. To ensure that these
extreme values don't cause problems for the analysis, we'll need to clean them up
before moving on.

A reasonable range of ages for high school students includes those who are at least
13 years old and not yet 20 years old. Any age value falling outside this range will
be treated the same as missing data—we cannot trust the age provided. To recode
the age variable, we can use the ifelse() function, assigning teen$age the value of
teen$age if the age is at least 13 and less than 20 years; otherwise, it will receive the
value NA:

> teens$age <- ifelse(teens$age >= 13 & teens$age < 20,

 teens$age, NA)

By rechecking the summary() output, we see that the age range now follows a
distribution that looks much more like an actual high school:

> summary(teens$age)

 Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

 13.03 16.30 17.26 17.25 18.22 20.00 5523

Unfortunately, now we've created an even larger missing data problem. We'll need
to find a way to deal with these values before continuing with our analysis.

Data preparation – dummy coding missing values
An easy solution for handling missing values is to exclude any record with a missing
value. However, if you think through the implications of this practice, you might
think twice before doing so. (I said it was easy, I never said it was a good idea!) The
problem with this approach is that even if the missingness is not extensive, you can
very quickly start to exclude large portions of data.

For example, suppose that in our data the people with NA values for gender are
completely different from those with missing age data. This would imply that by
excluding those missing either gender or age, you would exclude 26 percent, which is
an addition of 9 percent and 17 percent (9% + 17% = 26%), of your data, or over 7,500
records. And this is for missing data on only two variables! The larger the number
of missing values present in a dataset, the more likely it is that any given record will
be excluded. Fairly soon, you will be left with a tiny subset of data, or worse, the
remaining records will be systematically different or non-representative of the full
population.

Finding Groups of Data – Clustering with k-means

[282]

An alternative solution for categorical data like gender is to treat a missing value as a
separate category. For instance, rather than limiting to female and male, we can add
an additional level for "unknown." At the same time, we should also utilize dummy
coding, which is covered in more depth in Chapter 3, Lazy Learning - Classification
Using Nearest Neighbors, to transform the nominal gender variable into a numeric
form that can be used for distance calculations.

Dummy coding involves creating a separate binary 1 or 0 valued dummy variable for
each level of a nominal feature except one, which is held out to serve as the reference
group. The reason one category can be excluded is because it can be inferred from
the other categories. For instance, if someone is not female and not unknown gender,
they must be male. Therefore, we need to only create dummy variables for female
and unknown gender:

> teens$female <- ifelse(teens$gender == "F" &

 !is.na(teens$gender), 1, 0)

> teens$no_gender <- ifelse(is.na(teens$gender), 1, 0)

The first statement assigns teens$female the value 1 if gender is equal to F and the
gender is not equal to NA, otherwise it assigns the value 0. The is.na()function tests
whether gender is equal to NA. If is.na() returns TRUE, then the teens$no_gender
variable is assigned 1, otherwise it is assigned the value 0. To confirm that we did
the work correctly, let's compare our constructed dummy variables to the original
gender variable:

> table(teens$gender, useNA = "ifany")

 F M <NA>

22054 5222 2724

> table(teens$female, useNA = "ifany")

 0 1

 7946 22054

> table(teens$no_gender, useNA = "ifany")

 0 1

27276 2724

The number of 1 values for teens$female and teens$no_gender matches the
number of F and NA values in the initial coding, so we should be able to trust
our work.

Chapter 9

[283]

Data preparation – imputing missing values
Next, let's eliminate the 5,523 missing values on age. As age is numeric, it doesn't
make sense to create an additional category for unknown values—where would
you rank "unknown" relative to the other age values? Instead, we'll use a different
strategy known as imputation, which involves filling in the missing data with a
guess as to what the true value really is.

Can you think of a way we might be able to use the SNS data to make an educated
individual guess about a teenager's age? If you thought about using the graduation
year, you've got the right idea. Most people in a graduation cohort were born within
a single calendar year. If we can figure out the typical age for each cohort, then we
would have a fairly reasonable estimate of the age of a student in that graduation year.

One way to find a typical value is by calculating the average, or mean, value. If we try
to apply the mean() function as we have done for previous analyses, there's a problem:

> mean(teens$age)

[1] NA

The issue is that the mean value is undefined for a vector containing missing data.
As age contains missing values, mean(teens$age) returns a missing value. We can
correct this by adding an additional parameter to remove the missing values before
calculating the mean:

 > mean(teens$age, na.rm = TRUE)

[1] 17.25243

This reveals that the average student in our data is about 17 years old. This only gets
us part of the way there; we actually need the average age for each graduation year.
You might be tempted to calculate the mean four times, but one of the benefits of R
is that there's usually a more efficient way. In this case, the aggregate() function is
the tool for the job. It computes statistics for subgroups of data. Here, it calculates the
mean age for levels of gradyear after removing the NA values:

> aggregate(data = teens, age ~ gradyear, mean, na.rm = TRUE)

 gradyear age

1 2006 18.65586

2 2007 17.70617

3 2008 16.76770

4 2009 15.81957

Finding Groups of Data – Clustering with k-means

[284]

The mean age differs by roughly one year per change in graduation year. This is not
at all surprising, but a helpful finding for confirming our data is reasonable.

The aggregate() output is in a data frame which is human-readable but requires
extra work to merge back onto our original data. As an alternative, we can use the
ave() function, which returns a vector with the group means repeated such that the
result is equal in length to the original vector:

> ave_age <- ave(teens$age, teens$gradyear, FUN =

 function(x) mean(x, na.rm = TRUE))

To impute these means onto the missing values, we need one more ifelse() call to
use the ave_age value only if the original age value was NA:

> teens$age <- ifelse(is.na(teens$age), ave_age, teens$age)

The summary() results show that the missing values have now been eliminated:

> summary(teens$age)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 13.03 16.28 17.24 17.24 18.21 20.00

With the data ready for analysis, we are ready to dive into the interesting part of this
project. Let's see if our efforts have paid off.

Step 3 – training a model on the data
To cluster the teenagers into marketing segments, we will use an implementation of
k-means in the stats package, which should be included in your R installation by
default. If by chance you do not have this package, you can install it as you would
any other package and load it using the library(stats) command. Although there
is no shortage of k-means functions available in various R packages, the kmeans()
function in the stats package is widely used and provides a vanilla implementation
of the algorithm.

Chapter 9

[285]

The kmeans() function requires a data frame containing only numeric data and a
parameter specifying the desired number of clusters. If you have these two things
ready, the actual process of building the model is simple. The trouble is that choosing
the right combination of data and clusters can be a bit of an art; sometimes a great
deal of trial and error is involved.

We'll start our cluster analysis by considering only the 36 features that represent
the number of times various interests appeared on the SNS profiles of teens.
For convenience, let's make a data frame containing only these features:

> interests <- teens[5:40]

A common practice employed prior to any analysis using distance calculations is to
normalize or z-score standardize the features such that each utilizes the same scale.
By doing so, you can avoid a problem in which some features come to dominate
solely because they tend to have larger values than others.

Finding Groups of Data – Clustering with k-means

[286]

If you recall from Chapter 3, Lazy Learning – Classification Using Nearest Neighbors,
z-score standardization rescales features such that they have a mean of zero and
a standard deviation of one. This transformation changes the interpretation of the
feature in a way that may be useful here. Specifically, if someone mentions football
a total of 3 times on their profile, without additional information, we have no idea
whether this implies they like football more or less than their peers. On the other
hand, if the z-score value is 3, we know that that they mentioned football many more
times than the average teenager.

To apply z-score standardization to the interests data frame, we can use the scale()
function with lapply(), as follows:

> interests_z <- as.data.frame(lapply(interests, scale))

As lapply() returns a matrix, it must be coaxed back to
data frame form using the as.data.frame() function.

Our last decision involves deciding how many clusters to use for segmenting
the data. If we use too many clusters, we may find them too specific to be useful;
conversely, choosing too few may result in heterogeneous groupings. You should
feel comfortable experimenting with the values of k. If you don't like the result, you
can easily try another value and start over.

Choosing the number of clusters is easier if you are
familiar with the analysis population. Having a hunch
about the true number of natural groupings can save you
some trial and error.

To help us predict the number of clusters in the data, I'll defer to one of my
favorite films, the 1985 John Hughes coming-of-age comedy, The Breakfast Club. The
high-school-age characters in this movie are identified in terms of five stereotypes:
a Brain, an Athlete, a Basket Case, a Princess, and a Criminal. Given that these
identities prevail throughout popular teen fiction, five seems like a reasonable
starting point for k.

To divide teens into five clusters, we can use the following command:

teen_clusters <- kmeans(interests_z, 5)

This saves the result of the k-means clustering in an object named teen_clusters.

Chapter 9

[287]

Step 4 – evaluating model performance
Evaluating the results of clustering can be somewhat subjective. Ultimately, the
success or failure of the model hinges on whether the clusters are useful for their
intended purpose. As the goal of this analysis was to identify clusters of teenagers
with similar interests for marketing purposes, we will largely measure our success
in qualitative terms. For other clustering applications, more quantitative measures of
success may be needed.

One of the most basic ways to evaluate the utility of a set of clusters is to examine the
number of examples falling in each of the groups. If the groups are too large or too
small, then they are not likely to be very useful. To obtain the size of the kmeans()
clusters, use the teen_clusters$size component as follows:

> teen_clusters$size

[1] 3376 601 1036 3279 21708

Here we see the five clusters we requested. The smallest is 601 teenagers (2 percent)
while the largest is 21,708 (72 percent). Although the large cluster is slightly
concerning, without examining it more carefully, we will not know whether it
indicates a problem or not. In good news, we did not find any clusters containing
only a single person, which can happen occasionally with k-means.

Given the random nature of k-means, do not be alarmed if
your results differ from those shown here. Instead, consider
it as an opportunity to apply your analytic skills to the
unique result you obtained!

For a more in-depth look at the clusters, we can examine the coordinates of the
cluster centroids using the teen_clusters$centers component, which is as follows
for the first eight features:

> teen_clusters$centers

 basketball football soccer softball

1 0.02447191 0.10550409 0.04357739 -0.02411100

2 -0.09442631 0.06927662 -0.09956009 -0.04697009

3 0.37669577 0.38401287 0.14650286 0.15136541

4 1.12232737 1.03625113 0.53915320 0.87051183

5 -0.18869703 -0.19317864 -0.09245172 -0.13366478

Finding Groups of Data – Clustering with k-means

[288]

 volleyball swimming cheerleading baseball

1 0.04803724 0.31298181 0.63868578 -0.03875155

2 -0.07806216 0.04578401 -0.10703701 -0.11182941

3 0.09157715 0.24413955 0.18678448 0.28545186

4 0.78664128 0.11992750 0.01325191 0.86858544

5 -0.12850235 -0.07970857 -0.10728007 -0.13570044

The rows of the output (numbered 1 to 5) refer to the clusters, while the numbers in
the output indicate the average value for the interest listed at the top of the column.
As the values are z-score standardized, negative values are below the overall mean
for all students and positive values are above the mean.

Given only these eight interests, we can already infer some characteristics of the
clusters. Cluster 4 is substantially above the mean on all the listed sports except
cheerleading, suggesting that this group may include athletes. Cluster 1 includes the
most mentions of cheerleading and is above the average in football interest.

By continuing to examine the clusters in this way, it's possible to construct a table
listing the dominant interests of each of the groups. In the following figure, each
cluster is shown with the features that most distinguish it from the other clusters.
Interestingly, Cluster 5 is distinguished by the fact that it is unremarkable; its members
had lower-than-average levels of interest in every measured activity. It is also the
single largest group in terms of the number of members. One potential explanation is
that these users created a profile on the website but never posted any interests.

Chapter 9

[289]

When sharing the results of a segmentation analysis, it
is often helpful to apply informative labels that capture
the essence of the groups like The Breakfast Club typology
applied here. The risk in adding such labels is that they
can obscure the groups' nuances by stereotyping the
group members.

Given the table, a marketing executive would have a clear depiction of five types
of teenage visitors to the social networking website. Based on these profiles, the
executive could sell targeted advertising impressions to businesses with products
relevant to one or more of the clusters. In the next section, we will see how the
cluster labels can be applied back to the original population for such uses.

Step 5 – improving model performance
Because clustering creates new information, the performance of a clustering
algorithm depends at least somewhat on both the quality of the clusters themselves
as well as what you do with that information. In the prior section, we already
demonstrated that the five clusters provided useful and novel insights into the
interests of teenagers; by that measure, the algorithm appears to be performing quite
well. Therefore, we can now focus our effort on turning these insights into action.

We'll begin by applying the clusters back onto the full dataset. When the k-means
clusters were created, the function stored a component called teens$cluster that
contains the cluster assignments for all 30,000 people in the sample. We can add this
as a column on the teens data frame using the following command:

> teens$cluster <- teen_clusters$cluster

Given this information, we can determine which cluster each user has been
assigned to. For example, here's the personal information for the first five users
in the SNS data:

> teens[1:5, c("cluster", "gender", "age", "friends")]

 cluster gender age friends

1 5 M 18.982 7

2 1 F 18.801 0

3 5 M 18.335 69

4 5 F 18.875 0

5 3 <NA> 18.995 10

Finding Groups of Data – Clustering with k-means

[290]

Using the aggregate() function we had used before, we can also look at the
demographic characteristics of the clusters overall. The mean age does not vary
much by cluster, although we wouldn't necessarily think that interests should
systematically differ by age. This is depicted as follows:

> aggregate(data = teens, age ~ cluster, mean)

 cluster age

1 1 16.99678

2 2 17.38765

3 3 17.10022

4 4 17.09634

5 5 17.29841

On the other hand, there are some notable differences in the proportion of females
by cluster. This is an interesting finding, as we didn't use gender data to create the
clusters, yet the clusters are still very predictive of gender:

> aggregate(data = teens, female ~ cluster, mean)

 cluster female

1 1 0.8942536

2 2 0.7221298

3 3 0.8001931

4 4 0.7130223

5 5 0.7109821

Recall that overall about 74 percent of the SNS users are female. Cluster 1, the
so-called Princesses, is nearly 90 percent female, while Clusters 2, 4, and 5 are only
about 70 percent female.

Given our success in predicting gender, you might also suspect that the clusters
are predictive of the number of friends the users have. This hypothesis seems to be
supported by the data, which is as follows:

> aggregate(data = teens, friends ~ cluster, mean)

 cluster friends

1 1 38.74733

2 2 32.88186

3 3 30.57046

4 4 36.14029

5 5 27.85314

Chapter 9

[291]

On an average, Princesses have the most friends (38.7), followed by Athletes (36.1)
and Brains (32.9). Criminals have only 30.6 while Basket Cases have 27.9. As with
gender, this finding is remarkable given that we did not use the number of friends as
an input to the clustering algorithm.

The association among group membership, gender, and number of friends suggests
that the clusters can be useful predictors. Validating their predictive ability in this
way may make the clusters an easier sell when they are pitched to the marketing
team, ultimately improving the performance of the algorithm.

Summary
Our findings support the popular adage that "birds of a feather flock together." By
using machine learning methods to cluster teenagers with others who have similar
interests, we were able to develop a typology of teen identities that was predictive of
personal characteristics like gender and the number of friends. These same methods
can be applied to other contexts with similar results.

This chapter covered only the fundamentals of clustering. As a very mature
machine learning method, there are a myriad of variants to the k-means algorithm
as well as many alternatives which bring unique biases and heuristics to the task.
Based on what you have learned here, you will be able to understand and apply
other clustering methods to new problems.

In the next chapter, we will begin to look at methods for measuring the success of
a learning algorithm that are applicable across many machine learning tasks. While
our process has always devoted some effort to evaluating the success of learning, in
order to obtain the highest degree of performance, it is crucial to be able to define
and measure it in the strictest terms.

Evaluating Model
Performance

Many years ago, when only the wealthy could afford access to education, tests and
examinations were not used to evaluate the students. Instead, they were used to judge
the teachers—parents wanted to know whether their children were learning enough
to justify the instructors' wages. Obviously, this practice has changed over the years.
Now, such evaluations are used to distinguish between high and low-achieving
students, filtering them into careers and further educational opportunities.

Given the significance of this process, a great deal of effort is invested in developing
accurate student assessments. A fair assessment will have a large number of
questions to cover a wide breadth of topics and reward true knowledge over lucky
guesses. The assessment should also include some questions requiring the student
to think about a problem he or she has never faced before. Correct responses would
indicate that the student can apply the knowledge more generally.

A similar process of exam writing can be used to imagine the practice of evaluating
machine learners. As different algorithms have varying strengths and weaknesses, it
is necessary to use tests that reveal distinctions among the learners when measuring
how a learner will perform on future data.

This chapter provides the information needed to assess machine learners, such as:

•	 The reasons why predictive accuracy is not sufficient to measure
performance, and the performance measures you might use instead

•	 Methods to ensure that the performance measures reasonably reflect a
model's ability to predict or forecast unseen data

•	 How to use R to apply these more useful measures and methods to the
predictive models we learned in previous chapters

Evaluating Model Performance

[294]

As you will discover, just as the best way to learn a topic is to attempt to teach it to
someone else, the process of teaching machine learners will also provide you with
a greater insight into how to better the use of machine learning methods you've
learned so far.

Measuring performance for classification
To measure classification performance in previous chapters, we used a measure of
accuracy that divided the proportion of correct predictions by the total number of
predictions. This number indicates the percentage of cases in which the learner is
right or wrong. For instance, suppose a classifier correctly identified whether or not
99,990 out of 100,000 newborn babies are carriers of a treatable but potentially-fatal
genetic defect. This would imply an accuracy of 99.99 percent and an error rate of
only 0.01 percent.

Although this would appear to indicate an extremely accurate classifier, it would
be wise to collect additional information before trusting your child's life to the test.
What if the genetic defect is found in only 10 out of every 100,000 babies? A test that
predicts "no defect" regardless of circumstances will still be correct for 99.99 percent
of all cases. In this case, even though the predictions are correct for the large majority
of data, the classifier is not very useful for its intended purpose, which is to identify
children with birth defects.

This is one consequence of the class imbalance problem,
which refers to the trouble associated with data having a large
majority of records belonging to a single class.

The best measure of classifier performance is whether the classifier is successful
at its intended purpose. For this reason, it is crucial to have measures of model
performance that measure utility rather than raw accuracy. Toward this end, we will
begin working with a variety of measures derived from predictions presented in a
familiar format: the confusion matrix. Before we get started, however, we need to
consider how to prepare classification results for evaluation.

Working with classification prediction data in R
There are three main types of data that are used to evaluate a classifier:

•	 Actual class values
•	 Predicted class values
•	 Estimated probability of the prediction

Chapter 10

[295]

We used the first two types in previous chapters. The idea is to maintain two
vectors of data: one holding the true, or actual class values and the other holding the
predicted class values. Both vectors must have the same number of values stored in
the same order. The predicted and actual values may be stored as separate R vectors
or columns in a single R data frame. Either of these approaches will work with most
R functions.

