
by Andy Harris
and Chris McCulloh

HTML, XHTML,
and CSS

A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_186275 ffirs.qxp 3/28/08 10:37 PM Page i

01_186275 ffirs.qxp 3/28/08 10:37 PM Page iv

by Andy Harris
and Chris McCulloh

HTML, XHTML,
and CSS

A L L - I N - O N E D E S K R E F E R E N C E

FOR

DUMmIES
‰

01_186275 ffirs.qxp 3/28/08 10:37 PM Page i

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PAR-
TICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD
WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMEN-
DATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008924956

ISBN: 978-0-470-18627-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_186275 ffirs.qxp 3/28/08 10:37 PM Page ii

www.wiley.com

About the Authors
Andy Harris began his teaching life as a special education teacher. As he was
teaching young adults with severe disabilities, he taught himself enough com-
puter programming to support his teaching habit with freelance program-
ming. Those were the exciting days when computers started to have hard
drives, and some computers began communicating with each other over an
arcane mechanism some were calling the Internet.

All this time Andy was teaching computer science part time. He joined the fac-
ulty of the Indiana University/Purdue University — Indianapolis Computer
Science department in 1995. He serves as a Senior Lecturer, teaching the intro-
ductory course to Freshmen as well as numerous courses on Web development,
general programming, and game programming. As manager of the Streaming
Media Laboratory, he developed a number of online video-based courses, and
worked on a number of international distance education projects including help-
ing to start a computer science program in Tetevo, Macedonia FYR.

Andy is the author of several other computing books, including Beginning
Flash Game Programming For Dummies and Game Programming: The L Line.
He invites your comments and questions at andy@aharrisbooks.net.

Chris McCulloh has a bachelor’s degree in Media Arts and Science from
Indiana University/Purdue University — Indianapolis (IUPUI), a certificate
in Applied Computer Science from the Computer and Information Science
Department (CSCI) at IUPUI, and is a full-time PHP Developer working at
CIK Enterprises. He loves to teach, write, and read, and is currently teaching
server-side programming for CSCI at IUPUI. He writes a programming-related
blog on his Flash game site at blog.chomperstomp.com, and maintains a
popular Firefox extension located at statusbarcalculator.com.

Dedication
I dedicate the book to Jesus Christ, my personal savior, and to Heather, the
joy in my life. I also dedicate this project to Elizabeth, Matthew, Jacob, and
Benjamin. I love each of you. ––Andy Harris

To Julie. ––Chris McCulloh

01_186275 ffirs.qxp 3/28/08 10:37 PM Page iii

01_186275 ffirs.qxp 3/28/08 10:37 PM Page iv

Authors’ Acknowledgments
Andy would like to thank the following:

Heather, for being amazing even when I’m being . . . an author. Chris, for stepping
into a crazy project and performing like a star. Mark Enochs, for listening to my
rants and smiling. You are a true friend, and I can’t imagine how tough this proj-
ect would have been without you. Katie Feltman, for being the nicest taskmaster
I’ve ever encountered. Thanks for keeping it positive even when you were drop-
ping the hammer. (Do you have any hammers left? You dropped a lot on this proj-
ect.) Seriously, I enjoy dreaming up a new project with you, and watching it
develop. Jennifer Riggs, for managing my sometimes confused rambling and turn-
ing it into something decent. Rodd Mullet, for his technical edit of the manu-
script. Jane Harris, for the steady supply of custom tea. I’m getting about 40
pages per gallon now. The many people at Wiley who never meet the author, yet
contribute immeasurably to a book like this. Thank you for your contributions.
The open-source community, for creating incredible tools and making them
freely available for everyone. I’d especially like to thank the developers of Firefox,
FireBug, HTML Validator, Web Developer Toolbar, Aptana Studio, Notepad++,
PHP, MySQL, phpMyAdmin, Apache, DBDesigner4, jQuery, emacs, VI, and GIMP.
Reiner Prokein, for use of his great sprites. Julian Burgess, for use of his tiled
background image. The IUPUI computer science family, for years of support on
many projects. All my students, current, past, and future, I learn far more from
you than the small amount I’ve given you.

Chris would like to thank the following:

God, for his love, patience, blessings, forgiveness, and Son. But also, for the
ability to think logically and communicate ideas through writing (which I
enjoy thoroughly). Julie, for the hot delicious scrumptious healthy meals. For
making my dresser magically refill itself weekly. For picking up the slack and
keeping the house from falling down around us while I worked on this book.
But mostly for your love and encouragement. Mom, for teaching me to write.
Dad, for having a million books in the house, and reading to me every night
when I was little. My editors, for catching all of the mistakes in the places
where I forgot what my Mom taught me. Andy Harris, for inspiring me to do
more than I ever thought I could do, for (unknowingly) converting me from
being a graphics artist into a computer programmer, and for giving me the
opportunity to write with one of my favorite authors. Brian, for teaching me
QBasic when I was 9.

01_186275 ffirs.qxp 3/28/08 10:37 PM Page v

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Senior Project Editor: Mark Enochs

Senior Acquisitions Editor: Katie Feltman

Copy Editor: Jennifer Riggs

Technical Editor: Rodd Mullett

Editorial Manager: Leah Cameron

Media Associate Project Manager:
Laura Atkinson

Media Development Assistant Producer:
Kit Malone

Media Quality Assurance: Angela Denny

Editorial Assistant: Amanda Foxworth

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Lynsey Stanford

Layout and Graphics: Claudia Bell,
Alissa D. Ellet, Joyce Haughey,
Melissa K. Jester, Shane Johnson,
Christine Williams

Proofreaders: Broccoli Information
Management, Caitie Kelly

Indexer: Broccoli Information Management

Special Help: Kelly Ewing, Melba Hopper,
Jodi Jensen, Laura Miller, Jean Nelson,
Blair Pottenger, Nicole Sholly,
Rebecca Whitney

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_186275 ffirs.qxp 3/28/08 10:37 PM Page vi

www.dummies.com

Contents at a Glance
Introduction ...1

Book I: Creating the XHTML Foundation.........................7
Chapter 1: Sound HTML Foundations..9
Chapter 2: It’s All about Validation...19
Chapter 3: Choosing Your Tools...39
Chapter 4: Managing Information with Lists and Tables...61
Chapter 5: Making Connections with Links...79
Chapter 6: Adding Images ...89
Chapter 7: Creating Forms ..119

Book II: Styling with CSS ..139
Chapter 1: Coloring Your World ...141
Chapter 2: Styling Text...159
Chapter 3: Selectors, Class, and Style..185
Chapter 4: Borders and Backgrounds..205
Chapter 5: Levels of CSS ..227

Book III: Using Positional CSS for Layout...................247
Chapter 1: Fun with the Fabulous Float...249
Chapter 2: Building Floating Page Layouts ...271
Chapter 3: Styling Lists and Menus..293
Chapter 4: Using Alternative Positioning ..313

Book IV: Client-Side Programming with JavaScript......333
Chapter 1: Getting Started with JavaScript...335
Chapter 2: Making Decisions with Conditions..357
Chapter 3: Loops and Debugging ...371
Chapter 4: Functions and Arrays..395
Chapter 5: Talking to the Page..413
Chapter 6: Getting Valid Input...437
Chapter 7: Animating Your Pages...459

Book V: Server-Side Programming with PHP489
Chapter 1: Setting Up Your Server ...491
Chapter 2: Generating HTML with PHP ...501
Chapter 3: PHP and XHTML Forms ..513
Chapter 4: Control Structures...535
Chapter 5: Working with Arrays ...555

02_186275 ftoc.qxp 3/28/08 10:38 PM Page vii

Chapter 6: Using Functions and Session Variables ..575
Chapter 7: Working with Files and Directories ...587
Chapter 8: Connecting to a MySQL Database ...605

Book VI: Databases with MySQL................................627
Chapter 1: Getting Started with Data...629
Chapter 2: Managing Data with SQL...657
Chapter 3: Normalizing Your Data..683
Chapter 4: Putting Data Together with Joins ..701

Book VII: Into the Future with AJAX723
Chapter 1: AJAX Essentials ...725
Chapter 2: Improving JavaScript with jQuery ..739
Chapter 3: Animating with jQuery..759
Chapter 4: Sending and Receiving Data...787

Book VIII: Moving from Web Pages to Web Sites.........801
Chapter 1: Managing Your Servers...803
Chapter 2: Moving from Pages to Sites..829
Chapter 3: Introducing Content Management Systems...849
Chapter 4: Taking Control of Content ..871

Appendix A: What’s on the CD895

Index ...901

02_186275 ftoc.qxp 3/28/08 10:38 PM Page viii

Table of Contents
Introduction..1

No Experience Necessary ...2
Great for Advanced Folks, Too! ..2
Use Any Computer ...3
Don’t Buy Any Software...3
How This Book Is Organized...4
Icons Used in This Book..5
What’s Next ...6

Book I: Creating the XHTML Foundation7

Chapter 1: Sound HTML Foundations .9
Creating a Basic Page...9
Understanding the HTML in the Basic Page ...12
Meeting Your New Friends, the Tags ...12
Setting Up Your System ...15

Displaying file extensions..15
Setting up your software ...16

Chapter 2: It’s All about Validation .19
Somebody Stop the HTML Madness!...19

XHTML to the rescue ...20
There’s XHTML, and then there’s good XHTML...............................21

Building an XHTML Document ...21
Don’t memorize all this!...22
The DOCTYPE tag...22
The xmlns attribute..23
The meta tag ...23
You validate me ..23

Validating Your Page ..25
Aesop visits W3C..27
Showing off your mad skillz ..35
Using Tidy to repair pages ..36

Chapter 3: Choosing Your Tools .39
What’s Wrong with the Big Boys? ..39
Alternative Web Development Tools ...40

The things you need to have on your computer..............................41
Building a basic toolbox ..41

Picking a Text Editor..42
Some tools to use when you have nothing else42
A noteworthy editor: Notepad++..43

02_186275 ftoc.qxp 3/28/08 10:38 PM Page ix

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesx

The old standards: VI and Emacs...44
Other text editors...46

The Web Developer’s Browser ...47
A little ancient history ...47
Overview of the prominent browsers..48
Other notable browsers...49
The bottom line in browsers...50

Tricking Out Firefox ...51
Validating your pages with HTML Validator51
Using the Web Developer toolbar ..52
Using Firebug ..54

Using a Full-Blown IDE...55
Introducing Nvu..55
Introducing Aptana ..57
Customizing Aptana ...59

Chapter 4: Managing Information with Lists and Tables 61
Making a List and Checking It Twice ...61

Creating an unordered list...61
Creating ordered lists ..63
Making nested lists...65
Building the definition list ...68

Building Tables ...70
Defining the table ...72
Spanning rows and columns ...75
Avoiding the table-based layout trap...78

Chapter 5: Making Connections with Links .79
Making Your Text Hyper..79

Introducing the anchor tag ...81
Comparing block-level and inline elements82
Analyzing an anchor ..82
Introducing URLs..82

Making Lists of Links ...84
Working with Absolute and Relative References85

Understanding absolute references ...86
Introducing relative references ..86

Chapter 6: Adding Images .89
Adding Images to Your Pages ...89

Adding links to images...90
Adding inline images using the tag ...92

Choosing an Image Manipulation Tool ..94
An image is worth 3.4 million words!...95
Introducing IrfanView ..97

Choosing an Image Format ...98
BMP ..99
JPG/JPEG ...99

02_186275 ftoc.qxp 3/28/08 10:38 PM Page x

Table of Contents xi

GIF...99
PNG...102
Summary of Web image formats...102

Manipulating Your Images...103
Changing formats in IrfanView..103
Resizing your images ...104
Enhancing image colors ..106
Using built-in effects ..107
Other effects you can use..112
Batch processing ..112

Using Images as Links..115
Creating thumbnail images ...116
Creating a thumbnail-based image directory117

Chapter 7: Creating Forms .119
You Have Great Form...119

Forms must have some form ..121
Organizing a form with fieldsets and labels....................................121

Building Text-Style Inputs ...124
Making a standard text field..124
Building a password field ..126
Making multi-line text input ..127

Creating Multiple Selection Elements..129
Making selections...129
Building check boxes ...131
Creating radio buttons...133

Pressing Your Buttons ...135
Making input-style buttons ...136
Building a submit button...137
It’s a do-over: The reset button ..138
Introducing the button tag ..138

Book II: Styling with CSS...139

Chapter 1: Coloring Your World .141
Now You Have an Element of Style ..141

Setting up a style sheet..143
Changing the colors ...144

Specifying Colors in CSS..145
Using color names..145
Putting a hex on your colors...146
Coloring by number ...147
Hex education ...147
Using the Web-safe color palette..149

Choosing Your Colors..150
Starting with Web-safe colors ...151
Modifying your colors..151

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xi

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxii

Doing it on your own pages ..151
Changing CSS on the fly ...152

Creating Your Own Color Scheme..154
Understanding hue, saturation, and value......................................154
Using the Color Scheme Generator..154
Selecting a base hue...156
Picking a color scheme..156

Chapter 2: Styling Text .159
Setting the Font Family..159

Applying the font-family style attribute ..160
Using generic fonts...161
Making a list of fonts ..164

The Curse of Web-Based Fonts...165
Understanding the problem..165
Examining possible solutions ...166
Using images for headlines ...167

Specifying the Font Size...170
Size is only a suggestion! ...170
Using the font-size style attribute ..171
Absolute measurement units ..172
Relative measurement units ...173

Determining Other Font Characteristics...174
Using font-style for italics..175
Using font-weight for bold...176
Using text-decoration...178
Using text-align for basic alignment...180
Other text attributes ..181
Using the font shortcut..182
Working with subscripts and superscripts183

Chapter 3: Selectors, Class, and Style .185
Selecting Particular Segments ..185

Defining more than one kind of paragraph185
Styling identified paragraphs..187

Using Emphasis and Strong Emphasis ..188
Adding emphasis to the page ...188
Modifying the display of em and strong..189

Defining Classes ...191
Adding classes to the page ...192
Combining classes..192
Combining classes..193

Introducing div and span ..195
Organizing the page by meaning ..196
Why not make a table?...197

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xii

Table of Contents xiii

Using Pseudo-Classes to Style Links..198
Styling a standard link ...198
Styling the link states...199
Best link practices..201

Selecting in Context ...201
Defining Multiple Styles at Once ..203

Chapter 4: Borders and Backgrounds .205
Joining the Border Patrol ..205

Using the border attributes...205
Defining border styles..207
Using the border shortcut...209
Creating partial borders ..210

Introducing the Box Model ...211
Borders, margin, and padding ..212
Positioning elements with margins and padding214

Changing the Background Image..216
Getting a background check ...217
Solutions to the background conundrum219

Manipulating Background Images..222
Turning off the repeat ..222
Making effective gradients with repeat-x and repeat-y223

Using Images in Lists ...225

Chapter 5: Levels of CSS .227
Managing Levels of Style ...227

Using local styles..227
Using an external style sheet ..230

Understanding the Cascading Part of Cascading Style Sheets...............235
Inheriting styles ..236
Hierarchy of styles ...237
Overriding styles ..238
Precedence of style definitions ..240

Using Conditional Comments ...240
Coping with incompatibility..240
Making Internet Explorer–specific code..241
Using a conditional comment with CSS...243
Checking the Internet Explorer version ..246

Book III: Using Positional CSS for Layout247

Chapter 1: Fun with the Fabulous Float .249
Avoiding Old-School Layout Pitfalls ..249

Problems with frames ..249
Problems with tables ...250

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xiii

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxiv

Problems with huge images ..251
Problems with Flash...251

Introducing the Floating Layout Mechanism..252
Using float with images..252
Adding the float property..254

Using Float with Block-Level Elements..255
Floating a paragraph ..255
Adjusting the width..257
Setting the next margin..259

Using Float to Style Forms ..260
Using float to beautify the form..263
Adjusting the fieldset width..267
Using the clear attribute to control page layout268

Chapter 2: Building Floating Page Layouts .271
Creating a Basic Two-Column Design ..271

Designing the page ...271
Building the XHTML...273
Adding preliminary CSS...274
Using temporary borders..276
Setting up the floating columns..277
Tuning up the borders ...278
Advantages of a fluid layout..280

Building a Three-Column Design..280
Styling the three-column page ..281
Problems with the floating layout ..283
Specifying a min-height..284

Building a Fixed-Width Layout ...285
Setting up the XHTML..286
Using an image to simulate true columns287

Building a Centered Fixed-Width Layout...288
Making a surrogate body with an all div ...289
How the jello layout works..291
Limitations of the jello layout...291

Chapter 3: Styling Lists and Menus .293
Revisiting List Styles..293

Defining navigation as a list of links...294
Turning links into buttons...295
Building horizontal lists ..297

Creating Dynamic Lists..298
Building a nested list..299
Hiding the inner lists..301
Getting the inner lists to appear on cue..302

Building a Basic Menu System..306
Building a vertical menu with CSS ...307
Building a horizontal menu...309

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xiv

Table of Contents xv

Chapter 4: Using Alternative Positioning .313
Working with Absolute Positioning..313

Setting up the HTML ..314
Adding position guidelines ...315
Making absolute positioning work ...316

Managing z-index..317
Handling depth ...317
Working with z-index..319

Building a Page Layout with Absolute Positioning319
Overview of absolute layout ...320
Writing the XHTML...321
Adding the CSS..322

Creating a More Flexible Layout...323
Designing with percentages ..324
Building the layout ...325

Exploring Other Types of Positioning ...327
Creating a fixed menu system...327
Setting up the XHTML..329
Setting the CSS values..330

Determining Your Layout Scheme ...332

Book IV: Client-Side Programming with JavaScript333

Chapter 1: Getting Started with JavaScript .335
Working in JavaScript ..335

Choosing a JavaScript editor ..336
Picking your test browser ...337

Writing Your First JavaScript Program..338
Embedding your JavaScript code...339
Creating comments ..340
Using the alert() method for output ..340
Adding the semicolon ..340

Introducing Variables...341
Creating a variable for data storage...342
Asking the user for information..342
Responding to the user ...343

Using Concatenation to Build Better Greetings343
Comparing literals and variables ...344
Including spaces in your concatenated phrases............................345

Understanding the String Object ...345
Introducing object-based programming (and cows)346
Investigating the length of a string...347
Using string methods to manipulate text..347

Understanding Variable Types ...350
Adding numbers ...350
Adding the user’s numbers ...351

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xv

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxvi

The trouble with dynamic data ..352
The pesky plus sign..353

Changing Variables to the Desired Type ...354
Using variable conversion tools ...354
Fixing the addInput code...355

Chapter 2: Making Decisions with Conditions 357
Working with Random Numbers ..357

Creating an integer within a range ...357
Building a program that rolls dice..358

Using if to Control Flow...359
The basic if statement ...360
All about conditions...361
Comparison operators...361

Using the else Clause...362
Using else if for more complex interaction363
Solving the mystery of the unnecessary else365

Using switch for More Complex Branches..365
Creating an expression ..366
Switching with style ...367

Nesting if Statements...368
Building the nested conditions...369
Making sense of nested ifs ..370

Chapter 3: Loops and Debugging .371
Building Counting Loops with for ..371

Building a standard for loop ...372
Counting backwards ..373
Counting by 5 ..374

Looping for a While..375
Creating a basic while loop ...375
Avoiding loop mistakes ...376

Introducing Bad Loops ..377
Managing the reluctant loop...377
Managing the obsessive loop..377

Debugging Your Code ..378
Letting Aptana help..378
Debugging JavaScript on Internet Explorer379
Finding errors in Firefox ..381
Finding Errors with Firebug ..382

Catching Logic Errors ..383
Logging to the console with Firebug..384
Looking at console output ..384

Using the Aptana Debug Mode...386
Adding a breakpoint...387
Running the debugger..387
Using the debug perspective ..388
Examining the debug mode with a paused program389

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xvi

Table of Contents xvii

Walking through your program ..391
Viewing expression data..392

Chapter 4: Functions and Arrays .395
Breaking Code into Functions ..395

Thinking about structure ..396
Building the antsFunction.html program ..397

Passing Data into and out of Functions...398
Examining the main code ..399
Looking at the chorus..399
Handling the verses ...400

Managing Scope..402
Introducing local and global variables ..402
Examining variable scope ...402

Building a Basic Array ...405
Accessing array data..405
Using arrays with for loops...406
Revisiting the ants song ..407

Working with Two-Dimension Arrays ..408
Setting up the arrays..409
Getting a city ...411
Creating a main() function ..411

Chapter 5: Talking to the Page .413
Understanding the Document Object Model..413

Navigating the DOM ...413
Changing DOM properties with Firebug..414
Examining the document object...415

Harnessing the DOM through JavaScript..417
Getting the blues, JavaScript-style...417
Writing JavaScript code to change colors.......................................418

Managing Button Events ...419
Embedding quotes within quotes ..421
Writing the changeColor function ..422

Managing Text Input and Output ...422
Introducing event-driven programming ..424
Creating the XHTML form ...424
Using GetElementById to get access to the page...........................425
Manipulating the text fields ..426

Writing to the Document...427
Preparing the HTML framework ...428
Writing the JavaScript..429
Finding your innerHTML ..429

Working with Other Text Elements ..430
Building the form..431
Writing the function ...432
Understanding generated source ...434

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xvii

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxviii

Chapter 6: Getting Valid Input .437
Getting Input from a Drop-Down List...437

Building the form..438
Reading the list box ...439

Managing Multiple Selections...440
Coding a multiple selection select object441
Writing the JavaScript code ..442

Check, Please: Reading Check Boxes...444
Building the check box page...445
Responding to the check boxes ...445

Working with Radio Buttons ...446
Interpreting radio buttons ..448

Working with Regular Expressions ..449
Introducing regular expressions...452
Using characters in regular expressions ...454
Marking the beginning and end of the line......................................454
Working with special characters ..455
Conducting repetition operations..456
Working with pattern memory ...456

Chapter 7: Animating Your Pages .459
Making Things Move..459

Looking over the HTML ...460
Getting an overview of the JavaScript ...462
Creating global variables...463
Initializing ..464
Moving the sprite ...464
Checking the boundaries...466

Reading Input from the Keyboard..468
Building the keyboard page ..468
Overwriting the init() function ...470
Setting up an event handler ..470
Responding to keystrokes ...471
Deciphering the mystery of key codes ..472

Following the Mouse..472
Looking over the HTML ...473
Initializing the code..475
Building the mouse listener ..475

Creating Automatic Motion...476
Creating a setInterval() call ..477

Building Image-Swapping Animation ...478
Preparing the images ...478
Building the page..480
Building the global variables ..481
Setting up the interval ...482
Animating the sprite ..482

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xviii

Table of Contents xix

Movement and Swapping ..483
Building the code ...485
Defining global variables ...486
Initializing your data ..486
Animating and updating the image ..486
Moving the sprite ...487

Book V: Server-Side Programming with PHP................489

Chapter 1: Setting Up Your Server .491
Introducing Server-Side Programming ..491

Programming on the server ..491
Serving your programs ..492
Picking a language ..493

Installing Your Web Server..495
Starting your server ...496
Testing the installation ..497

Inspecting phpinfo() ..498

Chapter 2: Generating HTML with PHP .501
Creating Your First PHP Program...501
Coding with Quotation Marks...503
Working with Variables PHP Style..504

Concatenation...505
Interpolating variables into text...506

Building XHTML Output ..507
Using double quote interpolation ..508
Generating output with heredocs ..508
Switching from PHP to XHTML...510

Chapter 3: PHP and XHTML Forms .513
Exploring the Relationship between PHP and XHTML............................513

Embedding PHP inside XHTML ..515
Viewing the results...515

Sending Data to a PHP Program ...516
Creating a form for PHP processing...518
Receiving data in PHP..520

Choosing the Method of Your Madness ..521
Using get to send data ...522
Using the post method to transmit form data524
Getting data from the form..525

Retrieving Data from Other Form Elements ...526
Building a form with complex elements ..527
Responding to a complex form...530

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xix

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxx

Chapter 4: Control Structures .535
Introducing if-else Conditionals ...535

if conditionals ...535
else conditionals...538
Comparison operators...541
Logical operators ...543

Comparing with switch Structures ..545
Looping It Up with Loops..548

while loops ..548
for loops...548

Chapter 5: Working with Arrays .555
Using One-Dimensional Arrays...555

Creating an array ..555
Filling an array after creation..556
Filling an array upon creation...556
Accessing an array index ..557
Debugging with print_r..558

Introducing Associative Arrays..559
Expanding to Multidimensional Arrays...560

Creating and filling multidimensional arrays..................................560
Accessing a value in a multidimensional array564

Using foreach Loops to Simplify Array Management565
Using foreach with associative arrays...569

Breaking a String into an Array ..570
Creating arrays with explode..571
Creating arrays with split ..572

Chapter 6: Using Functions and Session Variables 575
Creating Your Own Functions...575

Rolling dice the old-fashioned way ..575
Improving code with functions...577
Managing variable scope...580
Returning data from functions..580

Managing Persistence with Session Variables..582
Understanding session variables ...582
Adding session variables to your code ...585

Chapter 7: Working with Files and Directories 587
Text File Manipulation ...587

Writing text to files ...588
Creating a CSV file ..590
Reading from text files ...594
Reading from a CSV file..596

Working with File and Directory Functions ..600
opendir()...600
readdir() ...601

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xx

Table of Contents xxi

chdir() ...601
Generating the list of file links ..602

Chapter 8: Connecting to a MySQL Database .605
Retrieving Data from a Database..605

Understanding data connections ...608
Building a connection ..608
Passing a query to the database ..610
Processing the results..611
Extracting the rows ..612
Extracting fields from a row..613
Printing the data...614

Improving the Output Format ..615
Building definition lists..615
Using XHTML tables for output ..617

Allowing User Interaction ...620
Building an XHTML search form ..621
Responding to the search request ...622
Breaking the code into functions ...624
Processing the input ..624
Generating the output..626

Book VI: Databases with MySQL627

Chapter 1: Getting Started with Data .629
Examining the Basic Structure of Data..629

Determining the fields in a record..631
Introducing SQL data types...631
Specifying the length of a record..632
Defining a primary key...633
Defining the table structure ..633

Introducing MySQL ..634
Why use MySQL? ..635
Understanding the three-tier architecture......................................636
Practicing with MySQL ..636

Setting Up phpMyAdmin ...637
Changing the root password...639
Adding a user ..644
Using phpMyAdmin on a remote server ...647

Making a Database with phpMyAdmin..649

Chapter 2: Managing Data with SQL .657
Writing SQL Code by Hand..657

Understanding SQL syntax rules ..658
Examining the buildContact.sql script ..658
Dropping a table ...659
Creating a table...659

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xxi

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxxii

Adding records to the table ..660
Viewing the sample data..661

Running a Script with phpMyAdmin..661
Using AUTO_INCREMENT for Primary Keys...664
Selecting Data from Your Tables ..666

Selecting only a few fields ...668
Selecting a subset of records ..669
Searching with partial information ..671
Searching for the ending value of a field ...671
Searching for any text in a field ..673
Searching with regular expressions ...674
Sorting your responses..675

Editing Records ..676
Updating a record...676
Deleting a record ..677

Exporting Your Data and Structure..677
Exporting SQL code..680
Creating XML data..682

Chapter 3: Normalizing Your Data .683
Recognizing Problems with Single-Table Data..683

The identity crisis ..684
The listed powers...684
Repetition and reliability...686
Fields that change ..686
Deletion problems..687

Introducing Entity-Relationship Diagrams..687
Using DBDesigner 4 to draw ER diagrams.......................................687
Creating a table definition in DBDesigner688
Connecting to a database with DBDesigner....................................690
Manipulating your data from DBDesigner.......................................693

Introducing Normalization..695
First normal form..695
Second normal form...696
Third normal form..697

Identifying Relationships in Your Data..698

Chapter 4: Putting Data Together with Joins .701
Calculating Virtual Fields ..701

Introducing SQL Functions..702
Knowing when to calculate virtual fields ..703

Calculating Date Values ...703
Using DATEDIFF to determine age..704
Adding a calculation to get years...704
Converting the days integer into a date ..706
Using YEAR() and MONTH() to get readable values....................707
Concatenating to make one field ..707

Creating a View...708

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xxii

Table of Contents xxiii

Using an Inner Join to Combine Tables ...710
Building a Cartesian join and an inner join.....................................711
Enforcing one-to-many relationships...714
Counting the advantages of inner joins...714
Building a view to encapsulate the join...715

Managing Many-to-Many Joins ...716
Understanding link tables ...718
Using link tables to make many-to-many joins718

Book VII: Into the Future with AJAX723

Chapter 1: AJAX Essentials .725
AJAX Spelled Out..727

A is for asynchronous ..727
J is for JavaScript..727
A is for . . . and? ...727
And X is for . . . data ...728

Making a Basic AJAX Connection...728
Building the HTML form ..731
Creating an XMLHttpRequest object ...731
Opening a connection to the server ..733
Sending the request and parameters...733
Checking the status..734

All Together Now — Making the Connection Asynchronous735
Setting up the program..736
Building the getAJAX() function ..737
Reading the response ..737

Chapter 2: Improving JavaScript with jQuery 739
Introducing jQuery...739

Getting acquainted with jQuery ...740
Getting started with jQuery ..743
Coding with jQuery ..746

Putting jQuery to Work..747
Selecting elements in jQuery ..748
Selecting all elements of a specific type..749
Modifying the list items ...751
Selecting elements by class name..753

Managing Events through jQuery ..756
Using bind to bind events to elements ..756
Unbinding ..757

Chapter 3: Animating with jQuery .759
jQuery’s Special Effects ...759

Predefined animations...759
Custom animations ..762

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xxiii

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxxiv

Interfacing with the Official UI Plugin..764
Dragging and dropping ..764
Sorting with the table sorter...767
Creating dialog boxes ..771

Interface Elements for jQuery ..775
Getting to know the Interface Elements ..776
Selectables ..782
Making a slider..784

Chapter 4: Sending and Receiving Data .787
Working with XML..787

Generating XML with PHP ...788
Handling the XML response with jQuery ..789

Introducing JSON ...795
Overview of JSON...795
Using JSON with PHP ...796
Using JSON with AJAX ...797
Generating tables with JSON...798

Book VIII: Moving from Web Pages to Web Sites801

Chapter 1: Managing Your Servers .803
Understanding Clients and Servers ...803

Parts of a client-side development system804
Parts of a server-side system..805

Creating Your Own Server with XAMPP..806
Running XAMPP..807
Testing your XAMPP configuration..807
Adding your own files ..808
Setting the security level ...809
Compromising between functionality and security.......................811

Choosing a Web Host...812
Finding a hosting service ..813
Connecting to a hosting service...814

Managing a Remote Site ..815
Using Web-based file tools ..815
Understanding file permissions..817
Using FTP to manage your site ...818

Naming Your Site ..821
Understanding domain names..821
Registering a domain name...822

Managing Data Remotely...825
Creating your database..825
Finding the MySQL server name ..827

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xxiv

Table of Contents xxv

Chapter 2: Moving from Pages to Sites .829
Creating a Multipage Web Site..829
Planning a Larger Site ..830
Understanding the Client ..830

Ensuring that the client’s expectations are clear...........................831
Delineating the tasks..832

Understanding the Audience ..833
Determining whom you want to reach ..833
Finding out the user’s level of technical expertise834

Building a Site Plan ..835
Creating a site overview ..836
Building the site diagram ..837

Creating Page Templates...839
Sketching the page design...840
Building the XHTML template framework.......................................841
Creating page styles ...843
Building a data framework ..846

Fleshing Out the Project..847
Making the site live ..847
Contemplating efficiency...848

Chapter 3: Introducing Content Management Systems 849
Overview of Content Management Systems...850
Previewing Common CMSs ...851

Moodle ...851
WordPress ...852
Drupal ..854

Installing a Content Management System...855
Adding content ...858
Building a menu system ..861
Editing your pages..863
Adding a new content block ...864
Changing the look...867

Chapter 4: Taking Control of Content .871
Getting Started with CMSMS...871

Installing CMSMS ..872
Playing around with the default package ..873
Adding a new page ...874

Customizing CMSMS ..877
Adding a theme...877
Working with templates...880
Changing a style ...882
Adding a custom tag ..882

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xxv

HTML, XHTML, and CSS All-in-One Desk Reference For Dummiesxxvi

Building a “Poor Man’s CMS” with Your Own Code.................................884
Using Server-Side Includes (SSIs)...884
Using AJAX/JQuery for client-side ...887
Building a page with PHP includes...889

Creating Your Own Data-Based CMS..890
Using a database to manage content ...890
Writing a PHP page to read from the table......................................892
Improving the dbCMS design..894

Appendix A: What’s on the CD .895
System Requirements..895
Using the CD ..895
What You’ll Find on the CD ...896

Author-created material ...896
Aptana Studio 1.1, Community Edition..897
CMS Made Simple 1.2.2 ..897
DBDesigner 4.0.5.6..897
Dia 0.96.1..897
FireFox 2.0.0.11 and Extensions..897
GIMP 2.4.4..897
IrfanView 4.10..898
jQuery 1.2.1 ...898
Nvu 1.0 ...898
prototype 1.6...898
SQLite 303.5.6..898
WinSCP 4.0.5..898
Vim 7.1 ...898
XAMPP 1.6.4 ..899

Troubleshooting...899

Index..901

02_186275 ftoc.qxp 3/28/08 10:38 PM Page xxvi

Introduction

I love the Internet, and if you picked up this book, you probably do, too. The
Internet is dynamic, chaotic, exciting, interesting, and useful, all at the same

time. The Web is pretty fun from a user’s point of view, but that’s only part of
the story. Perhaps the best part of the Internet is how participatory it is. You
can build your own content — for free! It’s really amazing. There’s never been a
form of communication like this before. Anyone with access to a minimal PC
and a little bit of knowledge can create his or her own homestead in one of the
most exciting platforms in the history of communication.

The real question is how to get there. A lot of Web development books are
really about how to use some sort of software you have to buy. That’s okay,
but it’s not necessary. Many software packages have evolved that purport to
make Web development easier. Some work pretty well, but regardless what
software package you use, there’s still a need to know what’s really going on
under the surface. That’s where this book comes in.

You’ll find out exactly how the Web works in this book. You’ll figure out how
to use various tools, but, more importantly, you’ll create your piece of the
Web. You’ll discover:

✦ How Web pages are created: You’ll figure out the basic structure of
Web pages. You’ll understand the structure well because you build
pages yourself. No mysteries here.

✦ How to separate content and style: You’ll understand the foundation of
modern thinking about the Internet — that style should be separated
from content.

✦ How to use Web standards: The current Web is pretty messy, but,
finally, some standards have arisen from the confusion. You’ll discover
how these standards work and how you can use them.

✦ How to create great-looking Web pages: Of course, you want a terrific-
looking Web site. With this book, you’ll find out how to use layout, style,
color, and images.

✦ How to build modern layouts: Many Web pages feature columns,
menus, and other fancy features. You’ll figure out how to build all these
things.

✦ How to add interactivity: Adding forms to your pages, validating form
data, and creating animations are all possible with the JavaScript language.

✦ How to write programs on the server: Today’s Web is powered by pro-
grams on Web servers. You’ll discover the powerful PHP language and
figure out how to use it to create powerful and effective sites.

03_186275 intro.qxp 3/28/08 10:38 PM Page 1

No Experience Necessary2

✦ How to harness the power of data: Every Web developer eventually
needs to interact with data. You’ll read about how to create databases
that work. You’ll also discover how to connect databases to your Web
pages and how to create effective and useful interfaces.

✦ How AJAX is changing everything: The hottest Web technology on the
horizon is AJAX (Asynchronous JavaScript And XML). You’ll figure out
how to harness this way of working and use it to create even more pow-
erful and interesting applications.

No Experience Necessary
I’m not assuming anything in this book. If you’ve never built a Web page
before, you’re in the right hands. You don’t need any experience, and you
don’t have to know anything about HTML, programming, or databases. I dis-
cuss everything you need.

If you’re reasonably comfortable with a computer (you can navigate the Web
and use a word processor), you have all the skills you need.

Great for Advanced Folks, Too!
If you’ve been around Web development for a while, you’ll still find this book
handy.

If you’ve used HTML but not XHTML, see how things have changed and dis-
cover the power of the XHTML/CSS combination.

If you’re still using table-based layouts, you’ll definitely want to read about
newer ways of thinking. After you get over the difference, you’ll be amazed at
the power, the flexibility, and the simplicity of CSS-based layout and design.

If you’re already comfortable with XHTML and CSS, you’re ready to add Java-
Script functionality for form validation and animation. If you’ve never used a
programming language before, JavaScript is a really great place to start.

If you’re starting to get serious about Web development, you’ve probably
already realized that you’ll need to work with a server at some point. PHP is
a really powerful, free, and easy language that’s extremely prominent in the
Web landscape. You’ll use this to have programs that send e-mails, store and
load information from files, and work with databases.

If you’re messing with commercial development, you’ll definitely need to
know more about databases. I get e-mails every week from companies look-
ing for people who can create a solid relational database and connect it to a
Web site with PHP.

03_186275 intro.qxp 3/28/08 10:38 PM Page 2

Don’t Buy Any Software 3

If you’re curious about AJAX, you can read about what it is, how it works,
and how to use it to add functionality to your site. You’ll also read about a
very powerful and easy AJAX library that can add tremendous functionality
to your bag of tricks.

I wrote this book as the reference I wish I had. If you have only one Web
development book on your shelf, this should be the one. Wherever you are
in your Web development journey, you can find something interesting and
new in this book.

Use Any Computer
One of the great things about Web development is how accessible it can be.
You don’t need a high-end machine to build Web sites. Whatever you’re using
now will probably do fine. I built most of the examples in this book with
Windows XP and Fedora Core Linux, but a Mac is perfectly fine, too. Most of the
software I use in the book is available for free for all major platforms. Similar
alternatives for all platforms are available in the few cases when this isn’t true.

Don’t Buy Any Software
Everything you need for Web development is on the CD-ROM. I’ve used only
open-source software for this book. The CD contains a ton of tools and helpful
programs. See Appendix A in the back of this book for a complete listing.
Following are the highlights:

✦ Aptana: A full-featured programmer’s editor that greatly simplifies creating
Web pages, CSS documents, and code in multiple languages.

✦ Firefox extensions: I’ve included several extensions to the Firefox Web
browser that turn it into a thoroughbred Web development platform. The
Web Developer toolbar adds all kinds of features for creating and testing
pages; the HTML Validator checks your pages for standards-compliance;
and the Firebug extension adds incredible features for JavaScript and
AJAX debugging.

✦ XAMPP: When you’re ready to move to the server, XAMPP is a complete
server package that’s easy to install and incredibly powerful. This includes
the amazing Apache Web server, the PHP programming language, the
MySQL database manager, and tons of useful utilities.

✦ Useful tools: Every time I use a tool (such as a data mapper, a diagram
tool, or an image editor) in this book, I make it available on the CD-ROM.

03_186275 intro.qxp 3/28/08 10:38 PM Page 3

How This Book Is Organized4

There’s no need to buy any expensive Web development tools. Everything
you need is here, and they’re not any harder than the more expensive Web
editors.

How This Book Is Organized
Web development today is about solving a series of connected but different
problems. This book is organized into eight minibooks based on specific
technologies. You can read them in any order you wish, but you’ll find that
the later books tend to rely on topics described in the earlier ones. (For
example, JavaScript doesn’t make much sense without XHTML because it’s
usually embedded in a Web page.) The following describes these eight
minibooks:

✦ Book I: Creating the XHTML Foundation — Web development incorpo-
rates a lot of languages and technologies, but HTML is the foundation. Here
I show you XHTML, the latest incarnation of HTML, and describe how it’s
used to form the basic skeleton of your pages.

✦ Book II: Styling with CSS — In the old days, HTML had a few tags to
spruce up your pages, but they weren’t nearly powerful enough. Today
developers use Cascading Style Sheets (CSS) to add color and formatting
to your pages.

✦ Book III: Using Positional CSS for Layout — Discover the best ways to
set up layouts with floating elements, fixed positioning, and absolute
positioning. Figure out how to build various multicolumn page layouts
and how to create dynamic buttons and menus.

✦ Book IV: Client-Side Programming with JavaScript — Figure out essential
programming skills with the easy and powerful JavaScript language —
even if you’ve never programmed before. Manipulate data in Web forms
and use powerful regular expression technology to validate form entries.
Also discover how to create animations with JavaScript.

✦ Book V: Server-Side Programming with PHP — Move your code to the
server and take advantage of this powerful language. Figure out how to
respond to Web requests; work with conditions, functions, objects, and
text files; and connect to databases.

✦ Book VI: Databases with MySQL — Most serious Web projects are even-
tually about data. Figure out how databases are created, how to set up a
secure data server, the basics of data normalization, and how to create a
reliable and trustworthy data back end for your site.

03_186275 intro.qxp 3/28/08 10:38 PM Page 4

Icons Used in This Book 5

✦ Book VII: Into the Future with AJAX — Look forward to the technology
that has the Web abuzz. AJAX isn’t really a language but rather a new
way of thinking about Web development. Get the skinny on what’s going
on here, build an AJAX connection or two by hand, and read about some
really cool libraries for adding advanced features and functionality to
your pages.

✦ Book VIII: Moving from Web Pages to Web Sites — This minibook ties
together many of the threads throughout the rest of the book. Discover
how to create your own complete Web server solution or pick a Web
host. Walk through the process of designing a complex multi-page Web site.
Discover how to use content management systems to simplify complex
Web sites and, finally, to build your own Content Management System
with skills taught throughout the book.

Icons Used in This Book
This is a For Dummies book, so you have to expect some snazzy icons, right?
I don’t disappoint. Here’s what you’ll see:

This is where I pass along any small insights I may have gleaned in our travels.

I can’t really help being geeky once in a while. Every so often I want to
explain something a little deeper. Read this to impress people at your next
computer science cocktail party or skip it if you really don’t need the details.

A lot of details are here. I point out something important that’s easy to forget
with this icon.

Watch out! Anything I mark with this icon is a place where things have blown
up for me or my students. I point out any potential problems with this icon.

A lot of really great examples and software are on the CD. Whenever I men-
tion software or examples that are available on the CD, I highlight it with this
icon.

03_186275 intro.qxp 3/28/08 10:38 PM Page 5

What’s Next?6

What’s Next?
Well, that’s really up to you. I sincerely believe you can use this book to turn
into a top-notch Web developer. That’s our goal for you.

Although this is a massive book, there’s still more to figure out. If you have
questions or just want to chat, feel free to e-mail at andy@aharrisbooks.
net. You can also visit my Web site at www.aharrisbooks.net for code
examples, updates, and other good stuff. (You can also visit www.dummies.
com/go/htmlxhtmlcssaiofd for code examples from the book.)

I try hard to answer all reader e-mails but sometimes I get behind. Please be
patient with me, and I’ll do my best to help.

I can’t wait to hear from you and see the incredible Web sites you develop.
Have a great time, discover a lot, and stay in touch! You can contact me at
andy@aharrisbooks.net.

03_186275 intro.qxp 3/28/08 10:38 PM Page 6

Book I

Creating the XHTML
Foundation

04_186275 pp01.qxp 3/28/08 10:38 PM Page 7

Contents at a Glance

Chapter 1: Sound HTML Foundations .9
Creating a Basic Page...9
Understanding the HTML in the Basic Page ...12
Meeting Your New Friends, the Tags ...12
Setting Up Your System ...15

Chapter 2: It’s All about Validation .19
Somebody Stop the HTML Madness!...19
Building an XHTML Document ...21
Validating Your Page ..25

Chapter 3: Choosing Your Tools .39
What’s Wrong with the Big Boys? ..39
Alternative Web Development Tools ...40
Picking a Text Editor..42
The Web Developer’s Browser ...47
Tricking Out Firefox ...51
Using a Full-Blown IDE...55

Chapter 4: Managing Information with Lists and Tables 61
Making a List and Checking It Twice ...61
Building Tables ...70

Chapter 5: Making Connections with Links .79
Making Your Text Hyper..79
Making Lists of Links ...84
Working with Absolute and Relative References85

Chapter 6: Adding Images .89
Adding Images to Your Pages ...89
Choosing an Image Manipulation Tool ..94
Choosing an Image Format ...98
Manipulating Your Images...103
Using Images as Links..115

Chapter 7: Creating Forms .119
You Have Great Form...119
Building Text-Style Inputs ...124
Creating Multiple Selection Elements..129
Pressing Your Buttons ...135

04_186275 pp01.qxp 3/28/08 10:38 PM Page 8

Chapter 1: Sound HTML
Foundations

In This Chapter
� Creating a basic Web page

� Understanding the most critical HTML tags

� Setting up your system to work with HTML

� Viewing your pages

This chapter is your first introduction to building Web pages. Before this
slim chapter is finished, you’ll have your first page up and running.

Creating a basic page isn’t difficult, but building pages in a way that grows
and expands as you get more sophisticated takes a little foresight. Most of
this book uses the XHTML standard. In this first chapter, I show part of an
older standard called HTML. HTML is a little bit easier to start with, and
everything I show in this chapter translates perfectly to the XHTML you’ll
use throughout the book.

In this minibook, you discover the modern form of Web design using
XHTML. Your Web pages will be designed from the ground up, which makes
them easy to modify and customize. As you figure out more advanced tech-
niques throughout this book, you’ll take the humble pages you discover in
this chapter and make them do all kinds of exciting things.

Creating a Basic Page
Here’s the great news: The most important Web technology you need is also
the easiest. You don’t need any expensive or complicated software, and you
don’t need a powerful computer. You probably have everything you need to
get started already.

No more talking! Fire up a computer and let’s build a Web page!

1. Open a text editor.

You can use any text editor you want, as long as it lets you save files as
plain text. If you’re using Windows, Notepad is fine for now. (Later, I
show you some other free alternatives, but start with something you
already know.)

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 9

Creating a Basic Page10

Don’t use a word processor like Microsoft Word. It doesn’t save things in
the right format, and all the nifty features, like fonts and centering, don’t
work right. I promise that you’ll figure out how to do all that stuff but
without using a word processor. Even the Save as HTML feature doesn’t
work right. You really need a very simple text editor, and that’s it. In
Chapter 3 of this minibook, I show you a few more editors that make
your life easier. You’ll never use Word.

2. Type the following code.

Really. Type it in your text editor so you get some experience writing the
actual code. I explain very soon what all this means, but type it now to
get a feel for it:

<html>
<head>
<!-- myFirst.html -->

<title>My very first Web page!</title>
</head>

<body>

<h1>This is my first Web page!</h1>

<p>
This is the first Web page I’ve ever made,
and I’m extremely proud of it.
It is so cool!
</p>

</body>
</html>

3. Save the file as myFirst.html.

It’s important that your filename has no spaces and ends with the .html
extension. Spaces cause problems on the Internet (which is, of course,
where all good pages go to live), and the .html extension is how most
computers know that this file is an HTML file (which is another name for
a Web page). It doesn’t matter where you save the file, as long as you
can find it in the next step.

4. Open your Web browser.

The Web browser is the program used to look at pages. After you post
your page on a Web server somewhere, your Great Aunt Gertrude uses a
Web browser to view your page. You also need one (a browser, not a
Great Aunt Gertrude) to test your page. For now, use whatever browser

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 10

Book I
Chapter 1

Sound HTM
L

Foundations
Creating a Basic Page 11

you ordinarily use. Most Windows users already have Internet Explorer
installed. If you’re a Mac user, you probably have Safari. Linux folks gen-
erally have Firefox. Any of these are fine. In Chapter 3 of this minibook, I
explain why you probably need more than one browser and how to con-
figure them for maximum usefulness.

5. Load your page into the browser.

You can do this in a number of ways. You can use the browser’s File
menu to open a local file, or you can simply drag the file from your
Desktop (or wherever) to the open browser window.

6. Bask in your newfound genius.

Your simple text file is transformed! If all went well, it looks like Figure 1-1.

Figure 1-1:
Congrat-
ulations!
You’re now
a Web
developer!

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 11

Understanding the HTML in the Basic Page12

Understanding the HTML in the Basic Page
The page you create in the previous section uses an extremely simple notation —
HTML (HyperText Markup Language), which has been around since the
beginning of the Web. HTML is a terrific technology for several reasons:

✦ It uses plain text. Most document systems (like word processors) use
special binary encoding schemes, which incorporate formatting directly
into the computer’s internal language. This means that a document
becomes locked into a particular computer or software. That is, a docu-
ment stored in Word format can’t be read without a program that under-
stands Word formatting. HTML gets past this problem by storing
everything in plain text.

✦ It works on all computers. The main point of HTML is to have a univer-
sal format. Any computer should be able to read and write it. The plain-
text formatting technique aids in this.

✦ It describes what documents mean. HTML isn’t really designed to indi-
cate how a page or its elements look. HTML is about describing the
meaning of various elements (more on that very soon). This has some
distinct advantages when you figure out how to use HTML properly.

✦ It doesn’t describe how documents look. This one seems strange. Of
course, when you look at Figure 1-1, you can see that the appearance of
the text on the Web has changed from the way that text looked in your
text editor. Formatting a document in HTML does cause the document’s
appearance to change. That’s not the point of HTML, though. You discover
(in Books II and III) how to use another powerful technology — CSS — to
change the appearance of a page after you define its meaning. This separa-
tion of meaning from layout is one of the best features of HTML.

✦ It’s easy to write. Sure, HTML gets a little more complicated than this
first example, but you can easily figure out how to write HTML by hand
without any specialized editors. You only have to know a handful of ele-
ments, and they’re pretty straightforward.

✦ It’s free. HTML doesn’t cost anything to use, primarily because it isn’t
owned by anyone. No corporation has control of it (although a couple
have tried), and nobody has a patent on it. The fact that this technology
is freely available to anyone is a huge advantage.

Meeting Your New Friends, the Tags
The key to writing HTML code is the special text inside angle braces (<>).
These special elements are tags. They aren’t meant to be displayed on the
Web page but offer instructions to the Web browser about the meaning of
the text. The tags are meant to be embedded into each other to indicate the

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 12

Book I
Chapter 1

Sound HTM
L

Foundations
Meeting Your New Friends, the Tags 13

organization of the page. This basic page introduces you to all the major tags
you’ll encounter. (There are more, but they can wait for a chapter or two.)
Each tag has a beginning and an end tag. The end tag is just like the begin-
ning, except it has a forward slash (/). For example the entire page begins
with an <html> tag and ends with </html>. Read the </html> as “end
html.” The <html></html> combination indicates that everything in the
page is defined as HTML code:

✦ <html></html>: The <html> tag is the foundation of the entire Web
page. It’s the tag that begins the page. Likewise, </html> ends the page.

Some books teach you to write your HTML tags all in uppercase letters.
This was once a standard, but it is no longer recommended. When you
move to XHTML code (which is a slightly stricter form of HTML) in
Chapter 2 of this minibook, you’ll see that XHTML requires all tags to be
entirely lowercase. I’ll begin with the standard you use for the rest of
this book.

✦ <head></head>: These tags define a special part of the Web page
called the head (or sometimes header). This part of the Web page
reminds me of the engine compartment of a car. This is where you put
some really great stuff later, but it’s not where the main document lives.
For now, the only thing you’ll put in the header is the document’s title.
Later, you’ll add styling information and programming code to make
your pages sing and dance.

✦ <!-- -->: This tag indicates a comment, which is ignored by the
browser. However, a comment is used to describe what’s going on in a
particular part of the code. All the examples for this book include a com-
ment containing the code’s filename. If you want to find out more about
any of the code listings in the book, you can just find the appropriate file
on the CD-ROM or Web site that accompanies the book.

✦ <title></title>: This tag is used to determine the page’s title. The
title usually contains ordinary text. Whatever you define as the title will
appear in some special ways. Many browsers put the title text in the
browser’s title bar. Search engines often use the title to describe the page.

It’s not quite accurate to say that the title text always shows up in the
title bar because a Web page is designed to work on lots of different
browsers. Sure, the title does show up on most major browsers that way,
but what about cell phones and Personal Digital Assistants? HTML never
legislates what will happen; it only suggests. This may be hard to get
used to, but it’s a reality. You trade absolute control for widespread
capability, which is a good deal.

✦ <body></body>: The page’s main content is contained within these
tags. Most of the HTML code and the stuff the user sees is in the body
area. If the header area is the engine compartment, the body is where
the passengers go.

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 13

Meeting Your New Friends, the Tags14

✦ <h1></h1>: H1 stands for heading level one. Any text contained within
this markup is treated as a prominent headline. By default, most browsers
add special formatting to anything defined as H1, but there’s no guaran-
tee. An H1 heading doesn’t really specify any particular font or formatting,
just the meaning of the text as a level one heading. When you find out how
to use CSS in Book II, you’ll discover that you can make your headline look
however you want. In this first minibook, keep all the default layouts for
now and make sure you understand that HTML is about semantic mean-
ing, not about layout or design. There are other kinds of headings too, of
course, <h1> through <h6>. <h2> indicates a heading slightly less impor-
tant than <h1>, <h3> is less important than <h2>, and so on.

Beginners are sometimes tempted to make their first headline an <h1>
tag and then use an <h2> for the second and <h3> for the third. That’s
not how it works. Newspapers and books use different kinds of head-
lines to point out the relative importance of various elements on the
page, often varying the point size of the text. You can read more about
that in Book II.

✦ <p></p>: In HTML, p stands for the paragraph tag. In your Web pages,
you should enclose each standard paragraph in a <p></p> pair. You
might notice that HTML doesn’t preserve the carriage returns or white
space in your HTML document. That is, if you press Enter in your code
to move text to a new line, that new line isn’t necessarily preserved in
the final Web page.

The <p></p> structure is one easy way to manage spacing before and
after each paragraph in your document.

A few notes about the basic page
Be proud of this first page. It may be simple, but
it’s the foundation of greater things to come.
Before moving on, take a moment to ponder
some important HTML/XHTML principles
shown in this humble page you’ve created:

� All tags are in lowercase. Although HTML
does allow uppercase tags, the XHTML
variation you’ll be using throughout most of
this book requires only lowercase tags.

� Tag pairs are containers, with a beginning
and an end. Tags contain other tags or text.

� Some elements can be repeated. There’s
only one <html>, <title>, and
<body> tag per page, but a lot of the other
elements (<h1> and <p>) can be repeated
as many times as you like.

� Carriage returns are ignored. In the
Notepad document, there are a number of
carriage returns. The formatting of the orig-
inal document has no effect on the HTML
output. The markup tags indicate how the
output looks.

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 14

Book I
Chapter 1

Sound HTM
L

Foundations
Setting Up Your System 15

Some older books recommend using <p> without a </p> to add space to
your documents, similar to pressing the Enter key. This way of thinking
could cause you problems later because it doesn’t truthfully reflect the
way Web browsers work. Don’t think of <p> as the carriage return.
Instead, think of <p> and </p> as defining a paragraph. The paragraph
model is more powerful because soon enough, you’ll figure out how to
take any properly defined paragraph and give it yellow letters on a green
background with daisies (or whatever else you want). If things are
marked properly, they’ll be much easier to manipulate later.

Setting Up Your System
You don’t need much to make Web pages. Your plain text editor and a Web
browser are about all you need. Still, there are some things you can do to
make your life easier as a Web developer.

Displaying file extensions
The method discussed in this section is mainly for Windows users, but it’s a
big one. Windows uses the extension (the part of the filename after the period)
to determine what type of file you’re dealing with. This is very important in
Web development. The files you create are simple text files, but if you store
them with the ordinary .txt extension, your browser can’t read them prop-
erly. What’s worse, the default setting of Windows hides these extensions from
you, so you have only the icons to tell you what type of file you’re dealing
with. This can cause all kinds of problems. I recommend you have Windows
explicitly describe your file extensions. Here’s how to set that up:

1. Open the file manager (My Computer in XP or Computer in Vista.)

Use the My Computer window to open a directory on your hard drive. It
doesn’t matter which directory you’re looking at. You just need the tool
open.

2. Choose Tools➪Folder Options.

The Folder Options dialog box appears.

3. Select the View tab.

You see the Folder Options dialog box.

4. Don’t hide extensions.

By default, Windows likes to hide the extensions for known file types.
However, you’re a programmer now, so you deserve to be shown these
things. Uncheck the Hide Extensions for Known File Types box, as
shown in Figure 1-2.

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 15

Setting Up Your System16

5. Show the path and hidden folders.

I like to be shown my hidden files and folders (after all, they’re mine, right?)
and I like to have the full path listed. Click the appropriate check boxes to
enable these features. You’ll often find them to be helpful.

6. Apply these change to all the folders on your computer by clicking
the Apply to All Folders button.

This causes the file extensions to appear everywhere, including the
Desktop.

Setting up your software
You’ll write a lot of Web pages, so it makes sense to set up your system to
make that process as easy as possible. I talk a lot more about some software
you should use in Chapter 3 of this minibook, but for now, here’s a couple of
easy suggestions:

✦ Put a Notepad icon on your Desktop. You’ll edit a lot of text files, so it’s
helpful to have an icon for Notepad (or whatever other text editor you use)
available directly on the Desktop. That way, you can quickly edit any
Web page by dragging it to the Desktop. When you use more sophisticated
editors than Notepad, you’ll want links to them, too.

✦ Get another Web browser. You may just love your Web browser, and
that’s fine, but you can’t assume that everybody likes the same browser
you do. You need to know how other browsers will interpret your code.
Firefox is an incredibly powerful browser, and it’s completely free. If you
don’t have them already, I suggest having links to at least two browsers
directly on your Desktop.

Figure 1-2:
Don’t hide
file
extensions
(deselect
that last
check box).

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 16

Book I
Chapter 1

Sound HTM
L

Foundations
Setting Up Your System 17

Understanding the magic
Most of the problems people have with the
Web come from misunderstandings about how
this medium really works. Most people are
comfortable with word processors, and we
know how to make a document look how we
want. Modern applications use WYSIWYG
technology, promising that what you see is
what you get. That’s a reasonable promise
when it comes to print documents, but it
doesn’t work that way on the Web.

How a Web page looks depends on a lot of
things that you don’t control. The user may read
your pages on a smaller or larger screen than
you. She may use a totally different operating
system than you. She may have a dialup con-
nection or may turn off the graphics for speed.
She may be blind and use screen-reader tech-
nology to navigate Web pages. She may be
reading your page on a PDA or a cell phone.

You can’t make a document that looks the same
in all these situations.

A good compromise is to make a document that
clearly indicates how the information fits
together and makes suggestions about the
visual design. The user and her browser can
determine how much of those suggestions to
use.

You get control of the visual design but never
complete control, which is okay because you’re
trading total control for accessibility. People
with devices you’ve never heard of can visit
your page.

Practice a few times until you can easily build a
page without looking anything up. Soon enough,
you’re ready for the next step — building pages
like the pros.

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 17

Book I: Creating the XHTML Foundation18

05_186275 bk01ch01.qxp 3/28/08 10:39 PM Page 18

Chapter 2: It’s All about Validation

In This Chapter
� Introducing the concept of valid pages

� Using a doctype

� Introducing XHTML 1.0 Strict

� Setting the character set

� Meeting the W3C Validator

� Fixing things when they go wrong

� Using HTML Tidy to automatically clean your pages

Web development is currently undergoing an important revolution. As
the Web matures and becomes more important, it becomes more

important to ensure that Web pages perform properly. There is a new call
for Web developers to follow voluntary standards of Web development.

Somebody Stop the HTML Madness!
In the bad old days, the Web was a pretty informal affair. People wrote HTML
pages however they wanted. Although this was easy, it led to a lot of problems:

✦ Browser manufacturers added features that didn’t work on all
browsers. People wanted prettier Web pages with colors, fonts, and
doodads, but there wasn’t a standard way to do these things. Every
browser had a different set of tags that supported enhanced features. As
a developer, you had no real idea if your Web page would work on all
the browsers out there. If you wanted to use some neat feature, you had
to ensure your users had the right browser.

✦ The distinction between meaning and layout was blurred. People
expected to have some kind of design control of their Web pages, so all
kinds of new tags popped up that blurred the distinction between
describing and decorating a page.

✦ A table-based layout was used as a hack. HTML didn’t have a good way
to handle layout, so clever Web developers started using tables as a layout
mechanism. This worked, after a fashion, but it wasn’t easy or elegant.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 19

Somebody Stop the HTML Madness!20

✦ People started using tools to write pages. Web pages soon became so
ugly that people began to believe that they couldn’t do HTML by hand
anymore and that some kind of editor was necessary to handle all that
complexity for them. The trouble is that although these editing pro-
grams introduced new features that made things easier upfront, these
tools also made code almost impossible to change without the original
editor. Web developers began thinking they couldn’t design Web pages
without a tool from a major corporation.

✦ The nature of the Web was changing. At the same time, these factors
were making ordinary Web development more challenging. Innovators
were recognizing that the Web wasn’t really about documents but was
about applications that can dynamically create documents. Many of the
most interesting Web pages you visit aren’t Web pages at all, but pro-
grams that produce Web pages dynamically every time you visit. This
meant that developers had to make Web pages readable by programs, as
well as humans.

In short, the world of HTML was a real mess.

XHTML to the rescue
In 2000, the World Wide Web Consortium (usually abbreviated as W3C) got
together and proposed some fixes for HTML. The basic plan was to create a
new form of HTML that complied with a stricter form of markup, or
eXtensible Markup Language (XML). The details are long and boring, but
essentially, they came up with some agreements about how Web pages are
standardized. Here are some of those standards:

✦ All tags have endings. Every tag comes with a beginning and an end tag.
(Well, there are a few exceptions, but they come with their own ending
built-in. I’ll explain when you encounter the first such tag in Chapter 6 of
this minibook.) This was a new development because end tags were con-
sidered optional in old-school HTML, and many tags didn’t even have
end tags.

✦ Tags can’t be overlapped. In HTML, sometimes people had the tendency
to be sloppy and overlap tags, like this: <a>my stuff.
That’s not allowed in XHTML, which is a good thing because it confuses
the browser. If a tag is opened inside some container tag, the tag must
be closed before that container is closed.

✦ Everything’s lowercase. Some people wrote HTML in uppercase, some
in lowercase, and some just did what they felt like. It was inconsistent
and made it harder to write browsers that could read all the variations.

✦ Attributes must be in quotes. If you’ve already done some HTML, you
know that quotes used to be optional — not anymore.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 20

Book I
Chapter 2

It’s All about
Validation

Building an XHTML Document 21

✦ Layout must be separate from markup. Old-school HTML had a bunch
of tags (like and <center>) that were more about formatting
than markup. These were useful, but they didn’t go far enough. XHTML
(at least the Strict version covered here) eliminates all these tags. Don’t
worry, though; CSS gives you all the features of these tags and a lot more.

This sounds like more rules than a strict librarian. Really, they aren’t restrict-
ing at all because most of the good HTML coders were already following
these guidelines or something similar.

There’s XHTML, and then there’s good XHTML
In old-style HTML, you never really knew how your pages would look on vari-
ous browsers. In fact, you never really knew if your page was even written
properly. Some mistakes would look fine on one browser but cause another
browser to blow up.

The whole idea of validation is to take away some of the uncertainty of
HTML. It’s like a spell checker for your code. My regular spell checker makes
me feel a little stupid sometimes because I make mistakes. I like it, though,
because I’m the only one who sees the errors. I can fix the spelling errors
before I pass the document on to you, so I look smart. (Well, maybe.)

It’d be cool if you could have a special kind of checker that does the same
things for your Web pages. Instead of checking your spelling, it’d test your
page for errors and let you know if you made any mistakes. It’d be even
cooler if you could have some sort of certification that your page follows a
standard of excellence.

That’s exactly how page validation works. You can designate that your page
will follow a particular standard and use a software tool to ensure that your
page meets that standard’s specifications. The software tool is a Validator. I
show you two different Validators in this chapter, in the section called
“Validating Your Page.”

The browsers also promise to follow a particular standard. If your page vali-
dates to a given standard, any browser that validates to that same standard
can reproduce your document correctly, which is a really big deal.

Building an XHTML Document
You create an XHTML document the same way you build ordinary HTML.
You can still use an ordinary text editor, but the code is slightly more
involved. Take a look at the following code (template.html on the
CD-ROM) to see a bare-bones XHTML document:

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 21

Building an XHTML Document22

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html;

charset=utf-8” />
<title></title>
</head>
<body>
<h1></h1>
<p>
</p>

</body>
</html>

At first, this new document looks a lot more complicated than the HTML you
see in Chapter 1 of this minibook, but it isn’t as bad as it seems.

Don’t memorize all this!
Before you freak out, don’t feel you have to memorize this nonsense. Even
people who write books about Web development (um, like me) don’t have
this stuff memorized because it’s too awkward and too likely to change.

Keep a copy of template.html on your local drive (I keep a copy on my
Desktop) and begin all your new pages with this template. When you start to
use a more complex editor (see Chapter 3 of this minibook), you can often cus-
tomize the editor so that it automatically starts with the framework you want.

You don’t have to have all this stuff down cold, but you should understand
the basics of what’s going on, so the following is a quick tour.

The DOCTYPE tag
The scariest looking new XHTML feature is the <!DOCTYPE> tag. This mon-
ster is ugly, no doubt about it, but it does serve a purpose. Officially, it’s a
document type definition. Your doctype declares to the world what particular
flavor of HTML or XHTML you’re using. When you begin your page with the
doctype I suggest here, you’re telling the browser: “Hey, browser, my page
follows the XHTML Strict Guidelines, and if you aren’t sure what that is, go to
this Web site to get it.”

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 22

Book I
Chapter 2

It’s All about
Validation

Building an XHTML Document 23

Many different doctypes are available, but it’s really a lot simpler than it
seems. In this book, I show you XHTML 1.0 Strict, which is the only doctype
you need today. The other variations you might find on the Web (HTML 4.0,
Frameset, and Transitional doctypes) are really designed for backwards
compatibility. If you’re going to go the standards-compliant route, you might
as well go whole hog.

It’s true that XHTML 1.1 and XHTML 2.0 are on the horizon, but the major
psychological barrier is moving from HTML to any form of XHTML Strict.
After you make the XHTML Strict leap, you’ll find it pretty easy to move on
to the other forms of XHTML when they become viable.

The xmlns attribute
The html tag looks a little different than the one in Chapter 1 of this mini-
book. It has the term xmlns after it, which stands for XML NameSpace. All
this acronym does is help clarify the definitions of the tags in your document:

<html xmlns=”http://www.w3.org/1999/xhtml”>

Truthfully, most Web developers don’t use the xmlns attribute yet. If you
leave it out, most browsers work just fine. I include it because the W3C’s
newest Validator (which was being tested when this book went to press)
complains if you don’t have it in there. By the time you read this book, that
Validator might become the main tool for validation, and I don’t want your
pages to crash when the xmlns attribute becomes a requirement (which looks
likely).

The meta tag
The last new and mysterious tag is the funky meta tag. meta tags have been
a part of HTML for a long time. They allow you to describe various charac-
teristics of a Web page:

<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8” />

The particular form of the meta tag you see here defines the character set to
use. The utf character set handles a number of Western languages well.

The real truth is, if you start with this framework, you’ll have everything you
need to make official XHTML pages that validate properly.

You validate me
All this doctype and xmlns nonsense is worth it because of a nifty program —
the Validator. The most important is the one at W3C: http://validator.
w3.org, as shown in Figure 2-1.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 23

Building an XHTML Document24

The Validator is actually the front end of a piece of software that checks
pages for validity. It looks at your Web page’s doctype and sees if the page
conforms to the rules of that doctype. If not, it tells you what might have
gone wrong.

You can submit code to the Validator in three different ways:

✦ Validate by URL. This option is used when a page is actually hosted on a
Web server. Files stored on local computers can’t be checked with this
technique. Book VIII describes all you need to know about working with
Web servers, including how to create your own.

✦ Validate by File Upload. This technique works fine with files you
haven’t yet posted to a Web server. It works great for pages you write on
your computer but you haven’t made visible to the world. This is the
most common type of validation for beginners.

✦ Validate by Direct Input. The Validator page has a text box you can
simply paste your code into. It works, but I usually prefer to use the
other methods because they’re easier.

Validation might sound like a big hassle, but it’s really a wonderful tool because
sloppy HTML code can cause lots of problems. Worse, you might think every-
thing’s okay until somebody else looks at your page, and suddenly, the page
doesn’t display correctly.

Figure 2-1:
The W3C
Validator
main page
isn’t
exciting, but
it sure is
useful.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 24

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 25

Validating Your Page
To explain all this, I created a Web page the way Aesop might have done in
ancient Greece. Okay, maybe Aesop didn’t write his famous fables as Web
pages, but if he had, they might have looked like the following code listing:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
and oxWheelsCorrect.html for a corrected version.

-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop’s Fables</h2>

<p>
A pair of Oxen were drawing a heavily loaded wagon along a
miry country road. They had to use all their strength to pull
the wagon, but they did not complain.

<p>

<p>
The Wheels of the wagon were of a different sort. Though the
task they had to do was very light compared with that of the
Oxen, they creaked and groaned at every turn. The poor Oxen,
pulling with all their might to draw the wagon through the
deep mud, had their ears filled with the loud complaining of
the Wheels. And this, you may well know, made their work so
much the harder to endure.

</p>

<p>
“Silence!” the Oxen cried at last, out of patience. “What have
you Wheels to complain about so loudly? We are drawing all the
weight, not you, and we are keeping still about it besides.”

</p>

<h2>
They complain most who suffer least.
</h2>

</body>
</html>

It looks okay, but there are actually a number of problems. Aesop may have
been a great storyteller, but from this example, it appears he was a sloppy
coder. The mistakes can be pretty hard to see, but trust me, they’re there.
The question is how do you find the problems before your users do?

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 25

Validating Your Page26

You might think that the problems would be evident if you viewed the page
in a Web browser. The Firefox and Internet Explorer Web browsers seem to
handle the page decently, even if they don’t display it in an identical way.
Figure 2-2 shows oxWheels1.html in Firefox, and Figure 2-3 shows it in
Internet Explorer.

Figure 2-3:
oxWheels1.
html in
Internet
Explorer.

Figure 2-2:
oxWheels1.
html in
Firefox.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 26

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 27

Firefox appears to handle the page pretty well, but From Aesop’s Fables
is supposed to be a headline level two, or H2, and it appears as plain text.
Other than that, there’s very little indication that something is wrong.

Microsoft Internet Explorer also tries to display the page, and it also does a
decent job. Notice now that From Aesop’s Fables appears to be a level
one header, or H1. That’s odd. Still, the page looks pretty good in both the
major browsers, so you might assume everything’s just fine. That gets you into
trouble.

If it looks fine, who cares if it’s exactly right? You might wonder why we care
if there are mistakes in the underlying code, as long as everything works
okay. After all, who’s going to look at the code if the page displays properly?

The problem is, you don’t know if it’ll display properly, and mistakes in your
code will eventually come back to haunt you. If possible, you want to know
immediately what parts of your code are problematic so you can fix them
and not worry.

Aesop visits W3C
To find out what’s going on with this page, pay a visit to the W3C Validator at
http://validator.w3.org. Figure 2-4 shows me visiting this site and
uploading a copy of oxWheels1.html to it.

Hold your breath and hit the Check button. You might be surprised at the
results shown in Figure 2-5.

Figure 2-4:
I’m check-
ing the
oxWheels
page to look
for any
problems.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 27

Validating Your Page28

The Validator is a picky beast, and it doesn’t seem to like this page at all. The
Validator does return some useful information and gives enough hints that
you can decode things soon enough.

Examining the overview
Before you take a look at the specific complaints, take a quick look at the Web
page the Validator sends you. The Web page is chock full of handy information.
The top of the page tells you a lot of useful things:

✦ Result: This is really the important thing. You’ll know the number of
errors remaining by looking at this line. Don’t panic, though. There are
probably fewer errors in the document than the number you see here.

✦ File: This is the name of the file you’re currently working on.

✦ Encoding: The encoding is the text encoding you’ve set. If you didn’t
explicitly set text encoding, you may see a warning here.

✦ Doctype: This is the doctype extracted from your document. It indicates
the rules that the Validator is using to check your page. This should
usually say XHTML 1.0 Strict.

✦ Root Namespace: If you use the template I give you, you always see the
same namespace, and you don’t have any surprises.

✦ The dreaded red banner: Experienced Web developers don’t even have
to read the results page to know if there is a problem. If everything goes
well, there’s a green congratulatory banner. If there are problems, the
banner is red. It doesn’t look good, Aesop.

Figure 2-5:
Twelve
errors? That
can’t be
right!

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 28

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 29

Don’t panic because you have too many errors. The mistakes often overlap,
so one problem in your code often causes more than one error to pop up.
Most of the time, you have far fewer errors than the page says, and a lot of
the errors are repeated, so after you find the error once, you’ll know how to
fix it throughout the page.

Validating the page
The Validator doesn’t always tell you everything you need to know, but it
does give you some pretty good clues. Page validation is tedious but not as
difficult as it might seem at first. Here are some strategies for working
through page validation:

✦ Focus only on the first error. Sure, 100 errors might be on the page, but
solve them one at a time. The only error that matters is the first one on the
list. Don’t worry at all about other errors until you’ve solved the first one.

✦ Note where the first error is. The most helpful information you get is
the line and column information about where the Validator recognized the
error. This isn’t always where the error is, but it does give you some clues.

✦ Look at the error message. It’s usually good for a laugh. The error
messages are sometimes helpful and sometimes downright mysterious.

✦ Look at the verbose text. Unlike most programming debuggers, the W3C
Validator tries to explain what went wrong in something like English. It
still doesn’t always make sense, but sometimes the text gives you a hint.

✦ Scan the next couple errors. Sometimes, one mistake shows up as more
than one error. Look over the next couple errors, as well, to see if they
provide any more insight; sometimes, they do.

✦ Revalidate. Check the page again after you save it. If the first error is
now at a later line number than the previous one, you’ve succeeded.

✦ Don’t worry if the number of errors goes up. The number of perceived
errors will sometimes go up rather than down after you’ve successfully
fixed a problem. This is okay. Sometimes, fixing one error causes others
to appear. More often, fixing one error clears up many more. Just concen-
trate on clearing errors from the beginning to the end of the document.

✦ Lather, rinse, and repeat. Look at the new top error and get it straight-
ened out. Keep going until you get the coveted Green Banner of
Validation. (If I ever write an XHTML adventure game, that will be one of
the most powerful talismans.)

Examining the first error
Look again at the results for the oxWheels1.html page. The first error mes-
sage looks like Figure 2-6.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 29

Validating Your Page30

Figure 2-6 shows the first two error messages. The first complains about
where the </head> tag is. The second message complains about the
<title> tag. Look at the source code, and you see that the relevant code
looks like this:

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<!-- oxWheels1.html -->

<!-- note this page has deliberate errors! Please see the text
and oxWheelsCorrect.html for a corrected version.

-->

</head>
<body>
<title>The Oxen and the Wheels</title>
<h1>The Oxen and the Wheels

Look carefully at the head and title tags, and review the notes in the error
messages, and you’ll probably see the problem. The <title> element is
supposed to be in the heading, but I accidentally put it in the body! (Okay, it
wasn’t accidental; I made this mistake deliberately here to show you what
happens. However, I have made this mistake for real in the past.)

Fixing the title
If the title tag is the problem, a quick change in the HTML should fix this prob-
lem. oxWheels2.html shows another form of the page with my proposed fix:

Figure 2-6:
It doesn’t
like the end
of the head?

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 30

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 31

<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1” />

<!-- oxWheels2.html -->

<!-- Moved the title tag inside the header -->

<title>The Oxen and the Wheels</title>
</head>

<body>

Note that I’m only showing the parts of the page that I changed. The entire
page is available on the CD-ROM.

The fix for this problem is pretty easy:

1. Move the title inside the head.

I think the problem here is having the <title> element inside the body,
rather than in the head where it belongs. If I move the title to the body,
the error should be eliminated.

2. Change the comments to reflect the page’s current status.

It’s important that the comments reflect what changes I make.

3. Save the changes.

Normally, you simply make a change to the same document, but I’ve
elected to change the filename so you can see an archive of my changes
as the page improves. This can actually be a good idea because you then
have a complete history of your document’s changes, and you can always
revert to an older version if you accidentally make something worse.

4. Note the current first error position.

Before you submit the modified page to the Validator, make a mental
note of the position of the current first error. Right now, the Validator’s
first complaint is on line 13, column 6. I want the first mistake to be
somewhere later in the document.

5. Revalidate by running the Validator again on the modified page.

6. Review the results and do a happy dance.

It’s likely there are still errors, but that’s not a failure! Figure 2-7 shows
the result of my revalidation. The new first error is on line 16, and it
appears to be totally different than the last error. I solved it!

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 31

Validating Your Page32

Solving the next error
One down, but there are more to go. The next error (shown in Figure 2-7)
looks strange, but it’s one you’ll see a lot.

The document type does not allow error is very common. What it
usually means is you forgot to close something or you put something in the
wrong place. The error message indicates a problem in line 16. The next error
is line 16, too. See if you can find the problem here in the relevant code:

<body>
<h1>The Oxen and the Wheels
<h2></h1>From Aesop’s Fables</h2>

After you know where to look, the problem becomes a bit easier to spot. I
got sloppy and started the <h2> tag before I finished the <h1>. One tag can
be completely embedded inside another (at least, in many cases), but you
can’t have tag definitions overlap like I’ve done here. The <h1> has to close
before I can start the <h2> tag.

This explains why the two main browsers displayed From Aesop’s Fables
differently. It isn’t clear whether this code should be displayed in H1 or H2
format, or perhaps with no special formatting at all. It’s much better to know
the problem and fix it than to remain ignorant until something goes wrong.

Figure 2-7:
Document
type does
not allow
element
“h2” here.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 32

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 33

The third version — oxWheels3.html — fixes this part of the program:

<!-- oxWheels3.html -->

<!-- sort out the h1 and h2 tags at the top -->

<title>The Oxen and the Wheels</title>
</head>

<body>
<h1>The Oxen and the Wheels</h1>
<h2>From Aesop’s Fables</h2>

Checking the headline repair
The heading tags look a lot better, and a quick check of the Validator con-
firms this fact, as shown in Figure 2-8, which now shows only six errors.

Here’s another form of that document type does not allow error. This
one seems strange because surely <p> tags are allowed in the body! The
secret to this particular problem is to look carefully at the error message.
This document has a lot of <p> tags in it. Which one is it complaining about?

The complaint is about the <p> tag on line 22. Unfortunately, Notepad doesn’t
have an easy way to know which line you’re on, so you just have to count
until I show you some better options in Chapter 3 of this minibook. To make
things easier, I’ve reproduced the key part of the code here and highlighted
line 22. Try to find the problem before I explain it to you:

Figure 2-8:
Document
type doesn’t
allow “p”
here. That’s
odd.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 33

Validating Your Page34

<h1>The Oxen and the Wheels</h1>
<h2>From Aesop’s Fables</h2>

<p>
A pair of Oxen were drawing a heavily loaded wagon along a
miry country road. They had to use all their strength to pull
the wagon, but they did not complain.

<p>

<p>
The Wheels of the wagon were of a different sort. Though the
task they had to do was very light compared with that of the
Oxen, they creaked and groaned at every turn. The poor Oxen,
pulling with all their might to draw the wagon through the
deep mud, had their ears filled with the loud complaining of
the Wheels. And this, you may well know, made their work so
much the harder to endure.

</p>

Aha! Line 22 is supposed to be the end of the paragraph, but I somehow forgot
the slash character, so the Validator thinks I’m beginning a new paragraph
inside the previous one, which isn’t allowed. This causes a bunch of other
errors, too. Because the Validator can’t see the end of this paragraph, it thinks
that all the rest of the code is inside this first paragraph. Try changing the <p>
of line 22 into a </p> and see if it works better:

<p>
A pair of Oxen were drawing a heavily loaded wagon along a
miry country road. They had to use all their strength to pull
the wagon, but they did not complain.

</p>

Figure 2-9 shows the validation results for oxWheels4.html.

Figure 2-9:
Hooray! We
have a valid
page!

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 34

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 35

Showing off your mad skillz
Sometimes, that green bar makes little tears of joy run down my cheeks.
Congratulations! It’s only the second chapter in this minibook, and you’re
already writing better Web pages than a lot of professionals.

Seriously, a Web page that validates to XHTML Strict is a big deal, and you
deserve to be proud of your efforts. The W3C is so proud of you that they
offer you a little badge of honor you can put on your page.

Figure 2-10 shows more of the page you get when your page finally validates
correctly. You can see a little button and some crazy-looking HTML code.

If you want, you can copy and paste that code into your page.
oxWheels5.html has that special code added at the end of the body,
shown in Figure 2-11.

This little code snippet does a bunch of neat things, such as

✦ Establishing your coding prowess: Any page that has this image on it
has been tested and found compliant to XHTML Strict standards. When
you see pages with this marker, you can be confident of the skill and pro-
fessionalism of the author.

✦ Placing a cool image on the page: You’ll read how to add your own
images in Chapter 6 of this minibook, but it’s nice to see one already.
This particular image is hosted at the W3C site.

Figure 2-10:
The Validator
gives you a
little virtual
badge of
honor to
show how
cool you
are.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 35

Validating Your Page36

✦ Letting users check the page for themselves: When the user clicks the
image, they’re taken directly to the W3C Validator to prove that the page
is in fact valid XHTML Strict. Unfortunately, this link works only on pages
that are posted to a Web server, so it doesn’t work right on a page just
sitting on your computer. Scope out Book VIII for suggestions on finding
and using a server.

Using Tidy to repair pages
The W3C Validator isn’t the only game in town. Another great resource —
HTML Tidy — can be used to automatically fix your pages. You can download
Tidy or just use the online version at http://infohound.net/tidy.
Figure 2-12 illustrates the online version with oxWheels1.html being loaded.

Unlike W3C’s Validator, Tidy attempts to actually fix your page. Figure 2-13
demonstrates how it suggests how the oxWheels.html page should be fixed.

Tidy examines the page for a number of common errors and does its best to
fix the errors. However, the result is not quite perfect:

✦ Tidy adds a new meta tag, indicating the page was created by Tidy. I
always get nervous when a program I didn’t write starts messing with
my pages.

Special code

Figure 2-11:
Look, I have
a medal
from the
W3C!

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 36

Book I
Chapter 2

It’s All about
Validation

Validating Your Page 37

✦ Tidy tends to choose a sloppier doctype. If you don’t specify otherwise,
Tidy checks against XHTML 1.0 Transitional, rather than Strict. This
looser definition isn’t as stringent. You can (and should) specify the
Strict doctype manually in the submission form.

Figure 2-13:
Tidy fixes
the page,
but the fix is
a little
awkward.

Figure 2-12:
HTML Tidy
is an
alternative
to the W3C
Validator.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 37

Validating Your Page38

✦ Tidy got confused by the title. Tidy correctly diagnosed the title in the
wrong place, but it added a blank title, as well as the intended one.

✦ Sometimes the indentation is off. I set Tidy to indent every element, so
it is easy to see how things are matched up. If I don’t set up the indenta-
tion explicitly, I find Tidy code very difficult to read.

✦ The changes aren’t permanent. Anything Tidy does is just a suggestion.
If you want to keep the changes, you need to save the results in your editor.

I sometimes use Tidy when I’m stumped because I find the error messages
are easier to understand than the W3C Validator. However, I never trust it
completely. There’s really no substitute for good old detective skills and the
official W3C Validator.

If you find the W3C Validator and Tidy to be a little tedious to use, look over
the HTML Validator extension described in Chapter 3 of this minibook. This
handy tool adds both the W3C Validator and Tidy to Firefox and automati-
cally checks every page you visit. It also has Tidy support, so it can even fix
most of your errors.

Is validation really that big a deal?
I can hear the angry e-mails coming in. “Andy,
I’ve been writing Web pages since 1998, and I
never used a Validator.” Okay, it’s true. A lot of
people, even some professional Web develop-
ers, work without validating their code. Some
of my older Web pages don’t validate at all. (You
can run the W3C Validator on any page you
want, not just one you wrote. This can be a
source of great joy if you like feeling superior to
sloppy coders.) When I became more proficient
and more prolific in my Web development, I
found that those little errors often caused a
whole lot of grief down the road. I really believe
you should validate every single page you
write. Get into the habit now, and it’ll pay huge

dividends. When you’re figuring out this stuff
for the first time, do it right.

If you already know some HTML, you’re gonna
hate the Validator for a while because it rejects
coding habits that you might think are perfectly
fine. It’s a lot harder to unlearn things than it is
to learn them in the first place, so I feel your
pain. It’s still worth it.

After you establish the discipline of validating
your pages, you’ll find you’ve picked up good
habits, and validation becomes a lot less
painful. Experienced programmers actually like
the validation process because it becomes
much easier and prevents problems that could
cause lots of grief later.

06_186275 bk01ch02.qxp 3/28/08 10:39 PM Page 38

Chapter 3: Choosing Your Tools

In This Chapter
� Choosing a text editor

� Using a dedicated HTML editor

� Comparing common browsers

� Introducing Integrated Development Environments (IDEs)

� Adding important Firefox extensions

Web development is a big job. You don’t go to a construction site with-
out a belt full of tools (and a cool hat), and the same thing is true

with Web development (except you don’t normally need a hard hat for Web
development). An entire industry has evolved trying to sell tools that help
make Web development easier. The funny thing is that the tools you need
might not be the ones that people are trying to sell you. Some of the very best
Web development tools are free, and some of the most expensive tools aren’t
really that helpful.

This chapter tells you what you really need and how to set up your work-
shop with a lot of great programs that really simplify Web development.

What’s Wrong with the Big Boys?
A lot of Web development books are really books about how to use a partic-
ular type of software. Microsoft’s FrontPage/Express and Macromedia/
Adobe Dreamweaver are the two primary applications in this category.
These tools are powerful and offer some seemingly great features:

✦ WYSIWYG editing: What you see is what you get is an idea borrowed
from word processors. You can create a Web page much like a word-
processing document and use menus, as well as tools, to handle all the
formatting. The theory is that you don’t have to know any icky codes.

✦ Templates: You can create a template that stays the same and build sev-
eral pages from that template. If you need to change the template,
everything else changes automatically.

✦ Site management: The interaction between the various pages on your
site can be maintained automatically.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 39

Alternative Web Development Tools40

These sound like pretty good features, and they are. These tools (and the
newer replacements, like Microsoft’s Expression suite) are very powerful,
and they can be an important part of your Web development toolkit. But the
same powerful programs introduce problems, such as the following:

✦ Code maintenance: The commercial editors that concentrate on visual
design tend to create pretty unmanageable code. If you find there’s
something you need to change by hand, it’s pretty hard to fix the code.

✦ Vendor lock-in: These tools are written by corporations that want you
to buy other tools from them. If you’re using Dreamweaver, you’ll find it
easy to integrate with other Adobe applications (like ColdFusion), but
it’s not as simple to connect to non-Adobe technology. Likewise, Microsoft’s
offerings are designed to work best with other Microsoft technologies.

✦ Cost: The cost of these software packages keeps going up. Expression
Web (Microsoft’s replacement for FrontPage) costs about $300, and
Dreamweaver weighs in at $400. Both companies encourage you to buy
the software as part of a package, which can easily cost more than $500.

✦ Complex: They’re complicated. You can take a full class or buy a huge
book on how to use only one of these technologies. If it’s that hard to
figure out, is it really saving you any effort?

✦ Code: You still need to understand it. No matter how great your platform
is, at some point, you have to dig into your code. After you plunk down
all that money and spend all that time figuring out an application, you still
have to understand how the underlying code works because things still go
wrong. For example, if your page fails to work on Safari, you’ll have to find
out why and fix the problem yourself.

✦ Spotty standards compliance: The tools are getting better here, but if
you want your pages to comply with the latest standards, you have to
heavily edit them after the tool is finished.

✦ Display variations: WYSIWYG is a lie. This is really the big problem.
WYSIWYG works for word processors because it’s possible to make the
screen look like the printed page. After a page is printed, it stays the
same. You don’t know what a Web page will look like because that
depends on the browser. What if the user loads your page on a cell
phone or handheld device? The editors tend to perpetuate the myth that
you can treat a Web page like a printed document, when in truth, it’s a
very different kind of beast.

Alternative Web Development Tools
All you really need is a text editor and a Web browser. You probably already
have a basic set of tools on your computer. If you read Chapters 1 and 2 of
this minibook, you’ve already written a couple of Web pages. However, the
very basic tools that come with every computer might not be enough for

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 40

Book I
Chapter 3

Choosing Your Tools

Alternative Web Development Tools 41

serious work. Web development requires a specialized kind of text editor,
and a number of tools have evolved that make that job easier.

The things you need to have on your computer
Here’s a few things you need that you might not already have on your computer:

✦ Line numbers: Notepad doesn’t have an easy way to figure out what line
you’re on. It’s pretty tedious to count lines every time you want to find a
problem noted by the Validator.

✦ Help features: It’d be ideal if your editor could help with your code.
There are tools that recognize HTML code, help with indentation, and
warn you when something is wrong.

✦ Macros: You’ll type the same code many times. A program that can
record and play keyboard macros can save a huge amount of time.

✦ Testing and validation: It should be easy to test your code in one or
more browsers, and there should be an easy way to check your code for
standards.

✦ Multiple browsers: As an Internet user, it’s fine to have only one
browser, but a Web developer needs to know how things look in a couple
different environments.

✦ Browser features: You can customize some browsers (especially
Firefox) to help you a lot. With the right attachments, the browser can
point out errors and help you see the structure of your page.

✦ Free and open tools: The Web is exciting because it’s free and open tech-
nology. If you can find tools that follow the same philosophy, all the better.

Building a basic toolbox
I’ve found uses for five main types of programs in Web development:

✦ Enhanced text editors: These tools are text editors, but they’re souped-
up with all kinds of fancy features, like syntax checkers, code-coloring
tools, macro tools, and multiple document interfaces.

✦ Browsers and plugins: The browser you use can make a huge difference.
You can also install free add-ons that can turn your browser into a pow-
erful Web development tool.

✦ Integrated Development Environments (IDE): Programmers generally
use IDEs, which combine text editing, visual layout, code testing, and
debugging tools.

✦ Programming technologies: This book covers all pertinent info about
incorporating other technologies, like Apache, PHP, and MySQL. I show
you how to install everything you need for these technologies in Book
VIII, Chapter 1. You don’t need to worry about these things yet, but you

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 41

Picking a Text Editor42

should develop habits that are compatible with these enhanced tech-
nologies from the beginning.

✦ Multimedia tools: If you want various multimedia elements on your
page, you’ll need tools to manage them, as well. These could involve
graphics and audio editors, as well as full-blown multimedia technologies,
like Flash.

Picking a Text Editor
As a programmer, you come to see your text editor as a faithful dog. You
spend a lot of time with this tool, so use one that obeys you.

A text editor should save plain text without any formatting at all. You don’t
want anything that saves colors, font choices, or other text formatting
because these things don’t automatically translate to HTML.

Fortunately, you have a lot of choices, as the following sections reveal.

Some tools to use when you have nothing else
A text editor may be a simple program, but that doesn’t mean they’re all the
same. Some programs have a history of causing problems for beginners (and
experienced developers, too). Because some really great free alternatives are
coming up, there’s usually no need to use some of these weaker choices.

Just don’t use it. Word is a word processor. Even though it can theoretically
create Web pages, the HTML code it writes is absolutely horrific. As an
example, I created a blank document, wrote “Hello World” in it, changed the
font, and saved it as HTML. The resulting page was non-compliant code, was
not quite HTML or XHTML, and was 114 lines long. Word is getting better,
but it’s just not a good Web development tool. In fact, don’t use any word
processor. They’re just not designed for this kind of work.

Windows Notepad
It’s everywhere, and it’s free. That’s the good news. However, Notepad
doesn’t have a lot of features you might need, like line numbers, multiple
documents, or macros. Use it if you’re on an unfamiliar machine but try
something else if you can. Many people begin with Notepad, but it won’t be
long until you outgrow its limitations.

Mac TextEdit
Mac also has a simple text editor built in — TextEdit. It’s pretty similar to
Notepad, but it’s closer to a word processor than a programmer’s text editor.
TextEdit saves files in a number of formats. If you want to use it to write Web

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 42

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 43

pages, you must save your files in plain-text format, and you must not use
any of TextEdit’s formatting features. It’s probably best not to use TextEdit
unless you really have to.

A noteworthy editor: Notepad++
A number of developers have come up with good text editors. Some of the
best are free, such as Notepad++ by Don HO. It’s designed for text editing,
especially in programming language. Figure 3-1 shows Notepad++ with an
HTML file loaded.

Notepad++ has a lot of interesting features. Here are a few highlights:

✦ Syntax highlighting: Notepad++ can recognize key HTML terms and put
different types of terms in different colors. For example, all HTML tags
are rendered in blue, and text is in black. This makes it easy to tell if
you’ve made certain kinds of mistakes, like forgetting to end a tag. Note
that the colors aren’t saved in the document. The coloring features are
there to help you understand the code.

✦ Multiple files: You’ll often want to edit more than one document at a time.
You can have several different documents in memory at the same time.

Figure 3-1:
Notepad++
has many of
the features
you need in
a text editor.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 43

Picking a Text Editor44

✦ Multi-language support: At the moment, your pages consist of nothing
but XHTML. Soon enough, you’ll use some other languages, like SQL, CSS,
and PHP. Notepad++ is smart enough to recognize these languages, too.

✦ Macros: Whenever you find yourself doing something over and over,
consider writing a keyboard macro. Notepad++ has a terrific macro fea-
ture. Macros are really easy to record and playback a series of keystrokes.
This feature can often save you a lot of work.

✦ Page preview: When you write a page, test it. Notepad++ has shortcut
keys built in to let you quickly view your page in Internet Explorer, or IE,
(Ctrl+Alt+Shift+I) and Firefox (Ctrl+Alt+Shift+X).

✦ TextFX: The open-source design of Notepad++ makes it easy to add fea-
tures. The TextFX extension (built into Notepad++) allows you to do all
sorts of interesting things. One especially handy set of tools runs HTML
Tidy on your page and fixes any problems in it.

The old standards: VI and Emacs
No discussion of text editors is complete without a mention of the venerable
UNIX editors that are the core of the early Internet experience. Most of the
pioneering work on the Web was done in the UNIX and Linux operating sys-
tems, and these environments had two extremely popular text-editor fami-
lies. Both might seem obscure and difficult to modern sensibilities, but they
still have passionate adherents, even in the Windows community. (Besides,
Linux is more popular than ever!)

VI and VIM
VI stands for Visual Editor. That name seems strange now because most
developers can’t imagine an editor that’s not visual. Back in the day, it was a
very big deal that VI could use the entire screen for editing text. Before that
time, line-oriented editors were the main way to edit text files. Trust me, you
have it good now. Figure 3-2 shows a variant of VI (called VIM) in action.

VI is a modal editor, which means that the same key sometimes has more
than one job, depending on the editor’s current mode. For example, the I key
is used to indicate where you want to insert text. The D key is used to delete
text, and so on. Of course, when you’re inserting text, the keys have their
normal meanings. This multi-mode behavior is baffling to modern users, but
it can be amazingly efficient after you get used to it. Skilled VI users swear by
it and often use nothing else.

VI is a little too obscure for some users, so there’s a number of variants float-
ing around, such as VIM, for VI Improved. (Yeah, it should be VII but maybe
they were afraid people would call it the Roman numeral seven.) VIM is a
little friendlier than VI. It tells you which mode it’s in and includes modern
features like mouse support, menus, and icons. Even with these features,
VIM is not intuitive for most people.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 44

Book I
Chapter 3

Choosing Your Tools

Picking a Text Editor 45

Versions of VI are available for nearly any operating system being used. If
you already know VI, you might enjoy using it for Web page development, as
it has all the features you might need. If you don’t already know VI, it’s prob-
ably more efficient for you to start with a more standard text editor, such as
Notepad++.

Emacs
The other popular editor from the UNIX world is emacs. Like VI, you probably
don’t need this tool if you never use Linux or UNIX. But also like VI, if you
know it already, you probably don’t need anything else. Emacs has been a
programmer’s editor for a very long time, and it has nearly every feature you
can think of.

Emacs also has a lot of features you haven’t thought of, including a built-in
text adventure game and even a psychotherapist simulator. I really couldn’t
make this stuff up if I tried.

Emacs has very powerful customization and macro features. It allows you to
view and edit more than one file at a time. Emacs also has the ability to view
and manipulate the local file system, manage remote files, access the local
operating system (OS) shell, and even browse the Web or check e-mail with-
out leaving the program. If you’re willing to invest in a program that takes
some effort to understand, you’ll have an incredibly powerful tool in your

Figure 3-2:
VI isn’t
pretty, but
after you
know it, it’s
very
powerful.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 45

Picking a Text Editor46

kit. Versions of Emacs are available for most major operating systems.
Emacs is one of the first programs I install on any new computer because it’s
so powerful. A version of emacs is shown in Figure 3-3.

An enhanced version — xemacs — uses standard menus and icons like
modern programs, so it’s reasonably easy to get started with.

Emacs has an astonishing number of options and a non-standard interface,
so it can be challenging for beginners.

Other text editors
Many other text editors are used in Web development. The most important
thing is to find one that matches the way you work. If you don’t like any of
the editors I’ve suggested so far, here’s a few more you might want to try:

✦ SynEdit: This is much like Notepad++ and is very popular with Web
developers.

✦ Scintilla: This is primarily a programming editor, but it has nice support
for XHTML coding.

✦ jEdit: This is a text editor written in Java. It has nice features and is pop-
ular, but some consider it slower than the other choices.

Figure 3-3:
Emacs is
powerful but
somewhat
eccentric.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 46

Book I
Chapter 3

Choosing Your Tools

The Web Developer’s Browser 47

The Web Developer’s Browser
Web pages are meant to display in a browser; so, of course, you need browsers
for testing. Not all browsers are the same, though, so you need more than one.
As of this writing, there are two major browsers and a number of other signifi-
cant players in the browser world. It’s important to know a little about the
major browsers, which are discussed later in this section.

A little ancient history
You’ve probably already noticed that browsers are inconsistent in the way
they display and handle Web pages. It’s useful to understand how we got
into this mess.

Mosaic/Netscape — the killer application
In the beginning, browsers were written by small teams. The most important
early browser was Mosaic and was written by a team based at the National
Center for Supercomputing Applications (NCSA) in Champaign–Urbana, Illinois.

Several of the members of that NCSA team decided to create a completely
commercial Web browser. Netscape was born, and it quickly became the
most prominent and important browser, with 97-percent market share at the
peak of its popularity.

Microsoft enters (and wins) the battle
Microsoft came onto the scene with Internet Explorer (IE). A bitter fight (some-
times called the Browser Wars) ensued between Microsoft and Netscape. Each
browser added new features regularly. Eventually, entire sets of tags evolved,
so a Web page written for IE would not always work in Netscape and vice-versa.
Developers had three bad choices: pick only one browser to support, write two
versions of the page, or stick with the more limited set of features common to
both browsers.

Netscape 6.0 was a technical disappointment, and Microsoft capitalized,
earning a nearly complete lock on the browser market. Microsoft’s version of
standards became the only standards because there was virtually no compe-
tition. After Microsoft won the fight, there was a period of stability but very
little innovation.

Firefox shakes up the world
A new browser rose from the ashes of Netscape (in fact, its original name
was Firebird, after the mythical bird that rises from its own ashes). Its name

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 47

The Web Developer’s Browser48

was later changed to Firefox, and it breathed new life into the Web. Firefox
has several new features that are very appealing to Web developers:

✦ Solid compliance to standards: Firefox followed the W3C standards
almost perfectly.

✦ Tabbed browsing: One browser window can have several panels, each
with its own page.

✦ Easy customization: Firefox developers encouraged people to add improve-
ments and extensions to Firefox. This led to hundreds of interesting
add-ons.

✦ Improved security: By this time, a number of security loopholes in IE
were publicized. Although Firefox has many of the same problems, it has
a much better reputation for openness and quick solutions.

Overview of the prominent browsers
The browser is the primary tool of the Web. All your users view your page
with one browser or another, so you need to know a little about each of them.

Microsoft Internet Explorer 7
Microsoft Internet Explorer (MSIE or simply IE) is currently the most popular
browser on the planet. Before Firefox came along, IE was used by a vast major-
ity of Web users. IE is still extremely prevalent because it comes installed with
Microsoft Windows. Of course, it also works best with Microsoft Windows. A ver-
sion is also available for Macs, but Linux users aren’t supported (they don’t seem
too upset about it, though).

The current version of IE is Internet Explorer 7, the first major improvement
in IE for years. IE7 features some welcome additions, including tabbed
browsing and improved compliance with the W3C standards. Cynics have
suggested these improvements are a response to Firefox. Still, IE is a better
browser than it has been in a long time.

If you write your code to XHTML 1.0 Strict standards, it almost always displays
as expected in IE7.

Older versions of Internet Explorer
The earlier versions of IE are still extremely important because there are so
many computers out there that don’t have IE7 installed yet.

Microsoft made a version of IE available for programmers to embed in their
own software, so a lot of custom browsers are actually IE with a different
skin. Most of the custom browsers that are installed with the various

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 48

Book I
Chapter 3

Choosing Your Tools

The Web Developer’s Browser 49

broadband services are simply dressed up forms of IE. Therefore, IE is even
more common than you might guess because people might be using a ver-
sion of it while thinking it’s something else.

IE6 and earlier versions used Microsoft’s own variation of standards. They
display old-style HTML well, but these browsers don’t comply perfectly with
all the W3C standards. Having a version of one of these older browsers
around is important so you can see how your pages display in them. If you
write standards-compliant code, you’ll find that it doesn’t work perfectly in
these variations. You need to do some tweaking to make some features come
out right. Don’t panic because they’re relatively small details, and I point out
the strategies you need as we go.

Checking your pages on IE6 or earlier is necessary. Unfortunately, if you have
IE7 or whatever comes next, you probably don’t have IE6 anymore. You can’t
have two versions of IE running on the same machine at once (at least, not
easily), so you might need to keep an older machine just for testing purposes.

Microsoft has versions of IE for the Mac OS. Like other early versions of IE, it
tends to go its own way and doesn’t follow the standards exactly.

Mozilla Firefox
Developers writing standards-compliant code frequently test their pages in
Firefox because it has a great reputation for standards compliance. Firefox
has other advantages, as well, such as

✦ Better code view: If you view the HTML code of a page, you see the code
in a special window. The code has syntax coloring, which makes it easy
to read. IE often displays code in Notepad, which is confusing because
you think you can edit the code, but you’re simply editing a copy.

✦ Better error-handling: You’ll make mistakes. In general, Firefox does a
better job of pointing out errors than IE, especially when you begin
using JavaScript and other advanced technologies.

✦ Great extensions: As you see later in this chapter, Firefox has some won-
derful extensions that make Web development a lot easier. These exten-
sions allow you to modify your code on the fly, automatically validate
your code, and find out all about what’s going on under the hood.

Other notable browsers
Firefox and IE are the big players in the browser world, but they certainly
aren’t the only browsers you will encounter.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 49

The Web Developer’s Browser50

Opera
The Opera Web browser is one of the earliest standards-compliant browsers.
It is a technically solid browser but has never been widely used. If you
design your pages with strict compliance in mind, users with Opera have no
problems accessing them.

Safari
Apple includes a Web browser in all recent versions of the Mac OS. The
current incarnation — Safari — is an excellent standards-compliant browser.
Safari was traditionally designed only for the Mac, but a Windows version
has been released recently.

Mozilla
There’s still a Mozilla browser, but it has been replaced largely with Firefox.
Because Mozilla uses the same underlying engine, it renders code the same
way Firefox does.

Portable browsers
The Web isn’t just about desktops anymore. Lots of people browse the Web
with cell phones, iPhones, and PDAs. These devices often have specialized
Web browsers designed to handle the particular needs of the portable com-
puting model. However, these devices usually have tiny screens, small memory
capacity, and slower download speeds than their desktop cousins. A portable
browser can almost never display a page as it was intended on desktop
machines. Portable browsers usually do a good job of making standards-
compliant code work, but they really struggle with other types of HTML
(especially tables used for formatting).

Text-only browsers
There are browsers that don’t display any graphics at all. Some, like Lynx,
are intended for the old command-line interfaces. This may seem completely
irrelevant today, but they are incredibly fast because they don’t display
graphics. Auditory browsers read the contents of Web pages. They were
originally intended for people with visual disabilities, but they are often used
by people without any disabilities, as well. Fire Vox is a variant of Firefox that
reads Web pages aloud.

The bottom line in browsers
Really, you need to have access to a couple browsers, but you can’t possibly
have them all. I tend to do my initial development testing with Firefox. I then
check pages on IE7 and IE6. I also check the built-in browser on my cell
phone and PDA to see how it works there. Generally, if you get a page that

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 50

Book I
Chapter 3

Choosing Your Tools

Tricking Out Firefox 51

gives you suitable results on IE6, IE7, and Firefox, you can be satisfied that it
works on most browsers. However, there’s still no guarantee. If you follow
the standards, your page displays on any browser, but you might not get the
exact layout you expected.

Tricking Out Firefox
One of the best features of Firefox is its support for extensions. Hundreds of
clever and generous programmers have written tools to improve and alter
Firefox’s performance. Three of these tools — the HTML Validator, Web
Developer toolbar, and Firebug — are especially important to Web developers.

Validating your pages with HTML Validator
In Chapter 2 of this minibook, I explain how important Web standards are
and how to use online services such as http://validator.w3.org and
HTML Tidy online (http://infohound.net/tidy). These are terrific serv-
ices, but it would be even better to have these Validators built directly into
your browser. The HTML Validator extension by Marc Gueury is a tool that
does exactly that: It adds both the W3C Validator and HTML Tidy to your
Firefox installation.

When you have this extension (available on the CD-ROM) running, you have
an error count in the footer of every page you visit. (You’ll be amazed how
many errors are on the Web.) You’ll be able to tell immediately if a page has
validation errors.

With the HTML Validator, your View Source tool is enhanced, as shown in
Figure 3-4.

The View Source tool becomes much more powerful when you run HTML
Validator, as follows:

✦ Each error is listed in an errors panel. This is exactly the same error
list you see from W3C.

✦ Clicking on an error highlights it in the source-code listing. This
makes it easy to see exactly what line of code triggers each error.

✦ Complete help is shown for every error. The Validator toolbar presents
much more helpful error messages than the official W3C results.

✦ Automated clean-up. You can click the Clean Up link, and the Validator
extension automatically applies HTML Tidy to your page. This can be a
very effective way to fix older pages with many errors.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 51

Tricking Out Firefox52

The HTML Validator tool will revolutionize your Web development experi-
ence. It really helps you create standards-compliant sites easily, and it has
the added benefit of helping you rapidly discover the level of compliance of
any page you visit. (It’s fun to feel superior.)

Using the Web Developer toolbar
The Web Developer toolbar by Chris Pederick provides all kinds of useful
tools for Web developers. The program installs as a new toolbar in Firefox,
as shown in Figure 3-5.

Figure 3-5 shows the Wiley home page with some of the Web Developer tool-
bar features active. The Edit CSS frame on the left allows me to modify the
look of the page in real time, and the thick outlines were added by the tool-
bar to help visualize the page organization. (I describe these ideas in detail
in Books III and IV.)

When you have the Web Developer toolbar activated (use the View➪
Toolbars menu command to hide or show it), you can use it to do the following:

✦ Edit your page on the fly. The Edit HTML Entry option on the Miscellaneous
menu opens a small text editor on the side of the screen. You can make
changes to your HTML here and immediately see the results in the main
screen. The changes aren’t permanent, but you can save them.

Figure 3-4:
The HTML
Validator
explains all
errors in
your page.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 52

Book I
Chapter 3

Choosing Your Tools

Tricking Out Firefox 53

✦ Validate your pages. There’s a menu command (CSS➪Edit CSS) to vali-
date your page, but the Web Developer toolbar also adds some hotkeys
to Firefox so you can instantly send your page to the W3 Validator.
Ctrl+Shift+A contacts the W3 Validator and then sends your page
directly to it. It’s much easier than memorizing the Validator address.
This feature alone is worth the download time. You can also do other
kinds of validation, check your CSS, or see how well your page conforms
to various guidelines for people with disabilities.

✦ Manipulate CSS code. After you define your page with XHTML, use CSS
to dress it up. The CSS menu has a number of great tools for seeing how
CSS is set up and experimenting with it on the fly. I explain how to use
the CSS tools in Books II and III, where I describe CSS.

✦ View your page in different sizes. Not everybody has a huge flat-panel
display. It’s important to see how your page looks in a number of stan-
dard screen resolutions.

✦ Get a speed report. Your Web page may load great on your broadband
connection, but how does it work on Aunt Judy’s dialup? Web Developer
has a tool that analyzes all the components of the page, reports how
long each component takes to download over various connections, and
suggests ways to improve the speed of your page’s download.

Web Developer toolbar

Figure 3-5:
The Web
Developer
toolbar adds
several
features to
Firefox.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 53

Tricking Out Firefox54

The Web Developer toolbar can do a lot more, but those are some of the
highlights. The toolbar is a small and fast download, and it makes Web devel-
opment a lot easier. There’s really no good reason to not use it.

Using Firebug
The Firebug extension is another vital tool for Web developers. Firebug con-
centrates more on JavaScript development rather than pure XHTML devel-
opment, but it’s also useful for XHTML beginners. Figure 3-6 shows the
Firebug extension opened as a panel in Firefox.

The Inspect mode allows you to compare the HTML code to the output. When
you move your mouse over a part of the rendered page, Firebug highlights
the relevant part of the code in the other panel. Likewise, you can move the
mouse over a code fragment and see the affected code segment. This can be
extremely handy when things aren’t working out like you expect.

You can view the HTML code as an outline, which helps you see the overall
structure of the code. You can also edit the code in the panel and see the
results immediately, as you can with the Web Developer toolbar, which I dis-
cuss in the previous section. Changes you make in Firebug aren’t permanent,
but you can copy them to your text editor.

Firebug pane

Figure 3-6:
Firebug
gives a
detailed
view of your
page.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 54

Book I
Chapter 3

Choosing Your Tools

Using a Full-Blown IDE 55

Firebug really shows off when you get to more sophisticated techniques, such
as CSS, DOM Manipulation, JavaScript, and AJAX. Although you discover
those technologies in Books IV and VII show you how Firebug can be used to
aid in these processes.

Using a Full-Blown IDE
You might think I hate dedicated Web page editors, but I don’t. I use them all
the time for other kinds of programming. The problem is that up until
recently, there weren’t any real IDEs (Integrated Development Environments)
for Web development. Most of the tools try to be visual development tools
that automate the design of visual pages, rather than programming environ-
ments. They have flaws because Web development is really a programming
problem with visual design aspects, rather than a visual design problem with
programming underneath.

A couple of IDEs have popped up recently in the open-source community.
One tries to be like the commercial tools (and ends up replicating some of
their flaws).

Another editor has emerged that seems to be a good compromise between help-
ing you write solid code and growing with you as you get more sophisticated.

Introducing Nvu
One of the most popular HTML IDEs in the open-source community is Nvu
(pronounced en-view). This editor has a number of editing modes, making it
very popular with beginners.

Nvu is available on the CD-ROM that accompanies this book or at http://
nvu.com.

It defaults to a WYSIWYG mode, like most word processors, as shown in
Figure 3-7.

Unlike ordinary word processors, Nvu can show you the code underneath.
Figure 3-8 shows the same page with the HTML Tags view enabled.

It might surprise you that there are no <p> tags shown in Figure 3-8. Nvu
uses the
 tag instead, which means your code won’t validate without
modification. (I have 11 errors because of the missing <p> tags.)

Figure 3-9 demonstrates source mode, which shows the actual source code.

You can modify the code directly in this mode (and you’ll need to, if you
want the page to validate).

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 55

Using a Full-Blown IDE56

Figure 3-8:
HTML Tags
view shows
which tags
are being
used.

Figure 3-7:
Nvu looks a
lot like a
word
processor.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 56

Book I
Chapter 3

Choosing Your Tools

Using a Full-Blown IDE 57

Although Nvu has some advantages — especially the spell-checking feature —
it encourages bad habits (like most WYSIWYG tools). Because it’s safest to
use this tool in source mode, you might as well use some other tool that has
more features in text mode.

Introducing Aptana
My preferred editor for beginners who intend to become advanced is Aptana
(available on the CD-ROM or at www.aptana.com). Aptana Studio is a full-
blown IDE, based on the popular Eclipse editor. Aptana has a lot of features
that make it a good choice for Web developers:

✦ Syntax completion: Aptana has built-in knowledge of HTML (and several
other languages). When you start to type HTML code, it recognizes the
code and pops up a list of suggestions. Figure 3-10 shows Aptana helping
on some HTML code.

✦ Automatic ending tags: As soon as you write a beginning tag, Aptana
automatically generates the corresponding end tag. This makes it much
less likely that you’ll forget an ending tag — one of the most common
coding errors.

✦ Automatically generated XHTML template: When you tell Aptana to
create an HTML page, it can generate the page template with all the
messy doctype stuff built in. (I explain how to customize this feature in
the next section.)

Figure 3-9:
This is the
code that
Nvu
generated
for the
sample
page.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 57

Using a Full-Blown IDE58

✦ Error detection: Aptana can look at the code and detect certain errors.
Although it isn’t a replacement for a Validator, it can be a very handy
tool, especially when you begin to write JavaScript code.

✦ File management tools: Aptana makes it easy to work both with the
local file system and pages that reside on servers on the Internet.

✦ Page preview: You can preview your page directly within Aptana, or you
can view it in your primary browser.

✦ Outline view: This panel displays the page structure as an outline. It
helps you see the overall structure of the page. You can also use this
panel as a table of contents to quickly get to any particular part of your
page in the editor. Figure 3-11 shows the Outline view in action.

✦ Advanced features: When you’re ready to try JavaScript and AJAX,
Aptana has nice support for these more advanced technologies. The
syntax-highlighting features work in CSS, JavaScript, and PHP, just like
they do in HTML. This means you can use the same editor for all your
Web languages, which is a really great thing.

Aptana’s code suggestion

Figure 3-10:
Aptana
recognizes
HTML and
suggests
code for
you.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 58

Book I
Chapter 3

Choosing Your Tools

Using a Full-Blown IDE 59

Aptana Studio currently comes in two versions. The Community Edition is
free and open-source, and the Professional Edition has additional features. I
use the Community Edition throughout this book, as it has more than
enough features for beginning Web developers.

Customizing Aptana
Aptana is a pretty great editor, but I recommend you change a few settings
after you install it on your system.

Getting to the HTML editor preferences
Aptana can be customized in a lot of ways. For now, the only preferences you
need to change are in the HTML editor. Choose Windows➪Preferences, and
in the Preferences dialog box, expand the Aptana link and select HTML
Editor. The dialog box looks like Figure 3-12.

Changing the extension
By default, Aptana saves files with the .htm extension. Because this is the
extension normally used only by Microsoft servers, I prefer to save pages
with .html. All Web pages in this book are stored with the .html extension.

Outline view

Figure 3-11:
The Outline
view acts as
a table of
contents for
your page.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 59

Using a Full-Blown IDE60

Enter .html in the Default Extension for New HTML Files (Prefix with ‘.’) field
to make this change, if you wish.

Changing the initial contents
When you create a new Web page in Aptana, a basic template appears. This
is convenient, but it creates an HTML 4.0 doctype. Open template.html in
a normal text editor, copy it, and paste it to the provided text area, and your
pages will all begin with the standard template.

Changing the view
Aptana allows you to split the screen with your code in one panel and a
browser view in another. Every time you save your code, the browser view
immediately updates. This is a really good tool, especially for a beginner,
because you can get very quick feedback on how your page looks. In the
Html Editor Mode section in the Preferences dialog box (see Figure 3-12),
you can indicate whether you want the browser preview to be in a separate
tab, in a horizontal split screen, or in a vertical split screen. I use tabs because
I like to see as much code as possible on-screen. I switch to the preview tab
when I need to see how the page looks to the browser.

Figure 3-12:
Aptana’s
HTML Editor
Preferences
dialog box.

07_186275 bk01ch03.qxp 3/28/08 10:40 PM Page 60

Chapter 4: Managing Information
with Lists and Tables

In This Chapter
� Understanding basic lists

� Creating unordered, ordered, and nested lists

� Building definition lists

� Building basic tables

� Using rowspan and colspan attributes

You’ll often need to present large amounts of information organized in
some way, and XHTML has some wonderful tools to manage this task.

XHTML has three different kinds of lists and a powerful table structure for
organizing the content of your page. Figure out how these tools work, and
you can manage complex information with ease.

Making a List and Checking It Twice
XHTML supports three types of lists. Unordered lists generally contain
bullet points. They’re used when the order of elements in the list isn’t
important. Ordered lists usually have some kind of numeric counter preced-
ing each list item, and definition lists contain terms and their definitions.

Creating an unordered list
All the list types in XHTML are closely related. The simplest and most
common kind of list is an unordered list.

Looking at an unordered list
Look at the simple page shown in Figure 4-1. In addition to a couple of head-
ers, it has a list of information.

The list of browsers has some interesting visual characteristics:

✦ The items are indented. There’s some extra space between the left
margin and the beginning of each list item.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 61

Making a List and Checking It Twice62

✦ The list elements have bullets. That little dot in front of each item is a
bullet. Bullets are commonly used in unordered lists like this one.

✦ Each item begins a new line. When a list item is displayed, it’s shown
on a new line.

These characteristics help you see that you have a list, but they’re all just
default behavior. Defining something as a list doesn’t force it to look a partic-
ular way, but there is a default view that helps you see that these items are
indeed part of a list.

It’s important to remember the core idea of XHTML here. You aren’t really
describing how things look, but what they mean. As you discover various
kinds of listing structures, you’ll see that the browsers automatically change
what appears on-screen to indicate the various kinds of lists. You can change
the appearance later when you figure out CSS, so don’t get too tied up in the
particular appearance of things. For now, just recognize that HTML (and by
extension, XHTML) can build lists and make sure you know how to use the
various types.

Figure 4-1:
An
unordered
list of Web
browsers.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 62

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 63

Building an unordered list
Lists are made with two kinds of tags. One tag surrounds the entire list and
indicates the general type of list. This first example demonstrates an
unordered list, which is surrounded by the pair.

Note that it’s common to indent all the code inside the set. The
unordered list can go in the main body.

Inside the set is a number of list items. Each element of the list
is stored between a (list item) and a tag. Normally, each
 item goes on its own line of the source code, although you can
make a list item as long as you want.

Look to Book II, Chapter 4 for information on how to change the bullet to all
kinds of other images, including circles, squares, and even custom images.

The code for the unordered list is pretty straightforward:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

<title>basicUL.html</title>
</head>
<body>

<h1>Basic Lists</h1>
<h2>Common Web Browsers</h2>

Firefox
Internet Explorer
Opera
Safari

</body>
</html>

Creating ordered lists
Ordered lists are almost exactly like unordered lists. Ordered lists tradition-
ally have numbers rather than bullets (although you can change this
through CSS if you want, as you see in Book III, Chapter 3).

Viewing an ordered list
Figure 4-2 demonstrates a page with a basic ordered list — basicOL.html.

Figure 4-2 shows another list (like in Figure 4-1), but this time, the items are
numbered. When your data is a list of steps or information with some type of
numerical values, an ordered list is a good choice.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 63

Making a List and Checking It Twice64

Building the ordered list
The code for basicOL.html is remarkably similar to the unordered list:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>basicOL.html</title>

</head>

<body>
<h1>Basic Ordered List</h1>
<h2>Top ten dog names in the USA</h2>

Max
Jake
Buddy
Maggie
Bear
Molly
Bailey
Shadow
Sam
Lady

Figure 4-2:
A simple
ordered list.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 64

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 65

<p>
data from http://www.bowwow.com.au

</p>
</body>

</html>

Note that the only change is the list tag itself. Rather than the tag, the
ordered list uses the indicator. The list items are still exactly the same
 pairs used in the unordered list.

You don’t indicate the item number anywhere. It’s automatically generated
based on the position of each item within the list. Therefore, you can change
the order of the items, and the numbers are still correct.

This is one of those places where it’s really great that XHTML is about mean-
ing, not layout. If you specified the actual numbers, it’d be a mess to move
things around. All that really matters here is that the element is inside an
ordered list.

Making nested lists
Sometimes, you’ll want to create outlines or other kinds of complex data in
your pages. You can easily nest lists inside each other, if you want. Figure 4-3
shows a more complex list describing popular cat names in the U.S. and
Australia.

Figure 4-3 uses a combination of lists to do its work. This figure contains a
list of two countries: the U.S. and Australia. Each country has an H3 heading
and another (ordered) list inside it! You can nest various elements inside a
list, but you have to do it carefully if you want the page to validate.

In this example, there’s an unordered list with only two elements. Each of
these elements contains an <h3> heading and an ordered list. The page han-
dles all this data in a relatively clean way and validates correctly.

Examining the nested list example
The entire code for nestedList.html is reproduced here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>nestedList.html</title>

</head>

<body>
<h1>Nested Lists</h1>

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 65

Making a List and Checking It Twice66

<h2>Popular Cat Names</h2>

<h3>USA</h3>

Tigger
Tiger
Max
Smokey
Sam

<h3>Australia</h3>

Oscar
Max
Tiger
Sam
Misty

</body>

</html>

Figure 4-3:
An ordered
list inside an
unordered
list!

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 66

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 67

Here are a few things you might notice in this code listing:

✦ There’s a large set surrounding the entire main list.

✦ The main list has only two list items.

✦ Each of these items represents a country.

✦ Each country has an <h3> element, describing the country name inside
the .

✦ Each country also has an set with a list of names.

✦ The indentation really helps you see how things are connected.

Indenting your code
You might have noticed that I indent all the XHTML code in this book. The
browsers ignore all indentation, but it’s still an important coding habit.

There are many opinions about how code should be formatted, but I use a
standard format in this book that serves you well until you can develop your
own style.

I generally use the following rules to indent HTML/XHTML code:

✦ Indent each nested element. Because the <head> is inside the <html>
element, I indent to indicate this. Likewise, the elements are
always indented inside or pairs.

✦ Line up your elements. If an element takes up more than one line, line up
the ending tag with the beginning tag. This way, you know what ends what.

✦ Use spaces, not tabs. The tab character often causes problems in
source code. Different editors format tabs differently, and a mixture of
tabs and spaces can make your carefully formatted page look awful
when you view it in another editor.

If you are using Aptana (and you really should — see Chapter 3 in this
minibook for more information about it), note that Aptana’s autoformat-
ting defaults to tabs. From the Window menu, select Preferences. Then
find the Aptana➪Editors panel and select Insert Spaces Instead of Tabs.

✦ Use two spaces. Most coders use two or four spaces per indentation
level. HTML elements can be nested pretty deeply. Going seven or eight
layers deep is pretty common. If you use tabs or too many spaces, you’ll
have so much white space that you can’t see the code.

Aptana defaults to four spaces, but you can change it to two. From the
General menu, select Editors then Text Editors, and set Displayed Tab
Width to 2.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 67

Making a List and Checking It Twice68

✦ End at the left margin. If you finish the page and you’re not back at the
left margin, you’ve forgotten to end something. Proper indentation
makes it easy to see your data structure. Each element should line up
with its closing tag.

Building a nested list
If you just look over the code for the nested list, it can look intimidating. It
isn’t really that hard. The secret is to build the list outside in:

1. Create the outer list first.

Build the primary list (whether it’s ordered or unordered). In my example,
I began with just the unordered list with the two countries in it.

2. Add list items to the outer list.

If you want text or headlines in the larger list (like I did), you can put
them here. If you’re putting nothing but a list inside your primary list,
you may want to put some placeholder tags in there just so you
can be sure everything’s working.

3. Validate before adding the next list level.

Nested lists can confuse the Validator (and you). Validate your code with
the outer list to make sure there are no problems before you add inner lists.

4. Add the first inner list.

After you know the basic structure is okay, add the first interior list. For
my example, this was the ordered list of cat names in the U.S.

5. Repeat until finished.

Keep adding lists until your page looks right.

6. Validate frequently.

It’s much better to validate as you go than to wait until everything’s
finished. Catch your mistakes early so you don’t replicate them.

Building the definition list
One more type of list — the definition list — is very useful, even if it isn’t
used frequently. The definition list was originally designed to format diction-
ary-style definitions, but it’s really useful anytime you have name and value
pairs. Figure 4-4 shows a sample definition list in action.

Definition lists don’t use bullets or numbers. Instead, they have two ele-
ments. Definition terms are usually words or short phrases. In Figure 4-4, the
browser names are defined as definition terms. Definition descriptions are the
extended text blocks that contain the actual definition.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 68

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Making a List and Checking It Twice 69

The standard layout of definition lists indents each definition description. Of
course, you can change this layout however you want after you understand
CSS in Books II and III.

You can use definition lists any time you want a list marked by key terms,
rather than bullets or numbers. The definition list is also useful in other situ-
ations, like forms, figures with captions, and so on.

Here’s the code for basicDL.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>BasicDL.html</title>

</head>

<body>
<h1>Basic Definition List</h1>
<h2>Common Web Browsers</h2>
<dl>

<dt>Mosaic</dt>
<dd>

Figure 4-4:
A basic
definition
list.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 69

Building Tables70

The mother of all modern browsers. The first widely used
visual browser.

</dd>

<dt>Netscape</dt>
<dd>

The commercial successor to Mosaic. Widely popular, but
eventually eclipsed by Internet Explorer

</dd>

<dt>IE</dt>
<dd>

Microsoft’s entry into the browser market, and a dominant
player.

</dd>

<dt>Firefox</dt>
<dd>

An open-source browser that has shaken up the world.
</dd>

</dl>
</body>

</html>

As you can see, the definition list uses three tag pairs:

✦ <dl></dl> defines the entire list.

✦ <dt></dt> defines each definition term.

✦ <dd></dd> defines the definition data.

Definition lists aren’t used as often as they might be, but they can be
extremely useful. Any time you have a list that will be a combination of
terms and values, a definition list is a good choice.

Building Tables
Sometimes, you’ll encounter data that fits best in a tabular format. XHTML
supports several table tags for this kind of work. Figure 4-5 illustrates a very
basic table.

Sometimes, the best way to show data in a meaningful way is to organize it in
a table. XHTML defines a table with the (cleverly named) <table> tag. The
table contains a number of table rows (defined with the <tr> tag). Each
table row can consist of a number of table data (<td>) or table header
(<th>) tags.

Compare the output in Figure 4-5 with the code that creates it in
basicTable.html, for an example:

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 70

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 71

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>basicTable.html</title>

</head>

<body>
<h1>A Basic Table</h1>
<h2>XHTML Super Heroes</h2>
<table border = “1”>

<tr>
<th>Hero</th>
<th>Power</th>
<th>Nemesis</th>

</tr>

<tr>
<td>The XMLator</td>
<td>Standards compliance</td>
<td>Sloppy Code Boy</td>

</tr>

<tr>
<td>Captain CSS</td>
<td>Super-layout</td>
<td>Lord Deprecated</td>

</tr>

Figure 4-5:
Tables are
useful for
certain
kinds of
data
represen-
tation.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 71

Building Tables72

<tr>
<td>Browser Woman</td>
<td>Mega-Compatibility</td>
<td>Ugly Code Monster</td>

</tr>

</table>
</body>

</html>

Defining the table
The XHTML table is defined with the <table></table> pair. It makes a lot
of sense to indent and space your code carefully so you can see the struc-
ture of the table in the code. Just by glancing at the code, you can guess that
the table consists of three rows and each row consists of three elements.

In a word processor, you typically create a blank table by defining the number
of rows and columns, and then fill it in. In XHTML, you define the table row
by row, and the number of columns is automatically determined by the
number of elements in each row. It’s up to you to make sure each row has
the same number of elements.

By default (in most browsers, anyway), tables don’t show their borders. If
you want to see basic table borders, you can turn on the table’s border
attribute. (An attribute is a special modifier you can attach to some tags.)

<table border = “1”>

This tag creates a table and specifies that it will have a border of size 1. If
you leave out the border = “1” business, some browsers display a border
and some don’t. You can set the border value to 0 or to a larger number. The
larger number makes a bigger border, like you see in Figure 4-6.

Although this method of making table borders is perfectly fine, I show a
much more flexible and powerful technique in Book II, Chapter 4.

It’s always a good idea to set a table border because you can’t count on
browsers to have the same default. Also, note that the border value always
goes in quotes. When you read about CSS in Book II (are you getting tired of
hearing that?), you discover how to add more complex and interesting bor-
ders than this simple attribute allows.

Adding your first row
After you define a table, you need to add some rows. Each row is indicated
by a <tr></tr> pair.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 72

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 73

Inside the <tr></tr> set, you need some table data. The first row often
consists of table headers. These are special cells that are formatted differ-
ently to indicate they’re labels, rather than data.

Table headers have some default formatting to help you remember
they’re headers, but you can change the way they look. You can change the
table header’s appearance in all kinds of great ways in Books II and III. Define
the table header so when you discover formatting and decide to make all
your table headers chartreuse, you’ll know where in the HTML code all
the table headers are.

Indent your headers inside the <tr> set. If your table contains three
columns, your first row might begin like this:

<tr>
<th></th>
<th></th>
<th></th>

</tr>

Place the text you want shown in the table headers between the <th> and
</th> elements. The contents appear in the order they’re defined.

Figure 4-6:
I set the
border
attribute
to 10.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 73

Building Tables74

Headings don’t have to be on the top row. If you want headings on the left,
just put a <th></th> as the first element of each row. You can have headings
at both the top and the left, if you want. In fact, you can have headings any-
where, but it usually makes sense to put headings only at the top or left.

Making your data rows
The next step is to create another row. The data rows are just like the heading
row, except they use <td></td> pairs, rather than <th></th> pairs, to
contain the data elements. A three-column table typically has blank rows
that look like this:

<tr>
<td></td>
<td></td>
<td></td>

</tr>

Place the data elements inside the <td></td> segments, and you’re ready
to go.

Building tables in the text editor
Some people think that tables are a good reason to use WYSIWYG (what you
see is what you get) editors because they think it’s hard to create tables in text
mode. You have to plan a little, but it’s really quite quick and easy to build an
HTML table without graphical tools if you follow this plan:

1. Plan ahead.

Know how many rows and columns will be in the table. It might help to
sketch it on paper first. Changing the number of rows later is easy, but
changing the number of columns can be a real pain after some of the
code has been written.

2. Create the headings.

If you’re going to start with a standard headings-on-top table, begin by
creating the heading row. Save, check, and validate. You don’t want mis-
takes to multiply when you add more complexity. This heading row tells
how many columns you’ll need.

3. Build a sample empty row.

Make a sample row with the correct number of td elements with one
<td></td> pair per line. Build one td set and use copy and paste to
copy this data cell as many times as you need. Make sure the number of
td pairs equals the number of th sets in the heading row.

4. Copy and paste the empty row to make as many rows as you need.

5. Save, view, and validate.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 74

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 75

Be sure everything looks right and validates properly before you put a
lot of effort into adding data.

6. Populate the table with the data you need.

Go row by row, adding the data between the <td></td> pairs.

7. Test and validate again to make sure you didn’t accidentally break
something.

Spanning rows and columns
Sometimes, you need a little more flexibility in your table design. Figure 4-7
shows a page from an evil overlord’s daily planner.

Being an evil overlord is clearly a complex business. From a code standpoint,
the items that take up more than one cell are the most interesting. Designing
traps takes two mornings, and improving the lair takes three. All Friday after-
noon and evening are spent on world domination. Take a look at the code,
and you’ll see how it works:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

Figure 4-7:
Some of
these
activities
take up
more than
one cell.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 75

Building Tables76

<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>tableSpan.html</title>

</head>

<body>
<h1>Using colspan and rowspan</h1>
<table border = “1”>

<caption>My Schedule</caption>
<tr>

<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>

</tr>

<tr>
<th>Breakfast</th>
<td>In lair</td>
<td>with cronies</td>
<td>In lair</td>
<td>in lair</td>
<td>in lair</td>

</tr>

<tr>
<th>Morning</th>
<td colspan = “2”>Design traps</td>
<td colspan = “3”>Improve Hideout</td> </tr>

<tr>
<th>Afternoon</th>
<td>train minions</td>
<td>train minions</td>
<td>train minions</td>
<td>train minions</td>
<td rowspan = “2”>world domination</td>

</tr>

<tr>
<th>Evening</th>
<td>maniacal laughter</td>
<td>maniacal laughter</td>
<td>maniacal laughter</td>
<td>maniacal laughter</td>

</tr>

</table>

</body>
</html>

The secret to making cells larger than the default is two special attributes:
rowspan and colspan.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 76

Book I
Chapter 4

M
anaging

Inform
ation w

ith
Lists and Tables

Building Tables 77

Spanning multiple columns

The morning activities tend to happen over several days. Designing traps
will take both Monday and Tuesday morning, and improving the hideout will
occupy the remaining three mornings. Take another look at the Morning row,
and you’ll see how this is done:

<tr>
<th>Morning</th>
<td colspan = “2”>Design traps</td>
<td colspan = “3”>Improve Hideout</td>

</tr>

The Design Traps cell spans over two normal columns. The colspan attrib-
ute tells how many columns this cell will take. The Improve Hideout cell has
a colspan of 3.

It’s important to note that the Morning row still takes up six columns. The
<th> is one column wide, like normal, but the Design Traps cell spans two
columns and the Improve Hideout cell takes three, which totals six columns
wide. If you increase the width of a cell, you need to eliminate some other
cells in the row to compensate.

Spanning multiple rows
A related property — rowspan — allows a cell to take up more than one row
of a table. Look back at the Friday column in Figure 4-7, and you’ll see the
World Domination cell takes up two time slots. (If world domination was
easy, everybody would do it.) Here’s the relevant code:

<tr>
<th>Afternoon</th>
<td>train minions</td>
<td>train minions</td>
<td>train minions</td>
<td>train minions</td>
<td rowspan = “2”>world domination</td>

</tr>

<tr>
<th>Evening</th>
<td>maniacal laughter</td>
<td>maniacal laughter</td>
<td>maniacal laughter</td>
<td>maniacal laughter</td>

</tr>

The Evening row has only five entries because the World Domination cell
extends into the space that would normally be occupied by a <td> pair.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 77

Building Tables78

If you want to use rowspan and colspan, don’t just hammer away at the
page in your editor. Sketch out what you want to accomplish first. I’m pretty
good at this stuff, and I still needed a sketch before I was able to create the
tableSpan code.

Avoiding the table-based layout trap
Tables are pretty great. They’re a terrific way to present certain kinds of
data. When you add the colspan and rowspan concepts, you can use tables
to create some pretty interesting layouts. In fact, because old-school HTML
didn’t really have any sort of layout technology, a lot of developers came up
with some pretty amazing layouts based on tables. You’ll still see a lot of Web
pages today designed with tables as the primary layout mechanism.

Using tables for layout causes some problems though, such as

✦ Tables aren’t meant for layout. Tables are designed for data presentation,
not layout. In order to make tables work for layout, you have to do a lot
of sneaky hacks, like tables nested inside other tables or invisible images
for spacing.

✦ The code becomes complicated fast. Tables involve a lot of HTML markup.
If the code involves tables nested inside each other, it’s very difficult to
remember which <td> element is related to which row of which table.
Table-based layouts are very difficult to modify by hand.

✦ Formatting is done cell by cell. A Web page could be composed of hun-
dreds of table cells. Making a change in the font or color often involves
making changes in hundreds of cells throughout the page. This makes
your page less flexible and harder to update.

✦ Presentation is tied tightly to data. A table-based layout tightly inter-
twines the data and its presentation. This runs counter to a primary goal
of Web design — separation of data from its presentation.

✦ Table-based layouts are hard to change. After you create a layout
based on tables, it’s very difficult to make modifications because all the
table cells have a potential effect on other cells.

✦ Table-based layouts cause problems for screen readers. People with visual
disabilities use special software to read Web pages. These screen readers
are well-adapted to read tables as they were intended (to manage tabular
data), but the screen readers have no way of knowing when the table is
being used as a layout technique rather than a data presentation tool. This
makes table-based layouts less compliant to accessibility standards.

Resist the temptation to use tables for layout. Use tables to do what they’re
designed for: data presentation. Book III is entirely about how to use CSS to
generate any kind of visual layout you might want. The CSS-based approaches
are easier, more dependable, and much more flexible.

08_186275 bk01ch04.qxp 3/28/08 10:40 PM Page 78

Chapter 5: Making Connections
with Links

In This Chapter
� Understanding hyperlinks

� Building the anchor tag

� Recognizing absolute and relative links

� Building internal links

� Creating lists of links

The basic concept of the hyperlink is pretty common today, but it was a
major breakthrough back in the day. The idea is still pretty phenomenal,

if you think about it: If you click a certain piece of text (or a designated
image, for that matter), your browser is instantly transported somewhere
else. The new destination might be on the same computer as the initial
page, or it could be literally anywhere in the world.

Any page is theoretically a threshold to any other page, and all information
has the ability to be linked. This is still a profound idea. In this chapter, you
discover how to add links to your pages.

Making Your Text Hyper
The hyperlink is truly a wonderful thing. Believe it or not, there was a time
when you had to manually type in the address of the Web page you wanted
to go to. Not so anymore. Figure 5-1 illustrates a page that describes some of
my favorite Web sites.

In Figure 5-1, the underlined words are hyperlinks. Clicking a hyperlink takes
you to the indicated Web site. Although this is undoubtedly familiar to you
as a Web user, a few details are necessary to make this mechanism work:

✦ Something must be linkable. There must be some text or other element
that provides a trigger for the linking behavior.

✦ Things that are links should look like links. This is actually pretty easy
to do when you write plain XHTML because all links have a standard (if
ugly) appearance. Links are usually underlined blue text. When you can

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 79

Making Your Text Hyper80

create color schemes, you may no longer want links to look like the
default appearance, but they should still be recognizable as links.

✦ The browser needs to know where to go. When the user clicks the link,
the browser is sent to some address somewhere on the Internet.
Sometimes, that address is visible on the page, but it doesn’t need to be.

✦ It should be possible to integrate links into text. In this example, each
link is part of a sentence. It should be possible to make some things act
like links without necessarily standing on their own (like heading tags do).

✦ The link’s appearance sometimes changes. Links sometimes begin as
blue underlined text, but after a link has been visited, the link is shown
in purple, instead. After you know CSS, you can change this behavior.

Of course, if your Web page mentions some other Web site, you should pro-
vide a link to that other Web site.

Figure 5-1:
You can
click the
links to visit
the other
sites.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 80

Book I
Chapter 5

M
aking

Connections
w

ith Links

Making Your Text Hyper 81

Introducing the anchor tag
The key to hypertext is an oddly-named tag called the anchor tag. This tag is
encased in an <a> set of tags and contains all the information needed
to manage links between pages.

The code for the basicLinks.html page is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>basicLinks.html</title>

</head>

<body>
<h1>Some of my favorite sites</h1>

<h2>Wikipedia</h2>
<p>

One of my favorite Web sites is called
wikipedia.
This terrific site allows ordinary users to enter
encyclopedia definitions. Over time, the entries
can be as reliable as a commercial encyclopedia,
and a lot more complete.

</p>

<h2>Dummies</h2>
<p>

You can find out a lot about upcoming and current
Dummies books at
www.dummies.com. You might even find this
book mentioned there.

</p>

<h2>PopURLS</h2>
<p>

Web 2.0 is all about social networking. If you want
to know what’s happening on the Internet today,
check out
popurls.com. This site aggregates a bunch of
social networking sites.

</p>

</body>
</html>

As you can see, the anchor tag is embedded into paragraphs. The text generally
flows around an anchor, and you can see the anchor code is embedded inside
the paragraphs.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 81

Making Your Text Hyper82

Comparing block-level and inline elements
All the tags described so far in this book have been block-level tags. Block-
level tags typically begin and end with carriage returns. For example, three
<h1> tags occupy three lines. Each <p></p> set has implied space above
and below it. Most XHTML tags are block-level.

Some tags are meant to be embedded inside block-level tags and don’t inter-
rupt the flow of the text. The anchor tag is one such tag. Anchors never
stand on their own in the HTML body. They’re meant to be embedded inside
block-level tags, like list items, paragraphs, and headings.

Analyzing an anchor
Take another look at the first link. It shows all the main parts of an anchor in
a pretty straightforward way:

wikipedia.

✦ The anchor tag itself: The anchor tag is simply the <a> pair. Note
that you don’t type the entire word anchor, just the a.

✦ The hypertext reference (href) attribute: Almost all anchors contain
this attribute. It’s very rare to write <a without href. The href attrib-
ute indicates a Web address will follow.

✦ A Web address in quotes: The address that the browser will follow is
encased in quotes. See the next section in this chapter for more informa-
tion on Web addresses. In this example, http://www.wikipedia.org
is the address.

✦ The text that appears as a link: The user will typically expect to click
specially formatted text. Any text that appears between the <a href>
part and the part is visible on the page and formatted as a link. In
this example, the word wikipedia is the linked text.

✦ The marker: This marker indicates that the text link is finished.

Introducing URLs
The special link addresses are a very important part of the Web. You probably
already type Web addresses into the address bar of your browser (www.
google.com), but you may not be completely aware of how they work. Web
addresses are technically URLs (Uniform Resource Locators), and they have
a very specific format.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 82

Book I
Chapter 5

M
aking

Connections
w

ith Links

Making Your Text Hyper 83

Sometimes, you’ll see the term URI (Uniform Resource Identifier) instead of URL.
URI is technically a more correct name for Web addresses, but the term URL
has caught on. The two terms are close enough to be interchangeable.

A URL usually contains the following parts:

✦ Protocol: A Web protocol is a standardized agreement on how communi-
cation occurs. The Web primarily uses HTTP (hypertext transfer protocol),
but occasionally, you encounter others. Most addresses begin with
http:// because this is the standard on the Web. Protocols usually end
with a colon and two slashes (://).

✦ Host name: It’s traditional to name your primary Web server www.
There’s no requirement for this, but it’s common enough that users
expect to type www right after the http:// stuff. Regardless, the text
right after http:// (and up to the first period) is the name of the actual
computer you’re linking to.

✦ Domain name: The last two or three characters indicate a particular
type of Web server. These letters can indicate useful information about
the type of organization that houses the page. Three-letter domains usu-
ally indicate the type of organization, and two-letter domains indicate a
country. Sometimes, you’ll even see a combination of the two. See Table
5-1 for a list of common domain names.

✦ Subdomain: Everything between the host name (usually www) and the
domain name (often .com) is the subdomain. This is used so that large
organizations can have multiple servers on the same domain. For exam-
ple, my department Web page is http://www.cs.iupui.edu. www is
the name of the primary server, and this is the computer science depart-
ment at IUPUI (Indiana University–Purdue University Indianapolis),
which is an educational organization.

✦ Page name: Sometimes, an address specifies a particular document on
the Web. This page name follows the address and usually ends with
.html. Sometimes, the page name includes subdirectories and user-
name information, as well. For example, my Web design course is in the
N241 directory of my (aharris) space at IUPUI, so its full address is
http://www.cs.iupui.edu/~aharris/n241/index.html.

✦ Username: Some Web servers are set up with multiple users.
Sometimes, an address will indicate a specific user’s account with a tilde
(~) character. My address has ~aharris in it to indicate the page is
found in my (aharris) account on the machine.

The page name is sometimes optional. Many servers have a special name
set up as the default page, which appears if no other name is specified.
This name is usually index.html but sometimes home.htm. On my
server, index.html is the default name, so I usually just point to
www.cs.iupui.edu/~aharris/n241, and the index page appears.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 83

Making Lists of Links84

Table 5-1 Common Domain Names
Domain Explanation

.org Non-profit institution

.com Commercial enterprise

.edu Educational institution

.gov Governing body

.ca Canada

.uk United Kingdom

.tv Tuvalu

Making Lists of Links
Many Web pages turn out to be lists of links. Because lists and links go so well
together, it’s good to look at an example. Figure 5-2 illustrates a list of links.

Figure 5-2:
It’s very
common to
put links
in a list.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 84

Book I
Chapter 5

M
aking

Connections
w

ith Links

Working with Absolute and Relative References 85

There’s no new code to figure out in this example, but the page shows some
interesting components:

✦ The list: An ordinary unordered list.

✦ Links: Each list item contains a link. The link has a reference (which you
can’t see immediately) and linkable text (which is marked like an ordinary
link).

✦ Descriptive text: After each link is some ordinary text that describes the
link. It’s very common to write some text to accompany the actual link.

This code shows the way this page is organized:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>listLinks.html</title>

</head>

<body>
<h1>Some great Web development sites</h1>

Firefox
The Web developer’s browser

aptana
A really great editor

CSS zen garden
A place to see amazing Web designs

</body>

</html>

The indentation is interesting here. Each list item contains an anchor and
some descriptive text. To keep it all organized, Web developers tend to place
the anchor inside the list item. The address sometimes goes on a new line if
it’s long, with the anchor text on a new line and the description on succeed-
ing lines. I normally put the tag at the end of the last line, so the begin-
ning tags look like the bullets of an unordered list. This makes it easier
to find your place when editing a list later.

Working with Absolute and Relative References
There’s more than one kind of address. So far, you’ve seen only absolute ref-
erences, used for links to outside pages. There’s another kind of reference —
a relative reference — used to link multiple pages inside your own Web site.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 85

Working with Absolute and Relative References86

Understanding absolute references
The type of link used in basicLinks.html is an absolute reference.
Absolute references always begin with the protocol name (usually
http://). An absolute reference is the complete address to a Web page, just
like you’d use in the browser’s address bar. Absolute references are used to
refer to a site somewhere else on the Internet. Even if your Web site moves
(say, from your desktop machine to a Web server somewhere on the
Internet), all the absolute references will work fine because they don’t rely
on the current page’s position for any information.

Introducing relative references
Relative references are used when your Web site includes more than one
page. You might choose to have several pages and a link mechanism for
moving among them. Figure 5-3 shows a page with several links on it.

The page isn’t so interesting on its own, but it isn’t meant to stand alone.
When you click one of the links, you go to a brand-new page. Figure 5-4
shows what happens when you click the market link.

Figure 5-3:
These little
piggies sure
get
around. . . .

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 86

Book I
Chapter 5

M
aking

Connections
w

ith Links

Working with Absolute and Relative References 87

The market page is pretty simple, but it also contains a link back to the ini-
tial page. Most Web sites aren’t single pages at all, but an interconnected
web of pages. The relative reference is very useful when you have a set of
pages with interlacing links.

The code for pigs.html shows how relative references work:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>pigs.html</title>

</head>

<body>
<h1>Destinations of Porcine Mammals</h1>

This little pig went to
market

This little pig stayed
home.

This little pig had
roast beef

This little pig had
none.

This little pig went
’wee wee wee’

Figure 5-4:
The market
page lets
you move
back.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 87

Working with Absolute and Relative References88

all the way home.

</body>
</html>

Most of the code is completely familiar. The only thing surprising is what’s
not there. Take a closer look at one of the links:

home.

Note there’s no protocol (the http:// part) and no address at all, just a file-
name. This is a relative reference. Relative references work by assuming the
address of the current page. When the user clicks market.html, the
browser sees no protocol, so it assumes that market.html is in the same
directory on the same server as pigs.html.

Relative references work like directions. For example, if you’re in my lab and
ask where the water fountain is, I’d say, “Go out into the hallway, turn left, and
turn left again at the end of the next hallway.” Those directions get you to the
water fountain if you start in the right place. If you’re someplace else and you
follow the same directions, you don’t really know where you’ll end up.

Relative references work well when you have a bunch of interconnected Web
pages. If you make a lot of pages about the same topic and put them in the
same directory, you can use relative references between the pages. If you
decide to move your pages to another server, all the links still work correctly.