The actual class values come directly from the target feature in the test dataset. For
instance, if your test data are in a data frame named test_data, and the target is in
a column named outcome, we can create a vector of actual values using a command
similar to actual_outcome <- test_data$outcome.

Predicted class values are obtained using the model. For most machine learning
packages, this involves applying the predict() function to a model object and a data
frame of test data, such as: predicted_outcome <- predict(model, test_data).

Until now, we have only examined classification predictions using these two vectors
of data. Yet hidden behind-the-scenes is another piece of useful information. Even
though the classifier makes a single prediction about each example, it may be more
confident about some decisions than others. For instance, a classifier may be 99
percent certain that a SMS with the words "free" and "ringtones" is 99 percent spam,
but is only 51 percent certain that a SMS with the word "tonight" is spam. In both
cases, the classifier predicts a spam, but it is far more certain about one decision than
the other.

Studying these internal prediction probabilities is useful to evaluate the model
performance and is the source of the third type of evaluation data. If two models
make the same number of mistakes, but one is more able to accurately assess its
uncertainty, then it is a smarter model. It's ideal to find a learner that is extremely
confident in making a correct prediction, but timid in the face of doubt. The balance
between confidence and caution is a key part of model evaluation.

Unfortunately, obtaining the internal prediction probabilities can be tricky because
the method for doing so varies across classifiers. In general, the predict() function for
the classifier will allow you to specify the type of prediction you want. To obtain
a single predicted class, such as spam or ham, you typically specify "class" type. To
obtain the prediction probability, you typically specify a type such as prob, posterior,
raw, or probability.

Nearly all of the classifiers presented in this book will
provide such probabilities; the parameter for doing so
is included in the syntax box introducing each model.

Evaluating Model Performance

[296]

For example, to output the predicted probabilities for a naive Bayes classifier as
described in Chapter 4, Probabilistic Learning – Classification Using Naive Bayes, you
would use type = "raw" with the prediction function, such as: predicted_prob <-
predict(model, test_data, type = "raw").

Similarly, the command for a C5.0 classifier as described in Chapter 5, Divide and
Conquer – Classification Using Decision Trees and Rules is: predicted_prob <-
predict(model, test_data, type = "prob").

Keep in mind that in most cases the predict() function will return a probability
for each level of the outcome. For example, in the case of a two-outcome
yes/no model, the predicted_prob might be a matrix or data frame as shown
in the following expression:

> head(predicted_prob)

 no yes

1 0.0808272 0.9191728

2 1.0000000 0.0000000

3 0.7064238 0.2935762

4 0.1962657 0.8037343

5 0.8249874 0.1750126

6 1.0000000 0.0000000

Be careful while constructing an evaluation dataset to ensure that you are using
the correct probability for the class level of interest. To avoid confusion, in the case
of a binary outcome, you might even consider dropping the vector for one of the
two alternatives.

To illustrate typical evaluation data, we'll use a data frame containing predicted class
values, actual class values, and the estimated probability of a spam as determined
by the SMS spam classification model developed in Chapter 4, Probabilistic Learning:
Classification Using Naive Bayes.

To follow along with the examples here, download the
sms_results.csv file from the Packt Publishing's
website and load to a data frame using the command:
sms_results <- read.csv("sms_results.csv")

Chapter 10

[297]

The sms_results data frame is simple; shown in the following command and
its output, it contains three vectors of 1,390 values. One vector contains values
indicating the actual type of SMS message (spam or ham), one vector indicates
the model's predicted type, and the third vector indicates the probability that the
message was spam:

> head(sms_results)

 actual_type predict_type prob_spam

1 ham ham 2.560231e-07

2 ham ham 1.309835e-04

3 ham ham 8.089713e-05

4 ham ham 1.396505e-04

5 spam spam 1.000000e+00

6 ham ham 3.504181e-03

Notice that when the predicted type is ham, the prob_spam value is extremely close
to zero. Conversely, when the predicted type was spam, the prob_spam value is
equal to one, which implies that the model was 100 percent certain that the SMS was
spam. The fact that the estimated probability of spam falls on such extremes suggests
that the model was very confident about its decisions. But what happens when the
predicted and actual values differ? Using the subset() function, we can identify a
few of these records:

> head(subset(sms_results, actual_type != predict_type))

 actual_type predict_type prob_spam

53 spam ham 0.0006796225

59 spam ham 0.1333961018

73 spam ham 0.3582665350

76 spam ham 0.1224625535

81 spam ham 0.0224863219

184 spam ham 0.0320059616

Notice that the probabilities are somewhat less extreme, particularly row
number 73, which the classifier felt had a 35 percent chance of being spam,
yet still classified as ham.

The previous six examples represent six of the mistakes made by the SMS classifier.
In spite of such mistakes, is the model still useful? We can answer this question by
applying various error metrics to this evaluation data. In fact, many such metrics are
based on a tool we've already used extensively in previous chapters.

Evaluating Model Performance

[298]

A closer look at confusion matrices
A confusion matrix is a table that categorizes predictions according to whether
they match the actual value in the data. One of the table's dimensions indicates the
possible categories of predicted values while the other dimension indicates the same
for actual values. Although, we have only seen 2 x 2 confusion matrices so far, a
matrix can be created for a model predicting any number of classes. The following
figure depicts the familiar confusion matrix for two-class binary model as well as the
3 x 3 confusion matrix for a three-class model.

When the predicted value is the same as the actual value, this is a correct
classification. Correct predictions fall on the diagonal in the confusion matrix
(denoted by O). The off-diagonal matrix cells (denoted by X) indicate the cases where
the predicted value differs from the actual value. These are incorrect predictions.
Performance measures for classification models are based on the counts of
predictions falling on and off the diagonal in these tables:

The most common performance measures consider the model's ability to discern one
class versus all others. The class of interest is known as the positive class, while all
others are known as negative.

The use of the terminology positive and negative is not intended
to imply any value judgment (that is, good versus bad), nor does
it necessarily suggest that the outcome is present or absent (that
is, birth defect versus none). The choice of the positive outcome
can even be arbitrary, as in cases where a model is predicting
categories such as sunny versus rainy, or dog versus cat.

Chapter 10

[299]

The relationship between positive class and negative class predictions can be
depicted as a 2 x 2 confusion matrix that tabulates whether predictions fall into
one of four categories:

•	 True Positive (TP): Correctly classified as the class of interest
•	 True Negative (TN): Correctly classified as not the class of interest
•	 False Positive (FP): Incorrectly classified as the class of interest
•	 False Negative (FN): Incorrectly classified as not the class of interest

For the birth defect classifier mentioned previously, the confusion matrix would
tabulate whether the model's predicted birth defect status matches the patient's
actual birth defect status, as shown in the following diagram:

Using confusion matrices to measure
performance
With the 2 x 2 confusion matrix, we can formalize our definition of prediction
accuracy (sometimes called the success rate) as:

TP TNaccuracy
TP TN FP FN

+
=

+ + +

Evaluating Model Performance

[300]

In this formula, the terms TP, TN, FP, and FN refer to the number of times the
model's predictions fell into each of these categories. Therefore, the accuracy is the
proportion that represents the number of true positives and true negatives divided
by the total number of predictions.

The error rate, or the proportion of incorrectly classified examples, is specified as:

FP FNerror rate 1 accuracy
TP TN FP FN

+
= = −

+ + +

Notice that the error rate can be calculated as one minus the accuracy. Intuitively,
this makes sense; a model that is correct 95 percent of the time is incorrect 5 percent
of the time.

A quick-and-dirty way to tabulate a confusion matrix is to use the table() function. It's
easy to remember, and will count the number of occurrences of each combination of
values—exactly what we need for a confusion matrix. The command for creating a
confusion matrix for the SMS data is shown as follows. The counts in this table could
then be used to calculate accuracy and other statistics:

> table(sms_results$actual_type, sms_results$predict_type)

 ham spam

 ham 1202 5

 spam 29 154

If you would like to create a confusion matrix with more detailed output, the
CrossTable() function in the gmodels package offers a highly-customizable
solution. If you recall, we first used this function in Chapter 2, Managing and
Understanding Data. However, if you didn't install the package at that time, you will
need to do so using the command install.packages("gmodels").

By default, the CrossTable() output includes proportions in each cell that indicate
that cell's count as a percentage of the row, column, or total for the table. It also
includes row and column totals. As shown in the following code, the syntax is
similar to the table() function:

> library(gmodels)

> CrossTable(sms_results$actual_type, sms_results$predict_type)

The result is confusion matrix with much more details:

Chapter 10

[301]

We've used CrossTable() in several previous chapters, so by now you should be
familiar with the output. If you don't remember, you can refer to the table's key
(labeled Cell Contents), which provides a description of each number in the table.

We can use the contingency table to obtain the accuracy and error rate. Since
accuracy is (TP + TN) / (TP + TN + FP + FN), we can calculate:

> (154 + 1202) / (154+ 1202 + 5 + 29)

[1] 0.9755396

We can also calculate the error rate, (FP + FN) / (TP + TN + FP + FN) as:

> (5 + 29) / (154 + 1202 + 5 + 29)

[1] 0.02446043

This is the same as one minus accuracy:

> 1 - 0.9755396

[1] 0.0244604

Evaluating Model Performance

[302]

Although these calculations may seem simple, it can be a helpful exercise to practice
thinking about how the components of the confusion matrix relate to one another.
In the next section, you will see how these same pieces can be combined in different
ways to create a variety of additional performance measures.

Beyond accuracy – other measures of
performance
A comprehensive description of every performance measure is not feasible.
Countless measures have been developed and used for specific purposes in
disciplines as diverse as medicine, information retrieval, marketing, and signal
detection theory, among others. Instead, we'll consider only some of the most
commonly-cited measures in machine learning literature.

The Classification and Regression Training (caret) package by Max Kuhn includes
functions for computing many such performance measures. This package provides
a large number of tools for preparing, training, evaluating, and visualizing
machine learning models and data. In addition to its application here, we will
also employ caret extensively in Chapter 11, Improving Model Performance. Before
proceeding, install the package using the command install.packages("caret").

For more information on caret, please refer to the
publication: Building predictive models in R using the
caret package, Journal of Statistical Software, Vol. 28,
Iss. 5, by Max Kuhn (2008).

The caret package adds yet another function for creating a confusion matrix. As
shown in the following commands, the syntax is similar to table(), but the positive
outcome must be specified. Because the SMS classifier is intended to detect spam, we
will set positive = "spam".
> library(caret)

> confusionMatrix(sms_results$predict_type,sms_results$actual_type,
 positive = "spam")

Chapter 10

[303]

This results in the following output:

The output includes a confusion matrix and a set of performance measures. Let's take
a look at a few of the most commonly used statistics.

The kappa statistic
The kappa statistic (labeled Kappa in the previous output) adjusts accuracy by
accounting for the possibility of a correct prediction by chance alone. Kappa values
range to a maximum value of 1, which indicates perfect agreement between the
model's predictions and the true values—a rare occurrence. Values less than one
indicate imperfect agreement.

Depending on how your model is to be used, the interpretation of the kappa statistic
might vary. One common interpretation is shown as follows:

•	 Poor agreement = Less than 0.20
•	 Fair agreement = 0.20 to 0.40
•	 Moderate agreement = 0.40 to 0.60
•	 Good agreement = 0.60 to 0.80
•	 Very good agreement = 0.80 to 1.00

Evaluating Model Performance

[304]

It's important to note, however, that these categories are subjective. While "good
agreement" may be more than adequate for predicting someone's favorite ice cream
flavor, "very good agreement" may not suffice if your goal is to land a shuttle safely
on the surface of the moon.

For more information on the previous scale, refer to: The
measurement of observer agreement for categorical data, Biometrics
Vol. 33, pp.159-174, by J.R. Landis and G.G. Koch (1977).

The following is the formula for calculating the kappa statistic. In this formula,
Pr refers to the proportion of actual (a) and expected (e) agreement between the
classifier and the true values:

() ()
()

Pr Pr
1 Pr
a e

k
e

−
=

−

There is more than one way to define the kappa statistic.
The most common method, described here, uses Cohen's
kappa coefficient, as described in the paper: A coefficient
of agreement for nominal scales, Education and Psychological
Measurement Vol. 20, pp. 37-46, by J. Cohen (1960).

These proportions are easy to obtain from a confusion matrix once you know where
to look. Let's consider the confusion matrix for the SMS classification model created
with the CrossTable() function, duplicated as follows:

Chapter 10

[305]

Remember that the bottom value in each cell indicates the proportion of all instances
falling into that cell. Therefore, to calculate the observed agreement Pr(a), we simply
add the proportion of all instances where the predicted type and actual SMS type
agree. Thus, we can calculate Pr(a) as:

> pr_a <- 0.865 + 0.111

> pr_a

[1] 0.976

For this classifier, the observed and actual values agree 97.6 percent of the time—you
will note that this is the same as the accuracy. The kappa statistic adjusts the accuracy
relative to the expected agreement, Pr(e), which is the probability that chance alone
would lead the predicted and actual values to match, under the assumption that both
are selected randomly according to the observed proportions.

To find these observed proportions, we can use the probability rules we learned in
Chapter 4, Probabilistic Learning – Classification Using Naive Bayes. Assuming two events
are independent (meaning one does not affect the other), probability rules note that
the probability of both occurring is equal to the product of the probabilities of each
one occurring. For instance, we know that the probability of both choosing ham is:

Pr(actual_type is ham) * Pr(predicted_type is ham)

And the probability of both choosing spam is:

Pr(actual_type is spam) * Pr(predicted_type is spam)

The probability that the predicted or actual type is spam or ham can be obtained from
the row or column totals. For instance, Pr(actual_type is ham) = 0.868.

Pr(e) can be calculated as the sum of the probabilities that either the predicted and
actual values agree that the message is spam, or they agree that the message is ham.
Since the probability of either of two mutually exclusive events (that is, they cannot
happen simultaneously) occurring is equal to the sum of their probabilities, we
simply add both products. In R code, this would be:

> pr_e <- 0.868 * 0.886 + 0.132 * 0.114

> pr_e

[1] 0.784096

Since pr_e is 0.784096, by chance alone we would expect the observed and actual
values to agree about 78.4 percent of the time.

Evaluating Model Performance

[306]

This means that we now have all the information needed to complete the kappa
formula. Plugging the pr_a and pr_e values into the kappa formula, we find:

> k <- (pr_a - pr_e) / (1 - pr_e)

> k

[1] 0.8888395

The kappa is about 0.89, which agrees with the previous confusionMatrix() output
(the small difference is due to rounding). Using the suggested interpretation, we
note that there is very good agreement between the classifier's predictions and the
actual values.

There are a couple of R functions to calculate kappa automatically. The Kappa()
function (be sure to note the capital K) in the Visualizing Categorical Data (vcd)
package uses a confusion matrix of predicted and actual values. After installing the
package using the command install.packages("vcd"), the following commands
can be used to obtain kappa:

> library(vcd)

> Kappa(table(sms_results$actual_type, sms_results$predict_type))

 value ASE

Unweighted 0.8867172 0.01918876

Weighted 0.8867172 0.01587936

We're interested in the unweighted kappa. The value 0.89 matches what
we expected.

The weighted kappa is used when there are varying degrees
of agreement. For example, using a scale of cold, warm, and
hot, a value of warm agrees more with hot than it does with
the value of cold. In the case of a two-outcome event, such
as spam and ham, the weighted and unweighted kappa
statistics will be identical.

The kappa2() function in the Inter-Rater Reliability (irr) package can be used to
calculate kappa from vectors of predicted and actual values stored in a data frame.
After installing the package using the command install.packages("irr"), the
following commands can be used to obtain kappa:

> library(irr)

> kappa2(sms_results[1:2])

 Cohen's Kappa for 2 Raters (Weights: unweighted)

Chapter 10

[307]

 Subjects = 1390

 Raters = 2

 Kappa = 0.887

 z = 33.2

 p-value = 0

In both cases, the same kappa statistic is reported, so use whichever option you are
more comfortable with.

Be careful not to use the built-in kappa() function. It is unrelated
to the Kappa statistic reported previously.

Sensitivity and specificity
Classification often involves a balance between being overly conservative and overly
aggressive in decision making. For example, an e-mail filter could guarantee to
eliminate every spam message by aggressively eliminating nearly every ham message
at the same time. On the other hand, a guarantee that no ham messages will be
inadvertently filtered might allow an unacceptable amount of spam to pass through
the filter. This tradeoff is captured by a pair of measures: sensitivity and specificity.

The sensitivity of a model (also called the true positive rate), measures the
proportion of positive examples that were correctly classified. Therefore, as shown in
the following formula, it is calculated as the number of true positives divided by the
total number of positives in the data—those correctly classified (the true positives),
as well as those incorrectly classified (the false negatives).

TPsensitivity
TP FN

=
+

The specificity of a model (also called the true negative rate), measures the
proportion of negative examples that were correctly classified. As with sensitivity,
this is computed as the number of true negatives divided by the total number of
negatives—the true negatives plus the false positives.

TNspecificity
TN FP

=
+

Evaluating Model Performance

[308]

Given the confusion matrix for the SMS classifier, we can easily calculate these
measures by hand. Assuming that spam is the positive class, we can confirm that the
numbers in the confusionMatrix() output are correct. For example, the calculation
for sensitivity is:

> sens <- 154 / (154 + 29)

> sens

[1] 0.8415301

Similarly, for specificity we can calculate:

> spec <- 1202 / (1202 + 5)

> spec

[1] 0.9958575

The caret package provides functions for calculating sensitivity and specificity
directly from vectors of predicted and actual values. Be careful to specify the
positive or negative parameter appropriately, as shown in the following lines:

> library(caret)

> sensitivity(sms_results$predict_type, sms_results$actual_type,

 positive = "spam")

[1] 0.8415301

> specificity(sms_results$predict_type, sms_results$actual_type,

 negative = "ham")

[1] 0.9958575

Sensitivity and specificity range from 0 to 1, with values close to 1 being more
desirable. Of course, it is important to find an appropriate balance between the
two—a task that is often quite context-specific.

For example, in this case the sensitivity of 0.842 implies that 84 percent of spam
messages were correctly classified. Similarly, the specificity of 0.996 implies that 99.6
percent of non-spam messages were correctly classified, or alternatively, 0.4 percent
of valid messages were rejected as spam. The idea of rejecting 0.4 percent of valid
SMS messages may be unacceptable, or it may be a reasonable tradeoff given the
reduction in spam.

Use sensitivity and specificity to provide a tool for thinking about such tradeoffs.
Typically, changes are made to the model, and different models are tested until
finding one that meets a desired sensitivity and specificity threshold. Visualizations,
such as those discussed later in this chapter, can also assist with understanding the
tradeoff between sensitivity and specificity.