In Book VIII, you discover how to set up a permanent Web server. It’s often
most convenient to create and modify your pages on the local machine and
then ship them to the Web server for the world to see. If you use relative ref-
erences, it’s easy to move a group of pages together and know the links will
still work.

If you’re referring to a page on somebody else’s site, you have to use an
absolute reference. If you’re linking to another page on your site, you typi-
cally use a relative reference.

09_186275 bk01ch05.qxp 3/28/08 10:41 PM Page 88

Chapter 6: Adding Images

In This Chapter
� Understanding the main uses of images

� Choosing an image format

� Creating inline images

� Using IrfanView and other image software

� Changing image sizes

� Modifying images with filters

You have the basics of text, but pages without images are . . . well, a little
boring. Pictures do a lot for a Web page, and they’re not that hard to work

with. Still, you should know some things about using pictures in your pages. In
this chapter, you get all the fundamentals of adding images to your pages.

Adding Images to Your Pages
Every time you explore the Web, you’re bound to run into tons of pictures
on just about every page you visit. Images are typically used in four different
ways on Web pages:

✦ External link: The page has text with a link embedded in it. When the
user clicks the link, the image replaces the page in the Web browser. To
make an externally linked image, just make an ordinary link (as I describe
in Chapter 5 of this minibook) but point toward an image file, rather
than an HTML (HyperText Markup Language) file.

✦ Embedded images: The image is embedded into the page directly. The
text of the page usually flows around the image. This is the most common
type of image used on the Web.

✦ Background images: An image can be used as a background for the
entire page or for a specific part of the page. Images usually require
some special manipulation to make them suitable for background use.

✦ Custom bullets: With CSS, you can assign a small image to be a bullet
for an ordered or unordered list. This allows you to make any kind of
customized list markers you can draw.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 89

Adding Images to Your Pages90

The techniques you read about in this chapter apply to all type of images,
but a couple of specific applications (such as backgrounds and bullets) use
CSS. For details on using images in CSS, see Book II, Chapter 4.

Adding links to images
The easiest way to incorporate images is to simply make a link to them.
Figure 6-1 shows a page called externalImage.html.

The page’s code isn’t much more than a simple link:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>externalImage.html</title>

</head>

<body>
<h1>Linking to an External Image</h1>
<p>

Susan B. Constant

</p>

</body>
</html>

Note that the href points to an image file, not an HTML page. You can point
to any type of file you want in an anchor tag. If the browser knows the file type
(for example, HTML and standard image formats), the browser displays the
file directly. If the browser doesn’t know the file format, the user’s computer
tries to display the file using whatever program it normally uses to open that
type of file.

See Chapter 5 of this minibook for a discussion of anchor tags if you need a
refresher.

This works fine for most images because the image is displayed directly in
the browser.

You can use this anchor trick with any kind of file, but the results can be very
unpredictable. If you use the link trick to point to some odd file format, there’s
no guarantee the user has the appropriate software to view it. It’s generally best
to save this trick for very common formats, like GIF and JPG. (If these formats
are unfamiliar to you, they are described later in this chapter.)

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 90

Book I
Chapter 6

Adding Im
ages

Adding Images to Your Pages 91

Note that most browsers automatically resize the image to fit the browser
size. This means a large image may appear to be smaller than it really is, but
the user still has to wait for the entire image to download.

Because this is a relative reference, the indicated image must be in the same
directory as the HTML file. When the user clicks the link, the page is
replaced by the image, as shown in Figure 6-2.

External links are easy to create, but they have some problems:

✦ They don’t preview the image. The user has only the text description to
figure out what the picture might be.

✦ They interrupt the flow. If the page contains a series of images, the user
has to keep leaving the page to view images.

✦ The user must back up to return to the main page. The image looks like
a Web page, but it isn’t. No links or other explanatory text in the image
indicate how to get back to the Web page. Most users know to click the
browser’s Back button, but don’t assume they all know what to do.

Figure 6-1:
This page
has a link to
an image.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 91

Adding Images to Your Pages92

Adding inline images using the tag
The alternative to providing links to images is to embed your images directly
into the page. Figure 6-3 displays an example of this technique.

The code shows how this image was included into the page:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>embeddedImage.html</title>

</head>

<body>
<h1>The Susan B. Constant</h1>
<p>

<img src = “shipStandard.jpg”
height = “480”
width = “640”
alt = “Susan B. Constant” />

</p>

<p>

Figure 6-2:
The image
appears in
place of the
page.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 92

Book I
Chapter 6

Adding Im
ages

Adding Images to Your Pages 93

The Susan B. Constant was flagship of the fleet of three
small ships that brought settlers to Jamestown, the first successful
English Colony in the new world. This is a replica housed
near Jamestown, Virginia.

</p>
</body>

</html>

The image (img) tag is the star of this page. This tag allows you to grab an
image file and incorporate it into the page directly. The image tag is a one-
shot tag. It doesn’t end with . Instead, use the /> characters at the
end of the img definition to indicate that this tag doesn’t have content.

You might have noticed that I italicized Susan B. Constant in the page, and I
used the tag to get this effect. stands for emphasis, and
means strong emphasis. By default, any text within an pair is itali-
cized, and text is boldfaced. Of course, you can change
this behavior with CSS.

The image tag has a number of important attributes, which I discuss in the
following sections.

Figure 6-3:
The ship
image is
embedded
directly into
the page.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 93

Choosing an Image Manipulation Tool94

src (source)
The src attribute allows you to indicate the URL (Uniform Resource
Locator) of the image. This can be an absolute or relative reference. Linking
to an image on your own system is generally best because you can’t be sure
an external image will still be there when the user gets to the page. (For
more on reference types, turn to Chapter 5 of this minibook.)

height and width
These attributes are used to indicate the size of the image. The browser uses
this information to indicate how much space to reserve on the page.

It’s tempting to use the height and width attributes to change the size of
the image on the Web page — this is a bad idea. Change the image size with
your image editor (I show you how later in this chapter). If you use the height
and width attributes, the user has to wait for the full image, even if she’ll see a
smaller version. Don’t make the user wait for information she won’t see. If you
use these attributes to make the image larger than its default size, the resulting
image has poor resolution. Find the image’s actual size by looking at it in
your image tool and use these values. If you leave out height and width,
the browser determines the size automatically, but you aren’t guaranteed to
see the text until all the images have downloaded. Adding these attributes lets
the browser format the page without waiting for the images.

alt (alternate text)
The alt attribute gives you an opportunity to specify alternate text describ-
ing the image. Alternate text information is used when the user has images
turned off and by screen readers. Internet Explorer (IE) automatically cre-
ates a ToolTip (floating text) based on the alternate text.

You can actually add a floating ToolTip to any element using the title
attribute. This works in all standards-compliant browsers, with nearly any
HTML element.

Keep in mind, the alt attribute is required on all images if you want to vali-
date XHTML Strict.

Note that the tag is an inline tag, so it needs to be embedded inside a
block-level tag, like a <p> or .

Choosing an Image Manipulation Tool
You can’t just grab any old picture off your digital camera and expect it to work
on a Web page. The picture might work, but it could cause problems for your
viewers. It’s important to understand a few important ideas about images on

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 94

Book I
Chapter 6

Adding Im
ages

Choosing an Image Manipulation Tool 95

the computer. Digital images (any kind of images you see on a computer or
similar device) are different than the kind of images you see on paper.

An image is worth 3.4 million words!
Digital cameras and scanners are amazing these days. Even moderately priced
cameras can now approach the resolution of old-school analog cameras.
Scanners are also capable of taking traditional images and converting them
into digital formats that computers use. In both cases, though, the default
image can be in a format that causes problems. Digital images are stored as a
series of dots, or pixels. In print, the dots are very close together, but com-
puter screens have larger dots. Figure 6-4 shows the ship image as it looks
straight from the digital camera.

My camera handles pictures at 6 megapixels (MP). That’s a pretty good reso-
lution, and it sounds very good in the electronics store. If I print that picture
on paper, all those dots are very tiny, and I get a nice picture. If I try to show
the same picture on the computer screen, I see only one corner. This actual
picture came out at 2,816 pixels wide by 2,112 pixels tall. You only see a small
corner of the image because the screen shots for this book are taken at
1024 x 768 pixels. Less than a quarter of the image is visible.

Figure 6-4:
Wow. That
doesn’t look
like much.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 95

Choosing an Image Manipulation Tool96

When you look at a large image in most browsers, it’s automatically resized
to fit the page. The cursor usually turns into some kind of magnifying glass,
and if you click the image, you can see it in its full size or the smaller size.

Some image viewers take very large images and automatically resize them so
they fit the screen. (This is the default behavior of Windows’ default image
viewer and most browsers.) The image may appear to be a reasonable size
because of this feature, but it’ll be huge and difficult to download in an actual
Web page. Make sure you know the actual size of an image before you use it.

It’s obvious that you need to shrink an image so it’s all visible, but there’s an
even more compelling reason. Each pixel on the screen requires three bytes
of computer memory. (A byte is the basic unit of memory in a computer.) For
comparison purposes, one character of text requires roughly one byte. The
uncompressed image of the ship weighs a whopping 17 megabytes (MB). If
you think of a word as five characters long, one picture straight from the dig-
ital camera takes up the same amount of storage space and transmission
time as roughly 3,400,000 words. This image requires nearly three minutes to
download on a 56K modem!

In a Web page, small images are often shown at about 320 x 240 pixels, and
larger images are often 640 x 480 pixels. If I use software to resample the image
to the size I actually need and use an appropriate compression algorithm, I
can get the image to look like Figure 6-5.

Figure 6-5:
The resized
image is
a lot more
manage-
able.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 96

Book I
Chapter 6

Adding Im
ages

Choosing an Image Manipulation Tool 97

The new version of the image is the size and file format I need, it looks just
as good, and it weighs a much more reasonable 88 kilobytes. That’s 2 per-
cent of the original image size.

Although this picture is a lot smaller than the original image, it still takes up
a lot more memory than text. Even this smaller image takes up as much
transmission time and storage space as 1,600 words! It still takes 10 seconds
to download on a 56K modem. Use images wisely.

Images are great, but keep some things in mind when you use them:

✦ Make sure the images are worth displaying. Don’t use a picture without
some good reason because each picture makes your page dramatically
slower to access.

✦ Use software to resize your image. Later in this chapter, I show you how
to use free software to change the image to exactly the size you need.

✦ Use a compressed format. Images are almost never used in their native
format on the Web because they’re just too large. Several formats have
emerged that are useful for working with various types of images. I
describe these formats in the section “Choosing an Image Format,” later
in this chapter.

If you’re curious how I determined the download speed of these images, it’s
pretty easy. The Web Developer toolbar (which I mention in Chapter 3 of this
minibook) has a View Speed Report option on the Tools menu that does the
job for you.

Introducing IrfanView
IrfanView, by Irfan Skiljan, is a freeware program that can handle your basic
image manipulation needs and quite a bit more. I used it for all the screen-
shots in this book, and I use it as my primary image viewer. A copy is included
on the CD-ROM that accompanies this book, or you can get a copy at www.
irfanview.net. Of course, you can use any software you want, but if some-
thing’s really good and free, it’s a great place to start. In the rest of this chap-
ter, I show you how to do all the main image processing jobs with IrfanView,
but you can use any image editor you want.

A Web developer needs to have an image manipulation program to help with
all these chores. Like other Web development tools, you can pay quite a bit
for an image manipulation tool, but you don’t have to. Your image tool
should have at least the following capabilities:

✦ Resizing: Web pages require smaller images than printing on paper. You
need a tool that allows you to resize your image to a specific size for
Web display.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 97

Choosing an Image Format98

✦ Saving to different formats: There’s a dizzying number of image formats
available, but only three formats work reliably on the Web (which I dis-
cuss in the next section). You need a tool that can take images in a wide
variety of formats and reliably switch it to a Web-friendly format.

✦ Cropping: You may want only a small part of the original picture. A crop-
ping tool allows you to extract a rectangular region from an image.

✦ Filters: You may find it necessary to modify your image in some way. You
may want to reduce red-eye, lighten or darken your image, or adjust the
colors. Sometimes, images can be improved with sharpen or blur filters,
or more artistic filters like canvas or oil-painting tools.

✦ Batch processing: You may have a number of images you want to work
with at once. A batch processing utility can perform an operation on a
large number of images at once, as you see later in this chapter.

You may want some other capabilities, too, such as the ability to make
composite images, images with transparency, and more powerful effects. You
can use commercial tools or the excellent open-source program Gimp, which
is included on the CD-ROM. This chapter focuses on IrfanView because it’s
simpler, but investigate Gimp (or its cousin GimpShop, for people used to
Photoshop) for a more complete and even more powerful tool. I use IrfanView
for basic processing, and I use Gimp when I need a little more power.

Here are a few free alternatives if you want some other great software to try:

✦ XnView: Similar to IrfanView, allows you to preview and modify pictures
in hundreds of formats, create thumbnails, and more.

✦ Pixia: A full-blown graphic editor from Japan. Very powerful.

✦ GimpShop: A version of Gimp modified to have menus like Photoshop.

✦ Paint.net: A powerful Windows-only paint program.

Use Google or another search engine to locate any of these programs.

Choosing an Image Format
Almost nobody uses raw images on the Web because they’re just too big and
unwieldy. Web images are usually compressed to take up less space. All the
different types of image files you see in the computer world (BMP, JPG, GIF,
and so on) are essentially different ways to make an image file smaller. Not
all the formats work on the Web, and they have different characteristics, so
it’s good to know a little more about them.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 98

Book I
Chapter 6

Adding Im
ages

Choosing an Image Format 99

BMP
The BMP format is Microsoft’s standard image format. Although it’s compressed
sometimes, usually it isn’t. The BMP format creates very detailed images
with little to no compression, and the file is often too large to use on the
Web. Many Web browsers can handle BMP images, but you shouldn’t use
them. Convert to one of the other formats, instead.

JPG/JPEG
The JPG format (sometimes also called JPEG) is a relatively old format
designed by the Joint Photographic Experts Group. (Get it? JPEG!) It works
by throwing away data that’s less important to human perception. Every
time you save an image in the JPG format, you lose a little information. This
sounds terrible, but it really isn’t. The same image that came up as 13MB in
its raw format is squeezed down to 1.5MB when stored as a JPG. Most people
can’t tell the difference between the compressed and non-compressed version
of the image by looking at them.

The JPG algorithm focuses on the parts of the image that are important to
perception (brightness and contrast, for example) and throws away data
that isn’t as important (much of the color data is actually thrown away, but
the colors are re-created in an elaborate optical illusion).

JPG works best on photographic-style images with a lot of color and detail.
Many digital cameras save images directly as JPGs.

One part of the JPG process allows you to determine the amount of compres-
sion. When you save an image as a JPG, you can often determine the quality
on a scale between accuracy and compression.

Even if you choose 100-percent accuracy, the file is still greatly compressed.
The adjustable compression operates only on a small part of the process.
Compressing the file too much can cause visible square shadows, or arti-
facts. Experiment with your images to see how much compression they can
take and still look like the original.

Keep a high-quality original around when you’re making JPG versions of an
image because each copy loses some detail. If you make a JPG from a JPG
that came from another JPG, the loss of detail starts to add up, and the pic-
ture loses some visual quality.

GIF
The GIF format was developed originally for CompuServe, way before the
Web was invented. This format was a breakthrough in its time, and it still has
some great characteristics.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 99

Choosing an Image Format100

GIF is a lossless algorithm, so potentially no data is lost when converting an
image to GIF (compare that to the lossy JPG format). GIF does its magic with
a color palette trick and a run-length encoding trick.

The color palette works like a paint-by-number set where an image has a
series of numbers printed on it, and each of the paint colors has a corre-
sponding number. What happens in a GIF image is similar. GIF images have a
list of 256 colors, automatically chosen from the image. Each of the colors is
given a number. A raw (uncompressed) image requires 3 bytes of informa-
tion for each pixel (1 each to determine the amount of red, green, and blue).
In a GIF image, all that information is stored one time in the color palette.
The image itself contains a bunch of references to the color palette.

For example, if blue is stored as color 1 in the palette, a strip of blue might
look like this:

1, 1, 1, 1, 1, 1, 1, 1, 1, 1

GIF uses its other trick — run-length encoding — when it sees a list of identi-
cal colors. Rather than store the above value as 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, the
GIF format can specify a list of 10 ones. That’s the general idea of run-length
encoding. The ship image in this example weighs 2.92MB as a full-size GIF image.

The GIF format works best for images with a relatively small number of
colors and large areas of the same color. Most drawings you make in a draw-
ing program convert very well to the GIF format. Photos aren’t ideal because
they usually have more than 256 colors in them, and the subtle changes in
color mean there are very few solid blotches of color to take advantage of
run-length encoding.

GIF does have a couple of really great advantages that keep it popular. First,
a GIF image can have a transparent color defined. Typically, you’ll choose
some awful color not found in nature (kind of like choosing bridesmaid
dresses) to be the transparent color. Then, when the GIF encounters a pixel
that color, it displays whatever is underneath instead. This is a crude but
effective form of transparency. Figure 6-6 shows an image with transparency.

Whenever you see an image on a Web page that doesn’t appear to be rectan-
gular, there’s a good chance the image is a GIF. The image is still a rectangle,
but it has transparency to make it look more organic. Typically, whatever
color you set as the background color when you save a GIF becomes the
transparent color.

Creating a complex transparent background, like the statue, requires a more
complex tool than IrfanView. I used Gimp, but any high-end graphics tool can
do the job. IrfanView is more suited to operations that work on the entire image.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 100

Book I
Chapter 6

Adding Im
ages

Choosing an Image Format 101

Another interesting feature of GIF is the ability to create animations. Animated
GIFs are a series of images stored in the same file. You can embed information,
determining the interval between images. You can create animated GIFs with
Gimp, which is included on the CD-ROM.

Animated GIFs were heavily over-used in the early days of the Web, and
many now consider them the mark of an amateur. Nobody really thinks that
animated mailbox is cute anymore.

For awhile, there were some legal encumbrances regarding a part of the GIF
scheme. The owners of this algorithm tried to impose a license fee. This was
passed on to people using commercial software but became a big problem
for free software creators.

Fortunately, it appears that the legal complications have been resolved for
now. Still, you’ll see a lot of open-software advocates avoiding the GIF algo-
rithm altogether because of this problem.

Figure 6-6:
This statue
is a GIF
with trans-
parency.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 101

Choosing an Image Format102

PNG
Open-source software advocates created a new image format that combines
some of the best features of both JPG and GIF, with no legal problems. The
resulting format is Portable Network Graphics, or PNG. This format has a
number of interesting features, such as

✦ Lossless compression: Like GIF, PNG stores data without losing any
information.

✦ Dynamic color palette: PNG supports as many colors as you want. You
aren’t limited to 256 colors like you are in GIF.

✦ No software patents: The underlying technology of PNG is completely
open source, with no worries about whether somebody will try to
enforce a copyright down the road.

✦ True alpha transparency: The PNG format has a more sophisticated
form of transparency than GIF. Each pixel can be stored with an alpha
value. Alpha refers to the amount of transparency. The alpha can be
adjusted from completely transparent to completely opaque.

With all its advantages, you might expect PNG to be the most popular image
format on the Web. Surprisingly, it’s been slow to catch on. The main reason
for this is spotty support for PNG in Internet Explorer (IE). Even the latest
version of IE doesn’t support PNG’s alpha transparency correctly.

Summary of Web image formats
All these formats may seem overwhelming, but it’s pretty easy to choose an
image format because each format has its own advantages and disadvantages:

✦ GIF is best when you need transparency or animation. Avoid using GIF on
photos, as you won’t get optimal compression, and you’ll lose color data.

✦ JPG is most useful for photographic images, which are best suited for
the JPG compression technique. However, keep in mind that JPG isn’t
suitable for images that require transparency. Text in JPG images tends
to become difficult to read because of the lossy compression technique.

✦ PNG is useful in most situations, but be aware that IE doesn’t handle
PNG transparency correctly. (You sometimes see strange color blotches
where you expect transparency.)

✦ BMP and other formats should be avoided entirely. Although you can
make other formats work in certain circumstances, there’s no good
reason to use any other image formats most of the time.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 102

Book I
Chapter 6

Adding Im
ages

Manipulating Your Images 103

Manipulating Your Images
All this talk of compression algorithms and resizing images may be dandy,
but how do you do it?

Fortunately, IrfanView can do nearly anything you need for free. IrfanView
has nice features for all the main types of image manipulation you need.

Changing formats in IrfanView
Changing image formats with IrfanView is really easy. For example, find an
image file on your computer and follow these steps:

1. Load the image into IrfanView by dragging the image into IrfanView
or using the menu File➪Open command.

2. Make any changes you may want to the image before saving.

3. Use the File➪Save As command to save the file.

4. Pick the image format from the Save Picture As dialog box, as shown
in Figure 6-7.

5. Save the file with a new filename.

Keep the original file and save any changes in a new file. That way, you
don’t overwrite the original file. This is especially important if you’re
converting to JPG because each successive save of a JPG causes some
image loss.

Coming soon — vector formats
Here’s another form of image format that will
hopefully gain more prominence in the future.
All the formats described so far are raster-
based image formats. This type of image stores
an image as a series of dots. Vector-based
image formats use formulas to store the
instructions to draw an image. Certain kinds of
images (especially charts and basic line art)

can be far more efficient when stored as vector
formats. Unfortunately, IE and Firefox support
different and incompatible vector formats, so it
doesn’t look like vector-based images will be a
factor soon. Flash also uses vector-based tech-
niques, but this technique requires expensive
proprietary software to create vector images
and a third-party plugin to use them.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 103

Manipulating Your Images104

Don’t use spaces in your filenames. Your files may move to other computers
on the Internet, and some computers have trouble with spaces. It’s best to
avoid spaces and punctuation (except the underscore character) on any files
that will be used on the Internet.

Resizing your images
All the other image-manipulation tricks may be optional, but you should
really resize your images. Although high-speed modems may have no trouble
with a huge image, nothing makes a Web page inaccessible to dialup users
faster than bloated image sizes.

To resize an image with IrfanView, perform the following steps:

1. Load the image into IrfanView.

You can do this by dragging the image onto the IrfanView icon, dragging
into an open instance of IrfanView, or using the menus within IrfanView.

2. From the Image menu, choose Resize/Resample.

You can also use Ctrl+R for this step. Figure 6-8 shows the resulting
dialog box.

Figure 6-7:
IrfanView
can save in
all these
formats.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 104

Book I
Chapter 6

Adding Im
ages

Manipulating Your Images 105

3. Determine the new image size.

A number of standard image sizes are available. 800 x 600 pixels will
create a large image in most browsers. If you want the image smaller,
you need to enter a size directly in the text boxes. Images embedded in
Web pages are often 320 pixels wide by 240 pixels tall. That’s a very
good starting point. Anything smaller will be hard to see, and anything
larger might take up too much screen space.

4. Preserve the aspect ratio using the provided check box.

This makes sure the ratio between height and width is maintained.
Otherwise, the image may be distorted.

5. Save the resulting image as a new file.

When you make an image smaller, you lose data. That’s perfectly fine for
the version you put on the Web, but you should hang on to the original
large image in case you want to resize again.

6. Resample, rather than resize.

Resampling is a slower but more accurate technique for changing the
image size. This is IrfanView’s default behavior, so leave it alone. It’s still
quite fast on a modern computer. The default (Lanczos) filter is fine,
although you can experiment with other filters to get a faster conversion,
if you want.

Figure 6-8:
IrfanView’s
Resize/
Resample
Image
dialog box.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 105

Manipulating Your Images106

Enhancing image colors
Sometimes, you can make improvements to an image by modifying the
colors. The Enhance Colors dialog box on the Images menu gives you a wide
range of options, as shown in Figure 6-9.

You can do a surprising number of helpful operations on an image with this
tool:

✦ Brightness: When adjusted to a higher value, the image becomes closer
to white. When adjusted to a negative value, the image becomes closer
to black. This is useful when you want to make an image lighter or
darker for use as a background image.

If your image is too dark or too bright, you may be tempted to use the
Brightness feature to fix it. The Gamma Correction feature described
later in this section is more useful for this task.

✦ Contrast: You usually use the Contrast feature in conjunction with the
Brightness feature to adjust an image. Sometimes, an image can be
improved with small amounts of contrast adjustments.

Figure 6-9:
You can
change
several
options in
the Enhance
Colors
dialog box.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 106

Book I
Chapter 6

Adding Im
ages

Manipulating Your Images 107

✦ Color Balance: Sometimes, an image has poor color balance (for example,
indoor lighting sometimes creates a bluish cast). You can adjust the
amount of red, green, and blue with a series of sliders. The easiest way
to manage color balance is to look at a part of the image that’s supposed
to be white and play with the slider until it looks truly white.

✦ Gamma Correction: This is used to correct an image that is too dark or
too light. Unlike the Brightness adjustment, Gamma Correction automati-
cally adjusts the contrast. Small adjustments to this slider can sometimes
fix images that are a little too dark or too light.

✦ Saturation: When saturation is at its smallest value, the image becomes
black and white. At its largest value, the colors are enhanced. Use this
control to create a grayscale image or to enhance colors for artistic effect.

Using built-in effects
IrfanView has a few other effects available that can sometimes be extremely
useful. These effects can be found individually on the Image menu or with
the Effects browser on the Image menu. The Effects browser (as shown in
Figure 6-10) is often a better choice because it gives you a little more control
of most effects and provides interactive feedback on what the effect will do.
Effects are sometimes called filters because they pass the original image
through a math function, which acts like a filter or processor to create the
modified output.

Figure 6-10:
The Effects
browser lets
you choose
special
effects.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 107

Manipulating Your Images108

Here’s a run-down of some of the effects and when you would use them:

✦ None: Just for comparison purposes, Figure 6-11 shows the ship image
with no filters turned on.

I’ve exaggerated the effects for illustration purposes, but it may still be
difficult to see the full effect of these filters on the printed page. The
grayscale images in this book are a poor representation of the actual
color images. Use the images in this chapter as a starting point, but to
understand these filters, you really need to experiment with your own
images in IrfanView or a similar tool.

✦ Blur: This filter reduces contrast between adjacent pixels. (Really, we
could go over the math, but let’s leave that for another day, huh?) You
might wonder why you’d make an image more blurry on purpose.
Sometimes, the blur filter can fix graininess in an image. You can also
use blur in conjunction with sharpen (which I cover in just a moment) to
fix small flaws in an image. I applied the blur filter to the standard ship
image in Figure 6-12.

✦ Sharpen: The opposite of blur, the sharpen filter enhances the contrast
between adjacent pixels. When used carefully, it can sometimes improve
an image. The sharpen filter is most effective in conjunction with the
blur filter to remove small artifacts. Figure 6-13 shows the ship image
with the sharpen filter applied.

Figure 6-11:
Here’s the
standard
ship image,
at full-
screen
resolution.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 108

Book I
Chapter 6

Adding Im
ages

Manipulating Your Images 109

Figure 6-13:
The sharpen
filter
increases
contrast.

Figure 6-12:
The blur
filter
reduces
contrast.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 109

Manipulating Your Images110

If you believe crime shows on TV, you can take a blurry image and keep
applying a sharpen filter to read a license plate on a blurry image from a
security camera. However, it just doesn’t usually work that way. You
can’t make detail emerge from junk, but sometimes, you can make small
improvements.

✦ Emboss: This filter creates a grayscale image that looks like embossed
metal, as shown in Figure 6-14. Sometimes, embossing can convert an
image into a useful background image because embossed images have
low contrast. You can use the Enhance Colors dialog box to change the
gray embossed image to a more appealing color.

✦ Oil paint: This filter applies a texture reminiscent of an oil painting to an
image, as shown in Figure 6-15. It can sometimes clean up a picture and
give it a more artistic appearance. The higher settings make the painting
more abstract.

✦ 3D button: This feature can be used to create an image, like Figure 6-16,
that appears to be a button sticking up from the page. This will be useful
later when you figure out how to use CSS or JavaScript to swap images for
virtual buttons. You can set the apparent height of the image in the filter.
Normally, you apply this filter to smaller images that you intend to make
into buttons the user can click.

Figure 6-14:
Embossing
creates a
low-
contrast 3D
effect.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 110

Book I
Chapter 6

Adding Im
ages

Manipulating Your Images 111

Figure 6-16:
The image
appears to
stick up
from the
page like
a button.

Figure 6-15:
Oil painting
makes an
image
slightly
more
abstract.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 111

Manipulating Your Images112

✦ Red-eye reduction: You use this filter to fix a common problem with
flash photography. Sometimes, a person’s eyes appear to have a reddish
tinge to them. Unlike the other filters, this one is easiest to access directly
from the Image menu. Use the mouse to select the red portion of the
image and then apply the filter to turn the red areas black. It’s best not
to perform this filter on the entire image because you may inadvertently
turn other red things to black.

Other effects you can use
Many more effects and filters are available. IrfanView has a few more built in
that you can experiment with. You can also download a huge number of
effects in the Adobe Photoshop 8BF format. These effects filters can often be
used directly in IrfanView and other image-manipulation programs.

Some effects allow you to explode the image, add sparkles, map images onto
3D shapes, create old-time sepia effects, and much more.

If you want to do even more image manipulation, consider a full-blown image
editor. Adobe Photoshop is the industry standard, but Gimp is an open-
source alternative (included on the CD-ROM) that does almost as much.

Batch processing
Often, you’ll have a lot of images to modify at once. IrfanView has a wonder-
ful batch-processing tool that allows you to work on several images at once. I
frequently use this tool to take all the images I want to use on a page and
convert them to a particular size and format. The process seems a little com-
plicated, but after you get used to it, you can quickly and easily modify a
large number of images at once.

If you want to convert a large number of images at the same time, follow
these steps:

1. Identify the original images and place them in one directory.

I find it easiest to gather all the images into one directory, whether they
come from a digital camera, scanner, or other device.

2. Open the Batch Conversion dialog box by choosing File➪Batch
Conversion — Rename.

This Batch Conversion dialog box looks like Figure 6-17.

3. Find your original images by navigating the directory window in the
Batch Conversion dialog box.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 112

Book I
Chapter 6

Adding Im
ages

Manipulating Your Images 113

4. Copy your images to the Input Files workspace by clicking the Add
button.

Select the images you want to modify and press the Add button.
The selected image names are copied to the Input Files workspace.

5. Specify the output directory.

If you want to put the new images in the same directory as the input
files, click the Use This Directory as Output button. If not, choose the
directory where you want the output images to go.

6. In the Work As box, choose Batch Conversion — Rename Result Files.

You can use this setting to rename your files, to do other conversions, or
both. I generally recommend both.

7. Set the output format to the format you want.

For photos, you probably want JPG format.

List of files to convert Choose files here

Conversion options

Figure 6-17:
IrfanView
has a
powerful
batch
conversion
tool.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 113

Manipulating Your Images114

8. Change renaming settings in the Batch Rename Settings area if you
want to specify some other naming convention for your images.

By default, each image is called image### where ### is a three digit
number. They are numbered according to the listing in the Input Files
dialog box. You can use the Move Up and Move Down buttons to change
the order images appear in this listing.

9. Click the Set Advanced Options button to change the image size.

This displays the Settings For All Images dialog box, as shown in Figure 6-18.

10. Specify the new size of the image in the Resize area.

Several common sizes are preset. If you want another size, use the given
options. I set my size to 320 x 240.

11. Close the Settings For All Images dialog box and then, back in the
Batch Conversion dialog box, press the Start button.

In a few seconds, all the new images will be automatically created.

Figure 6-18:
Use the
Settings For
All Images
dialog box
to resize
images in
batch mode.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 114

Book I
Chapter 6

Adding Im
ages

Using Images as Links 115

Using Images as Links
Sometimes, you’ll want to use images as links. For example, take a look at
thumbs.html, as shown in Figure 6-19.

This page uses a technique — thumbnail images. A thumbnail is a small ver-
sion of the full-size image. The thumbnail is embedded directly. The user can
click it to see the full-size version in the browser.

Thumbnails are good because they allow the user to preview a small version
of each image without having to wait for the full-size versions to be rendered
on-screen. If the user wants to see a complete image, he can click the thumb-
nail to view it on its own page.

Figure 6-19:
Small
images can
be links to
larger
images.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 115

Using Images as Links116

Creating thumbnail images
Thumbnails are simply scaled-down versions of ordinary images. Because
this process is fairly common, IrfanView comes with a wonderful tool to
automate thumbnail creation. To make a batch of thumbnails in IrfanView

1. Organize your images.

Any page that has a large number of images can get confusing. I prefer to
organize everything that will be used by a particular page into its own
directory. I created a directory, thumbs, that will contain thumbs.html,
all the full-size images, and all the thumbnails. I usually don’t find it help-
ful to have separate directories for images. It’s more helpful to organize
by project or page than by media type.

2. Rename images, if necessary.

Images that come from a digital camera or scanner often have cryptic
names. Your life is a lot easier if your image names are easier to under-
stand. I named my images ship_1.jpg, ship_2.jpg, and ship_3.jpg.

3. Make any changes you want to the originals before you make the
thumbnails.

Use the tips described in this chapter to clean up or improve your
images before you make thumbnails, or the thumbnails won’t represent
the actual images accurately.

4. Open the IrfanView Thumbnails tool by choosing File➪Thumbnails or
by pressing the T key.

The Thumbnails tool looks like Figure 6-20.

5. Select the thumbnails you want to create.

Use the mouse to select any images you want to make thumbnails from.

6. Choose Save Selected Thumbs as Individual Images from the File menu.

There are other options, but this gives the behavior you want. The other
options create automatic contact sheets, open the batch editor, or create
slide shows. These are great things, but for now, you want thumbnails.

7. Specify the output directory.

You can put the thumbnails in the same directory as the originals. The
thumbnails have the same name as the originals, but the filenames end
with _t.

8. Review the new thumbnail images.

You should see a new set of smaller images (default size is 80 x 80
pixels) in the directory.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 116

Book I
Chapter 6

Adding Im
ages

Using Images as Links 117

Creating a thumbnail-based image directory
Now, you have everything you need to build a page like thumbs.html.
Here’s an overview of the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>thumbs.html</title>

</head>

<body>
<h1>Images of the Susan B. Constant</h1>

<h2>The Stern</h2>

<img src = “ship_1_t.jpg”
height = “80”
width = “80”
alt = “ship 1” />

Figure 6-20:
IrfanView’s
Thumbnails
tool helps
you create
thumbnail
images.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 117

Using Images as Links118

<h2>The Mast</h2>

<img src = “ship_2_t.jpg”
height = “80”
width = “80”
alt = “ship 2” />

<h2>The Rigging</h2>

<img src = “ship_3_t.jpg”
height = “80”
width = “80”
alt = “ship 3” />

</body>

</html>

This code looks complicated, but it’s really just a combination of techniques
described in this chapter. Look over the code and use the indentation to
determine the structure.

The page is an unordered list. Each list item contains an H2 headline and an
anchor. The anchor contains an image, rather than text. When you include
an image inside an anchor tag, it’s outlined in blue.

The key is to use the thumbnails as inline images inside the page, and the full-
size image as the href of the anchor. The user sees the small image, but this
small image is also a link to the full-size version of the image. This way, the
user can see the small image easily but can view the full-size image if she wishes.

10_186275 bk01ch06.qxp 3/28/08 10:41 PM Page 118

Chapter 7: Creating Forms

In This Chapter
� Adding form to your pages

� Creating input and password text boxes

� Building multi-line text inputs

� Making list boxes and check boxes

� Building groups of radio buttons

� Creating buttons

XHTML gives you the ability to describe Web pages, but today’s Web
isn’t a one-way affair. Users want to communicate through Web pages,

typing in information, making selections from drop-down lists, and interact-
ing, rather than simply reading. In this chapter, you learn how to build these
interactive elements in your pages.

You Have Great Form
There’s one more aspect to XHTML that you need to understand — the abil-
ity to make forms. Forms are the parts of the page that allow some user inter-
action. Figure 7-1 shows a page with all the primary form elements in place.

The form demo (or formDemo.html on the CD-ROM, if you’re playing along
at home) is an example of all the main form elements in XHTML. In this chapter,
you discover how to build all these elements.

You can create forms with ordinary XHTML, but to make them do some-
thing, you need a programming language. Book IV explains how to use
JavaScript to interact with your forms, and Book V describes the PHP
language. Use this chapter to figure out how to build the forms and then
jump to another minibook to figure out how to make them do stuff. If you
aren’t ready for full-blown programming yet, feel free to skip this chapter
for now and move on to CSS in Books II and III. Come back here when you’re
ready to make forms to use with JavaScript or PHP.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 119

You Have Great Form120

The formDemo.html page shows the following elements:

✦ A form: A container for form elements. Although the form element itself
isn’t usually a visible part of the page (like the body tag), it could be
with appropriate CSS.

✦ Text boxes: These standard form elements allow the user to type text
into a one-line element.

✦ Password boxes: These boxes are like text boxes, except they automati-
cally obscure the text to discourage snooping.

✦ Text areas: These multi-line text boxes accommodate more text than the
other types of text boxes. You can specify the size of the text area the
user can type into.

✦ Select lists: These list boxes give the user a number of options. The user
can select one element from the list. You can specify the number of rows
to show or make the list drop down when activated.

✦ Check boxes: These non-text boxes can be checked or not. Check boxes
act independently — more than one can be selected at a time (unlike
radio buttons).

✦ Radio buttons: Usually found in a group of options, only one radio
button in a group can be selected at a time. Selecting one radio button
deselects the others in its group.

Figure 7-1:
Form
elements
allow user
interaction.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 120

Book I
Chapter 7

Creating Form
s

You Have Great Form 121

✦ Buttons: These elements are used to let the user begin some kind of
process. The input button is used in JavaScript coding (which I fully
describe in Book IV), whereas the standard and submit buttons are used for
server-side programming (see Book V). The reset button is special because
it automatically resets all the form elements to their default configurations.

✦ Fieldsets and legends: Sometimes, these are used to set off parts of the
form. They’re optional, but they can add a lot of visual appeal to a form.

Now that you have an overview of form elements, it’s time to start building
some forms!

Forms must have some form
All the form objects must be embedded inside a <form></form> pair. The
code for basicForm.html illustrates the simplest possible form:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>basicForm.html</title>

</head>

<body>
<h1>A basic form</h1>
<form action = “”>

<h2>Form elements go here</h2>
<h3>Other HTML is fine, too.</h3>

</form>

</body>
</html>

The <form></form> pair indicates a piece of the page that may contain
form elements. All the other form doohickeys and doodads (buttons, select
objects, and so on) must be inside a form pair.

The action element indicates what should happen when the form is submitted.
This requires a programming language, so a full description of the action
attribute is in Book IV. Still, you must indicate an action to validate, so for
now just leave the action attribute null with a pair of quotes (“”).

Organizing a form with fieldsets and labels
Forms can contain many kinds of things, but the most important elements
are the input elements (text boxes, buttons, drop-down lists, and the like)
and text labels that describe the elements. Web developers have traditionally
used tables to set up forms, but this isn’t really the best way to go because
forms aren’t really tabular information. XHTML includes some great features

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 121

You Have Great Form122

to help you describe the various parts of a form. Figure 7-2 shows a page
with fieldsets, layouts, and basic input.

A fieldset is a special element used to supply a visual grouping to a set of
form elements.

The form still doesn’t look very good, I admit, but that’s not the point yet.
Like all the other XHTML tags, the form elements aren’t about describing
how the table looks, but are about what all the main elements mean. (Here I
go again. . . .) You use CSS to make the form look however you want. The
XHTML tags describe the parts of the form, so you have something to hook
your CSS to. It all makes sense very soon, I promise.

Legend

Labels Input boxes Fieldset

Figure 7-2:
This form
has a
legend and
labels.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 122

Book I
Chapter 7

Creating Form
s

You Have Great Form 123

Here’s the code for the fieldset demo (fieldsetDemo.html on the
CD-ROM):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>fieldsetDemo.html</title>

</head>

<body>
<h1>Sample Form with a Fieldset</h1>
<form action = “”>

<fieldset>
<legend>Personal Data</legend>
<p>

<label>Name</label>
<input type = “text” />

</p>

<p>
<label>Address</label>
<input type = “text” />

</p>

<p>
<label>Phone</label>
<input type = “text” />

</p>

</fieldset>
</form>

</body>
</html>

The form has these elements:

✦ The <form> and </form> tags: These define the form as a part of the
page. Don’t forget the null action attribute.

✦ The <fieldset> pair: This pair describes the included elements as a
set of fields. This element isn’t necessary, but it does give you some nice
organization and layout options later when you can do CSS. You can think
of the fieldset as a blank canvas for adding visual design to your forms. By
default, the fieldset places a border around all the contained elements.

✦ The <legend> tag: A part of the fieldset, this tag allows you to specify a
legend for the entire fieldset. The legend is visible to the user.

✦ The paragraphs: I generally place each label and its corresponding input
element in a paragraph. This provides some nice formatting capabilities
and keeps each pair together.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 123

Building Text-Style Inputs124

✦ The <label> tag: This tag allows you to specify a particular chunk of text
as a label. No formatting is done by default, but you can add formatting
later with CSS.

✦ The <input> elements: These are the elements into which the user
actually types data. For now, I’m just using very basic text inputs so the
form has some kind of input. In the next section, I explain fully how to
build more complete text inputs.

Building Text-Style Inputs
Most of the form elements are variations of the same tag. The <input> tag
can be used to create single-line text boxes, password boxes, buttons, and
even invisible content (such as hidden fields). Most of these objects share
the same basic attributes, although the outward appearance can be different.

Making a standard text field
Figure 7-3 shows the most common form of the input element — a plain text
field.

Figure 7-3:
The input
element is
often used
to make a
text field.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 124

Book I
Chapter 7

Creating Form
s

Building Text-Style Inputs 125

To make a basic text input, you need a form and an input element. Adding a
label so that the user knows what he’s supposed to enter into the text box is
also common. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>textbox.html</title>

</head>

<body>
<form action = “”>

<p>
<label>Name</label>
<input type = “text”

id = “txtName”
value = “Joe”/>

</p>
</form>

</body>
</html>

The input element has three common attributes:

✦ type: The type attribute indicates the type of input element this is.
This first example sets the type to text, creating a standard text box.
Other types are used throughout this chapter to create passwords,
hidden fields, check boxes, and buttons.

✦ id: The id attribute creates an identifier for the field. When you use a
programming language to extract data from this element, use the id to
specify which field you’re referring to. id fields often begin with a special
hint phrase to indicate the type of object it is (for instance, txt indicates
a text box).

✦ value: This attribute determines the default value of the text box. If you
leave this attribute out, the text field begins empty.

Text fields can also have other attributes, which aren’t used as often, such as

✦ size: This attribute determines the number of characters that are
displayed.

✦ maxlength: Use this attribute to set the largest number of characters
that are allowed.

There is no </input> tag. Input tags are a holdover from the days when
many tags did not have ending tags. You just end the original tag with a slash
character (/), as shown in the preceding sample code.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 125

Building Text-Style Inputs126

Building a password field
Passwords are just like text boxes, except the text isn’t displayed. Instead, a
series of asterisks appears. Figure 7-4 shows a basic password field.

The following code reveals that passwords are almost identical to ordinary
text fields:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>password.html</title>

</head>

<body>
<form action = “”>

<fieldset>
<legend>Enter a password</legend>
<p>

<label>Type password here</label>
<input type = “password”

id = “pwd”
value = “secret” />

</p>
</fieldset>

</form>
</body>

</html>

Figure 7-4:
Enter the
secret pass-
word. . . .

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 126

Book I
Chapter 7

Creating Form
s

Building Text-Style Inputs 127

In this example, I’ve created a password field with the ID pwd. The default
value of this field is secret. The term “secret” won’t actually show up in the
field but will be replaced with six asterisk characters.

The password field offers virtually no meaningful security. It protects the
user from the KGB glancing over his shoulder to read a password, but that’s
about it. The open standards of XHTML and the programming languages
mean passwords are still often passed in the open. There are solutions —
like the SSL (Secure Socket Layer) technology — but for now, just be aware
that the password field just isn’t suitable for protecting the recipe of your
secret sauce.

As usual, this example doesn’t really do anything with the password, but
you’ll use other technologies for that.

Making multi-line text input
The single-line text field is a powerful feature, but sometimes, you want
something with a bit more space. The essay.html program, as shown in
Figure 7-5, demonstrates how you might create a page for an essay question.

Figure 7-5:
This quiz
might
require a
multi-line
response.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 127

Building Text-Style Inputs128

The star of this program is a new tag — <textarea>:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>essay.html</title>

</head>

<body>
<form action = “”>

<fieldset>
<legend>Quiz</legend>

<p>
<label>Name</label>
<input type = “text”

id = “txtName” />
</p>

<p>
<label>

Please enter the sum total of
Western thought. Be brief.

</label>
</p>

<p>
<textarea id = “txtAnswer”

rows = “10”
cols = “40”></textarea>

</p>
</fieldset>

</form>
</body>

</html>

Here are a few things to keep in mind when using the <textarea> tag:

✦ It needs an id attribute, just like the input element.

✦ You can specify the size with rows and cols attributes.

✦ The content goes between the tags. The text area can contain a lot more
information than the ordinary <input> tags, so rather than placing the
data in the value attribute, the content of the text goes between the
<textarea> and </textarea> tags.

Anything placed between <textarea> and </textarea> in the code ends
up in the output, too. This includes spaces and carriage returns. If you don’t
want any blank spaces in the text area, snug up the ending tag right next to
the beginning tag, as I did in the essay example.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 128

Book I
Chapter 7

Creating Form
s

Creating Multiple Selection Elements 129

Creating Multiple Selection Elements
Sometimes, you want to present the user with a list of choices and then have
the user pick one of these elements. XHTML has a number of interesting
ways to do this.

Making selections
The drop-down list is a favorite selection tool of Web developers for the fol-
lowing reasons:

✦ It saves screen space. Only the current selection is showing. When the
user clicks the list, a series of choices drop down and then disappear
again after the selection is made.

✦ It limits input. The only things the user can choose are things you’ve
put in the list. This makes it much easier to handle the potential inputs,
as you don’t have to worry about typing errors.

✦ The value can be different than what the user sees. This seems like an
odd advantage, but it does turn out to be very useful sometimes. I show
an example as I describe color values later in this chapter.

Figure 7-6 shows a simple drop-down list in action.

Figure 7-6:
The user
can choose
from a list of
colors.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 129

Creating Multiple Selection Elements130

The code for this simple drop-down list follows:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>basicSelect.html</title>

</head>

<body>
<form action = “”>

<p>
<label>What is your favorite color?</label>
<select id = “selColor”>

<option value = “#ff0000”>Red</option>
<option value = “#00ff00”>Green</option>
<option value = “#0000ff”>Blue</option>
<option value = “#00ffff”>Cyan</option>
<option value = “#ff00ff”>Magenta</option>
<option value = “#ffff00”>Yellow</option>
<option value = “#000000”>Black</option>
<option value = “#ffffff”>White</option>

</select>
</p>

</form>
</body>

</html>

The select object is a bit different from some of the other input elements
you’re used to, such as

✦ It’s surrounded by a <select></select> pair. These tags indicate
the entire list.

✦ The select object has an id attribute. Although the select object
has many other tags inside, typically only the select itself has an id
attribute.

✦ It contains a series of <option></option> pairs. Each individual
selection is housed in an <option></option> set.

✦ Each option tag has a value associated with it. The value is used by
code. The value isn’t necessarily what the user sees. (See the sidebar
“What are those funky #ff00ff things?” for an example.)

✦ The content between <option></option> is visible to the user. The
content is what the user actually sees.

Select boxes don’t have to have the drop-down behavior. If you want, you
can specify the number of rows to display with the size attribute. In this
case, the number of rows you specify will always be visible on the screen.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 130

Book I
Chapter 7

Creating Form
s

Creating Multiple Selection Elements 131

Building check boxes
Check boxes are used when you want the user to turn a particular choice on
or off. For example, look at Figure 7-7.

Each check box represents a true or false value. Each can be checked or not,
and the status of each check box is completely independent from the others.
The user can check none of the options, all of them, or any combination.

Figure 7-7:
Any number
of check
boxes can
be selected
at once.

What are those funky #ff00ff things?
If you look carefully at the code for
basicSelect.html, you see that the
values are all strange text with pound signs and
weird characters. These are hex codes, and
they’re a good way to describe colors for com-
puters. I explain all about how these work in
Book II, Chapter 1. It’s really not nearly as hard

to understand as it seems. For now though,
understand this is a good example of wanting
to show the user one thing (the name of a color
in English) and send some other value (the hex
code) to a program. You see this code again
when I talk about JavaScript in Book IV.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 131

Creating Multiple Selection Elements132

This code shows that check boxes use your old friend the input tag:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>checkBoxes.html</title>

</head>

<body>
<form action = “”>

<fieldset>
<legend>Please check off your life goals...</legend>
<p>

<input type = “checkbox”
id = “chkPeace”
value = “peace” />World peace

</p>

<p>
<input type = “checkbox”

id = “chkHarmony”
value = “harmony” />Harmony and brotherhood

</p>

<p>
<input type = “checkbox”

id = “chkCash”
value = “cash” />Cash

</p>

</fieldset>
</form>

</body>
</html>

You’re using the same attributes of the input tag, but the way they work is a
little bit different than in a plain old text box:

✦ The type is checkbox. That’s how the browser knows to make a check
box, rather than a text field element.

✦ The checkbox still requires an ID. If you’ll be writing programming
code to work with this thing (and you will, eventually), you’ll need an ID
for reference.

✦ The value is hidden from the user. The user doesn’t see the actual
value. That’s for the programmer (like the select object). Any text fol-
lowing the check box appears to be the text associated with it.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 132

Book I
Chapter 7

Creating Form
s

Creating Multiple Selection Elements 133

Creating radio buttons
Radio buttons are used when you want to let the user pick only one option
from a group. Figure 7-8 shows an example of a radio button group in action.

Figure 7-8:
You can
choose only
one of these
radio
buttons.

This all seems inconsistent
Sometimes, the value of a form element is visi-
ble to users, and sometimes, it’s hidden.
Sometimes, the text the user sees is inside the
tag, and sometimes, it isn’t. It’s a little confus-
ing. The standards evolved over a long time,
and they honestly could have been a little more

consistent. Still, this is the set of elements you
have, and they’re not really that hard to under-
stand. Write forms a few times, and you’ll
remember. You can always start by looking over
my code and borrowing it as a starting place.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 133

Creating Multiple Selection Elements134

Radio buttons might seem a lot like check boxes, but they have some impor-
tant differences:

✦ Only one can be checked at a time. The term radio button came from
the old-style car radios. When you push the button for one station, all
the other buttons pop out. I still have one of those radios. (I guess I have
a Web-design car.)

✦ They have to be in a group. Radio buttons make sense only in a group
context. The whole point of a radio button is to interact with its group.

✦ They all have the same name! Each radio button has its own ID (like
other input elements), but they also have a name attribute. The name
attribute indicates the group a radio button is in.

✦ You can have more than one group on a page. Just use a different name
attribute for each group.

✦ One of them has to be selected. The group should always have one
value and only one. Some browsers check the first element in a group by
default, but just in case, you should select the element you want
selected. Add the checked = “checked” attribute (developed by the
Department of Redundancy Department) to the element you want
selected when the page appears. In this example, I pre-selected the most
expensive option, all in the name of good capitalistic suggestive selling.

Here’s some code that explains it all:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>radioButtons.html</title>

</head>

<body>
<form action = “”>

<fieldset>
<legend>How much do you want to spend?</legend>
<p>

<input type = “radio”
name = “radPrice”
id = “rad100”
value = “100” />Too much

</p>

<p>
<input type = “radio”

name = “radPrice”
id = “rad200”
value = “200” />Way too much

</p>

<p>
<input type = “radio”

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 134

Book I
Chapter 7

Creating Form
s

Pressing Your Buttons 135

name = “radPrice”
id = “rad5000”
value = “5000”
checked = “checked” />You’ve got to be kidding.

</p>
</fieldset>

</form>
</body>

</html>

Pressing Your Buttons
XHTML also comes with several types of buttons. You use these guys to
make something actually happen. Generally, the user sets up some kind of
input by typing in text boxes and then selecting from lists, options, or check
boxes. Then, the user clicks a button to trigger a response. Figure 7-9 demon-
strates the four main types of buttons.

Figure 7-9:
XHTML
supports
several
types of
buttons.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 135

Pressing Your Buttons136

The code for this button example is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>buttons.html</title>

</head>

<body>
<h1>Button Demo</h1>
<form action = “”>

<fieldset>
<legend>

input-style buttons
</legend>

<input type = “button”
value = “input type = button” />

<input type = “submit” />
<input type = “reset” />

</fieldset>

<fieldset>
<legend>button tag buttons</legend>

<button type = “button”>
button tag

</button>
<button>

<img src = “clickMe.gif”
alt = “click me” />

</button>
</fieldset>

</form>
</body>

</html>

Each button type is described in this section.

Making input-style buttons
The most common form of button is just another form of your old friend, the
<input> tag. If you set the input’s type attribute to “button”, you gener-
ate a basic button:

<input type = “button”
value = “input type = button” />

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 136

Book I
Chapter 7

Creating Form
s

Pressing Your Buttons 137

The ordinary input button has a few key features:

✦ The input type is set to “button”. This makes an ordinary button.

✦ The value attribute sets the button’s caption. Change the value attrib-
ute to make a new caption. This button’s caption shows how the button
was made: input type = “button”.

✦ This type of button doesn’t imply a link. Although the button appears
to depress when it’s clicked, it doesn’t do anything. You have to write
some JavaScript code to make it work.

✦ Later, you’ll add event-handling to the button. After you discover Java
Script in Book IV, you use a special attribute to connect the button to code.

✦ This type of button is for client-side programming. This type of code
resides on the user’s computer. Read how to do it in Book IV.

Building a submit button
Submit buttons are usually used in server-side programming. In this form of
programming, the code is back on the Web server. In Book V, you figure out
how to use PHP to create server-side code. The input tag is used to make a
submit button, too!

<input type = “submit” />

Although they look the same, the submit button is different than the ordi-
nary button in a couple subtle ways:

✦ The value attribute is optional. If you leave it out, the button says
“Submit Query.” Of course, you can change the value to anything you
want, and this becomes the caption of the submit button.

✦ Clicking it causes a link. This type of button is meant for server-side
programming. When you click the button, all the information in the form
is gathered and sent to some other page on the Web.

✦ Right now, it goes nowhere. When you set the form’s action attribute
to null (“”), you told the submit button it should just reload the current
form. When you figure out real server-side programming, you change the
form action to a program that works with the data.

✦ Submit buttons aren’t for client-side. Although you can attach an event
to the submit button (just like the regular input button), the linking
behavior often causes problems. Use regular input for client-side and
submit for server-side.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 137

Pressing Your Buttons138

It’s a do-over: The reset button
Yet another form of the versatile input tag is used to create the reset
button:

<input type = “reset” />

This button has a very specific purpose. When it’s clicked, it resets all the
elements of its form to their default values. Like the submit button, it has a
default value (“reset”), and it doesn’t require any code.

Introducing the button tag
The button has been a useful part of the Web for a long time, but it’s a bit
boring. HTML 4.0 introduced the new button tag, which works like this:

<button type = “button”>
button tag

</button>

The button tag acts more like a standard XHTML tag, but it can also act like
the submit button. Here are the highlights:

✦ The type attribute determines the style. You can set the button to be
ordinary (by setting its type to button), submit, or reset. If you don’t
specify the type, buttons use the submit style. The button type
indicates its behavior, just like the input-style buttons.

✦ The caption goes between the <button></button> pair. There’s no
value attribute. Instead, just put the intended caption inside the button
pair.

✦ You can incorporate other elements. Unlike the input button, you can
place images or styled text inside a button. This gives you some other
capabilities. The second button in the buttons.html example uses a
small GIF image to create a more colorful button.

11_186275 bk01ch07.qxp 3/28/08 10:42 PM Page 138

Change your fonts, colors, and backgrounds with CSS.

Book II

Styling with CSS

12_186275 pp02.qxp 3/28/08 10:42 PM Page 139

Contents at a Glance

Chapter 1: Coloring Your World .141
Now You Have an Element of Style ..141
Specifying Colors in CSS..145
Choosing Your Colors..150
Creating Your Own Color Scheme..154

Chapter 2: Styling Text .159
Setting the Font Family..159
The Curse of Web-Based Fonts...165
Specifying the Font Size...170
Determining Other Font Characteristics...174

Chapter 3: Selectors, Class, and Style .185
Selecting Particular Segments ..185
Using Emphasis and Strong Emphasis ..188
Defining Classes ...191
Introducing div and span ..195
Using Pseudo-Classes to Style Links..198
Selecting in Context ...201
Defining Multiple Styles at Once ..203

Chapter 4: Borders and Backgrounds .205
Joining the Border Patrol ..205
Introducing the Box Model ...211
Changing the Background Image..216
Manipulating Background Images..222
Using Images in Lists ...225

Chapter 5: Levels of CSS .227
Managing Levels of Style ...227
Understanding the Cascading Part of Cascading Style Sheets...............235
Using Conditional Comments ...240

12_186275 pp02.qxp 3/28/08 10:42 PM Page 140

Chapter 1: Coloring Your World

In This Chapter
� Introducing the style element

� Adding styles to tags

� Modifying your page dynamically

� Specifying foreground and background colors

� Understanding hex colors

� Developing a color scheme

XHTML does a good job of setting up the basic design of a page, but let’s
face it. The pages it makes are pretty ugly. Back in the old days, devel-

opers added a lot of other tags to HTML to make it prettier, but it was a
pretty haphazard affair. Now, XHTML disallows all the tags that were used to
make pages more attractive. It’s not really a loss because, today, XHTML is
almost always written in concert with CSS (Cascading Style Sheets). It’s
amazing how much you can do with CSS to beautify your XHTML pages.

CSS is used in many ways. It allows you to change the color of any image on
the page. CSS lets you add backgrounds and borders. You can use CSS to
change the visual appearance of elements like lists and links, as well as cus-
tomize the entire layout of your page. CSS allows you to keep your XHTML
simple because all the formatting is stored in the CSS. It’s also very efficient
because CSS allows you to reuse a style across multiple pages. If XHTML
gives your pages structure, CSS gives them beauty.

This chapter gets you started by describing how to add color to your pages.

Now You Have an Element of Style
The secret to CSS is the style sheet, a set of rules for describing how various
objects will be displayed. As an example, look at basicColors.html in
Figure 1-1.

As always, don’t take my word for it. This chapter is about color, and you need
to look at these pages from the CD or Web site to see what I’m talking about.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 141

Now You Have an Element of Style142

Absolutely nothing in the XHTML code provides color information. What
makes this page different from plain XHTML pages is a new section that I’ve
stashed in the header. Take a gander at the code to see what’s going on:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>basicColors.html</title>
<style type = “text/css”>

body {
color: yellow;
background-color: red;

}

h1 {
color: red;
background-color: yellow;

}
</style>

</head>

<body>
<h1>Red text on a yellow background</h1>
<p>

Yellow text on a red background
</p>

</body>
</html>

Figure 1-1:
This page is
in color!

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 142

Book II
Chapter 1

Coloring Your W
orld

Now You Have an Element of Style 143

As you can see, nothing is dramatically different in the XHTML code. The
body simply contains an h1 and a p. Although the text mentions the colors,
nothing in the XHTML code makes the colors really happen.

The secret is the new <style></style> pair I put in the head area:

<style type = “text/css”>
body {

color: yellow;
background-color: red;

}

h1 {
color: red;
background-color: yellow;

}
</style>

The <style> tag is an HTML tag, but what it does is special: It switches
languages! Inside the style elements, you’re not writing XHTML any more.
Now you’re in a whole new language — CSS. CSS has a different job than
XHTML, but they’re made to work well together.

It may seem that the CSS code is still part of HTML because it’s inside the
XHTML page, but it’s best to think of XHTML and CSS as two distinct (if
related) languages. XHTML describes the content, and CSS describes the
layout. CSS (as you soon see) has a different syntax and style than XHTML,
and it isn’t always embedded in the Web page.

Setting up a style sheet
Style sheets describe presentation rules for XHTML elements. If you look at
the preceding style sheet (the code inside the style tags), you can see that
I’ve described presentation rules for two elements: the body and h1 tags.
Whenever the browser encounters one of these tags, it attempts to use these
style rules to change that tag’s visual appearance.

Styles are simply a list of selectors (places in the page that you want to modify).
For now, I use tag names (body and h1) as selectors. But in Chapter 3 of this
minibook, I show many more selectors that you can use.

Each selector can have a number of style rules. Each rule describes some
attribute of the selector. To set up a style, keep the following in mind:

✦ Begin with the style tags. The type of style you’ll be working with now is
embedded directly into the page. You should describe your style in the
header area.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 143

Now You Have an Element of Style144

✦ Include the style type in the header area. The style type is always
“text/css”. The beginning style tag always looks like this:

<style type = “text/css”>

✦ Define an element. Use the element name (the tag name alone) to begin
the definition of a particular element’s style. You can define styles for all
the XHTML elements (and other things, too, but not today). The style
rule for the body is designated like this:

body {

✦ Use braces ({}) to enclose the style rules. Each style’s rules are
enclosed in a set of braces. This is similar to many programming lan-
guages, which use braces to mark off special sections of code. It’s tradi-
tional to indent inside the braces.

✦ Give a rule name. In this chapter, I’m working with two very simple rules:
color and background-color. Throughout this minibook, you can read
about many more CSS rules (sometimes called attributes) that you can
modify. The rule name is always followed by a colon (:) character.

✦ Enter the rule’s value. Different rules take different values. The attribute
value is followed by a semicolon. Each name-value pair is traditionally
put on one line, like this:

body {
color: yellow;
background-color: red;

}

Changing the colors
In this very simple example, I’ve just changed some colors around. Here are
the two primary color attributes in CSS:

✦ color: This refers to the foreground color of any text in the element.

✦ background-color: The background color of the element. (The
hyphen is a formal part of the name. If you leave it out, the browser
won’t know what you’re talking about.)

With these two elements, you can specify the color of any element. For
example, if you want all your paragraphs to have white text on a blue back-
ground, add the following text to your style:

p {
color: white;
background-color: blue;

}

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 144

Book II
Chapter 1

Coloring Your W
orld

Specifying Colors in CSS 145

Like XHTML Strict, CSS is case-sensitive. CSS styles should be written
entirely in lowercase.

You’ll figure out many more style elements in your travels, but they all follow
the same principles illustrated by the color attributes.

Specifying Colors in CSS
Here are the two main ways to define colors in CSS. You can use color names,
such as pink and fuchsia, or you can use hex values. (Later in this chapter,
in the section “Creating Your Own Color Scheme,” you find out how to use spe-
cial numeric designators to choose colors.) Each approach has its advantages.

Using color names
Color names seem like the easiest solution, and, for basic colors like red and
yellow, they work fine. However, here are some problems with color names
that make them troublesome for Web developers:

✦ Only 16 color names will validate. Although hundreds of color names
are accepted by most browsers, only 16 are guaranteed to validate in
CSS and XHTML validators. See Table 1-1 for a list of those 16 colors.

✦ Color names are somewhat subjective. You’ll find different opinions on
what exactly constitutes any particular color, especially when you get to
the more obscure colors. (I personally wasn’t aware that PeachPuff and
PapayaWhip are colors. They sound more like dessert recipes to me.)

✦ It can be difficult to modify a color. For example, what color is a tad
bluer than Gainsboro? (Yeah, that’s a color name, too. I had no idea
how extensive my color disability really was.)

✦ They’re hard to match. Let’s say you’re building an online shrine to
your cat and you want the text to match your cat’s eye color. It’ll be hard
to figure out exactly what color name corresponds to your cat’s eyes. I
guess you could ask.

Table 1-1 Legal Color Names and Hex Equivalents
Color Hex Value

Black #000000

Silver #C0C0C0

Gray #808080

White #FFFFFF

Maroon #800000

(continued)

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 145

Specifying Colors in CSS146

Table 1-1 (continued)
Color Hex Value

Red #FF0000

Purple #800080

Fuchsia #FF00FF

Green #008800

Lime #00FF00

Olive #808000

Yellow #FFFF00

Navy #000080

Blue #0000FF

Teal #008080

Aqua #00FFFF

The mysterious hex codes are included in this table for completeness. It’s
really okay if you don’t understand what they’re about. All is revealed in the
next section.

Obviously, I can’t show you actual colors in this black-and-white book, so I
added a simple page to the CD-ROM and Web site that displays all the named
colors. Check namedColors.html to see the actual colors.

Putting a hex on your colors
Colors in HTML are a strange thing. The “easy” way (with color names) turns
out to have a lot of problems. The method most Web developers really use
sounds a lot harder, but it isn’t as bad as it may seem at first. The hex color
scheme uses a seemingly bizarre combination of numbers and letters to
determine color values. #00FFFF is aqua. #FFFF00 is yellow. It’s a scheme only
a computer scientist could love. Yet, after you get used to it, you’ll find the
system has its own geeky charm. (And isn’t geeky charm the best kind?)

Hex colors work by describing exactly what the computer is doing, so you
have to know a little more about how computers work with color. Each dot
(or pixel) on the screen is actually composed of three little tiny beams of
light (or LCD diodes or something similar). Each pixel has tiny red, green,
and blue beams.

The light beams work kind of like stage lights. Imagine a black stage with
three spotlights (red, green, and blue) trained on the same spot. If all the
lights are turned off, the stage is completely dark. If you turn on only the red
light, you see red. You can turn on combinations to get new colors. For
example, turning on red and green creates a spot of yellow light. Turning on
all three lights makes white.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 146

Book II
Chapter 1

Coloring Your W
orld

Specifying Colors in CSS 147

Coloring by number
You could devise a simple system to describe colors by using 1 to represent
on and 0 to represent off. In this system, three digits represent each color,
with one digit each for red, green, and blue. So, red would be 100 (turn on red,
but turn off green and blue), and 111 would be white (turn on all three lights).

This system produces only eight colors. In a computer system, each of the
little lights can be adjusted to various levels of brightness. These values
measure from 0 (all the way off) to 255 (all the way on.) So, you could
describe red as rgb(255, 0, 0) and yellow as rgb(255, 255, 0).

The 0 to 255 range of values seems strange because you’re probably used to
base 10 mathematics. The computer actually stores values in binary notation.
The way a computer sees it, yellow is actually 111111111111111100000000.
Ack! There’s got to be an easier way to handle all those binary values. That’s
why we use hexadecimal notation. Read on. . . .

Hex education
All those 1s and 0s get tedious. Programmers like to convert to another
format that’s easier to work with. It’s easier to convert numbers to base 16
than base 10, so that’s what programmers do. You can survive just fine with-
out understanding base 16 (also called hexadecimal or hex) conversion, but
you should understand a few key features, such as:

✦ Each hex digit is shorthand for four digits of binary. The whole reason
programmers use hex is to simplify working with binary.

✦ Each digit represents a value between 0 and 15. Four digits of binary
represent a value between 0 and 15.

✦ We have to invent some digits. The whole reason hex looks so weird is
the inclusion of characters. This is for a simple reason: There aren’t enough
numeric digits to go around! Table 1-2 illustrates the basic problem.

Table 1-2 Hex Representation of Base Ten Numbers
Decimal (Base 10) Hex (Base 16)

0 0

1 1

2 2

3 3

4 4

5 5

(continued)

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 147

Specifying Colors in CSS148

Table 1-2 (continued)
Decimal (Base 10) Hex (Base 16)

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

The ordinary digits 0–9 are the same in hex as they are in base 10, but the
values from 10–15 (base ten) are represented by alphabetic characters in
hexadecimal.

You’re very used to seeing the value 10 as equal to the number of fingers on
both hands, but that’s not always the case when you start messing around
with numbering systems like we’re doing here. 10 simply means one of the
current base. Up to now, you may have never used any base but base ten,
but all that changes here. 10 is ten in base ten, but in base two, 10 means
two. In base eight, 10 means eight, and in base sixteen, 10 means sixteen.
This is important because when you want to talk about the number of digits
on your hands in hex, you can’t use the familiar notation 10, because in hex
10 means sixteen. We need a single-digit value to represent ten, so computer
scientists legislated themselves out of this mess by borrowing letters. Ten is
A, eleven is B, and fifteen is F.

If all this math theory is making you dizzy don’t worry. I show in the next
section some shortcuts for creating great colors using this scheme. For now,
though, here’s what you need to understand to use hex colors:

✦ A color requires six digits of hex. A pixel requires three colors, and
each color uses eight digits of binary. Two digits of hex cover each color.
Two digits represent red, two for green, and finally two for blue.

✦ Hex numbers usually begin with a pound sign. To warn the browser
that a value will be in hexadecimal, the value is usually preceded with a
pound sign (#). So, yellow is #FFFF00.

Working with colors in hex may seem really crazy and difficult, but it has
some important advantages:

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 148

Book II
Chapter 1

Coloring Your W
orld

Specifying Colors in CSS 149

✦ Precision: Using this system gives you a huge number of colors to work
with (over 16 million, if you really want to know). There’s no way you could
come up with that many color names on your own. Well, you could, but
you’d be very very old by the time you were done.

✦ Objectivity: Hex values aren’t a matter of opinion. There could be some
argument about the value of burnt sienna, but hex value #666600 is
unambiguous.

✦ Portability: Most graphic editors use the hex system, so you can pick
any color of an image and get its hex value immediately. This would
make it easy to find your cat’s eye color for that online shrine.

✦ Predictability: After you understand how it works, you can take any hex
color and convert it to a value that’s a little darker, a little brighter, or
that has a little more blue in it. This is difficult to do with named colors.

✦ Ease of use: This one may seem like a stretch, but after you understand
the Web-safe palette, which I describe in the next section, it’s very easy
to get a rough idea of a color and then tweak it to make exactly the form
you’re looking for.

Using the Web-safe color palette
A long time ago, browsers couldn’t even agree on what colors they’d display
reliably. Web developers responded by working within a predefined palette
of colors that worked pretty much the same on every browser. Today’s
browsers have no problems showing lots of colors, but the so-called Web-
safe color palette is still sometimes used because it’s an easy starting point.

The basic idea of the Web-safe palette (shown in Table 1-3) is this: Each
color can have only one of the following values: 00, 33, 66, 99, AA, CC, or FF.
00 is the darkest value for each color, and FF is the brightest. The primary
colors are all made of 0s and Fs: #FF0000 is red (all red, no green, no blue).
A Web-safe color uses any combination of these values, so #33AA00 is Web-
safe, but #112233 is not.

Table 1-3 Web-Safe Color Values
Description Red Green Blue

Very bright FF FF FF

CC CC CC

AA AA AA

99 99 99

66 66 66

33 33 33

Very dark 00 00 00

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 149

Choosing Your Colors150

To pick a Web-safe value from this chart, determine how much of each color
you want. A bright red will have red turned on all the way (FF) with no green
(00) and no blue (00), making #FF0000. If you want a darker red, you might
turn the red down a little. The next darker Web-safe red is #CC0000. If that isn’t
dark enough, you might try #AA0000. Let’s say you like that, but you want it a
little more purple. Simply add a notch or two of blue: #AA0033 or #AA0066.

If you’re having trouble following this, look at colorTester.html on the
CD-ROM. It allows you to pick a Web-safe color by clicking on buttons organized
just like Table 1-3.

The original problem Web-safe colors were designed to alleviate is long
resolved, but they’re still popular as a starting point. Web-safe colors give
you a dispersed and easily understood subset of colors you can start with.
You don’t have to stay there, but it’s a great place to start.

Choosing Your Colors
Figure 1-2 shows a program I added to the Web page and CD-ROM. This page
lets you experiment with colors. I refer to it during this discussion.

Figure 1-2:
This
program lets
you quickly
test color
combin-
ations.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 150

Book II
Chapter 1

Coloring Your W
orld

Choosing Your Colors 151

The colorTester.html (as shown in Figure 1-2) page uses techniques that
I describe primarily in Book IV, Chapter 5. Feel free to look over the source
code to get a preview of JavaScript and Dynamic HTML concepts. By the end
of Book IV, you can write this program.

The best way to understand colors is to do some hands-on experimentation.
You can use the colorTester.html page to do some quick tests, or you
can write and modify your own pages that use color.

Starting with Web-safe colors
The colorTester.html program works by letting you quickly enter in a
Web-safe value. To make red, press the FF button in the red column. The blue
and green values have the default value of 00, so the background is red.

The Web-safe colors give you a lot of room to play, and they’re very easy to
work with. In fact, they’re so common that you can use a shortcut. Because
the Web-safe colors are all repeated, you can write a repeated digit (FF) as a
single digit (F). You can specify magenta as either #FF00FF or as #FOF and
the browser understands, giving you a headache-inducing magenta.

To make a darker red, change the FF to the next smallest value, making
#CC0000. If you want it darker yet, try #AA0000. Experiment with all the red
values and see how easy it is to get several different types of red. If you want a
variation of pink, raise the green and blue values together. #FF9999 is a dusty
pink color; #FFAAAA is a bit brighter; and #FFCCCC is a very white pink.

Modifying your colors
The Web-safe palette is convenient, but it gives you a relatively small number
of colors (216, if you’re counting). Two hundred and sixteen crayons in the
box are pretty nice, but you might need more. Generally, I start with Web-safe
colors and then adjust as I go. If you want a lighter pink than #FFCCCC, you
can jump off the Web-safe bandwagon and use #FFEEEE or any other color
you wish!

In the colorTester.html program, you can use the top and bottom button
in each row to fine tune the adjustments to your color.

Doing it on your own pages
Of course, it doesn’t really matter how the colors look on my page. The point
is to make things look good on your pages. To add color to your pages, do
the following:

1. Define the XHTML as normal.

The XHTML shouldn’t have any relationship to the colors. Add the color
strictly in CSS.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 151

Choosing Your Colors152

2. Add a style tag to the page in the head area.

Don’t forget to set the type = “text/css” attribute.

3. Add a selector for each tag you want to modify.

You can modify any HTML tag, so if you want to change all the para-
graphs, add a p { } selector. Use the tag name without the angle
braces, so <h1> becomes h1{ }.

4. Add color and background-color attributes.

You’ll discover many more CSS elements you can modify throughout
Books II and III but for now, stick to color and background-color.

5. Specify the color values with color names or hex color values.

Changing CSS on the fly
If you’ve installed the Web Developer toolbar to Firefox (which I describe in
Book I, Chapter 3) you have some really nifty CSS tools at your disposal. I
really love the CSS editor. To make it work, take any page (without CSS) and
open it in Firefox. For this example, I use a list example from Book I, Chapter 4.

Be sure the Web Developer toolbar is installed and choose Edit CSS from the
CSS menu. A new panel that looks like Figure 1-3 pops up.

Figure 1-3:
The Web
Developer
toolbar has
a great CSS
feature.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 152

Book II
Chapter 1

Coloring Your W
orld

Choosing Your Colors 153

You can simply type CSS code into the little text editor, and the page is updated
instantly! Figure 1-4 shows the same page after I made a few changes.

I used color to make the definition list easier to view. I changed both the
foreground and background colors in the heading level 1. I set the definition
terms (dt) to red and added a yellow background to the definitions (dd).
Check Book I, Chapter 4 if you need a refresher on definition lists in XHTML.

The Web Developer CSS editor is great because you can see the results in
real time. It’s a super way to play around with your colors (and other CSS
elements). You can also use it to view and modify an existing CSS document.
Pull up any page you want and open the CSS editor. You can change colors
all you want without making a commitment.

None of the changes made using the Web Developer CSS editor are permanent.
You’re making changes only in the copy in your own browser. If you really like
the CSS code you’ve written in the editor, copy it to the clipboard and paste it
into your page to make it permanent, or save it to a file for later use.

Figure 1-4:
The CSS
changes
show
immediately.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 153

Creating Your Own Color Scheme154

Creating Your Own Color Scheme
The technical side of setting colors isn’t too difficult, but deciding what
colors to use can be a challenge. Entire books have been written about how
to determine a color scheme. A little bit of subjectivity is in the process, but
a few tools and rules can get you started.

Understanding hue, saturation, and value
The RGB color model is useful because it relates directly to how computers
generate color, but it’s not perfect. It’s a bit difficult to visualize variations of
a color in RGB. For that reason, other color schemes are often used. The
most common variation is Hue, Saturation, and Value, or HSV. The HSV
system organizes colors in a way more closely related to the color wheel.

To describe a color using HSV, you specify three characteristics of a color
using numeric values.

✦ Hue: The basic color. The color wheel is broken into a series of different
hues. These are generally middle of the road colors that can be made
brighter (closer to white) and darker (closer to black).

✦ Saturation: How pervasive the color is. A high saturation is very bright.
A low saturation has very little color. If you reduce all the saturation in
an image, the image is grayscale, with no color at all.

✦ Value: The brightness of the color. The easiest way to view value is to
think about how the image would be when reduced to grayscale (by
pulling down the saturation). All the brighter colors will be closer to
white, and the darker colors will be nearly black.

The HSV model is useful because it allows you to pick colors that go well
together. Use the hue property to pick the basic colors. Because there’s a
mathematical relationship between the various color values, it becomes
easy to predict which colors work well together. After you have all the hues
worked out, you can change the saturation and value to modify the overall
tone of the page. Generally, all the colors in a particular scheme have similar
saturation and values.

Unfortunately, you can’t specify CSS colors in HSV mode. Instead, you have to
use another tool to get the colors you want and convert them to RGB format.

Using the Color Scheme Generator
Some people have great color sense. Others (like me) struggle a little bit
because it all seems a little subjective. If you’re already confident with colors,
you may not need this section — although you still might find it interesting
validation of what you already know. On the other hand, if you get perplexed

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 154

Book II
Chapter 1

Coloring Your W
orld

Creating Your Own Color Scheme 155

in a paint store, you might find it helpful to know that some really useful
tools are available.

One great way to get started is with a free tool: the Color Scheme Generator,
as shown in Figure 1-5. This tool created by Petr Stanicek uses a variation of
the HSV model to help you pick color schemes. You can find this program at
http://wellstyled.com/tools/colorscheme2/index-en.html.

The Color Scheme Generator has several main areas, such as:

✦ The color wheel: This tool may bring back fond memories of your ele-
mentary school art class. The wheel arranges the colors in a way famil-
iar to artists. You can click the color wheel to pick a primary color for
your page.

✦ The color scheme selector: You can pick from a number of color
schemes. I describe these schemes a little later in this section.

✦ A preview area: This area displays the selected colors in action so you
can see how the various colors work together.

✦ Hex values: The hex values for the selected colors are displayed on the
page so you can copy them directly to your own application.

Figure 1-5:
The Color
Scheme
Generator
helps you
pick colors.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 155

Creating Your Own Color Scheme156

✦ Variations: You can look at variations of the selected scheme. These
variations are often useful because they show differences in the satura-
tion and value without you doing the math.

✦ Color-blindness simulation: This very handy tool lets you see your color
scheme as it appears to people with various types of color-blindness.

This won’t make sense without experimentation. Be sure to play with this
tool and see how easy it is to create colors that work well together.

Selecting a base hue
The Color Scheme Generator works by letting you pick one main hue and
then uses one of a number of schemes for picking other hues that work well
with the base one. To choose the base hue you want for your page, click a
color on the color wheel.

The color wheel is arranged according to the traditional artist’s color scheme
based on HSV rather than the RGB scheme used for computer graphics. When
you select a color, the closest RGB representation is returned. This is nice
because it allows you to apply traditional (HSV-style) color theory to the
slightly different RGB model.

When you pick a color on the color wheel, you’re actually picking a hue. If
you want any type of red, you can pick the red that appears on the wheel.
You can then adjust the variations to modify the saturation and value of all
the colors in the scheme together.

To pick a color using this scheme, follow these steps:

1. Pick a hue.

The colors on the color wheel actually represent hues. Find a color you
want to use as the foundation of your page.

2. Choose a variation.

Rather than working directly with saturation and value, the variations
(pastel, contrast, pale, and so on) pick saturations and values for you.

3. Determine a scheme.

The scheme allows you to specify a number of colors related to the base
color according to various mathematical relationships.

Picking a color scheme
The various color schemes use mathematical relationships around the color
wheel to predict colors that work well with the primary color. Here are the
basic schemes and what they do:

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 156

Book II
Chapter 1

Coloring Your W
orld

Creating Your Own Color Scheme 157

✦ Monochramatic (mono): Takes the base hue and offers a number of vari-
ations in saturation and value. This scheme is nice when you really want
to emphasize one particular color (for example, if you’re doing a Web
site about rain forests and want a lot of greens). Be sure to use high con-
trast between the foreground and background colors so your text is
readable.

✦ Contrast: Uses the base hue and the complementary (opposite) color.
Generally, this scheme uses several variations of the base hue and a
splash of the complementary hue for contrast.

✦ Triad: Selects the base hue and two opposite hues. When you select the
triad scheme, you can also choose the angular distance between the
opposite colors. If this distance is zero, you have the complementary
color scheme. When the angle increases, you have a split complementary
system, which uses the base hue and two hues equidistant from the con-
trast. Such schemes can be jarring at full contrast, but when adjusted for
saturation and value, you can create some very nice color schemes.

✦ Tetrad: Generates four hues. As with the triad, when you add more hues,
it becomes more difficult to keep your page unified unless you adjust the
variations for lower contrast.

✦ Analogic: Schemes use the base hue and its two neighbors. Sometimes
this scheme includes the complementary color as well.

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 157

Book II: Styling with CSS158

13_186275 bk02ch01.qxp 3/28/08 10:42 PM Page 158

Chapter 2: Styling Text

In This Chapter
� Introducing fonts and typefaces

� Specifying the font family

� Determining font size

� Understanding CSS measurement units

� Managing other font characteristics

� Using the font rule to simplify font styles

Web pages are still primarily a text-based media, so you’ll want to add
some formatting capabilities. XHTML doesn’t do any meaningful text

formatting on its own, but CSS adds a wide range of tools for choosing the
typeface, font size, decorations, alignment, and much more. In this chapter,
you discover how to manage text the CSS way.

A bit of semantics is in order. The thing most people dub a font is more prop-
erly a typeface. Technically, a font is a particular typeface at a particular size
with a specific set of decorations (underlining, italic, and so on). The distinc-
tion is honestly not that important in a digital setting. You don’t explicitly set
the font in CSS. You determine the font family (which is essentially a typeface),
and then you modify its characteristics (creating a font as purists would think
of it). Still, when I’m referring to the thing most people call a font (a file in the
operating system that describes the appearance of an alphabet set), I use the
familiar term font.

Setting the Font Family
To assign a font family to part of your page, use some new CSS. Figure 2-1
illustrates a page with the heading set to Comic Sans MS.

If this page is viewed on a Windows machine, it generally displays the font
correctly because Comic Sans MS is installed with most versions of Windows.
If you’re on another type of machine, you may get something else. More on
that in a moment, but, for now, look at the simple case.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 159

Setting the Font Family160

Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>comicHead.html</title>
<style type = “text/css”>

h1 {
font-family: “Comic Sans MS”;

}
</style>

</head>

<body>
<H1>This is a heading</H1>
<p>

This is ordinary text.
</p>

</body>
</html>

Applying the font-family style attribute
The secret to this page is the CSS font-family attribute. Like most CSS
elements, this can be applied to any HTML tag on your page. In this particular
case, I applied it to my level one heading.

Figure 2-1:
The headline
is in the
Comic Sans
font (most of
the time).

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 160

Book II
Chapter 2

Styling Text

Setting the Font Family 161

h1 {
font-family: “Comic Sans MS”;

}

You can then attach any font name you wish, and the browser attempts to
use that font to display the element.

Even though a font may work perfectly fine on your computer, it may not
work if that font isn’t installed on the user’s machine.

If you run exactly the same page on a Linux machine, you see the result
shown in Figure 2-2.

The specific font Comic Sans MS is installed on Windows machines, but the
MS stands for Microsoft. This font isn’t typically installed on Linux. (It is on
some Macs, but not all.) You can’t count on users having any particular fonts
installed.

Using generic fonts
It’s a little depressing. Even though it’s easy to use fonts, you can’t use them
freely because you don’t know if the user has them. Fortunately, you can do
a few things that at least increase the odds in your favor. The first trick is to
use generic font names. These are virtual font names that every compliant
browser agrees to support. Figure 2-3 shows a page with all the generic fonts.

Figure 2-2:
Under Linux,
the heading
isn’t the
same font!

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 161

Setting the Font Family162

I used browser controls to make the fonts larger than normal so you can see
the details in this figure. Note that it’s really handy to be able to change font
size as a user. I come back to that idea later in this chapter.

The generic fonts really are families of fonts:

✦ Serif: These fonts have those little serifs (the tiny cross strokes that
enhance readability). Print text (like the paragraph you’re reading now)
tends to use serif fonts, and they’re the default font for most browsers.
The most common serif typeface is Times New Roman or Times.

✦ Sans-Serif: Sans serif fonts don’t have the little feet. They’re generally
used for headlines or other emphasis. They’re sometimes seen as more
modern and clean than serif fonts, so sometimes they’re used for body
text. Arial is the most common sans-serif font. In this book, the figure
captions use a sans serif font.

✦ Cursive: These fonts look a little like handwriting. In Windows, the script
font is usually Comic Sans MS. Script fonts are used when you want a
less formal look. Dummies books use script fonts all over the place, for
section and chapter headings.

Figure 2-3:
Here are all
the generic
fonts.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 162

Book II
Chapter 2

Styling Text

Setting the Font Family 163

✦ Fantasy: Fantasy fonts are decorative. Just about any theme you can
think of is represented by a fantasy font, from Klingon to Tolkien. You
can also find fonts that evoke a certain culture, making English text appear
to be Persian or Chinese. Fantasy fonts are best used sparingly, for
emphasis, as they often trade readability for visual appeal..

✦ Monospace: Monospace fonts produce a fixed-width font like typewritten
text. Monospace fonts are frequently used to display code. Courier is a
common monospace font.

Because the generic fonts are available on all standards-compliant browsers,
you’d think you could use them confidently. Well, you can be sure they’ll
appear, but you still might be surprised. Figure 2-4 shows the same page (as
shown in Figure 2-3 in Windows) in Linux.

Macs display yet another variation. This is because the fonts listed here aren’t
actual fonts. Instead, they’re virtual fonts. A standards-compliant browser promises
to put an appropriate stand in. For example, if you choose sans serif, one browser
may choose to use Arial. Another may choose Chicago. You can always use these
font names and know the browser can make something close, but there’s no guar-
antee exactly what font is chosen by the browser. Still, it’s better than nothing.
When you use these fonts, you can be assured that you get something in the right
neighborhood, if not exactly what you intended.

Figure 2-4:
Windows
and Linux
disagree on
fantasy.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 163

Setting the Font Family164

Making a list of fonts
This uncertainty is frustrating, but you can take some control. You can specify
an entire list of font names if you want. The browser tries each font in turn. If it
can’t find the specified font, it goes to the next and on down the line.

You might choose a font that you know is installed on all Windows machines,
a font found on Macs, and finally one found on all Linux machines. The last
font on your list should be one of the generic fonts, so you’ll have some con-
trol over the worst-case scenario.

Table 2-1 shows a list of fonts commonly installed on Linux, Mac, and
Windows machines.

Table 2-1 Font Equivalents
Windows Mac Linux

Arial Arial Nimbus Sans L

Arial Black Arial Black

Comic Sans MS Comic Sans MS TSCu_Comic

Courier New Courier New Nimbus Mono L

Georgia Georgia Nimbus Roman No9 L

Lucida Console Monaco

Palatino Palatino FreeSerif

Tahoma Geneva Kalimati

Times New Roman Times FreeSerif

Trebuchet MS Helvetica FreeSans

Verdana Verdana Kalimati

You can use this chart to derive a list of fonts to try. For example, look at the
following style:

p {
font-family: “Trebuchet MS”, Helvetica, FreeSans, sans-serif;

}

This style has a whole smorgasbord of options. First, the browser tries to load
Trebuchet MS. If it’s a Windows machine, this font is available, so that’s the
one that’s displayed. If that doesn’t work, the browser tries Helvetica (a default
Mac font). If that doesn’t work, it tries FreeSans, a font frequently installed on
Linux machines. If this doesn’t work, it defaults to the old faithful sans-serif,
which simply picks a sans-serif font.

Note that font names that take up more than one word must be encased in
quotes, and the list of font names is separated by commas.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 164

Book II
Chapter 2

Styling Text

The Curse of Web-Based Fonts 165

Don’t get too stressed about Linux fonts. It’s true that the equivalencies are
harder to find, but Linux users tend to fall into two camps: They either don’t
care if the fonts are exact, or they do care and they’ve installed equivalent
fonts that recognize more common names. In either case, you can focus on
Mac and Windows people for the most part, and, as long as you’ve used a
generic font name, things work okay on a Linux box.

The Curse of Web-Based Fonts
Fonts seem pretty easy at first, but there are some big problems with actu-
ally using them.

Understanding the problem
The problem with fonts is this: Font resources are installed in each operating
system. They aren’t downloaded with the rest of the page. Your Web page
can call for a specific font, but that font isn’t displayed unless it’s already
been installed on the user’s computer.

Let’s say I have a cool font called Happygeek. (I just made that up. If you’re a
font designer, feel free to make a font called that. Just send me a copy. I can’t
wait.) It’s installed on my computer, and when I choose a font in my word
processor, it shows up in the list. I can create a word-processing document
with it, and everything will work great.

If I send a printout of a document using Happygeek to my grandma, every-
thing’s great because the paper doesn’t need the actual font. It’s just ink. If I
send her the digital file and tell her to open it on her computer, we’ll have a
problem. See, she’s not that hip and doesn’t have Happygeek installed. Her
computer will pick some other font.

The death of the font tag
There used to be a tag in old-school HTML
called the tag. You could use this tag
to change the size, color, and font family. There
were also specific tags for italicizing (<i>),
making boldface (), and centering
(<center>). These tags were very easy to
use, but they caused some major problems. To
use them well, you ended up littering your page
with all kinds of tags trying to describe the

markup, rather than the meaning. There was no
easy way to reuse font information, so you
often had to repeat things many times through-
out the page, making it difficult to change.
XHTML strict. no longer allows the ,
<i>, , or <center> tags. The CSS ele-
ments I show in this chapter more than com-
pensate for this loss. You now have a more
flexible, more powerful alternative.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 165

The Curse of Web-Based Fonts166

This isn’t a big problem in word processing because people don’t generally
send around digital copies of documents with elaborate fonts in them. However,
Web pages are passed around only in digital form. In order to know which
fonts you can use, you have to know what fonts are installed on the user’s
machine, and that’s impossible.

Part of the concern is technical (figuring out how to transfer the font infor-
mation to the browser), but the real issue is digital rights management. If
you’ve purchased a font for your own use, does that give you the right to
transfer it to others, so now they can use it without paying?

Examining possible solutions
This has been a problem since the beginning of the Web. A lot of people have
tried to come up with solutions. None of these solutions are good, but here
are a few compromises:

✦ Embedded fonts: Netscape and IE (Internet Explorer) both came up with
techniques to embed fonts directly into a Web page. Both techniques
involved using a piece of software to convert the font into a proprietary
format that allows it to be used for the specific page and nothing else.
The two systems were incompatible, and both were a little awkward. Almost
nobody used them. Firefox now completely ignores this technology, and IE
can do it but with a separate tool. Until browsers come up with a compati-
ble solution, I don’t recommend this technique.

✦ CSS 3 embedded fonts: CSS 3 (the next version of CSS on the horizon)
promises a way to import a font file purely through CSS. You’ll be able to
specify a particular filename and pass a URL (Uniform Resource Locator)
to the file on your server, and it’ll be used for that particular page but
not installed on the user’s system. This is the way custom fonts have
been handled in games for years. Unfortunately, none of the top browsers
are currently using this technique. If this system becomes standard, it
will be the way to handle fonts.

✦ Flash: Flash is a vector format very popular on the Web. Flash has very
nice features for converting fonts to a binary format within the flash
output, and most users have some kind of flash player installed. The
Flash editor is expensive, somewhat challenging to figure out, and
defeats many of the benefits of XHTML. These disadvantages outweigh
the potential benefit of custom fonts.

I’m certainly not opposed to using Flash. I just don’t think it’s a good
idea to build entire Web pages in Flash, or to use Flash simply to get
access to fonts. If you’re interested in using Flash, you might want to
check out another book I wrote, Flash Game Programming For Dummies
(Wiley Publishing, Inc.). In this book, you’ll learn how to make Flash liter-
ally sing and dance.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 166

Book II
Chapter 2

Styling Text

The Curse of Web-Based Fonts 167

✦ Images: Some designers choose to forego HTML altogether and create
their pages as huge images. This requires a huge amount of bandwidth,
makes the pages impossible to search, and makes them difficult to
modify. This is a really bad idea. Although you have precise control of
the visual layout, you lose most of the advantages of XHTML. Content in
images cannot be read by search engines and is entirely inaccessible to
people with screen readers. An image large enough to fill the screen will
take many times longer to download than equivalent XHTML markup.
The user cannot resize an image-based page, and this type of page does
not scale well to phones or other portable browsers.

Using images for headlines
Generally, you should use standard fonts for the page’s main content
anyway, so having a limited array of fonts isn’t such a big problem.
Sometimes, though, you want to use fonts in your headlines. You can use a
graphical editor, like GIMP, to create text-based images and then incorporate
them into your pages. Figure 2-5 shows an example of this technique.

Figure 2-5:
The font
shows up
because it’s
an image.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 167

The Curse of Web-Based Fonts168

In this case, I want to use my special cow font. (I love my cow font.)

Here’s the process:

1. Plan your page.

When you use graphics, you lose a little flexibility. You’ll need to know
exactly what the headlines should be. You also need to know what head-
line will be displayed at what level. Rather than relying on the browser
to display your headlines, you’re creating graphics in your graphic tool
(I’m using Gimp) and placing them directly in the page.

2. Create your images.

I used the wonderful Logos feature in GIMP (choose Xtns➪Script-fu➪logos)
to create my cow text. I built an image for each headline with the Bovination
tool. I’m just happy to have a Bovination tool. It’s something I’ve always
wanted.

3. Specify font sizes directly.

In the image, it makes sense to specify font sizes in pixels because here
you’re really talking about a specific number of pixels. You’re creating
“virtual text” in your graphic editor, so make the text whatever size you
want it to be in the finished page.

4. Use any font you want.

You don’t have to worry about whether the user has the font because
you’re not sending the font itself, just an image composed with the font.

5. Create a separate image for each headline.

This particular exercise has two images — a level 1 heading and a level 2.
Because I’m creating images directly, it’s up to me to keep track of how
the image will communicate its headline level.

6. Consider the headline level.

Be sure to make headline level 2 values look a little smaller or less
emphasized than level 1. That is, if you have images that will be used in
a heading 1 setting, they should use a larger font than images that will be
used in a less emphasized heading level. This is usually done by adjust-
ing the font size in your images.

7. Build the page as you normally would.

Once you have these specialty images created, build a regular Web page.
Put <h1> and <h2> tags in exactly the same places you usually do.

8. Put tags inside the headings.

Rather than ordinary text, place image tags inside the h1 and h2 tags.
See the upcoming code imageTitles.html if you’re a little confused.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 168

Book II
Chapter 2

Styling Text

The Curse of Web-Based Fonts 169

9. Put headline text in the alt attribute.

The alt attribute is especially important here because if the user has
graphics turned off, the text still appears as an appropriately styled
heading. People with slow connections see the text before the images
load, and people using text readers can still read the image.

Here’s the code used to generate the image-based headers:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>imageTitles.html</title>

</head>

<body>
<h1>

<img src = “cowsHistory.png”
alt = “Cows in History” />

</h1>

<p>
This page describes famous cows in history

</p>

<h2>
<img src = “cowpens.png”

alt = “Battle of Cowpens” />
</h2>

<p>
Most people are unaware that cattle actually took
part in the battle. They didn’t of course. I just
made that up.

</p>

</body>
</html>

This technique is a pretty nice compromise between custom graphics and
ordinary XHTML as follows:

✦ You have great control of your images. If you’re skilled with your
graphics tool, you can make any type of image you want act as a head-
line. There’s literally no limit except your skill and creativity.

✦ The page retains its structure. You still have heading tags in place, so
it’s easy to see that you mean for a particular image to act as a headline.
You can still see the page organization in the XHTML code.

✦ You have fallback text. The alt attributes will activate if the images
can’t be displayed.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 169

Specifying the Font Size170

✦ The semantic meaning of image headlines is preserved. The alt tags
provide another great feature. If they replicate the image text, this text is
still available to screen readers and search engines, so the text is not
buried in the image.

This technique is great for headlines or other areas, but notice that I was care-
ful to repeat the headline text in the alt tag. This is important because I don’t
want to lose the text. Search engine tools and screen readers need the text.

Don’t be tempted to use this technique for larger amounts of body text.
Doing so causes some problems:

✦ The text is no longer searchable. Search engines can’t find text if it’s
buried in images.

✦ The text is harder to change. You can’t update your page with a text editor.
Instead, you have to download the image, modify it, and upload it again.

✦ Images require a lot more bandwidth than text. Don’t use images if
they don’t substantially add to your page. You can make the case for a
few heading images, but it’s harder to justify having your entire page
stored as an image just to use a particular font.

Specifying the Font Size
Like font names, font sizes are easy to change in CSS, but there are some
hidden traps.

Size is only a suggestion!
In print media, after you determine the size of the text, it pretty much stays
there. The font size in print can’t be changed easily by the user. By compari-
son, Web browsers frequently change the size of text. A cell phone-based
browser displays text differently than one on a high-resolution LCD panel.
Further, most browsers allow the user to change the size of all the text on
the screen. Use Ctrl++ (plus sign) and Ctrl+– (minus sign) to make the text
larger or smaller. In older versions of IE (prior to IE7), use the Text Size
option from the Page menu to change the text size.

The user should really have the ability to adjust the font size in the browser.
When I display a Web page on a projector, I often adjust the font size so stu-
dents in the back can read. Some pages have the font size set way too small
for me to read. (It’s probably my high-tech monitor. It couldn’t possibly have
anything to do with my age.)

Determining font sizes precisely is counter to the spirit of the Web. If you
declare that your text will be exactly 12 points, for example, 1 of 2 things
could happen:

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 170

Book II
Chapter 2

Styling Text

Specifying the Font Size 171

✦ The browser might enforce the 12-point rule literally. This takes con-
trol from the user, so users who need larger fonts are out of luck. Older
versions of IE used to do this.

✦ The user might still change the size. If this is how the browser behaves
(and it usually is), 12 points doesn’t always mean 12 points. If the user
can change font sizes, the literal size selection is meaningless.

The Web developer should set up font sizes, but only in relative terms. Don’t
bother using absolute measurements (in most cases) because they don’t
really mean what you think. Let the user determine the base font size and
specify relative changes to that size.

Using the font-size style attribute
The basic idea of font size is pretty easy to grasp in CSS. Take a look at
fontSize.html in Figure 2-6.

This page obviously shows a number of different font sizes. The line “Font
Sizes” is an ordinary h1 element. All the other lines are paragraph tags. They
appear in different sizes because they have different styles applied to them.

Figure 2-6:
You can
easily
modify font
sizes in your
pages.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 171

Specifying the Font Size172

Font sizes are changed with the (cleverly named) font-size attribute:

p {
font-size: small;

}

Simply indicate the font-size rule, and, well, the size of the font. In this
example, I used the special value small, but there are many other ways to
specify sizes in CSS.

Absolute measurement units
A lot of times you need to specify the size of something in CSS. Of course,
font size is one of these cases. The different types of measurement have dif-
ferent implications. It’s important to know there are two distinct kinds of
units in CSS. Absolute measurements attempt to describe a particular size as
in the real world. Relative measurements are about changes to some default
value. In general, Web developers are moving toward relative measurement
for font sizes.

Points (pt)
In word processing, you’re probably familiar with points as a measurement of
font size. You can use the abbreviation pt to indicate you’re measuring in
points, for example:

p {
font-size: 12pt;

}

Note that no space is between 12 and pt.

Unfortunately, points aren’t an effective unit of measure for Web pages. Points
are an absolute scale, useful for print, but they aren’t reliable on the Web
because you don’t know what resolution the user’s screen has. A 12-point font
might look larger or smaller on different monitors.

In some versions of IE, after you specify a font size in points, the user can no
longer change the size of the characters. This is unacceptable from a usabil-
ity standpoint. Relative size schemes (which I describe later in this chapter)
prevent this problem.

Pixels (px)
Pixels refer to the small dots on the screen. You can specify a font size in pixels,
although it’s not usually done. For one thing, different monitors make pixels in
different sizes. You can’t really be sure how big a pixel will be in relationship
to the overall screen size. Different letters are different sizes, so the pixel

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 172

Book II
Chapter 2

Styling Text

Specifying the Font Size 173

size is a rough measurement of the width and height of the average character.
Use the px abbreviation to measure fonts in pixels:

p {
font-size: 20px;

}

Traditional measurements (in, cm)
You can also use inches (in) and centimeters (cm) to measure fonts, but this
is completely impractical. Imagine you have a Web page showing on your screen
and also being displayed on a projection system. One inch on your own monitor
may look like ten inches on the projector. Real-life measurement units aren’t
meaningful for the Web. The only time you might use them is if you’ll be printing
something and you have complete knowledge of how the printer is config-
ured. If that’s the case, you’re better off using a real print-oriented layout
tool than HTML.

Relative measurement units
Relative measurement is a wiser choice in Web development. Use these
schemes to change sizes in relationship to the standard size.

Named sizes
CSS has a number of font size names built in:

xx-small large

x-small x-large

small xx-large

medium

It may bother you that there’s nothing more specific about these sizes: How
big is large? Well, it’s bigger than medium. That sounds like a flip answer, but
it’s the truth. The user sets the default font size in the browser (or leaves it
alone), and all other font sizes should be in relation to this preset size. The
medium size is the default size of paragraph text on your page. For compari-
son purposes, <h1> tags are usually xx-large.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 173

Determining Other Font Characteristics174

Percentage(%)
The percentage unit is a relative measurement. It’s used to specify the font in
relationship to its normal size. Use 50% to make a font half the size it would
normally appear and 200% to make it twice the normal size. Use the %
symbol to indicate percentage, as shown here:

p {
font-size: 150%;

}

Percentages are based on the default size of ordinary text, so an <h1> tag at
100% is the same size as text in an ordinary paragraph.

Em (em)
In traditional typesetting, the em is a unit of measurement equivalent to the
width of the “m” character in that font. In actual Web use, it’s really another
way of specifying the relative size of a font. For instance, 0.5 ems is half the
normal size, and 3 ems is three times the normal size. The term em is used
to specify this measurement.

p {
font-size: 1.5em;

}

Here are the best strategies for font size:

✦ Don’t change sizes without a good reason. Most of the time, the
browser default sizes are perfectly fine, but there may be some times
when you want to adjust fonts a little more.

✦ Define an overall size for the page. If you want to define a font size for
the entire page, do it in the <body> tag. Use a named size, percentage,
or ems to avoid the side effects of absolute sizing. The size defined in
the body is automatically applied to every element in the body.

✦ Modify any other elements. You might want your links a little larger
than ordinary text, for example. You can do this by applying a font-
size attribute to an element. Use relative measurement if possible.

Determining Other Font Characteristics
In addition to size and color (see Chapter 1 of this minibook), you can
change fonts in a number of other ways.

Figure 2-7 shows a number of common text modifications you can make.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 174

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 175

The various paragraphs in this page are modified in different ways. You can
change the alignment of the text as well as add italic, bold, underline, or
strikethrough to the text.

CSS uses a potentially confusing set of rules for the various font manipulation
tools. One rule is used for determining the font style, and another is used for
boldness.

Each of these techniques is described in the following sections for clarity.

I used a trick I haven’t shown yet to produce this comparison page. I have
multiple paragraphs, each with their own style. Look to Chapter 3 of this mini-
book to see how to have more than one paragraph style in a particular page.

Using font-style for italics
The font-style attribute allows you to make italic text, as shown in Figure 2-8.

Here’s some code illustrating how to add italic formatting:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>

Figure 2-7:
Here are a
few of the
things you
can do to
modify text.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 175

Determining Other Font Characteristics176

<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>italics.html</title>
<style type = “text/css”>

p {
font-style: italic;

}
</style>

</head>

<body>
<h1>Italics</h1>
<p>This paragraph is in italic form.</p>

</body>
</html>

The font-style values can be italic, normal, or oblique (tilted toward
the left).

If you want to set a particular segment to be set to italic, normal, or oblique
style, use the font-style attribute.

Using font-weight for bold
You can make your font bold by using the font-weight CSS attribute, as
shown in Figure 2-9.

Figure 2-8:
You can
make italic
text with the
font-style
attribute.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 176

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 177

If you want to make some of your text bold, use the font-weight CSS
attribute, like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>bold.html</title>
<style type = “text/css”>

p {
font-weight: bold;

}
</style>

</head>

<body>
<h1>Boldface</h1>
<p>

This paragraph is bold.
</p>

</body>
</html>

Font weight can be defined in a couple ways. Normally, you simply indicate
bold in the font-weight rule as I did in this code. You can also use a
numeric value from 100 (exceptionally light) to 900 (dark bold).

Figure 2-9:
The font-
weight
attribute
affects the
boldness of
your text.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 177

Determining Other Font Characteristics178

Using text-decoration
Text-decoration can be used to add a couple other interesting formats to
your text, including underline, strikethrough. overline, and blink.

For example, the following code produces an underlined paragraph:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>underline.html</title>
<style type = “text/css”>

p {
text-decoration: underline;

}
</style>

</head>

<body>
<h1>Underline</h1>
<p>

This paragraph is underlined.
</p>

</body>
</html>

Be careful using underline in Web pages. Users have been trained that under-
lined text is a link, so they may click your underlined text expecting it to take
them somewhere.

The underline.html code produces a page like Figure 2-10.

You can also use text-decoration for other effects, like strikethrough, as
shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>strikethrough.html</title>
<style type = “text/css”>

p {
text-decoration: line-through;

}
</style>

</head>
<body>

<h1>Strikethrough</h1>
<p>

This paragraph has strikethrough text.
</p>

</body>
</html>

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 178

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 179

The strikethrough.html code produces a page like Figure 2-11.

Figure 2-11:
Text-
decoration
can be used
for a strike-
through
effect.

Figure 2-10:
You can
underline
text with
text-
decoration.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 179

Determining Other Font Characteristics180

Text-decoration has a few other rarely-used options, such as:

✦ Overline: The overline attribute places a line over the text. Except for
a few math and chemistry applications (which would be better done in
an equation editor and imported as images), I can’t see when this might
be used.

✦ Blink: The blink attribute is a distant cousin of the legendary <blink>
tag in Netscape and causes the text to blink on the page. The <blink>
tag (along with gratuitous animated GIFs) has long been derided as the
mark of the amateur. Avoid blinking text at all costs.

There’s an old joke among Internet developers: The only place to legitimately
use the <blink> tag is in this sentence: Schroedinger’s cat is <blink>not
</blink> dead. Nothing is funnier than quantum mechanics illustrated in
HTML.

Using text-align for basic alignment
You can use the text-align attribute to center, left-align, or right-align
text, as shown in the following code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>center.html</title>
<style type = “text/css”>

p {
text-align: center;

}
</style>

</head>

<body>
<h1>Centered</h1>
<p>This paragraph is centered.</p>

</body>
</html>

You can also use the text-align attribute to right- or left-justify your text.

The page shown in Figure 2-12 illustrates the text-align attribute.

You can apply the text-align attribute only to text. The old <center> tag
could be used to center nearly anything (a table, some text, or images), which
was pretty easy but caused problems. Book III explains how to position
elements in all kinds of powerful ways, including centering anything. Use
text-align to center text inside its own element (whether that’s a heading,
a paragraph, a table cell, or whatever).

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 180

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 181

Other text attributes
CSS offers a few other text manipulation tools, but they’re rarely used:

✦ Font-variant: Can be set to small-caps to make your text use only
capital letters. Lowercase letters are shown in a smaller font size.

✦ Letter-spacing: Adjusts the spacing between letters. It’s usually measured
in ems (see the section, “Relative measurement units,” earlier in the chap-
ter for more on ems). Fonts are so unpredictable on the Web that if you’re
trying to micromanage this much, you’re bound to be disappointed by the
results.

✦ Word-spacing: Allows you to adjust the spacing between words.

✦ Text-indent: Lets you adjust the indentation of the first line of an element.
This value uses the normal units of measurement. Indentation can be set
to a negative value, causing an outdent if you prefer.

✦ Vertical-align: Used when you have an element with a lot of vertical space
(often a table cell). You can specify how the text behaves in this situation.

✦ Text-transform: Helps you convert text into uppercase, lowercase, or
capitalized (first letter uppercase) forms.

✦ Line-height: Indicates the vertical spacing between lines in the element.
Like letter and word spacing, you’ll probably be disappointed if you’re
this concerned about exactly how things are displayed.

Figure 2-12:
This text is
centered
with text-
align.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 181

Determining Other Font Characteristics182

Using the font shortcut
It can be tedious to recall all the various font attributes and their possible
values. Aptana and other dedicated CSS editors make it a lot easier, but there’s
another technique often used by the pros. The font rule provides an easy
shortcut to a number of useful font attributes. The following code shows you
how to use the font rule:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>fontTag.html</title>
<style type = “text/css”>

p {
font: bold italic 150% “Dadhand”, cursive;;

}
</style>

</head>

<body>
<h1>Using Font shortcut</h1>
<p>

This paragraph has many settings.
</p>

</body>
</html>

Figure 2-13 illustrates the powerful font rule in action.

Figure 2-13:
The font rule
can change
many things
at once.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 182

Book II
Chapter 2

Styling Text

Determining Other Font Characteristics 183

The great thing about the font rule is how it combines many of the other
font-related rules for a simpler way to handle most text-formatting needs.

The font attribute is extremely handy. Essentially, it allows you to roll all
the other font attributes into one. Here’s how it works:

✦ Specify the font rule in the CSS.

✦ List any font-style attributes. You can mention any attributes normally
used in the font-style rule (italic or oblique). If you don’t want
either, just move on.

✦ List any font-variant attributes. If you want small caps, you can indi-
cate it here. If you don’t, just leave this part blank.

✦ List any font-weight values. This can be “bold” or a font-weight
number (100–900).

✦ Specify the font-size value in whatever measurement system you want
(but ems or percentages are preferred). Don’t forget the measurement
unit symbol (em or %) because that’s how the font rule recognizes that
this is a size value.

✦ Indicate a font-family list last. The last element is a list of font families
you want the browser to try. This list must be last, or the browser may
not interpret the font attribute correctly.

The font rule is great, but it doesn’t do everything. You still may need sepa-
rate CSS rules to define your text colors and alignment. These attributes
aren’t included in the font shortcut.

Don’t use commas to separate values in the font attribute list. Use commas
only to separate values in the list of font-family declarations.

You can skip any values you want as long as the order is correct. For example

font: italic “Comic Sans MS”, cursive;

is completely acceptable, as is

font: 70% sans-serif;

Working with subscripts and superscripts
Occasionally, you’ll need superscripts (characters that appear a little bit higher
than normal text, like exponents and footnotes) or subscripts (characters that
appear lower, often used in mathematical notation). Figure 2-14 demonstrates
a page with these techniques.

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 183

Determining Other Font Characteristics184

Surprisingly, you don’t need CSS to produce superscripts and subscripts.
These properties are managed through HTML tags. You can still style them
like you can any other HTML tag.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>SuperSub.html</title>

</head>

<body>
<p>

A² + B² = C²
</p>

<p>
i₀ = 0

</p>
</body>

</html>

Figure 2-14:
This page
has
superscripts
and
subscripts
(and, ooooh,
math!).

14_186275 bk02ch02.qxp 3/28/08 10:43 PM Page 184

Chapter 3: Selectors, Class,
and Style

In This Chapter
� Modifying specific named elements

� Adding and modifying emphasis and strong emphasis

� Creating classes

� Introducing spans and divs

� Using pseudo-classes and the link tag

� Selecting specific contexts

� Defining multiple styles

You know how to use CSS to change all the instances of a particular tag,
but what if you want to be more selective? For example, you might want

to change the background color of only one paragraph, or you might want to
define some special new type of paragraph. Maybe you want to specify a
different paragraph color for part of your page, or you want visited links to
appear differently from unselected links. The part of the CSS style that indi-
cates what element you want to style is a selector. In this chapter, you discover
powerful new ways to select elements on the page.

Selecting Particular Segments
Figure 3-1 illustrates how you should refer to someone who doesn’t appreci-
ate your Web development prowess.

Defining more than one kind of paragraph
Apart from its cultural merit, this page is interesting because it has three dif-
ferent paragraph styles. The introductory paragraph is normal. The quote is
set in italicized font, and the attribution is monospaced and right-aligned.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 185

Selecting Particular Segments186

The quote in the following code was generated by one of my favorite sites on
the Internet: the Shakespearean insult generator. Nothing is more satisfying
than telling somebody off in iambic pentameter.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>quote.html</title>
<style type = “text/css”>

#quote {
font: bold italic 130% Garamond, fantasy;
text-align: center;

}

#attribution {
font: 80% monospace;
text-align: right;

}
</style>

</head>

<body>
<h1>Literature Quote of the day</h1>
<p>

How to tell somebody off the classy way:
</p>

Figure 3-1:
This page
has three
different
kinds of
paragraphs.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 186

Book II
Chapter 3

Selectors, Class,
and Style
Selecting Particular Segments 187

<p id = “quote”>
[Thou] leathern-jerkin, crystal-button, knot-pated,
agatering, puke-stocking, caddis-garter, smooth-tongue,
Spanish pouch!

</p>

<p id = “attribution”>
-William Shakespeare (Henry IV Part I)

</p>

</body>
</html>

Styling identified paragraphs
Up to now, you’ve used CSS to apply a particular style to an element all
across the page. For example, you can add a style to the p tag, and that style
applies to all the paragraphs on the page.

Sometimes (as in the Shakespeare insult page) you want to give one element
more than one style. You can do this by naming each element and using the
name in the CSS style sheet. Here’s how it works:

1. Add an id attribute to each HTML element you want to modify.

For example, the paragraph with the attribution now has an id attribute
with the value attribution.

<p id = “attribution”>

2. Make a style in CSS.

Use a pound sign followed by the element’s ID in CSS to specify you’re
not talking about a tag type any more, but a specific element: For exam-
ple, the CSS code contains the selector #attribution meaning “apply
this style to an element with the attribution id.”

#attribution {

3. Add the style.

Create a style for displaying your named element. In this case, I want the
paragraph with the attribution id to be right-aligned, monospace,
and a little smaller than normal. This style will be attached only to the
specific element.

#attribution {
font: 80% monospace;
text-align: right;

}

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 187

Using Emphasis and Strong Emphasis188

The ID trick works great on any named element. IDs have to be unique (you
can’t repeat the same ID on one page), so this technique is best when you
have a style you want to apply to only one element on the page. It doesn’t
matter what HTML element it is (it could be an h1, a paragraph, a table cell,
or whatever). If it has the ID quote, the #quote style will be applied to it.
You can have both ID selectors and ordinary (element) selectors in the same
style sheet.

Using Emphasis and Strong Emphasis
You may be shocked to know that XHTML doesn’t allow italics or bold. Old-
style HTML had the <i> tag for italics and the tag for bold. These seem
pretty easy to use and understand. Unfortunately, they can trap you. In your
XHTML, you shouldn’t specify how something should be styled. You should
specify instead the purpose of the styling. The <i> and tags are removed
from XHTML Strict and replaced with and .

Adding emphasis to the page
The tag means emphasized. By default, em italicizes your text. The
 tag stands for strong emphasis. It defaults to bold.

Figure 3-2 illustrates a page with the default styles for em and strong.

Figure 3-2:
You can use
em and
strong to
add
emphasis.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 188

Book II
Chapter 3

Selectors, Class,
and Style

Using Emphasis and Strong Emphasis 189

The code for the emphasis.html page is pretty straightforward. It has no
CSS at all:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>emphasis.html</title>

</head>

<body>
<h1>Emphasis and Strong Emphasis</h1>
<p>

This paragraph illustrates two main kinds of emphasis.
This sentence uses the em tag.
By default, emphasis is italic.
This sentence uses strong emphasis.
The default formatting of strong emphasis is bold.

</p>

<p>
Of course you can change the formatting with CSS.
This is a great example of semantic formatting.
Rather than indicating the formatting
of some text, you indicate how much it is emphasized.

</p>

<p>
This way, you can go back and change things, like adding color
to emphasized text without the formatting commands
muddying your actual text.

</p>
</body>

</html>

It’d be improper to think that em is just another way to say italic and strong
is another way to say bold. In the old scheme, after you define something as
italic, you’re pretty much stuck with that. The XHTML way describes the
meaning, and you can define it however you want.

Modifying the display of em and strong
Figure 3-3 shows how you might modify the levels of emphasis. I used yellow
highlighting (without italics) for em and a larger red font for strong.

The code for emphasisStyle.html (as shown in Figure 3-3) is identical to
the code for emphasis.html (as shown in Figure 3-2). The only difference is
the addition of a style sheet. The style sheet is embedded in the Web page
between style tags. Check out Chapter 1 of this minibook for a refresher on
how to incorporate CSS styles in your Web pages.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 189

Using Emphasis and Strong Emphasis190

<style type = “text/css”>
em {

font-style: normal;
background-color: yellow;

}

strong {
color: red;
font-size: 110%;

}
</style>

The style is used to modify the XHTML. The meaning in the XHTML stays the
same — only the style changes.

The semantic markups are more useful than the older (more literal) tags
because they still tell the truth even if the style has been changed. (In the
XHTML code, the important thing is whether the text is emphasized, not
what it means to emphasize the text. That job belongs to CSS.)

What’s funny about the following sentence?

 is always bold.

Get it? That’s a bold-faced lie! Sometimes I crack myself up.

Figure 3-3:
You can
change the
way that em
and strong
modify text.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 190

Book II
Chapter 3

Selectors, Class,
and Style

Defining Classes 191

Defining Classes
You can easily apply a style to all the elements of a particular type in a page,
but sometimes you might want to have tighter control of your styles. For
example, you might want to have more than one paragraph style. As an
example, take a look at the classes.html page featured in Figure 3-4.

Once again, multiple formats are on this page:

✦ Questions have a large italic sans serif font. There’s more than one
question.

✦ Answers are smaller, blue, and in a cursive font. There’s more than
one answer, too.

Questions and answers are all paragraphs, so you can’t simply style the para-
graph because you need two distinct styles. There’s more than one question
and more than one answer, so the ID trick would be problematic. Two different
elements can’t have the same ID — you don’t want to create more than one
identical definition. This is where the notion of classes comes into play.

Figure 3-4:
Each joke
has a
question
and an
answer.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 191

Defining Classes192

Adding classes to the page
CSS allows you to define classes in your XHTML and make style definitions
that are applied across a class. It works like this:

1. Add the class attribute to your XHTML questions.

Unlike ID, several elements can share the same class. All my questions
are defined with this variation of the <p> tag. Setting the class to ques-
tion indicates these paragraphs will be styled as questions:

<p class = “question”>
What kind of cow lives in the Arctic?

</p>

2. Add similar class attributes to the answers by setting the class of the
answers to answer:

<p class = “answer”>
An Eskimoo!

</p>

Now you have two different subclasses of paragraph: question and
answer.

3. Create a class style for the questions.

The class style is defined in CSS. Specify a class with the period (.)
before the class name. Classes are defined in CSS like this:

<style type = “text/css”>
.question {

font: italic 150% arial, sans-serif;
text-align: left;

}

In this situation, the question class is defined as a large sans-serif font
aligned to the left.

4. Define the look of the answers.

The answer class uses a right-justified cursive font.

.answer {
font: 120% “Comic Sans MS”, cursive;
text-align: right;
color: #00F;

}
</style>

Combining classes
Here’s the code for the classes.html page, showing how to uses CSS
classes:

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 192

Book II
Chapter 3

Selectors, Class,
and Style

Defining Classes 193

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>classes.html</title>
<style type = “text/css”>

.question {
font: italic 150% arial, sans-serif;
text-align: left;

}

.answer {
font: 120% “Comic Sans MS”, cursive;
text-align: right;
color: #00F;

}
</style>

</head>

<body>
<h1>My five-year-old’s favorite jokes</h1>

<p class = “question”>
What kind of cow lives in the Arctic?

</p>

<p class = “answer”>
An Eskimoo!

</p>

<p class = “question”>
What goes on top of a dog house?

</p>

<p class = “answer”>
The woof!

</p>
</body>

</html>

Sometimes you see selectors, like

p.fancy

that include both an element and a class name. This style will be applied
only to paragraphs with the fancy class attached. Generally, I like classes
because they can be applied to all kinds of things, so I usually leave the ele-
ment name out to make the style as reusable as possible.

Combining classes
One element can use more than one class. Figure 3-5 shows an example of
this phenomenon

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 193

Defining Classes194

The paragraphs in Figure 3-5 appear to be in three different styles, but only red
and script are defined. The third paragraph uses both classes. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>redScript.html</title>
<style type = “text/css”>

.red {
color: white;
background-color: red;

}

.script {
font-family: cursive;

}
</style>

</head>

<body>
<h1>Multiple Classes</h1>
<p class = “red”>

This paragraph uses the red class
</p>

<p class = “script”>
This paragraph uses the script class

</p>

Figure 3-5:
There’s red,
there’s
script, and
then there’s
both.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 194

Book II
Chapter 3

Selectors, Class,
and Style

Introducing div and span 195

<p class = “red script”>
This paragraph uses both classes

</p>
</body>

</html>

The style sheet introduces two classes. The red class makes the paragraph
red (well, white text with a red background), and the script class applies a
cursive font to the element.

The first two paragraphs each have a class, and they act as you’d expect.
The interesting part is the third paragraph, as it has two classes.

<p class = “red script”>

This assigns both the red and script classes to the paragraph. Both styles
will be applied to the element in the order they are written. Note that both
class names occur inside quotes and no commas are needed (or allowed).
You can apply more than two classes to an element if you wish. If the classes
have conflicting rules (say one makes the element green and the next makes
it blue), the latest class in the list will overwrite earlier values.

An element can also have an ID. The ID style, the element style, and all the class
styles are taken into account when the browser tries to display the object.

Normally I don’t like to use colors or other specific formatting instructions
as class names. Usually, it’s best to name classes based on their meaning
(like mainColorScheme). You might decide that green is better than red, so
you either have to change the class name or you have to have a red class
that colored things green. That’d be weird.

Introducing div and span
So far, I’ve applied CSS styles primarily to paragraphs (with the p tag), but
you can really use any element you want. In fact, you may want to invent
your own elements. Perhaps you want a particular style, but it’s not quite a
paragraph. Maybe you want a particular style inside a paragraph. XHTML
has two very useful elements that are designed as generic elements. They
don’t have any predefined meaning, so they’re ideal candidates for modifica-
tion with the id and class attributes.

✦ div: A block-level element (like the p element). It acts just like a paragraph.
A div usually has carriage returns before and after it. Generally, you use
div to group a series of paragraphs.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 195

Introducing div and span196

✦ : An inline element. It doesn’t usually cause carriage returns
because it’s meant to be embedded into some other block-level element
(usually a paragraph or a div). A span is usually used to add some type
of special formatting.

Organizing the page by meaning
To see why div and span are useful, take a look at Figure 3-6.

The formatting of the page isn’t complete (read about positioning CSS in
Book III), but some formatting is in place. Each name and phone number pair
is clearly a group of things. Names and phone numbers are formatted differ-
ently. The interesting thing about this page is the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>divSpan.html</title>
<style type = “text/css”>

.contact {
background-color: #CCCCFF;

}
.name {

font: italic 110% arial, sans-serif;
}

Figure 3-6:
This page
has names
and phone
numbers.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 196

Book II
Chapter 3

Selectors, Class,
and Style

Introducing div and span 197

.phone {
font: 100% monospace;

}

</style>
</head>

<body>
<div class = “contact”>

Andy
111-1111

</div>

<div class = “contact”>
Elizabeth
222-2222

</div>

<div class = “contact”>
Matthew
333-3333

</div>

</body>
</html>

What’s exciting about this code is its clarity. When you look at the XHTML,
it’s very clear what type of data you’re talking about because the structure
describes the data. Each div represents a contact. A contact has a name and
a phone number.

The XHTML doesn’t specify how the data is displayed, just what it means.

Why not make a table?
This is where experienced HTML 4 people shake their heads in disbelief.
This page seems like a table, so why not make it one? What matters here
isn’t that the information is in a table, but that names and phone numbers
are part of contacts. There’s no need to bring in artificial table elements if
you can describe the data perfectly well without them.

If you still want to make the data look like a table, that’s completely possible,
as shown in Figure 3-7. See Book III to see exactly how some of the styling
code works. Of course, you’re welcome to look at the source code for this
styled version (dubbed divSpanStyled.html on the CD-ROM) if you want
a preview.

The point is this: After you define the data, you can control it as much as
you want. Using span and div to define your data gives you far more control
than tables and leaves your XHTML code much cleaner.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 197

Using Pseudo-Classes to Style Links198

div and span aren’t simply a replacement for tables. They’re tools for organiz-
ing your page into segments based on meaning. After you have them in place,
you can use CSS to apply all kinds of interesting styles to the segments.

Using Pseudo-Classes to Style Links
Now that you have some style going in your Web pages, you may be a bit
concerned about how ugly links are. The default link styles are useful, but
they may not fit with your color scheme.

Styling a standard link
It’s easy enough to add a style to a link. After all, <a> (the tag that defines
links) is just an XHTML tag, and you can add a style to any tag. Here’s an
example, where I make my links black with a yellow background:

a {
color: black;
background-color: yellow;

}

That works fine, but links are a little more complex than some other ele-
ments. Links actually have three different states:

Figure 3-7:
After you
define the
data, you
can style it
as a table if
you want.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 198

Book II
Chapter 3

Selectors, Class,
and Style

Using Pseudo-Classes to Style Links 199

✦ Normal: This is the standard state. With no CSS added, most browsers
display unvisited links as blue underlined text.

✦ Visited: This state is enabled when the user has visited a link and
returned to the current page. Most browsers use a purple underlined
style to indicate that a link has been visited.

✦ Hover: The hover state is enabled when the user’s mouse is lingering
over the element. Most browsers don’t use the hover state in their
default settings.

If you apply a style to the <a> tags in a page, the style is applied to all the
states of all the anchors.

Styling the link states
You can apply a different style to each state, as illustrated by Figure 3-8. In
this example, I make ordinary links black on a white background. A link that
has been visited is black on yellow, and, if the mouse is hovering over a link,
it is white with a black background.

Take a look at the code and see how it’s done:

Figure 3-8:
Links can
have three
states:
normal,
visited, and
hover.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 199

Using Pseudo-Classes to Style Links200

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>linkStates.html</title>
<style type = “text/css”>

a{
color: black;
background-color: white;

}

a:visited {
color: black;
background-color: #FFFF33;

}

a:hover {
color: white;
background-color: black;

}
</style>

</head>

<body>
<h1>Pseudo-classes and links</h1>

<p>

This link is normal
</p>

<p>
This link has been visited

</p>

<p>
The mouse is hovering over
this link

</p>
</body>

</html>

Nothing is special about the links in the HTML part of the code. The links
change their state dynamically while the user interacts with the page. The
style sheet determines what happens in the various states. Here’s how you
approach putting the code together:

✦ Determine the ordinary link style first by making a style for the <a> tag.
If you don’t define any other pseudo-classes, all links will follow this style.

✦ Make a style for visited links. A link will use this style if that site has been
visited during the current browser session. The a:visited selector indi-
cates links that have been visited.

✦ Make a style for hovered links. The a:hover style will be applied to
the link only when the mouse is currently hovering over the link. As
soon as the mouse leaves the link, the style reverts back to standard or
visited, as appropriate.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 200

Book II
Chapter 3

Selectors, Class,
and Style

Selecting in Context 201

Best link practices
Link styles have some special characteristics. You need to be a little bit careful
how you apply styles to links. Consider the following issues when applying
styles to list:

✦ The order is important. Be sure to define the ordinary anchor first. The
pseudo-classes are based on the standard anchor style.

✦ Make sure they still look like links. It’s important that users know
something is intended to be a link. If you take away the underlining and
the color that normally indicates a link, your users might be confused.
Generally, you can change colors without trouble, but links should either
be underlined text or something that clearly looks like a button.

✦ Test visited links. Testing visited links is a little tricky because, after you
visit a link, it stays visited. If you have the Web Developer toolbar installed
on Firefox, you can choose the Miscellaneous➪Visited Links command
to mark all links as visited or unvisited. In IE, choose Tools➪Delete
Browsing History and then select the Delete History button. You then
need to refresh the page for the change to take effect.

✦ Don’t change font size in a hover state. Unlike most styles, hover
changes the page in real time. A hover style with a different font size
than the ordinary link can cause problems. The page is automatically
reformatted to accept the larger (or smaller) font, which can move a
large amount of text on the screen rapidly. This can be frustrating and
disconcerting for users. It’s safest to change colors or borders on hover
but not the font family or font size.

The hover pseudo-class is supposed to be supported on other elements, but
browser support is spotty. You can define a hover pseudo-class for div and <p>
elements with some confidence if users are using the latest browsers. Earlier
browsers are less likely to support this feature, so don’t rely on it too much.

Selecting in Context
CSS allows some other nifty selection tricks. Take a look at Figure 3-9 and
you see a page with two different kinds of paragraphs in it.

The code for the context-style.html page is deceptively simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>context-style</title>
<style type = “text/css”>

#special p {

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 201

Selecting in Context202

text-align: right;
}

</style>
</head>

<body>
<h1>Selecting By Context</h1>

<div>
<p>This paragraph is left-justified.</p>
<p>This paragraph is left-justified.</p>
<p>This paragraph is left-justified.</p>

</div>

<div id = “special”>
<p>The paragraphs in this div are different.</p>
<p>The paragraphs in this div are different.</p>
<p>The paragraphs in this div are different.</p>

</div>
</body>

</html>

If you look at the code for context-style.html, you see some interesting
things:

✦ The page has two divs. One div is anonymous, and the other is special.

✦ None of the paragraphs has an ID or class. The paragraphs in this page
don’t have names or classes defined, yet they clearly have two different

Figure 3-9:
Obviously
two kinds of
paragraphs
are here —
or are
there?

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 202

Book II
Chapter 3

Selectors, Class,
and Style

Defining Multiple Styles at Once 203

types of behavior. The first three paragraphs are aligned to the left, and
the last three are aligned to the right.

✦ The style rule affects paragraphs inside the special div. Take
another look at the style:

#special p {

This style rule means apply this style to any paragraph appearing inside
something called special. You can also define a rule that could apply
to an image inside a list item or emphasized items inside a particular
class. When you include a list of style selectors without commas, you’re
indicating a nested style.

✦ Paragraphs defined outside special aren’t affected. This nested
selection technique can help you create very complex style combina-
tions. It becomes especially handy when you start building positioned
elements, like menus and columns.

Defining Multiple Styles at Once
Sometimes you want a number of elements to share similar styles. As an
example, look at Figure 3-10.

Figure 3-10:
H1, H2, and
H3 have
similar style
rules.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 203

Defining Multiple Styles at Once204

In this illustration, the top three headings all have very similar styles.
Creating three different styles would be tedious, so CSS includes a shortcut:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>multiStyle.html</title>
<style type = “text/css”>

h1, h2, h3 {
text-align: center;
font-family: “Bradley Hand ITC”, cursive;
background-color: yellow;

}

h3 {
font-family: monospace;

}
</style>

</head>

<body>
<h1>H1 Heading</h1>
<h2>H2 Heading</h2>
<h3>H3 Heading</h3>

</body>
</html>

One style element (the one that begins h1, h2, h3) provides all the information
for all three heading types. If you include more than one element in a style
selector separated by commas, the style applies to all the elements in the list.
In this example, the centered cursive font with a yellow background is applied
to headings level 1, 2, and 3 all in the same style.

If you want to make modifications, you can do so. I created a second h3 rule,
changing the font-family attribute to monospace. Style rules are applied
in order, so you can always start with the general rule and then modify
specific elements later in the style if you wish.

Remember, if you have multiple elements in a selector rule, it makes a huge
difference whether you use commas. If you separate elements with spaces
(but no commas), CSS looks for an element nested within another element. If
you include commas, CSS applies the rule to all the listed elements.

15_186275 bk02ch03.qxp 3/28/08 10:43 PM Page 204

Chapter 4: Borders and
Backgrounds

In This Chapter
� Creating borders

� Managing border size, style, and color

� Using the border shortcut style

� Understanding the box model

� Setting padding and margin

� Creating background and low-contrast images

� Changing background image settings

� Adding images to list items

CSS offers some great features for making your elements more colorful. It
has a flexible and powerful system for adding borders to your elements.

You can also add background images to all or part of your page. This chapter
describes how to use borders and backgrounds for maximum effect.

Joining the Border Patrol
You can use CSS to draw borders around any HTML element. You have some
freedom in the border size, style, and color. Here are two main ways to define
border properties — using individual border attributes and using a shortcut.
Borders don’t actually change the layout, but they do add visual separation
that can be appealing, especially as your layouts get more complex.

Using the border attributes
Figure 4-1 illustrates a page with a simple border drawn around the heading.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 205

Joining the Border Patrol206

The code for the borderProps.html page demonstrates the basic princi-
ples of borders in CSS:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>borderProps.html</title>
<style type = “text/css”>

h1 {
border-color: red;
border-width: .25em;
border-style: double;

}
</style>

</head>

<body>
<h1>This has a border</h1>

</body>
</html>

Figure 4-1:
This page
features a
double red
border.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 206

Book II
Chapter 4

Borders and
Backgrounds

Joining the Border Patrol 207

Each element can have a border defined. Borders require three attributes:

✦ width: The width of the border. This can be measured in any CSS unit,
but border width is normally described in pixels (px) or ems. (Remember,
an em is roughly the width of the capital letter “M” in the current font.)

✦ color: The color used to display the border. The color can be defined
like any other color in CSS, with color names or hex values.

✦ style: CSS supports a number of border styles. These are described in
the upcoming section. For this example, I chose a double border. This
draws a border with two thinner lines around the element.

You must define all three attributes if you want borders to appear properly. You
can’t rely on the default values to work in all browsers.

Defining border styles
After you have the three attributes defined, it’s time to pick your border
style. CSS has a predetermined list of border styles you can choose from.
Figure 4-2 shows a page with all the primary border styles displayed.

Figure 4-2:
This page
shows the
main border
styles.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 207

Joining the Border Patrol208

You can choose any of these styles for any border:

✦ Solid: A single solid line around the element.

✦ Double: Two lines around the element with a gap between them. The
border width is the combined width of both lines and the gap.

✦ Groove: Uses shading to simulate a groove etched in the page.

✦ Ridge: Uses shading to simulate a ridge drawn on the page.

✦ Inset: Uses shading to simulate a pressed-in button.

✦ Outset: Uses shading to simulate a button sticking out from the page.

✦ Dashed: A dashed line around the element.

✦ Dotted: A dotted line around the element.

I didn’t reprint the source of borderStyles.html here, but it’s included on
the CD-ROM and Web site if you want to look it over. I added a small margin
to each list item to make the borders easier to distinguish. Margins are dis-
cussed later in this chapter in the section, “Borders, margin, and padding.”

Shades of danger
Several of the border styles rely on shading to
produce special effects. Here are a couple
things to keep in mind when using these
shaded styles:

� You’ll need a wider border. The shading
effects are typically difficult to see if the
border is very thin.

� Browsers shade differently. All the shad-
ing tricks modify the base color (the color
you indicate with the border-color
attribute) to simulate depth. Unfortunately,
the browsers don’t all do this in the same
way. The Firefox/Mozilla browsers create a
new color lighter than the base color to
simulate areas in the light (the top and left

sides of an outset border, for example).
Internet Explorer (IE) uses the base color
for the lighter regions and creates a darker
shade to simulate areas in darkness. I
show a technique to define different color
schemes for each browser in Chapter 5 of
this minibook. For now, avoid shaded styles
if this bothers you.

� Black shading doesn’t work on IE. IE
makes colors darker to get shading effects.
If your base color is black, IE can’t make
anything darker, so you don’t see the shad-
ing effects at all. Likewise, white shading
doesn’t work well on Firefox.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 208

Book II
Chapter 4

Borders and
Backgrounds

Joining the Border Patrol 209

Using the border shortcut
Defining three different CSS attributes for each border is a bit tedious.
Fortunately, CSS includes a handy border shortcut that makes borders a lot
easier to define, as Figure 4-3 demonstrates.

You can’t tell the difference from the output, but the code for
borderShortcut.html is extremely simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>borderShortcut.html</title>
<style type = “text/css”>

h1 {
border: red 5px solid;

}
</style>

</head>

<body>
<h1>This page uses the border shortcut</h1>

</body>
</html>

Figure 4-3:
This border
is defined
with only
one CSS
rule.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 209

Joining the Border Patrol210

The order in which you describe border attributes doesn’t matter. Specify a
color, a size, and a border style.

Creating partial borders
If you want, you can have more precise control of each side of a border.
There are actually a number of specialized border shortcuts for each of the
sub-borders. Figure 4-4 shows how you can add borders to the top, bottom,
or sides of your element.

Figure 4-4 applies a border style to the bottom of the h1 and to the left side
of the paragraph. Partial borders are pretty easy to build, as you can see
from the code listing:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>subBorders.html</title>
<style type = “text/css”>

h1 {
border-bottom: 5px black double;

}

Figure 4-4:
You can
specify
parts of your
border if you
want.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 210

Book II
Chapter 4

Borders and
Backgrounds

Introducing the Box Model 211

p {
border-left:3px black dotted;
border-right: 3px black dotted;
border-top: 3px black dashed;
border-bottom: 3px black groove;

}
</style>

</head>

<body>
<h1>This heading has a bottom border</h1>

<p>
Paragraphs have several borders defined.

</p>

<p>
Paragraphs have several borders defined.

</p>

</body>
</html>

Notice the border styles. CSS has style rules for each side of the border:
border-top, border-bottom, border-left, and border-right. Each of these styles
acts like the border shortcut, but it only acts on one side of the border.

There’s also specific border attributes for each side (bottom-border-
width), but they’re almost never used because the shortcut version is so
much easier.

Introducing the Box Model
XHTML and CSS use a specific type of formatting called the box model.
Understanding how this layout technique works is important. If you don’t under-
stand some of the nuances, you’ll be surprised by the way your pages flow.

The box model relies on two main types of elements, inline and block-level.
<div> tags, paragraphs, and all headings (h1–h6) are examples of block-
level elements, whereas strong, a, and image are examples of inline elements.
Each type of element defines a rectangular box on the screen.

The main difference between inline and block-level elements is this: Block-
level elements always describe their own space on the screen, whereas
inline elements are allowed only within the context of a block-level element.

Your overall page is defined in block-level elements, which contain inline
elements for detail.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 211

Introducing the Box Model212

Each block-level element (at least in the default setting) takes up the entire
width of the screen. The next block-level element goes directly underneath
the last element defined.

Inline elements flow differently. They tend to go immediately to the right of
the previous element. If there’s no room left on the current line, an inline
element drops down to the next line and goes to the far left.

Borders, margin, and padding
Each block-level element has several layers of space around it, such as:

✦ Padding: The space between the content and the border.

✦ Border: Goes around the padding.

✦ Margin: Space outside the border between the border and the parent
element.

Figure 4-5 shows the relationship among margin, padding, and border.

You can change settings for the margin, border, and padding to adjust the
space around your elements. The margin and padding CSS rules are used
to set the sizes of these elements, as shown in Figure 4-6.

Figure 4-5:
Margin is
outside the
border;
padding is
inside.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 212

Book II
Chapter 4

Borders and
Backgrounds

Introducing the Box Model 213

In Figure 4-6, I applied different combinations of margin and padding to a
series of paragraphs. To make things easier to visualize, I drew a border
around the <div> containing all the paragraphs and each individual para-
graph element. You can see how the spacing is affected.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>marginPadding.html</title>
<style type = “text/css”>

div {
border: red 5px solid;

}
p {

border: black 2px solid;
}
#margin {

margin: 5px;
}
#padding {

padding: 5px;
}
#both {

margin: 5px;
padding: 5px;

}
</style>

</head>

Figure 4-6:
Margins
and padding
affect the
positioning
of an
element.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 213

Introducing the Box Model214

<body>
<h1>Margins and padding</h1>
<div id = “main”>

<p>This paragraph has the default margins and padding</p>
<p id = “margin”>This paragraph has a margin but no padding</p>
<p id = “padding”>This paragraph has padding but no margin</p>
<p id = “both”>This paragraph has a margin and padding</p>

</div>
</body>

</html>

You can determine margin and padding using any of the standard CSS meas-
urement units, but the most common are pixels and ems.

Positioning elements with margins and padding
As with borders, you can use variations of the margin and padding rules to
affect spacing on a particular side of the element. One particularly important
form of this trick is centering.

In old-style HTML, you could center any element or text with the <center>
tag. This was pretty easy, but it violated the principle of separating content
from style. The text-align: center rule is a nice alternative, but it only
works on the contents of an element. If you want to center an entire block-
level element, you need another trick, as you can see in Figure 4-7.

Figure 4-7:
Using
margins to
adjust
positioning.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 214

Book II
Chapter 4

Borders and
Backgrounds

Introducing the Box Model 215

This page illustrates a few interesting ideas:

✦ You can adjust the width of a block. The main div that contains all the
paragraphs has its width set to 75 percent of the page body width.

✦ Center an element by setting margin-left and margin-right to
auto. Set both the left and right margins to auto to make an element
center inside its parent element. This trick is most frequently used to
center divs and tables.

✦ Use margin-left to indent an entire paragraph. You can use margin-
left or margin-right to give extra space between the border and the
contents.

✦ Percentages refer to percent of the parent element. When you use per-
centages as the unit measurement for margins and padding, you’re refer-
ring to the percentage of the parent element; so a margin-left of 50
percent leaves the left half of the element blank.

✦ Borders help you see what’s happening. I added a border to the
mainBody div to help you see that the div is centered.

✦ Setting the margins to auto doesn’t center the text. It centers the div
(or other block-level element). Use text-align: center to center
text inside the div.

The code that demonstrates these ideas is shown here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>center.html</title>
<style type = “text/css”>

#mainBody {
border: 5px double black;
width: 75%;
margin-left: auto;
margin-right: auto;

}
.indented {

margin-left: 50%;
}

</style>
</head>

<body>
<h1>Centering</h1>
<div id = “mainBody”>

<p>
This paragraph is part of the centered main body.

</p>

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 215

Changing the Background Image216

<p class = “indented”>
This paragraph is indented to the right.

</p>
</div>

</body>
</html>

Changing the Background Image
You can use another CSS rule — background-image — to apply a back-
ground image to a page or elements on a page. Figure 4-8 shows a page with
this feature.

Background images are easy to apply. The code for
backgroundImage.html shows how:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>backgroundImage.html</title>
<style type = “text/css”>

body {
background-image: url(“ropeBG.jpg”);

}

Figure 4-8:
This page
has a
background
image for
the body
and another
for the
heading.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 216

Book II
Chapter 4

Borders and
Backgrounds
Changing the Background Image 217

h1 {
background-image: url(“ropeBGLight.jpg”);

}
p {

background-color: white;
}

</style>
</head>

<body>
<h1>Using Background Images</h1>

<p>
The heading uses a lighter version of the background,
and the paragraph uses a solid color background.
The heading uses a lighter version of the background,
and the paragraph uses a solid color background.
The heading uses a lighter version of the background,
and the paragraph uses a solid color background.

</p>
</body>

</html>

Attaching the background image to an element through CSS isn’t difficult.
Here are the general steps:

1. Find or create an appropriate image and place it in the same directory
as the page so it’s easy to find.

2. Attach the background-image style rule to the page you want to
apply the image to.

If you want to apply the image to the entire page, use the body element.

3. Tell CSS where background-image is by adding a url identifier.

Use the keyword url() to indicate that the next thing is an address.

4. Enter the address of the image.

It’s easiest if the image is in the same directory as the page. If that’s the
case, you can simply type the image name. Make sure you surround
the URL with quotes.

5. Test your background image by viewing the Web page in your
browser.

A lot can go wrong with background images. The image may not be in
the right directory, you might have misspelled its name, or you may
have forgotten the url() bit (I do all those things sometimes).

Getting a background check
It’s pretty easy to add backgrounds, but background images aren’t perfect.
Figure 4-9 demonstrates a page with a nice background. Unfortunately, the
text is difficult to read.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 217

Changing the Background Image218

Background images can add a lot of zing to your pages, but they can intro-
duce some problems, such as:

✦ Background images can add to the file size. Images are very large, so a
big background image can make your page much larger and harder to
download.

✦ Some images can make your page harder to read. An image in the
background can interfere with the text, so the page can be much harder
to read.

✦ Good images don’t make good backgrounds. A good picture draws the
eye and calls attention to it. The job of a background image is to fade
into the background. If you want people to look at a picture, embed it.
Background images shouldn’t jump into the foreground.

✦ Backgrounds need to be low contrast. If your background image is dark,
you can make light text viewable. If the background image is light, dark text
shows up. If your image has areas of light and dark (like nearly all good
images), it’ll be impossible to find a text color that looks good against it.

Figure 4-9:
The text is
very hard to
read. Don’t
do this to
your users!

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 218

Book II
Chapter 4

Borders and
Backgrounds
Changing the Background Image 219

Solutions to the background conundrum
Web developers have come up with a number of solutions to background
image issues over the years. I used several of these solutions in the
backgroundImage.html page (the readable one shown in Figure 4-8).

Using a tiled image
If you try to create an image the size of an entire Web page, the image will be
so large that dialup users will almost never see it. Even with compression
techniques, a page-sized image is too large for quick or convenient loading.

Fortunately, you can use a much smaller image and fool the user into think-
ing it takes up the entire screen. Figure 4-10 shows the ropeBG.jpg that I
used to cover the entire page.

Image courtesy of Julian Burgess (Creative Commons License).

I used a specially-created image for the background. Even though it’s only 500
pixels wide by 500 pixels tall, it’s been carefully designed to repeat so you
can’t see the seams. If you look carefully, you can tell that the image repeats,
but you can’t tell exactly where one copy ends and the next one begins.

This type of image is a tiled background or sometimes a seamless texture.

Figure 4-10:
The image is
only 500 x
500 pixels.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 219

Changing the Background Image220

Getting a tiled image
If you want an image that repeats seamlessly, you have two main options:

✦ Find an image online. A number of sites online have free seamless back-
grounds for you to use on your site. Try a search and see what you come
up with.

✦ Make your own image. If you can’t find a pre-made image that does
what you want, you can always make your own. All the main image edit-
ing tools have seamless background tools. In GIMP, choose
Filters➪Map➪Make Seamless. You can also do it by hand by offsetting
the image (choose Layer➪Transform➪Offset➪Offset by x/2, y/2) and
using the Blur or Clone tools to clean up the seams.

By default, a background image repeats as many times as necessary in both
the horizontal and vertical dimensions to fill up the entire page. This fills the
entire page with your background, but you only have to download a small
image.

Setting background colors
Background colors can be a great tool for improving readability. If you set
the background color of a specific element, that background color will appear
on top of the underlying element’s background image. For the background
Image.html example, I set the background color of all p objects to white, so
the text will appear on white regardless of the complex background. This is a
useful technique for body text (like <p> tags) because text tends to be smaller
and readability is especially important. If you want, you can set a background
color that’s similar to the background image. Just be sure the foreground color
contrasts with the background color so the text is easy to read.

When you use a dark background image with light text, be sure to also set the
background-color to a dark color. This way the text is readable immediately.
Images take longer to load than colors and may be broken. Make sure the
user can read the text immediately.