Chapter 10

[309]

Precision and recall
Closely related to sensitivity and specificity are two other performance measures,
related to compromises made in classification: precision and recall. Used primarily
in the context of information retrieval, these statistics are intended to provide an
indication of how interesting and relevant a model's results are, or whether the
predictions are diluted by meaningless noise.

The precision (also known as the positive predictive value) is defined as the
proportion of positive examples that are truly positive; in other words, when a model
predicts the positive class, how often is it correct? A precise model will only predict
the positive class in cases very likely to be positive. It will be very trustworthy.

Consider what would happen if the model was very imprecise. Over time, the results
would be less likely to be trusted. In the context of information retrieval, this would
be similar to a search engine such as Google returning unrelated results. Eventually
users would switch to a competitor such as Bing. In the case of the SMS spam filter,
high precision means that the model is able to carefully target only the spam while
ignoring the ham.

TPprecision
TP FP

=
+

On the other hand, recall is a measure of how complete the results are. As shown in
the following formula, this is defined as the number of true positives over the total
number of positives. You may recognize that this is the same as sensitivity, only
the interpretation differs. A model with high recall captures a large portion of the
positive examples, meaning that it has wide breadth. For example, a search engine
with high recall returns a large number of documents pertinent to the search query.
Similarly, the SMS spam filter has high recall if the majority of spam messages are
correctly identified.

TPrecall
TP FN

=
+

We can calculate precision and recall from the confusion matrix. Again, assuming
that spam is the positive class, the precision is:

> prec <- 154 / (154 + 5)

> prec

[1] 0.9685535

Evaluating Model Performance

[310]

And the recall is:

> rec <- 154 / (154 + 29)

> rec

[1] 0.8415301

The caret package can be used to compute either of these measures from vectors of
predicted and actual classes. Precision uses the posPredValue() function:

> library(caret)

> posPredValue(sms_results$predict_type, sms_results$actual_type,

 positive = "spam")

[1] 0.9685535

While recall uses the sensitivity() function as we had done before.

Similar to the inherent tradeoff between sensitivity and specificity, for most real-
world problems, it is difficult to build a model with both high precision and high
recall. It is easy to be precise if you target only the low-hanging fruit—the easy to
classify examples. Similarly, it is easy for a model to have high recall by casting a
very wide net, meaning that that the model is overly aggressive at predicting the
positive cases. In contrast, having both high precision and recall at the same time is
very challenging. It is therefore important to test a variety of models in order to find
the combination of precision and recall that meets the needs of your project.

The F-measure
A measure of model performance that combines precision and recall into a single
number is known as the F-measure (also sometimes called the F1 score or the
F-score). The F-measure combines precision and recall using the harmonic mean.
The harmonic mean is used rather than the more common arithmetic mean since
both precision and recall are expressed as proportions between zero and one. The
following is the formula for F-measure:

2 precision recall 2 TPF -measure =
recall precision 2 TP FP FN
× × ×

=
+ × + +

To calculate the F-measure, use the precision and recall values computed previously:

> f <- (2 * prec * rec) / (prec + rec)

> f

[1] 0.9005848

Chapter 10

[311]

This is the same as using the counts from the confusion matrix:

> f2 <- (2 * 154) / (2 * 154 + 5 + 29)

> f2

[1] 0.9005848

Since the F-measure reduces model performance to a single number, it provides a
convenient way to compare several models side-by-side. However, this assumes that
equal weight should be assigned to precision and recall, an assumption that is not
always valid. It is possible to calculate F-scores using different weights for precision
and recall, but choosing the weights can be tricky at best and arbitrary at worst. A
better practice is to use measures such as the F-score in combination with methods
that consider a model's strengths and weaknesses more globally, such as those
described in the next section.

Visualizing performance tradeoffs
Visualizations are often helpful for understanding how the performance of
machine learning algorithms varies from situation to situation. Rather than thinking
about a single pair of statistics such as sensitivity and specificity, or precision and
recall, visualizations allow you to examine how measures vary across a wide range
of values. They also provide a method for comparing learners side-by-side in a
single chart.

The ROCR package provides an easy-to-use suite of functions for creating
visualizations of the performance statistics of classification models. It includes
functions for computing a large set of the most common performance measures and
visualizations. The ROCR website, http://rocr.bioinf.mpi-sb.mpg.de/, includes
a list of the full set of features as well as several examples of the visualization
capabilities. Before continuing, install the package using the command install.
packages("ROCR").

For more information on the development of ROCR, see:
ROCR: visualizing classifier performance in R, Bioinformatics Vol.
21, pp. 3940-3941, by T. Sing, O. Sander, N. Beerenwinkel, and
T. Lengauer (2005).

To create visualizations with ROCR, two vectors of data are needed. The first must
contain the class values predicted, and the second must contain the estimated
probability of the positive class. These are used to create a prediction object that can
be examined through plotting functions of ROCR.

Evaluating Model Performance

[312]

The prediction object for the SMS classifier uses the classifier's estimated spam
probabilities (prob_spam), and the actual class labels (actual_type). These are
combined using the prediction() function in the following lines:

> library(ROCR)

> pred <- prediction(predictions = sms_results$prob_spam,

 labels = sms_results$actual_type)

ROCR provides a performance() function for computing measures of performance
on prediction objects such as pred, which was used in previous code example. The
resulting performance object can be visualized using the R plot() function. Given
these three functions, a large variety of depictions can be created.

ROC curves
The ROC curve (Receiver Operating Characteristic) is commonly used to examine
the tradeoff between the detection of true positives, while avoiding the false positives.
As you might suspect from the name, ROC curves were developed by engineers in the
field of communications around the time of World War II; receivers of radar and radio
signals needed a method to discriminate between true signals and false alarms. The
same technique is useful today for visualizing the efficacy of machine learning models.

The characteristics of a typical ROC diagram are depicted in the following plot.
Curves are defined on a plot with the proportion of true positives on the vertical axis,
and the proportion of false positives on the horizontal axis. Because these values
are equivalent to sensitivity and (1 – specificity), respectively, the diagram is also
known as a sensitivity/specificity plot:

Chapter 10

[313]

The points comprising ROC curves indicate the true positive rate at varying false
positive thresholds. To create the curves, a classifier's predictions are sorted by the
model's estimated probability of the positive class, with the largest values first.
Beginning at the origin, each prediction's impact on the true positive rate and false
positive rate will result in a curve tracing vertically (for a correct prediction), or
horizontally (for an incorrect prediction).

To illustrate this concept, three hypothetical classifiers are contrasted in the previous
plot. First, the diagonal line from the bottom-left to the top-right corner of the
diagram represents a classifier with no predictive value. This type of classifier detects
true positives and false positives at exactly the same rate, implying that the classifier
cannot discriminate between the two. This is the baseline by which other classifiers
may be judged; ROC curves falling close to this line indicate models that are not
very useful. Similarly, the perfect classifier has a curve that passes through the point at
100 percent true positive rate and 0 percent false positive rate. It is able to correctly
identify all of the true positives before it incorrectly classifies any negative result.
Most real-world classifiers are similar to the test classifier; they fall somewhere in the
zone between perfect and useless.

The closer the curve is to the perfect classifier, the better it is at identifying positive
values. This can be measured using a statistic known as the area under the ROC
curve (abbreviated AUC). The AUC, as you might expect, treats the ROC diagram
as a two-dimensional square and measures the total area under the ROC curve.
AUC ranges from 0.5 (for a classifier with no predictive value), to 1.0 (for a perfect
classifier). A convention for interpreting AUC scores uses a system similar to
academic letter grades:

•	 0.9 – 1.0 = A (outstanding)
•	 0.8 – 0.9 = B (excellent/good)
•	 0.7 – 0.8 = C (acceptable/fair)
•	 0.6 – 0.7 = D (poor)
•	 0.5 – 0.6 = F (no discrimination)

As with most scales similar to this, the levels may work better for some tasks than
others; the categorization is somewhat subjective.

It's also worth noting that two ROC curves may be shaped
very differently, yet have identical AUC. For this reason,
AUC can be extremely misleading. The best practice is to
use AUC in combination with qualitative examination of
the ROC curve.

Evaluating Model Performance

[314]

Creating ROC curves with the ROCR package involves building a performance object
for the pred prediction object we computed earlier. Since ROC curves plot true
positive rates versus false positive rates, we simply call the performance() function
while specifying the tpr and fpr measures, as shown in the following code:

> perf <- performance(pred, measure = "tpr", x.measure = "fpr")

Using the perf performance object, we can visualize the ROC curve with R's plot()
function. As shown in the following code lines, many of the standard parameters
for adjusting the visualization can be used, such as main (for adding a title), col (for
changing the line color), and lwd (for adjusting the line width):

> plot(perf, main = "ROC curve for SMS spam filter",

 col = "blue", lwd = 3)

Although the plot() command, used in previous lines of code, is sufficient to create
a valid ROC curve, it is helpful to add a reference line to indicate the performance of
a classifier with no predictive value.

For plotting such a line, we'll use the abline() function. This function can be used
to specify a line in slope-intercept form, where a is the intercept and b is the slope.
Since we need an identity line that passes through the origin, we'll set the intercept to
a=0 and the slope to b=1 as shown in the following plot. The lwd parameter adjusts
the line thickness, while the lty parameter adjusts the type of line. For example, lty
= 2 indicates a dashed line.

> abline(a = 0, b = 1, lwd = 2, lty = 2)

The end result is an ROC plot with a dashed reference line:

Chapter 10

[315]

Qualitatively, we can see that this ROC curve appears to occupy the space in the
top-left corner of the diagram, which suggests that it is closer to a perfect classifier
than the dashed line indicating a useless classifier. To confirm this quantitatively,
we can use the ROCR package to calculate the AUC. To do so, we first need to create
another performance object, this time specifying measure = "auc", as shown in the
following code:

> perf.auc <- performance(pred, measure = "auc")

Since perf.auc is an object (specifically known as an S4 object) we need to use
a special type of notation to access the values stored within. S4 objects hold
information in positions known as slots. The str() function can be used to see
all slots for an object:

> str(perf.auc)

Formal class 'performance' [package "ROCR"] with 6 slots

 ..@ x.name : chr "None"

 ..@ y.name : chr "Area under the ROC curve"

 ..@ alpha.name : chr "none"

 ..@ x.values : list()

 ..@ y.values :List of 1

 $: num 0.983

 ..@ alpha.values: list()

Notice that slots are prefixed with the @ symbol. To access the AUC value, which
is stored as a list in the y.values slot, we can use the @ notation along with the
unlist() function, which simplifies lists to a vector of numeric values:

> unlist(perf.auc@y.values)

[1] 0.9829999

The AUC for the SMS classifier is 0.98, which is extremely high. But how do we
know whether the model is just as likely to perform well on another dataset? In order
to answer such questions, we need to better understand how far we can extrapolate a
model's predictions beyond the test data.

Estimating future performance
Some R machine learning packages present confusion matrices and performance
measures during the model building process. The purpose of these statistics is to
provide insight about the model's resubstitution error, which occurs when the
training data is incorrectly predicted in spite of the model being built directly from
this data. This information is intended to be used as a rough diagnostic, particularly
to identify obviously poor performers.

Evaluating Model Performance

[316]

The resubstitution error is not a very useful marker of future performance, however.
For example, a model that used rote memorization to perfectly classify every training
instance (that is, zero resubstitution error) would be unable to make predictions on
data it has never seen before. For this reason, the error rate on the training data can
be extremely optimistic about a model's future performance.

Instead of relying on resubstitution error, a better practice is to evaluate a model's
performance on data it has not yet seen. We used such a method in previous chapters
when we split the available data into a set for training and a set for testing. In some
cases, however, it is not always ideal to create training and test datasets. For instance,
in a situation where you have only a small pool of data, you might not want to
reduce the sample any further by dividing it into training and test sets.

Fortunately, there are other ways to estimate a model's performance on unseen
data. The caret package that we used previously for calculating performance
measures also, offers a number of functions for this purpose. If you are following
along with the R code examples and haven't already installed the caret package,
please do so. You will also need to load the package to the R session using the
library(caret) command.

The holdout method
The procedure of partitioning data into training and test datasets that we used in
previous chapters is known as the holdout method. As shown in the following
diagram, the training dataset is used to generate the model, which is then applied to
the test dataset to generate predictions for evaluation. Typically, about one-third of
the data is held out for testing and two-thirds used for training, but this proportion
can vary depending on the amount of data available. To ensure that the training and
test data do not have systematic differences, examples are randomly divided into the
two groups.

Chapter 10

[317]

For the holdout method to result in a truly accurate estimate of future performance,
at no time should results from the test dataset be allowed to influence the model. It
is easy to unknowingly violate this rule by choosing a best model based upon the
results of repeated testing. Instead, it is better to divide the original data so that in
addition to the training and test datasets, a third validation dataset is available. The
validation dataset would be used for iterating and refining the model or models
chosen, leaving the test dataset to be used only once as a final step to report an
estimated error rate for future predictions. A typical split between training, test, and
validation would be 50 percent, 25 percent, and 25 percent respectively.

A keen reader will note that holdout test data was used in
previous chapters to compare several models. This would
indeed violate the rule as stated previously, and therefore the
test data might have been more accurately termed validation
data. If we use test data to make a decision, we are cherry-
picking results and the evaluation is no longer an unbiased
estimate of future performance.

A simple method for creating holdout samples uses random number generators to
assign records to partitions. This technique was first used in Chapter 5, Divide and
Conquer – Classification Using Decision Trees and Rules to create training and
test datasets.

If you'd like to follow along with the following examples,
download the dataset credit.csv from the Packt
Publishing's website and load to a data frame using the
command credit <- read.csv("credit.csv").

Suppose we have a data frame named credit with 1000 rows of data. We can divide
this into three partitions:

> random_ids <- order(runif(1000))

> credit_train <- credit[random_ids[1:500],]

> credit_validate <- credit[random_ids[501:750],]

> credit_test <- credit[random_ids[751:1000],]

The first line creates a vector of randomly ordered row IDs from 1 to 1000. These
IDs are then used to divide the credit data frame into 500, 250, and 250 records
comprising the training, validation, and test datasets.

Evaluating Model Performance

[318]

One problem with holdout sampling is that each partition may have a larger or smaller
proportion of some classes. In certain cases, particularly those in which a class is a very
small proportion of the dataset, this can lead a class to be omitted from the training
dataset—a significant problem, because the model cannot then learn this class.

In order to reduce the chance that this will occur, a technique called stratified
random sampling can be used. Although, on average, a random sample will contain
roughly the same proportion of class values as the full dataset, stratified random
sampling ensures that the generated random partitions have approximately the same
proportion of each class as the full dataset.

The caret package provides a createDataPartition() function that will create
partitions based on stratified holdout sampling. Code for creating a stratified sample
of training and test data for the credit dataset is shown in the following commands.
To use the function, a vector of class values must be specified (here, default refers
to whether a loan went into default), in addition to a parameter p, which specifies the
proportion of instances to be included in the partition. The list = FALSE parameter
prevents the result from being stored in list format:

> in_train <- createDataPartition(credit$default, p = 0.75,

 list = FALSE)

> credit_train <- credit[in_train,]

> credit_test <- credit[-in_train,]

The in_train vector indicates row numbers included in the training sample.
We can use these row numbers to select examples for the credit_train data
frame. Similarly, by using a negative symbol, we can use the rows not found in
the in_train vector for the credit_test dataset.

Since models trained on larger datasets generally perform
better, a common practice is to retrain the model on the full
set of data (that is, training plus test and validation) after a
final model has been selected and evaluated, allowing the
model maximum use of available data.

Although it distributes the classes evenly, stratified sampling does not guarantee
other types of representativeness. Some samples may have too many or too few
difficult cases, easy-to-predict cases, or outliers. This is especially true for smaller
datasets, which may not have a large enough portion of such cases to divide among
training and test sets.

Chapter 10

[319]

In addition to potentially biased samples, another problem with the holdout method
is that substantial portions of data must be reserved for testing and validating the
model. Since these data cannot be used to train the model until its performance has
been measured, the performance estimates are likely to be overly conservative.

A technique called repeated holdout is sometimes used to mitigate the problems
of randomly composed training datasets. The repeated holdout method is a special
case of the holdout method that uses the average result from several random holdout
samples to evaluate a model's performance. As multiple holdout samples are used,
it is less likely that the model is trained or tested on non-representative data. We'll
expand on this idea in the next section.

Cross-validation
The repeated holdout is the basis of a technique known as k-fold cross-validation
(or k-fold CV), which has become the industry standard for estimating model
performance. But rather than taking repeated random samples that could potentially
use the same record more than once, k-fold CV randomly divides the data into k
completely separate random partitions called folds.

Although k can be set to any number, by far the most common convention is to use
10-fold cross-validation (10-fold CV). Why 10 folds? Empirical evidence suggests
that there is little added benefit to using a greater number. For each of the 10 folds
(each comprising 10 percent of the total data), a machine learning model is built on
the remaining 90 percent of data. The fold's matching 10 percent sample is then used
for model evaluation. After the process of training and evaluating the model has
occurred for 10 times (with 10 different training/testing combinations), the average
performance across all folds is reported.

An extreme case of k-fold CV is the leave-one-out method,
which performs k-fold CV using a fold for each one of the data's
examples. This ensures that the greatest amount of data is used
for training the model. Although this may seem useful, it is so
computationally expensive that it is rarely used in practice.

Datasets for cross-validation can be created using the createFolds() function in
the caret package. Similar to the stratified random holdout sampling, this function
will attempt to maintain the same class balance in each of the folds as in the original
dataset. The following is the command for creating 10 folds:

> folds <- createFolds(credit$default, k = 10)

Evaluating Model Performance

[320]

The result of the createFolds() function is a list of vectors storing the row numbers
for each of the k = 10 requested folds. We can peek at the contents using str():

> str(folds)

List of 10

 $ Fold01: int [1:100] 1 5 12 13 19 21 25 32 36 38 ...

 $ Fold02: int [1:100] 16 49 78 81 84 93 105 108 128 134 ...

 $ Fold03: int [1:100] 15 48 60 67 76 91 102 109 117 123 ...

 $ Fold04: int [1:100] 24 28 59 64 75 85 95 97 99 104 ...

 $ Fold05: int [1:100] 9 10 23 27 29 34 37 39 53 61 ...

 $ Fold06: int [1:100] 4 8 41 55 58 103 118 121 144 146 ...

 $ Fold07: int [1:100] 2 3 7 11 14 33 40 45 51 57 ...

 $ Fold08: int [1:100] 17 30 35 52 70 107 113 129 133 137 ...

 $ Fold09: int [1:100] 6 20 26 31 42 44 46 63 79 101 ...

 $ Fold10: int [1:100] 18 22 43 50 68 77 80 88 106 111 ...