Reducing the contrast
In backgroundImage.html, the heading text is pretty dark, which won’t
show up well against the dark background image. I used a different trick for
the h1 heading. The heading uses a different version of the ropes image; this
one is adjusted to be much brighter. The image is shown in Figure 4-11.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 220

Book II
Chapter 4

Borders and
Backgrounds
Changing the Background Image 221

With this element, I kept the ropes image, but I made a much brighter back-
ground so the dark text would show up well underneath. This technique
allows you to use the background image even underneath text, but here are
a few things to keep in mind if you use it:

✦ Make the image very dark or very light. Use the Adjust Colors command
in IrfanView or your favorite image editor to make your image dark or
light. Don’t be shy. If you’re creating a lighter version, make it very light.
(See Book I, Chapter 6 for details on color manipulation in IrfanView.)

✦ Set the foreground to a color that contrasts with the background. If
you have a very light version of the background image, you can use dark
text on it. A dark background will require light text. Adjust the text color
with your CSS code.

✦ Set a background color. Make the background color representative of
the image. Background images can take some time to appear, but the
background color appears immediately, because it is defined in CSS. This is
especially important for light text because white text on the default white
background is invisible. After the background image appears, it overrides
the background color. Be sure the text color contrasts with the background
whether that background is an image or a solid color.

✦ Use this trick for large text. Headlines are usually larger than body text,
and they can be easier to read, even if they have a background behind
them. Try to avoid putting background images behind smaller body text.
This can make the text much harder to read.

Figure 4-11:
This is the
ropes image
with the
brightness
turned way
up.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 221

Manipulating Background Images222

Manipulating Background Images
After you place your background image, you might not be completely
pleased with the way it appears. Don’t worry. You still have some control.
You can specify how the image repeats and how it’s positioned.

Turning off the repeat
Background images repeat both horizontally and vertically by default. You
may not want a background image to repeat, though. Figure 4-12 is a page
with the ropes image set to not repeat at all.

The code uses the background-repeat attribute to turn off the automatic
repetition.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>noRepeat.html</title>
<style type = “text/css”>

body {
background-image: url(“ropeBG.jpg”);
background-repeat: no-repeat;

}

Figure 4-12:
The
background
doesn’t
repeat at all.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 222

Book II
Chapter 4

Borders and
Backgrounds

Manipulating Background Images 223

h1 {
background-color: white;

}
</style>

</head>

<body>
<h1>Background with no-repeat</h1>

</body>
</html>

The background-repeat attribute can be set to one of four different
values:

✦ repeat. The default value; the image is repeated indefinitely in both x-
and y-axes.

✦ no-repeat. Displays the image one time; no repeat in x- or y-axis.

✦ repeat-x. Repeats the image horizontally but not vertically.

✦ repeat-y. Repeats the image vertically but not horizontally.

Making effective gradients
with repeat-x and repeat-y
Gradients are images that smoothly flow from one color to another. They can
have multiple colors, but simplicity is a virtue here. The repeat-x and
repeat-y techniques discussed in the previous section can be combined
with a special image to create a nice gradient background image that’s very
easy to download. Figure 4-13 shows an example of this technique.

Even though the entire page is covered in a background image, I made the
actual background quite small. The outlined area in Figure 4-13 is the actual
image used in the background (displayed with an img tag and a border). You
can see that the image used is very short (5 pixels tall). I used background-
repeat: y to make this image repeat as many times as necessary to fill the
height of the page.

The code is pretty straightforward:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>gradient.html</title>
<style type = “text/css”>

body {
background-image: url(“blueGrad.jpg”);
background-repeat: repeat-y;

}

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 223

Manipulating Background Images224

img {
border: 1px solid black;

}
</style>

</head>

<body>
<h1>Using a thin gradient background</h1>
<p>
Here’s the actual gradient height:

</p>

</body>
</html>

Here’s how you make a gradient background:

✦ Obtain or create a gradient image.

Most image editing tools can make gradient fills easily. In Gimp, you
simply select the gradient tool, choose an appropriate foreground and
background color, and apply the gradient to the image.

✦ Set the image size.

If you want your image to tile vertically (as I did), you’ll want to make it
very short (5 pixels) and very wide (I chose 1,600 pixels, so it would fill
nearly any browser).

Figure 4-13:
The page
appears to
have a large
background
image.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 224

Book II
Chapter 4

Borders and
Backgrounds

Using Images in Lists 225

✦ Apply the image as the background image of the body or of any other
element, using the background-image attribute.

✦ Set the background-repeat attribute to repeat-x to make the
image repeat as many times as necessary vertically.

Use a vertical gradient image if you prefer. If you want to have a color
that appears to change down the page, create a tall, skinny gradient and
set background-repeat to repeat-x.

The great thing about this technique is how it uses a relatively small image
to fill a large Web site. It looks good, but it’ll still download reasonably fast.

Using Images in Lists
It’s not quite a background, but you can also use images for list items.
Sometimes you might want some type of special bullet for your lists, as
shown in Figure 4-14.

Figure 4-14:
I can’t get
enough of
those
Arrivivi
Gusanos.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 225

Using Images in Lists226

On this page, I’ve listed some of my (many) favorite varieties of peppers. For
this kind of list, a custom pepper bullet is just the thing. Of course, CSS is the
answer:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>listImages.html</title>
<style type = “text/css”>

li {
list-style-image: url(“pepper.gif”);

}
</style>

</head>

<body>
<h1>My Favorite Peppers</h1>

Green
Habenero
Arrivivi Gusano

</body>

</html>

The list-style-image attribute allows you to attach an image to a list
item. To create custom bullets:

1. Begin with a custom image.

Bullet images should be small, so you may have to make something
little. I took a little pepper image and resized it to be 25 x 25 pixels. The
image will be trimmed to an appropriate width, but it will have all the
height of the original image, so make it small.

2. Specify the list-style-image with a url attribute.

You can set the image as the list-style-image, and all the bullets
will be replaced with that image.

3. Test the list in your browser.

Be sure everything is working correctly. Check to see that the browser
can find the image, that the size is right, and that everything looks like
you expect.

16_186275 bk02ch04.qxp 3/28/08 10:44 PM Page 226

Chapter 5: Levels of CSS

In This Chapter
� Building element-level styles

� Creating external style sheets

� Creating a multi-page style

� Managing cascading styles

� Using conditional comments

CSS is a great tool for setting up the visual display of your pages. When
you first write CSS code, you’re encouraged to place all your CSS rules

in a style element at the top of the page. CSS also allows you to define
style rules inside the body of the HTML and in a separate document. In this
chapter, you read about these alternative methods of applying style rules,
when to use them, and how various style rules interact with each other.

Managing Levels of Style
Styles can be applied to your pages at three main levels:

✦ Local styles: Defined by specifying a style within an XHTML element’s
attributes.

✦ Page-level styles: Defined in the page’s header area. This is the type of
style used in Chapters 1 through 4 of this minibook.

✦ External styles: Defined on a separate document and linked to the page.

Using local styles
A style can be defined directly in the HTML body. Figure 5-1 is an example of
this type of code. A local style is also sometimes called an element-level
style, because it modifies a particular instance of an element on the page.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 227

Managing Levels of Style228

You can’t see the difference from Figure 5-1, but if you look over the code, you’ll
see it’s not like style code you see in the other chapters in this minibook:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>localStyles.html</title>

</head>

<body>
<h1>Local Styles</h1>
<p style = “border: 2em #FF00FF groove”>

This paragraph has a locally-defined border
</p>

<p style = “font-family: sans-serif;
font-size: 1.2em;
font-style: italic”>

This paragraph has a series of font and text rules applied.
</p>

</body>
</html>

While you look over this code, a couple things should become evident:

Figure 5-1:
This page
has styles,
but they’re
defined
differently
than you’ve
done before
in this book.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 228

Book II
Chapter 5

Levels of CSS

Managing Levels of Style 229

✦ No <style> element is in the header. Normally, you use a <style>
section in the page header to define all your styles. This page doesn’t
have such a segment.

✦ Paragraphs have their own style attributes. I added a style attribute
to each paragraph in the HTML body. All XHTML elements support the
style attribute.

✦ The entire style code goes in a single pair of quotes. For each styled
element, the entire style goes into a pair of quotes because it’s one
HTML attribute. You can use indentation and white space (as I did) to
make things easier to understand.

When to use local styles
Local styles should not be your first choice, but they can be useful in some
circumstances.

If you’re writing a program to translate from a word processor or other tool,
local styles are often the easiest way to make the translation work. If you use
a word processor to create a page and you tell it to save as HTML, it will
often use local styles because word processors often use this technique in
their own proprietary format. Often when you see an HTML page with a lot
of local styles, it’s because an automatic translation tool made the page.

Sometimes you’ll see local styles used in code examples. For example, the
following code could be used to demonstrate different border styles:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>localBorders.html</title>

</head>

<body>
<h1>Inline Borders</h1>
<p style = “border: 5px solid black”>

This paragraph has a solid black border
</p>

<p style = “border: 5px double black”>
This paragraph has a double black border

</p>

</body>
</html>

For example purposes, it’s helpful to see the style right next to the element.
This code would be fine for demonstration or testing purposes (if you just
want to get a quick look at some border styles), but it wouldn’t be a good
idea for production code.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 229

Managing Levels of Style230

Local styles have very high priority, so anything you apply in a local style
overrides the other style rules. This can be a useful workaround if things
aren’t working like you expect, but it’s better to get a feel for why your styles
are acting as they are.

The other place you’ll occasionally see local styles is in Dynamic HTML (DHTML)
applications like animation and motion. This technique often involves writing
JavaScript code to change various style elements on the fly. The technique is
more reliable when the style elements in question are defined locally. See Book
IV, Chapter 7 for a complete discussion of this topic.

The drawbacks of local styles
It’s pretty easy to apply a local style, but for the most part, the technique
isn’t usually recommended because it has some problems, such as:

✦ Inefficiency: If you define styles at the individual element level with the
style attribute, you’re defining only the particular instance. If you want
to set paragraph colors for your whole page this way, you’ll end up writing
a lot of style rules.

✦ Readability: If style information is interspersed throughout the page, it’s
much more difficult to find and modify than if it’s centrally located in the
header (or in an external document, as you’ll see shortly).

✦ Lack of separation: Placing the styles at the element level defeats the
goal of separating content from style. It becomes much more difficult to
make changes, and the mixing of style and content makes your code
harder to read and modify.

✦ Awkwardness: An entire batch of CSS rules has to be stuffed into a
single HTML attribute with a pair of quotes. This can be tricky to read
because you have CSS integrated directly into the flow of HTML.

✦ Quote problems: The XHTML attribute requires quotes, and some CSS
elements also require quotes (font families with spaces in them, for
example). Having multiple levels of quotes in a single element is a recipe
for trouble.

Using an external style sheet
CSS supports another way to use styles, called external style sheets. This
technique allows you to define a style sheet as a separate document and
import it into your Web pages. To see why this might be attractive, take a
look at the following figure.

Figure 5-2 shows a page with a distinctive style.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 230

Book II
Chapter 5

Levels of CSS

Managing Levels of Style 231

When you look at the code for externalStyle.html, you might be sur-
prised to see no obvious style information at all!

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>externalStyle.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “myStyle.css” />

</head>

<body>
<h1>External Style</h1>
<p>

This page has styles set for paragraphs, body, and header 1.
</p>

<p>
The styles are defined in an external style sheet.

</p>
</body>

</html>

Where you’d normally see style tags (in the header), there is no style.
Instead, you see a <link> tag. This special tag is used to connect the cur-
rent document with another document.

Figure 5-2:
This page
has styles
for the body,
h1, and
paragraph
tags.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 231

Managing Levels of Style232

Defining the external style
When you use a page-level style, the style elements aren’t embedded in the
page header but in an entirely separate document.

In this case, the page is connected to a special file called myStyle.css. This
file contains all the CSS rules:

/* myStyle.css */

body {
background-color: #333300;
color: #FFFFFF;

}

h1 {
color: #FFFF33;
text-align: center;
font: italic 200% fantasy;

}

p {
background-color: #FFFF33;
color: #333300;
text-align: right;
border: 3px groove #FFFF33;

}

The style sheet looks just like a page-level style, except for a few key differences:

✦ The style sheet rules are contained in a separate file. The style is no
longer part of the HTML page but is an entirely separate file stored on
the server. CSS files usually end with the .css extension.

✦ There are no <style></style> tags. These aren’t needed because the
style is no longer embedded in HTML.

✦ The code begins with a comment. The /* */ pair indicates a comment
in CSS. Truthfully, you can put comments in CSS in the page level just like
I did in this external file. External CSS files frequently have comments in
them.

✦ The style document has no HTML. CSS documents contain nothing but
CSS. This comes closer to the goal of separating style (in the CSS document)
and content (in the HTML document).

✦ The document isn’t tied to any particular page. The great advantage of
external CSS is reuse. The CSS document isn’t part of any particular
page, but any page can use it.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 232

Book II
Chapter 5

Levels of CSS

Managing Levels of Style 233

Reusing an external CSS style
External style sheets are really fun when you have more than one page that
needs the same style. Most Web sites today use multiple pages, and they
should share a common style sheet to keep consistency. Figure 5-3 shows a
second page using the same myStyle.css style sheet.

The code shows how easily this is done:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>SecondPage.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “myStyle.css” />

</head>

<body>
<h1>Second Page</h1>
<p>

This page uses the same style as
externalStyle.html.

</p>
</body>

</html>

Figure 5-3:
This page
uses the
same style
as the first
one, but I
only defined
the style
once.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 233

Managing Levels of Style234

External style sheets have some tremendous advantages:

✦ One style sheet can control many pages: You’ll generally have a large
number of different pages in a Web site that all share the same general
style. You can define the style sheet in one document and have all the
HTML files refer to the CSS file.

✦ Global changes are easier: Let’s say you have a site with a dozen pages,
and you decide you want some kind of chartreuse background (I don’t
know why — go with me here). If each page has its own page-level style
definition, you have to make the change 12 times. If you’re using external
styles, you make the change in one place and it’s automatically propa-
gated to all the pages in the system.

✦ Separation of content and design: With external CSS, all the design is
housed in the CSS, and the data is in XHTML.

✦ Easy upgrades: Because the design parameters of the entire site are
defined in one file, you can easily change the site without having to mess
around with individual HTML files.

Understanding the link tag
The link tag is the key to adding a CSS reference to an HTML document. The
link tag has the following characteristics:

✦ The <link> tag is part of the HTML page. Use a link tag in your HTML
document to specify which CSS document will be used by the HTML page.

✦ The link tag only occurs in the header. Unlike the a tag, the <link>
tag can occur only in the header.

✦ The tag has no visual presence. The user can’t see the link tag, only
its effects.

✦ The link tag is used to relate the document with another document.
You use the link tag to describe the relationship between documents.

✦ The link tag has a rel attribute, which defines the type of relationship.
For now, the only relationship you’ll use is the stylesheet attribute.

✦ The <link> tag also has an href attribute, which describes the loca-
tion of the other document.

Link tags are often used to connect a page to an externally-defined style
document (more on them in the next section).

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 234

Book II
Chapter 5

Levels of CSS

Understanding the Cascading Part of Cascading Style Sheets 235

Most people refer to the hyperlinks created by the anchor (a) tag as hyper-
links or links. This can lead to some confusion, because, in this sense, the link
tag doesn’t create that type of links. If it were up to me, the a tag would have
been called the link tag, and the tag now called link would have been called
rel or something. Maybe Tim Berners-Lee meant to call me the day he named
these elements, and he just forgot. That’s what I’m thinking.

Specifying an external link
To use the <link> tag to specify an external style sheet, follow these steps:

1. Define the style sheet.

External style sheets are very similar to the ones you already know. Just
put all the styles in a separate text document without the <style> and
</style> tags. In my example, I created a new text file called myStyle.
css.

2. Create a link element in the HTML page’s head area to define the
linkage between the HTML and CSS pages.

My link element looks like this:

<link rel = “stylesheet”
type = “text/css”
href = “myStyle.css” />

3. Set the link’s relationship by setting the rel = “stylesheet”
attribute.

Honestly, stylesheet is almost the only relationship you’ll ever use, so
this should become automatic.

4. Specify the type of style by setting type = “text/css” (just like you
do with page-level styles).

5. Determine the location of the style sheet with the href attribute.

Understanding the Cascading Part
of Cascading Style Sheets

The C in CSS stands for cascading, which is an elegant term for an equally
elegant and important idea. Styles cascade or flow among levels. An ele-
ment’s visual display may be affected by rules in another element or even
another document.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 235

Understanding the Cascading Part of Cascading Style Sheets236

Inheriting styles
When you apply a style to an element, you change the appearance of that
element. If the element contains other elements, the style is often passed on
to those containers. Take a look at Figure 5-4 for an illustration.

Figure 5-4 shows several paragraphs, all with different font styles. Each para-
graph is white with a black background. All the paragraphs use a Fantasy
font. Two of the paragraphs are italicized, and one is also bold. Look at the
code, and you’ll see how the CSS is defined.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>CascadingStyles</title>
<style type = “text/css”>

body {
color: white;
background-color: black;

}

p {
font-family: fantasy;

}

Figure 5-4:
The last
paragraph
inherits
several style
rules.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 236

Book II
Chapter 5

Levels of CSS

Understanding the Cascading Part of Cascading Style Sheets 237

.italicized {
font-style: italic;

}

#bold {
font-weight: bold;

}
</style>

</head>

<body>
<h1>Cascading Styles</h1>

<p>This is an ordinary paragraph</p>

<p class = “italicized”>
This paragraph is part of a special class

</p>

<p class = “italicized”
id = “bold”>

This paragraph has a class and an ID</p>
</body>

</html>

Take a look at the page, and you’ll notice some interesting things:

✦ Everything is white on a black background. These styles were defined
in the body. Paragraphs without specific colors will inherit the colors of
the parent element (in this case, the body). There’s no need to specify
the paragraph colors because the body takes care of them.

✦ Paragraphs all use the fantasy font. I set the paragraph’s font-family
attribute to fantasy. All paragraphs without an explicit font-family
attribute will use this rule.

✦ A class is used to define italics. The second paragraph is a member of
the italicized class, which gives it italics. Because it’s also a paragraph,
it gets the paragraph font, and it inherits the color rules from the body.

✦ The bold ID only identifies font weight. The third paragraph has all
kinds of styles associated with it. This paragraph displays all the styles
of the second, plus the added attributes of its own ID.

In the cascadingStyles.html example, the final paragraph inherits the font
from the generic p definition, italics from its class, and boldfacing from its ID.
Any element can attain style characteristics from any of these definitions.

Hierarchy of styles
An element will display any style rules you define for it, but certain rules are
also passed on from other places. In general, this is how style rules cascade
through the page:

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 237

Understanding the Cascading Part of Cascading Style Sheets238

✦ The body defines overall styles for the page. Any style rules that you
want the entire page to share should be defined in the body. Any ele-
ment in the body begins with the style of the page. This makes it easy to
define an overall page style.

✦ A block-level element passes its style to its children. If you define a
div with a particular style, any elements inside that div will inherit the
div’s style attributes. Likewise, defining a list will also define the list
items.

✦ You can always override inherited styles. Of course, if you don’t want
paragraphs to have a particular style inherited from the body, you can
just change them.

Not all style rules are passed on to child elements. The text formatting and
color styles are inherited, but border and positioning rules are not. This actu-
ally makes sense. Just because you’ve defined a border around a div doesn’t
mean you’ll want the same border around the paragraphs inside that div.

Overriding styles
The other side of inherited style is the ability to override an inherited style
rule. For example, take a look at this code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>overRide.html</title>
<style type = “text/css”>

body { color: red; }
p {color: green; }
.myClass { color: blue; }
#whatColor { color: purple; }

</style>
</head>

<body>
<p class = “myClass”

id = “whatColor”>
This paragraph is a member of a class and has an ID,
both with style rules. It has four conflicting
color rules!

</p>
</body>

</html>

The code listing has a different indentation scheme than I’ve used in the rest
of the chapter. Because all the styles had one rule, I chose not to indent to
save space.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 238

Book II
Chapter 5

Levels of CSS

Understanding the Cascading Part of Cascading Style Sheets 239

The question is this: What color will the “whatColor” element display? It’s a
member of the body, so it should be red. It’s also a paragraph, and paragraphs
are green. It’s also a member of the myClass class, so it should be blue.
Finally, it’s named whatColor, and elements with this ID should be purple.

Four seemingly conflicting color rules are all dropped on this poor element.
What color will it be?

CSS has a clear ranking system for handling this type of situation. In general,
more specific rules trump more general rules. Here’s the precedence (from
highest to lowest precedence):

1. User preference: The user always has the final choice about what styles
are used. User’s aren’t required to use any styles at all, and can always
change the style sheet for their own local copy of the page. If a user
needs to apply a special style (for example, high contrast for people
with visual disabilities), he should always have that option.

2. local style: A local style (defined with the style attribute in the HTML)
has the highest precedence of developer-defined styles. It overrules any
other styles.

3. id: A style attached to an element id has a great deal of weight because
it overrides any other styles defined in the style sheet.

4. class: Styles attached to a class override the style of the object’s ele-
ment. So, if you have a paragraph with a color green that belongs to a
class colored blue, the element will be blue because class styles outrank
element styles.

5. element: The element style takes precedence over any of its containers.
For example, if a paragraph is inside a div, the paragraph style has the
potential to override both the div and the body.

6. container element: Divs, tables, lists, and other elements used as con-
tainers pass their styles on. If an element is inside one or more of these
containers, it can inherit style attributes from them.

7. body: Anything defined in the body style is an overall page default, but it
will be overridden by any other styles.

In the overRide.html example, the id rule will take precedence, so the
paragraph will display in green.

If you want to see a more complete example, look at cascadingStyles.
html on the CD-ROM. It extends the whatColor example with other paragraphs
that demonstrate the various levels of the hierarchy.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 239

Using Conditional Comments240

Precedence of style definitions
When you have styles defined in various places (locally, page level, or exter-
nally) the placement of the style rule also has a ranking. In general, an exter-
nal style has the weakest rank. You can write a page-level style rule to
override an external style.

You might do this if you’ve decided all your paragraphs will be blue, but you
have one page where you want the paragraphs green. Define paragraphs as
green in the page-level style sheet, and your page will have the green para-
graphs without interfering with the other page’s styles.

Page-level styles (defined in the header) have medium weight. They can
override external styles but are overridden by local styles.

Locally defined styles (using the HTML style attribute) have the highest
precedence, but they should be avoided as much as possible. Use classes or
IDs if you need to override the page-level default styles.

Using Conditional Comments
While we’re messing around with style sheets, there’s one more thing you
should know. Every once in a while, you’ll encounter a page that needs one set
of style rules for most browsers and has some exceptions for Internet Explorer.

Most of what you know works equally well in any browser. I’ve focused on
the established standards, which work very well on most browsers.
Unfortunately Internet Explorer (especially before version 7) is notorious for
not following the standards exactly. Internet Explorer (IE) doesn’t do every-
thing exactly right. When IE had unquestioned dominance, everybody just
made things work for IE. Now you have a bigger problem. You need to make
your code work for standards-compliant browsers, and sometimes you need
to make a few changes to make sure that IE displays things correctly.

Coping with incompatibility
This has been a problem since the beginning of Web development, and there
have been a number of solutions proposed over the years, such as:

✦ “Best viewed with” disclaimers: One common technique is to code for
one browser or another and then just ask users to agree with your
choice by putting up this disclaimer. This isn’t a good technique
because the user shouldn’t have to adapt to you. Besides, sometimes
the choice is out of the user’s hands. More and more small devices (such
as PDAs and cell phones) have browsers built in, which are difficult to
change. IE isn’t available on Linux machines, and not everyone can
install a new browser.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 240

Book II
Chapter 5

Levels of CSS

Using Conditional Comments 241

✦ Parallel pages: You might be tempted to create two different versions of
your page, one for IE and one for the standards-compliant browsers
(Firefox, Netscape Navigator, Opera, Safari, and so on). This is also a bad
solution because it’s twice (or more) as much work. You’ll have a lot of
trouble keeping track of changes in two different pages. They’ll
inevitably fall out of synch.

✦ JavaScript-based browser detection: In Book IV, you see that JaveScript
has features for checking on the browser. This is good, but it still doesn’t
quite handle the differences in style sheet implementation between the
browsers.

✦ CSS hacks: The CSS community has frequently relied on a series of
hacks (unofficial workarounds) to handle CSS compatibility problems.
This approach works by exploiting certain flaws in IEs design to over-
come others. The biggest problem with this is that when Microsoft fixes
some flaws (as they’ve done with IE 7), many of the flaws you relied on
to fix a problem may be gone, but the original problem is still there.

✦ Conditional comments: Although IE has bugs, it also has some innovative
features. One of these features, conditional comments, lets you write code
that will be displayed only in IE. Because the other browsers don’t support
this feature, the IE-specific code will be ignored in any browser not based
on IE. This is the technique currently preferred by coders who adhere to
Web standards.

Making Internet Explorer–specific code
It’s a little easier for you to see how conditional comments work if I show you
a simple example — and then show you how to use the conditional comment
trick to fix CSS incompatibility problems.

Figure 5-5 shows a simple page with Firefox. Figure 5-6 shows the exact same
page as it’s displayed in IE 7.

Take a look at the code for whatBrowser.html and see how it works.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>IEorNot.html</title>

</head>

<body>
<p>

I will now use a conditional comment to determine your
browser. I’ll let you know if you’re using IE.

</p>

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 241

Using Conditional Comments242

Figure 5-6:
. . . And this
is IE.
Somehow
the code
knows the
difference.

Figure 5-5:
This isn’t IE.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 242

Book II
Chapter 5

Levels of CSS

Using Conditional Comments 243

<!--[if IE]>
<h1>You’re using IE</h1>

<![endif]-->

</body>
</html>

The only part that’s new is the strange comments:

<!--[if IE]>
<h1>You’re using IE</h1>

<![endif]-->

Conditional comments are a special feature available only in Internet
Explorer. They allow you to apply a test to your browser. You can place any
XHTML code you wish between <!-- [if IE]> and <![endif]-->, but
that code will only be rendered by versions of Internet Explorer. Any other
browser will read the entire block as a comment and ignore it completely.

So, when you look at whatBrowser in IE, it sees the conditional comment,
says to itself “Why yes, I’m Internet Explorer” and displays the “Using IE”
headline. If you look at the same page with Firefox, the browser doesn’t
understand the conditional comment but sees an HTML comment (which
begins with <!-- and ends with -->). HTML comments are ignored, so the
browser does nothing.

Using a conditional comment with CSS
Conditional comments on their own aren’t that interesting, but they can be a
very useful tool for creating compatible CSS. You can use conditional com-
ments to create two different style sheets, one that works for IE and one that
works with everything else. Figures 5-7 and 5-8 illustrate a simple example of
this technique:

Most browsers will read a standard style sheet that creates a yellow
background.

If the page is rendered in IE, it uses a second style sheet.

Look at the code and you’ll see it’s very similar to the IEorNot.html page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>WhatBrowser.html</title>

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 243

Using Conditional Comments244

Figure 5-8:
The same
page uses a
different
style sheet
in IE.

Figure 5-7:
This page
has a yellow
background
in most
browsers.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 244

Book II
Chapter 5

Levels of CSS

Using Conditional Comments 245

<!-- default style -->
<style type = “text/css”>

body {
background-color: yellow;
color: blue;

}
</style>

<!-- IE only style overrides default -->
<!--[if IE]>

<style type = “text/css”>
body {

background-color: red;
color: yellow;

}
</style>

<![endif]-->

</head>

<body>

<p>
This page has a red background in IE, and a yellow
background in other browsers.

</p>
</body>

</html>

If you want a page to use different styles in IE and other browsers, do the
following:

1. Define the default style first.

Begin by creating the style that will work in most browsers. Most of the
time, this style will also work in IE. You can create the style at the page level
(with the <style></style> pair) or externally (with the <link> tag).

2. Create a conditional comment in the header.

Create a conditional comment after the primary style, as shown in this
code snippet.

<!-- default style -->
<style type = “text/css”>

body {
background-color: yellow;
color: blue;

}
</style>

<!-- IE only style overrides default -->
<!--[if IE]>

<![endif]-->

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 245

Using Conditional Comments246

3. Build a new IE-specific style inside the comment.

The style inside the comment will be applied only to IE browsers, such
as I did in the following lines:

<!--[if IE]>
<style type = “text/css”>

body {
background-color: red;
color: yellow;

}
</style>

<![endif]-->

4. The commented style can be page level or external.

Like the default style, you can use the <style></style> pair to make a
page-level style, or you can use the <link> tag to pull in an externally-
defined style sheet.

5. Only place code that solves IE issues in the conditional style.

IE will read the code in both styles, so there’s no need to repeat every-
thing. Use the conditional style for only those areas where IE doesn’t do
what you expect.

6. Don’t forget to end the conditional comment.

If you leave off the end of your conditional comment (or any comment,
for that matter), most of your page won’t appear. That could be bad.

Checking the Internet Explorer version
So far, you haven’t encountered many situations that require conditional
comments, but they’re handy when you need them. One more trick can be
useful. You can specify which version of IE you’re using. This will be impor-
tant when you read about positionable CSS in Book III, as IE 7 works pretty
well with standards-compliant code, but the earlier versions do not. You can
use this variation to specify code only for IE 6 and earlier.

<!--[if lte IE 6]>
...
<[endif]-->

The lte signifies less than or equal to, so code inside this condition will run
only on early versions of IE. Look ahead to Book III to see more examples of
conditional commenting.

17_186275 bk02ch05.qxp 3/28/08 10:44 PM Page 246

Book III

Using Positional
CSS for Layout

18_186275 pp03.qxp 3/28/08 10:45 PM Page 247

Contents at a Glance

Chapter 1: Fun with the Fabulous Float .249
Avoiding Old-School Layout Pitfalls ..249
Introducing the Floating Layout Mechanism..252
Using Float with Block-Level Elements..255
Using Float to Style Forms ..260

Chapter 2: Building Floating Page Layouts .271
Creating a Basic Two-Column Design ..271
Building a Three-Column Design..280
Building a Fixed-Width Layout ...285
Building a Centered Fixed-Width Layout...288

Chapter 3: Styling Lists and Menus .293
Revisiting List Styles..293
Creating Dynamic Lists..298
Building a Basic Menu System..306

Chapter 4: Using Alternative Positioning .313
Working with Absolute Positioning..313
Managing z-index..317
Building a Page Layout with Absolute Positioning319
Creating a More Flexible Layout...323
Exploring Other Types of Positioning ...327
Determining Your Layout Scheme ...332

18_186275 pp03.qxp 3/28/08 10:45 PM Page 248

Chapter 1: Fun with
the Fabulous Float

In This Chapter
� Understanding the pitfalls of traditional layout tools

� Using float with images and block-level tags

� Setting the width and margins of floated elements

� Creating attractive forms with float

� Using the clear attribute with float

O ne of the big criticisms of HTML is its lack of real layout tools. You can
do a lot with your page, but it’s still basically a list of elements arranged

vertically on the screen. As the Web matures and screen resolutions improve,
people want Web pages to look more like print matter, with columns, good-
looking forms, and more layout options. CSS provides several great tools for
building nice layouts. After you get used to them, you can build just about any
layout you can imagine. This chapter describes the amazing float attribute
and how it can be used as the foundation of great page layouts.

Avoiding Old-School Layout Pitfalls
Back in the prehistoric (well, pre-CSS) days, no good option was built into
HTML for creating a layout that worked well. Clever Web developers and
designers found some ways to make things work, but these proposed solu-
tions all had problems.

Problems with frames
Frames were a feature of the early versions of HTML. They allowed you to
break a page into several segments. Each segment was filled with a different
page from the server. You could change pages independently of each other,
to make a very flexible system. You could also specify the width and height
of each frame.

At first glance, frames sound like an ideal solution to layout problems. In
practice, they had a lot of disadvantages, such as

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 249

Avoiding Old-School Layout Pitfalls250

✦ Complexity: If you had a master page with four segments, you had to
keep track of five Web pages. A master page kept track of the relative
positions of each section but had no content. Each of the other pages
had content but no built-in awareness of the other pages.

✦ Linking issues: The default link action caused content to pop up in the
same frame as the original link, which isn’t usually what you want. Often,
you’d put a menu in one frame and have the results of that menu pop up
in another frame. This meant most anchors had to be modified to make
them act properly.

✦ Backup nightmares: If the user navigated to a page with frames and
then caused one of the frames to change, what should the backup
button do? Should it return to the previous state (with only the one seg-
ment returned to its previous state) or was the user’s intent to move
entirely off the master page to what came before? There are good argu-
ments for either and no good way to determine the user’s intention.
Nobody ever came up with a reasonable compromise for this problem.

✦ Ugliness: Although it’s possible to make frames harder to see, they did
become obvious when the user changed the screen size and scroll bars
would automatically pop up.

For all these reasons, frames aren’t allowed in XHTML Strict documents. The
layout techniques you read about in this chapter more than compensate for
the loss of frames as layout tools. Read in Chapter 4 of Book VIII how to inte-
grate content from other pages on the server with AJAX.

Problems with tables
When it became clear that frames weren’t the answer, Web designers turned
to tables. HTML has a flexible and powerful table tool, and it’s possible to do
all kinds of creative things with that tool to create layouts. Many HTML devel-
opers still do this, but you’ll see that flow-based layout is cleaner and easier.
Tables are meant for tabular data, not as a layout tool. When you use tables
to set up the visual layout of your site, you’ll encounter these problems:

✦ Complexity: Although table syntax isn’t that difficult, a lot of nested tags
are in a typical table definition. In order to get exactly the look you want,
you probably won’t use an ordinary table but tricks, like rowspan and
colspan, special spacer images, and tables inside tables. It doesn’t take
long for the code to become bulky and confusing.

✦ Content and display merging: Using a table for layout violates the prin-
ciple of separating content from display. If your content is buried inside
a complicated mess of table tags, it’ll be difficult to move and update.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 250

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Avoiding Old-School Layout Pitfalls 251

✦ Inflexibility: If you create a table-based layout and then decide you
don’t like it, you basically have to redesign the entire page from scratch.
It’s no simple matter to move a menu from the left to the top in a table-
based design, for example.

Tables are great for displaying tabular data. Avoid using them for layout
because you have better tools available.

Problems with huge images
Some designers skip HTML altogether and create Web pages as huge images.
Tools, like Photoshop, include features for creating links in a large image.
Again, this seems ideal because a skilled artist can have control over exactly
what is displayed. Like the other techniques, this has some major draw-
backs, such as

✦ Size and shape limitations: When your page is based on a large image,
you’re committed to the size and shape of that image for your page. If a
person wants to view your page on a cell phone or PDA, it’s unlikely to
work well, if at all.

✦ Content issues: If you create all the text in your graphic editor, it isn’t
really stored to the Web page as text. In fact, the Web page will have no
text at all. This means that search engines can’t index your page, and
screen readers for people with disabilities won’t work.

✦ Difficult updating: If you find an error on your page, you have to modify
the image, not just a piece of text. This makes updating your page more
challenging than it would be with a plain XHTML document.

✦ File size issues: An image large enough to fill a modern browser window
will be extremely large and slow to download. Using this technique will
all but eliminate users with dialup access from using your site.

Problems with Flash
Another tool that’s gained great popularity is the Flash animation tool from
Adobe (formerly Macromedia). This tool allows great flexibility in how you
position things on a page and supports techniques that are difficult or
impossible in ordinary HTML, like integrating sound and video, automatic
motion tweening, and path-based animation. Flash certainly has a place in Web
development (especially for embedded games — check out my earlier book
Beginning Flash Game Programming For Dummies [Wiley Publishing, Inc.]). Even
though Flash has great possibilities, you should avoid its use for ordinary Web
development because of

✦ Cost: The Flash editor isn’t cheap, and it doesn’t look like it’ll get
cheaper. The tool is great, but if there are free or low-cost alternatives
that work just as well, it’s hard to justify the cost.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 251

Introducing the Floating Layout Mechanism252

✦ Binary encoding: All text in a Flash Web page is stored in the Flash file
itself. It’s not visible to the browser. Flash pages (like image-based
pages) don’t work in Web searches and aren’t useful for people with
screen readers.

✦ Updating issues: If you need to change your Flash-based page, you have
to have the Flash editor installed. This can make it more difficult to keep
your page up to date.

✦ No separation of content: As far as the browser is concerned, there’s no
content but the Flash element, so there’s absolutely no separation of
content and layout. If you want to make a change, you have to change
the Flash application.

Adobe has recently released a very interesting tool called Flex. It’s based on
the Flash engine, and it’s specifically designed to overcome some of the
shortcomings I’ve listed in the proceeding section. It’ll be interesting to see if
this becomes an important technology.

Introducing the Floating Layout Mechanism
CSS supplies a couple techniques for layout. The preferred technique for most
applications is a floating layout. The basic idea of this technique is to leave the
XHTML layout as simple as possible but to provide style hints that tell the
various elements how to interact with each other on the screen.

In a floating layout, you don’t legislate exactly where everything will go.
Instead, you provide hints and let the browser manage things for you. This
insures flexibility because the browser will try to follow your intentions, no
matter what size or shape the browser window becomes. If the user resizes
the browser, the page will flex to fit to the new size and shape, if possible.

Floating layouts typically involve less code than other kinds of layouts
because only a few elements need specialized CSS. In most of the other
layout techniques, you’ll need to provide CSS for every single element in
order to make things work as you expected.

Using float with images
The most common place to use the float attribute is with images. Figure 1-1
has a paragraph with an image embedded inside.

It’s more likely that you want the image to take up the entire left part of the
paragraph. The text should flow around the paragraph, like Figure 1-2.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 252

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Introducing the Floating Layout Mechanism 253

Figure 1-2:
Now the
text wraps
around the
image.

Figure 1-1:
The image
acts like a
single
character
without a
flow setting.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 253

Introducing the Floating Layout Mechanism254

When you add a float:left attribute to the img element, the image tends
to move to the left, pushing other content to the right. Now, the text flows
around the image. The image is actually removed from the normal flow of the
page layout, so the paragraph takes up all the space. Inside the paragraph,
the text avoids overwriting the image.

Adding the float property
The code for adding the float property is pretty simple:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>imgFloat.html</title>
<style type = “text/css”>

img {
float: left;

}
</style>

</head>

<body>
<p>

<img src = “ball.gif”
alt = “ball” />

The image now has its float attribute set to left. That means
that the text will flow around the image as it normally does
in a magazine.
The image now has its float attribute set to left. That means
that the text will flow around the image as it normally does
in a magazine.
The image now has its float attribute set to left. That means
that the text will flow around the image as it normally does
in a magazine.
The image now has its float attribute set to left. That means
that the text will flow around the image as it normally does
in a magazine.
The image now has its float attribute set to left. That means
that the text will flow around the image as it normally does
in a magazine.

</p>
</body>

</html>

The only new element in the code is the CSS float attribute. The img object
has a float:left attribute. It isn’t necessary to change any other attributes
of the paragraph because the paragraph text knows to float around the image.

Of course, you don’t have to simply float to the left. Figure 1-3 shows the
same page with the image’s float attribute set to the right.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 254

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float with Block-Level Elements 255

Using Float with Block-Level Elements
The float attribute isn’t only for images. You can also use it with any block-
level element (typically p or div) to create new layouts. Using the float attrib-
ute to set the page layout is easy after you understand how things really work.

Floating a paragraph
Paragraphs and other block-level elements have a well-defined default
behavior. They take up the entire width of the page, and the next element
appears below. When you apply the float element to a paragraph, the
behavior of that paragraph doesn’t change much, but the behavior of suc-
ceeding paragraphs is altered.

To illustrate, I take you all the way through the process of building two side-
by-side paragraphs.

Begin by looking at a page with three paragraphs. Paragraph 2 has its float
property set to left. Figure 1-4 illustrates such a page.

Figure 1-3:
Now the
image is
floated to
the right.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 255

Using Float with Block-Level Elements256

As you can see, some strange formatting is going on here. I improve on
things later to make the beginnings of a two-column layout, but for now, just
take a look at what’s going on:

✦ The first paragraph acts normally. The first paragraph has the same
behavior you’ve seen in all block-style elements. It takes up the entire
width of the page, and the next element will be placed below it.

✦ The second paragraph is pretty normal. The second paragraph has its
float attribute set to left. This means that the paragraph will be
placed in its normal position, but that other text will be placed to the left
of this element.

✦ The third paragraph seems skinny. The third paragraph seems to sur-
round the second, but the text is pushed to the right. The float parame-
ter in the previous paragraph causes this one to be placed in any
remaining space (which currently isn’t much). The remaining space is on
the right and eventually underneath the second paragraph.

The code to produce this is simple HTML with equally simple CSS markup:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

Figure 1-4:
Paragraphs
2 and 3 are
acting
strangely.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 256

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float with Block-Level Elements 257

<title>floatDemo</title>
<style type = “text/css”>

p {
border: 2px black solid;

}
.floated {

float: left;
}

</style>

</head>

<body>
<h1>Float Demo</h1>
<p>

Paragraph 1.
This paragraph has the normal behavior of a block-level element.
It takes up the entire width of the page, and the next element
is placed underneath.

</p>

<p class = “floated”>
Paragraph 2.
This paragraph is floated left. It is placed to the left, and the
next element will be placed to the right of it.

</p>

<p>
Paragraph 3.
This paragraph has no floating, width or margin. It takes whatever
space it can to the right of the floated element, and then flows
to the next line.

</p>
</body>

</html>

As you can see from the code, I have a simple class called floated with the
float property set to left. Notice also that the paragraphs are defined in the
ordinary way; even though paragraph 2 seems to be embedded inside para-
graph 3 in the screen shot, the code clearly shows that this isn’t the case.
The two paragraphs are completely separate.

I added a black border to each paragraph so you can see that the size of the
element isn’t always what you’d expect.

Adjusting the width
When you float an element, the behavior of succeeding elements is highly
dependant on the width of the first element. This leads to a primary principle
of float-based layout:

If you float an element, you must also define its width.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 257

Using Float with Block-Level Elements258

The exception to this rule is elements with a predefined width, like images and
many form elements. These elements already have an implicit width, so you
don’t need to define width in the CSS. If in doubt, try setting the width at various
values until you get the layout you’re looking for.

Figure 1-5 shows the page after I adjusted the width of the floated paragraph
to 50 percent of the page width.

Things look better in Figure 1-5, but paragraph 2 still seems to be embedded
inside paragraph 3. The only significant change is in the CSS style:

<style type = “text/css”>
p {

border: 2px black solid;
}
.floated {

float: left;
width: 50%;

}
</style>

I’ve added a width property to the floated element.

Elements that have the float attribute enabled will generally also have a
width defined, except for images or other elements with an inherent width.

Figure 1-5:
The floated
paragraph
has a width
of 50
percent of
the page.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 258

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float with Block-Level Elements 259

When you use a percentage value in the context of width, you’re expressing
a percentage of the parent element (in this case, the body because the para-
graph is embedded in the document body). Setting the width to 50% means
I want this paragraph to span half the width of the document body.

Setting the next margin
Things still don’t look quite right. I added the borders around each para-
graph so you can see an important characteristic of floating elements. Even
though the text of paragraph 3 wraps to the right of paragraph 2, the actual
paragraph element still extends all the way to the left side of the page. The
element doesn’t necessarily flow around the floated element, but its contents
do. The background color and border of paragraph 3 still take up as much
space as they normally would if paragraph 2 didn’t exist.

This is because a floated element is removed from the normal flow of the
page. Paragraph 3 has access to the space once occupied by paragraph 2,
but the text in paragraph 3 will try to find its own space without stepping on
text from paragraph 2.

Somehow, you need to tell paragraph 3 to move away from the paragraph 2
space. This isn’t a difficult problem to solve once you recognize it. Figure 1-6
shows a solution.

Figure 1-6:
The left
margin of
paragraph 3
is set to give
a two-
column
effect.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 259

Using Float to Style Forms260

The margin-left property of paragraph 3 is set to 53 percent. Because the
width of paragraph 2 is 50 percent, this provides a little gap between the
columns. Take a look at the code to see what’s going on here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>floatWidthMargin.html</title>
<style type = “text/css”>

p {
border: 2px black solid;

}
.floated {

float: left;
width: 50%;

}
.right {

margin-left: 52%;
}

</style>

</head>

<body>
<h1>Specifying the width</h1>
<p>

Paragraph 1.
This paragraph has the normal behavior of a block-level element.
It takes up the entire width of the page, and the next element
is placed underneath.

</p>

<p class = “floated”>
Paragraph 2.
This paragraph is floated left. The
next element will be placed to the right of it. Now this has a width
of 50%.

</p>

<p class = “right”>
Paragraph 3.
This paragraph now has a margin-left so it is separated from the
previous paragraph. It’s width is still automatically
determined.

</p>

</body>
</html>

Using Float to Style Forms
Many page layout problems appear to require tables. Some clever use of the CSS
float can help elements with multiple columns without the overhead of tables.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 260

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float to Style Forms 261

Forms cause a particular headache because a form often involves labels in a
left column followed by input elements in the right column. You’d probably
be tempted to put such a form in a table. Adding table tags will make the
HTML much more complex and isn’t required. It’s much better to use CSS to
manage the layout.

You can float elements to create attractive forms without requiring tables.
Figure 1-7 shows a form with float used to line up the various elements.

As page design gets more involved, it makes more sense to think of the HTML
and the CSS separately. The HTML will give you a sense of the overall intent
of the page, and the CSS can be modified separately. Using external CSS is a
natural extension of this philosophy. Begin by looking at floatForm.html
and concentrate on the XHTML structure before worrying about style:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>floatForm.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “floatForm.css” />

</head>

Figure 1-7:
This is a
nice-looking
form defined
without a
table.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 261

Using Float to Style Forms262

<body>
<form action = “”>

<fieldset>
<label>Name</label>
<input type = “text”

id = “txtName” />
<label>Address</label>
<input type = “text”

id = “txtAddress” />
<label>Phone</label>
<input type = “text”

id = “txtPhone” />
<button type = “button”>

submit request
</button>

</fieldset>
</form>

</body>
</html>

While you look over this code, note several interesting things about the way
the page has been designed:

✦ The CSS is external. CSS is defined in an external document. This makes
it easy to change the style and helps you to focus on the XHTML docu-
ment in isolation.

✦ The XHTML code is minimal. The code is very clean. It includes a form
with a fieldset. The fieldset contains labels, input elements, and a
button.

✦ There isn’t a table. There’s no need to add a table as an artificial organi-
zation scheme. A table wouldn’t add to the clarity of the page. The form
elements themselves provide enough structure to allow all the format-
ting you need.

✦ Labels are part of the design. I used the label element throughout the
form, giving me an element that can be styled however I wish.

✦ Everything is selectable. I’ll want to apply one CSS style to labels,
another to input elements, and a third style to the button. I’ve set up the
XHTML so I can use CSS selectors without requiring any id or class
attributes.

✦ There’s a button. I used a button element instead of <input type =
“button”> on purpose. This way, I can apply one style to all the input
elements and a different style to the button element.

It’s wonderful when you can design a page like this one so its internal struc-
ture provides all the selectors you need. This keeps the page very clean and
easy to read. Still, don’t be afraid to add classes or IDs if you need them.

Figure 1-8 demonstrates how the page looks with no CSS.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 262

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float to Style Forms 263

It’s often a good idea to look at your page with straight XHTML before you
start messing around with CSS.

If you have a page with styles and you want to see how it will look without
the style rules, use the Web Developer toolbar. You can temporarily disable
some or all CSS style rules to see the default content underneath. This can
sometimes be extremely handy.

Using float to beautify the form
It’d be very nice to give the form a tabular feel, with each row containing a
label and its associated input element. My first attempt at a CSS file for this
page looked like this:

/* floatNoClear.css
CSS file to go with float form
Demonstrates use of float, width, margin
Code looks fine but the output is horrible.

*/

fieldset {
background-color: #AAAAFF;

}
label {

float: left;
width: 5em;
text-align: right;

Figure 1-8:
The plain
XHTML is a
start, but
some CSS
would help
a lot.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 263

Using Float to Style Forms264

margin-right: .5em;
}
input {

background-color: #CCCCFF;
float: left;

}
button {

float: left;
width: 10em;
margin-left: 7em;
margin-top: 1em;
background-color: #0000CC;
color: #FFFFFF;

}

This CSS looks reasonable, but you’ll find it doesn’t quite work right. (I show
the problem and how to fix it later in this chapter.) Here are the steps to
build the CSS:

1. Add colors to each element.

Colors are a great first step. For one thing, they help you be sure that
your selectors are working correctly so that everything’s where you think
it is. This color scheme has a nice modern feel to it, with a lot of blues.

2. Float the labels to the left.

Labels are all floated to the left, meaning they should move as far left as
possible, and other things should be placed to the right of them.

3. Set the label width to 5em.

This gives you plenty of space for the text the labels will contain.

4. Set the labels to be right-aligned.

Right-aligning the labels will make the text snug up to the input ele-
ments but give them a little margin-right so the text isn’t too close.

5. Set the input’s float to left.

This tells each input element to go as far to the left (toward its label) as
it can. The input element goes next to the label if possible and on the
next line, if necessary. Note that like images, input elements have a
default width, so it isn’t absolutely necessary to define the width in CSS.

6. Float the button, too, but give the button a little top margin so it has
a respectable space at the top. Set the width to 10em.

This seems to be a pretty good CSS file. It follows all the rules, but if you apply
it to floatForm.html, you’ll be surprised by the results shown in Figure 1-9.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 264

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float to Style Forms 265

After all that talk about how nice float-based layout is, you’re probably
expecting something a bit neater. If you play around with the page in your
browser, you’ll find that everything works well when the browser is narrow,
but when you expand the width of the browser, it gets ugly. Figure 1-10
shows the form when the page is really skinny. (I used the CSS editor on the
Web Developer toolbar to adjust the width of the page display.)

Things get worse when the page is a little wider, as you can see in Figure 1-11.

If you make the page as wide as possible, you’ll get a sense of what the
browser was trying to accomplish in Figure 1-12.

When CSS doesn’t do what you want, it’s usually acting on some false
assumptions, which is the case here. Floating left causes an element to go as
far to the left as possible and on the next line, if necessary. However, that’s
not really what you want on this page. The inputs should float next to the
labels, but each label should begin its own line. The labels should float all
the way to the left margin with the inputs floating left next to the labels.

Figure 1-9:
This form
is — well —
ugly.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 265

Using Float to Style Forms266

Figure 1-11:
With a
slightly
wider
browser,
things get
strange.

Figure 1-10:
The form
looks great
when the
page is
skinny.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 266

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float to Style Forms 267

Adjusting the fieldset width
One approach is to consider how well the page behaves when it’s skinny
because the new label and input combination will simply wrap down to the
next line. You can always make a container narrow enough to force the behav-
ior you’re expecting. Because all the field elements are inside the fieldset,
you can simply make it narrower to get a nice layout, as shown in Figure 1-13.

When you want to test changes in CSS, nothing beats the CSS editor in the
Web Developer Extension. I made Figure 1-13 by editing the CSS on the fly
with this tool. You can see that the new line of CSS is still highlighted.

Setting the width of the fieldset to 15em does the job. Because the widths
of the other elements are already determined, forcing them into a 15em-wide
box makes everything line up nicely with the normal wrapping behavior of
the float attribute. If you don’t want the width change to be so obvious,
you can apply it to the form element, which doesn’t have any visible attrib-
utes (unless you add them, like color or border).

Unfortunately, this doesn’t always work because the user may adjust the
font size and mess up all your careful design.

Figure 1-12:
The
browser is
trying to put
all the
inputs on
the same
line.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 267

Using Float to Style Forms268

Using the clear attribute to control page layout
Adjusting the width of the container is a suitable solution, but it does feel
like a bit of a hack. There should be some way to make the form work right,
regardless of the container’s width. There is exactly such a mechanism.

The clear attribute is used on elements with a float attribute. The clear
attribute can be set to left, right, or both. Setting the clear attribute to
leftmeans you want nothing to the left of this element. In other words, the ele-
ment should be on the left margin of its container. That’s exactly what you want
here. Each label should begin its own line, so set its clear attribute to left.

To force the button onto its own line, set its clear attribute to both. This
means that the button should have no elements to the left or the right. It
should occupy a line all on its own.

If you want an element to start a new line, set both its float and clear
attributes to left. If you want an element to be on a line alone, set float to
left and clear to both.

Using the clear attribute allows you to have a flexible-width container and
still maintain reasonable control of the form design. Figure 1-14 shows that
the form can be the same width as the page and still work correctly. This
version works, no matter the width of the page.

Figure 1-13:
With a
narrower
fieldset, all
the
elements
look much
nicer.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 268

Book III
Chapter 1

Fun w
ith

the Fabulous Float
Using Float to Style Forms 269

Here’s the final CSS code, including clear attributes in the labels and button:

/* floatForm.css
CSS file to go with float form
Demonstrates use of float, width, margin, and clear

*/

fieldset {
background-color: #AAAAFF;

}

label {
clear: left;
float: left;
width: 5em;
text-align: right;
margin-right: .5em;

}

input {
float: left;
background-color: #CCCCFF;

}

Figure 1-14:
When you
apply clear
to floating
elements,
you can
control the
layout.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 269

Using Float to Style Forms270

button {
float: left;
clear: both;
margin-left: 7em;
margin-top: 1em;
background-color: #0000CC;
color: #FFFFFF;

}

You now have the basic tools in place to use flow layout. Look to Chapter 2
of this minibook to see how these tools are put together to build a complete
page layout.

19_186275 bk03ch01.qxp 3/28/08 10:45 PM Page 270

Chapter 2: Building Floating
Page Layouts

In This Chapter
� Creating a classic two-column page

� Creating a page-design diagram

� Using temporary borders

� Creating fluid layouts and three-column layouts

� Working with and centering fixed-width layouts

The floating layout technique provides a good alternative to tables, frames,
and other layout tricks formerly used. You can build many elegant multi-

column page layouts with ordinary XHTML and CSS styles.

Creating a Basic Two-Column Design
Many pages today use a two-column design with a header and a footer. Such a
page is quite easy to build with the techniques you read about in this chapter.

Designing the page
It’s best to do your basic design work on paper, not on the computer. Here’s
my original sketch in Figure 2-1.

It’s important to draw the sketch first so you have some idea what you’re
aiming for. Your sketch should include the following information:

✦ Overall page flow: How many columns do you want? Will it have a
header and a footer?

✦ Section names: Each section needs a name. This will be used in both
the XHTML and the CSS.

✦ Width indicators: How wide will each column be? (Of course, these
widths should add up to 100 percent or less.)

✦ Fixed or percentage widths: Are the widths measured in percentages
(of the browser size) or in a fixed measurement (pixels)? This has
important implications. For this example, I’m using a dynamic width
with percentage measurements.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 271

Creating a Basic Two-Column Design272

✦ Font considerations: Do any of the sections require any specific font
styles, faces, or colors?

✦ Color scheme: What are the main colors of your site? What will be the
color and background color of each section?

This particular sketch (in Figure 2-1) is very simple because the page will
use default colors and fonts. For a more complex job, you’ll need a much
more detailed sketch. The point of the sketch is to separate design decisions
from coding problems. Solve as much of the design stuff as possible first so
you can concentrate on building the design with XHTML and CSS.

Header - centered text

Left

20%
wide

Right

80% wide
Newspaper style -
all grayscale, single
and double borders

Footer - centered text

Figure 2-1:
This is a
very
standard
two-column
style.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 272

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 273

Building the XHTML
After you have a basic design in place, you’re ready to start building the
XHTML code that will be the framework. Start with basic CSS but create a div
for each section that will be in your final work. You can put a placeholder for
the CSS, but don’t add any CSS yet. Here’s my basic code (I removed some of
the redundant text to save space):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>twoColumn.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “twoCol.css” />

</head>

<body>
<div id = “head”>

<h1>Two Columns with Float</h1>
</div>

<div id = “left”>
<h2>Left Column</h2>

</div>

<div id = “right”>
<h2>Right Column</h2>

</div>

<div id = “footer”>
<h3>Footer</h3>

</div>
</body>

</html>

A note to perfectionists
If you’re really into detail and control, you’ll find
this chapter frustrating. People accustomed to
having complete control of a design (as you
often do in the print world) tend to get really
stressed when they realize how little actual
control they have over the appearance of a
Web page.

Really, it’s okay. This is a good thing. When you
design for the Web, you give up absolute con-
trol, but you gain unbelievable flexibility. Use

the ideas outlined in this chapter to get your
page looking right on a standards-compliant
browser. Take a deep breath and look at it on
something else (like Internet Explorer 5 [IE5] if
you want to suffer a heart attack!). Everything
you positioned so carefully is all messed up!
Take another deep breath and use conditional
comments to fix the offending code without
changing how it works in those browsers that
do things correctly.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 273

Creating a Basic Two-Column Design274

Nothing at all is remarkable about this XHTML code, but it has a few impor-
tant features, such as

✦ It’s standards-compliant. It’s good to check and make sure the basic
XHTML code is well-formed before you do a lot of CSS work with it.
Sloppy XHTML can cause you major headaches later.

✦ It contains four divs. The parts of the page that will be moved later are
all encased in div elements.

✦ Each div has an ID. All the divs have an ID determined from the sketch.

✦ No formatting is in the XHTML. The XHTML code contains no formatting
at all. That will be left to the CSS.

✦ It has no style yet. Although a link tag is pointing to a style sheet, the
style is currently empty.

Figure 2-2 shows what the page looks like before you add any CSS to it.

Adding preliminary CSS
You can write CSS in your editor, but the Web Developer toolbar’s CSS editor
is an especially handy tool because it allows you to see the effects of your
CSS immediately. To use this tool

1. Use Firefox for your primary testing.

Firefox has much better standards support than IE. Get your code work-
ing in Firefox first. Besides, the extremely handy Web Developer isn’t
available for Internet Explorer.

What’s up with the Latin?
The flexible layouts built throughout this chapter
require some kind of text so the browser knows
how big to make things. The actual text isn’t
important, but something needs to be there.

Typesetters have a long tradition of using phony
Latin phrases as filler text. Traditionally, this text
has begun with the words “Lorem Ipsum,” so
it’s called Lorem Ipsum text.

This particular version is semi-randomly gen-
erated from a database of Latin words.

If you want, you can also use Lorem Ipsum in
your page layout exercises. Conduct a search for
Lorem Ipsum generators on the Web to get as
much fake text as you want for your mockup
pages.

Although Lorem Ipsum text is useful in the
screen shots, it adds nothing to the code listings.
Throughout this chapter, I remove the Lorem
Ipsum text from the code listings to save space.
See the original files on the CD-ROM or Web site
for the full pages in all their Cesarean goodness.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 274

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 275

2. Be sure the Web Developer toolbar is installed.

See Chapter 3 of Book I for more information on this wonderful free tool.
You’ll use this tool to modify your CSS and see the results immediately
in the Web browser.

3. Activate the CSS editor by choosing Tools➪Edit CSS or pressing
Ctrl+Shift+E.

4. Create CSS rules.

Type the CSS rules in the provided window. Throughout this chapter, I
show what rules you use and the order in which they go. The key thing
about this editor is you can type a rule in the text window, and the page
in the browser is immediately updated.

5. Check the results.

Watch the main page for interactive results. As soon as you finish a CSS rule,
the Web page automatically refreshes, showing the results of your work.

6. Save your work.

The changes made during an edit session are temporary. If you’ve specified
a CSS file in your document, but it doesn’t exist, the Save button automat-
ically creates and saves to that file.

Figure 2-2:
The plain
XHTML is
plain
indeed;
some CSS
will come in
handy.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 275

Creating a Basic Two-Column Design276

Using temporary borders
And now for one of my favorite CSS tricks. . . . Before doing anything else,
create a selector for each of the named divs and add a temporary border to
each div. Make each border a different color. The CSS might look like this:

#head {
border: 1px black solid;

}

#left {
border: 1px red solid;

}

#right {
border: 1px blue solid;

}

#footer {
border: 1px green solid;

}

You won’t keep these borders, but they provide some very useful cues while
you’re working with the layout:

✦ Testing the selectors: While you create a border around each selector,
you can see whether you’ve remembered the selector’s name correctly.
It’s amazing how many times I’ve written code that I thought was broken
just because I didn’t write the selector properly.

✦ Identifying the divs: If you make each div’s border a different color, it’ll
be easier to see which div is which when they begin to overlap.

✦ Specifying the size of each div: The text inside a div isn’t always a good
indicator of the actual size of the div. The border tells you what’s really
going on.

Of course, you won’t leave these borders in place. They’re just helpful tools
for seeing what’s going on during the design process. Look at borders.
html and borders.css on the CD-ROM or Web site to see the full code.

Figure 2-3 displays how the page looks with the color borders turned on.

It’s fine that you can’t see the actual colors in the black and white image in
Figure 2-3. Just appreciate that when you see the page in its full-color splen-
dor, the various colors will help you see what’s going on.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 276

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 277

Setting up the floating columns
This particular layout doesn’t require major transformation. A few CSS rules
will do the trick:

#head {
border: 3px black solid;

}

#left {
border: 3px red solid;
float: left;
width: 20%;

}

#right {
border: 3px blue solid;
float: left;
width: 75%

}

#footer {
border: 3px green solid;
clear: both;

}

Figure 2-3:
Colored
borders
make it
easier to
manipulate
the divs.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 277

Creating a Basic Two-Column Design278

I made the following changes to the CSS:

✦ Float the #left div. Set the #left div’s float property to left so
other divs (specifically the #right div) are moved to the right of it.

✦ Set the #left width. When you float a div, you must also set its width.
I’ve set the margin to 20 percent of the page width as a starting point.

✦ Float the #right div, too. The right div can also be floated left, and it’ll
end up snug to the left div. Don’t forget to add a width. I set the width of
#right to 75 percent, leaving another 5 percent available for padding,
margins, and borders.

✦ Clear the footer. The footer should take up the entire width of the page,
so set its clear property to both.

Figure 2-4 shows how the page looks with this style sheet in place (see floated.
html and floated.css on the CD-ROM or Web site for complete code).

Tuning up the borders
The colored borders in Figure 2-4 point out some important features of this
layout scheme. For instance, the two columns are not the same size. This
can have important implications.

Figure 2-4:
Now, the
left column
is floated.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 278

Book III
Chapter 2

Building Floating
Page Layouts

Creating a Basic Two-Column Design 279

You can change the borders to make the page look more like a column layout.
I’m going for a newspaper-style look, so I’ll use simple double borders. I put a
black border under the header, a gray border to the left of the right column,
and a gray border on top of the bottom column. Tweaking the padding and
centering the footer complete the look. Here’s the complete CSS:

#head {
border-bottom: 3px double black;

}
#left {

float: left;
width: 20%;

}
#right {

float: left;
width: 75%;
border-left: 3px double gray;

}
#footer {

clear: both;
text-align: center;
border-top: 3px double gray;

}

The final effect is shown in Figure 2-5.

Figure 2-5:
This is a
decent
design,
which
adjusts with
the page
width.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 279

Building a Three-Column Design280

Advantages of a fluid layout
This type of layout scheme (with floats) is often called a fluid layout because
it has columns but the sizes of the columns are dependent on the browser
width. This is an important issue because, unlike layout in the print world,
you really have no idea what size the browser window that displays your page
will be. Even if the user has a widescreen monitor, the browser may be in a
much smaller window. Fluid layouts can adapt to this situation quite well.

Fluid layouts (and indeed all other float-based layouts) have another great
advantage. If the user turns off CSS or can’t use it, the page still displays. The
elements will simply be printed in order vertically, rather than in the
intended layout. This can be especially handy for screen readers or devices
with exceptionally small screens, like phones and PDAs.

Building a Three-Column Design
Sometimes, you’ll prefer a three-column design. It’s a simple variation of the
two-column approach. Figure 2-6 shows a simple three-column layout.

Figure 2-6:
This is a
three-
column
floating
layout.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 280

Book III
Chapter 2

Building Floating
Page Layouts

Building a Three-Column Design 281

This design uses very basic CSS with five named divs. Here’s the code (with
the dummy paragraph text removed for space):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>threeColumn.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “threeColumn.css” />

</head>

<body>
<div id = “head”>

<h1>Three-Column Layout</h1>
</div>

<div id = “left”>
<h2>Left Column</h2>

</div>

<div id = “center”>
<h2>Center Column</h2>

</div>

<div id = “right”>
<h2>Right Column</h2>

</div>

<div id = “footer”>
<h3>Footer</h3>

</div>
</body>

</html>

Styling the three-column page
As you can see from the HTML, there isn’t really much to this page. It has
five named divs, and that’s about it. All the really exciting stuff happens in
the CSS:

#head {
text-align: center;

}

#left {
float: left;
width: 20%;
padding-left: 1%;

}

#center {
float: left;
width: 60%;
padding-left: 1%;

}

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 281

Building a Three-Column Design282

#right {
float: left;
width: 17%;
padding-left: 1%;

}

#footer {
border: 1px black solid;
float: left;
width: 100%;
clear: both;
text-align: center;

}

Each element (except the head) is floated with an appropriate width. The
process for generating this page is similar to the two-column layout:

1. Diagram the layout.

Begin with a general sense of how the page will look and the relative
width of the columns. Include the names of all segments in this diagram.

2. Create the XHTML framework.

Create all the necessary divs, including id attributes. Add representa-
tive text so you can see the overall texture of the page.

3. Add temporary borders.

Add a temporary border to each element so you can see what’s going on
when you start messing with float attributes. This also ensures you
have all the selectors spelled properly.

4. Float the leftmost element.

Add the float attribute to the leftmost column. Don’t forget to specify a
width (in percentage).

5. Check your work.

Either work in the Web Developer CSS editor (where you can see changes
on the fly) or frequently save your work and view it in a browser.

6. Float the center element.

Add float and width attributes to the center element.

7. Float the right-most element.

Incorporate float and width in the right element.

8. Ensure all the widths total around 95 percent.

You’ll want the sum of the widths to be nearly 100 percent but not quite.
You’ll generally need a little space for margins and padding. Final adjust-
ments come later, but you certainly don’t want to take up more than 100
percent of the available real estate.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 282

Book III
Chapter 2

Building Floating
Page Layouts

Building a Three-Column Design 283

9. Float and clear the footer.

To get the footer acting right, you’ll need to float it and clear it on both
margins. Set its width to 100 percent, if you want.

10. Tune up.

Remove the temporary borders, adjust the margins and padding, and set
alignment as desired. Use percentages for margins and padding, and then
adjust so all percentages equal 100 percent.

Early versions of Internet Explorer (6 and earlier) have a well-documented
problem with margins and padding. According to the standards, the width of
an element is supposed to be the width of the content, with borders, margins,
and padding outside. A properly-behaved browser won’t shrink your content
when you add borders and margins. The early versions of Internet Explorer
(IE) counted the width as including all borders, padding, and margin, effec-
tively shrinking the content when you added these elements. If your page
layout is looking a little off with IE, this may be the problem. Use the condi-
tional comment technique described in Chapter 5 of Book II to make a variant
style for IE if this bothers you.

Problems with the floating layout
The floating layout solution is very elegant, but it does have one drawback.
Figure 2-7 shows the three-column page with the borders drawn around each
element.

Figure 2-7:
The
columns
aren’t really
columns;
each is a
different
height.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 283

Building a Three-Column Design284

Figure 2-7 shows an important fact about this type of layout. The columns
are actually blocks, and each is a different height. Typically, I think of a
column as stretching the entire height of a page, but this isn’t how CSS does
it. If you want to give each column a different background color, for example,
you’ll want each column to be the same height. This can be done with a CSS
trick (at least, for the compliant browsers).

Specifying a min-height
The standards-compliant browsers (all versions of Firefox and Opera, and IE 7)
support a min-height property. This specifies a minimum height for an ele-
ment. You can use this property to force all columns to the same height.
Figure 2-8 illustrates this effect.

The CSS code simply adds the min-height attribute to all the column
elements:

#head {
text-align: center;
border-bottom: 3px double gray;

}

#left {
float: left;
width: 20%;
min-height: 30em;
background-color: #EEEEEE;

}

#center {
float: left;
width: 60%;
padding-left: 1%;
padding-right: 1%;
min-height: 30em;

}

#right {
float: left;
width: 17%;
padding-left: 1%;
min-height: 30em;
background-color: #EEEEEE;

}

#footer {
border: 1px black solid;
float: left;
width: 100%;
clear: both;
text-align: center;

}

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 284

Book III
Chapter 2

Building Floating
Page Layouts

Building a Fixed-Width Layout 285

Some guesswork is involved still. You have to experiment a bit to determine
what the min-height should be. If you guess too short, one column will be
longer than the min-height, and the columns won’t appear correctly. If you
guess too tall, you’ll have a lot of empty space at the bottom of the screen.

Unfortunately, the min-height trick works only with the latest browsers. IE
versions 6 and earlier don’t support this attribute. For these browsers, you
may need a fixed-width layout.

Building a Fixed-Width Layout
Fluid layouts are terrific. They’re very flexible, and they’re not hard to build.
Sometimes, though, it’s nice to use a fixed-width layout, particularly if you
want your layout to conform with a particular background image.

The primary attribute of a fixed-width layout is the use of a fixed measure-
ment (almost always pixels), rather than the percentage measurements used
in a fluid layout.

Figure 2-9 shows a two-column page with a nicely colored background.

Figure 2-8:
The min-
height
attribute
forces all
columns to
be the same
height.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 285

Building a Fixed-Width Layout286

Setting up the XHTML
As usual, the XHTML code is minimal. It contains a few named divs. (Like
usual, I’ve removed filler text for space reasons.)

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>fixedWidth.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “fixedWidth.css” />

</head>

<body>
<div id = “header”>

<h1>Fixed Width Layout</h1>
</div>

<div id = “left”>
<h2>Left Column</h2>

</div>

<div id = “right”>
<h2>Right Column</h2>

</div>

<div id = “footer”>

Figure 2-9:
A fixed-
width layout
can work
well with a
background
image.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 286

Book III
Chapter 2

Building Floating
Page Layouts

Building a Fixed-Width Layout 287

<h3>Footer</h3>
</div>

</body>
</html>

Using an image to simulate true columns
If you need to overcome the limitations of older browsers, you can use a
background image to simulate colored columns. Figure 2-10 shows the basic
background image I’m using for this page.

The image has been designed with two segments. The image is exactly 640
pixels wide, with one color spanning 200 pixels and the other 440 pixels.
When you know the exact width you’re aiming for, you can position the
columns to exactly that size. Here’s the CSS code:

body {
background-image: url(“fixedBG.gif”);
background-repeat: repeat-y;

}

#header {
background-color: #e2e393;
border-bottom: 3px double black;
text-align: center;
float: left;
width: 640px;
clear: both;
margin-left: -8px;
margin-top: -10px;

}

#left {
float: left;
width: 200px;
clear: left;

}

#right {
float: left;
width: 440px;

}

#footer {
float: left;

Figure 2-10:
This image
is repeated
vertically to
simulate
two
columns.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 287

Building a Centered Fixed-Width Layout288

width: 640px;
clear: both;
text-align: center;
background-color: #e2e393;
margin-left:-8px;
border-top: 3px double black;

}

This code works a lot like the other floating layouts, except for the following
changes:

✦ The body has a background image attached. I attached the two-color
background image to the entire body. This will make the page look like it
has two columns. Remember to set the background-repeat attribute
to repeat-y so the background repeats indefinitely in the vertical y-
axis.

✦ The header and footer areas need background colors or images
defined so the fake columns don’t appear to stretch underneath these
segments.

✦ Header and footer will need some margin adjustments. The browsers
tend to put a little bit of margin on the header and footer divs, so com-
pensate by setting negative values for margin-left on these elements.

✦ All measurements are now in pixels. This will ensure that the layout
corresponds to the image, also measured in pixels.

If you use a fixed-width layout and the user changes the font size, the results
will be unpredictable. A fluid layout will change with the font size, but a fixed
layout may have problems rendering a larger font in the indicated space.

Building a Centered Fixed-Width Layout
Fixed-width layouts are common, but they look a little strange if the browser
isn’t the width specified in the CSS. If the browser is too narrow, the layout
won’t work, and the second column will (usually) drop down to the next line.

If the browser is too wide, the page will appear to be scrunched onto the left
margin with a great deal of white space on the right.

The natural solution would be to make a relatively narrow fixed-width design
that’s centered inside the entire page. Figure 2-11 illustrates a page with this
technique.

Some have called this type of design (fixed-width floating centered in the
browser) a jello layout because it’s not quite fluid and not quite fixed.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 288

Book III
Chapter 2

Building Floating
Page Layouts

Building a Centered Fixed-Width Layout 289

Making a surrogate body with an all div
In any case, the HTML requires only one new element, an all div that encases
everything else inside the body (as usual, I removed the placeholder text):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>fixedWidthCentered.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “fixedWidthCentered.css” />

</head>

<body>
<div id = “all”>

<div id = “header”>
<h1>Fixed Width Centered Layout</h1>

</div>

<div id = “left”>
<h2>Left Column</h2>

</div>

<div id = “right”>
<h2>Right Column</h2>

</div>

Figure 2-11:
Now the
fixed-width
layout is
centered in
the browser.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 289

Building a Centered Fixed-Width Layout290

<div id = “footer”>
<h3>Footer</h3>

</div>
</div>

</body>
</html>

The entire page contents are now encapsulated in a special all div. This div
will be resized to a standard width (typically 640 or 800 pixels). The all ele-
ment will be centered in the body, and the other elements will be placed
inside all as if it was the body:

#all {
background-image: url(“fixedBG.gif”);
background-repeat: repeat-y;
width: 640px;
height: 600px;
margin-left: auto;
margin-right: auto;

}

#header {
background-color: #e2e393;
border-bottom: 3px double black;
text-align: center;
float: left;
width: 640px;
clear: both;

}

#left {
float: left;
width: 200px;
clear: left;

}

#right {
float: left;
width: 440px;

}

#footer {
float: left;
width: 640px;
clear: both;
text-align: center;
background-color: #e2e393;
border-top: 3px double black;

}

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 290

Book III
Chapter 2

Building Floating
Page Layouts

Building a Centered Fixed-Width Layout 291

How the jello layout works
This code is very similar to the fixedWidth.css style, but it has some
important new features:

✦ The background image is now applied to all. The all div is now
acting as a surrogate body element, so the background image is applied
to it instead of the background.

✦ The all element has a fixed width. This element’s width will determine
the width of the fixed part of the page.

✦ all also needs a fixed height. If you don’t specify a height, all will be
0 pixels tall because all the elements inside it are floated. Set the height
large enough to make the background image extend as far down as nec-
essary.

✦ Center all. Remember, to center divs, you set margin-left and
margin-right both to auto.

✦ Do not float all. The margin: auto trick doesn’t work on floated ele-
ments. all shouldn’t have a float attribute set.

✦ Ensure the interior widths add up to all’s width. If all has a width of
640 pixels, be sure that the widths, borders, and margins of all the ele-
ments inside all add up to exactly 640 pixels. If you go even one pixel
over, something will spill over and mess up the effect.

Limitations of the jello layout
Jello layouts represent a compromise between fixed and fluid layouts, but
they aren’t perfect:

✦ Implicit minimum width: Very narrow browsers (like cell phones) can’t
render the layout at all.

✦ Wasted screen space: If you make the rendered part of the page narrow,
a lot of space isn’t being used in higher-resolution browsers. This can be
frustrating.

✦ Complexity: Although this layout technique is still far simpler than
table-based layouts, it’s still a bit involved. You do have to plan your
divs to make this type of layout work.

✦ Browser support: Layout is an area where little differences in browser
implementations can lead to big headaches. Be prepared to use condi-
tional comments to handle inconsistencies, like IE’s strange margin and
padding support.

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 291

Book III: Using Positional CSS for Layout292

20_186275 bk03ch02.qxp 3/28/08 10:46 PM Page 292

Chapter 3: Styling Lists and Menus

In This Chapter
� Using CSS styles with lists

� Building buttons from lists of links

� Dynamically displaying sublists

� Managing vertical and horizontal lists

� Building CSS-based menus

Most pages consist of content and navigation tools. Almost all pages
have a list of links somewhere on the page. Navigation menus are lists

of links, but lists of links in plain HTML are ugly. There has to be a way to
make ’em prettier.

It’s remarkably easy to build solid navigation tools with CSS alone (at least,
in the modern browsers that support CSS properly). In this chapter, you
rescue your lists from the boring 1990s sensibility, turning them into
dynamic buttons, horizontal lists, and even dynamically cascading menus.

Revisiting List Styles
XHTML does provide some default list styling, but it’s pretty dull. You’ll
often want to improve the appearance of a list of data. Most site navigation
is essentially a list of links. One easy trick is to make your links appear as a
set of buttons, as shown in Figure 3-1.

The buttons in Figure 3-1 are pretty nice. They look like buttons, with the
familiar three-dimensional look of buttons. They also act like buttons, with
each button depressing when the mouse hovers over it. When you click one
of these buttons, it acts like a link, taking you to another page.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 293

Revisiting List Styles294

Defining navigation as a list of links
If you look at the HTML, you’ll be astonished at its simplicity:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>buttonList.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “buttonList.css” />

</head>

<body>
<h1>Button Lists</h1>
<div id = “menu”>

Google
Wiley
Wikipedia
Reddit

</div>

</body>
</html>

Figure 3-1:
These
buttons are
actually a
list. Note
that one
button is
depressed.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 294

Book III
Chapter 3

Styling Lists and
M

enus
Revisiting List Styles 295

Turning links into buttons
As far as the XHTML code is concerned, it’s simply a list of links. There’s
nothing special here that makes this act like a group of buttons, except the
creation of a div called menu. All the real work is done in CSS:

#menu li {
list-style-type: none;
width: 5em;
text-align: center;
margin-left: -2.5em;

}

#menu a {
text-decoration: none;
color: black;
display: block;
border: 3px blue outset;
background-color: #CCCCFF;

}

#menu a:hover {
border: 3px blue inset;

}

The process for turning an ordinary list of links into a button group like this
is simply an application of CSS tricks:

1. Begin with an ordinary list that will validate properly.

It doesn’t matter if you use an unordered or ordered list. Typically, the
list will contain anchors to other pages. In this example, I’m using this
list of links to some popular Web sites:

<div id = “menu”>

Google
Wiley
Wikipedia
Reddit

</div>

2. Enclose the list in a named div.

Typically, you’ll still have ordinary links on a page. To indicate that these
menu links should be handled differently, put them in a div named menu.
All the CSS-style tricks described here refer to lists and anchors only
when they’re inside a menu div.

3. Remove the bullets by setting the list-style-type to none.

This will take away the bullets or numbers that usually appear in a list,
as these features will distract from the effect you’re aiming for (a group
of buttons). Use CSS to specify how list items should be formatted when
they appear in the context of the menu ID:

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 295

Revisiting List Styles296

#menu li {
list-style-type: none;
width: 5em;
text-align: center;
margin-left: -2.5em;

}

4. Specify the width of each button:
width: 5em;

A group of buttons looks best if they’re all the same size. Use the CSS
width attribute to set each li to 5em.

5. Remove the margin by using a negative margin-left value, as shown
here:

margin-left: -2.5em;

Lists have a default indentation of about 2.5em to make room for the
bullets or numbers. Because this list won’t have bullets, it doesn’t need
the indentations. Overwrite the default indenting behavior by setting
margin-left to a negative value.

6. Clean up the anchor by setting text-decoration to none and setting
the anchor’s color to something static, such as black text on light blue
in this example:

#menu a {
text-decoration: none;
color: black;
display: block;
border: 3px blue outset;
background-color: #CCCCFF;

}

The button’s appearance will make it clear that users can click it, so this
is one place you can remove the underlining that normally goes with
links.

7. Give each button an outset border, as shown in the following:
border: 3px blue outset;

The outset makes it look like a 3D button sticking out from the page.
This is best attached to the anchor, so you can swap the border when
the mouse is hovering over the button.

8. Set the anchor’s display to block.

This is a sneaky trick. Block display normally makes an element act like
a block-level element inside its container. In the case of an anchor, the
entire button becomes clickable, not just the text. This makes your page
easier to use:

display: block;

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 296

Book III
Chapter 3

Styling Lists and
M

enus
Revisiting List Styles 297

9. Swap for an inset border when the mouse hovers over an anchor by
using the #menu a:hover selector to change the border to an inset:

#menu a:hover {
border: 3px blue inset;

}

When the mouse hovers over the button, it appears to be pressed down,
enhancing the 3D effect.

This list makes an ideal navigation menu, especially when placed inside one
column of a multi-column floating layout.

Building horizontal lists
Sometimes, you want horizontal button bars. Because XHTML lists tend to
be vertical, you might be tempted to think that a horizontal list is impossi-
ble. In fact, CSS provides all you need to convert exactly the same XHTML to
a horizontal list. Figure 3-2 shows such a page.

Figure 3-2:
This list
uses the
same
XHTML but
different
CSS.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 297

Creating Dynamic Lists298

There’s no need to show the XHTML again because it hasn’t changed at all
(ain’t CSS grand?). Even the CSS hasn’t changed much:

#menu ul {
margin-left: -2.5em;

}

#menu li {
list-style-type: none;
float: left;
width: 5em;
text-align: center;

}

#menu a {
text-decoration: none;
color: black;
display: block;
border: 3px blue outset;
background-color: #CCCCFF;

}

#menu a:hover {
border: 3px blue inset;

}

The modifications are incredibly simple:

1. Float each list item by giving each li a float:left value:
#menu li {

list-style-type: none;
float: left;
width: 5em;
text-align: center;

}

2. Move the margin-left to the entire ul by taking the margin-left
formatting from the li elements and transferring it to the ul:

#menu ul {
margin-left: -2.5em;

}

3. Add a horizontal element.

Now that the button bar is horizontal, it makes more sense to put in
some type of horizontal page element. For example, you may want to use
this type of element inside a heading div.

Creating Dynamic Lists
A simple list of buttons can look better than ordinary XHTML links, but
sometimes, your page needs to have a more complex navigation scheme. For
example, you may want to create a menu system to help the user see the
structure of your site.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 298

Book III
Chapter 3

Styling Lists and
M

enus
Creating Dynamic Lists 299

When you think of a complex hierarchical organization (which is how most
multi-page Web sites end up), the easiest way to describe the structure is in
a set of nested lists. XHTML lists can contain other lists, and this can be a
great way to organize data.

Nested lists are a great way to organize a lot of information, but they can be
complicated. You can use some special tricks to make parts of your list
appear and disappear when needed. In the sections “Hiding the inner lists”
and “Getting the inner lists to appear on cue,” later in this chapter, you
expand this technique to build a menu system for your pages.

Building a nested list
Begin by creating a system of nested lists without any CSS at all. Figure 3-3
shows a page with a basic nested list.

No CSS styling is in place yet, but the list has its own complexities:

✦ The primary list has three entries. This is actually a multi-layer list. The
top level indicates categories, not necessarily links.

✦ Each element in the top list has its own sublist. A second layer of links
has various links in most elements.

Figure 3-3:
This nested
list has no
styles yet.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 299

Creating Dynamic Lists300

✦ The Web Development element has another layer of sublists. The gen-
eral layout of this list entry corresponds to a complex hierarchy of infor-
mation — like most complex Web sites.

✦ The list validates to the XHTML Strict standard. It’s especially impor-
tant to validate your code before adding CSS when it involves somewhat
complex XHTML code, like the multi-level list. A small problem in the
XHTML structure that may go unnoticed in a plain XHTML document
can cause all kinds of strange problems in your CSS.

Here is the code for the nested list in plain XHTML:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>nestedList.html</title>

</head>

<body>
<h1>Some of my favorite links</h1>

Social networking

dig
reddit
stumbleupon

Reference

google
wikipedia
dictionary

Web development

XHTML/CSS

w3 schools
htmlHelp
CSS Zen Garden

Programming

javascript.com
php.net
mysql.com

</body>

</html>

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 300

Book III
Chapter 3

Styling Lists and
M

enus
Creating Dynamic Lists 301

Take special care with your indentation when making a complex nested list like
this one. Without proper indentation, it becomes very difficult to establish the
structure of the page. Also note that a list item can contain text and another
list. Any other arrangement (putting text between list items, for example) will
cause a validation error and big headaches when you try to apply CSS.

Hiding the inner lists
The first step of creating a dynamic menu system is to hide any lists that are
embedded in a list item. Add the following CSS style to your page:

li ul {
display: none;

}

In reality, you’ll usually apply this technique only to a specially marked div,
like a menu system. Don’t worry about that for now. Later in this chapter, I
show you how to combine this technique with a variation of the button tech-
nique for complex menu systems.

Your page will undergo a startling transformation, as shown in Figure 3-4.

Figure 3-4:
Where did
everything
go?

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 301

Creating Dynamic Lists302

That tiny little snippet of CSS code is a real powerhouse. It does some fasci-
nating things, such as

✦ Operating on unordered lists that appear inside list items: What this
really means is the topmost list won’t be affected, but any unordered list
that appears inside a list item will have the style applied.

✦ Using display: none to make text disappear: Setting the display
attribute to none tells the XHTML page to hide the given data altogether.

Note that this code works well on almost all browsers. It’s pretty easy to
make text disappear. Unfortunately, it’s a little trickier to make all the
browsers bring it back.

Getting the inner lists to appear on cue
The fun part is getting the interior lists to pop up when the mouse is over
the parent element. A second CSS style can make this happen:

li ul {
display: none;

}

li:hover ul {
display: block;

}

The new code is pretty interesting. When the page initially loads, it appears
the same as what’s shown in Figure 3-4, but when you hold the mouse over
the Social Networking element, you see the effect shown in Figure 3-5.

Figure 3-5:
Holding the
mouse over
a list item
causes its
children to
appear.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 302

Book III
Chapter 3

Styling Lists and
M

enus
Creating Dynamic Lists 303

This code doesn’t work on all browsers! Internet Explorer 6 (IE6) and earlier
versions don’t support the :hover pseudo-class on any element except a.
Provide a conditional comment with an alternative style for IE.

Here’s how the list-reappearing code works:

✦ All lists inside lists are hidden. The first style rule hides any list that’s
inside a list element.

✦ li:hover refers to a list item that’s being hovered over. That is, if the
mouse is currently situated on top of a list item, this rule pertains to it.

✦ li:hover ul refers to an unordered list inside a hovered list item. In
other words, if some content is an unordered list that rests inside a list
that currently has the mouse hovering over it, apply this rule. (Whew!)

✦ Display the list as a block. display:block overrides the previous
display:none instruction and displays the particular element as a
block. The text reappears magically.

This hide-and-seek trick isn’t all that great on its own. It’s actually quite
annoying to have the contents pop up and go away like that. There’s another
more annoying problem. Look at Figure 3-6 to see what can go wrong.

Figure 3-6:
If the mouse
hovers over
Web
Develop-
ment, both
submenus
appear.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 303

Creating Dynamic Lists304

To see why this happens, take another look at the CSS code that causes the
segment to reappear:

li:hover ul {
display: block;

}

This code means set display to block for any ul that’s a child of a hovered li.
The problem is that the Web Development li contains a ul that contains two
more uls. All the lists under Web Development appear, not just the immediate
child.

One more modification of the CSS fixes this problem:

li ul {
display: none;

}

li:hover > ul {
display: block;

}

The greater-than symbol (>) is a special selector tool. It indicates a direct
relationship. In other words, the ul must be a direct child of the hovered li,
not a grandchild or great-grandchild. With this indicator in place, the page
acts correctly, as you can see from Figure 3-7.

Figure 3-7:
Now, only
the next
level of
menu
shows up
on a mouse
hover.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 304

Book III
Chapter 3

Styling Lists and
M

enus
Creating Dynamic Lists 305

This trick allows you to create nested lists as deeply as you wish and to
open any segment by hovering on its parent.

My current code has a list with three levels of nesting, but you can add as many
nested lists as you want and use this code to make it act as a dynamic menu.

Figure 3-8 illustrates how to open the next section of the list.

I’m not suggesting that this type of menu is a good idea. Having stuff pop
around like this is actually pretty distracting. With a little more formatting,
you can use these ideas to make a functional menu system. I’m just starting
here so you can see the hide-and-seek behavior in a simpler system before
adding more details.

Figure 3-8:
You can
create these
lists as deep
as you wish.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 305

Building a Basic Menu System306

Building a Basic Menu System
You can combine the techniques of buttons and collapsing lists to build a
menu system entirely with CSS. Figure 3-9 shows a page with a vertically
arranged menu.

When the user hovers over a part of the menu, the related sub-elements
appear, as shown in Figure 3-10.

This type of menu has a couple interesting advantages, such as

✦ It’s written entirely with CSS. You don’t need any other code or pro-
gramming language.

✦ The menus are simply nested lists. The XHTML is simply a set of nested
lists. If the CSS turns off, the page is displayed as a set of nested lists,
and the links still function normally.

✦ The relationships between elements are illustrated. When you select
an element, you can see its parent and sibling relationships easily.

Nice as this type of menu system is, it isn’t perfect. Because it relies on the
li:hover trick, it doesn’t work in versions of Internet Explorer (IE) prior to 7.0.

Figure 3-9:
Only the
top-level
elements
are visible
by default.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 306

Book III
Chapter 3

Styling Lists and
M

enus
Building a Basic Menu System 307

Building a vertical menu with CSS
The vertical menu system works with exactly the same HTML as the
hiddenList example — only the CSS changed. Here’s the new CSS file:

/* horizMenu.css */
/* unindent entire list */
#menu ul {

margin-left: -2.5em;
}

/* set li as buttons */
#menu li {

list-style-type: none;
border: 1px black solid;;
width: 10em;
background-color: #cccccc;
text-align: center;

}

/* display anchors as buttons */
#menu a {

color: black;
text-decoration: none;
display: block;

}

/* flash white on anchor hover */
#menu a:hover {

background-color: white;

Figure 3-10:
The user
can select
any part of
the original
nested list.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 307

Building a Basic Menu System308

}

/* collapse menus */
#menu li ul {

display: none;
}

/* show submenus on hover */
#menu li:hover > ul {

display: block;
margin-left: -2em;

}

Of course, the CSS uses a few tricks, but there’s really nothing new. It’s just a
combination of techniques you already know:

1. Un-indent the entire list by setting the ul’s margin-left to a nega-
tive value to compensate for the typical indentation. 2.5em is about
the right amount.

Because you’ll be removing the list-style types, the normal indenta-
tion of list items will become a problem.

2. Format the li tags.

Each li tag inside the menu structure should look something like a
button. Use CSS to accomplish this task:

/* set li as buttons */
#menu li {

list-style-type: none;
border: 1px black solid;;
width: 10em;
background-color: #cccccc;
text-align: center;

}

a. Set list-style-type to none.

b. Set a border with the border attribute.

c. Center the text by setting text-align to center.

d. Add a background color or image, or you’ll get some strange
border bleed-through later when the buttons overlap.

3. Format the anchors as follows:
/* display anchors as buttons */
#menu a {

color: black;
text-decoration: none;
display: block;

}

a. Take out the underline with text-decoration: none.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 308

Book III
Chapter 3

Styling Lists and
M

enus
Building a Basic Menu System 309

b. Give the anchor a consistent color.

c. Set display to block (so the entire area will be clickable, not just
the text).

4. Give some indication it’s an anchor by changing the background
when the user hovers over the element:

/* flash white on anchor hover */
#menu a:hover {

background-color: white;
}

Because the anchors no longer look like anchors, you’ll have to do
something else to indicate there’s something special about these ele-
ments. When the user moves the mouse over any anchor tag in the menu
div, that anchor’s background color will switch to white.

5. Collapse the menus using the hidden menus trick (discussed in the
section “Hiding the inner lists,” earlier in this chapter) to hide all the
sublists:

/* collapse menus */
#menu li ul {

display: none;
}

6. Display the hidden menus when the mouse hovers over the parent ele-
ment by adding the code described in the section “Getting the inner
lists to appear on cue”:

/* show submenus on hover */
#menu li:hover > ul {

display: block;
margin-left: -2em;

}

This trick won’t work on IE6 or earlier versions. You’ll have to provide an
alternate style sheet (with conditional commenting) or a JavaScript tech-
nique for these earlier browsers.

Building a horizontal menu
You can make a variation of the menu structure that will work along the top
of a page. Figure 3-11 shows how this might look.

Notice that the submenus come straight down from their parent elements. I
find a little bit of indentation helpful for deeply nested lists, as you can see in
Figure 3-12.

Once again, the HTML is identical. The CSS for a horizontal menu is surprisingly
close to the vertical menu. The primary difference is floating the list items:

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 309

Building a Basic Menu System310

/* vertMenu.css */
/* unindent each unordered list */

#menu ul {
margin-left: -2.5em;

}

/* turn each list item into a solid gray block */
#menu li {

list-style-type: none;
border: black solid 1px;
float: left;
width: 10em;
background-color: #CCCCCC;
text-align: center;

}

/* set anchors to act like buttons */
#menu a {

display: block;
color: black;
text-decoration: none;

}

/* flash anchor white when hovered */
#menu a:hover {

background-color: white;
}

/* collapse nested lists */
#menu li ul {

display: none;
}

Figure 3-11:
The same
list is now a
horizontal
menu.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 310

Book III
Chapter 3

Styling Lists and
M

enus
Building a Basic Menu System 311

/* display sublists on hover */
#menu li:hover > ul {

display: block;
}

/* indent third-generation lists */
#menu li li li{

margin-left: 1em;
}

The CSS code has just a few variations from the vertical menu CSS:

✦ Float each list item by adding float and width attributes.
/* turn each list item into a solid gray block */
#menu li {

list-style-type: none;
border: black solid 1px;
float: left;
width: 10em;
background-color: #CCCCCC;
text-align: center;

}

This causes the list items to appear next to each other in the same line.

✦ Give each list item a width. In this case, 10em seems about right.

Figure 3-12:
For the
multi-level
menus, a
little bit of
indentation
is helpful.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 311

Building a Basic Menu System312

✦ Indent a deeply nested list by having the first-order sublists appear
directly below the parent.

A list nested deeper than its parent is hard to read. A little indentation
helps a lot with clarity.

✦ Use #menu li li li to indent nested list items, as shown here:
/* indent third-generation lists */
#menu li li li{

margin-left: 1em;
}

This selector is active on an element which has #menu and three list
items in its family tree. It will work only on list items three levels deep.
This special formatting isn’t needed at the other levels but is helpful to
offset the third-level list items.

These tricks are just the beginning of what you can do with some creativity
and the amazing power of CSS and HTML. You can adopt the simple exam-
ples presented here to create your own marvels of navigation.

21_186275 bk03ch03.qxp 3/28/08 10:46 PM Page 312

Chapter 4: Using Alternative
Positioning

In This Chapter
� Setting position to absolute

� Managing z-index

� Creating fixed and flexible layouts

� Working with fixed and relative positioning

Floating layouts (described in Chapter 2 of this minibook) are the preferred
way to set up page layouts today, but some other alternatives are some-

times useful. You can use absolute, relative, or fixed positioning techniques to
put all your page elements exactly where you want them. Well, almost exactly.
It’s still Web development, where nothing’s exact.

Still, the techniques described in this chapter will give you even more capa-
bilities when it comes to setting up great-looking Web sites.

Working with Absolute Positioning
Begin by considering the default layout mechanism. Figure 4-1 shows a page
with two paragraphs on it.

I used CSS to give each paragraph a different color (to aid in discussion
later) and to set a specific height and width. The positioning is left to the
default layout manager, which positions the second (black) paragraph
directly below the first (blue) one.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 313

Working with Absolute Positioning314

Setting up the HTML
The code is unsurprising:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1. 0 Strict//EN”
“http://www. w3. org/TR/xhtml1/DTD/xhtml1-strict. dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www. w3. org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>boxes.html</title>
<style type = “text/css”>

#blueBox {
background-color: blue;
width: 100px;
height: 100px;

}
#blackBox {

background-color: black;
width: 100px;
height: 100px;

}
</style>

</head>

<body>
<p id = “blueBox”></p>
<p id = “blackBox”></p>

</body>
</html>

Figure 4-1:
These two
paragraphs
have a set
height and
width, but
default
positioning.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 314

Book III
Chapter 4

Using Alternative
Positioning

Working with Absolute Positioning 315

If you provide no further guidance, paragraphs (like other block-level elements)
tend to provide carriage returns before and after themselves, stacking on top
of each other. Note that the default layout techniques ensure that nothing
ever overlaps.

Adding position guidelines
Figure 4-2 shows something new: The paragraphs are overlapping!

This feat is accomplished through some new CSS attributes:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1. 0 Strict//EN”
“http://www. w3. org/TR/xhtml1/DTD/xhtml1-strict. dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www. w3. org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>absPosition.html</title>
<style type = “text/css”>

#blueBox {
background-color: blue;
width: 100px;
height: 100px;
position: absolute;
left: 0px;
top: 0px;
margin: 0px;

}

Figure 4-2:
Now the
paragraphs
overlap
each other.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 315

Working with Absolute Positioning316

#blackBox {
background-color: black;
width: 100px;
height: 100px;
position: absolute;
left: 50px;
top: 50px;
margin: 0px;

}
</style>

</head>

<body>
<p id = “blueBox”></p>
<p id = “blackBox”></p>

</body>
</html>

So, why do I care if the boxes overlap? Well, you might not care, but the
interesting part is this: You can have much more precise control over where
elements live and what size they are. You can even override the browser’s
normal tendency to keep elements from overlapping, which gives you some
interesting options.

Making absolute positioning work
A few new parts of CSS allow this more direct control of the size and position
of these elements. Here’s the CSS for one of the boxes:

#blueBox {
background-color: blue;
width: 100px;
height: 100px;
position: absolute;
left: 0px;
top: 0px;
margin: 0px;

}

1. Set the position attribute to absolute.

Absolute positioning can be used to determine exactly (more or less)
where the element will be placed on the screen:

position: absolute;

2. Specify a left position in the CSS.

After you determine that an element will have absolute position, it’s
removed from the normal flow, so you’re obligated to fix its position.
The left attribute determines where the left edge of the element will
go. This can be specified with any of the measurement units, but it’s typ-
ically measured in pixels:

left: 0px;

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 316

Book III
Chapter 4

Using Alternative
Positioning

Managing z-index 317

3. Specify a top position with CSS.

The top attribute indicates where the top of the element will go. Again,
this is usually specified in pixels:

top: 0px;

4. Use the height and width attributes to determine the size.

Normally, when you specify a position, you’ll also want to determine the
size:

width: 100px;
height: 100px;

5. Set the margins to 0.

When you’re using absolute positioning, you’re exercising quite a bit of
control. Because browsers don’t treat margins identically, you’re better
off setting margins to 0 and controlling the spacing between elements
manually:

margin: 0px;

Generally, you’ll use absolute positioning only on named elements, rather
than classes or general element types. For example, you won’t want all the
paragraphs on a page to have the same size and position, or you couldn’t
see them both. Absolute positioning works on only one element at a time.

Managing z-index
When you use absolute positioning, you can determine exactly where things
are placed, so it’s possible for them to overlap. By default, elements
described later in HTML are positioned on top of elements described earlier.
This is why the black box appears over the top of the blue box in Figure 4-2.

Handling depth
You can use a special CSS attribute called z-index to change this default
behavior. The z-axis refers to how close an element appears to be to the
viewer. Figure 4-3 demonstrates how this works.

The z-index attribute requires a numeric value. Higher numbers mean the
element is closer to the user (or on top). Any value for z-index places the
element higher than elements with the default z-index. This can be very
useful when you have elements that you want to appear over the top of other
elements (for example, menus that temporarily appear on top of other text).

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 317

Managing z-index318

Here’s the code illustrating the z-index effect:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1. 0 Strict//EN”
“http://www. w3. org/TR/xhtml1/DTD/xhtml1-strict. dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www. w3. org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>zindex.html</title>
<style type = “text/css”>

#blueBox {
background-color: blue;
width: 100px;
height: 100px;
position: absolute;
left: 0px;
top: 0px;
margin: 0px;
z-index: 1;

}
#blackBox {

background-color: black;
width: 100px;
height: 100px;
position: absolute;
left: 50px;
top: 50px;
margin: 0px;

}
</style>

Figure 4-3:
The z-index
allows you
to change
which
elements
appear
closer to the
user.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 318

Book III
Chapter 4

Using Alternative
Positioning

Building a Page Layout with Absolute Positioning 319

</head>
<body>

<p id = “blueBox”></p>
<p id = “blackBox”></p>

</body>
</html>

Working with z-index
The only change in this code is the addition of the z-index property. Here
are a couple things to keep in mind when using z-index:

✦ One element can totally conceal another. When you start positioning
things absolutely, one element can seem to disappear because it’s com-
pletely covered by another. The z-index attribute is a good way to
check for this situation.

✦ Negative z-index is undefined. The value for z-index must be positive.
A negative value is undefined and may cause your element to disappear.

✦ It may be best to give all values a z-index. If you define the z-index
for some elements and leave the z-index undefined for others, you have
no guarantee exactly what will happen. If in doubt, just give every value
its own z-index, and you’ll know exactly what should overlap what.

✦ Don’t give two elements the same z-index. The point of the z-index
is to clearly define which element should appear closer. Don’t defeat this
purpose by assigning the same z-index value to two different elements
on the same page.

Building a Page Layout with Absolute Positioning
You can use absolute positioning to create a page layout. This process
involves some trade-offs. You tend to get better control of your page with
absolute positioning (compared to floating techniques), but absolute layout
requires more planning and more attention to detail. Figure 4-4 shows a page
layout created with absolute positioning techniques.

The technique for creating an absolutely positioned layout is similar to the
floating technique (at least, in the general sense).

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 319

Building a Page Layout with Absolute Positioning320

Overview of absolute layout
Before you begin putting your page together with absolute positioning, it’s
good to plan the entire process upfront. Here’s an example of how the
process should go:

1. Plan the site.

Having a drawing specifying how your site layout will look is really
important. In absolute positioning, your planning is even more impor-
tant than the floating designs because you’ll need to specify the size and
position of every element.

2. Specify an overall size.

This particular type of layout has a fixed size. Create an all div housing
all the other elements and specify the size of this div (in a fixed unit for
now, usually px or em).

3. Create the XHTML.

The XHTML page should have a named div for each part of the page (so
if you have headers, columns, and footers, you need a div for each).

4. Build a CSS page.

The CSS page can be internal or linked, but because absolute positioning
tends to require a little more markup than floating, external styles are
preferred.

Figure 4-4:
This layout
was created
with absolute
positioning.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 320

Book III
Chapter 4

Using Alternative
Positioning

Building a Page Layout with Absolute Positioning 321

5. Identify each element.

It’s easier to see what’s going on if you assign a different colored border
to each element.

6. Make each element absolutely positioned.

Set position: absolute in the CSS for each element in the layout.

7. Specify the size of each element.

Set the height and width of each element according to your diagram.
(You did make a diagram, right?)

8. Determine the position of each element.

Use the left and top attributes to determine where each element goes
in the layout.

9. Tune up your layout.

You’ll probably want to adjust margins and borders. You may need to do
some adjustments to make it all work. For example, the menu is 150px
wide, but I added padding-left and padding-right of 5px each.
This means the width of the menu needs to be adjusted to 140px to
make everything still fit.

Writing the XHTML
The HTML code is pretty straightforward:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1. 0 Strict//EN”
“http://www. w3. org/TR/xhtml1/DTD/xhtml1-strict. dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www. w3. org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>absLayout.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “absLayout.css” />

</head>

<body>
<div id = “all”>

<div id = “head”>
<h1>Layout with Absolute Positioning</h1>

</div>

<div id = “menu”>
</div>

<div id = “content”>
</div>

</div>
</body>

</html>

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 321

Building a Page Layout with Absolute Positioning322

Adding the CSS
The CSS code is a bit lengthy but not too difficult:

/* absLayout.css */
#all {

border: 1px solid black;
width: 800px;
height: 600px;
position: absolute;
left: 0px;
top: 0px;

}

#head {
border: 1px solid green;
position: absolute;
width: 800px;
height: 100px;
top: 0px;
left: 0px;
text-align: center;

}

#menu {
border: 1px solid red;
position: absolute;
width: 140px;
height: 500px;
top: 100px;
left: 0px;
padding-left: 5px;
padding-right: 5px;

}

#content{
border: 1px solid blue;
position: absolute;
width: 645px;
height: 500px;
top: 100px;
left: 150px;
padding-left: 5px;

}

A static layout created with absolute positioning has a few important fea-
tures to keep in mind:

✦ You’re committed to position everything. After you start using absolute
positioning, you’ll need to use it throughout your site. All the main page
elements will require absolute positioning because the normal flow
mechanism is no longer in place.

You can still use floating layout inside an element with absolute position,
but all your main elements (heading, columns, and footing) need to have
absolute position if one of them does.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 322

Book III
Chapter 4

Using Alternative
Positioning

Creating a More Flexible Layout 323

✦ You should specify size and position. With a floating layout, you’re still
encouraging a certain amount of fluidity. Absolute positioning means
you’re taking the responsibility for both the shape and size of each ele-
ment in the layout.

✦ Absolute positioning is less adaptable. With this technique, you’re
pretty much bound to a specific screen width and height. You’ll have
trouble adapting to PDAs and cell phones. (A more flexible alternative is
shown in the next section.)

✦ All the widths and the heights have to add up. When you determine the
size of your display, all the heights, widths, margins, padding, and bor-
ders have to add up, or you’ll get some strange results. When you use
absolute positioning, you’re also likely to spend some quality time with
your calculator, figuring out all the widths and the heights.

Creating a More Flexible Layout
You can build a layout with absolute positioning and some flexibility. Figure 4-5
illustrates such a design.

The size of this layout is attached to the size of the browser screen. It attempts
to adjust to the browser while it’s resized. You can see this effect in Figure 4-6.

Figure 4-5:
This page
uses ab-
solute lay-
out, but it
doesn’t
have a
fixed size.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 323

Creating a More Flexible Layout324

The page simply takes up a fixed percentage of the browser screen. The pro-
portions are all maintained, no matter what the screen size is.

Having the page resize with the browser works, but it’s not a complete solution.
When the browser window is small enough, the text will no longer fit without
some ugly bleed-over effects.

Designing with percentages
This absolute but flexible trick is achieved by using percentage measure-
ments. The position is still set to absolute, but rather than defining size
and position with pixels, use percentages instead. Here’s the CSS:

/* absPercent.css */

#all {
border: 1px black solid;
position: absolute;
left: 5%;
top: 5%;
width: 90%;
height: 90%;

}

#head {
border: 1px black solid;
position: absolute;

Figure 4-6:
The layout
resizes in
proportion
to the
browser
window.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 324

Book III
Chapter 4

Using Alternative
Positioning

Creating a More Flexible Layout 325

left: 0%;
top: 0%;
width: 100%;
height: 10%;
text-align: center;

}

#head h1 {
margin-top: 1%;

}

#menu {
border: 1px green solid;
position: absolute;
left: 0%;
top: 10%;
width: 18%;
height: 90%;
padding-left: 1%;
padding-right: 1%;

}

#content {
border: 1px black solid;
position: absolute;
left: 20%;
top: 10%;
width: 78%;
height: 90%;
padding-left: 1%;
padding-right: 1%;

}

The key to any absolute positioning (even this flexible kind) is math. When
you just look at the code, it isn’t clear where all those numbers come from.
Look at the diagram for the page in Figure 4-7 to see where all these numbers
come from.

Building the layout
Here’s how the layout works:

1. Create an all container by building a div with the all ID.

The all container will hold all the contents of the page. It isn’t absolutely
necessary in this type of layout, but it does allow for a centering effect.

2. Specify the size and position of all.

I want the content of the page to be centered in the browser window, so I
set its height and width to 90 percent, and its margin-left and
margin-top to 5 percent. This in effect sets the margin-right and
margin-bottom also to 5 percent. These percentages refer to the all
div’s container element, which is the body, with the same size as the
browser window.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 325

Creating a More Flexible Layout326

3. Other percentages are in relationship to the all container.

Because all the other elements are placed inside all, the percentage
values are no longer referring to the entire browser window. The widths
and heights for the menu and content areas are calculated as percent-
ages of their container, which is all.

4. Determine the heights.

Height is usually pretty straightforward because you don’t usually have
to change the margins. Remember, though, that the head accounts for 10
percent of the page space, so the height of both the menu and content
needs to be 90 percent.

5. Figure the general widths.

In principle, the width of the menu column is 20 percent, and the con-
tent column is 80 percent. This isn’t entirely accurate, though. . . .

Header - l: 0% t: 0% w: 100% h: 10% centered

Menu

left: 0%
top: 10%

width: 18%
height: 100%

pad - l: 1%
pad - r: 1%

All

left: 5%
top: 5%

width: 90%
height: 90%

All
left,
top
5%

Content

left: 20%
top: 10%

width: 78%
height: 90%

padding - left: 1%
padding - right: 1%

Figure 4-7:
The diagram
is the key to
a successful
layout.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 326

Book III
Chapter 4

Using Alternative
Positioning

Exploring Other Types of Positioning 327

6. Compensate for margins.

You’ll probably want some margins, or the text looks cramped. If you
want 1 percent margin-left and 1 percent margin-right on the
menu column, you have to set the menu’s width to 18 percent to com-
pensate for the margins. Likewise, set the content width to 78 percent to
compensate for margins.

As if this weren’t complex enough, remember that Internet Explorer 6 (IE6)
and earlier browsers calculate margins differently! In these browsers, the
margin happens inside the content, so you don’t have to compensate for
them (but you have to remember that they make the useable content area
smaller). You’ll probably have to make a conditional comment style sheet to
handle IE6 if you use absolute positioning.

Exploring Other Types of Positioning
If you’ll use the position attribute, you’re most likely to use absolute.
However, here are other positioning techniques that can be handy in certain
circumstances:

✦ Relative: Set position: relative when you want to move an ele-
ment from its default position. For example, if you set position to rela-
tive and top: -10px, the element would be placed 10 pixels higher on
the screen than normal.

✦ Fixed: Use fixed position when you want an element to stay in the same
place, even when the page is scrolled. This is sometimes used to keep a
menu on the screen when the contents are longer than the screen width.
If you use fixed positioning, be sure you’re not overwriting something
already on the screen.

The real trick is to use appropriate combinations of positioning schemes to
solve interesting problems.

Creating a fixed menu system
Figure 4-8 illustrates a very common type of Web page — one with a menu on
the left and a number of stories or topics in the main area.

Something is interesting about this particular design. The button list on the
left refers to specific segments of the page. When you click one of these but-
tons (say, the Gamma button), the appropriate part of the page is called up,
as shown in Figure 4-9.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 327

Exploring Other Types of Positioning328

Figure 4-9:
The page
scrolls to
the Gamma
content, but
the menu
stays put!

Figure 4-8:
At first
glance, this
is yet
another
two-column
layout.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 328

Book III
Chapter 4

Using Alternative
Positioning

Exploring Other Types of Positioning 329

Normally, when you scroll down the page, things on the top of the page (like the
menu) disappear. In this case, the menu stays on the screen, even though
the part of the page where it was originally placed is now off the screen.

Gamma isn’t necessarily moved to the top of the page. Linking to an element
ensures that it’s visible but doesn’t guarantee where it will appear.

You can achieve this effect using a combination of positioning techniques.

Setting up the XHTML
The HTML for the fixed menu page is simple (as you’d expect by now):

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1. 0 Strict//EN”
“http://www. w3. org/TR/xhtml1/DTD/xhtml1-strict. dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www. w3. org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>fixedRelative.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “fixedRelative.css” />

</head>

<body>
<h1>Fixed Position</h1>
<div id = “menu”>

Alpha
Beta
Gamma
Delta

</div>

<div class = “content”
id = “alpha”>

<h2>Alpha</h2>
</div>

<div class = “content”
id = “beta”>

<h2>Beta</h2>
</div>

<div class = “content”
id = “gamma”>

<h2>Gamma</h2>
</div>

<div class = “content”
id = “delta”>

<h2>Delta</h2>
</div>

</body>
</html>

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 329

Exploring Other Types of Positioning330

The XHTML has only a few noteworthy characteristics:

✦ It has a menu. The div named menu contains a list of links (like most
menus).

✦ The menu has internal links. A menu can contain links to external docu-
ments or (like this one) links inside the current document. The Alpha code means create a link to the element in
this page with the ID alpha.

✦ The page has a series of content divs. Most of the page’s content
appears in one of the several divs with the content class. This class
indicates all these divs will share some formatting.

✦ The content divs have separate IDs. Although all the content divs
are part of the same class, each has its own ID. This allows the menu to
select individual items (and would also allow individual styling, if desired).

As normal for this type of code, I left out the filler paragraphs from the code
listing.

Setting the CSS values
The interesting work happens in CSS. Here’s an overview of the code:

/* fixedRelative.css */

body {
background-color: #fff9bf;

}

h1 {
text-align: center;

}

#menu {
position: fixed;
width: 18%;

}

#menu li {
list-style-type: none;
margin-left: -2em;
text-align: center;

}

#menu a{
display: block;
border: 2px gray outset;
text-decoration: none;
color: black;

}

#menu a:hover{
color: white;
background-color: black;

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 330

Book III
Chapter 4

Using Alternative
Positioning

Exploring Other Types of Positioning 331

border: 2px gray inset;
}

#menu h2 {
text-align: center;

}

. content {
position: relative;
left: 20%;
width: 80%;

}

. content h2 {
border-top: 3px black double;

}

Most of the CSS is familiar if you’ve looked over the other chapters in this
minibook. I changed the menu list to make it look like a set of buttons, and I
added some basic formatting to the headings and borders. The interesting
thing here is how I positioned various elements.

Here’s how you build a fixed menu:

1. Set the menu position to fixed by setting the position attribute to
fixed.

The menu div should stay on the same spot, even while the rest of the
page scrolls. Fixed positioning causes the menu to stay put, no matter
what else happens on the page.

2. Give the menu a width with the width attribute.

It’s important that the width of the menu be predictable, both for aes-
thetic reasons and to make sure the content isn’t overwritten by the
menu. In this example, I set the menu width to 18 percent of the page
width (20 percent minus some margin space).

3. Consider the menu position by explicitly setting the top and left
attributes.

When you specify a fixed position, you can determine where the element
is placed on the screen with the left and top attributes. I felt that the
default position was fine, so I didn’t change it.

4. Set content position to relative.

By default, all members of the content class will fill out the entire page
width. Because the menu needs the leftmost 20 percent of the page, set
the content class’ position to relative.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 331

Determining Your Layout Scheme332

5. Change content’s left attribute to 20 percent.

Because content has relative positioning, setting the left to 20 per-
cent will add 20 percent of the parent element to each content’s left
value. This will ensure that there’s room for the menu to the left of all
the content panes.

6. Give content a width property.

If you don’t define the width, content panels may bleed off the right
side of the page. Use the width property to ensure this doesn’t happen.

Determining Your Layout Scheme
All these layout options might just make your head spin. What’s the right
strategy? Well, that depends.

The most important thing is that you find a technique you’re comfortable
with that gives you all the flexibility you need.

Absolute positioning seems very attractive at first because it promises so
much control. The truth is, it’s pretty complicated to pull off well, it isn’t
quite as flexible as the floating layout techniques, and it’s hard to make work
right in the older browsers.

Floating layouts are generally your best bet, but it’s good to know how
absolute positioning works. Every once in a while, you’ll find a situation
where absolute positioning is a good idea. You’ll see another example of
absolute positioning in Chapter 7 of Book IV when you animate the position
of an element on the screen.

Sometimes, fixed and relative positioning schemes are handy, as in the exam-
ple introduced in the preceding section.

Sometimes, you’ll find it’s best to combine schemes. (It’s difficult to combine
absolute positioning with another scheme, but you can safely combine float-
ing, fixed, and relative positioning techniques most of the time.)

There really aren’t any set answers. CSS layout is still an art in progress, and
there’s plenty to find out about that I can’t describe in this book. Keep prac-
ticing and keep exploring, and you’ll be building beautiful and functional lay-
outs in no time.

22_186275 bk03ch04.qxp 3/28/08 10:47 PM Page 332

JavaScript code adds interactivity for checking input and even
making games and animations.

Book IV

Client-Side Programming
with JavaScript

23_186275 pp04.qxp 3/28/08 10:47 PM Page 333

Contents at a Glance
Chapter 1: Getting Started with JavaScript .335

Working in JavaScript ..335
Writing Your First JavaScript Program..338
Introducing Variables...341
Using Concatenation to Build Better Greetings343
Understanding the String Object ...345
Understanding Variable Types ...350
Changing Variables to the Desired Type ...354

Chapter 2: Making Decisions with Conditions 357
Working with Random Numbers ..357
Using if to Control Flow...359
Using the else Clause...362
Using switch for More Complex Branches..365
Nesting if Statements...368

Chapter 3: Loops and Debugging .371
Building Counting Loops with for ..371
Looping for a While..375
Introducing Bad Loops ..377
Debugging Your Code ..378
Catching Logic Errors ..383
Using the Aptana Debug Mode...386

Chapter 4: Functions and Arrays .395
Breaking Code into Functions ..395
Passing Data into and out of Functions...398
Managing Scope..402
Building a Basic Array ...405
Working with Two-Dimension Arrays ..408

Chapter 5: Talking to the Page .413
Understanding the Document Object Model..413
Harnessing the DOM through JavaScript..417
Managing Button Events ...419
Managing Text Input and Output ...422
Writing to the Document...427
Working with Other Text Elements ..430

Chapter 6: Getting Valid Input .437
Getting Input from a Drop-Down List...437
Managing Multiple Selections...440
Check, Please: Reading Check Boxes...444
Working with Radio Buttons ...446
Working with Regular Expressions ..449

Chapter 7: Animating Your Pages .459
Making Things Move..459
Reading Input from the Keyboard..468
Following the Mouse..472
Creating Automatic Motion...476
Building Image-Swapping Animation ...478
Movement and Swapping ..483

23_186275 pp04.qxp 3/28/08 10:47 PM Page 334

Chapter 1: Getting Started
with JavaScript

In This Chapter
� Adding JavaScript code to your pages

� Setting up your environment for JavaScript

� Creating variables

� Inputting and outputting with modal dialogs

� Using Concatenation to build text data

� Understanding data types

� Using string methods and properties

� Using conversion functions

Web pages are defined by the XHTML code and fleshed out by CSS. But
to make them move and breathe, sing, and dance, you need to add a

programming language or two. If you thought building Web pages was cool,
you’re going to love what you can do once you do a little programming.
Programming is what makes pages interact with the user. Interactivity is the
“new” in “new media” (if you ask me, anyway). Learn to program, and your
pages come alive.

Sometimes people are nervous about programming. It seems difficult
and mysterious, and only super-geeks do it. That’s a bunch of nonsense.
Programming is no more difficult than XHTML and CSS. It’s a natural extension,
and you’re going to like it.

In this chapter, you discover how to add code to your Web pages. You use a
language called JavaScript, which is already built into most Web browsers.
You don’t need to buy any special software, compilers, or special tools,
because you build JavaScript just like XHTML and CSS — in an ordinary text
editor or a specialty editor like Aptana.

Working in JavaScript
JavaScript is a programming language first developed by Netscape
Communications. It is now standard on nearly every browser. You should
know a few things about JavaScript right away:

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 335

Working in JavaScript336

✦ It’s a real programming language. Don’t let anybody tell you otherwise.
Sure, JavaScript doesn’t have all the same features as a monster like C++
or VB.NET, but it’s still got all the hallmarks of a complete programming
language.

✦ It’s not Java. Sun Microsystems developed a language called Java, which
is also sometimes used in Web programming. Despite the similar names,
Java and JavaScript are completely different languages. The original plan
was for JavaScript to be a simpler language for controlling more com-
plex Java applets, but that never really panned out.

Don’t go telling people you’re programming in Java. Java people love to
act all superior and condescending when JavaScript programmers make
this mistake.

✦ It’s a scripting language. As programming languages go, JavaScript’s
pretty friendly. It’s not quite as strict or wordy as some other languages.
It also doesn’t require any special steps (like compilation), so it’s pretty
easy to use. These things make JavaScript a great first language.

Choosing a JavaScript editor
Even though JavaScript is a programming language, it is still basically text.
Because it’s normally embedded in a Web page, you can work in the same
text editor you’re using for XHTML and CSS. If you aren’t already, I recom-
mend that you use the powerful Aptana editor. Aptana is great for XHTML
and CSS, but it really comes into its own when you use it to incorporate
JavaScript code in your pages.

JavaScript is an entirely different language and syntax than HTML and CSS. It
isn’t hard to learn, but there’s a lot to learning any programming language.
Aptana has a number of great features that help you tremendously when
writing JavaScript code:

✦ Syntax highlighting: Just like HTML and CSS, Aptana automatically
adjusts code colors to help you see what’s going on in your program. As
you see in the sidebar “Concatenation and your editor” in this chapter,
this adjustment can be a big benefit when things get complicated.

✦ Code completion: When you type the name of an object, Aptana provides
you with a list of possible completions. This shortcut can be really helpful
because you don’t have to memorize all the details of the various functions
and commands.

✦ Help files: The Start page (available from the File menu if you’ve
dismissed it) has links to great help pages for HTML, CSS, and
JavaScript. The documentation is actually easier to read than some of
what you’ll find on the Web.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 336

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Working in JavaScript 337

✦ Integrated help: Hover the mouse over a JavaScript command or method,
and a nifty little text box pops up to explain exactly how the feature works.
Often, it even includes an example or two.

✦ Error warnings: When Aptana can tell something is going wrong, it gives
you an error message and places a red squiggly (such as the one
spellcheckers use) under the suspect code.

I’m unaware of a better JavaScript editor at any price, and Aptana is free, so
there’s just not a good reason to use anything else. Of course, you can use any
text editor if you don’t want or need those features. Any of the following text
editors (all mentioned in Book 1, Chapter 3) are suitable for JavaScript work:

✦ Notepad++

✦ VI / VIM

✦ Emacs

✦ Scintilla

✦ jEdit

There’s one strange characteristic I’ve noticed in Aptana. The Preview tab
isn’t as reliable a technique for checking JavaScript code as it was in XHTML
and CSS. I find it better to run the code directly in my browser or use the
Run button to have Aptana run it in the external browser for me.

Picking your test browser
In addition to your editor, you should think again about your browser when
you’re testing JavaScript code. All the major browsers support JavaScript,
and the support for JavaScript is relatively similar across the browsers (at
least for the stuff in this chapter). However, browsers aren’t equal when it
comes to testing your code.

Things will go wrong when you write JavaScript code, and the browser is
responsible for telling you what went wrong. Firefox is way ahead of Internet
Explorer when it comes to reporting errors. Firefox errors are much easier to
read and understand, and Firefox supports a thing called the javascript console
(described in Chapter 3 of this minibook that makes it much easier to see
what’s going on. If at all possible, use Firefox to test your code and then check
for discrepancies in Internet Explorer.

You can discover more about finding and fixing errors in Chapter 3 of this
minibook.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 337

Writing Your First JavaScript Program338

Writing Your First JavaScript Program
The foundation of any JavaScript program is a standard Web page like the
ones featured in the first three minibooks.

To create your first JavaScript program, the first thing you need to do is add
JavaScript code to your pages. Figure 1-1 shows the classic first program in
any language.

Figure 1-1:
A Java-
Script
program
caused this
little dialog
box to pop
up!

Hello World?
There’s a long tradition in programming lan-
guages that your first program in any language
should simply say, “Hello, World!” and do noth-
ing else. There’s actually a very good practical
reason for this habit. Hello World is the simplest
possible program you can write that you can
prove works. Hello World programs are used to

help you figure out the mechanics of the pro-
gramming environment — how the program is
written, what special steps you have to do to
make the code run, and how it works. There’s no
point in making a more complicated program
until you know you can get code to pop up and
say hi.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 338

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Writing Your First JavaScript Program 339

This page has a very simple JavaScript program in it that pops up the phrase
“Hello, World!” in a special element called a dialog box. It’s pretty cool.

Here’s an overview of the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>HelloWorld.html</title>
<script type = “text/javascript”>

//<![CDATA[
// Hello, world!
alert(“Hello, World!”);

//]]>
</script>

</head>

<body>

</body>
</html>

As you can see, this page contains nothing in the HTML body. You can incor-
porate JavaScript with XHTML content. For now, though, you can simply
place JavaScript code in the head area in a special tag and make it work.

Embedding your JavaScript code
JavaScript code is placed in your Web page via the <script> tag. JavaScript
code is placed inside the <script></script> pair. The <script> tag has
one required attribute, type, which will usually be text/javascript.
(Other types are possible, but they’re rarely used.)

The other funny thing in this page is that crazy CDATA stuff. Immediately
inside the script tag, the next line is:

//<![CDATA[

This bizarre line is a special marker explaining that the following code is
character information and shouldn’t be interpreted as XHTML. The end of
the script finishes off the character data marker with this code:

//]]>

In modern browsers, it’s a good idea to mark off your JavaScript code as
character data. If you don’t, the XHTML validator will sometimes get con-
fused and claim you have errors when you don’t.

That CDATA business is bizarre. It’s hard to memorize, I know, but just type it
a few times, and you’ll own it.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 339

Writing Your First JavaScript Program340

A lot of older books and Web sites don’t recommend the character data
trick, but it’s well worth learning. You’ve invested too much effort into build-
ing standards-compliant pages to have undeserved error messages pop up
because the browser thinks your JavaScript is badly formatted XHTML.

Creating comments
Just like XHTML and CSS, comments are important. Because programming
code can be more difficult to decipher than XHTML or CSS, it’s even more
important to comment your code in JavaScript than it is in these environ-
ments. The comment character in JavaScript is two slashes (//).The browser
ignores everything from the two slashes to the end of the line. You can also
use a multi-line comment (/* */) just like the one in CSS.

Using the alert() method for output
You can output data in JavaScript in a number of ways. In this introductory
chapter, I focus on the simplest to implement and understand — the alert().

This technique pops up a small dialog box containing text for the user to read.
The alert box is an example of a modal dialog. Modal dialogs interrupt the flow
of the program until the user pays attention to them. Nothing else will happen
in the program until the user acknowledges the dialog by clicking the OK
button. The user can’t interact with the page until he clicks the button.

Modal dialogs may seem a bit rude. In fact, you probably won’t use them
much once you discover other input and output techniques. The fact that
the dialog box demands attention makes it a very easy tool to use when you
start programming. I use it (and one of its cousins) throughout this chapter
because it’s easy to understand and use.

Adding the semicolon
Each command in JavaScript ends with a semicolon (;) character. The semi-
colon in most computer languages acts like the period in English. It indicates
the end of a logical thought. Usually, each line of code is also one line in the
editor.

To tell the truth, JavaScript will usually work fine if you leave out the semi-
colons. However, you should add them anyway because they help clarify your
meaning. Besides, most other languages, including PHP (see Book V), requires
semicolons. You may as well start a good habit now.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 340

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Introducing Variables 341

Introducing Variables
Computer programs get their power by working with information. Figure 1-2
shows a program that gets user data from the user to include in a customized
greeting.

This program introduces a new kind of dialog that allows the user to enter
some data. The information is stored in the program for later use. After the
user enters her name, she gets a greeting, as shown in Figure 1-3.

The rest of the greeting happens on a second alert dialog, shown in Figure 1.4.
It incorporates the username supplied in the first dialog box.

The output may not seem that incredible, but take a look at the source code
to see what’s happening:

Figure 1-4:
Now the
greeting is
complete.

Figure 1-3:
The start of
the greeting.
Press the
button for
the rest.

Figure 1-2:
First, the
program
asks the
user for her
name.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 341

Introducing Variables342

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>prompt.html</title>
<script type = “text/javascript”>

//<![CDATA[

var person = “”;
person = prompt(“What is your name?”);
alert(“Hi”);
alert(person);

//]]>
</script>

</head>

<body>

</body>
</html>

Creating a variable for data storage
This program is interesting because it allows user interaction. The user can
enter a name, which is stored in the computer and then returned in a greet-
ing. The key to this program is a special element called a variable. Variables
are simply places in memory for holding data. Any time you want a computer
program to “remember” something, you can create a variable and store your
information in it.

Variables typically have the following characteristics:

✦ The var statement: You can indicate that you’re creating a variable with
the var command.

✦ A name: When you create a variable, you’re required to give it a name.

✦ An initial value: It’s useful to give each variable a value immediately.

✦ A data type: JavaScript automatically determines the type of data in a
variable (more on this in the section called “Understanding Variable
Types”), but you should still be clear in your mind what type of data you
expect a variable to contain.

Asking the user for information
The prompt statement does several interesting things:

✦ Pops up a dialog box. It creates a modal dialog much like the alert()
method does.

✦ Asks a question. The prompt() command expects you to ask the user a
question.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 342

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Using Concatenation to Build Better Greetings 343

✦ Provides space for a response. The dialog box contains a space for the
user to type a response, as well as buttons for the user to click when
he’s finished or wants to cancel the operation.

✦ Passes the information to a variable. The purpose of a prompt is to get
data from the user, so prompts are nearly always connected to a variable.
When the code is finished, the variable contains the indicated value.

Responding to the user
This program uses the alert() statement to begin a greeting to the user. The
first alert works just like the one from the helloWorld program, described
earlier in this chapter in the section “Writing Your First JavaScript Program”:

alert(“Hi”);

The content of the parentheses is the text you want the user to see. In this
case, you want the user to see the literal value “Hi”.

The second alert statement is a little bit different:

alert(person);

This alert statement has a parameter with no quotes. Because the parame-
ter has no quotes, JavaScript understands that you don’t really want to say
the text person. Instead, it looks for a variable named person, and returns
the value of that variable.

The variable can take any name, store it, and return a customized greeting.

Using Concatenation to Build Better Greetings
It seems a little awkward to have a greeting and a person’s name on two dif-
ferent lines. Figure 1-5 shows a better solution.

The program asks for a name again and stores it in a variable. This time, the
greeting is combined into one alert (see Figure 1-6), and it looks a lot better.

Figure 1-5:
Once again,
I ask the
user for a
name.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 343

Using Concatenation to Build Better Greetings344

The secret to Figure 1-6 is one of those wonderful gems of the computing
world: a really simple idea with a really complicated name. The term “con-
catenation” is a delightfully complicated word for a basic process. Take a
look at the following code, and you see that combining variables with text is
not all that complicated:

<script type = “text/javascript”>
//<![CDATA[
// from concat.html

var person = “”;
person = prompt(“What is your name?”);
alert(“Hi there, “ + person + “!”);

//]]>
</script>

For the sake of brevity, I include only the script tag and its contents through-
out this chapter. The rest of this page is a standard blank XHTML page. As
always, you can see the complete document on the Web site or CD-ROM. I do
include a comment in each JavaScript snippet that indicates where you can
get the entire file on the CD-ROM.

Comparing literals and variables
The program concat.html contains two different kinds of text. The term
“Hi there, ” is a literal text value. That is, you really mean to say “Hi there, ”
(including the comma and the space). Person is a variable. (For more on
variables, see the section “Introducing Variables,” earlier in this chapter.

You can combine literal values and variables in one phrase if you want:

alert(“Hi there, “ + person + “!”);

The secret to this code is to follow the quotes. “Hi there, “ is a literal
value, because it is in quotes. On the other hand, person is a variable name,
because it is not in quotes, and “!” is a literal value. You can combine any
number of text snippets together with the plus sign.

Using the plus sign to combine text is called concatenation. (I told you it was
a complicated word for a simple idea.)

Figure 1-6:
Now the
user’s name
is integrated
into the
greeting.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 344

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Understanding the String Object 345

Including spaces in your concatenated phrases
You may be curious about the extra space between the comma and the
quote in the output line:

alert(“Hi there, “ + person + “!”);

This extra space is important because you want the output to look like a
normal sentence. If you don’t have the space, the computer doesn’t add one,
and the output looks like this:

Hi there,Benjamin!

You need to construct the output as it should look, including spaces and
punctuation.

Understanding the String Object
The person variable used in the previous program is designed to hold text.
Programmers (being programmers) devised their own mysterious term to
refer to text. In programming, text is referred to as string data.

Concatenation and your editor
The hard part about concatenation is figuring
out which part of your text is a literal value and
which part is a string. It won’t take long before
you start going cross-eyed trying to understand
where the quotes go.

Modern text editors (like Aptana) have a won-
derful feature that can help you here. They
color different kinds of text in different colors.
By default, Aptana colors variable names black
and literal text dark green (at least when you’re
in JavaScript — in HTML, literal text is in blue).

I personally find it hard to differentiate the dark
green from black, so I changed the Aptana
color scheme. I have it make string literals blue
whether I’m in JavaScript or HTML. I find this
color more consistent and easier for me to
read. With this setting in place, I can easily see
what part of the statement is literal text and

what’s being read as a variable name. That
makes concatenation a lot easier.

To change the color scheme in Aptana, choose
Window➪Preferences. An expandable outline
appears in the resulting dialog box. In the sec-
tion Aptana — Editors — JavaScript Editor —
colors, scroll down to find color settings for any
type of data. I found string (another term for
text) under literals and changed the color from
dark green to blue.

If you make a mistake, the “Restore Defaults”
button reverts back to the default values.

Most editors that have syntax highlighting
allow you to change settings to fit your needs.
Don’t be afraid to use these tools to help you
program better.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 345

Understanding the String Object346

The term string comes from the way text is stored in computer memory. Each
character is stored in its own cell in memory, and all the characters in a word
or phrase reminded the early programmers of beads on a string. Surprisingly
poetic for a bunch of geeks, huh?

Introducing object-based programming (and cows)
JavaScript (and many other modern programming languages) use a powerful
model called object-oriented programming (OOP). This style of programming
has a number of advantages. Most important for beginners, it allows you
access to some very powerful objects that do interesting things out of the box.

Objects are used to describe complicated things that can have a lot of char-
acteristics — like a cow. You can’t really put an adequate description of a
cow in an integer variable.

In many object-oriented environments, objects can have the following char-
acteristics. (Imagine a cow object for the examples.)

✦ Properties: Characteristics about the object, such as breed() and age()

✦ Methods: Things the objects can do, such as moo() and giveMilk()

✦ Events: Stimuli the object responds to, such onTip

I describe each of these ideas throughout this minibook, as not all objects
support all these characteristics.

If you have a variable of type cow, it describes a pretty complicated thing.
This thing might have properties, methods, and events, all which can be
used together to build a good representation of a cow. (Believe it or not, I’ve
built cow programming constructs more than once in my life — and you
thought programming was dull!)

Most variable types in Java are actually objects, and most JavaScript objects
have a full complement of properties and methods; many even have event
handlers. Master how these things work, and you’ve got a powerful and
compelling programming environment.

Okay, before you send me any angry e-mails, I know debate abounds about
whether JavaScript is a truly object-oriented language. I’m not going to get
into the (frankly boring and not terribly important) details in this beginner
book. We’re going to call JavaScript object-oriented for now, because it’s
close enough for beginners. If that bothers you, you can refer to JavaScript
as an object-based language. Nearly everyone agrees with that. You can find
out more information on this topic throughout this minibook as you dis-
cover how to use HTML elements as objects in Chapter 5.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 346

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Understanding the String Object 347

Investigating the length of a string
When you assign text to a variable, JavaScript automatically treats the variable
as a string object. The object instantly takes on the characteristics of a string
object. Strings have a couple of properties and a bunch of methods. The one
interesting property (at least for beginners) is length. Look at the example in
Figure 1-7 to see the length property in action.

That’s kind of cool how the program can figure out the length of a phrase.
The cooler part is the way it works. As soon as you assign a text value to a
variable, JavaScript treats that variable as a string, and because it’s a string,
it now has a length property. This property returns the length of the string
in characters. Here’s how it’s done in the code.

<script type = “text/javascript”>
//<![CDATA[
//from nameLength.html

var person = prompt(“Please enter your name.”);
var length = person.length;

alert(“Hi, “ + person + “!”);
alert(“The name “ + person + “ is “ + length + “ characters long.”);

//]]>
</script>

A property is used like a special subvariable. For example, person is a vari-
able in the previous example. person.length is the length property of
the person variable. In JavaScript, an object and a variable are connected
by a period (with no spaces).

The string object in JavaScript has only two other properties (constructor
and prototype). Both of these properties are needed only for advanced
programming, so I skip them for now.

Using string methods to manipulate text
The length property is kind of cool, but the string object has a lot more up
its sleeve. Objects also have methods (things the object can do). Strings in
JavaScript have all kinds of methods. Here are a few of my favorites:

Figure 1-7:
This
program
reports the
length of
any text.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 347

Understanding the String Object348

✦ toUpperCase() makes an entirely uppercase copy of the string.

✦ toLowerCase() makes an entirely lowercase copy of the string.

✦ substring() returns a specific part of the string.

✦ indexOf() determines whether one string occurs within another.

The string object has many other methods, but I’m highlighting the preced-
ing because they’re useful for beginners. Many string methods, such as
big() and fontColor(), simply add HTML code to text. They aren’t used
very often because they produce HTML code that won’t validate, and they
don’t really save a lot of effort anyway. Some other methods, such as
search(), replace(), and slice(), use advanced constructs like arrays
and regular expressions that aren’t necessary for beginners. (To find out
more about working with arrays, see Chapter 4 of this minibook. You can
find out more about regular expressions in Chapter 6.)

Don’t take my word for it. Look up the JavaScript string object in the Aptana
online help (or one of the many other online JavaScript references) and see
what properties and methods it has.

Like properties, methods are attached to an object by the period. Methods
are distinguished by a pair of parentheses, which sometimes contains spe-
cial information called parameters.

The best way to see how methods work is to look at some in action. Look at
the code for stringMethods.html:

<script type = “text/javascript”>
//<![CDATA[
//from stringMethods.html

var text = prompt(“Please enter some text.”);

alert(“I’ll shout it out:”);
alert(text.toUpperCase());

alert(“Now in lowercase...”);
alert(text.toLowerCase());

alert(“The first ‘a’ is at letter...”);
alert(text.indexOf(“a”));

alert(“The first three letters are ...”);
alert(text.substring(0, 3));

//]]>
</script>

Figure 1-8 displays the output produced by this program.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 348

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Understanding the String Object 349

Here’s yet another cool thing about Aptana. When you type the term text,
Aptana understands that you’re talking about a string variable and automati-
cally pops up a list of all the possible properties and methods. I wish I’d had
that when I started doing this stuff!

You can see from the preceding code that methods are pretty easy to use.
Once you have a string variable, you can invoke the variable name followed
by a period and the method name. Some methods require more information
to do their job. Here are the specifics:

✦ toUpperCase() and toLowerCase() take the value of the variable and
convert it entirely to the given case. This method is often used when you
aren’t concerned about the capitalization of a variable.

Figure 1-8:
String
methods
can be fun.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 349

Understanding Variable Types350

✦ indexOf(substring) returns the character position of the substring
within the variable. If the variable doesn’t contain the substring, it returns
the value -1.

✦ substring(begin, end) returns the substring of the variable from
the beginning character value to the end.

Understanding Variable Types
JavaScript isn’t too fussy about whether a variable contains text or a number,
but the distinction is still important because it can cause some surprising prob-
lems. To illustrate, take a look at a program that adds two numbers together,
and then see what happens when you try to get numbers from the user to add.

Adding numbers
First, take a look at the following program:

<script type = “text/javascript”>
//<![CDATA
//from addNumbers.html

var x = 5;
var y = 3;
var sum = x + y;

alert(x + “ plus “ + y + “ equals “ + sum);

//]]>
</script>

(As usual for this chapter, I’m only showing the script part because the rest
of the page is blank.)

Why are the first three characters (0, 3)?
The character locations for JavaScript (and
most programming languages) will seem some-
what strange to you until you know the secret.
You may expect text.substring(1,3)
to return the first three characters of the vari-
able text, yet I used text.sub-
string(0,3). Here’s why: The indices don’t

refer to the character numbers but to the
indices between characters.

|a|b|c|d|
0 1 2 3 4

So, if I want the first three characters of the
string “abcd”, I use substring(0,3). If I
want the “cd” part, it’s substring(2,4).

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 350

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Understanding Variable Types 351

This program features three variables. I’ve assigned the value 5 to x, and 3 to y.
I then add x + y and assign the result to a third variable, sum. The last line
prints the results, which are also shown in Figure 1-9.

Note a few important things from this example:

✦ You can assign values to variables. It’s best to read the equals sign as
“gets” so that the first assignment is read as “variable x gets the value 5.”

var x = 5;

✦ Numeric values aren’t enclosed in quotes. When you refer to a text literal
value, it’s always enclosed in quotes. Numeric data, such as the value 5,
isn’t placed in quotes.

✦ You can add numeric values. Because x and y both contain numeric
values, you can add them together.

✦ You can replace the results of an operation in a variable. The result of
the calculation x + y is placed in a variable called sum.

✦ Everything works as expected. The behavior of this program works as
expected. That’s important because it’s not always true. (You can see an
example of this behavior in the next section — I love writing code that
blows up on purpose!)

Adding the user’s numbers
The natural extension of the addNumbers.html program is a feature that
allows the user to input two values and then returns the sum. This program
can be the basis for a simple adding machine. Here’s the JavaScript code:

<script type = “text/javascript”>
//<![CDATA[
//from addInputWrong.html

var x = prompt(“first number:”);
var y = prompt(“second number:”);
var sum = x + y;

Figure 1-9:
This
program
(correctly)
adds two
numbers
together.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 351

Understanding Variable Types352

alert(x + “ plus “ + y + “ equals “ + sum);

//]]>
</script>

This code seems reasonable enough. It asks for each value and stores them
in variables. It then adds the variables up and returns the results, right? Well,
look at Figure 1-10 to see a surprise.

Something’s obviously not right here. To understand the problem, you need
to see how JavaScript makes guesses about data types (see the next section).

The trouble with dynamic data
Ultimately, all the information stored in a computer, from music videos to
e-mails, is stored as a bunch of ones and zeroes. The same value 01000001
can mean all kinds of things: It may mean the number 65 or the character A.
(In fact, it does mean both those things in the right context.) The same
binary value may mean something entirely different if it’s interpreted as a
real number, a color, or a part of a sound file.

The theory isn’t critical here, but one point is really important: Somehow the
computer has to know what kind of data is stored in a specific variable.
Many languages, such as C and Java, have all kinds of rules about defining
data. If you create a variable in one of these languages, you have to define
exactly what kind of data will go in the variable, and you can’t change it.

Figure 1-10:
Wait a
minute . . .
3 + 5 = 35???

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 352

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Understanding Variable Types 353

JavaScript is much more easygoing about variable types. When you make a
variable, you can put any kind of data in it that you want. In fact, the data
type can change. A variable can contain an integer at one point, and the
same variable may contain text in another part of the program.

JavaScript uses the context to determine how to interpret the data in a par-
ticular variable. When you assign a value to a variable, JavaScript puts the
data in one of the following categories:

✦ Integers are whole numbers (no decimal part). They can be positive or
negative values.

✦ A floating point number has a decimal point — for example, 3.14. You can
also express floating point values in scientific notation, such as 6.02e23
(Avagadro’s number –6.02 times 10 to the 23rd). Floating point numbers
can also be negative.

✦ A Boolean value can only be true or false.

✦ Text is usually referred to as string data in programming languages.
String values are usually enclosed in quotes.

✦ Arrays and objects are more complex data types that you can ignore for now.

Most of the time, when you make a variable, JavaScript guesses right, and
you have no problems. But sometimes, JavaScript makes some faulty
assumptions, and things go wrong.

The pesky plus sign
I’ve used the plus sign in two different ways throughout this chapter. The
following code uses the plus sign in one way (concatenating two string values):

var x = “Hi, “;
var y = “there!”;

result = x + y;
alert(result);

In this code, x and y are text variables. The result = x + y line is inter-
preted as “concatenate x and y,” and the result is “Hi, there!”

Here’s the strange thing: The following code is almost identical.

var x = 3;
var y = 5;

result = x + y;
alert(result);

Strangely, the behavior of the plus sign is different here, even though the
statement result = x + y is identical in the two code snippets!

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 353

Changing Variables to the Desired Type354

In this second case, x and y are numbers. The plus operator has two entirely
different jobs. If it’s surrounded by numbers, it adds. If it’s surrounded by
text, it concatenates!

That’s what happened to the first adding machine program. When the user
enters data in prompt dialogs, JavaScript assumes that the data is text.
When I try to add x and y, it “helpfully” concatenates instead.

There’s a fancy computer science word for this phenomenon (an operator
doing different things in different circumstances). Those Who Care About
Such Things call this mechanism an overloaded operator. Smart people some-
times have bitter arguments about whether overloaded operators are a good
idea because they can cause problems like this one, but they can also make
things easier in other contexts. I’m not going to enter into that debate here.
It’s not really a big deal, as long as you can see the problem and fix it.

Changing Variables to the Desired Type
If JavaScript is having a hard time figuring out what type of data is in a vari-
able, you can give it a friendly push in the right direction with some handy
conversion functions, as shown in Table 1-1.

Table 1-1 Variable Conversion Functions
Function From To Example Result

parseInt() String Integer parseInt(“23”) 23

parseFloat() String Floating point parseFloat(“21.5”) 21.5

toString() Any variable String myVar.toString() varies
eval() Expression Result eval(“5 + 3”) 8

Math.ceil() Floating point Integer Math.ceil(5.2 6)

Math.floor() Math.floor(5.2) 5

Math.round() Math.round(5.2) 5

Using variable conversion tools
The conversion functions are incredibly powerful, but you only need them if
the automatic conversion causes you problems. Here’s how they work:

✦ parseInt() is used to convert text to an integer. If you put a text value
inside the parentheses, the function returns an integer value. If the
string has a floating point representation (4.3 for example) an integer
value (4) is returned.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 354

Book IV
Chapter 1

Getting Started
w

ith JavaScript
Changing Variables to the Desired Type 355

✦ parseFloat() converts text to a floating point value.

✦ toString() takes any variable type and creates a string representa-
tion. Note that it isn’t usually necessary to use this function, because it’s
usually invoked automatically when needed.

✦ eval() is a special method that accepts a string as input. It then attempts
to evaluate the string as JavaScript code and return the output. You can
use this method for variable conversion or as a simple calculator —
eval(“5 + 3”) returns the integer 8.

✦ Math.ceil() is one of several methods of converting a floating point
number to an integer. This technique always rounds upward, so
Math.ceil(1.2) is 2, and Math.ceil(1.8) is also 2.

✦ Math.floor() is similar to Math.ceil(), except it always rounds
downward, so Math.floor(1.2) and Math.floor(1.8) will both
evaluate to 1.

✦ Math.round() works like the standard rounding technique used in
grade school. Any fractional value less than .5 rounds down, and greater
than or equal to .5 rounds up, so Math.round(1.2) is 1, and
Math.round(1.8) is 2.

Fixing the addInput code
With all this conversion knowledge in place, it’s pretty easy to fix up the
addInput program so that it works correctly. Just use parseFloat() to
force both inputs into floating-point values before adding them. Note that
you don’t have to explicitly convert the result to a string. That’s automati-
cally done when you invoke the alert() method.

//<![CDATA[
// from addInput.html

var x = prompt(“first number:”);
var y = prompt(“second number:”);
var sum = parseFloat(x) + parseFloat(y);

alert(x + “ plus “ + y + “ equals “ + sum);

//]]>

You can see the program works correctly in Figure 1-11.

Conversion methods allow you to ensure that the data is in exactly the
format you want.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 355

Changing Variables to the Desired Type356

Figure 1-11:
Now the
program
asks for
input and
correctly
returns the
sum.

24_186275 bk04ch01.qxp 3/28/08 10:47 PM Page 356

Chapter 2: Making Decisions
with Conditions

In This Chapter
� Generating random numbers and integers

� Working with conditions

� Using the if-else and switch structures

� Handling unusual conditions

One of the most important aspects of computers is their apparent ability
to make decisions. Computers can change their behavior based on cir-

cumstances. In this chapter, you discover how to maximize this decision-
making ability.