Here, we see that the first fold is named Fold01, and stores 100 integers indicating the
100 rows in the credit data frame for the first fold. To create training and test datasets
to build and evaluate a model, one more step is needed. The following commands
show how to create data for the first fold. Just as we had done with stratified holdout
sampling, we'll assign the selected examples to the training dataset and use the
negative symbol to assign everything else to the test dataset:

> credit01_train <- credit[folds$Fold01,]

> credit01_test <- credit[-folds$Fold01,]

To perform the full 10-fold CV, this step would need to be repeated a total of 10
times, building a model, and then calculating the model's performance each time.
At the end, the performance measures would be averaged to obtain the overall
performance. Thankfully, we can automate this task by applying several of the
techniques we've learned before.

To demonstrate the process, we'll estimate the kappa statistic for a C5.0 decision tree
model of the credit data using 10-fold CV. First, we need to load caret (for creating
the folds), C50 (for the decision tree), and irr (for calculating kappa). The latter two
packages were chosen for illustrative purposes; if you desire, you can use a different
model or a different performance measure with the same series of steps.

> library(caret)

> library(C50)

> library(irr)

Chapter 10

[321]

Next, we'll create a list of 10 folds as we have done previously. The set.seed()
function is used here to ensure that the results are consistent if you run the same
code again:

> set.seed(123)

> folds <- createFolds(credit$default, k = 10)

Finally, we will apply a series of identical steps to the list of folds using the lapply()
function. As shown in the following code, because there is no existing function that
does exactly what we need, we must define our own function to pass to lapply().
Our custom function divides the credit data frame into training and test data, creates
a decision tree using the C5.0() function on the training data, generates a set of
predictions from the test data, and compares the predicted and actual values using
the kappa2() function:

> cv_results <- lapply(folds, function(x) {

 credit_train <- credit[x,]

 credit_test <- credit[-x,]

 credit_model <- C5.0(default ~ ., data = credit_train)

 credit_pred <- predict(credit_model, credit_test)

 credit_actual <- credit_test$default

 kappa <- kappa2(data.frame(credit_actual, credit_pred))$value

 return(kappa)

 })

The resulting kappa statistics are compiled into a list stored in the cv_results
object, which we can examine using str():

> str(cv_results)

List of 10

 $ Fold01: num 0.283

 $ Fold02: num 0.108

 $ Fold03: num 0.326

 $ Fold04: num 0.162

 $ Fold05: num 0.243

 $ Fold06: num 0.257

 $ Fold07: num 0.0355

 $ Fold08: num 0.0761

 $ Fold09: num 0.241

 $ Fold10: num 0.253

Evaluating Model Performance

[322]

In this way, we've transformed our list of IDs for 10 folds into a list of kappa
statistics. There's just one more step remaining: we need to calculate the average of
these 10 values. Although you will be tempted to type mean(cv_results), because
cv_results is not a numeric vector the result would be an error. Instead, use the
unlist() function, which eliminates the list structure and reduces cv_results to a
numeric vector. From there, we can calculate the mean kappa as expected:

> mean(unlist(cv_results))

[1] 0.1984929

Unfortunately, this kappa statistic is fairly low—in fact, this corresponds to "poor"
on the interpretation scale—which suggests that the credit scoring model does
not perform much better than random chance. In the next chapter, we'll examine
automated methods based on 10-fold CV that can assist us with improving the
performance of this model.

Perhaps the current gold standard method for reliably estimating
model performance is repeated k-fold CV. As you might guess
from the name, this involves repeatedly applying k-fold CV and
averaging the results. A common strategy is to perform 10-fold
CV ten times. Although computationally intensive, this provides
a very robust estimate.

Bootstrap sampling
A slightly less popular, but still fairly widely-used alternative to k-fold CV is
known as bootstrap sampling, the bootstrap, or bootstrapping for short. Generally
speaking, these refer to statistical methods of using random samples of data to
estimate properties of a larger set. When this principle is applied to machine learning
model performance, it implies the creation of several randomly-selected training and
test datasets, which are then used to estimate performance statistics. The results
from the various random datasets are then averaged to obtain a final estimate of
future performance.

Chapter 10

[323]

So, what makes this procedure different from k-fold CV? Where cross-validation
divides the data into separate partitions, in which each example can appear only
once, the bootstrap allows examples to be selected multiple times through a process
of sampling with replacement. This means that from the original dataset of n
examples, the bootstrap procedure will create one or more new training datasets
that also contain n examples, some of which are repeated. The corresponding test
datasets are then constructed from the set of examples that were not selected for the
respective training datasets.

Using sampling with replacement as described previously, the probability that any
given instance is included in the training dataset is 63.2 percent. Consequently, the
probability of any instance being in the test dataset is 36.8 percent. In other words,
the training data represents only 63.2 percent of available examples, some of which
are repeated. In contrast with 10-fold CV, which uses 90 percent of examples for
training, the bootstrap sample is less representative of the full dataset.

As a model trained on only 63.2 percent of the training data is likely to perform
worse than a model trained on a larger training set, the bootstrap's performance
estimates may be substantially lower than what will be obtained when the model
is later trained on the full dataset. A special case of bootstrapping known as the
0.632 bootstrap accounts for this by calculating the final performance measure as a
function of performance on both the training data (which is overly optimistic) and
the test data (which is overly pessimistic). The final error rate is then estimated as:

test trainerror = 0.632 error 0.368 error× + ×

One advantage of the bootstrap over cross-validation is that it tends to work better
with very small datasets. Additionally, bootstrap sampling has applications beyond
performance measurement. In particular, in the following chapter we'll learn how
the principles of bootstrap sampling can be used to improve model performance.

Evaluating Model Performance

[324]

Summary
This chapter presented a number of the most common measures and techniques for
evaluating the performance of machine learning classification models. Although
accuracy provides a simple method for examining how often a model is correct, this
can be misleading in the case of rare events because the real-life cost of such events
may be inversely proportional to how frequently they appear in the data.

A number of measures based on confusion matrices better capture the balance
among the costs of various types of errors. Closely examining the tradeoffs between
sensitivity and specificity or precision and recall can be a useful tool for thinking
about the implications of errors in the real world. Visualizations such as the ROC
curve are also helpful toward this end.

It is also worth mentioning that sometimes the best measure of a model's
performance is to consider how well it meets or doesn't meet other objectives. For
instance, you may need to explain a model's logic in simple language, which would
eliminate some models from consideration. Additionally, even if it performs very
well, a model that is too slow or difficult to scale to a production environment is
completely useless.

An obvious extension of measuring performance is to identify automated ways to
find the best models for a particular task. In the next chapter, we will build upon our
work so far to investigate ways to make smarter models by systematically iterating,
refining, and combining learning algorithms.

Improving Model
Performance

When a sports team falls short of meeting its goal—whether it is to obtain an
Olympic gold medal, a league championship, or a world record time—it must
begin a process of searching for improvements to avoid a similar fate in the future.
Imagine that you're the coach of such a team. How would you spend your practice
sessions? Perhaps you'd direct the athletes to train harder or train differently in order
to maximize every bit of their potential. Or, you might place a greater emphasis on
teamwork, which could utilize the athletes' strengths and weaknesses more smartly.

Now imagine that you're the coach tasked with finding a world champion
machine learning algorithm—perhaps to enter a competition, such as those posted
on the Kaggle website (http://www.kaggle.com/competitions), to win the million
dollar Netflix Prize (http://www.netflixprize.com/), or simply to improve the
bottom line for your business. Where do you begin?

Although the context of the competition may differ, many strategies one might use
to improve a sports team's performance can also be used to improve the performance
of statistical learners. As the coach, it is your job to find the combination of training
techniques and teamwork skills that allow you to meet your performance goals.

This chapter builds upon the material covered in this book so far to introduce a set
of techniques for improving the predictive performance of machine learners. You
will learn:

•	 How to fine-tune the performance of machine learning models by searching
for the optimal set of training conditions

•	 Methods for combining models into groups that use teamwork to tackle the
most challenging problems

•	 Cutting edge techniques for getting the maximum level of performance out
of machine learners

Improving Model Performance

[326]

Not all of these methods will be successful on every problem. Yet if you look at the
winning entries to machine learning competitions, you're likely to find at least one
of them has been employed. To remain competitive, you too will need to add these
skills to your repertoire.

Tuning stock models for better
performance
Some learning problems are well suited to the stock models presented in previous
chapters. In such cases, you may not need to spend much time iterating and refining
the model; it may perform well enough as it is. On the other hand, some problems are
inherently more difficult. The underlying concepts to be learned may be extremely
complex, requiring an understanding of many subtle relationships, or it may have
elements of random chance, making it difficult to define the signal within the noise.

Developing models that perform extremely well on such difficult problems is every
bit an art as it is a science. Sometimes, a bit of intuition is helpful when trying
to identify areas where performance can be improved. In other cases, finding
improvements will require a brute-force, trial and error approach. Of course, the
process of searching numerous possible improvements can be aided by the use of
automated programs.

In Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules, we
attempted a difficult problem: identifying loans that were likely to enter into default.
Although we were able to use performance tuning methods to obtain a respectable
classification accuracy of about 72 percent, upon a more careful examination in
Chapter 10, Evaluating Model Performance, we realized that the high accuracy was a bit
misleading. In spite of the reasonable accuracy, the kappa statistic was only about
0.20, which suggested that the model was actually performing somewhat poorly. In
this section, we'll revisit the credit scoring model to see if we can improve the results.

To follow along with the examples, download the
credit.csv file from the Packt Publishing's website and save
it to your R working directory. Load the file into a data frame
using the command: credit <- read.csv("credit.csv")

You will recall that we first used a stock C5.0 decision tree to build the classifier for the
credit data. We then attempted to improve its performance by adjusting the trials
parameter to increase the number of boosting iterations. By increasing the trials from
the default of 1 up to the values of 10 and 100, we were able to increase the model's
accuracy. This process of adjusting the model fit options is called parameter tuning.

Chapter 11

[327]

Parameter tuning is not limited to decision trees. For instance, we tuned k-nearest
neighbor models when we searched for the best value of k, and used a number
of options for neural networks and support vector machines, such as adjusting
the number of nodes, hidden layers, or choosing different kernel functions. Most
machine learning algorithms allow you to adjust at least one parameter, and the
most sophisticated models offer a large number of ways to tweak the model fit to
your liking. Although this allows the model to be tailored closely to the data, the
complexity of all the possible options can be daunting. A more systematic approach
is warranted.

Using caret for automated parameter tuning
Rather than choosing arbitrary values for each of the model's parameters—a task
that is not only tedious but somewhat unscientific—it is better to conduct a search
through many possible parameter values to find the best combination.

The caret package, which we used extensively in Chapter 10, Evaluating Model
Performance, provides tools to assist with automated parameter tuning. The core
functionality is provided by a train() function that serves as a standardized
interface to train 150 different machine learning models for both classification and
regression tasks. By using this function, it is possible to automate the search for
optimal models using a choice of evaluation methods and metrics.

Do not feel overwhelmed by the large number of models—we've
already covered many of them in earlier chapters. Others are
simple variants or extensions of the base concepts. Given what
you've learned so far, you should be confident that you have the
ability to understand all of the 150 choices.

Automated parameter tuning requires you to consider three questions:

•	 What type of machine learning model (and/or specific implementation of the
algorithm) should be trained on the data?

•	 Which model parameters can be adjusted, and how extensively should they
be tuned to find the optimal settings?

•	 What criteria should be used to evaluate the models to find the best candidate?

Improving Model Performance

[328]

To answer the first question involves finding a well-suited match between the
machine learning task and one of the 150 models. Obviously, this requires an
understanding of the breadth and depth of machine learning models. This book
provides the background needed for the former, while additional practice will help
with the latter. Additionally, it can help to work through a process of elimination:
nearly half of the models can be eliminated depending on whether the task is
classification or regression; others can be excluded based on the format of the data or
the need to avoid black box models, and so on. In any case, there's also no reason you
can't try several approaches and compare the best result of each.

Addressing the second question is a matter largely dictated by the choice of model,
since each algorithm utilizes a unique set of parameters. The available tuning
parameters for each of the predictive models covered in this book are listed in the
following table. Keep in mind that although some models have additional options not
shown, only those listed in the table are supported by caret for automatic tuning.

For a complete list of the 150 models and corresponding
tuning parameters covered by caret, refer to the table
provided by package author Max Kuhn at: http://
caret.r-forge.r-project.org/modelList.html

Model Learning task Method name Parameters
k-Nearest Neighbors Classification knn k

Naïve Bayes Classification nb fL, usekernel
Decision Trees Classification C5.0 model, trials, winnow
OneR Rule Learner Classification OneR None
RIPPER Rule Learner Classification JRip NumOpt

Linear Regression Regression lm None
Regression Trees Regression rpart cp

Model Trees Regression M5 pruned, smoothed, rules
Neural Networks Dual use nnet size, decay
Support Vector
Machines (Linear
Kernel)

Dual use svmLinear C

Support Vector
Machines (Radial Basis
Kernel)

Dual use svmRadial C, sigma

Random Forests Dual use rf mtry

Chapter 11

[329]

The goal of automatic tuning is to search a set of candidate models comprising a
matrix, or grid, of possible combinations of parameters. Because it is impractical
to search every conceivable parameter value, only a subset of possibilities is used
to construct the grid. By default, caret searches at most three values for each of p
parameters, which means that 3^p candidate models will be tested. For example, by
default, the automatic tuning of k-nearest neighbors will compare 3^1 = 3 candidate
models, for instance, one each of k=5, k=7, and k=9. Similarly, tuning a decision tree
could result in a comparison of up to 27 different candidate models, comprising the
grid of 3^3 = 27 possible combinations of model, trials, and winnow settings. In
practice, however, only 12 models are actually tested. This is because the model and
winnow parameters can only take two values (tree versus rules and TRUE versus
FALSE, respectively), which makes the grid size 3*2*2 = 12.

Since the caret package's default search grid may not
be ideal for your learning problem, it also allows you
to provide a custom search grid, defined by a simple
command which we will cover later.

The third and final step in automatic model tuning involves choosing an approach
to identify the best model among the candidates. This uses the methods discussed
in Chapter 10, Evaluating Model Performance such as the choice of resampling strategy
to create training and test datasets, and the use of model performance statistics to
measure the predictive accuracy.

All of the resampling strategies and many of the performance statistics we've learned
are supported by caret. These include statistics such as accuracy and kappa
(for classifiers) and R-squared or RMSE (for numeric models). Cost-sensitive
measures like sensitivity, specificity, and area under the ROC curve (AUC) can
also be used if desired.

By default, when choosing the best model, caret will select the model with the largest
value of the desired performance measure. Because this practice sometimes results in
the selection of models that achieve marginal performance improvements via large
increases in model complexity, alternative model selection functions are provided.

Given the wide variety of options, it is helpful that many of the defaults are reasonable.
For instance, it will use prediction accuracy on a bootstrap sample to choose the best
performer for classification models. Beginning with these default values, we can then
tweak the train() function to design a wide variety of experiments.

Improving Model Performance

[330]

Creating a simple tuned model
To illustrate the process of tuning a model, let's begin by observing what happens
when we attempt to tune the credit scoring model using the caret package's default
settings. From there, we will learn how adjust the options to our liking.

The simplest way to tune a learner requires only that you specify a model type
via the method parameter. Since we used C5.0 decision trees previously with the
credit model, we'll continue our work by optimizing this learner. The basic train()
command for tuning a C5.0 decision tree using the default settings is as follows:

> library(caret)

> set.seed(300)

> m <- train(default ~ ., data = credit, method = "C5.0")

First, the set.seed() function is used to initialize R's random number generator to a
set starting position. You may recall that we have used this function in several prior
chapters. By setting the seed parameter (in this case to the arbitrary number 300),
the random numbers will follow a predefined sequence. This allows simulations like
train(), which use random sampling, to be repeated with identical results—a very
helpful feature if you are sharing code or attempting to replicate a prior result.

Next, the R formula interface is used to define a tree as default ~ .. This models
loan default status (yes or no) using all of the other features in the credit data frame.
The parameter method = "C5.0" tells caret to use the C5.0 decision tree algorithm.

After you've entered the preceding command, there may be a significant delay
(dependent upon your computer's capabilities) as the tuning process occurs. Even
though this is a fairly small dataset, a substantial amount of calculation must occur. R
is repeatedly generating random samples of data, building decision trees, computing
performance statistics, and evaluating the result.

The result of the experiment is saved in an object, which we named m. If you would
like a peek at the object's contents, the command str(m) will list all the associated
data—but this can be quite overwhelming. Instead, simply type the name of the
object for a condensed summary of the results. For instance, typing m yields the
following output:

Chapter 11

[331]

The summary includes four main components:

1.	 A brief description of the input dataset: If you are familiar with your data
and have applied the train() function correctly, none of this information
should come as a surprise.

2.	 A report of preprocessing and resampling methods applied: Here we see
that 25 bootstrap samples, each including 1000 examples, were used to train
the models.

3.	 A list of candidate models evaluated: In this section, we can confirm that
12 different models were tested, based on combinations of three C5.0 tuning
parameters: model, trials, and winnow. The average and standard deviation
(labeled SD) of the accuracy and kappa statistics for each candidate model are
also shown.

4.	 The choice of best model: As noted, the model with the largest accuracy
value (0.73) was chosen as the best. This was the model that used a
model = tree, trials = 20, and winnow = FALSE.

Improving Model Performance

[332]

The train() function uses the tuning parameters from the best model (as indicated
by #4 previously) to build a model on the full input dataset, which is stored in the m
object as m$finalModel. In most cases, you will not need to work directly with the
finalModel sub-object. Instead, using the predict() function with the m object will
generate predictions as expected, while also providing added functionality that will
be described shortly. For example, to apply the best model to make predictions on
the training data, you would use the following commands:

> p <- predict(m, credit)

The resulting vector of predictions works just as we have done many times before:

> table(p, credit$default)

p no yes

 no 700 2

 yes 0 298

Of the 1000 examples used for training the final model, only two were misclassified.
Keep in mind that this is the resubstitution error and should not be viewed as
indicative of performance on unseen data. The bootstrap estimate of 73 percent
(shown in the summary output) is a more realistic estimate of future performance.

As mentioned previously, there are additional benefits of using predict(), directly
on train() objects rather than using the stored finalModel directly or training a
new model using the optimized parameters.

First, any data preprocessing steps that the train() function applied to the data
will be similarly applied to the data used for generating predictions. This includes
transformations like centering and scaling (that is, when using k-nearest neighbors),
missing value imputation, and others. This ensures that the data preparation steps
used for developing the model remain in place when the model is deployed.