Working with Random Numbers
Random numbers are a big part of computing. They add uncertainty to
games, but they’re also used for serious applications, such as simulations,
security, and logic. Most languages have a feature for creating random num-
bers, and JavaScript is no exception. The Math.random() function returns
a random floating point value between zero and one.

Technically, computers can’t create truly random numbers. Instead, they
use a complex formula that starts with one value and creates a second semi-
predictable value. In JavaScript, the first value (called the random seed) is
taken from the system clock in milliseconds, so the results of a random
number call seem truly random.

Creating an integer within a range
Creating a random floating point number between zero and one is easy,
thanks to the Math.random() function. What if you want an integer within
a specific range? For example, say that you want to simulate rolling a six-sided
die. How do you get from the 0-to-1 floating point value to a 1-to-6 integer?

Here’s the standard approach:

1. Get a random float between 0 and 1 using the Math.random() function.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 357

Working with Random Numbers358

2. Multiply that value by 6.

This step gives you a floating point value between 0 and 5.999 (but never 6).

3. Use math.ceil() to round up.

At this point, you need to convert the number to an integer. In Book 4,
Chapter 1, I mention three functions you can use to convert from a float
to an integer. Math.ceil() always rounds up, which means you’ll
always get an integer between 1 and 6.

Building a program that rolls dice
The following RollDie.html code helps you simulate rolling a six-sided die.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>rollDie.html</title>
<script type = “text/javascript”>

//<![CDATA[
// from rollDie.html

var number = Math.random();
alert(number);

var biggerNumber = number * 6;
alert(biggerNumber);

var die = Math.ceil(biggerNumber);
alert(die);

//]]>

</script>
</head>

<body>
<div id = “output”>

</div>
</body>

</html>

As you can see, I converted the strategy from the previous section directly
into JavaScript code:

1. Create a random float.

The Math.random() function creates a random floating point number
and stores it in the variable number.

2. Multiply the number by 6 to move the number into the appropriate
range (6 values).

I multiplied by 6 and stored the result in biggerNumber.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 358

Book IV
Chapter 2

M
aking Decisions
w

ih Conditions
Using if to Control Flow 359

3. Round up.

I used the Math.ceil() function to round the number up to the next
highest integer.

Figure 2-1 shows the program running.

You may need to run the rollDice.html page a few times to confirm that it
works as suspected.

If you want to rerun a program you’ve already loaded into the browser, just
hit the page refresh button on the browser toolbar.

Using if to Control Flow
If you can roll a die, you’ll eventually want different things to happen based
on the results of the die roll. Figure 2-2 shows two different runs of a simple
game called deuce.html.

Okay, it’s not that exciting. I promise to add dancing hippos in a later version.

In any case, the “You got a Deuce!” message happens only when you roll a 2.
The code is simple but profound:

<script type = “text/javascript”>
//<![CDATA[
// get a random number
// If it’s a two, you win

var die = Math.ceil(Math.random() * 6);

Figure 2-1:
This pro-
gram gener-
ates a value
between 1
and 6.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 359

Using if to Control Flow360

alert(die);
if (die == 2){

alert (“You got a Deuce!”);
} // end if

//]]>
</script>

As usual, I’m showing only the script tag and its contents here, because the
rest of the page is blank.

The basic if statement
The key to deuce.html is the humble if statement. This powerful com-
mand does a number of important things:

✦ It sets up a condition. The main idea behind a condition is that it’s a
true or false question. An if statement always includes some type of
condition in parentheses. (For more on conditions, see the next section.)

✦ It begins a block of code. An if statement sets up a chunk of code that
doesn’t always execute. The end of the if line includes a left brace ({).

✦ It usually has indented code under it. The line or lines immediately
after the if statement are part of the block, so they’re indented to indi-
cate that they’re special.

✦ It ends several lines later. The end of the if statement is actually the
right brace (}) several lines down in the code. In essence, an if state-
ment contains other code.

✦ It’s indented. The convention is to indent all the code between the if
statement and its ending brace.

Figure 2-2:
Something
exciting
happens
when you
roll a two.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 360

Book IV
Chapter 2

M
aking Decisions
w

ih Conditions
Using if to Control Flow 361

Although not required, many programmers add a comment to indicate that
the right brace ends an if statement. In the C-like languages, the same
symbol (}) is used to end a bunch of things, so it’s nice to remind yourself
what you think you’re ending here.

All about conditions
A condition is the central part of if and several other important structures.
Conditions deserve a little respect on their own. A condition is an expression
that can be evaluated to true or false. Conditions come in three main flavors:

✦ Comparison: By far the most common kind of condition. Typically, you
compare a variable to a value, or two variables to each other. Table 2-1
describes a number of different types of comparisons.

✦ Boolean variable: A variable that contains only true or false. In
JavaScript, any variable can be a Boolean, if you assign it true or false
as a value. You don’t need to compare a Boolean to anything else
because it’s already true or false.

✦ Boolean function: Returns a true or false value, and you can also use
this type of function as a condition.

Incidentally, Boolean variables are the only variable type capitalized in most
languages. They were named after a person, George Boole, a nineteenth cen-
tury mathematician who developed a form of binary arithmetic. Boole died
thinking his research a failure. His work eventually became the foundation of
modern computing. Drop a mention of George at your next computer science
function to earn mucho geek points.

Comparison operators
JavaScript supports a number of different types of comparisons summarized
in Table 2-1.

Table 2-1 Comparison Operators
Name Operator Example Notes

Equality == (x==3) Works with all variable types, including
strings.

Not equal != (x != 3) True if values are not equal.

Less than < (x < 3) Numeric or alphabetical comparison.

Greater than > (x > 3) Numeric or alphabetical comparison.

Less than <= (x <= 3) Numeric or alphabetical comparison.
or equal to

Greater than >= (x >= 3) Numeric or alphabetical comparison.
or equal to

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 361

Using the else Clause362

You should consider a few things when working with conditions:

✦ Be sure the variable types are compatible. You’ll get unpredictable
results if you compare a floating point value to a string.

✦ You can compare string values. In JavaScript, you can use the inequal-
ity operators to determine the alphabetical order of two values. (This
ability isn’t possible in most other languages.)

✦ Equality uses a double equal sign. The single equal sign (=) is used to
indicate assignment. When you’re comparing variables, use a double
equal (==) instead.

Don’t confuse assignment with comparison! If you accidentally say (x = 3)
instead of (x == 3), your code won’t crash, but it won’t work properly. The
first statement simply assigns the value 3 to the variable x. It returns the value
true if the assignment was successful (which it will be). You’ll think you’re
comparing x to 3, but you’re assigning 3 to x, and the condition will always be
true. Keeping these two straight is a nightmare. I still mess it up once in a while.

Using the else Clause
The deuce game, described in the section “Using if to Control Flow,” is pretty
exciting and all, but it would be even better if you had one comment when
the roll is a 2 and another comment when it’s something else. Figure 2-3
shows a program with exactly this behavior.

This program uses the same type of condition as the earlier deuce game, but
it adds an important section:

<script type = “text/javascript”>
//<![CDATA[
// from deuceOrNot.html

var die = Math.ceil(Math.random() * 6);
if (die == 2){

Figure 2-3:
You get one
message for
deuces and
another
message for
everything
else.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 362

Book IV
Chapter 2

M
aking Decisions
w

ih Conditions
Using the else Clause 363

alert(“You got a deuce!”);
} else {

alert(“It’s only a “ + die + “.”);
} // end if

//]]>
</script>

The if statement is unchanged, but now an else clause appears. Here’s
how the program works:

1. The if statement sets up a condition.

The if statement indicates the beginning of a code branch, and it pre-
pares the way for a condition.

2. The condition establishes a test.

Conditions are true or false expressions, so the condition indicates
something that can be true or false.

3. If the condition is true, the code between the condition and the else
clause runs.

After this code is finished, control moves past the end of the if structure.

4. If the condition is false, the code between else and the end of the if
statement runs instead.

The else clause acts like a fork in the road. The code goes along one path or
another (depending on the condition) but never both paths at once.

You can put as much code as you want inside an if or else clause, including
more if statements!

The else clause is used only in the context of an if statement. You can’t
use else by itself.

Using else if for more complex interaction
The if – else structure is pretty useful when you have only two branches,
but what if you want to have several different options? Figure 2-4 shows a die
only a geek could love. All its values are output in binary notation. (For more
on binary notation, see the sidebar “Binary?”)

Figure 2-4:
A die for the
true geek
gamer.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 363

Using the else Clause364

A simple if-else structure isn’t sufficient here because you have six differ-
ent options. (if-else gives you only two choices.) Here’s some code that
uses another variation of if and else:

<script type = “text/javascript”>
//<![CDATA[
// from binaryDice.html

var die = Math.ceil(Math.random() * 6);
if (die == 1){

alert(“001”);
} else if (die == 2){
alert(“010”);

} else if (die == 3){
alert(“011”);

} else if (die == 4){
alert(“100”);

} else if (die == 5){
alert(“101”);

} else if (die == 6){
alert(“110”);

} else {
alert(“something strange is happening...”);

} // end if

//]]>
</script>

This program begins with an ordinary if statement, but it has a number of
else clauses. You can include as many else clauses as you want if each
includes its own condition.

Binary?
Binary notation is the underlying structure of all
data in a computer. It uses ones and zeroes to
store other numbers, which you can combine
to form everything you see on the computer,
from graphics to text to music videos and
adventure games. Here’s a quick conversion
chart so that you can read the dice:

Die Number Binary Notation

1 001

2 010

3 011

4 100

5 101

6 110

You can survive just fine without knowing binary
(unless you’re a computer science major —
then you’re expected to dream in binary). Still,
it’s kind of cool to know how things really work.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 364

Book IV
Chapter 2

M
aking Decisions
w

ih Conditions
Using switch for More Complex Branches 365

For example, imagine the computer generates the value 3.

1. The first condition (die == 1) is false, so the program immediately
jumps to the next else.

2. Step 1 sets up another condition (die == 2), which is also false, so
control goes to the next else clause.

3. This step has yet another condition (die == 3), which is true, so the
code inside this clause executes (alerting the value “011”).

4. A condition has finally been triggered, so the computer skips all the
other else conditions and moves to the line after the end if.

5. This step is the last line of code, so the program ends.

Solving the mystery of the unnecessary else
When you use multiple conditions, you can (and should) still indicate an
ordinary else clause without a condition as your last choice. This special
condition sets up code that should happen if none of the other conditions is
triggered. It’s useful as a fallback position, in case you didn’t anticipate a
condition in the else if clauses.

If you think carefully about the binary dice program, the else clause seems
superfluous. (I love that word.) It isn’t really necessary! You went through all
that trouble to create a random number scheme that guarantees you’ll have
an integer between 1 and 6. If you checked for all six values, why have an
else clause? It should never be needed.

There’s a big difference between what should happen and what does
happen. Even if you think you’ve covered every single case, you’re going to
be surprised every once in a while. If you use a multiple if structure, you
should always incorporate an else clause to check for surprises. It doesn’t
need to do much but inform you that something has gone terribly wrong.

Using switch for More Complex Branches
When you have one expression that may have multiple values — as is the
case when rolling a die, as described in the preceding sections — you may
want to take advantage of a handy tool for exactly this type of situation. Take
a look at Figure 2-5, which is a variation of the die roller.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 365

Using switch for More Complex Branches366

Once again, I start with an ordinary 1–6 integer and assign a new value based
on the original roll. This time, I use another structure specialized for “one
expression with lots of values” situations. Take a look at the following code:

<script type = “text/javascript”>
//<![CDATA[
// from RomanDice.html
var die = Math.ceil(Math.random() * 6);
var output = “”;
switch(die){

case 1:
output = “I”;
break;

case 2:
output = “II”;
break;

case 3:
output = “III”;
break;

case 4:
output = “IV”;
break;

case 5:
output = “V”;
break;

case 6:
output = “VI”;
break;

default:
output = “PROBLEM!!!”;

} // end switch

Creating an expression
The switch structure in the preceding code is organized a little bit differently
than the if-else if business.

The switch keyword is followed immediately by an expression in parentheses.
The expression is usually a variable with several possible values. The switch
structure then provides a series of test values and code to execute in each case.

Figure 2-5:
We have
Roman dice.
Useful if we
come
across any
ancient
Romans.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 366

Book IV
Chapter 2

M
aking Decisions
w

ih Conditions
Using switch for More Complex Branches 367

To create a switch statement:

1. Begin with the switch keyword.

This step sets up the structure. You’ll indent everything until the right
brace (}) that ends the switch.

2. Indicate the expression.

The expression is usually a variable you want to compare against sev-
eral values. The variable goes inside parentheses and is followed by a
left brace ({).

3. Identify the first case.

Indicate the first value you want to compare the variable against. Be
sure the case is the same type as the variable.

4. End the case description with a colon (:).

Be careful! Case lines end with a colon (indicating the beginning of a case)
rather than the more typical semicolon. It’s easy to forget this difference.

5. Write code for the case.

You can write as many lines of code as you want. This code executes
only if the expression is equal to the given case. Typically, all the code in
a case is indented.

6. Indicate the end of the case with a break statement.

This statement tells the computer to jump out of the switch structure as
soon as this case has been evaluated (which is almost always what
you want).

7. Repeat with other cases.

Build similar code for all the other cases you wish to test.

8. Trap for surprises with default.

The special case default works like the else in an else if structure:
It manages any cases that haven’t already been trapped. Even if you
think you’ve got all the bases covered, you should put some default
code in place just in case.

You don’t need to put a break statement in the default clause,
because it always happens at the end of the switch structure anyway.

Switching with style
The switch structure is powerful, but it can be tricky because the format is
a little strange. Here are a few tips to keep in mind:

✦ You can compare any type of expression. If you’ve used another language
(like C or Java), you may have learned that switches only work on numeric
values. You can use JavaScript switches on any data type.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 367

Nesting if Statements368

✦ It’s up to you to get the type correct. If you’re working with a numeric
variable and you compare it against string values, you may not get the
results you’re looking for.

✦ Don’t forget the colons. At first glance, the switch statement uses
semicolons like most other JavaScript commands. Cases end with
colons (:). Getting confused is easy to do.

✦ Break each case. Use the break statement to end each case, or you’ll
get weird results.

Wouldn’t arrays be better? If you’ve got some programming experience, you
may argue that another solution involving something called arrays is a better
solution for this particular problem. I tend to agree, but for that solution, go
to Chapter 4 of this minibook. Switches and if – else if structures do
have their place, too.

Nesting if Statements
You can combine conditions in all kinds of crazy ways. One decision can include
other decisions, which may incorporate other decisions. You can put if state-
ments inside each other to manage this kind of (sometimes complicated) logic.

Figure 2-6 shows a particularly bizarre example. Imagine that you’re watch-
ing the coin toss at your favorite sporting event. Of course, a coin can be
heads or tails. Just for the sake of argument, the referee also has a complex
personality. Sometimes he’s a surfer, and sometimes he’s a L337 94m3r
(translation: elite gamer). Figure 2-6 shows a few tosses of the coin.

I don’t know why the referee is sometimes a surfer and sometimes a L337
94m3r. Perhaps he faced a particularly bizarre set of childhood circumstances.

What’s this L337 stuff?
Leet (L337) is a wacky social phenomenon pri-
marily born of the online gaming community.
Originally, it began as people tried to create
unique screen names for multiplayer games. If
you wanted to call yourself “gamer,” for exam-
ple, you’d usually find the name already taken.
Enterprising gamers started substituting similar-

looking letters and numbers (and sometimes
creative spelling) to make original names that
are still somewhat readable. The practice
spread, and now it’s combined with text mes-
saging and online chat shortcuts as a sort of
geek code. Get it? L337 94m3r is Leet Gamer, or
Elite Gamer.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 368

Book IV
Chapter 2

M
aking Decisions
w

ih Conditions
Nesting if Statements 369

This example is getting pretty strange, so you may as well look at some code:

<script type = “text/javascript”>
//<![CDATA[
// from coinToss.html
coin = Math.ceil(Math.random() * 2);
character = Math.ceil(Math.random() * 2);
if (character == 1){

//It’s a surfer referee
if (coin == 1){

alert(“You got heads, Dude.”);
} else {

alert(“Dude! It’s totally tails!”);
} // end coin if

} else {
//now it’s a L337 Referee
if (coin == 1){

alert(“h34D$ r0xx0r$”);
} else {

alert(“741L$ ruL3”);
} // end coin if

} // end character if

//]]>
</script>

Building the nested conditions
If you understand how nested if structures work, you can see how the code
all fits together.

1. Flip a coin.

I just used a variation of the die-rolling technique, described in the ear-
lier sections. A coin can be only heads or tails, so I rolled a value that
would be 1 or 2 for the coin variable.

Figure 2-6:
Heads or
tails? Surfer
or gamer?

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 369

Nesting if Statements370

2. Flip another coin for the personality.

The referee’s persona is reflected in another random value
between 1 and 2.

3. Check to see if you have a surfer.

If the character roll is one, we have a surfer, so set up an if statement
to handle the surfer’s output.

4. If it’s the surfer, check the coin toss.

Now that you know a surfer is speaking, check the coin for heads or
tails. Another if statement handles this task.

5. Respond to the coin toss in surfer-speak.

Use alert() statements to output the result in the surfer dialect.

6. Handle the L337 character.

The outer if structure determines which character is speaking. The
else clause of this case will happen if character is not 1, so all
the LEET stuff goes in the else clause.

7. Check the coin again.

Now that you know you’re speaking in gamer code, determine what to say
by consulting the coin in another if statement

Making sense of nested ifs
Nested if structures aren’t all that difficult, but they can be messy, especially
as you get several layers deep (as you will, eventually). The following tips help
make sure that everything makes sense:

✦ Watch your indentation. Be vigilant on your indentation scheme. An
editor like Aptana, which automatically indents your code, is a big plus.
Indentation is a great way to tell what level of code you’re on.

✦ Use comments. You can easily get lost in the logic of a nested condition.
Add comments liberally so that you can remind yourself where you are
in the logic. Note that I specify which if statement is ending.

✦ Test your code. Just because you think it works doesn’t mean it will.
Surprises will happen. Test thoroughly to make sure that the code does
what you think it should do.

25_186275 bk04ch02.qxp 3/28/08 10:48 PM Page 370

Chapter 3: Loops and Debugging

In This Chapter
� Working with for loops

� Building while loops

� Recognizing troublesome loops

� Catching crashes and logic errors

� Using the Aptana line-by-line debugger

Computers programs can do repetitive tasks easily, thanks to a series of
constructs called loops. In this chapter, you discover the two major

techniques for managing loops.

Loops are powerful, but they can be dangerous. It’s possible to create loops
that act improperly, and these problems are difficult to diagnose. I demonstrate
several powerful techniques for identifying issues in your code.

Building Counting Loops with for
A loop is a structure that allows you to repeat a chunk of code. One stan-
dard type of loop — the for loop — repeats a chunk of code a certain
number of times. Figure 3-1 Shows a for loop in action.

Although it looks like ten different alert statements appear, only one exists;
it’s just repeated ten times.

Figure 3-1:
This loop
repeats ten
times before
it stops.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 371

Building Counting Loops with for372

I showed the first few dialogs and the last. You should be able to get the
idea. Be sure to look at the actual program on the CD-ROM to see how it
really works.

Building a standard for loop
You can see the structure of the for loop in the following code:

<script type = “text/javascript”>
//<![CDATA[
//from BasicFor.html
for (lap = 1; lap <= 10; lap++){
alert(“now on lap: “ + lap + “.”);

} // end for
//]]>

</script>

for loops are based on an integer, which is sometimes called a sentry vari-
able. In this example, lap serves as the sentry variable. You typically use the
sentry variable to count the number of repetitions through a loop.

The for statement has three distinct parts:

✦ Initialization: This segment (lap = 1) sets up the initial value of the
sentry.

✦ Condition: The condition (lap <= 10) is an ordinary condition
(although it doesn’t require parentheses in this context). As long as the
condition is evaluated as true, the loop will repeat.

✦ Modification: The last part of the for structure (lap++) indicates how
the sentry will be modified throughout the loop. In this case, I add 1 to
the lap variable each time through the loop.

The for structure has a pair of braces containing the code that will be
repeated. As usual, all code inside this structure is indented. You can have
as much code inside a loop as you want.

The lap++ operator is a special shortcut. Adding 1 to a variable is common,
so the lap++ operation means “add 1 to lap.” You can also write lap =
lap + 1, but lap++ sounds so much cooler.

When programmers decided to improve on the C language, they called the
new language C++. Get it? It’s one better than C! Those computer scientists
are such a wacky bunch!

When you know how many times something should happen, for loops are
pretty useful.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 372

Book IV
Chapter 3

Loops and
Debugging

Building Counting Loops with for 373

Counting backwards
You can modify the basic for loop so that it counts backwards. Figure 3-2
shows an example of this behavior.

The backward version of the for loop uses the same general structure as
the forward version (shown in the preceding section), but with slightly dif-
ferent parameters:

<script type = “text/javascript”>
//<![CDATA[
//from backwards.html

for (lap = 10; lap >= 1; lap--){
alert(“Backing up: “ + lap);

} // end for

//]]>
</script>

If you want to count backwards, just modify the three parts of the
for statement:

✦ Initialize the sentry to a large number. If you’re counting down, you
need to start with a larger number than 0 or 1.

✦ Keep going as long as the sentry is larger than some value. The code
inside the loop will execute as long as the condition is true. The number
will be getting smaller, so make sure that you’re doing a greater than (>)
or greater than or equal to (>=) comparison.

✦ Decrement the sentry. If you want the number to get smaller, you need
to subtract something from it. The -- operator is a quick way to do so. It
subtracts 1 from the variable.

Figure 3-2:
This
program
counts
backwards.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 373

Building Counting Loops with for374

Counting by 5
You can use the for loop to make other kinds of counting loops. If you want
to count by fives, for example, you can use the following variation:

<script type = “text/javascript”>
//<![CDATA[

//from byFive.html
for (i = 5; i <= 25; i += 5){
alert(i);

} // end for

//]]>

</script>

This code starts i as five, repeats as long as i is less than or equal to 25, and
adds 5 to i on each pass through the loop. Figure 3-3 illustrates this code in
action.

If you want a for loop to skip numbers, you just make a few changes to the
general pattern:

✦ Build a sentry variable, using a sensible initial value. If you want the
loop to start at 5, use that number as the initial value.

✦ Check against a condition. It makes sense for a 5 loop to end at a multi-
ple of 5. If you want this loop to continue until you get to 25, continue as
long as i is less than or equal to 25.

✦ Modify the variable on each pass. In the example, the statement i +=
5 adds 5 to i. (It’s just like saying i = i + 5.)

Figure 3-3:
for loops
can also
skip values.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 374

Book IV
Chapter 3

Loops and
Debugging

Looping for a While 375

Fortunately, all these elements are in the for loop structure, so you proba-
bly won’t overlook them. Still, if you find that your loop isn’t working as
expected, you may need to look into the debugging tricks described in the
section “Catching Logic Errors” later in this chapter.

Looping for a While
The for loop is useful, but it has a cousin that’s even more handy, the
while loop. A while loop isn’t tied to any particular number of repetitions.
It simply repeats as long as its condition is true.

Creating a basic while loop
The basic while loop is deceptively simple to build. Here’s an example:

<script type = “text/javascript”>
//<![CDATA[
// from while.html

answer = “-99”;
while (answer != “5”){

answer = prompt(“What is 3 + 2?”);
if (answer == “5”){

alert(“great!”);
} else {

alert(“try again...”);
} // end if

} // end while

//]]>
</script>

This script asks the user a simple math question and keeps asking until the
user responds correctly. You can see it in action in Figure 3-4.

Figure 3-4:
This loop
continues
until the
user
answers
correctly.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 375

Looping for a While376

The operation of a while loop is easy to understand. Here’s how the math
program works:

1. Create a variable called answer to act as a sentry variable for the loop.

2. Initialize the variable.

The initial value of the variable is set to “-99”, which can’t possibly be
correct. That guarantees that the loop will execute at least one time.

3. Evaluate the answer.

In this particular program, the correct answer is 5. If the value of answer
is anything but 5, the loop continues. In this example, I’ve preset the value
of answer to “-99” so that the loop happens at least once.

4. Ask the user a challenging math question.

Well, a math question anyway. The important thing is to change the value
of answer so that it’s possible to get 5 in the answer and exit the loop.

5. Give the user some feedback.

It’s probably good to let the user know how she did, so provide some
sort of feedback.

Avoiding loop mistakes
A while loop seems simpler than a for loop, but while has exactly the
same basic requirements:

✦ A critical sentry variable typically controls the loop. Some key variable
usually (but not always) controls a while loop.

✦ The sentry must be initialized. If the loop is going to behave properly,
the sentry variable must still be initialized properly. In most cases, you’ll
want to guarantee that the loop happens at least one time.

✦ You must have a condition. Like the for loop, while loops are based
on conditions. As long as the condition is true, the loop continues.

✦ You must include a mechanism for changing the sentry. Somewhere in
the loop, you need to have a line that changes the value of the sentry. Be
sure that it’s possible to make the condition false, or you’ll be in the loop
forever!

If you forget one of these steps, the while loop may not work correctly.
Making mistakes in your while loops is easy. Unfortunately, these mistakes
don’t usually result in a crash. Instead, the loop may either refuse to run
altogether or continue on indefinitely. If your loop has that problem, you’ll
want to make sure that you read the next section.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 376

Book IV
Chapter 3

Loops and
Debugging

Introducing Bad Loops 377

Introducing Bad Loops
Sometimes loops don’t behave. Even if you’ve got the syntax correct, your
loop still may not do what you want. The following sections describe two main
kinds of loop errors: Loops that never happen, and loops that never quit.

Managing the reluctant loop
You may write some code and find that the loop never seems to run, as in
the following program:

<script type = “text/javascript”>
//<![CDATA[

//from never.html
//Warning! this script has a deliberate error!

i = 1;
while (i > 10){

i++;
} // end while

//]]>
</script>

This code looks innocent enough, but if you run it, you’ll be mystified. It
doesn’t crash, but it also doesn’t seem to do anything. If you follow the code
step by step, you’ll eventually see why. I initialize i to 1, and then repeat as
long as i is greater than 10. See the problem? i is less than 10 right now, so
the condition starts out false, and the loop never executes! I probably meant
for the condition to be (i < 10). It’s a sloppy mistake, but exactly the kind
of bone-headed error I make all the time.

I’m not showing you a screenshot of this program, because nothing happens.
Likewise, I don’t show you a screenshot of the one in the next section
because it doesn’t do anything useful either.

Managing the obsessive loop
The other kind of bad-natured loop is the opposite of the reluctant loop,
described in the preceding section. This one starts up just fine, but never
goes away!

The following code illustrates an endless loop:

<script type = “text/javascript”>
//<![CDATA[

//from endless.html
// Warning: this program has a deliberate
// error! You will have to stop the browser
// to end the loop.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 377

Debugging Your Code378

i = 0;
j = 0;

while (i < 10){
j++;
alert(j);

} // end while

//]]>
</script>

If you decide to run endless.html, be aware that it will not work properly.
What’s worse, the only way to stop it will be to kill your browser through the
task manager. In the upcoming section “Catching Logic Errors,” I show you
how to run such code in a safe environment so that you can figure out what’s
wrong with it.

This code is just one example of the dreaded endless loop. Such a loop usu-
ally has perfectly valid syntax, but some logic error prevents it from running
properly. The logical error is usually one of the following:

✦ The variable wasn’t initialized properly. The initial value of the sentry
is preventing the loop from beginning correctly.

✦ The condition is checking for something that can’t happen. Either the
condition has a mistake in it, or something else is preventing it from
triggering.

✦ The sentry hasn’t been updated inside the loop. If you simply forget to
modify the sentry variable, you’ll get an endless loop. If you modify the
variable after the loop has completed, you get an endless loop. If you ask
for input in the wrong format, you may also get a difficult-to-diagnose
endless loop.

Debugging Your Code
If you’ve been writing JavaScript code, you’ve also been encountering errors.
It’s part of a programmer’s life. Loops are especially troublesome because
they can cause problems even if the syntax is perfect. Fortunately, you can
use some really great tricks to help track down pesky bugs.

Letting Aptana help
If you’re writing your code with Aptana, you already have some great help
available. It gives you the same syntax-highlighting and code-completion fea-
tures as you had when writing XHTML and CSS.

Also, Aptana can often spot JavaScript errors on the fly. Figure 3-5 shows a
program with a deliberate error.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 378

Book IV
Chapter 3

Loops and
Debugging

Debugging Your Code 379

Aptana notifies you of errors in your code with a few mechanisms:

✦ The suspect code has a red squiggle underneath. Just like a word-pro-
cessing spell-checker.

✦ A red circle indicates the troublesome line. You can scan the margin to
quickly see where the errors are.

✦ The validation pane summarizes all errors. You can see the errors and
the line number for each. Double-click an error to be taken to that spot
in the code.

✦ You can hover over an error to get more help. Hover the mouse over
an error to get a summary of the error.

Aptana can catch some errors, but it’s most useful at preventing errors with
the automatic indentation and code assist features. (In the section “Using
the Aptana Debug Mode,” later in this chapter, I show how to use Aptana’s
powerful debug mode.)

Debugging JavaScript on Internet Explorer
Internet Explorer has unpredictable behavior when it comes to JavaScript
errors. IE6 will take you to some type of editor, but the editors changed over
the years and are modified (without your knowledge or permission) when

Figure 3-5:
Aptana
caught my
error and
provides
some help.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 379

Debugging Your Code380

you install new software. IE7 (at least by default) simply does nothing. You
won’t see an error or any indication that an error even occurred. (Denial —
my favorite coping mechanism.)

You can force IE to give you a little bit of help, though. All you have to do is
choose Tools➪Internet Options and then click the Advanced tab. You see a
dialog box that looks like Figure 3-6.

In the dialog box, select Display a Notification about Every Script Error.
Leave all the other settings alone for now. (Yep, we’re going to keep script
debugging disabled, because it doesn’t work very well. I show you a better
technique in the section called “Finding Errors in Firefox.”)

Now when you reload broken.html in Internet Explorer, you’ll see some-
thing like Figure 3-7.

This message is actually good news, because at least you know what the
problem is, and you’ve got some kind of clue how to fix it. In this particular
case, the error message is pretty useful. Sometimes that’s the case, and
sometimes the error messages seem to have been written by aliens.

Figure 3-6:
This dialog
box allows
you to get
error
warnings in
Internet
Explorer.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 380

Book IV
Chapter 3

Loops and
Debugging

Debugging Your Code 381

Be sure to have the error notification turned on in IE so that you know about
errors right away. Of course, you also need to check your code in Firefox,
which has tons of great tools for checking out your code.

Finding errors in Firefox
Firefox has somewhat better error-handling than IE by default, and you can
use add-ons to turn it into a debugging machine. At its default setting, error
notification is minimal. If you suspect JavaScript errors, open up the Java
Script Errors window by choosing Tools➪Error Console or by typing javascript:
in the location bar. Figure 3-8 shows the error console after running broken.
html.

I generally find the error messages in the Firefox console more helpful than
the ones provided by IE.

The error console doesn’t automatically clear itself when you load a new
page. When you open it, it may still contain a bunch of old error messages.
Be sure to clear the history (with the error console’s clear button) and
refresh your page to see exactly what errors are happening on this page.

Figure 3-7:
I never
thought I’d
be happy to
see an error
message.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 381

Debugging Your Code382

Finding Errors with Firebug
One of the best things about Firefox is the add-on architecture. Some really
clever people have created very useful add-ons that add wonderful function-
ality. Firebug is one example. This add-on (available on the CD-ROM or at
https://addons.mozilla.org/en-US/firefox/addon/1843) adds
tremendously to your editing bag of tricks.

Firebug is useful for HTML and CSS editing, but it really comes into its own
when you’re trying to debug JavaScript code. (For more on Firebug, see
Book I, Chapter 3.)

When Firebug is active, it displays a little icon at the bottom of the browser
window. If it identifies any JavaScript errors, a red error icon appear. Click this
icon, and the Firebug window appears, describing the problem. Figure 3-9 shows
how it works.

If you click the offending code snippet, you can see it in context — especially
useful when the error isn’t on the indicated line. Generally, if I’m doing any
tricky JavaScript, I turn on Firebug on to catch any problems.

Figure 3-8:
The Firefox
error con-
sole is pretty
useful.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 382

Book IV
Chapter 3

Loops and
Debugging

Catching Logic Errors 383

Catching Logic Errors
The dramatic kind of error you see in broken.html is actually easy to fix. It
crashes the browser at a particular part of the code, so you get a good idea
what went wrong. Crashes usually result in error messages, which generally
give some kind of clue about what went wrong. Most of the time, it’s a prob-
lem with syntax. You spelled something wrong, forgot some punctuation, or
did something else that’s pretty easy to fix once you spot it. This type of
error is called a syntax error.

Loops and branches often cause a more sinister kind of problem, called a
logical error. Logical errors happen when your code doesn’t have any syntax
problems, but it’s still not doing what you want. These errors can be much
harder to pin down, because you don’t get as much information.

Of course, if you have the right tools, you can eventually track down even
the trickiest bugs. The secret is to see exactly what’s going on inside your
variables — stuff the user usually doesn’t see.

Figure 3-9:
The Firebug
tool shows
an error.
Click the
error line to
see it in
context.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 383

Catching Logic Errors384

Logging to the console with Firebug
Firebug has another nifty trick. It allows you to send quick messages to the
Firebug console. Take a look at log.html:

<script type = “text/javascript”>
//<![CDATA[
// from log.html
// note this program requires firebug on firefox

Console.debug();
for (i = 1; i <= 5; i++){
console.log(i);

} // end for loop

//another loop with a fancier output
for (i = 1; i <= 5; i++){
console.log(“i is now %d.”, i);

}

console.info(“This is info”);
console.warn(“This is a warning”);
console.error(“This is an error”);

//]]>
</script>

This code is special because it contains several references to the console
object. This object is available only to Firefox browsers with the FireBug
extension installed. When you run the program with Firebug and look at the
console tab, you see something like Figure 3-10.

The console object allows you to write special messages that only the pro-
grammer in the console sees. This ability is a great way to test your code
and see what’s going on, especially if things aren’t working like you want.

If you want to test your code in IE, there’s a version of Firebug (called Firebug
Lite) that works on other browsers. Check the Firebug main page (https://
addons.mozilla.org/en-US/firefox/addon/1843) to download and
install this tool if you want to use console commands on these browsers.

Looking at console output
Here’s how the console object works:

✦ The first loop prints the value of i to the console. Each time through
the first loop, the console.log function prints the current value of i.
This information is useful whenever the loop isn’t working correctly. You
can use the console.log() method to print the value of any variable.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 384

Book IV
Chapter 3

Loops and
Debugging

Catching Logic Errors 385

✦ The second loop demonstrates a more elaborate kind of printing.
Sometimes you’ll want to make clear exactly what value you’re sending
to the console. Firebug supports a special syntax called formatted printing
to simplify this process.

console.log(“i is now %d.”, i);

The text string “i is now %d” indicates what you want written in the
console. The special character %d specifies that you’ll be placing a
numeric variable in this position. After the comma, you can indicate the
variable you want inserted into the text.

You can use other formatting characters as well. %s is for string, and %o is
for object. If you’re familiar with printf in C, you’ll recognize this technique.

✦ You can specify more urgent kinds of logging. If you want, you can use
alternatives to the console.log to impart more urgency in your mes-
sages. If you compare the code in log.html with the output of Figure
3-10, you can see how info, warning, and error are formatted.

When your program isn’t working properly, try using console commands to
describe exactly what’s going on with each of your variables. This approach
often helps you see problems and correct them.

Figure 3-10:
The Firebug
console
shows lots
of new
information.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 385

Using the Aptana Debug Mode386

When you get your program working properly, don’t forget to take out the
console commands! Either remove them or render them ineffective with
comment characters. The console commands will cause an error in any
browser that doesn’t have Firebug installed. Typically, your users will not have
this extension. (Nor should they need it! You’ve debugged everything for them!)

Using the Aptana Debug Mode
Traditional programming languages often feature a special debugging tool
for fixing especially troubling problems. A typical debugger has these features:

✦ The ability to pause a program as it’s running. Logic errors are hard to
catch because the program keeps on going. With a debugger, you can set
a particular line as a breakpoint. When the debugger encounters the
breakpoint, the program is in a pause mode. It isn’t completely running,
and it isn’t completely stopped.

✦ A mechanism for moving through the code a line at a time. You can
normally step through code one line at a time so that you can see what’s
going on.

✦ A way to view the values of all variables and expressions. Knowing
what’s happening in your variables is important. (For example, is a par-
ticular variable changing when you think it should?) A debugger should
let you look at the values of all its variables.

✦ The ability to stop runaway processes. As soon as you start creating
loops, you’ll find yourself accidentally creating endless loops. (For more
on endless loops, see the earlier section, “Managing the obsessive
loop.”) In a typical browser, the only way out of an endless loop is to kill
the browser with the task manager (or process manager in some operat-
ing systems). That step is a bit drastic. A debugger can let you stop a
runaway loop without accessing the task manager.

Debuggers are extremely handy, and they’ve been very common in most pro-
gramming languages. JavaScript programmers haven’t had much access to
debugging tools in the past because the technical considerations of an
embedded language made this difficult.

Fortunately, Aptana has a wonderful debugging mode that works very well,
and provides all those features. To test it, I wrote a program with a deliber-
ate error that would be hard to find without a debugger:

//<![CDATA[
//from debug.html
//has a deliberate error

var i = 0;
var j = 0;
while (i <= 10){

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 386

Book IV
Chapter 3

Loops and
Debugging

Using the Aptana Debug Mode 387

console.log(i);
j++;

} // end while

//]]>
</script>

This code is another version of the endless.html program from the
“Managing the obsessive loop” section earlier in this chapter. You may be
able to see the problem right away. If not, you can see it as you run the
debugger, which I describe how to do in the next sections.

Aptana also supports the basic console.log() function, but not the variations
(variable interpolation, errors, and warnings). I used console.log() for
output in this program just to avoid jumping back and forth from the browser to
the editor to handle dialog boxes.

To step through a program using the Aptana debugger, begin by loading the
file into the debugger.

Adding a breakpoint
A JavaScript program can get much longer than the short examples I show in
this book. You usually won’t want to start the line-by-line debugging from the
beginning, so you need to specify a breakpoint. When you run a program in
debug mode, it runs at normal speed until it reaches a breakpoint and then it
pauses so that you can control it more immediately.

To set a breakpoint, right-click a line number in the code editor.

Figure 3-11 shows me setting a breakpoint on line 12 of the debug.html code.

Running the debugger
The debugger requires you to run your program in a different way than you
may be used to. Because your program is normally run by the browser (not
Aptana), somehow you need a mechanism for passing information back from
the browser to Aptana. Here’s what you need to do:

1. Start the debugger.

Click the debug icon, which looks like a little bug.

2. Install the Aptana Firefox plugin automatically.

When you debug a JavaScript program for the first time, Aptana asks
permission to install an additional Firefox plugin. Click Yes to complete
the installation. You only need to install this feature once.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 387

Using the Aptana Debug Mode388

3. Switch to the debug perspective.

Aptana pops up a message box asking whether you want to switch to the
debug perspective. Click Yes to (temporarily) change Aptana to debug
configuration.

Using the debug perspective
When Aptana is used for debugging, it introduces a new layout (called a per-
spective in Aptana). This perspective changes the way the screen looks and
optimizes the editor for debugging mode. Figure 3-12 shows the
debug.html program in debug perspective.

The debug perspective changes the editor in the following ways to emphasize
debugging:

✦ The code completion window is gone. This feature isn’t needed when
you’re debugging, so it’s removed. You need the screen space for other
goodies.

✦ The file management window is also missing. Likewise, you aren’t
doing a lot of file manipulation in debug mode, so this window is gone,
too. (Don’t worry; you get it back when you return to normal edit mode.)

Figure 3-11:
Use a
breakpoint
to tell the
debugger
where to
pause.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 388

Book IV
Chapter 3

Loops and
Debugging

Using the Aptana Debug Mode 389

✦ You have a new debug window. This window shows your active
threads. The most important thing about it is the buttons along the top.

✦ You also have a breakpoint / variables window. This powerful new
window describes the values of all your variables as the program is running.

✦ Most of the other windows are the same. You still have the code
window, console, and outline window, but they’re rearranged a little dif-
ferently than normal. Of course, you can adjust them if you want.

Once you’ve got the debug mode running one time, a little debug icon
appears in the upper-right of the Aptana interface. After this quick button is
available, you can use it to switch into debug mode. Use the Aptana button
to move back to ordinary editing mode.

Examining the debug mode with a paused program
When you run your code through the debugger, Aptana fires up a new
instance of Firefox and loads your program into it. When your program is
paused for debugging, you see a few new details, shown in Figure 3-13.

Figure 3-12:
Aptana
looks a little
different in
debug
perspective.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 389

Using the Aptana Debug Mode390

When your program is paused, you can see several important new indicators:

✦ The debug window shows which script is active. Right now, your pro-
grams have only one script, but later you’ll have more. The thread
window tells you which script currently has the processor’s attention.

✦ The buttons in the debug window are active. Hover the mouse over each
button to see its ToolTips. I explain these buttons in the next section.

✦ The Breakpoints window has more panes. In addition to the break-
points and variables panes, you see some new panes, expressions
and scripts.

✦ The variables panel lets you see all the variables the page knows
about. Even though this program contains only two explicitly defined
variables, you can see a lot more than that. Every JavaScript program
has a whole bunch of special variables built in. I explain how to use this
panel in the next section (“Walking through your program”).

Resume

Suspend Terminate

Step info

Figure 3-13:
You get a
few new
buttons and
tools when
you’re de-
bugging a
program.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 390

Book IV
Chapter 3

Loops and
Debugging

Using the Aptana Debug Mode 391

✦ The breakpoints panel allows you to manage your breakpoints. This
panel is a good place for you to see all the breakpoints in your project.
You can enable or disable a breakpoint from this panel.

✦ The expressions panel allows you to follow particular variables or
expressions. It’s an extremely powerful tool. I demonstrate its use in the
section “Viewing expression data,” later in this chapter.

✦ The current line of code is highlighted. If you set a breakpoint on line 12,
you’ll see that line highlighted. (It may be difficult to see in Figure 3-13.) As
you move through the code, this highlight moves in order to help you
follow the logic.

In some versions of Aptana, a message that starts TypeError: request.
loadGroup has no properties appears sometimes when you’re debugging
a program. This error isn’t in your code, and it doesn’t seem to cause any
problems. You can safely ignore this error.

Walking through your program
Here’s the best part about the Aptana debug mode. You can run your pro-
gram in super slow-mo, seeing every aspect of its behavior. Here’s how:

1. Click the Step Into button on the debug panel.

It looks like a curved arrow pointing between two dots, or you can just
use the F5 key.

2. Look at the code.

The highlighting has moved to the next line of code in your program
(line 13).

3. Mouse over the variables.

Hover your mouse over the two variables (i and j) in your code. You
see a dialog box that describes the current value of each variable.

4. Use the Step Into button a few more times.

Watch as the highlight moves through the program, looping.

5. Check the variables again.

Take another look at the variables after a few times through the loop,
and you’ll begin to see what’s wrong with this code: j is increasing, but
i is still stuck at zero.

6. Stop the debug session.

If you think you understand the problem, you can stop the debug ses-
sion with the red square terminate button. (You’ll need to do that in
this program, because it’s an endless loop. It will never end on its own.)
Aptana then closes down the generated Firefox instance.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 391

Using the Aptana Debug Mode392

If the debugger isn’t acting properly, be sure you’ve set a breakpoint. If you
don’t have a breakpoint, the program won’t stop. Also, be sure that you’ve
used the debug button to start the program. Using the run program or view-
ing the page directly in the browser won’t activate the debugger.

Viewing expression data
The whole point of debugging is to find difficult problems. Usually, these prob-
lems are variables that aren’t doing what you expect. Aptana provides a
Variables tab, which shows the value of all variables in a program, but it’s sur-
prisingly difficult to use. JavaScript programs come bundled with hundreds of
variables. If you dig around, you can eventually find the i and j variables.
(Scroll down in the variables panel to find them.) Every time you take another
step, you have to scroll down again to see the values or mouse over the vari-
ables in the code.

Fortunately, Aptana provides a much easier way. Select a variable with the
mouse and right-click. In the resulting menu, choose Watch. Figure 3-14
shows the debugger after I’ve chosen to watch both variables and run
through the loop a few times.

Figure 3-14:
The expres-
sions
window
highlights
the varia-
bles I’m
interested in.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 392

Book IV
Chapter 3

Loops and
Debugging

Using the Aptana Debug Mode 393

In this mode, you can see the exact values of the variables you’ve chosen to
track. When the variable changes value, you can see it happen immediately.

The expression window has one more cool trick. You can use it to watch
complex expressions, not just variables. In this program, you want to know
why the loop isn’t exiting. Highlight the condition (i <= 10) and add it to
the watch expressions just as you did the variables.

Now step through the program watching the variables and the condition.
With all this information available to you, my coding mistake in the section
“Using the Aptana Debug Mode” becomes obvious. I used the variable i in
the condition, but I never changed it inside the loop. Instead, I changed the
value of j, which has nothing at all to do with the loop!

Whenever you encounter a program that isn’t doing what you want, fire up
the debugger, watch the critical values, and step through the code a line at a
time. This process often helps you find even the most difficult errors.

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 393

Book IV: Client-Side Programming with JavaScript394

26_186275 bk04ch03.qxp 3/28/08 10:48 PM Page 394

Chapter 4: Functions and Arrays

In This Chapter
� Getting organized with functions

� Passing parameters into functions

� Returning values from functions

� Functions and variable scope

� Producing basic arrays

� Retrieving data from arrays

� Building a multidimensional array

It doesn’t take long for your code to become complex. Soon enough, you’ll
find yourself wanting to write more sophisticated programs. When things

get larger, you need new kinds of organizational structures to handle the
added complexity.

You can bundle several lines of code into one container and give this new
chunk of code a name: function. You can also take a whole bunch of variables,
put them into a container, and give it a name. That’s called an array.

This chapter is about how to work with more code and more data without
going crazy.

Breaking Code into Functions
Functions come in handy when you’re making complex code easier to handle.

Functions are a useful tool for controlling complexity. You can take a large
complicated program and break it into several smaller pieces. Each piece
stands alone and solves a specific part of the overall problem.

You can think of each function as a miniature program. You can define variables
in functions, put loops and branches in there, and do anything else you can do
with a program. A program using functions is basically a program full of
subprograms.

Once you have functions defined, they’re just like new JavaScript commands.
In a sense, when you add functions, you’re adding to JavaScript.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 395

Breaking Code into Functions396

To explain functions better, think back to an old campfire song, “The Ants Go
Marching.” Figure 4-1 re-creates this classic song for you in JavaScript format.
(You may want to roast a marshmallow while you view this program.)

If you’re unfamiliar with this song, it simply recounts the story of a bunch of
ants. The littlest one apparently has some sort of attention issues (but we
love him anyway). During each verse, the little one gets distracted by some-
thing that rhymes with the verse number. The real song typically has ten
verses, but I’m just doing two for the demo.

Thinking about structure
Before you look at the code, think about the structure of the song, “The Ants
Go Marching.” Like many songs, it has two main parts. The chorus is a phrase
repeated many times throughout the song. The song has several verses, which
are similar to each other, but not quite identical.

Think about the song sheet passed around the campfire. (I’m getting hungry
for a S’more.) The chorus is usually listed only one time, and each verse is
listed. Sometimes, you’ll have a section somewhere on the song sheet that
looks like the following:

Verse 1

Chorus

Verse 2

Chorus

Musicians call this thing a road map, and that’s a great name for it. A road
map is a higher level view of how you’ll progress through the song. In the
road map, you don’t worry about the details of the particular verse or chorus.
The road map shows the big picture, and you can look at each verse or
chorus for the details.

Figure 4-1:
Nothing
reminds me
of functions
like a
classic
campfire
song.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 396

Book IV
Chapter 4

Functions and
Arrays

Breaking Code into Functions 397

Building the antsFunction.html program
Take a look at the code for antsFunction.html and see how it reminds
you of the song sheet for “The Ants Go Marching”:

<script type = “text/javascript”>
//<![CDATA[
//from antsFunction.html

function chorus() {
var text = “...and they all go marching down\n”;
text += “to the ground \n”;
text += “to get out \n”;
text += “of the rain. \n”;
text += “ \n”;
text += “boom boom boom boom boom boom boom boom \n”;
alert(text);

} // end chorus

function verse1(){
var text = “The ants go marching 1 by 1 hurrah, hurrah \n”;
text += “The ants go marching 1 by 1 hurrah, hurrah \n”;
text += “The ants go marching 1 by 1 \n”;
text += “ The little one stops to suck his thumb \n”;
alert(text);

} // end verse1

function verse2(){
var text = “The ants go marching 2 by 2 hurrah, hurrah \n”;
text += “The ants go marching 2 by 2 hurrah, hurrah \n”;
text += “The ants go marching 2 by 2 \n”;
text += “ The little one stops to tie his shoe \n”;
alert(text);

} // end verse1

//main code
verse1();
chorus();
verse2();
chorus();

//>]]
</script>

The program code breaks the parts of the song into the same pieces a song
sheet does. Here are some interesting features of antsFunction.html:

✦ I created a function called chorus(). Functions are simply collections
of code lines with a name.

✦ All the code for the chorus goes into this function. Anything I want to
do as part of printing the chorus goes into the chorus() function. Later,
when I want to print the chorus, I can just call the chorus() function,
and it will do all the code I stored there.

✦ Each verse has a function, too. I broke the code for each verse into its
own function as well.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 397

Passing Data into and out of Functions398

✦ The main code is a road map. Once all the details are delegated to the
functions, the main part of the code just controls the order in which
the functions are called.

✦ Details are hidden in the functions. The main code handles the big
picture. The details (how to print the chorus or verses) are hidden
inside the functions.

Passing Data into and out of Functions
Functions are logically separated from the main program. This separation is
a good thing because it prevents certain kinds of errors. However, sometimes
you want to send information into a function. You may also want a function to
return some type of value. The antsParam.html page rewrites the “The Ants
Go Marching” song in a way that takes advantage of function input and output.

<script type = “text/javascript”>
//<![CDATA[
//from antsParam.html

I don’t provide a figure of this program because it looks just like ants
Function.py to the user. One advantage of functions is that I can improve
the underlying behavior of a program without imposing a change in the user’s
experience.

function chorus() {
var text = “...and they all go marching down\n”;
text += “to the ground \n”;
text += “to get out \n”;
text += “of the rain. \n”;
text += “ \n”;
text += “boom boom boom boom boom boom boom boom \n”;
return text;

} // end chorus

function verse(verseNum){
var distraction = “”;
if (verseNum == 1){

distraction = “suck his thumb.”;
} else if (verseNum == 2){
distraction = “tie his shoe.”;

} else {
distraction = “I have no idea.”;

}

var text = “The ants go marching “;
text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
text += “The ants go marching “;
text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
text += “The ants go marching “;
text += verseNum + “ by “ + verseNum;
text += “ the little one stops to “;
text += distraction;
return text;

} // end verse1

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 398

Book IV
Chapter 4

Functions and
Arrays

Passing Data into and out of Functions 399

//main code
alert(verse(1));
alert(chorus());
alert(verse(2));
alert(chorus());

//>]]
</script>

This code incorporates a couple of important new ideas. (The following list
is just the overview; the specifics are coming in the following sections.)

✦ These functions return a value. The functions no longer do their own
alerts. Instead, they create a value and return it to the main program.

✦ Only one verse function exists. Because the verses are all pretty similar,
using only one verse function makes sense. This improved function
needs to know what verse it’s working on to handle the differences.

Examining the main code
The main code has been changed in one significant way. In the last program, the
main code called the functions, which did all the work. This time, the functions
don’t actually do the output themselves. Instead, they collect information
and pass it back to the main program. Inside the main code, each function is
treated like a variable.

You’ve actually seen this behavior. The prompt() method returns a value.
Now the chorus() and verse() methods also return values. You can do
anything you want to this value, including printing it or comparing it to some
other value.

Separating the creation of data from its use as I’ve done here is a good idea.
That way, you have more flexibility. Once a function creates some informa-
tion, you can print it to the screen, store it on a Web page, put it in a data-
base, or whatever.

Looking at the chorus
The chorus of “The Ants Go Marching” song program has been changed to
return a value. Take another look at the chorus() function to see what I mean.

function chorus() {
var text = “...and they all go marching down\n”;
text += “to the ground \n”;
text += “to get out \n”;
text += “of the rain. \n”;
text += “ \n”;
text += “boom boom boom boom boom boom boom boom \n”;
return text;

} // end chorus

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 399

Passing Data into and out of Functions400

Here’s what changed:

✦ The purpose of the function has changed. The function is no longer
designed simply to output some value to the screen. Instead, it now pro-
vides text to the main program, which can do whatever it wants with the
results.

✦ There’s a variable called text. This variable contains all the text to be
sent to the main program. (It contained all the text in the last program,
but it’s even more important now.)

✦ The text variable is concatenated over several lines. I used string
concatenation to build a complex value. Note the use of newlines (\n) to
force carriage returns.

✦ The return statement sends text back to the main program. When
you want a function to return some value, simply use return followed
by a value or variable. Note that return should be the last line of the
function.

Handling the verses
The verse() function is quite interesting.

✦ It can print more than one verse.

✦ It takes input to determine which verse to print.

✦ It modifies the verse based on the input.

✦ It returns a value (just like chorus()).

To make the verse so versatile, it must take input from the primary program
and return output.

Passing data to the verse() function
First, notice that the verse() function is always called with a value inside
the parentheses. For example, the main program sets verse(1) to call the
first verse, and verse(2) to invoke the second. The value inside the paren-
theses is called an argument.

The verse function must be designed to accept an argument. Look at the first
line to see how I did it.

function verse(verseNum){

In the function definition, I include a variable name. Inside the function, this
variable is known as a parameter. (Don’t get hung up on the terminology. People
often use the terms parameter and argument interchangeably.) The important idea
is that whenever the verse() function is called, it automatically has a variable

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 400

Book IV
Chapter 4

Functions and
Arrays

Passing Data into and out of Functions 401

called verseNum. Whatever argument you send to the verse()
function from the main program will become the value of the variable
verseNum inside the function.

You can define a function with as many parameters as you want. Each parame-
ter gives you the opportunity to send a piece of information to the function.

Determining the distraction
If you know the verse number, you can determine what distracts “the little
one” in the song. You can determine the distraction in a couple of ways, but
a simple if / else if structure is sufficient for this example.

var distraction = “”;
if (verseNum == 1){

distraction = “suck his thumb.”;
} else if (verseNum == 2){
distraction = “tie his shoe.”;

} else {
distraction = “I have no idea.”;

}

I initialized the variable distraction to be empty. If verseNum is 1, set dis-
traction to “suck his thumb.” If verseNum is 2, distraction should be
“tie his shoe”. Any other value for verseNum is treated as an error by
the else clause.

If you’re an experienced coder, you may be yelling at this code. It still isn’t
optimal. Fortunately, in the section “Building a basic array” later in this
chapter, I show an even better solution for handling this particular situation
with arrays.

By the time this code segment is complete, verseNum and distraction
both contain a legitimate value.

Creating the text
Once you know these variables, it’s pretty easy to construct the output text:

var text = “The ants go marching “;
text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
text += “The ants go marching “;
text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
text += “The ants go marching “;
text += verseNum + “ by “ + verseNum;
text += “ the little one stops to “;
text += distraction;
return text;

} // end verse1

A whole lotta’ concatenating is going on, but it’s essentially the same code as
the original verse() function. This one’s just a lot more flexible because it

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 401

Managing Scope402

can handle any verse. (Well, if the function has been preloaded to under-
stand how to handle the verseNum.)

Managing Scope
A function is much like an independent mini-program. Any variable you
create inside a function has meaning only inside that function. When the
function is finished executing, its variables disappear! This setup is actually
a really good thing. A major program will have hundreds of variables, and
they can be difficult to keep track of. You can re-use a variable name without
knowing it or have a value changed inadvertently. When you break your
code into functions, each function has its own independent set of variables.
You don’t have to worry about whether the variables will cause problems
elsewhere.

Introducing local and global variables
You can also define variables at the main (script) level. These variables are
global variables. A global variable is available at the main level and inside
each function. A local variable (one defined inside a function) has meaning
only inside the function. The concept of local versus global functions is
sometimes referred to as scope.

Local variables are kind of like local police. Local police have a limited geo-
graphical jurisdiction, but they’re very useful within that space. They know
the neighborhood. Sometimes you’ll encounter situations that cross local
jurisdictions. This situation is the kind that requires a state trooper or the FBI.
Local variables are local cops, and global variables are the FBI.

In general, try to make as many of your variables local as possible. The only
time you really need a global variable is when you want some information to
be used in multiple functions.

Examining variable scope
To understand the implications of variable scope, take a look at scope.html:

<script type = “text/javascript”>
//<![CDATA[
//from scope.html
var globalVar = “I’m global!”;

function myFunction(){
var localVar = “I’m local”;
console.log(localVar);

}

myFunction();

//]]>
</script>

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 402

Book IV
Chapter 4

Functions and
Arrays

Managing Scope 403

This program defines two variables. In the main code, globalVar is defined,
and localVar is defined inside a function. If you run the program in debug
mode while watching the variables, you can see how they behave. Figure 4-2
shows what the program looks like early in the run.

localVar doesn’t have meaning until the function is called, so it remains
undefined until the computer gets to that part of the code. Step ahead a few
lines, and you see that localVar has a value, as shown in Figure 4-3.

Be sure to use step into rather than step over for this example. When
step over encounters a function, it runs the entire function as one line. If
you want to look into the function and see what’s happening inside it (as you
do here), use step into.

Note that globalVar still has a value (it’s an FBI agent), and so does
localVar because it’s inside the function.

If you move a few more steps, localVar no longer has a value when the
function ends (see Figure 4-4).

Variable scope is a good thing because it means you have to keep track of
only global variables and the variables defined inside your current function.
The other advantage of scope is the ability to reuse a variable name. You can
have ten different functions all using the same variable name, and they won’t
interfere with each other because they’re entirely different variables.

Figure 4-2:
globalVar is
defined, but
localVar is
not.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 403

Managing Scope404

Figure 4-4:
Once again,
localVar has
no meaning.

Figure 4-3:
localVar has
a value,
because I’m
inside the
function.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 404

Book IV
Chapter 4

Functions and
Arrays

Building a Basic Array 405

Building a Basic Array
If functions are groups of code lines with a name, arrays are groups of vari-
ables with a name. Arrays are similar to functions because they’re used to
manage complexity. An array is a special kind of variable. Use an array when-
ever you want to work with a list of similar data types.

The following code shows a basic demonstration of arrays:

<script type = “text/javascript”>
//<![CDATA[
//from genres.html

//creating an empty array
var genre = new Array(5);

//storing data in the array
genre[0] = “flight simulation”;
genre[1] = “first-person shooters”;
genre[2] = “driving”;
genre[3] = “action”;
genre[4] = “strategy”;

//returning data from the array
alert (“I like “ + genre[4] + “ games.”);

//]]>
</script>

The variable genre is a special variable because it contains many different
values. In essence, it’s a list of genres. The new array(5) construct creates
space in memory for five variables, all named genre.

Accessing array data
Once you’ve specified an array, you can work with the individual elements using
square brace syntax. Each element of the array is identified by an integer. The
index usually begins with zero.

genre[0] = “flight simulation”;

The preceding code means assign the text value “flight simulator” to
the genre array variable at position 0.

Most languages require all array elements to be the same type. JavaScript is
very forgiving. You can combine all kinds of stuff in a JavaScript array. This
flexibility can sometimes be useful, but be aware that this trick doesn’t work
in all languages. In general, I try to keep all the members of an array the
same type.

Once you’ve got the data stored in the array, you can use the same square-
bracket syntax to read the information.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 405

Building a Basic Array406

The line

alert (“I like “ + genre[4] + “ games.”);

means find element 4 of the genre array, and include it in an output message.

When genre.html is run, it shows Figure 4-5.

Using arrays with for loops
The main reason to use arrays is for convenience. When you have a lot of
information in an array, you can write code to work with the data quickly.
Whenever you have an array of data, you commonly want to do something
with each element in the array. Take a look at games.html to see how you
can do so:

<script type = “text/javascript”>
//<![CDATA[
//from games.html

//pre-loading an array
var gameList = new Array(“Flight Gear”, “Sauerbraten”, “Future Pinball”,

“Racer”, “TORCS”, “Orbiter”, “Step Mania”, “NetHack”,
“Marathon”, “Crimson Fields”);

var text = “”;
for (i = 0; i < gameList.length; i++){
text += “I love “ + gameList[i] + “\n”;

} // end for loop
alert(text);

//]]>
</script>

Notice a couple of things in this code:

✦ It features an array called gameList. This array contains the names of
some of my favorite freeware games.

✦ The array is preloaded with values. If you provide a list of values when
creating an array, JavaScript simply preloads the array with the values
you indicated. You don’t need to specify the size of the array if you
preload it.

Figure 4-5:
This data
came from
an array.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 406

Book IV
Chapter 4

Functions and
Arrays

Building a Basic Array 407

✦ A for loop steps through the array. Arrays and for loops are natural
companions. The for loop steps through each element of the array.

✦ The array’s length is used in the for loop condition. Rather than spec-
ifying the value 10, I used the length property of the array in my for
loop. This practice is good because the loop will automatically adjust to
the size of the array if I add or remove elements.

✦ Do something with each element. Because I goes from 0 to 9 (the array
indices), I can easily print each value of the array. In this example, I
simply add to an output string.

✦ Note the newline characters. – \n combination is a special character. It
tells JavaScript to add a carriage return, such as pressing the Enter key.

When games.html runs, it looks like Figure 4-6.

If you want to completely ruin your productivity, Google some of these game
names. They’re absolutely incredible, and every one of them is free. It’s hard
to beat that. See, even if you don’t learn how to program in this book, you
get something good out of it!

Revisiting the ants song
If you read the earlier sections, you had probably just gotten that marching
ant song out of your head. Sorry. Take a look at the following variation,
which uses arrays and loops to simplify the code even more!

<script type = “text/javascript”>
//<![CDATA[
//from antsArray.html

var distractionList = new Array(“”, “suck his thumb”, “tie his shoe”);

function chorus() {
var text = “...and they all go marching down\n”;
text += “to the ground \n”;
text += “to get out \n”;
text += “of the rain. \n”;
text += “ \n”;
text += “boom boom boom boom boom boom boom boom \n”;

Figure 4-6:
Now I’ve got
a list of
games.
Arrays and
loops are
fun!

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 407

Working with Two-Dimension Arrays408

return text;
} // end chorus

function verse(verseNum){
//pull distraction from array
var distraction = distractionList[verseNum];

var text = “The ants go marching “;
text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
text += “The ants go marching “;
text += verseNum + “ by “ + verseNum + “ hurrah, hurrah \n”;
text += “The ants go marching “;
text += verseNum + “ by “ + verseNum;
text += “ the little one stops to “;
text += distraction;
return text;

} // end verse1

//main code is now a loop
for (verseNum = 1; verseNum < distractionList.length; verseNum++){
alert(verse(verseNum));
alert(chorus());

} // end for loop

//>]]
</script>

This code is just a little different from the antsParam program shown in the
section of this chapter called “Passing Data into and out of Functions.”

✦ It has an array called distractionList. This array is (despite the
misleading name) a list of distractions. I made the first one (element zero)
blank so that the verse numbers would line up properly.

✦ The verse() function looks up a distraction. Because distractions are
now in an array, you can use the verseNum as an index to loop up a
particular distraction. Compare this function to the verse() function in
antsParam. (This program can be found in the section “Passing data into
and out of Functions.” Although arrays require a little more planning than
code structures, they can highly improve the readability of your code.

✦ The main program is in a loop. I step through each element of the
distractionList array, printing the appropriate verse and chorus.

✦ The chorus() function remains unchanged. You don’t need to change
chorus().

Working with Two-Dimension Arrays
Arrays are useful when working with lists of data. Sometimes you’ll
encounter data that’s best imagined in a table. For example, what if you
wanted to build a distance calculator that determines the distance between
two cities? The original data might look like Table 4-1.

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 408

Book IV
Chapter 4

Functions and
Arrays

Working with Two-Dimension Arrays 409

Table 4-1 Distance between Major Cities
0) Indianapolis 1) New York 2) Tokyo 3) London

0) Indianapolis 0 648 6476 4000

1) New York 648 0 6760 3470

2) Tokyo 6476 6760 0 5956

3) London 4000 3470 5956 0

Think about how you would use Table 4-1 to figure out a distance. If you
wanted to travel from New York to London, for example, you’d pick out the
New York row and the London column and figure out where they intersect.
The data in that cell is the distance (3,470 miles).

When you look up information in any kind of a table, you’re actually working
with a two-dimensional data structure — a fancy term, but it just means table.
If you want to look something up in a table, you need two indices, one to
determine the row, and another to determine the column.

If this concept is difficult to grasp, think of the old game Battleship. The play-
ing field is a grid of squares. You announce I-5, meaning column I, row 5, and
the opponent looks in that grid to discover that you’ve sunk his battleship.
In programming, you typically use integers for both indices, but otherwise
it’s exactly the same as Battleship. Any time you have two-dimensional data,
you’ll access it with two indices.

Often, we call the indices row and column to help you think of the structure
as a table. Sometimes other names more clearly describe how the behavior
works. Take a look at Figure 4-7, and you see that the distance.html pro-
gram asks for two cities and returns a distance according to the data table.

Yep, you can have three, four, or more dimension arrays in programming, but
don’t worry about that yet. (It may make your head explode.) Most of the
time, one or two dimensions are all you need.

This program is a touch longer than some of the others, so I break it into
parts in the following sections for easy digestion. Be sure to look at the pro-
gram in its entirety on the CD-ROM.

Setting up the arrays
The key to this program is the data organization. The first step is to set up
two arrays.

<script type = “text/javascript”>
//<![CDATA[
//from distance.html

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 409

Working with Two-Dimension Arrays410

//cityName has the names of the cities
cityName = new Array(“Indianapolis”, “New York”, “Tokyo”, “London”);
//create a 2-dimension array of distances
distance = new Array (
new Array (0, 648, 6476, 4000),
new Array (648, 0, 6760, 3470),
new Array (6476, 6760, 0, 5956),
new Array (4000, 3470, 5956, 0)

);

The first array is an ordinary single-dimension array of city names. I’ve been
careful to always keep the cities in the same order, so whenever I refer to city 0,
I’m talking about Indianapolis (my hometown) New York is always going to be
at position 1, and so on.

You have to be careful in your data design that you always keep things in the
same order. Be sure to organize your data on paper before you type it into
the computer, so you’ll understand what value goes where.

The cityNames array has two jobs. First, it reminds me what order all the cities
will be in, and, second, it gives me an easy way to get a city name when I know
an index. For example, I know that cityName[2] will always be “Tokyo”.

The distance array is very interesting. If you squint at it a little bit, it looks
a lot like Table 4-1, shown earlier in this chapter. That’s because it is Table 4-1,
just in a slightly different format.

Figure 4-7:
It’s a Tale of
Two Cities.
You even
get the
distance
between
them!

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 410

Book IV
Chapter 4

Functions and
Arrays

Working with Two-Dimension Arrays 411

distance is an array. JavaScript arrays can hold just about everything,
including other arrays! That’s what distance does. It holds an array of rows.
Each element of the distance array is another (unnamed) array holding all
the data for that row. If you want to extract information from the array, you
need two pieces of information. First, you need the row. Then because the row
is an array, you need the column number within that array. So, distance[1]
[3] means go to row one (“New York”) of distance. Within that row go to
element 3 (“London”) and return the resulting value (3470). Cool, huh?

Getting a city
The program requires that you ask for two cities. You want the user to enter
a city number, not a name, and you want to ask this question twice. Sounds
like a good time for a function.

function getCity(){
// presents a list of cities and gets a number corresponding to
// the city name
var theCity = “”; //will hold the city number

var cityMenu = “Please choose a city by typing a number: \n”;
cityMenu += “0) Indianapolis \n”;
cityMenu += “1) New York \n”;
cityMenu += “2) Tokyo \n”;
cityMenu += “3) London \n”;

theCity = prompt(cityMenu);
return theCity;

} // end getCity

The getCity() function prints up a little menu of city choices and asks for
some input. It then returns that input.

You can improve getCity() in all kinds of ways. For one thing, maybe it
should repeat until you get a valid number so that users can’t type the city
name or do something else crazy. I’ll leave it simple for now. If you want to
find out how to use user interface elements to help the user submit only
valid input, skip ahead to Chapter 5 of this minibook.

Creating a main() function
The main() function handles most of the code for the program.

function main(){
var output = “”;
var from = getCity();
var to = getCity();
var result = distance[from][to];
output = “The distance from “ + cityName[from];
output += “ to “ + cityName[to];
output += “ is “ + result + “ miles.”;
alert(output);

} // end main
main();

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 411

Working with Two-Dimension Arrays412

The main() function controls traffic. Here’s what you do:

1. Create an output variable.

The point of this function is to create some text output describing the dis-
tance. I begin by creating a variable called output and setting its initial value
to empty.

2. Get the city of origin.

Fortunately, you’ve got a really great function called getCity() that
handles all the details of getting a city in the right format. Call this func-
tion and assign its value to the new variable from.

3. Get the destination city.

That getCity() function sure is handy. Use it again to get the city
number you’ll call to.

4. Get the distance.

Because you know two indices, and you know they’re in the right format,
you can simply look them up in the table. Look up
distance[from][to] and store it in the variable result.

5. Output the response.

Use concatenation to build a suitable response string and send it to the user.

6. Get city names from the cityNames array.

The program uses numeric indices for the cities, but they don’t mean
anything to the user. Use the cityNames array to retrieve the two city
names for the output.

7. Run the main() function.

Only one line of code doesn’t appear in a function. That line calls the
main() function and starts the whole thing up.

I didn’t actually write the program in the order I showed it to you in the pre-
ceding steps. Sometimes it makes more sense to go “inside out.” I actually
created the data structure first (as an ordinary table on paper) and then con-
structed the main() function. This approach made it obvious that I needed
a getCity() function and gave me some clues about how getCity should
work. (In other words, it should present a list of cities and prompt for a
numerical input.)

27_186275 bk04ch04.qxp 3/28/08 10:49 PM Page 412

Chapter 5: Talking to the Page

In This Chapter
� Introducing the Document Object Model

� Responding to form events

� Connecting a button to a function

� Retrieving data from text fields

� Changing text in text fields

� Sending data to the page

� Working with other text-related form elements

JavaScript is fun and all, but it lives in Web browsers for a reason: to let
you change Web pages. The best thing about JavaScript is how it helps

you control the page. You can use JavaScript to read useful information from
the user and to change the page on the fly.

In the first few chapters of this minibook, I concentrate on JavaScript with-
out worrying about the HTML. The HTML code in those programs was unim-
portant, so I didn’t include it in the code listings. This chapter is about how
to integrate code with HTML, so now I incorporate the HTML as well as the
JavaScript segments. Sometimes I still print code in separate blocks, so (as
always) try to look at the code in its natural habitat, through your browser.

Understanding the Document Object Model
JavaScript programs usually live in the context of a Web page. The contents
of the page are available to the JavaScript programs through a mechanism
called the document object model (DOM).

The DOM is a special set of complex variables that encapsulates the entire
contents of the Web page. You can use JavaScript to read from the DOM and
determine the status of an element. You can also modify a DOM variable and
change the page from within JavaScript code.

Navigating the DOM
The easiest way to get a feel for the DOM is to load up a page in Firefox and
look at the Firebug window’s DOM tab. I do just that in Figure 5-1.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 413

Understanding the Document Object Model414

When you look over the DOM of a simple page, you can easily get over-
whelmed. You’ll see a lot of variables listed. Technically, these variables are
all elements of a special object called window. The window object has a
huge number of sub-objects, all listed in the DOM view. Table 5-1 describes a
few important window variables.

Table 5-1 Primary DOM Objects
Variable Description Notes

document Represents XHTML page Most commonly scripted element

location Describes current URL Change location .href to move to a new
page

history A list of recently visited pages Access this to view previous pages

status The browser status bar Change this to set a message in the
status bar

Changing DOM properties with Firebug
To illustrate the power of the DOM, try this experiment in Firefox:

1. Load any page.

Figure 5-1:
Even a very
simple page
has a
complex
DOM.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 414

Book IV
Chapter 5

Talking to the Page

Understanding the Document Object Model 415

It doesn’t matter what page you work with. For this example, I use
simple.html, a very basic page with only an <h1> header.

2. Enable the Firebug extension.

You can play with the DOM in many ways, but the Firebug extension is
one of the easiest and most powerful tools for experimentation.

3. Enable the DOM tab.

You see a list of all the top-level variables.

4. Scroll down until you see the status element.

When you find the status element, double-click it.

5. Type a message to yourself in the resulting dialog box and press Enter.

6. Look at the bottom of the browser.

The status bar at the bottom of the browser window should now contain
your message.

7. Experiment.

Play around with the various elements in the DOM list. You can modify many
of them. Try changing window.location.href to any URL and watch what
happens. Don’t worry; you can’t permanently break anything here.

Examining the document object
If the window object is powerful, its offspring, the document, is even more
amazing. (If you’re unfamiliar with the window object, see the section
“Navigating the DOM,” earlier in this chapter.)

Once again, the best way to get a feel for this thing is to do some exploring:

1. Reload simple.html.

If your previous experiments caused things to get really weird, you may
have to restart Firefox. Be sure the Firebug extension displays the DOM tab.

2. Find the document object.

It’s usually the second object in the window list. When you select this
object, it expands, showing a huge number of child elements.

3. Look for the document.body.

Somewhere in the document you’ll see the body. Select this object to
see what you discover.

4. Find the document.body.style.

The document object has a body object, which has a body object, which
has a style. Will it never end?