Second, the predict() function for caret models provides a standardized interface
for obtaining predicted class values and predicted class probabilities—even for
models that ordinarily would require additional steps to obtain this information.
The predicted classes are provided by default as follows:

> head(predict(m, credit))

[1] no yes no no yes no

Levels: no yes

Chapter 11

[333]

To obtain the estimated probabilities for each class, add an additional parameter
specifying type = "prob":

> head(predict(m, credit, type = "prob"))

 no yes

1 0.9606970 0.03930299

2 0.1388444 0.86115561

3 1.0000000 0.00000000

4 0.7720279 0.22797208

5 0.2948062 0.70519385

6 0.8583715 0.14162851

Even in cases where the underlying model refers to the prediction probabilities using
a different string (for example, "raw" for a naiveBayes model), caret automatically
translates type = "prob" to the appropriate string behind the scenes.

Customizing the tuning process
The decision tree we created previously demonstrates the caret package's ability to
produce an optimized model with minimal intervention. The default settings allow
strongly performing models to be created easily. However, without digging deeper,
you may miss out on the upper echelon of performance. Or perhaps you want
to change the default evaluation criteria to something more appropriate for your
learning problem. Each step in the process can be customized to your learning task.

To illustrate this flexibility, let's modify our work on the credit decision tree
explained previously to mirror the process we had used in Chapter 10, Evaluating
Model Performance. If you recall from that chapter, we had estimated the kappa
statistic using 10-fold cross-validation. We'll do the same here, using kappa to
optimize the boosting parameter of the decision tree (boosting the accuracy of
decision trees was previously covered in Chapter 5, Divide and Conquer – Classification
Using Decision Trees and Rules).

The trainControl() function is used to create a set of configuration options known
as a control object, which can be used with the train() function. These options
allow for the management of model evaluation criteria such as the resampling
strategy and the measure used for choosing the best model. Although this function
can be used to modify nearly every aspect of a tuning experiment, we'll focus on two
important parameters: method and selectionFunction.

If you're eager for more details, you can use the
?trainControl help command for a list of all parameters.

Improving Model Performance

[334]

For the trainControl() function, the method parameter is used to set the
resampling method, such as holdout sampling or k-fold cross-validation. The
following table lists the shortened name string caret uses to call the method, as well
as any additional parameters for adjusting the sample size and number of iterations.
Although the default options for these resampling methods follow popular
convention, you may choose to adjust these depending upon the size of your dataset
and the complexity of your model.

Resampling method Method name Additional options and default
values

Holdout sampling LGOCV p = 0.75 (training data proportion)
k-fold cross-validation cv number = 10 (number of folds)
Repeated k-fold cross-
validation

repeatedcv number = 10 (number of folds)
repeats = 10 (number of
iterations)

Bootstrap sampling boot number = 25 (resampling iterations)
0.632 bootstrap boot632 number = 25 (resampling iterations)
Leave-one-out cross-validation LOOCV None

The trainControl() parameter selectionFunction can be used to choose a
function that selects the optimal model among the various candidates. Three such
functions are included. The best function simply chooses the candidate with the best
value on the specified performance measure. This is used by default. The other two
functions are used to choose the most parsimonious (that is, simplest) model that
is within a certain threshold of the best model's performance. The oneSE function
chooses the simplest candidate within one standard error of the best performance,
and tolerance uses the simplest candidate within a user-specified percentage.

Some subjectivity is involved with the caret pacakage's ranking
of models by simplicity. For information on how models are
ranked, see the help page for the selection functions by typing
?best at the R command prompt.

To create a control object named ctrl that uses 10-fold cross-validation and the
oneSE selection function, use the following command. Note that number = 10 is
included only for clarity; since this is the default value for method = "cv", it could
have been omitted.

> ctrl <- trainControl(method = "cv", number = 10,

 selectionFunction = "oneSE")

We'll use the result of this function shortly.

Chapter 11

[335]

In the meantime, the next step in defining our experiment is to create a grid of
parameters to optimize. The grid must include a column for each parameter in the
desired model, prefixed by a period. Since we are using a C5.0 decision tree, this
means we'll need columns with the names .model, .trials, and .winnow. For other
models, refer to the table presented earlier in this chapter. Each row in the data frame
represents a particular combination of parameter values.

Rather than creating this data frame ourselves—a difficult task if there are many
possible combinations of parameter values—we can use the expand.grid()
function, which creates data frames from the combinations of all values supplied. For
example, suppose we would like to hold constant model = "tree" and winnow =
"FALSE" while searching eight different values of trials. This can be created as:

> grid <- expand.grid(.model = "tree",

 .trials = c(1, 5, 10, 15, 20, 25, 30, 35),

 .winnow = "FALSE")

The resulting grid data frame contains 1*8*1 = 8 rows:

> grid

 .model .trials .winnow

1 tree 1 FALSE

2 tree 5 FALSE

3 tree 10 FALSE

4 tree 15 FALSE

5 tree 20 FALSE

6 tree 25 FALSE

7 tree 30 FALSE

8 tree 35 FALSE

Each row will be used to generate a candidate model for evaluation, built using that
row's combination of model parameters.

Given this search grid and the control list created previously, we are ready to run a
thoroughly customized train() experiment. As before, we'll set the random seed to
ensure repeatable results. But this time, we'll pass our control object and tuning grid
while adding a parameter metric = "Kappa", indicating the statistic to be used by
the model evaluation function—in this case, "oneSE". The full command is as follows:

> set.seed(300)

> m <- train(default ~ ., data = credit, method = "C5.0",

 metric = "Kappa",

 trControl = ctrl,

 tuneGrid = grid)

Improving Model Performance

[336]

This results in an object that we can view as before:

> m

Although much of the output is similar to the previously tuned model, there are
a few differences of note. Because 10-fold cross-validation was used, the sample
size to build each candidate model was reduced to 900 rather than the 1000 used in
the bootstrap. As we requested, eight candidate models were tested. Additionally,
because model and winnow were held constant, their values are no longer shown in
the results; instead, they are listed as a footnote.

The best model here differs quite significantly from the prior trial. Before, the
best model used trials = 20 whereas here, the best used trials = 1. This
seemingly odd finding is due to the fact that we used the oneSE rule rather the
best rule to select the optimal model. Even though the 35-trial model offers the
best raw performance according to kappa, the 1-trial model offers nearly the same
performance yet is a much simpler model. Not only are simple models more
computationally efficient, simple models are preferable because they reduce the
chance of overfitting the training data.

Chapter 11

[337]

Improving model performance with
meta-learning
As an alternative to increasing the performance of a single model, it is possible to
combine several models to form a powerful team. Just as the best sports teams have
players with complementary rather than overlapping skillsets some of the best machine
learning algorithms utilize teams of complementary models. Because a model brings
a unique bias to a learning task, it may readily learn one subset of examples but have
trouble with another. Therefore, by intelligently using the talents of several diverse
team members, it is possible to create a strong team of multiple weak learners.

This technique of combining and managing the predictions of multiple models
falls within a wider set of meta-learning methods that broadly encompass any
technique that involves learning how to learn. This might include anything from
simple algorithms that gradually improve performance by automatically iterating
over design decisions—for instance, the automated parameter tuning used earlier
in this chapter—to highly complex algorithms that use concepts borrowed from
evolutionary biology and genetics for self-modifying and adapting to learning tasks.

For the remainder of this chapter, we'll focus on meta-learning only as it pertains to
modeling a relationship between the predictions of several models and the desired
outcome. The teamwork-based techniques covered here are quite powerful, and are
used quite often to build more effective classifiers.

Understanding ensembles
Suppose you were a contestant on a television trivia show that allowed you to
choose a panel of five friends to assist you with answering the final question for the
million-dollar prize. Most people would try to stack the panel with a diverse set
of subject-matter experts. For instance, a panel containing professors of literature,
science, history, and art, along with a current pop-culture expert would be a safely
well-rounded group. Given their breadth of knowledge, it would be unlikely to find
a question that stumps the panel.

The meta-learning approach that utilizes a similar principle of creating a varied team
of experts is known as an ensemble. All ensemble methods are based on the idea
that by combining multiple weaker learners, a stronger learner is created. Using this
simple principle, a large variety of algorithms has been developed distinguished
largely by two questions:

•	 How are the weak learning models chosen and/or constructed?
•	 How are the weak learners' predictions combined to make a single

final prediction?

Improving Model Performance

[338]

When answering these questions, it can be helpful to imagine the ensemble in
terms of the process diagram as follows; nearly all ensemble approaches follow
this pattern.

First, input training data is used to build a number of models. The allocation function
dictates whether each model receives the full training dataset or merely a sample.
Since the ideal ensemble includes a diverse set of models, the allocation function
could increase diversity by artificially varying the input data to train a variety of
learners. For instance, it might use bootstrap sampling to construct unique training
datasets or pass on a different subset of features or examples to each model. On the
other hand, if the ensemble already includes a diverse set of algorithms—such as a
neural network, a decision tree, and a kNN classifier—then the allocation function
might pass on the data relatively unchanged.

After the models are constructed, they can be used to generate a set of predictions,
which must be managed in some way. The combination function governs how
disagreements among the predictions are reconciled. For example, the ensemble might
use a majority vote to determine the final prediction, or it could use a more complex
strategy such as weighting each model's votes based on its prior performance.

Some ensembles even utilize another model to learn a combination function from
various combinations of predictions. For example, when M1 and M2 both vote yes
the actual class value is usually no, then the ensemble might ignore the votes of
M1 and M2 and instead predict no. This process of using the predictions of several
models to train a final arbiter model is known as stacking.

Chapter 11

[339]

One of the benefits of using ensembles is that they may allow you to spend less time
in pursuit of a single best model. Instead, you can train a number of reasonably
strong candidates and combine them. Yet convenience isn't the only reason why
ensemble-based methods continue to rack up wins in machine learning competitions;
ensembles also offer a number of performance advantages over single models:

•	 Better generalizability to future problems: Because the opinions of several
learners are incorporated into a single final prediction, no single bias is able
to dominate. This reduces the chance of overfitting to a learning task.

•	 Improved performance on massive or miniscule datasets: Many models run
into memory or complexity limits when an extremely large set of features
or examples are used, making it more efficient to train several small models
than a single full model. Additionally, it is often trivial to parallelize an
ensemble using distributed computing methods. Conversely, ensembles
also do well on the smallest datasets because resampling methods like
bootstrapping are inherently part of many ensemble designs.

•	 The ability to synthesize of data from distinct domains: Since there is no
one-size-fits-all learning algorithm—recall the No Free Lunch theorem—the
ensemble's ability to incorporate evidence from multiple types of learners is
increasingly important as Big Data continues to draw from disparate domains.

•	 A more nuanced understanding of difficult learning tasks: Real-world
phenomena are often extremely complex with many interacting intricacies.
Models that divide the task into smaller portions are likely to more
accurately capture subtle patterns that a single global model might miss.

None of these benefits would be very helpful if you weren't able to easily apply
ensemble methods in R, and there are many packages available to do just that. Let's
take a look at several of the most popular ensemble methods and how they can be
used to improve the performance of the credit model we've been working on.

Bagging
One of the first ensemble methods to gain widespread acceptance used a technique
called bootstrap aggregating, or bagging for short. As described by Leo Breiman in
1994, bagging generates a number of training datasets by bootstrap sampling the
original training data. These datasets are then used to generate a set of models using
a single learning algorithm. The models' predictions are combined using voting
(for classification) or averaging (for numeric prediction).

For additional information on bagging, refer to: Bagging predictors,
Machine Learning, Vol. 24, pp. 123-140, by L. Breiman (1996).

Improving Model Performance

[340]

Although bagging is a relatively simple ensemble, it can perform quite well as long
as it is used with relatively unstable learners, that is, those generating models that
tend to change substantially when the input data changes only slightly. Unstable
models are essential to ensure the ensemble's diversity in spite of only minor
variations between the bootstrap training datasets. For this reason, bagging is often
used with decision trees, which have the tendency to vary dramatically given minor
changes in input data.

The ipred package offers a classic implementation of bagged decision trees. To
train the model, the bagging() function works similar to many of the models used
previously. The nbagg parameter is used to control the number of decision trees voting
in the ensemble (with a default value of 25). Depending on the difficulty of the learning
task and the amount of training data, increasing this number may improve the model's
performance, up to a limit. The downside is that this comes at the expense of additional
computational expense; a large number of trees may take some time to train.

After installing the ipred package, we can create the ensemble as follows:
We'll stick to the default value of 25 decision trees:

> library(ipred)

> set.seed(300)

> mybag <- bagging(default ~ ., data = credit, nbagg = 25)

The resulting model works as expected with the predict() function:

> credit_pred <- predict(mybag, credit)

> table(credit_pred, credit$default)

credit_pred no yes

 no 699 2

 yes 1 298

Given the preceding results, the model seems to have fit the training data extremely
well. To see how this translates into future performance, we can use the bagged
trees with 10-fold CV via the train() function in the caret package. Note that the
method name for the ipred bagged trees function is treebag as follows:

> library(caret)

> set.seed(300)

> ctrl <- trainControl(method = "cv", number = 10)

> train(default ~ ., data = credit, method = "treebag",

 trControl = ctrl)

Chapter 11

[341]

1000 samples

 16 predictors

 2 classes: 'no', 'yes'

No pre-processing

Resampling: Cross-Validation (10 fold)

Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...

Resampling results

 Accuracy Kappa Accuracy SD Kappa SD

 0.735 0.33 0.0344 0.0859

The kappa statistic of 0.33 for this model suggests that the bagged tree model
performs on par with our best-tuned C5.0 decision tree.

To get beyond bags of decision trees, the caret package also provides a more
general bag() function. It includes out-of-the-box support for a handful of models,
though it can be adapted to more types with a bit of additional effort. The bag()
function uses a control object to configure the bagging process. It requires the
specification of three functions: one for fitting the model, one for making predictions,
and one for aggregating the votes.

For example, suppose we wanted to create a bagged support vector machine (SVM)
model, using the ksvm() function in the kernlab package we used in Chapter 7,
Black Box Methods – Neural Networks and Support Vector Machines. The bag() function
requires us to provide functionality for training the SVMs, making predictions, and
counting votes.

Rather than writing these ourselves, the caret package's built-in svmBag list object
supplies three functions we can use for this purpose:

> str(svmBag)

List of 3

 $ fit :function (x, y, ...)

 $ pred :function (object, x)

 $ aggregate:function (x, type = "class")

Improving Model Performance

[342]

By looking at the svmBag$fit function, we see that it simply calls the ksvm()
function from the kernlab package and returns the result:

> svmBag$fit

function (x, y, ...)

{

 library(kernlab)

 out <- ksvm(as.matrix(x), y, prob.model = is.factor(y), ...)

 out

}

<environment: namespace:caret>

The pred and aggregate functions for svmBag are also similarly straightforward. By
studying these functions and creating your own in the same format, it is possible to
use bagging with any machine learning algorithm you would like.

The caret package also includes example objects for bags
of naive Bayes models (nbBag), decision trees (ctreeBag),
and neural networks (nnetBag).

Applying the three functions in the svmBag list, we can create a bagging
control object:

> bagctrl <- bagControl(fit = svmBag$fit,

 predict = svmBag$pred,

 aggregate = svmBag$aggregate)

By using this with the train() function and the training control object (ctrl)
defined earlier, we can evaluate the bagged SVM model as follows. Keep in mind
that the kernlab package is required for this to work; you may need to install it if
you have not done so previously.

> set.seed(300)

> svmbag <- train(default ~ ., data = credit, "bag",

 trControl = ctrl, bagControl = bagctrl)

> svmbag

1000 samples

 16 predictors

 2 classes: 'no', 'yes'

No pre-processing

Resampling: Cross-Validation (10 fold)

Chapter 11

[343]

Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...

Resampling results

 Accuracy Kappa Accuracy SD Kappa SD

 0.728 0.293 0.0444 0.132

Tuning parameter 'vars' was held constant at a value of 35

Given that the kappa statistic is below 0.30, it seems that the bagged SVM model
performs more poorly than the bagged decision tree model. It's worth pointing out
that the standard deviation of the kappa statistic (labeled Kappa SD) is fairly large
compared to the bagged decision tree model. This suggests that the performance
varies substantially among the folds in the cross-validation. Such variation may
imply that the performance could be improved further by upping the number of
models in the ensemble.

Boosting
Another popular ensemble-based method is called boosting, because it boosts the
performance of weak learners to attain the performance of stronger learners. This
method is based largely on the work of Rob Schapire and Yoav Freund, who have
published extensively on the topic.

For additional information on boosting, refer to: Boosting – Foundations
and Algorithms Understanding Rule Learners by R. Schapire, and Y.
Freund, (The MIT Press, 2012).

Given a number of classifiers, each with an error rate less than 50 percent; Schapire
and Freund discovered that boosting will result in performance often quite better
and certainly no worse than the best of these models. Essentially, this allows one
to increase performance to an arbitrary threshold simply by adding more weak
learners. Given the obvious utility of this finding, boosting is thought to be one of the
most significant discoveries in machine learning.

Similar to bagging, boosting uses ensembles of models trained on resampled data
and a vote to determine the final prediction. The key difference is that the resampled
datasets in boosting are constructed specifically to generate complementary learners,
and the vote is weighted based on each model's performance rather than giving each
an equal vote.

Improving Model Performance

[344]

A boosting algorithm called AdaBoost, or adaptive boosting, was proposed in 1997.
The algorithm is based on the idea of generating weak leaners that iteratively learn
a larger portion of the difficult-to-classify examples in the training data by paying
more attention (that is, giving more weight) to often misclassified examples.

Beginning from an unweighted dataset, the first classifier attempts to model
the outcome. Examples that the classifier predicted correctly will be less likely
to appear in the training dataset for the following classifier, and conversely, the
difficult-to-classify examples will appear more frequently. As additional rounds of
weak learners are added, they are trained on data with successively more difficult
examples. The process continues until the desired overall error rate is reached or
performance no longer improves. At that point, each classifier's vote is weighted
according to its accuracy on the training data on which it was built.

Though boosting principles can be applied to nearly any type of model, the
principles are most commonly used with decision trees. We already used boosting in
this way in Chapter 5, Divide and Conquer – Classification Using Decision Trees and Rules,
as a method to improve the performance of a C5.0 decision tree.

The AdaBoost.M1 algorithm provides an alternative tree-based implementation
of AdaBoost for classification. Due to its similarity to the boosted trees we created
earlier, AdaBoost.M1 is not covered here.

The AdaBoost.M1 algorithm can be found in the adabag R
package. For more information refer to adabag – an R package
for classification with boosting and bagging, Journal of Statistical
Software, Vol 54(2), pp. 1-35, by E. Alfaro, M. Gamez, and N.
Garcia (2013).

Random forests
Another ensemble-based method called random forests (or decision tree forests) focus
only on ensembles of decision trees. This method was championed by Leo Breiman
and Adele Cutler, and combines the base principles of bagging with random feature
selection to add additional diversity to the decision tree models. After the ensemble of
trees (the forest) is generated, the model uses a vote to combine the trees' predictions.

For more detail on how random forests are constructed,
refer to Random forests, Machine Learning, Vol. 45, pp. 5-32,
by L. Breiman (2001).

Chapter 11

[345]

Random forests combine versatility and power into a single machine learning
approach. Because the ensemble uses only a small, random portion of the full feature
set, random forests can handle extremely large datasets, where the so-called "curse of
dimensionality" might cause other models to fail. At the same time, its error rates for
most learning tasks are on par with nearly any other method.

Although the term "Random Forests" is trademarked by
Breiman and Cutler (see http://www.stat.berkeley.
edu/~breiman/RandomForests/ for details), the term is
used sometimes colloquially to refer to any type of decision
tree ensemble. A pedant would use the more general term
"decision tree forests" except when referring to the algorithm
by Breiman and Cutler.

The following table lists the general strengths and weaknesses of random forest
models. It's worth noting that relative to other ensemble-based methods, random
forests are quite competitive and offer key advantages relative to the competition.
For instance, random forests tend to be easier to use and less prone to overfitting.

Strengths Weaknesses
•	 An all-purpose model that performs

well on most problems
•	 Can handle noisy or missing data;

categorical or continuous features
•	 Selects only the most important

features
•	 Can be used on data with an extremely

large number of features or examples

•	 Unlike a decision tree, the model
is not easily interpretable

•	 May require some work to tune
the model to the data

Due to their power, versatility, and ease of use, random forests are quickly becoming
one of the most popular machine learning methods. Later on in this chapter, we'll
compare a random forest model head-to-head against the boosted C5.0 tree.

Improving Model Performance

[346]

Training random forests
Though there are several packages to create random forests in R, the randomForest
package is perhaps the implementation most faithful to the specification by Breiman
and Cutler. An added benefit is that it is supported by caret for automated tuning.
The syntax for training this model is as follows:

As noted previously, by default, the randomForest() function creates an ensemble
of 500 trees that consider sqrt(p) random features at each split (where p is the
number of features in the training dataset). Whether or not these parameters are
appropriate depends on the nature of the learning task and training data. Generally,
more complex learning problems and larger datasets (both more features as well as
more examples) work better with a larger number of trees.

Chapter 11

[347]

The goal of using a large number of trees is to train enough that each feature has a
chance to appear in several models. This is the basis of the sqrt(p) default value
for the mtry parameter; using this value limits the features sufficiently such that
substantial random variation occurs from tree-to-tree. For example, since the credit
data has 16 features, each tree would be limited to splitting on sqrt(16) = 4
features at any time.

Let's see how the default randomForest() parameters work with the credit data.
We'll train the model just as we have done with other learners (the set.seed()
function ensures that the result can be repeated).

> library(randomForest)

> set.seed(300)

> rf <- randomForest(default ~ ., data = credit)

To look at a summary of the model's performance, we can simply type the resulting
object's name:

> rf

Call:

 randomForest(formula = default ~ ., data = credit)

 Type of random forest: classification

 Number of trees: 500

No. of variables tried at each split: 4

 OOB estimate of error rate: 23.8%

Confusion matrix:

 no yes class.error

no 640 60 0.08571429

yes 178 122 0.59333333

As expected, the output notes that the random forest included 500 trees and tried 4
variables at each split. You might be alarmed at the seemingly poor resubstitution
error according to the display confusion matrix—the error rate of 23.8 percent is far
worse than any of the other ensemble methods so far. In fact, this confusion matrix
is not resubstitution error at all. Instead, it reflects the out-of-bag error rate (labeled
OOB estimate of error rate), which is an unbiased estimate of the test set error.
This means that it should be a fairly reasonable estimate of future performance.

Improving Model Performance

[348]

The out-of-bag estimate is computed during the construction of the random forest.
Essentially, any example not selected for a single tree's bootstrap sample can be used
as a way to test the model's performance on unseen data. At the end of the forest
construction, the predictions for each example each time it was held out are tallied,
and a vote is taken to determine the final prediction for the example. The total error
rate of such predictions becomes the out-of-bag error rate.

Evaluating random forest performance
As mentioned previously, the randomForest() function is also supported by
caret, which allows us to optimize the model while at the same time calculating
performance measures beyond the out-of-bag error rate. To make things interesting,
let's compare an auto-tuned random forest to the best auto-tuned boosted C5.0
model we've been working on. We'll treat this experiment as if we were hoping to
identify a candidate model for submission to a machine learning competition.

We must first load caret and set our training control options. For the most accurate
comparison of model performance, we'll use repeated 10-fold cross-validation: 10
times 10-fold CV. While this means that the models will take a much longer time and
be more computationally intensive to evaluate; since this is our final comparison,
we should be very sure that we're making the right choice—the winner of this
showdown will be our only entry into the machine learning competition.

> library(caret)

> ctrl <- trainControl(method = "repeatedcv",

 number = 10, repeats = 10)

Next, we'll set up the tuning grid for the random forest. The only tuning parameter for
this model is mtry, which defines how many features are randomly selected at each
split. By default, we know that the random forest will use sqrt(16) = 4 features.
To be thorough, we'll also test values half of that, twice that, as well as the full set of
features. Thus, we need to create a grid with values of 2, 4, 8, and 16 as follows:

> grid_rf <- expand.grid(.mtry = c(2, 4, 8, 16))

A random forest that considers the full set of features at each
split is essentially the same as a bagged decision tree model.

Chapter 11

[349]

We can supply the resulting grid to the train() function with the ctrl object as
follows. We'll use the kappa metric to select the best model.

> set.seed(300)

> m_rf <- train(default ~ ., data = credit, method = "rf",

 metric = "Kappa", trControl = ctrl,

 tuneGrid = grid_rf)

The preceding command may take some time to complete as it has quite a bit of
work to do! When it finishes, we'll compare that to a boosted tree using 10, 20, 30,
and 40 iterations:

> grid_c50 <- expand.grid(.model = "tree",

 .trials = c(10, 20, 30, 40),

 .winnow = "FALSE")

> set.seed(300)

> m_c50 <- train(default ~ ., data = credit, method = "C5.0",

 metric = "Kappa", trControl = ctrl,

 tuneGrid = grid_c50)

When the C5.0 decision tree finally completes, we can compare the two approaches
side-by-side. For the random forest model the results are:

> m_rf

Resampling results across tuning parameters:

 mtry Accuracy Kappa Accuracy SD Kappa SD

 2 0.725 0.128 0.0169 0.0636

 4 0.75 0.293 0.0299 0.0877

 8 0.754 0.338 0.0311 0.0835

 16 0.756 0.361 0.0338 0.0889

For the boosted C5.0 model the results are:

> m_c50

Resampling results across tuning parameters:

 trials Accuracy Kappa Accuracy SD Kappa SD

 10 0.732 0.322 0.0402 0.0952

 20 0.734 0.327 0.0403 0.0971

 30 0.738 0.334 0.0367 0.0894

 40 0.739 0.334 0.0393 0.0975

Improving Model Performance

[350]

With a kappa of 0.361, the random forest model with mtry = 16 was the winner
among these eight models. It was marginally higher than the best C5.0 decision tree,
which had a kappa of 0.334. Based on these results, we would submit the random
forest as our final model. Without actually evaluating the model on the competition
data, we have no way of knowing for sure whether it will end up winning; but given
our performance estimates, it's the safer bet. With a bit of luck, perhaps we'll come
away with the prize.

Summary
After reading this chapter, you now know the base techniques that can be used
to win data mining and machine learning competitions. Automated tuning
methods can assist with squeezing every bit of performance out of a single model.
On the other hand, performance gains are also possible by creating groups of
machine learning models that work together.

Although this chapter was designed to help you prepare competition-ready
models keep in mind that your fellow competitors have access to the same
techniques. You won't be able to get away with stagnancy; you have to keep
working to add proprietary methods to your bag of tricks. Perhaps you can
bring unique subject-matter expertise to the table, or perhaps your strengths
include an eye for detail in data preparation. In any case, practice makes perfect,
so take advantage of open competitions to test, evaluate, and improve your own
machine learning skillset.

In the next chapter—the last in this book—we'll take a bird's eye look at ways to
apply machine learning to some highly specialized and difficult domains using R.
You'll gain the knowledge needed to apply machine learning to tasks at the cutting
edge of the field.

Specialized
Machine Learning Topics

By now, you are probably eager to start applying machine learning to your own
projects—you may have even already done so. If you have attempted a project on
your own, you likely found that, the task of turning data into action is more difficult
than this book made it appear.

As you attempted to gather data, you might have realized that the information
was trapped in a proprietary spreadsheet format or spread across pages on the
Web. Making matters worse, after spending hours manually reformatting the data,
perhaps your computer slowed to a crawl after running out of memory. Perhaps
R even crashed or froze your machine. Hopefully you were undeterred; it does get
easier with time.

This chapter covers techniques that may not apply to every machine learning project,
but could prove useful for certain types of work. You might find the information
particularly useful if you tend to work with data that are:

•	 Stored in unstructured or proprietary formats such as web pages, web APIs,
or spreadsheets

•	 From a domain such as bioinformatics or social network analysis, which
presents additional challenges

•	 So extremely large that R cannot store the dataset in memory or machine
learning takes a very long time to complete

You're not alone if you suffer from any of these problems. Although there is no
panacea—these issues are the bane of the data scientist as well as the reason for data
skills to be in high demand—through the dedicated efforts of the R community, a
number of R packages provide a head start toward solving the problem.

Specialized Machine Learning Topics

[352]

This chapter provides a cookbook of such solutions. Even if you are an experienced R
veteran, you may discover a package that simplifies your workflow, or perhaps one
day you will author a package that makes work easier for everybody else!

Working with specialized data
Unlike the analyses in this book, real-world data are rarely packaged in a simple
CSV form that can be downloaded from a website. Instead, significant effort is
needed to prepare data for analysis. Data must be collected, merged, sorted, filtered,
or reformatted to meet the requirements of the learning algorithm. This process is
known informally as data munging. Munging has become even more important
as the size of typical datasets has grown from megabytes to gigabytes and data are
gathered from unrelated and messy sources, many of which are domain-specific.
Several packages and resources for working with specialized or domain-specific data
are listed in the following sections.

Getting data from the Web with the
RCurl package
The RCurl package by Duncan Temple Lang provides an R interface to the curl (client
for URLs) utility, a command-line tool for transferring data over networks. The curl
utility is useful for web scraping, which refers to the practice of harvesting data from
websites and transforming it into a structured form.

Documentation for the RCurl package can be found on the
Web at http://www.omegahat.org/RCurl/.

After installing the RCurl package, downloading a page is as simple as typing:

> library(RCurl)

> webpage <- getURL("http://www.packtpub.com/")

This will save the full text of the Packt Publishing's homepage (including all web
markup) into the R character object named webpage. As shown in the following lines,
this is not very useful as-is:

> str(webpage)

 chr "<!DOCTYPE html>\n<html xmlns=\"http://www.w3.org/1999/xhtml\"
lang=\"en\" xml:lang=\"en\" >\n<head>\n <title>Home | Packt Pu"| __
truncated__

Chapter 12

[353]

Because most websites use web-specific formats such as XML/HTML and JSON,
the web data must be processed before it is useful in R. Two functions for doing
so are discussed in the following sections.

Reading and writing XML with the
XML package
XML is a plaintext, human-readable, but structured markup language upon which
many document formats have been based. In particular, many web-based documents
utilize XML formatting. The XML package by Duncan Temple Lang provides a suite
of functionality based on the popular C-based libxml2 parser for reading and writing
XML documents. Combined with the Rcurl package (noted previously),
it is possible to download and process documents directly from the web.

More information on the XML package, including simple
examples to get you started quickly, can be found at the
project's website: http://www.omegahat.org/RSXML/.

Reading and writing JSON with the
rjson package
The rjson package by Alex Couture-Beil can be used to read and write files in the
JavaScript Object Notation (JSON) format. JSON is a standard, plaintext format,
most often used for data structures and objects on the Web. The format has become
popular recently due to its utility in creating web applications, but despite the name,
it is not limited to web browsers.

For details about the JSON format, go to http://www.json.org/.

The JSON format stores objects in plain text strings. After installing the rjson
package, to convert from JSON to R:
> library(rjson)

> r_object <- fromJSON(json_string)

To convert from an R object to a JSON object:
> json_string <- toJSON(r_object)

Used with the Rcurl package (noted previously), it is possible to write R programs
that utilize JSON data directly from many online data stores.

Specialized Machine Learning Topics

[354]

Reading and writing Microsoft Excel
spreadsheets using xlsx
The xlsx package by Adrian A. Dragulescu offers functions to read and write to
spreadsheets in the Excel 2007 (or earlier) format—a common task in many business
environments. The package is based on the Apache POI Java API for working with
Microsoft's documents.

For more information on xlsx, including a quick start
document, go to https://code.google.com/p/rexcel/.

Working with bioinformatics data
Data analysis in the field of bioinformatics offers a number of challenges relative to
other fields due to the unique nature of genetic data. The use of DNA and protein
microarrays has resulted in datasets that are often much wider than they are long
(that is, they have more features than examples). This creates problems when
attempting to apply conventional visualizations, statistical tests, and machine
learning-methods to such data.

A CRAN task view for statistical genetics/bioinformatics
is available at http://cran.r-project.org/web/
views/Genetics.html.

The Bioconductor project (http://www.bioconductor.org/) of the Fred
Hutchinson Cancer Research Center in Seattle, Washington, provides a centralized
hub for methods of analyzing genomic data. Using R as its foundation, Bioconductor
adds packages and documentation specific to the field of bioinformatics.

Bioconductor provides workflows for analyzing microarray data from common
platforms such as for analysis of microarray platforms, including Affymetrix, Illumina,
Nimblegen, and Agilent. Additional functionality includes sequence annotation,
multiple testing procedures, specialized visualizations, and many other functions.

Chapter 12

[355]

Working with social network data and
graph data
Social network data and graph data present many challenges. These data record
connections, or links, between people or objects. With N people, an N by N matrix
of links is possible, which creates tremendous complexity as the number of people
grows. The network is then analyzed using statistical measures and visualizations to
search for meaningful patterns of relationships.

The network package by Carter T. Butts, David Hunter, and Mark S. Handcock offers
a specialized data structure for working with such networks. A closely-related
package, sna, allows analysis and visualization of the network objects.

For more information on network and sna, refer to the
project website hosted by the University of Washington:
http://www.statnet.org/.

Improving the performance of R
R has a reputation for being slow and memory inefficient, a reputation that is at least
somewhat earned. These faults are largely unnoticed on a modern PC for datasets
of many thousands of records, but datasets with a million records or more can push
the limits of what is currently possible with consumer-grade hardware. The problem
is worsened if the data have many features or if complex learning algorithms are
being used.

CRAN has a high performance computing task view that
lists packages pushing the boundaries on what is possible
in R: http://cran.r-project.org/web/views/
HighPerformanceComputing.html.

Specialized Machine Learning Topics

[356]

Packages that extend R past the capabilities of the base package are being developed
rapidly. This work comes primarily on two fronts: some packages add the capability
to manage extremely large datasets by making data operations faster or by allowing
the size of data to exceed the amount of available system memory; others allow R to
work faster, perhaps by spreading the work over additional computers or processors,
by utilizing specialized computer hardware, or by providing machine learning
optimized to Big Data problems. Some of these packages are listed as follows.

Managing very large datasets
Very large datasets can sometimes cause R to grind to a halt when the system
runs out of memory to store the data. Even if the entire dataset can fit in memory,
additional RAM is needed to read the data from disk, which necessitates a total
memory size much larger than the dataset itself. Furthermore, very large datasets can
take a long amount of time to process for no reason other than the sheer volume of
records; even a quick operation can add up when performed many millions of times.

Years ago, many would suggest performing data preparation of massive datasets
outside R in another programming language, then using R to perform analyses on
a smaller subset of data. However, this is no longer necessary, as several packages
have been contributed to R to address these Big Data problems.

Making data frames faster with data.table
The data.table package by Dowle, Short, and Lianoglou provides an enhanced
version of a data frame called a data table. The data.table objects are typically
much faster than data frames for subsetting, joining, and grouping operations. Yet,
because it is essentially an improved data frame, the resulting objects can still be
used by any R function that accepts a data frame.

The data.table project is found on the Web at
http://datatable.r-forge.r-project.org/.

One limitation of data.table structures is that like data frames, they are limited by
the available system memory. The next two sections discuss packages that overcome
this shortcoming at the expense of breaking compatibility with many R functions.

Chapter 12

[357]

Creating disk-based data frames with ff
The ff package by Daniel Adler, Christian Glaser, Oleg Nenadic, Jens Oehlschlagel,
and Walter Zucchini provides an alternative to a data frame (ffdf) that allows
datasets of over two billion rows to be created, even if this far exceeds the
available system memory.

The ffdf structure has a physical component that stores the data on disk in a highly
efficient form and a virtual component that acts like a typical R data frame but
transparently points to the data stored in the physical component. You can imagine
the ffdf object as a map that points to a location of data on a disk.

The ff project is on the Web at
http://ff.r-forge.r-project.org/.

A downside of ffdf data structures is that they cannot be used natively by most
R functions. Instead, the data must be processed in small chunks, and the results
should be combined later on. The upside of chunking the data is that the task can
be divided across several processors simultaneously using the parallel computing
methods presented later in this chapter.

The ffbase package by Edwin de Jonge, Jan Wijffels, and Jan van der Laan addresses this
issue somewhat by adding capabilities for basic statistical analyses using ff objects.
This makes it possible to use ff objects directly for data exploration.

The ffbase project is hosted at
http://github.com/edwindj/ffbase.

Using massive matrices with bigmemory
The bigmemory package by Michael J. Kane and John W. Emerson allows extremely
large matrices that exceed the amount of available system memory. The matrices can
be stored on disk or in shared memory, allowing them to be used by other processes
on the same computer or across a network. This facilitates parallel computing
methods, such as those covered later in this chapter.

Additional documentation on the bigmemory package
can be found at http://www.bigmemory.org/.

Specialized Machine Learning Topics

[358]

Because bigmemory matrices are intentionally unlike data frames, they cannot be
used directly with most of the machine learning methods covered in this book. They
also can only be used with numeric data. That said, since they are similar to a typical
R matrix, it is easy to create smaller samples or chunks that can be converted to
standard R data structures.

The authors also provide bigalgebra, biganalytics, and bigtabulate packages,
which allow simple analyses to be performed on the matrices. Of particular note is
the bigkmeans() function in the biganalytics package, which performs k-means
clustering as described in Chapter 9, Finding Groups of Data – Clustering with k-means.

Learning faster with parallel computing
In the early days of computing, programs were entirely serial, which limited them to
performing a single task at a time. The next instruction could not be performed until
the previous instruction was complete. However, many tasks can be completed more
efficiently by allowing work to be performed simultaneously.

This need was addressed by the development of parallel computing methods,
which use a set of two or more processors or computers to solve a larger problem.
Many modern computers are designed for parallel computing. Even in the case
that they have a single processor, they often have two or more cores which are
capable of working in parallel. This allows tasks to be accomplished independently
from one another.

Chapter 12

[359]

Networks of multiple computers called clusters can also be used for parallel
computing. A large cluster may include a variety of hardware and be separated over
large distances. In this case, the cluster is known as a grid. Taken to an extreme,
a cluster or grid of hundreds or thousands of computers running commodity
hardware could be a very powerful system.

The catch, however, is that not every problem can be parallelized; certain problems
are more conducive to parallel execution than others. You might expect that adding
100 processors would result in 100 times the work being accomplished in the same
amount of time (that is, the execution time is 1/100), but this is typically not the
case. The reason is that it takes effort to manage the workers; the work first must be
divided into non-overlapping tasks and second, each of the workers' results must be
combined into one final answer.

So-called embarrassingly parallel problems are the ideal. These tasks are easy
to reduce into non-overlapping blocks of work, and the results are easy to
recombine. An example of an embarrassingly parallel machine learning task would
be 10-fold cross-validation; once the samples are decided, each of the 10 evaluations
is independent, meaning that its result does not affect the others. As you will soon
see, this task can be sped up quite dramatically using parallel computing.

Measuring execution time
Efforts to speed up R will be wasted if it is not possible to systematically measure
how much time was saved. Although you could sit and observe a clock, an easier
solution is to wrap the offending code in a system.time() function.

For example, on the author's laptop, the system.time() function notes that it takes
about 0.13 seconds to generate a million random numbers:

> system.time(rnorm(1000000))

 user system elapsed

 0.13 0.00 0.13

The same function can be used for evaluating improvement in performance, obtained
with the methods that were just described or any R function.

Working in parallel with foreach
The foreach package by Steve Weston of Revolution Analytics provides perhaps the
easiest way to get started with parallel computing, particularly if you are running R on
the Windows operating system, as some of the other packages are platform-specific.

Specialized Machine Learning Topics

[360]

The core of the package is a new foreach looping construct. If you have worked
with other programming languages, this may be familiar. Essentially, it allows
looping over a number of items in a set, without explicitly counting the number of
items; in other words, for each item in the set, do something.

In addition to the foreach package, Revolution Analytics
has developed high-performance, enterprise-ready R
builds. Free versions are available for trial and academic
use. For more information, see their website at
http://www.revolutionanalytics.com/.

If you're thinking that R already provides a set of apply functions to loop over sets
of items (for example, apply(), lapply(), sapply(), and so on), you are correct.
However, the foreach loop has an additional benefit: iterations of the loop can be
completed in parallel using a very simple syntax.

The sister package doParallel provides a parallel backend for foreach that utilizes
the parallel package included with R (Version 2.14.0 and later). The parallel
package includes components of the multicore and snow packages described in the
following sections.

Using a multitasking operating system
with multicore
The multicore package by Simon Urbanek allows parallel processing on single
machines that have multiple processors or processor cores. Because it utilizes
multitasking capabilities of the operating system, it is not supported natively on
Windows systems. An easy way to get started with the code package is using the
mcapply() function, which is a parallelized version of lapply().

The multicore project is hosted at
http://www.rforge.net/multicore/.

Networking multiple workstations with snow
and snowfall
The snow package (simple networking of workstations) by Luke Tierney,
A. J. Rossini, Na Li, and H. Sevcikova allows parallel computing on multicore or
multiprocessor machines as well as on a network of multiple machines. The snowfall
package by Jochen Knaus provides an easier-to-use interface for snow.

Chapter 12

[361]

For more information on code, including a detailed
FAQ and information on how to configure parallel
computing over a network, see http://www.imbi.
uni-freiburg.de/parallel/.

Parallel cloud computing with MapReduce
and Hadoop
The MapReduce programming model was developed at Google as a way to process
their data on a large cluster of networked computers. MapReduce defined parallel
programming as a two-step process:

•	 A map step, in which a problem is divided into smaller tasks that are
distributed across the computers in the cluster

•	 A reduce step, in which the results of the small chunks of work are collected
and synthesized into a final solution to the original problem

A popular open source alternative to the proprietary MapReduce framework is
Apache Hadoop. The Hadoop software comprises of the MapReduce concept plus a
distributed filesystem capable of storing large amounts of data across a cluster
of computers.

Packt Publishing has published quite a number of books
on Hadoop. To view the list of books on this topic, refer
to the following URL: http://www.packtpub.com/
books?keys=Hadoop.

Several R projects that provide an R interface to Hadoop are in development. One such
project is RHIPE by Saptarshi Guha, which attempts to bring the divide and recombine
philosophy into R by managing the communication between R and Hadoop.

The RHIPE package is not yet available at CRAN, but
it can be built from the source available on the Web at
http://www.datadr.org.

The RHadoop project by Revolution Analytics provides an R interface to Hadoop.
The project provides a package, rmr, intended to be an easy way for R developers to
write MapReduce programs. Additional RHadoop packages provide R functions for
accessing Hadoop's distributed data stores.

Specialized Machine Learning Topics

[362]

At the time of publication, development of RHadoop
is progressing very rapidly. For more information
about the project, see https://github.com/
RevolutionAnalytics/RHadoop/wiki.

GPU computing
An alternative to parallel processing uses a computer's graphics processing unit
(GPU) to increase the speed of mathematical calculations. A GPU is a specialized
processor that is optimized for rapidly displaying images on a computer screen.
Because a computer often needs to display complex 3D graphics (particularly for
video games), many GPUs use hardware designed for parallel processing and
extremely efficient matrix and vector calculations. A side benefit is that they can
be used for efficiently solving certain types of mathematical problems. Where a
computer processor may have on the order of 16 cores, a GPU may have thousands.

The downside of GPU computing is that it requires specific hardware that is not
included with many computers. In most cases, a GPU from the manufacturer Nvidia
is required, as they provide a proprietary framework called CUDA (Complete
Unified Device Architecture) that makes the GPU programmable using common
languages such as C++.

For more information on Nvidia's role in GPU
computing, go to http://www.nvidia.com/object/
what-is-gpu-computing.html.

The gputools package by Josh Buckner, Mark Seligman, and Justin Wilson implements
several R functions, such as matrix operations, clustering, and regression modeling
using the Nvidia CUDA toolkit. The package requires a CUDA 1.3 or higher GPU
and the installation of the Nvidia CUDA toolkit.

Chapter 12

[363]

Deploying optimized learning algorithms
Some of the machine learning algorithms covered in this book are able to work on
extremely large datasets with relatively minor modifications. For instance, it would
be fairly straightforward to implement naive Bayes or the Apriori algorithm using
one of the Big Data packages described previously. Some types of models such as
ensembles, lend themselves well to parallelization, since the work of each model can
be distributed across processors or computers in a cluster. On the other hand, some
algorithms require larger changes to the data or algorithm, or need to be rethought
altogether before they can be used with massive datasets.

In this section, we will examine packages that provide optimized versions of the
learning algorithms we've worked with so far.

Building bigger regression models with biglm
The biglm package by Thomas Lumley provides functions for training regression
models on datasets that may be too large to fit into memory. It works by an iterative
process in which the model is updated little-by-little using small chunks of data.
The results will be nearly identical to what would have been obtained running the
conventional lm() function on the entire dataset.
The biglm() function allows use of a SQL database in place of a data frame. The model
can also be trained with chunks obtained from data objects created by the ff package
described previously.

Growing bigger and faster random forests
with bigrf
The bigrf package by Aloysius Lim implements the training of random forests for
classification and regression on datasets that are too large to fit into memory using
bigmemory objects as described earlier in this chapter. The package also allows
faster parallel processing using the foreach package described previously. Trees can
be grown in parallel (on a single computer or across multiple computers), as can
forests, and additional trees can be added to the forest at any time or merged with
other forests.

For more information, including examples and Windows
installation instructions, see the package wiki hosted at GitHub:
https://github.com/aloysius-lim/bigrf.

Specialized Machine Learning Topics

[364]

Training and evaluating models in parallel
with caret
The caret package by Max Kuhn (covered extensively in Chapter 10, Evaluating Model
Performance and Chapter 11, Improving Model Performance) will transparently utilize
a parallel backend if one has been registered with R (for instance, using the foreach
package described previously).
Many of the tasks involved in training and evaluating models, such as creating
random samples and repeatedly testing predictions for 10-fold cross-validation are
embarrassingly parallel. This makes a particularly good caret.

Configuration instructions and a case study of the
performance improvements for enabling parallel processing
in caret are available at the project's website: http://
caret.r-forge.r-project.org/parallel.html.

Summary
It is certainly an exciting time to be studying machine learning. Ongoing work
on the relatively uncharted frontiers of parallel and distributed computing offers
great potential for tapping the knowledge found in the deluge of Big Data. And
the burgeoning data science community is facilitated by the free and open source R
programming language, which provides a very low barrier for entry—you simply
need to be willing to learn.

The topics you have learned, both in this chapter as well as previous chapters,
provide the foundation for understanding more advanced machine learning
methods. It is now your responsibility to keep learning and adding tools to your
arsenal. Along the way, be sure to keep in mind the No Free Lunch theorem—no
learning algorithm can rule them all. There will always be a human element to
machine learning, adding subject-specific knowledge and the ability to match the
appropriate algorithm to the task at hand.

In the coming years, it will be interesting to see how the human side changes as
the line between machine learning and human learning is blurred. Services such as
Amazon's Mechanical Turk provide crowd-sourced intelligence, offering a cluster of
human minds ready to perform simple tasks at a moment's notice. Perhaps one day,
just as we have used computers to perform tasks that human beings cannot do easily,
computers will employ human beings to do the reverse; food for thought.

Index
Symbols
0.632 bootstrap accounts 323
10-fold cross-validation 319
68-95-99.7 rule 56
= assignment operator 30
<- operator 30

A
abline() function 314
abstraction process 11
actionable associations 262
activation function

about 208, 209
sigmoid activation function 210
threshold activation function 209
unit step activation function 209

AdaBoost 344
adaptive boosting 138
aggregate function 290, 342
apply() function 113
appropriate k

selecting 71, 72
Apriori 245
Apriori algorithm

for association rule learning 245-247
strengths 246
weaknesses 246

apriori() function 258
Apriori principle

used, for building set of rules 248, 249
Apriori property 246
array 30, 38
Artificial Neural Network (ANN)

about 206

applications 206, 207
association rules

about 244
frequently purchased groceries, identifying

with 249
potential applications 244
rule interest, measuring 247, 248
set of rules, building with Apriori

principle 248, 249
automated parameter tuning

caret package used 327-329
requisites 327

axon 207

B
backpropagation

about 215
neural networks, training with 215-217

backpropagation algorithm
strengths 216
weaknesses 216

bag() function 341
bagging 339-343
bagging() function 340
bag-of-words 103
bank loans example, with C5.0

decision trees
data, collecting 129
data, exploring 130
data, preparing 130
model performance, evaluating 137, 138
model performance, improving 138
model, training on data 133-137
random training, creating 131, 132
test datasets, creating 131, 132

[366]

basics concepts, Bayesian methods
about 91
conditional probability 93-95
joint probability 92, 93
probability 91

Bayesian classifiers
uses 90

Bayesian methods
about 90
basic concepts 91

benefits, machine learning 8
bias 15
bias-variance tradeoff 71
biganalytics package 358
bigkmeans() function 358
biglm() function 363
biglm package

about 363
regression model, building 363

bigmemory package
about 357
massive matrices, using with 358
URL, for documentation 357

bigrf package
about 363
random forests, building 363

bimodal 58
binning 100
bins 51
Bioconductor project

about 354
URL 354

bioinformatics data
working with 354

bivariate relationships 59
black box processes 205
blind tasting experience example 67, 68
body mass index (BMI) 173
boosting 343, 344
bootstrap aggregating 339
bootstrap sampling 322
box-and-whiskers plot 49, 50
boxplot 49
boxplot() function 50
branches 120
breast cancer

diagnosing, with kNN algorithm 75

breast cancer example
data, collecting 76
data, exploring 77, 78
data, preparing 77, 78
model performance, evaluating 83, 84
model performance, improving 84, 86
model, training on data 81, 82

C
C5.0 algorithm

about 124
decision tree, pruning 127, 128
split, selecting 125-127
strengths 125
weaknesses 125

caret character 165
caret package

about 327, 364
using, for automated parameter

tuning 327-329
categorical variables

about 56
central tendency, measuring 57
exploring 56, 57

cbind() function 171
central tendency

measuring 45, 46
centroid 275
c() function 30
characteristics, neural networks

activation function 208-211
network topology 208-215
training algorithm 208, 215

character vectors 32
Chi-Squared statistic 127
classification

about 20
nearest neighbors used 66

Classification and Regression Training. See
caret package

classification performance
measuring 294

classification prediction data
working with 294-297

classification rules
about 142

[367]

obtaining, from decision trees 149
One Rule algorithm 145, 147
RIPPER algorithm 147, 148
separate-and-conquer 142-145

cluster 268, 359
clustering

about 22, 268
applications 268
as machine learning task 269, 270

clustering, k-means algorithm
about 271, 272
appropriate number of clusters,

selecting 276-278
distance, used for assigning cluster 272-276
distance, used for updating cluster 272-276

column-major order 38
combine function 30
Comma-Separated Values file.

See CSV files
Complete Unified Device Architecture.

See CUDA
components, machine learning

generalization 14
success of learning, assessing 16

components, machine learnng
abstraction 10-12
data input 10
generalization 10
knowledge representation 11, 12

Comprehensive R Archive Network
(CRAN) 23, 81

concrete strength, modeling with ANNs
about 217
data, collecting 217
data, exploring 218-220
data, preparing 218-220
model performance, evaluating 222, 223
model performance, improving 224, 225
model, training on data 220, 221

conditional probability 93-95
confusion matrix

about 298, 299
used, for measuring performance 299-301

contingency table 61
convex hull 228
cor() function 167, 176
corpus 105

Corpus() function 105
correlation 60, 167, 168
correlation ellipse 178
correlation matrix 176
covariance 166
cov() function 166, 167
createDataPartition() function 318
crosstab 61
CrossTable() function 61, 63, 300
cross-validation 319-322
CSV files

about 40
data, importing from 40
loading, into R 40

CUDA 362
curve() function 126
cut points 100

D
data

about 352
importing, from CSV files 40
importing, from SQL databases 41, 42
machine learning algorithm, applying to 17
managing, with R 39
obtaining, from web 352

Database Management System. See DBMS
data dictionary 43
data exploration 42
data frame

about 30, 35-37
making faster, with data.table package 356

data.frame() function 35
data mining 7
data munging 352
data preparation, breast cancer example

test datasets, creating 80, 81
training, creating 80, 81

Data Source Name. See DSN
data structures, R

about 30
array 38
data frame 35-37
exploring 43, 44
factor 31-34
loading 39

[368]

matrix 37, 38
saving 39
vector 30, 31

data.table package 356
DBMS 41
decision nodes 120
decision tree

about 120, 129
accuracy, boosting 138-140
divide-and-conquer 121-123
potential uses 120
pruning 127, 128
used, for identifying risky bank

loans 128, 129
decision tree forests 344
decision trees

classification rules, obtaining from 149
deep learning 213
delimiter 40
dendrites 207
dependent events 93
dependent variable 59 160
descriptive model 21
diff() function 47
disk-based data frames

creating, with ff package 357
distance function 70
divide-and-conquer 121-123
DSN 41
dummy coding 73, 181

E
e1071 package

naive Bayes classification, with
naiveBayes() function 114

elbow method 277
elbow point 277
elements 30
ensemble methods

bagging 339-343
boosting 343, 344
random forests 344, 345

ensembles
about 337, 338
advantages 339

entropy 125

epoch 216
ethical considerations, machine

learning 9, 10
Euclidean distance 70
Euclidean norm 229
events 91
example 18

F
Facebook 278
factor

about 30-33
creating, from character vector 32

factor() function 32
feature 18
feedforward networks 213
ff package

about 357
used, for creating disk-based data

frames 357
five-number summary 47
F-measure 310, 311
foreach package 359, 364
frequently purchased groceries

identifying, with association rules 249
future performance

estimating 315
future performance estimation

bootstrap sampling 322
cross-validation 319-322
holdout method 316-318

G
gain ratio 127
Gaussian Radial Basis Function (RBF)

kernel 233
generalization 14
generalized linear models (GLM) 161
Gini index 127
GPU computing 362
gputools package 362
gradient descent 216
graph data

working with 355
greedy learners 145
grid 329

[369]

H
Hadoop

parallel computing 361
header line 40
heuristics 14
hidden layers 213
hist() function 51
histogram 51
holdout method 316, 318
human brain 206
hyperplane 225

I
imputation 283
Incremental Reduced Error Pruning

algorithm (IREP) 147
independent events 93
independent variables 160
information gain 126
Input Nodes 212
installation, R package 24
instance-based learning 75
interaction 185
intercept 160
interquartile range (IQR) 48
ipred package 340
IQR() function 48
itemFrequencyPlot() function 255
itemset 244

J
JavaScript Object Notation. See JSON
joint probability 92, 93
JRip() classifier 156
JSON

about 353
converting, to R 353
reading, rjson package used 353
writing, rjson package used 353
URL 353

K
Kaggle

URL 325

kappa statistic 303-306
kernels

using, for non-linear spaces 231-233
kernel trick 231
kernlab package 341
k-means algorithm

about 271
strengths 271
weaknesses 271

kmeans() function 285
kNN algorithm (k-Nearest Neighbors)

about 67, 114
appropriate k, selecting 71, 72
data, preparing 72-74
distance, calculating 70
strengths 67
used, for diagnosing breast cancer 75
weaknesses 67

knn() function 82
knowledge representation 12
ksvm() function 341

L
Laplace estimator 98, 99
lapply() function 79, 85
large datasets

managing 356
large datasets management

about 356
data frames, making faster with data.table

package 356
disk-based data frames, creating with

ff package 357
massive matrices, using with bigmemory

package 357
layers 212
lazy learning algorithms 74
leaf nodes 120
learning rate 217
learning, with parallel computing

about 358, 359
execution time, measuring 359
multiple workstations, networking 360
multitasking operating system, using with

multicore package 360

[370]

parallel cloud computing, with
Hadoop 361

parallel cloud computing, with
MapReduce 361

working, in paralle with foreach 359
left hand side (LHS) 262
levels 20
likelihood 94
likelihood table 94
linear kernel 233
linearly separable 226
linear regression 161
link function 161
list() function 33
lists 30
lm() function 363
load() command 39
loess smooth 179
logistic regression 161

M
M5' algorithm (M5-prime) 199
machine learning

about 10
applying, to data 17
benefits 8
ethical considerations 9, 10
origins 7
R, using 23

machine learning algorithm
about 7, 8
data, matching 22, 23
input training data 18, 19
selecting 18
types 20, 21

Manhattan distance 70
MapReduce programming model

about 361
parallel computing 361

marginal likelihood 94
market basket analysis 243
market basket analysis example

association rules, saving to file 265
data, collecting 250
data, exploring 251, 252
data, preparing 251, 252

item support, visualizing 255, 256
model performance, evaluating 260-263
model performance, improving 263
model, training on data 258-260
set of association rules, sorting 263, 265
sparse matrix, creating for transaction

data 252-255
transaction data, visualizing 256, 257

massive matrices
using, with bigmemory package 358

matrix 37
matrix() function 37
Maximum Margin Hyperplane (MMH)

about 227
case, of linearly separable data 228-230
case, of non-linearly separable data 230, 231

mcapply() function 360
mean 45
mean absolute error (MAE) 198
mean() function 45, 166
median 46
median() function 46
medical expenses, predicting with linear

regression
about 172
correlation matrix 176
data, collecting 173
data, exploring 174, 175
data, preparing 174, 175
model performance, improving 183-187
model performance, training 182, 183
model, training on data 179-181
relationships, exploring among

features 176
relationships, visualizing among

features 176-179
scatterplot matrix 176, 177

meta-learning methods
about 337
used, for improving model

performance 337
Microsoft Excel 40
Microsoft Excel spreadsheets

reading, xlsx package used 354
writing, xlsx package used 354

Microsoft SQL 41
min-max normalization 73

[371]

Mobile Phone Spam
filtering, with naive Bayes algorithm 101

Mobile Phone Spam example
data, collecting 102
data, exploring 103, 104
data, preparing 103, 104
indicator features, creating for frequent

words 112, 113
model performance, evaluating 115, 116
model performance, improving 116, 117
model, training on data 113, 114
test datasets, creating 108
text data, processing for analysis 104-107
text data, visualizing 108-111
training, creating 108

mode 57
mode() function 58
model 12
model performance

improving, with meta-learning 337
model performance, breast cancer example

alternatives values, testing of k 86
z-score standardization 84, 85

model trees 187
multicore package 360
multidimensional feature space 68
multilayer network 213
Multilayer Perceptron (MLP) 214
multimodal 58
multiple linear regression

about 168-172
strengths 169
weaknesses 169

multiple workstations
networking, with snowfall package 360
networking, with snow package 360

multitasking operating system
using, with multicore package 360

multivariate relationships 59
MySpace 278
MySQL 41

N
naive Bayes

numeric features, using with 100, 101

naive Bayes algorithm
about 89, 90, 95
Laplace estimator 98, 99
naive Bayes classification 96-98
strengths 95
used, for filtering Mobile Phone Spam 101
weaknesses 95

naive Bayes classification
about 96-98
naiveBayes() function, using in e1071

package 114
nearest neighbor classifiers 66
Netflix Prize

URL 325
network package

about 355
URL, for info 355

network topology
about 211
direction, of information travel 214
number of layers 212
number of nodes, in each layer 214, 215

neural networks
about 206
biological, to artificial neurons 207, 208
characteristics 208
training, with backpropagation 215-217

neurons 206
No Free Lunch theorem 18
nominal variables 31
non-linearly separable data 230
non-linear spaces

kernels, using for 231-233
normal distributions 54
normalize() function 79
numeric data

about 53, 54
normalizing 79

numeric features
using, with naive Bayes 100, 101

numeric prediction 21
numeric variables

about 44
central tendency, measuring 45, 46
exploring 44
spread, measuring 47-49
visualizing 49-53

[372]

O
OCR, performing with SVMs

about 233
data, collecting 234
data, exploring 235, 236
data, preparing 235, 236
model performance, evaluating 239-241
model performance, improving 241, 242
model, training on data 237, 239

ODBC 41
odbcConnect() function 41
One Rule algorithm

about 146
strengths 146
weaknesses 146

one-way table 56
Open Database Connectivity. See ODBC
optimized learning algorithms

deploying 363
optimized learning algorithms deployment

caret package, used for evaluating models
in parallel 364

random forests, building with bigrf
package 363

regression models, building with biglm
package 363

Oracle 41
order() function 132
ordinary least squares estimation 164-167
ordinary least squares (OLS) 164
out-of-bag error rate 347
Output Node 212
overfitting 16

P
pairs() function 177
parallel computing methods 358
parameter estimates 163
parameter tuning 326, 327
pattern discovery 21
Pearson's Chi-squared test 63
Pearson's correlation 167
performance

improving, of R 355, 356

measuring, confusion matrices
used 299-301

performance() function 314
performance measures

about 302
F-measure 311
kappa statistic 303-306
precision 309
recall 309, 310
sensitivity 307, 308
specificity 307, 308

performance tradeoffs
visualizing 311

plot() function 59, 314
point-and-click interface

used, for installing R package 25
poisonous mushrooms

identifying, with rule learners 150
poisonous mushrooms example, with rule

learners
data, collecting 150
data, exploring 151
data, preparing 151
model performance, evaluating 154, 155
model performance, improving 155-157
model, training on data 152, 153

Poisson regression 161
polynomial kernel 233
posPredValue() function 310
posterior probability 94
PostgreSQL 41
post-pruning 128
precision 309
pred function 342
predict() function 295, 332 340
predictive model 20
pre-pruning 128
prior probability 93
probability 91

Q
quadratic optimization 228
quantile() function 48
quartiles 48

[373]

R
R

CSV file, loading into 40
data structures 30
JSON, converting to 353
performance, improving 355, 356
used, for managing data 39
using, for machine learning 23
working with classification prediction

data 294-297
Radial Basis Function (RBF) network 211
randomForest() function 346, 348
randomForest package 346
random forests

about 344, 345
performance, evaluating 348-350
strengths 345
training 346-348
weaknesses 345

range 47
range() function 47
RCurl package

about 352
URL, for documentation 352
used, for obtaining data from web 352

real-world data 352
recall 309
Receiver Operating Characteristic. See

ROC curve
recurrent network 214
recursive partitioning 121
reg() function 171
regression

about 160
adding, to trees 188-190
correlation 167, 168
multiple linear regression 168-172
ordinary least squares estimation 164-167
simple linear regression 162-164

regression analysis
use cases 160

regression equations 160
regression models

building, with biglm package 363

regression trees
about 187
strengths 188
weaknesses 188

relationships
examining 61, 63
exploring, between variables 58
visualizing 59, 60

residuals 164
resubstitution error 316
RHIPE package 361
right hand side (RHS) 262
RIPPER algorithm

about 147, 148
strengths 148
weaknesses 148

risky bank loans
identifying, C5.0 decision trees

used 128, 129
rjson package

about 353
used, for reading JSON 353
used, for writing JSON 353

rmr package 361
ROC curve

about 312, 313
creating 314, 315

ROCR package 311
RODBC package 41
rote learning 75
round() function 57
R package

installing 24
installing, point-and-click interface used 25
loading 27

R performance
GPU computing 362
large datasets, managing 356
learning, with parallel computing 358, 359
optimized learning algorithms,

deploying 363
rudimentary ANNs 206
runif() function 132
RWeka package

about 124
loading 27
using 24

[374]

S
save() function 39
scale() function 85
scatterplot 59
Scoville scale 72
sd() function 55, 167
semi-supervised learning 271
sensitivity() function 310
sensor 6
separate-and-conquer 142-145
seq() function 49
Short Message Service (SMS) 101
sigmoid activation function 210
sigmoid kernel 233
simple linear regression 162-164
simple tuned model

creating 330-333
single-layer network 212
skew 53
slack variable 230
slope 160
sna package

URL, for info 355
snowfall package

multiple workstations, networking 360
snow package

about 360
multiple workstations, networking 360

social network data
working with 355

Social Networking Service (SNS) 279
sparse matrix

about 107, 252
creating, for transaction data 252-255

specialized data
working with 352

SQL databases
data, importing from 41, 42

SQLite 41
sqlQuery() function 42
stacking 338
standard deviation 54
standard deviation reduction (SDR) 189
stock models

tuning, for better performance 326, 327
stop words 106

str() function 43, 174
stringsAsFactors option 35
subset() function 297
summary() function 44
summary statistics 44
Sum of Squared Errors (SSE) 222
supervised learning 20
Support Vector Machine (SVM)

about 225, 341
applications 226
classifications, with hyperplanes 226, 227
maximum margin, finding 227
OCR, performing with 233

support vectors 227
synapse 207

T
table() function 56, 300
Tab-Separated Value (TSV) 41
target feature 20
teen market segments search, with k-means

clustering
about 278
data, collecting 279
data, exploring 279, 281
data, preparing 279-284
model performance, evaluating 287-289
model performance, improving 289, 291
model, training on data 284-286

threshold activation function 209
tm package 104
token 106
tokenization 106
topology 211
trainControl() function 333
train() function 327, 332
training 13
transaction data

sparse matrix, creating for 252-255
transpose 170
trees

regression, adding to 188-190
tree structure 120
trial 91
trivial rules 263

[375]

tuning process
customizing 333-336

Turing test 206
two-way cross-tabulation 61-63

U
UCI Machine Learning Data Repository

about 191
URL 129, 217

uniform distribution 53
unimodal 58
unit of observation phrase 18
unit step activation function 209
univariate statistics 58
universal function approximator 215
unsupervised classification 269
unsupervised learning 21
usedcars.csv dataset 42

V
var() function 55, 166
variables

relationships, exploring between 58
variance 54
vector 30, 31
vector types

character 30
integer 30
logical 30
numeric 30

Venn diagram 92
Voronoi diagram 274

W
web

data, obtaining from 352
weighted voting process 72

wine quality estimation, with regression
trees

about 190
data, collecting 191
data, exploring 192, 193
data, preparing 192, 193
decision trees, visualizing 196, 197
model performance, evaluating 197, 198
model performance, improving 199-202
model, training on data 194, 195
performance, measuring with mean

absolute error 198
word cloud 108

X
xlsx package

about 354
URL 354
used, for reading Microsoft Excel

spreadsheets 354
used, for writing Microsoft Excel

spreadsheets 354
XML

about 353
reading, XML package used 353
writing, XML package used 353

XML package
about 353
URL, for info 353
used, for reading XML 353
used, for writing XML 353

Z
ZeroR 145
z-score standardization 73

Thank you for buying
Machine Learning with R

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Statistical Analysis with R
Beginner's Guide
ISBN: 978-1-84951-208-4 Paperback: 300 pages

Take control of your data and produce superior
statistical analyses with R

1.	 An easy introduction for people who are new
to R, with plenty of strong examples for you to
work through

2.	 This book will take you on a journey to learn R
as the strategist for an ancient Chinese kingdom!

3.	 A step-by-step guide to understand R, its
benefits, and how to use it to maximize the
impact of your data analysis

R Graphs Cookbook
ISBN: 978-1-84951-306-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most useful
types of graphs in R—starting from the simplest
versions to more advanced applications

1.	 Learn to draw any type of graph or visual data
representation in R

2.	 Filled with practical tips and techniques for
creating any type of graph you need; not just
theoretical explanations

3.	 All examples are accompanied with the
corresponding graph images, so you know
what the results look like

Please check www.PacktPub.com for information on our titles

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that guarantees fast, accurate,
and easy-to-code solutions to your numerical and
scientific computing problems with the power of
SciPy and Python

1.	 Perform complex operations with large
matrices, including eigenvalue problems,
matrix decompositions, or solution to large
systems of equations

2.	 Step-by-step examples to easily implement
statistical analysis and data mining that rivals
in performance any of the costly specialized
software suites

Unity 4.x Game AI Programming
ISBN: 978-1-84969-340-0 Paperback: 232 pages

Learn and implement game AI in Unity3D with a lot
of sample projects and next-generation techniques to
use in your Unity3D projects

1.	 A practical guide with step-by-step instructions
and example projects to learn Unity3D scripting

2.	 Learn pathfinding using A* algorithms as well
as Unity3D pro features and navigation graphs

3.	 Implement finite state machines (FSMs), path
following, and steering algorithms

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Machine Learning
	The origins of machine learning
	Uses and abuses of machine learning
	Ethical considerations

	How do machines learn?
	Abstraction and knowledge representation
	Generalization
	Assessing the success of learning

	Steps to apply machine learning
to your data
	Choosing a machine learning algorithm
	Thinking about the input data
	Thinking about types of machine learning algorithms
	Matching your data to an appropriate algorithm

	Using R for machine learning
	Installing and loading R packages
	Installing an R package
	Installing a package using the point-and-click interface
	Loading an R package

	Summary

	Chapter 2: Managing and
Understanding Data
	R data structures
	Vectors
	Factors
	Lists
	Data frames
	Matrixes and arrays

	Managing data with R
	Saving and loading R data structures
	Importing and saving data from CSV files
	Importing data from SQL databases

	Exploring and understanding data
	Exploring the structure of data
	Exploring numeric variables
	Measuring the central tendency – mean and median
	Measuring spread – quartiles and the
five-number summary
	Visualizing numeric variables – boxplots
	Visualizing numeric variables – histograms
	Understanding numeric data – uniform and
normal distributions
	Measuring spread – variance and standard deviation

	Exploring categorical variables
	Measuring the central tendency – the mode

	Exploring relationships between variables
	Visualizing relationships – scatterplots
	Examining relationships – two-way
cross-tabulations

	Summary

	Chapter 3: Lazy Learning – Classification
using Nearest Neighbors
	Understanding classification using nearest neighbors
	The kNN algorithm
	Calculating distance
	Choosing an appropriate k
	Preparing data for use with kNN

	Why is the kNN algorithm lazy?

	Diagnosing breast cancer with the
kNN algorithm
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Transformation – normalizing numeric data
	Data preparation – creating training and
test datasets

	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance
	Transformation – z-score standardization
	Testing alternative values of k

	Summary

	Chapter 4: Probabilistic
Learning – Classification using Naive Bayes
	Understanding naive Bayes
	Basic concepts of Bayesian methods
	Probability
	Joint probability
	Conditional probability with Bayes' theorem

	The naive Bayes algorithm
	The naive Bayes classification
	The Laplace estimator
	Using numeric features with naive Bayes

	Example – filtering mobile phone spam with the naive Bayes algorithm
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Data preparation – processing text data
for analysis
	Data preparation – creating training and
test datasets
	Visualizing text data – word clouds
	Data preparation – creating indicator features for frequent words

	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance

	Summary

	Chapter 5: Divide and
Conquer – Classification using Decision Trees
and Rules
	Understanding decision trees
	Divide-and-conquer
	The C5.0 decision tree algorithm
	Choosing the best split
	Pruning the decision tree

	Example – identifying risky bank loans using C5.0 decision trees
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Data preparation – creating random training and test datasets

	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance
	Boosting the accuracy of decision trees
	Making some mistakes more costly than others

	Understanding classification rules
	Separate-and-conquer
	The One Rule algorithm
	The RIPPER algorithm
	Rules from decision trees

	Example – identifying poisonous mushrooms with rule learners
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance

	Summary

	Chapter 6: Forecasting Numeric
Data – Regression Methods
	Understanding regression
	Simple linear regression
	Ordinary least squares estimation
	Correlations
	Multiple linear regression

	Example – predicting medical expenses using linear regression
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Exploring relationships among
features – correlation matrix
	Visualizing relationships among
features – scatterplot matrix

	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance
	Model specification – adding non-linear relationships
	Transformation – converting a numeric variable to
a binary indicator
	Model specification – adding interaction effects
	Putting it all together – an improved regression model

	Understanding regression trees and model trees
	Adding regression to trees

	Example – estimating the quality of wines with regression trees and model trees
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Step 3 – training a model on the data
	Visualizing decision trees

	Step 4 – evaluating model performance
	Measuring performance with mean absolute error

	Step 5 – improving model performance

	Summary

	Chapter 7: Black Box Methods – Neural Networks and Support
Vector Machines
	Understanding neural networks
	From biological to artificial neurons
	Activation functions
	Network topology
	The number of layers
	The direction of information travel
	The number of nodes in each layer

	Training neural networks with backpropagation

	Modeling the strength of concrete
with ANNs
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance

	Understanding Support Vector Machines
	Classification with hyperplanes
	Finding the maximum margin
	The case of linearly separable data
	The case of non-linearly separable data

	Using kernels for non-linear spaces

	Performing OCR with SVMs
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance

	Summary

	Chapter 8: Finding Patterns – Market Basket Analysis using Association Rules
	Understanding association rules
	The Apriori algorithm for association
rule learning
	Measuring rule interest – support and confidence
	Building a set of rules with the Apriori principle

	Example – identifying frequently purchased groceries with
association rules
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Data preparation – creating a sparse matrix for transaction data
	Visualizing item support – item frequency plots
	Visualizing the transaction data – plotting the sparse matrix

	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance
	Sorting the set of association rules
	Taking subsets of association rules
	Saving association rules to a file or data frame

	Summary

	Chapter 9: Finding Groups of
Data – Clustering
with k-means
	Understanding clustering
	Clustering as a machine learning task
	The k-means algorithm for clustering
	Using distance to assign and update clusters
	Choosing the appropriate number of clusters

	Finding teen market segments using
k-means clustering
	Step 1 – collecting data
	Step 2 – exploring and preparing the data
	Data preparation – dummy coding missing values
	Data preparation – imputing missing values

	Step 3 – training a model on the data
	Step 4 – evaluating model performance
	Step 5 – improving model performance

	Summary

	Chapter 10: Evaluating Model Performance
	Measuring performance for classification
	Working with classification prediction data in R
	A closer look at confusion matrices
	Using confusion matrices to measure performance
	Beyond accuracy – other measures of performance
	Kappa statistic
	Sensitivity and specificity
	Precision and recall
	The F-measure

	Visualizing performance tradeoffs
	ROC curves

	Estimating future performance
	The holdout method
	Cross-validation
	Bootstrap sampling

	Summary

	Chapter 11: Improving Model Performance
	Tuning stock models for better performance
	Using caret for automated parameter tuning
	Creating a simple tuned model
	Customizing the tuning process

	Improving model performance with
meta-learning
	Understanding ensembles
	Bagging
	Boosting
	Random forests
	Training random forests
	Evaluating random forest performance

	Summary

	Chapter 12: Specialized Machine Learning Topics
	Working with specialized data
	Getting data from the Web with RCurl
	Reading and writing XML with 'XML'
	Reading and writing JSON with rjson
	Reading and writing Microsoft Excel spreadsheets using xlsx
	Working with bioinformatics data
	Working with social network or graph data

	Improving the performance of R
	Managing very large datasets
	Making data frames faster with data.table
	Creating disk-based data frames with ff
	Using massive matrices with bigmemory

	Learning faster with parallel computing
	Measuring execution time
	Working in parallel with foreach
	Using a multitasking operating system
with multicore
	Networking multiple workstations with snow
and snowfall
	Parallel cloud computing with MapReduce
and Hadoop

	GPU computing
	Deploying optimized learning algorithms
	Building bigger regression models with biglm
	Growing bigger and faster random forests
with bigrf
	Training and evaluating models in parallel
with caret

	Summary

	Index