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 415

Understanding the Document Object Model416

5. Look through the style elements.

Some styles will be unfamiliar, but keep going, and you’ll probably see
some old friends.

6. Double-click backgroundColor.

Each CSS style attribute has a matching (but not quite identical) coun-
terpart in the DOM. Wow. Type a new color and see what happens.

7. Marvel at your cleverness.

You can navigate the DOM to make all kinds of changes in the page. If
you can manipulate something here, you can write code to do it, too.

If you’re lost here, Figure 5-2 shows me modifying the backgroundColor of
the style of the body of the document (on a wing on a bird on a branch on a
tree in a hole in the ground). A figure can’t really do this justice, though. You
have to experiment for yourself. But don’t be overwhelmed. You don’t really
need to understand all of these details, just know they exist.

Figure 5-2:
Firebug lets
me modify
the DOM of
my page
directly.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 416

Book IV
Chapter 5

Talking to the Page

Harnessing the DOM through JavaScript 417

Harnessing the DOM through JavaScript
Sure, using Firebug to trick out your Web page is geeky and all, but why
should you care? The whole purpose of the DOM is to provide JavaScript
magical access to all the inner workings of your page.

Getting the blues, JavaScript-style
It all gets fun when you start to write JavaScript code to access the DOM.
Take a look at blue.html in Figure 5-3.

The page has white text on a blue background, but there’s no CSS! Instead, it
has a small script that changes the DOM directly, controlling the page colors
through code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>blue.html</title>

</head>
<body>

<h1>I’ve got the JavaScript Blues</h1>
<script type = “text/javascript”>

//<![CDATA[

Figure 5-3:
This page is
blue. But
where’s the
CSS?

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 417

Harnessing the DOM through JavaScript418

// use javascript to set the colors
document.body.style.color = “white”;
document.body.style.backgroundColor = “blue”;

//]]>
</script>

</body>
</html>

Writing JavaScript code to change colors
The page shown in Figure 5-3 is pretty simple, but it has a few features not
found in Chapters 1 through 4 of this minibook.

✦ It has no CSS. A form of CSS is dynamically created through the code.

✦ The script is in the body. I can’t place this particular script in the
header because it refers to the body.

When the browser first sees the script, there must be a body for the text
to change. If I put the script in the head, no body exists when the browser
reads the code, so it gets confused. If I place the script in the body, there
is a body, so the script can change it. (It’s really okay if you don’t get this
discussion. This example is probably the only time you’ll see this trick
because I show a better way in the next example.)

✦ Use a DOM reference to change the style colors. That long trail of
breadcrumbs syntax takes you all the way from the document through
the body to the style and finally the color. It’s tedious but thorough.

✦ Set the foreground color to white. You can change the color property
to any valid CSS color value (a color name or a hex value). It’s just like
CSS, because you are affecting the CSS.

✦ Set the background color to blue. Again, this adjustment is just like
setting CSS.

Shouldn’t it be background-color?
If you’ve dug through the DOM style elements,
you’ll notice some interesting things. Many of
the element names are familiar but not quite
identical. background-color becomes
backgroundColor and font-weight
becomes fontWeight. CSS uses dashes to
indicate word breaks, and the DOM combines

words and uses capitalization for clarity. You’ll
find all your old favorite CSS elements, but the
names change according to this very pre-
dictable formula. Still, if you’re ever confused,
just use the Firebug DOM inspector to look over
various style elements.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 418

Book IV
Chapter 5

Talking to the Page

Managing Button Events 419

Managing Button Events
Of course, there’s no good reason to write code like blue.html, which I dis-
cuss in the section “Harnessing the DOM through JavaScript,” earlier in this
chapter. You will find that it’s just as easy to build CSS as it is to write Java
Script. The advantage comes when you use the DOM dynamically to change
the page’s behavior after it has finished loading.

Figure 5-4 shows a page called “backgroundColors.html”.

The page is set up with the default white background color. It has two buttons
on it, which should change the body’s background color. Click the Blue
button, and you see that it works, as verified in Figure 5-5.

Some really exciting things just happened.

✦ The page has a form. For more information on form elements, refer to
Book I, Chapter 7.

✦ The button does something. Plain-old XHTML forms don’t really do any-
thing. You’ve got to write some kind of programming code to accomplish
a task. This program does it.

Figure 5-4:
The page is
white. It has
two buttons
on it. I’ve
gotta click
Blue.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 419

Managing Button Events420

✦ The page has a setColor() function. The page has a function that
takes a color name and applies it to the background style

✦ Both buttons pass information to setColor. Both of the buttons call
the setColor() function, but they each pass a different color value.
That’s how the program knows what color to use when changing the
background.

Take a look at the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>backgroundColors</title>
<script type = “text/javascript”>

//<![CDATA[
// from backgroundColors

function changeColor(color){
document.body.style.backgroundColor = color;

} // end changeColor

//]]>
</script>

</head>
<body>

<h1>Click a button to change the color</h1>

Figure 5-5:
It turned
blue! Joy!

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 420

Book IV
Chapter 5

Talking to the Page

Managing Button Events 421

<form action = “”>
<fieldset>

<input type = “button”
value = “blue”
onclick = “changeColor(‘blue’)”/>

<input type = “button”
value = “white”
onclick = “changeColor(‘white’)” />

</fieldset>

</form>
</body>

</html>

Most Web pages actually treat the XHTML page as the user interface and the
JavaScript as the event-manipulation code that goes underneath. It makes
sense, then, to look at the HTML code that acts as the playground first:

✦ It contains a form. Note that the form’s action attribute is still empty. You
don’t mess with that attribute until you work with the server in Book V.

✦ The form has a fieldset. The input elements need to be inside
something, and a fieldset seems like a pretty natural choice.

✦ The page has two buttons. The two buttons on the page are nothing
new, but they’ve never done anything before.

✦ The buttons both have onclick attributes. This special attribute can
accept one line of JavaScript code. Usually, that line calls a function, as I
do in this example.

✦ Each button calls the same function, but with a different parameter.
Both buttons call changeColor(), but one sends the value “blue” and
the other “white”.

✦ Presumably, changeColor changes a color. That’s exactly what it will
do. In fact, it changes the background color.

Generally, I write the XHTML code before the script. As you can see, the form
provides all kinds of useful information that can help me make the script.
Specifically, I need to write a function called changeColor(), and this function
should take a color name as a parameter and change the background to the
indicated color. With that kind of help, the function is half written!

Embedding quotes within quotes
Take a careful look at the onclick lines in the code in the preceding section.
You may not have noticed one important issue:

onclick is an XHTML parameter, and its value must be encased in quotes.
The parameter happens to be a function call, which sends a string value.
String values must also be in quotes. This setup can become confusing if you

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 421

Managing Text Input and Output422

use double quotes everywhere because the browser has no way to know the
quotes are nested.

onclick = “changeColor(“white”)” />

XHTML thinks the onclick parameter contains the value “changeColor(“
and it will have no idea what white”)” is.

Fortunately, JavaScript has an easy fix for this problem. If you want to embed
a quote inside another quote, just switch to single quotes. The line is written
with the parameter inside single quotes:

onclick = “changeColor(‘white’)” />

Writing the changeColor function
The changeColor() function is pretty easy to write.

<script type = “text/javascript”>
//<![CDATA[
// from backgroundColors

function changeColor(color){
document.body.style.backgroundColor = color;

} // end changeColor

//]]>
</script>

It goes in the header area as normal. It’s simply a function accepting one param-
eter called color. The body’s backgroundColor property is set to color.

I can write JavaScript in the header that refers to the body because the
header code is all in a function. The function is read before the body is in
place, but it isn’t activated until the user clicks the button. By this time,
there is a body, and there’s no problem.

Managing Text Input and Output
Perhaps the most intriguing application of the DOM is the ability to let the
user communicate with the program through the Web page, without all those
annoying dialog boxes. Figure 5-6 shows a page with a Web form containing
two textboxes and a button.

When you click the button, something exciting happens, demonstrated by
Figure 5-7.

Clearly, form-based input and output is preferable to the constant interruption
of dialog boxes.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 422

Book IV
Chapter 5

Talking to the Page

Managing Text Input and Output 423

Figure 5-7:
I got a
greeting!
With no
alert box!

Figure 5-6:
I’ve typed a
name into
the top
textbox.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 423

Managing Text Input and Output424

Introducing event-driven programming
Graphic user interfaces usually use a technique called event-driven program-
ming. The idea is simple.

1. Create a user interface.

In Web pages, the user interface is usually built of XHTML and CSS.

2. Identify events the program should respond to.

If you have a button, users will click it. (If you want to guarantee they
click it, put the text Launch the Missiles on the button. I don’t know why,
but it always works.) Buttons almost always have events. Some other
elements do, too.

3. Write a function to respond to each event.

For each event you want to test, write a function that does whatever
needs to happen.

4. Get information from form elements.

Now you’re accessing the contents of form elements to get information
from the user. You need a mechanism for getting information from a text
field and other form elements.

5. Use form elements for output.

For this simple example, I also use form elements for output. The output
goes in a second text box, even though I don’t intend the user to type
any text there.

Creating the XHTML form
The first step in building a program that can manage text input and output is
to create the XHTML framework. Here’s the XHTML code:

<title>textBoxes.html</title>

<link rel = “stylesheet”
type = “text/css”
href = “textBoxes.css” />

</head>

<body>
<h1>Text Box Input and Output</h1>
<form action = “”>

<fieldset>
<label>Type your name: </label>
<input type = “text”

id = “txtName” />

<input type = “button”
value = “click me”
onclick = “sayHi()”/>

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 424

Book IV
Chapter 5

Talking to the Page

Managing Text Input and Output 425

<input type = “text”
id = “txtOutput” />

</fieldset>
</form>

</body>
</html>

As you look over the code, note a few important ideas:

✦ The page uses external CSS. The CSS style is nice, but it’s not important
in the discussion here. It stays safely encapsulated in its own file. Of
course, you’re welcome to look it over or change it.

✦ Most of the page is a form. All form elements must be inside a form.

✦ A fieldset is used to contain form elements. input elements need to be
inside some sort of block-level element, and a fieldset is a natural
choice.

✦ There’s a text field named txtName. This text field contains the name. I
begin with the phrase txt to remind myself that this field is a textbox.

✦ The second element is a button. You don’t need to give the button an ID
(as it won’t be referred to in code), but it does have an onclick() event.

✦ The button’s onclick event refers to a (yet undefined) function. In
this example, it’s named “sayHi()”.

✦ A second text box contains the greeting. This second textbox is called
txtOutput because it’s the text field meant for output.

Once you’ve set up the HTML page, the function becomes pretty easy to
write because you’ve already identified all the major constructs. You know
you need a function called sayHi(), and this function reads text from the
txtName field and writes to the txtOutput field.

Using GetElementById to get access to the page
XHTML is one thing, and JavaScript is another. You need some way to turn
an HTML form element into something JavaScript can read. The magical
getElementById() method does exactly that. First, look at the first two
lines of the sayHi() function (defined in the header as usual).

function sayHi(){
var txtName = document.getElementById(“txtName”);
var txtOutput = document.getElementById(“txtOutput”);

You can extract every element created in your Web page by digging through
the DOM. In the old days, this approach is how we used to access form ele-
ments. It was ugly and tedious. Modern browsers have the wonderful

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 425

Managing Text Input and Output426

getElementById() function instead. This beauty searches through the
DOM and returns a reference to an object with the requested ID.

A reference is simply an indicator where the specified object is in memory.
You can store a reference in a variable. Manipulating this variable manipu-
lates the object it represents. If you want, you can think of it as making the
textbox into a variable.

Note that I call the variable txtName, just like the original textbox. This vari-
able refers to the text field from the form, not the value of that text field.
Once I have a reference to the text field object, I can use its methods and
properties to extract data from it and send new values to it.

Manipulating the text fields
Once you have access to the text fields, you can manipulate the values of
these fields with the value property:

var name = txtName.value;
txtOutput.value = “Hi there, “ + name + “!”

Text fields (and, in fact, all input fields) have a value property. You can read
this value as an ordinary string variable. You can also write to this property,
and the text field will be updated on the fly.

This code handles the data input and output:

1. Create a variable for the name.

This is an ordinary string variable.

2. Copy the value of the textbox into the variable.

Now that you have a variable representing the textbox, you can access
its value property to get the value typed in by the user.

3. Create a message for the user.

Use ordinary string concatenation.

4. Send the message to the output textbox.

You can also write text to the value property, which changes the con-
tents of the text field on the screen.

Text fields always return string values (like prompts do). If you want to pull a
numeric value from a text field, you may have to convert it with the
parseInt() or parseFloat() functions.

28_186275 bk04ch05.qxp 3/28/08 10:49 PM Page 426

Book IV
Chapter 5

Talking to the Page

Writing to the Document 427

Writing to the Document
Form elements are great for getting input from the user, but they’re not ideal
for output. Placing the output in an editable field really doesn’t make much
sense. Changing the Web document is a much better approach.

The DOM supports exactly such a technique. Most XHTML elements feature
an innerHTML property. This property describes the HTML code inside the
element. In most cases, it can be read from and written to.

So what are the exceptions? Single-element tags (like and <input>)
don’t contain any HTML, so obviously reading or changing their inner HTML
doesn’t make sense. Table elements can often be read from but not changed
directly.

Figure 5-8 shows a program with a basic form.

This form doesn’t have a form element for the output. Enter a name and click
the button, and you see the results in Figure 5-9.

Amazingly enough, this page can make changes to itself dynamically. It isn’t
simply changing the values of form fields, but changing the HTML.

Figure 5-8:
Wait, there’s
no output
text field!

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 427

Writing to the Document428

Preparing the HTML framework
To see how the page changes itself dynamically, begin by looking at the
XHTML body for innerHTML.html:

<body>
<h1>Inner HTML Demo</h1>
<form action = “”>

<fieldset>
<label>Please type your name</label>
<input type = “text”

id = “txtName” />
<button type = “button”

onclick = “sayHi()”>
Click Me

</button>
</fieldset>

</form>

<div id = “divOutput”>
Watch this space.

</div>
</body>

The code body has a couple of interesting features:

✦ The program has a form. The form is pretty standard. It has a text field
for input and a button, but no output elements.

Figure 5-9:
The page
has
changed
itself.

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 428

Book IV
Chapter 5

Talking to the Page

Writing to the Document 429

✦ The button will call a sayHi() function. The page requires a function
with this name. Presumably, it says hi somehow.

✦ There’s a div for output. A div element in the main body is designated
for output.

✦ The div has an ID. The id attribute is often used for CSS styling, but the
DOM can also use it. Any HTML elements that will be dynamically
scripted should have an id field.

Writing the JavaScript
The JavaScript code for modifying innerHTML isn’t very hard:

<script type = “text/javascript”>
//<![CDATA[
//from innerHTML.html

function sayHi(){
txtName = document.getElementById(“txtName”);
divOutput = document.getElementById(“divOutput”);

name = txtName.value;

divOutput.innerHTML = “” + name + “<\/em>”;
divOutput.innerHTML += “ is a very nice name.”;

}
//]]>

</script>

The first step (as usual with Web forms) is to extract data from the input ele-
ments. Note that I can create a variable representation of any DOM element,
not just form elements. The divOutput variable is a JavaScript representa-
tion of the DOM div.

Finding your innerHTML
Like form elements, divs have other interesting properties you can modify.
The innerHTML property allows you to change the HTML code displayed by
the div. You can put any valid XHTML code you want inside the innerHTML
property, even HTML tags. Be sure that you still follow the XHTML rules so
that your code will be valid.

Even with the CDATA element in place, validators get confused by forward
slashes (like the one in the tag). Whenever you want to use a / char-
acter in JavaScript strings, precede it with a backslash (<\/em>). A back-
slash helps the validator understand that you intend to place a slash
character at the next position.

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 429

Working with Other Text Elements430

Working with Other Text Elements
Once you know how to work with text fields, you’ve mastered about half of
the form elements. Several other form elements work exactly like text fields,
including these:

✦ Password fields obscure the user’s input with asterisks, but preserve
the text.

✦ Hidden fields allow you to store information in a page without revealing
it to the user. (They’re used a little bit in client-side coding, but almost
never in JavaScript.)

✦ Text areas are a special variation of text boxes designed to handle multi-
ple lines of input.

Figure 5-10 is a page with all these elements available on the same form.

When the user clicks the button, the contents of all the fields (even the pass-
word and hidden fields) appear on the bottom of the page, as shown in
Figure 5-11.

Figure 5-10:
Passwords,
hidden
fields, and
text areas
all look the
same to
JavaScript.

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 430

Book IV
Chapter 5

Talking to the Page

Working with Other Text Elements 431

Building the form
Here’s the XHTML that generates the form shown in Figures 5-10 and 5-11:

<body>
<h1>Text Input Devices</h1>
<form action = “”>

<fieldset>
<label>Normal Text field</label>
<input type = “text”

id = “txtNormal” />
<label>Password field</label>
<input type = “password”

id = “pwd” />
<label>Hidden</label>
<input type = “hidden”

id = “hidden”
value = “I can’t tell you” />

<textarea id = “txtArea”
rows = “10”
cols = “40”>

This is a big text area.
It can hold a lot of text.

</textarea>
<button type = “button”

onclick = “processForm()”>
Click Me

</button>

Figure 5-11:
Now you
can see
what was in
everything.

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 431

Working with Other Text Elements432

</fieldset>
</form>

<div id = “output”>

</div>
</body>

The code may be familiar to you if you read about form elements in Book I,
Chapter 7. A few things are worth noting for this example:

✦ An ordinary text field appears, just for comparison purposes. It has an
id so that it can be identified in the JavaScript.

✦ The next field is a password field. Passwords display asterisks, but
store the actual text that was entered. This password has an id of pwd.

✦ The hidden field is a bit strange. You can use hidden fields to store
information on the page without displaying that information to the user.
Unlike the other kinds of text fields, the user can’t modify a hidden field.
(She usually doesn’t even know it’s there.) This hidden field has an id of
secret and a value (“I can’t tell you”).

✦ The text area has a different format. The input elements are all single-
tag elements, but the textarea is designed to contain a large amount of
text, so it has beginning and end tags. The text area’s id is txtArea.

✦ A button starts all the fun. As usual, most of the elements just sit there
gathering data, but the button has an onclick event associated with it,
which calls a function.

✦ External CSS gussies it all up. The page has some minimal CSS to clean
it up. The CSS isn’t central to this discussion, so I don’t reproduce it.
Note that the page will potentially have a dl on it, so I have a CSS style
for it, even though it doesn’t appear by default.

The password and hidden fields seem secure, but they aren’t. Anybody who
views the page source will be able to read the value of a hidden field, and
passwords transmit their information in the clear. You really shouldn’t be
using Web technology (especially this kind) to transport nuclear launch
codes or the secret to your special sauce. (Hmmm, maybe the secret sauce
recipe is the launch code — sounds like a bad spy movie.)

When I create a text field, I often suspend my rules on indentation because
the text field preserves everything inside it, including any indentation.

Writing the function
After you build the form, all you need is a function. Here’s the good news:
JavaScript treats all these elements in exactly the same way! The way you
handle a password, hidden field, or text area is identical to the technique
for a regular text field (described under “Managing Text Input and Output,”
earlier in this chapter). Here’s the code:

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 432

Book IV
Chapter 5

Talking to the Page

Working with Other Text Elements 433

<script type = “text/javascript”>
//<![CDATA[

// from otherText.html
function processForm(){

//grab input from form
var txtNormal = document.getElementById(“txtNormal”);
var pwd = document.getElementById(“pwd”);
var hidden = document.getElementById(“hidden”);
var txtArea = document.getElementById(“txtArea”);

var normal = txtNormal.value;
var password = pwd.value;
var secret = hidden.value;
var bigText = txtArea.value;

//create output
var result = “”
result += “<dl> \n”;
result += “ <dt>normal<\/dt> \n”;
result += “ <dd>” + normal + “<\/dd> \n”;
result += “ \n”;
result += “ <dt>password<\/dt> \n”;
result += “ <dd>” + password + “<\/dd> \n”;
result += “ \n”;
result += “ <dt>secret<\/dt> \n”;
result += “ <dd>” + secret + “<\/dt> \n”;
result += “ \n”;
result += “ <dt>big text<\/dt> \n”;
result += “ <dd>” + bigText + “<\/dt> \n”;
result += “<\/dl> \n”;

var output = document.getElementById(“output”);
output.innerHTML = result;

} // end function

The function is a bit longer than the others in this chapter, but it follows exactly
the same pattern: It extracts data from the fields, constructs a string for output,
and writes that output to the innerHTML attribute of a div in the page.

The code has nothing new, but it still has a few features you should consider:

✦ Create a variable for each form element. Use the
document.getElementById mechanism.

✦ Create a string variable containing the contents of each element. Don’t
forget: The getElementById trick returns an object. You need to
extract the value property to see what’s inside the object.

✦ Make a big string variable to manage the output. When output gets
long and messy like this one, concatenate a big variable and then just
output it in one swoop.

✦ HTML is your friend. This output is a bit complex, but innerHTML is
HTML, so you can use any HTML styles you want to format your code.
The return string is actually a complete definition list. Whatever is

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 433

Working with Other Text Elements434

inside the text box is (in this case) reproduced as HTML text, so if I want
carriage returns or formatting, I have to add them with code.

✦ Don’t forget to escape the slashes. The validator gets confused by ending
tags, so add the backslash character to any ending tags occurring in
JavaScript string variables. In other words, </dl> becomes <\/dl>.

✦ Newline characters (\n) clean up the output. If I were writing an ordi-
nary definition list in HTML, I’d put each line on a new line. I try to make
my programs write code just like I do, so I add newline characters every-
where I’d add a carriage return in ordinary HTML.

Understanding generated source
When you run the program in the preceding section, your JavaScript code
actually changes the page it lives on. The code that doesn’t come from your
server (but is created by your program) is sometimes called generated
source. The generated code technique is powerful, but it can have a signifi-
cant problem. Try this experiment to see what I mean:

1. Reload the page.

You want to view it without the form contents showing so that you can
view the source. Everything will be as expected; the source code shows
exactly what you wrote.

2. Click the Click Me button.

Your function runs, and the page changes. You clearly added HTML to
the output div, because you can see the output right on the screen.

3. View the source again.

You’ll be amazed. The output div is empty, even though you can clearly
see that it has changed.

4. Check generated code.

Using the HTML validator extension or the W3 validator doesn’t check
for errors in your generated code. You have to check it yourself, but it’s
hard to see the code!

Figure 5-12 illustrates this problem.

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 434

Book IV
Chapter 5

Talking to the Page

Working with Other Text Elements 435

Here’s what’s going on: The view source command (on most browsers)
doesn’t actually view the source of the page as it currently stands. It goes
back to the server and retrieves the page, but displays it as source rather
than rendered output. As a result, the view source command isn’t useful
for telling you how the page has changed dynamically. Likewise, the page
validators check the page as it occurs on the server without taking into
account things that may have happened dynamically.

When you build regular Web pages, this approach isn’t a problem because
regular Web pages don’t change. Dynamically generated pages can change
on the fly, and the browser doesn’t expect that. If you made a mistake in the
HTML, you can’t simply view the source to see what you did wrong in the
code generated by your script. Fortunately, Firefox plugins give you two easy
solutions:

Figure 5-12:
The ordinary
view source
command
isn’t
showing the
contents of
the div!

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 435

Working with Other Text Elements436

✦ The Web developer toolbar: This toolbar has a wonderful tool called
view generated source available on the view source menu. It
allows you to view the source code of the current page in its current
state, including any code dynamically generated by your JavaScript.

✦ The Firebug window: Open this window when a page is open and
browse (with the HTML tab) around your page. Firebug gives you an
accurate view of the page contents even when they’re changed dynami-
cally, which can be extremely useful.

These tools keep you sane when you’re trying to figure out why your gener-
ated code isn’t acting right. (I wish I’d had them years ago. . . .)

Figure 5-13 shows the Firebug toolbar with the dynamically generated con-
tents showing.

Figure 5-13:
Firebug
shows the
current
status of the
page, even
if it’s
dynamically
modified.

28_186275 bk04ch05.qxp 3/28/08 10:50 PM Page 436

Chapter 6: Getting Valid Input

In This Chapter
� Extracting data from drop-down lists

� Working with multiple-selection lists

� Getting data from check boxes and radio groups

� Validating input with regular expressions

� Using character, boundary, and repetition operators

� Using pattern memory

Getting input from the user is always nice, but sometimes users make
mistakes. Whenever you can, you want to make the user’s job easier

and prevent certain kinds of mistakes.

Fortunately, you can take advantage of several tools designed exactly for
that purpose. In this chapter, you discover two main strategies for improv-
ing user input: specialized input elements and pattern-matching. Together,
these tools can help ensure that the data the user enters is useful and valid.

Getting Input from a Drop-Down List
The most obvious way to ensure that the user enters something valid is to
supply him with valid choices. The drop-down list is an obvious and easy
way to do this, as you can see from Figure 6-1.

The list-box approach has a lot of advantages over text field input:

✦ The user can input with the mouse, which is faster and easier than typing.

✦ You shouldn’t have any spelling errors because the user didn’t type the
response.

✦ The user knows all the answers available because they’re listed.

✦ You can be sure the user gives you a valid answer because you supplied
the possible responses.

✦ User responses can be mapped to more complex values — for example,
you can show the user Red and have the list box return the hex value
#FF0000.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 437

Getting Input from a Drop-Down List438

If you want to knowhow to build a list box with the XHTML select object,
refer to Book I, Chapter 7.

Building the form
When you’re creating a predefined list of choices, create the HTML form
first, because it defines all the elements you’ll need for the function. The
code is a standard form:

<body>
<form action = “”>

<h1>Please select a color</h1>
<fieldset>

<select id = “selColor”>
<option value = “#FFFFFF”>White</option>
<option value = “#FF0000”>Red</option>
<option value = “#FFCC00”>Orange</option>
<option value = “#FFFF00”>Yellow</option>
<option value = “#00FF00”>Green</option>
<option value = “#0000FF”>Blue</option>
<option value = “#663366”>Indigo</option>
<option value = “#FF00FF”>Violet</option>

</select>

<input type = “button”
value = “change color”
onclick = “changeColor()” />

Figure 6-1:
The user
selects from
a predefined
list of valid
choices.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 438

Book IV
Chapter 6

Getting Valid Input

Getting Input from a Drop-Down List 439

</fieldset>
</form>

</body>
</html>

The select object’s default behavior is to provide a drop-down list. The first
element on the list is displayed, but when the user clicks the list, the other
options appear.

A select object that the code refers to should have an id field.

In this and most examples in this chapter, I add CSS styling to clean up each
form. Be sure to look over the styles if you want to see how I did it.

The other element in the form is a button. When the user clicks the button,
the changeColor() function is triggered.

Because the only element in this form is the select object, you may want to
change the background color immediately without requiring a button click.
You can do so by adding an event handler directly onto the select object:

<select id = “selColor”
onchange = “changeColor()”>

The event handler causes the changeColor() function to be triggered as
soon as the user changes the select object’s value. Typically, you’ll forego
the user clicking a button only when the select is the only element in the
form. If the form includes several elements, processing doesn’t usually
happen until the user signals she’s ready by clicking a button.

Reading the list box
Fortunately, standard drop-down lists are quite easy to read. Here’s the
JavaScript code:

<script type = “text/javascript”>
//<![CDATA[
// from dropdownList.html

function changeColor(){
var selColor = document.getElementById(“selColor”);
var color = selColor.value;
document.body.style.backgroundColor = color;

} // end function
//]]>

</script>

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 439

Managing Multiple Selections440

As you can see, the process for reading the select object is much like working
with a text-style field:

✦ Create a variable to represent the select object. The
document.getElementById() trick works here just like it does for
text fields.

✦ Extract the value property of the select object. The value property
of the select object reflects the value of the currently selected
option. So, if the user has chosen Yellow, the value of selColor is
“#FFFF00”.

✦ Set the document’s background color. Use the DOM mechanism to set
the body’s background color to the chosen value.

Managing Multiple Selections
You can use the select object in a more powerful way than the method I
describe in the preceding section. Figure 6-2 shows a page with a multiple-
selection list box.

To make multiple selection work, you have to make a few changes to both
the HTML and the JavaScript code.

Figure 6-2:
You can pick
multiple
choices
from this
list.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 440

Book IV
Chapter 6

Getting Valid Input

Managing Multiple Selections 441

Coding a multiple selection select object
You modify the select code in two ways to make multiple selections:

✦ Indicate multiple selections are allowed. By default, select boxes
have only one value. You’ll need to set a switch to tell the browser to
allow more than one item to be selected.

✦ Make the mode a multiline select. The standard drop-down behavior
doesn’t make sense when you want multiple selections, because the
user needs to see all the options at once. Most browsers automatically
switch into a multiline mode, but you should control the process
directly.

The XHTML code for multiSelect.html is similar to the dropdownList
page, described in the preceding section, but note a couple of changes.

<body>
<h1>Multiple Selections</h1>
<form action = “”>

<fieldset>
<label>

Select the language(s) you know.
(ctrl-click to select multiple lines)

</label>
<select id = “selLanguage”

multiple = “multiple”
size = “10”>

<option value = “XHTML”>XHTML</option>
<option value = “CSS”>CSS</option>
<option value = “JavaScript”>JavaScript</option>
<option value = “PHP”>PHP</option>
<option value = “MySQL”>MySQL</option>
<option value = “Java”>Java</option>
<option value = “VB.NET”>VB.NET</option>
<option value = “Python”>Python</option>
<option value = “Flash”>Flash</option>
<option value = “Perl”>perl</option>

</select>
<button type = “button”

onclick = “showChoices()”>
Submit

</button>
</fieldset>

</form>

<div id = “output”>

</div>
</body>

</html>

The code isn’t shocking, but it does have some important features:

✦ The select object is called selLanguage. As usual, the form elements
need an id attribute so that you can read it in the JavaScript.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 441

Managing Multiple Selections442

✦ Add the multiple attribute to your select object. This attribute tells
the browser to accept multiple inputs using Shift+click (for contiguous
selections) or Ctrl+click (for more precise selection).

✦ Set the size to 10. The size indicates the number of lines to be dis-
played. I set the size to 10 because my list has ten options.

✦ Make a button. With multiple selection, you probably won’t want to trig-
ger the action until the user has finished making selections. A separate
button is the easiest way to make sure the code is triggered when you
want it to happen.

✦ Create an output div. This code holds the response.

Writing the JavaScript code
The JavaScript code for reading a multiple-selection list box is a bit different
than the standard selection code described in the section “Reading the list
box” earlier in this chapter. The value property only returns one value, but
a multiple-selection list box often returns more than one result.

The key is to recognize that a list of option objects inside a select object
is really a kind of array. You can look more closely at the list of objects to see
which ones are selected, which is essentially what the showChoices()
function does:

<script type = “text/javascript”>
//<![CDATA[
//from multi-select.html
function showChoices(){

//retrieve data
var selLanguage = document.getElementById(“selLanguage”);

//set up output string
var result = “<h2>Your Languages<\/h2>”;
result += “ \n”;

//step through options
for (i = 0; i < selLanguage.length; i++){
//examine current option
currentOption = selLanguage[i];

//print it if it has been selected
if (currentOption.selected == true){

result += “ ” + currentOption.value + “<\/li> \n”;
} // end if

} // end for loop

//finish off the list and print it out
result += “<\/ul> \n”;

output = document.getElementById(“output”);
output.innerHTML = result;

} // end showChoices
//]]>

</script>

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 442

Book IV
Chapter 6

Getting Valid Input

Managing Multiple Selections 443

At first, the code seems intimidating, but if you break it down, it’s not too tricky.

1. Create a variable to represent the entire select object.

The standard document.getElementById() technique works fine.
var selLanguage = document.getElementById(“selLanguage”);

2. Create a string variable to hold the output.

When you’re building complex HTML output, working with a string vari-
able is much easier than directly writing code to the element.

var result = “<h2>Your Languages<\/h2>”;

3. Build an unordered list to display the results.

An unordered list is a good way to spit out the results, so I create one in
my result variable.

result += “ \n”;

4. Step through selLanguage as if it were an array.

Use a for loop to examine the list box line by line. Note that
selLanguage has a length property like an array.

for (i = 0; i < selLanguage.length; i++){

5. Assign the current element to a temporary variable.

The currentOption variable holds a reference to the each option ele-
ment in the original select object as the loop progresses.

currentOption = selLanguage[i];

6. Check to see whether the current element has been selected.

The object currentOption has a selected property that tells you
whether the object has been highlighted by the user. selected is a
Boolean property, so it’s either true or false.

if (currentOption.selected == true){

7. If the element has been selected, add an entry to the output list.

If the user has highlighted this object, create an entry in the unordered
list housed in the result variable.

result += “ ” + currentOption.value + “<\/li> \n”;

8. Close up the list.

Once the loop has finished cycling through all the objects, you can close
up the unordered list you’ve been building.

result += “<\/ul> \n”;

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 443

Check, Please: Reading Check Boxes444

9. Print results to the output div.

The output div’s innerHTML property is a perfect place to print the
unordered list.

output = document.getElementById(“output”);
output.innerHTML = result;

Something strange is going on here. The options of a select box act like an
array. An unordered list is a lot like an array. Bingo! They are arrays, just in
different forms. You can think of any listed data as an array. Sometimes you
organize the data like a list (for display), sometimes like an array (for stor-
age in memory), and sometimes it’s a select group (for user input). Now
you’re starting to think like a programmer!

Check, Please: Reading Check Boxes
Check boxes fulfill another useful data input function. They’re useful any
time you have Boolean data. If some value can be true or false, a check box
is a good tool. Figure 6-3 illustrates a page that responds to check boxes.

Check boxes are independent of each other. Although they’re often found in
groups, any check box can be checked or unchecked regardless of the status
of its neighbors.

Figure 6-3:
You can
pick your
toppings
here.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 444

Book IV
Chapter 6

Getting Valid Input

Check, Please: Reading Check Boxes 445

Building the check box page
To build the check box page shown in Figure 6-3, start by looking at the HTML:

<body>
<h1>What do you want on your pizza?</h1>
<form action = “”>

<fieldset>
<input type = “checkbox”

id = “chkPepperoni”
value = “pepperoni” />

<label>Pepperoni</label>

<input type = “checkbox”
id = “chkMushroom”
value = “mushrooms” />

<label>Mushrooms</label>

<input type = “checkbox”
id = “chkSausage”
value = “sausage” />

<label>Sausage</label>

<button type = “button”
onclick = “order()”>

Order Pizza
</button>

</fieldset>

</form>
<h2>Your order:</h2>
<div id = “output”>

</div>
</body>

Each check box is an individual input element. Note that check box values
aren’t displayed. Instead, a label (or similar text) is usually placed after the
check box. A button calls an order() function.

Responding to the check boxes
Check boxes don’t require a lot of care and feeding. Once you extract it,
the check box has two critical properties:

✦ You can use the value property to store a value associated with the
check box (just like you do with text fields in Chapter 5 of this minibook).

✦ The checked property is a Boolean value, indicating whether the check
box is currently checked or not.

The code for the order() function shows how it’s done:

<script type = “text/javascript”>
//<![CDATA[
//from checkBoxes.html
function order(){

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 445

Working with Radio Buttons446

//get variables
var chkPepperoni = document.getElementById(“chkPepperoni”);
var chkMushroom = document.getElementById(“chkMushroom”);
var chkSausage = document.getElementById(“chkSausage”);

var output = document.getElementById(“output”);
var result = “ \n”

if (chkPepperoni.checked){
result += “” + chkPepperoni.value + “<\/li> \n”;

} // end if

if (chkMushroom.checked){
result += “” + chkMushroom.value + “<\/li> \n”;

} // end if

if (chkSausage.checked){
result += “” + chkSausage.value + “<\/li> \n”;

} // end if

result += “<\/ul> \n”
output.innerHTML = result;

} // end function

//]]>
</script>

For each check box:

1. Determine whether the check box is checked.

Use the checked property as a condition.

2. If so, return the value property associated with the check box.

Often, in practice, the value property is left out. The important thing is
whether the check box is checked. If chkMushroom is checked, the user
obviously wants mushrooms, so you may not need to explicitly store that
data in the check box itself.

Working with Radio Buttons
Radio button groups appear pretty simple, but they’re more complex than
they seem. Figure 6-4 shows a page using radio button selection.

The most important thing to remember about radio buttons is that they
must be in groups. Each group of radio buttons has only one button active.
The group should be set up so that one button is always active.

You specify the radio button group in the XHTML code. Each element of the
group can have an id (although the IDs aren’t really necessary in this applica-
tion). What’s more important here is the name attribute. Look over the code, and
you’ll notice something interesting. All the radio buttons have the same name!

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 446

Book IV
Chapter 6

Getting Valid Input

Working with Radio Buttons 447

<body>
<h1>With what weapon will you fight the dragon?</h1>
<form action = “”>

<fieldset>
<input type = “radio”

name = “weapon”
id = “radSpoon”
value = “spoon”
checked = “checked” />

<label>Spoon</label>

<input type = “radio”
name = “weapon”
id = “radFlower”
value = “flower” />

<label>Flower</label>

<input type = “radio”
name = “weapon”
id = “radNoodle”
value = “wet noodle” />

<label>Wet Noodle</label>
<button type = “button”

onclick = “fight()”>
fight the dragon

</button>
</fieldset>

</form>
<div id = “output”>

Figure 6-4:
One and
only one
member of a
radio group
can be
selected at
once.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 447

Working with Radio Buttons448

</div>
</body>

</html>

Using a name attribute when everything else has an id seems a little odd,
but you do it for a good reason. The name attribute is used to indicate the
group of radio buttons. Because all the buttons in this group have the same
name, they’re related, and only one of them will be selected.

The browser recognizes this behavior and automatically unselects the other
buttons in the group whenever one is selected.

I added a label to describe what each radio button means.

You need to preset one of the radio buttons to true with the checked =
“checked” attribute. If you fail to do so, you have to add code to account
for the possibility that there is no answer at all.

Interpreting radio buttons
Getting information from a group of radio buttons requires a slightly differ-
ent technique than most of the form elements. Unlike the select object, no
container object can return a simple value. You also can’t just go through
every radio button on the page because you may have more than one group.
(Imagine a page with a multiple-choice test.)

This issue is where the name attribute comes in. Although ids must be
unique, multiple elements on a page can have the same name. If they do, you
can treat these elements as an array.

Look over the code to see how it works:

<script type = “text/javascript”>
//<![CDATA[
// from radioGroup.html
function fight(){

var weapon = document.getElementsByName(“weapon”);

for (i = 0; i < weapon.length; i++){
currentWeapon = weapon[i];

if (currentWeapon.checked){
var selectedWeapon = currentWeapon.value;

} // end if

} // end for

var output = document.getElementById(“output”);
var response = “<h2>You defeated the dragon with a “;
response += selectedWeapon + “<\/h2> \n”;
output.innerHTML = response;

} // end function

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 448

Book IV
Chapter 6

Getting Valid Input

Working with Regular Expressions 449

//]]>
</script>

This code looks much like all the other code in this chapter, but it has a
sneaky difference:

✦ It uses getElementsByName to retrieve an array of elements with this
name. Now that you’re comfortable with getElementById, I throw a
monkey wrench in the works. Note that it’s plural — getElement
sByName — because this tool is used to extract an array of elements. It
returns an array of elements. (In this case, all the radio buttons in the
weapon group.)

✦ It treats the result as an array. The resulting variable (weapon in this
example) is an array. As usual, the most common thing to do with arrays
is process them with loops. Use a for loop to step through each ele-
ment in the array.

✦ Assign each element of the array to currentWeapon. This variable
holds a reference to the current radio button.

✦ Check to see whether the current weapon is checked. The checked
property indicates whether any radio button is currently checked.

✦ If so, retain the value of the radio button. If the current radio button is
checked, its value is the current value of the group, so store it in a vari-
able for later use.

✦ Output the results. You can now process the results as you would with
data from any other resource.

Working with Regular Expressions
Having the right kinds of form elements can be helpful, but things can still go
wrong. Sometimes, you have to let the user type things, and that information
must be in a particular format. As an example, take a look at Figure 6-5.

A mechanism that checks input from a form to see whether it’s in the right
format would be great. You can create this feature with string functions, but
it can be really messy. Imagine how many if statements and string methods
it would take to enforce the following rules on this page:

✦ An entry must appear in each field. This one is reasonably easy — just
check for non-null values.

✦ The e-mail must be in a valid format. That is, it must consist of a few
characters, an “at” sign (@), a few more characters, a period, and a
domain name of two to four characters. That format would be a real pain
to check for.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 449

Working with Regular Expressions450

✦ The phone number must also be in a valid format. Phone numbers can
appear in multiple formats, but assume that you require an area code in
parentheses, followed by an optional space, followed by three digits, a
dash, and four digits. All digits must be numeric.

While you can enforce these rules, it would be extremely difficult to do so
using ordinary string manipulation tools.

JavaScript strings have a match method, which helps find a substring inside
a larger string. This tool is good, but we’re not simply looking for specific
text, but patterns of text. For example, we want to know whether some-
thing’s an e-mail address (text, an @, more text, a period, and two to four
more characters).

Imagine how difficult that code would be to write; then take a look at the
code for the validate.html page:

<script type = “text/javascript”>
function validate(){

//get inputs
name = document.getElementById(“txtName”).value;
email = document.getElementById(“txtEmail”).value;
phone = document.getElementById(“txtPhone”).value;

//console.log(“Name: “ + name + “, email: “ + email + “, Phone: “ +
phone);

Figure 6-5:
This page is
a mess. No
user name,
and it’s not a
valid e-mail
or phone
number.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 450

Book IV
Chapter 6

Getting Valid Input

Working with Regular Expressions 451

// name must simply exist
if (name == “”){

alert(“Please enter a name”);
} else {

//name is OK, now check email

//email must include an at sign
if (email.match(“^.*\..{2,4}”) == null){

alert(“That is not a valid email address”);
} else {

//email is OK, now check phone #
// regex is the only way to go here....

phoneRE = /\(\d{3}\) *\d{3}-\d{4}/
if (phone.match(phoneRE)== null){

alert(“That was not a valid phone number”);
} else {

//everything’s ok...
alert(“processing form.....”);

} // end phone if
} // end email if

} // end name if
} // end function

</script>

I’m only showing the JavaScript code here to save space. Look on the
CD-ROM to see how the HTML and CSS are written.

The code isn’t really all that difficult!

✦ It extracts data from the form. It does so in the usual way.

✦ The validation is a series of nested if statements. Look at the overall
structure. The if statements go three layers deep.

✦ The name check is very simple. The only way it can go wrong is to have
no name.

✦ Don’t check anything else if the name is wrong. If the name isn’t right,
you don’t need to check the other things.

✦ Check the e-mail address. This verification seems pretty simple until
you look at the line that contains the email.match(“^.*\..{2,4}”
business. It looks like a cursing cartoonist in there. For now, just accept
it as a magic incantation. The match will be true if it’s an e-mail address
or return null if it’s not.

✦ Check the phone number. Once again, the phone number check is
simple except the match business, which is just as mysterious:
/\(\d{3}\) *\d{3}-\d{4}/ (seriously, who makes this stuff up?).

✦ If everything worked, process the form. Usually, at this point, you call
some sort of function to finish handling the form processing.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 451

Working with Regular Expressions452

Frequently, you do validation in JavaScript before you pass information to a
program on the server. This way, your server program already knows the
data is valid by the time it gets there.

Introducing regular expressions
Of course, the secret of this program is to decode the mystical expressions
used in the match statements. They aren’t really strings at all, but very pow-
erful text-manipulation techniques called regular expression parsing. Regular
expressions have migrated from the UNIX world into many programming lan-
guages, including JavaScript.

A regular expression is a powerful mini-language for searching and replacing
text patterns. Essentially, what it does is allow you to search for complex
patterns and expressions. It’s a weird-looking language, but it has a certain
charm once you know how to read the arcane-looking expressions.

Regular expressions are normally used with the string match() method in
JavaScript, but you can also use them with the replace() method and a
few other places.

Table 6-1 summarizes the main operators in JavaScript regular expressions.

Table 6-1 Regular Expression Operators in JavaScript
Operator Description Sample Pattern Matches Doesn’t Match

. (period) Any single . E \n
character except
newline

^ Beginning of string ^a Apple Banana

$ End of string a$ Banana Apple

[characters] Any of a list of [abcABC] A D
characters in braces

[char range] Any character [a-zA-Z] F 9
in the range

\d Any single \d\d\d-\d\d\d\d 123-4567 The-thing
numerical digit

\b A word boundary \bthe\b The Theater

+ One or more \d+ 1234 Text
occurrences of the
previous character

* Zero or more [a-zA-Z]d* B17, g 7
occurrences of the
previous character

{digit} Repeat preceding \d{3}-\d{4} 123-4567 999-99-9999
character digit times

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 452

Book IV
Chapter 6

Getting Valid Input

Working with Regular Expressions 453

Operator Description Sample Pattern Matches Doesn’t Match

{min, max} Repeat preceding .{2,4} Ca, com, info watermelon
character at least min
but not more than max
times

(pattern segment) Store results in pattern ^(.).*\1$ gig, wallow Bobby
memory returned with
code

Don’t memorize this table! I explain in the rest of this chapter exactly how it
works. Keep Table 6-1 handy as a reference.

To see how regular expressions work, take a look at regex.html in Figure 6-6.

The top textbox accepts a regular expression, and the second text field contains
text to examine. You can practice the examples in the following sections to see
how regular expressions work. They’re really quite useful once you get the
hang of them. As you walk through the examples, try them out in this tester.
(I’ve included it on the CD-ROM for you, but I don’t reproduce the code here.)

Figure 6-6:
This tool
allows you
to test
regular
expressions.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 453

Working with Regular Expressions454

Using characters in regular expressions
The main thing you do with a regular expression is search for text. Say that
you work for the bigCorp company, and you ask for employee e-mail
addresses. You can make a form that accepts only e-mail addresses with the
term bigCorp in them by using the following code:

if (email.match(“bigCorp”)){
alert(“match”);

} else {
alert(“no match”);

} // end if

This match is the simplest type. I’m simply looking for the existence of the
needle (bigCorp) in a haystack (the e-mail address stored in email). If the
text bigCorp is found anywhere in the text, the match is true, and I can do
what I want (usually process the form on the server). More often, you’ll want
to trap for an error and remind the user what needs to be fixed.

Marking the beginning and end of the line
You may want to improve the search, because what you really want are
addresses that end with “bigCorp.com”. You can put a special character
inside the match string to indicate where the end of the line should be:

if (email.match(“bigCorp.com$”)){
alert(“match”);

} else {
alert(“no match”);

} // end if

The dollar sign at the end of the match string indicates that this part of the
text should occur at the end of the search string, so andy@bigCorp.com is
a match, but not “bigCorp.com announces a new Web site.”

If you’re already an ace with regular expressions, you know this example has
a minor problem, but it’s pretty picky. I explain it in the upcoming section
“Working with special characters.” For now, just appreciate that you can
include the end of the string as a search parameter.

Likewise, you can use the caret character (^) to indicate the beginning of a
string.

If you want to ensure that a text field contains only the phrase oogie
boogie (and why wouldn’t you?), you can tack on the beginning and ending
markers. The code ^oogie boogie$ is a true match only if nothing else
appears in the phrase.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 454

Book IV
Chapter 6

Getting Valid Input

Working with Regular Expressions 455

Working with special characters
In addition to ordinary text, you can use a bunch of special character sym-
bols for more flexible matching:

✦ Matching a character with the period: The most powerful character is
the period (.), which represents a single character. Any single character
except the newline (\n) matches against the period. A character that
matches any character may seem silly, but it’s actually quite powerful.
The expression b.g matches big, bag, and bug. In fact, it matches any
phrase that contains b followed by any single character and then g, so
bxg, b g, and b9g are also matches.

✦ Using a character class: You can specify a list of characters in square
braces, and JavaScript matches if any one of those characters matches.
This list of characters is sometimes called a character class. For example,
b[aeiou]g matches on bag, beg, big, bog, or bug. This method is a
really quick way to check a lot of potential matches.

You can also specify a character class with a range. [a-zA-Z] checks all
the letters.

✦ Specifying digits: One of the most common tricks is to look for num-
bers. The special character \d represents a number (0–9). You can
check for a U.S. phone number (without the area code — yet) using a
pattern that looks for three digits, a dash, and four digits: \d\d\d-
\d\d\d\d.

✦ Marking punctuation characters: You can tell that regular expressions use
a lot of funky characters, such as periods and braces. What if you’re
searching for one of these characters? Just use a backslash to indicate that
you’re looking for the actual character and not using it as a modifier. For
example, the e-mail address would be better searched with bigCorp\.
com, because it specifies there must be a period. If you don’t use the back-
slash, the regular expression tool interprets the period as “any character”
and allows something like bigCorpucom. Use the backslash trick for most
punctuation, such as parentheses, braces, periods, and slashes.

If you want to include an area code with parentheses, just use back-
slashes to indicate the parentheses: \(\d\d\d\) \d\d\d-\d\d\d\d.

✦ Finding word boundaries: Sometimes you want to know whether some-
thing is a word. Say that you’re searching for the word “the” but you
don’t want a false positive on “breathe” or “theater.” The \b character
means “the edge of a word,” so \bthe\b matches “the” but not words
containing “the” inside them.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 455

Working with Regular Expressions456

Conducting repetition operations
All the character modifiers refer to one particular character at a time, but
sometimes you want to deal with several characters at once. Several opera-
tors can help you with this process.

✦ Finding one or more elements: The plus sign (+) indicates “one or more”
of the preceding character, so the pattern ab+c matches on abc,
abbbbbbc, or abbbbbbbc, but not on ac (there must be at least one b)
or on afc (it’s gotta be b).

✦ Matching zero or more elements: The asterisk means “zero or more” of
the preceding character. So I’m .* happy matches on I’m happy
(zero occurrences of any character between I’m and happy). It also
matches on I’m not happy (because characters appear in between).

The .* combination is especially useful, because you can use it to
improve matches like e-mail addresses: ^.*@bigCorp\.com$ does a
pretty good job of matching e-mail addresses in a fictional company.

✦ Specifying the number of matches: You can use braces ({}) to indicate
the specific number of times the preceding character should be
repeated. For example, you can rewrite a phone number pattern as
\(\d{3}\) *\d{3}-\d{4}. This structure means “three digits in
parentheses, followed by any number of spaces (zero or more), and then
three digits, a dash, and four digits. Using this pattern, you can tell
whether the user has entered the phone number in a valid format.

You can also specify a minimum and maximum number of matches, so
[aeiou]{1, 3} means “at least one and no more than three vowels.”

Now you can improve the e-mail pattern so that it includes any number
of characters, an @ sign, and ends with a period and two to four letters:
^.*@.*\..{2,4}$.

Working with pattern memory
Sometimes you want to remember a piece of your pattern and reuse it. You
can use parentheses to group a chunk of the pattern and remember it. For
example, (foo){2} doesn’t match on foo, but it does on foofoo. It’s the
entire segment that’s repeated twice.

You can also refer to a stored pattern later in the expression. The pattern ^
(.).*\1$ matches any word that begins and ends with the same character.
The \1 symbol represents the first pattern in the string, \2 represents the
second, and so on.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 456

Book IV
Chapter 6

Getting Valid Input

Working with Regular Expressions 457

After you’ve finished a pattern match, the remembered patterns are still avail-
able in special variables. The variable $1 is the first, $2 is the second, and so
on. You can use this trick to look for HTML tags and report what tag was found:
Match ^<(.*)>.*<\/\1>$ and then print $1 to see what the tag was.

There’s much more to discover about regular expressions, but this basic
overview should give you enough to write some powerful and useful patterns.

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 457

Book IV: Client-Side Programming with JavaScript458

29_186275 bk04ch06.qxp 3/28/08 10:50 PM Page 458

Chapter 7: Animating Your Pages

In This Chapter
� Moving an object on the screen

� Responding to keyboard input

� Reading mouse input

� Running code repeatedly

� Bouncing off the walls

� Swapping images

� Reusing code

� Using external script files

JavaScript has a serious side, but it can be a lot of fun, too. You can easily
use JavaScript to make things move, animate, and wiggle. In this chapter,

you find out how to make your pages dance. Even if you aren’t interested in
animation, you can discover important ideas about how to design your
pages and code more efficiently.

I know what you’re thinking: You can use this stuff to make a really cool
game. It’s true. You can make games with JavaScript, but you eventually run
into JavaScript’s design limitations. I prefer Flash and Python as languages
to learn game development. Now that you mention it, I’ve written other
Wiley books on exactly these topics. See you there! (Check out Beginning
Flash Game Programming For Dummies and Game Programming: The L Line
for Python development.)

Making Things Move
You may think you need Flash or Java to put animation in your pages, but
that’s not the only way. You can use JavaScript to create some pretty inter-
esting motion effects. Take a look at Figure 7-1.

Because this chapter is about animation, most of the pages feature motion.
You really must see these pages in your browser to get the effect, as a static
screen shot can’t really do any of these programs justice.

The general structure of this page provides a foundation for other kinds of
animation:

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 459

Making Things Move460

✦ The HTML is pretty simple. The page really doesn’t require much HTML
code. It’s a couple of divs and some buttons.

✦ The ball is in a special div called sprite. Game developers call the
little images that move around on the screen sprites, so I use the same term.

✦ The sprite div has a local style. JavaScript animation requires a
locally defined style.

✦ The sprite div has absolute positioning. Because I’ll be moving this
thing around on the screen, it makes sense that it’s absolutely positioned.

✦ The code and CSS are as modular as possible. Things can get a little
complicated when you start animating things, so throughout this chap-
ter, I simplify as much as I can. The CSS styles are defined externally, and
the JavaScript code is also imported.

✦ Code is designed to be reused. Many programs in this chapter are very
similar to each other. To save effort, I’ve designed things so that I don’t
have to rewrite code if possible.

Looking over the HTML
The HTML code for this program provides the basic foundation:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

Figure 7-1:
Click the
buttons, and
the ball
moves.

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 460

Book IV
Chapter 7

Anim
ating Your

Pages
Making Things Move 461

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>movement.html</title>

<link rel = “stylesheet”
type = “text/css”
href = “movement.css” />

<script type = “text/javascript”
src = “movement.js”>

</script>
</head>

<body onload = “init()”>
<h1>Click buttons to move ball</h1>
<div id = “surface”>

<div id = “sprite”
style = “position: absolute;
top: 100px;
left: 100px;
height: 25px;
width: 25px;” >

<img src = “ball.gif”
alt = “ball” />

</div>
</div>
<form action = “”

id = “controls”>
<fieldset>

<button type = “button”
onclick = “moveSprite(-5, 0)”>

left
</button>
<button type = “button”

onclick = “moveSprite(5, 0)”>
right

</button>
</fieldset>

</form>
<p id = “output”>

x = 100, y = 100
</p>

</body>
</html>

You should notice a few interesting things about this code:

✦ It has an external style sheet. Most of the CSS (the stuff that defines the
surface and the forms) is moved off-stage into an external style sheet.
You have to define some CSS locally, but anything that can be moved
away is.

<link rel = “stylesheet”
type = “text/css”
href = “movement.css” />

✦ The JavaScript is also outsourced. The script tag has a src attribute,
which you can use to load JavaScript code from an external file. The

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 461

Making Things Move462

browser loads the specified file in and reads it as if it were directly in the
code. (Note that external scripts still require a </script> tag.) This
program gets its scripts from a file called movement.js.

<script type = “text/javascript”
src = “movement.js”>

</script>

✦ The body tag calls a method. In animation (and other advanced
JavaScript), you commonly have some code you want to run right away.
The body has an onload event. You can feed it the name of a function
(just like you do with a button’s onclick event). In this case, I want the
function called init() to run as soon as the body finishes loading into
the computer’s memory.

<body onload = “init()”>

✦ The yellow box is a div called surface. It isn’t absolutely necessary,
but when you have something moving around on the screen, you want
some kind of boundary so that the user knows where she can move.

✦ A sprite div appears inside surface. This sprite is the thing that
actually moves around.

<div id = “sprite”
style = “position: absolute;
top: 100px;
left: 100px;
height: 25px;
width: 25px;” >

<img src = “ball.gif”
alt = “ball” />

</div>

✦ The sprite div has a local style. Your code can change only styles that
have been defined locally. The sprite div has a local style specifying
absolute position, left, and top properties.

✦ It has buttons in a form. This particular program uses form buttons to
discern the user’s intent. Those buttons are in a form.

<button type = “button”
onclick = “moveSprite(-5, 0)”>

left
</button>

✦ Each button calls the moveSprite() method. The moveSprite()
method is defined in the movement.js file. It accepts two parameters:
dx determines how much the sprite should move in the x (side to side)
axis, and dy controls how much the sprite will move in the y (vertical) axis.

Getting an overview of the JavaScript
The following programming concepts improve programmer efficiency, which
is good as the JavaScript code becomes more complex:

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 462

Book IV
Chapter 7

Anim
ating Your

Pages
Making Things Move 463

✦ Move code to an external file. As with CSS code, when the JavaScript
starts to get complex, it’s a good idea to move it to its own file, so it’s
easier to manage.

✦ Encapsulate code in functions. Rather than writing a long, complicated
function, try to break the code into smaller functions that solve individ-
ual problems. If you design these functions well, your code is easier to
write, understand, and recycle.

✦ Create a few global variables. You can reuse a few key variables
throughout your code. Create global variables for these key items, but
don’t make anything global that doesn’t need to be.

✦ Define constants for clarity. Sometimes having a few key values stored
in special variables is handy. I’ve created some constants to help me
track the boundary of the visual surface.

Creating global variables
The first part of this document simply defines the global variables I use
throughout the program:

//movement.js
//global variables
var sprite;
var x, y; //position variables

//constants
var MIN_X = 15;
var MAX_X = 365;
var MIN_Y = 85;
var MAX_Y = 435;

The movement program has three main global variables.

✦ sprite represents the div that moves around on the screen.

✦ x is the x (horizontal) position of the sprite.

✦ y is the y (vertical) position of the sprite.

You don’t need to give values to global variables right away, but you should
define them outside any functions so that their values are available to all
functions. (See Chapter 4 in this minibook for more about functions and
variable scope.)

Note that in computer graphics, the y axis works differently than it does in math.
Zero is the top of the screen, and y values increase as you move down the page.
(This increase happens because it models the top-to-bottom pattern of most
display devices.)

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 463

Making Things Move464

This program also features some special constants. A constant is a variable
(usually global) whose value isn’t intended to change as the program runs.
Constants are almost always used to add clarity.

Through experimentation, I found that the ball’s x value should never be smaller
than 15 or larger than 365. By defining special constants with these values, I can
make it clear what these values represent. (See the section called “Checking the
boundaries” later in this chapter to see how this feature really works.)

You traditionally put constants entirely in uppercase letters. Many languages
have special modifiers for creating constants, but JavaScript doesn’t. If you
want something to be a constant, just make a variable with an uppercase name
and treat it as a constant. (Don’t change it during the run of the program.)

Initializing
The init() function is small but mighty:

function init(){
sprite = document.getElementById(“sprite”);

} // end init

It does a simple but important job: loading up the sprite div and storing it
into a variable named sprite. Because sprite is a global variable, all other
functions have access to the sprite variable and are able to manipulate it.

You often use the init() function to initialize key variables in your pro-
grams. You also can use this function to set up more advanced event han-
dlers, as you see in the animation sections of this chapter.

Moving the sprite
Of course, the most interesting function in the program is the one that
moves sprites around the screen. Take a look at the following code, which I
break down for you:

function moveSprite(dx, dy){
var surface = document.getElementById(“surface”);

x = parseInt(sprite.style.left);
y = parseInt(sprite.style.top);

x += dx;
y += dy;

checkBounds();

// move ball to new position
sprite.style.left = x + “px”;
sprite.style.top = y + “px”;

//describe position

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 464

Book IV
Chapter 7

Anim
ating Your

Pages
Making Things Move 465

var output = document.getElementById(“output”);
output.innerHTML = “x: “ + x + “, y: “ + y;

} // end MoveSprite

The function works essentially by determining how much the sprite should
be moved in x and y and then manipulating the left and top properties of
its style. Here’s what happens:

1. Accept dx and dy as parameters.

The function expects two parameters: dx stands for delta-x, and dy is
delta-y. (You can read them difference in x and difference in y if you
prefer, but I like sounding like a NASA scientist.) These parameters tell
how much the sprite should move in each dimension.

function moveSprite(dx, dy){

You may wonder why I’m working with dx and dy when this object
moves only horizontally. See, I’m thinking ahead. I’m going to reuse this
function in the next few programs, which I discuss in the upcoming sec-
tions. Even though I don’t need to move vertically yet, I will as I continue
programming, so I built the capability in.

2. Get a reference to the surface.

Use the normal document.getElementById trick to extract the sprite
from the page. Be sure the sprite you’re animating has absolute position
with top and left properties defined in a local style.

var surface = document.getElementById(“surface”);

3. Extract the sprite’s x and y parameters.

The horizontal position is stored in the left property. CSS styles are
stored as strings and include a measurement. For example, the original
left value of the sprite is 100px. For the program, we need only the
numeric part. The parseInt() function pulls out only the numeric part
of the left property and turns it into an integer, which is then stored in x.
Do the same thing to get the y value.

x = parseInt(sprite.style.left);
y = parseInt(sprite.style.top);

4. Increment x and y .

Now that you have the x and y properties stored as integer variables,
you can do math on them. It isn’t complicated math. Just add dx to x
and dy to y. This syntax allows you to move the object as many pixels as
the user wants in both x and y axes.

x += dx;
y += dy;

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 465

Making Things Move466

5. Check boundaries.

If you have young children, you know this rule: Once you have something
that can move, it will get out of bounds. If you let your sprite move, it will
leave the space you’ve designated. Checking the boundaries isn’t difficult,
but it’s another task, so I’m just calling a function here. I describe check
Bounds() in the next section, but basically it just checks to see whether
the sprite is leaving the surface and adjusts its position to stay in bounds.

checkBounds();

6. Move the ball.

Changing the x and y properties doesn’t really move the sprite. To do
that, you need to convert the integers back into the CSS format. If x is
120, you need to set left to 120px. Just concatenate “px” to the end
of each variable, and JavaScript automatically concatenates.

// move ball to new position
sprite.style.left = x + “px”;
sprite.style.top = y + “px”;

7. Print the position.

For debugging purposes, I like to know exactly where the x and y positions
are, so I just made a string and printed it to an output panel.

//describe position
var output = document.getElementById(“output”);
output.innerHTML = “x: “ + x + “, y: “ + y;

Checking the boundaries
You can respond in a number of ways when an object leaves the playing
area. I’m going with wrapping, one of the simplest techniques. If something
leaves the rightmost border, simply have it jump all the way to the left.

The code handles all four borders:

function checkBounds(){
//wrap
if (x > MAX_X){

x = MIN_X;
} // end if
if (x < MIN_X){

x = MAX_X;
} // end if
if (y > MAX_Y){

y = MIN_Y;
} // end if
if (y < MIN_Y){

y = MAX_Y;
} // end if

} // end function

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 466

Book IV
Chapter 7

Anim
ating Your

Pages
Making Things Move 467

The checkBounds() function depends on the constants, which helps in a
couple of ways. When you look at the code, you can easily see what’s going on:

if (x > MAX_X){
x = MIN_X;

} // end if

If x is larger than the maximum value for x, set it to the minimum value. You
almost can’t write it any more clearly than this. If the size of the playing sur-
face changes, you simply change the values of the constants.

You probably wonder how I came up with the actual values for the constants.
In some languages, you can come up with nice mathematical tricks to predict
exactly what the largest and smallest values should be. In JavaScript, it’s a
little tricky because it just isn’t that precise an environment.

I chose a simple but effective technique. I temporarily took out the check-
bounds() call and just took a look at the output to see what the values of x
and y were. I looked to see how large x should be before the sprite wraps
and wrote down the value on paper. Likewise, I found the largest and small-
est values for y.

Once I knew these values, I simply placed them in constants. I don’t really
care that the maximum value for x is 365. I just want to know that x doesn’t
go past the MAX_X value when I’m messing around with it.

If the size of my playing surface changes, I just change the constants, and
everything works out fine.

Shouldn’t you just get size values
from the surface?

In a perfect world, I would have extracted the
position values from the playing surface itself.
Unfortunately, JavaScript / DOM is not a perfect
animation framework. Because I’m using
absolute positioning, the position of the sprite isn’t
attached to the surface (as it should be), but to the
main screen. It’s a little annoying, but some exper-
imentation can help you find the right values.

Remember, once you’ve started using absolute
positioning on a page, you’re pretty much

committed to it. If you’re using animation like the
one described in this section, you’ll probably
want to use absolute positioning everywhere or
do some other tricks to make sure that the sprite
stays where you want it to go without overwrit-
ing other parts of the page. Regardless, using
constants keeps the code easy to read and
maintain, even if you have to hack a little bit to
find the specific values you need.

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 467

Reading Input from the Keyboard468

Reading Input from the Keyboard
You can use JavaScript to read directly from the keyboard. This trick is
useful in a several situations, but it’s especially handy in animation and
simple gaming applications.

Figure 7-2 shows a program with a moving ball.

The keyboard.html page has no buttons because the keyboard arrows are
used to manage all the input.

You know what I’m going to say. Look this thing over in your browser
because it just doesn’t have any charm unless you run it and mash on some
arrow keys.

Building the keyboard page
The keyboard page is very much like the movement page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>keyboard.html</title>

Figure 7-2:
You can
move the
ball with the
arrow keys.

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 468

Book IV
Chapter 7

Anim
ating Your

Pages
Reading Input from the Keyboard 469

<link rel = “stylesheet”
type = “text/css”
href = “keyboard.css” />

<script type = “text/javascript”
src = “movement.js”>

</script>
<script type = “text/javascript”

src = “keyboard.js”>
</script>

</head>

<body onload = “init()”>
<h1>Use arrow keys to move ball</h1>

<div id = “surface”>
<div id = “sprite”

style = “position: absolute;
top: 100px;
left: 100px;
height: 25px;
width: 25px;” >

<img src = “ball.gif”
alt = “ball” />

</div>
</div>

<p id = “output”>
x = 100, y = 100

</p>
</body>

</html>

The preceding code is when it really pays off to build reusable code. I basi-
cally copied the movement.html page with a couple of important changes:

✦ Import the movement.js script. This page uses the same functions as
the movement.html page, so just reimport the script.

✦ Add another script specific to reading the keyboard. You need a
couple of modifications, which are housed in a second script file called
keyboard.js.

✦ Keep the rest of the page similar. You still call init() when the body
loads, and you still want the same visual design, except for the buttons.
The surface and sprite divs are identical to the movement.html design.

✦ Take out the form. This page responds to the keyboard, so you no
longer need a form.

This program begins with the movement.js script. As far as the browser is con-
cerned, that entire script file has been loaded before the keyboard.js script
appears. The basic foundation is already in place from movement. The keyboard
script just handles the modifications to make keyboard support work.

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 469

Reading Input from the Keyboard470

Overwriting the init() function
Working with a keyboard still requires some initialization. I need a little more
work in the init() function, so I make a new version to replace the version
created in movement.js.

//assumes movement.js

function init(){
sprite = document.getElementById(“sprite”);
document.onkeydown = keyListener;

} // end init

The order in which you import scripts matters. If you duplicate a function,
the browser interprets only the last script read.

Setting up an event handler
In my init() function, I still want to initialize the sprite (as I did in move-
ment.js, described in the “Moving the Sprite” section earlier in this chapter).
When you want to read the keyboard, you need to tap into the browser’s event-
handling facility. Browsers provide basic support for page-based events (such
as body.onload and button.onclick), but they also provide a lower level
support for more fundamental input, such as keyboard and mouse input.

If you want to read this lower level input, you need to specify a function that
will respond to the input.

document.onkeydown = keyListener;

This line specifies that a special function called keyListener is called
whenever the user presses a key. Keep a couple of things in mind when you
create this type of event handler:

✦ It should be called in init(). You’ll probably want keyboard handling
to be available immediately, so setting up event handlers in the init()
function is common.

✦ The function is called as if it were a variable. This syntax is slightly
different than typically used in JavaScript. When you create func-
tion handlers in HTML, you simply feed a string that represents the
function name complete with parameters (button onclick =
“doSomething()”). When you call a function within JavaScript (as
opposed to calling the function in HTML), the function name is actually
much like a variable, so it doesn’t require quotes.

If you want to know the truth, functions are variables in JavaScript. Next
time somebody tells you JavaScript is a toy language, mention that it
supports automatic dereferencing of function pointers. Then run away
before they ask you what that means. (That’s what I do . . .)

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 470

Book IV
Chapter 7

Anim
ating Your

Pages
Reading Input from the Keyboard 471

✦ You need to create a function with the specified name. If you’ve got
this code in init, the browser calls a function called keyListener()
whenever a key is pressed. (You can call the function something else,
but keyListener() is a pretty good name for it.)

Responding to keystrokes
After you’ve set up an event-handler, you need to write the function to
respond to keystrokes. Fortunately, this task turns out to be pretty easy.

function keyListener(e){
// if e doesn’t already exist, we’re in IE so make it

if (!e){
e = window.event;

} // end IE-specific code

//left
if (e.keyCode == 37){

moveSprite(-10, 0);
} // end if

//up
if (e.keyCode == 38){

moveSprite(0, -10);
} // end if

//right
if (e.keyCode == 39){

moveSprite(10, 0);
} // end if

//down
if (e.keyCode == 40){

moveSprite(0, 10);
} // end if

} // end keyListener

The keyListener() function is a good example of an event handler. These
functions are used to determine what events have happened in the system,
and to respond to those events. Here’s how to build this one:

✦ Event functions have event objects. Just knowing that an event has
occurred isn’t enough. You need to know which key has been pressed.
Fortunately, the browsers all have an event object available to tell you
what’s happened.

✦ Many browsers pass the event as a parameter. When you create an
event function, the browser automatically assigns a special parameter to
the function. This parameter (normally called e) represents the event.
Just make the function with a parameter called e, and most browsers
create e automatically.

function keyListener(e){

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 471

Following the Mouse472

✦ Internet Explorer needs a little more help. Internet Explorer doesn’t
automatically create an event object for you, so you need to specifically
create it.

// if e doesn’t already exist, we’re in IE so make it

if (!e){
e = window.event;

} // end IE-specific code

✦ You can use e to figure out which key was pressed. The e object has
some nifty properties, including keyCode. This property returns a
number that tells you which key was pressed.

Do a quick search on JavaScript event object to discover other kinds of
event tricks. I show the most critical features here, but this section is
just an introduction to the many interesting things you can do with events.

✦ Compare to known keycodes. You can figure out the keycodes of any keys
on your keyboard and use basic if statements to respond appropriately.

//left
if (e.keyCode == 37){

moveSprite(-10, 0);
} // end if

✦ Call appropriate variations of moveSprite. If the user presses the left
arrow, move the sprite to the left. You can use the moveSprite() func-
tion defined in movement.js (in the “Moving the Sprite” section of this
chapter) for this task.

Deciphering the mystery of key codes
Of course, the big mystery of a keyboard handler is where all those funky
key numbers came from. How did I know that the left arrow is keycode 37,
for example? It’s pretty simple, really. I just wrote a program to tell me. Figure
7-3 shows readKeys.html in action.

Run readKeys and press a few keys. You can then easily determine what
keycode is related to which key on the keyboard. You may also want to look
over this code if you’re a little confused; because all the code is in one place,
it may be a bit easier to read than the movement examples.

If you use a notebook or international keyboard, be aware that some of the key
codes may be nonstandard, especially numeric keypad keys. Try to stick to
standard keys if you want to ensure that your program works on all keyboards.

Following the Mouse
You can also create an event-handler that reads the mouse. Figure 7-4 shows
such a program.

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 472

Book IV
Chapter 7

Anim
ating Your

Pages
Following the Mouse 473

The mouse-following effect is actually quite an easy effect once you know
how to read the keyboard because it works in almost exactly the same way
as the keyboard approach.

Looking over the HTML
The code for followMouse.html is simple enough that I kept it in one file:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>followMouse.html</title>
<script type = “text/javascript”>

var sprite;

function init(){
sprite = document.getElementById(“sprite”);
document.onmousemove = mouseListener;

} // end init

function mouseListener(e){
if (!e){

e = window.event;
} // end IE catch

//get width and height
height = parseInt(sprite.style.height);
width = parseInt(sprite.style.width);

Figure 7-3:
This
program
reads the
keyboard
and reports
the key
codes.

30_186275 bk04ch07.qxp 3/28/08 10:50 PM Page 473

Following the Mouse474

//move center of sprite to mouse
x = e.pageX - (width/2);
y = e.pageY - (height/2);

sprite.style.left = x + “px”;
sprite.style.top = y + “px”;

} // end function
</script>

</head>

<body onload = “init()”>
<h1>Move the mouse and the ball will follow</h1>
<div id = “sprite”

style = “position: absolute;
left: 100px;
top: 100px;
width: 50px;
height: 50px;”>

<img src = “ball.gif”
alt = “ball” />

</div>
</body>

</html>

The HTML page is simple. This time I’m letting the mouse take up the entire
page. No borders are necessary because the sprite isn’t able to leave the page.
(If the mouse leaves the page, it no longer sends event messages.)

Just create a sprite with an image as normal and be sure to call init()
when the body loads.

Figure 7-4:
Now the
sprite stays
with the
mouse.

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 474

Book IV
Chapter 7

Anim
ating Your

Pages
Following the Mouse 475

Initializing the code
The initialization is also pretty straightforward:

1. Create a global variable for the sprite.

Define the sprite variable outside any functions so that it is available
to all of them.

var sprite;

2. Build the sprite in init().

The init() function is a great place to create the sprite.
function init(){

sprite = document.getElementById(“sprite”);
document.onmousemove = mouseListener;

3. Set up an event handler in init() for mouse motion.

This time, you’re trapping for mouse events, so call this one
mouseListener.

document.onmousemove = mouseListener;

Building the mouse listener
The mouse listener works much like a keyboard listener. It examines the
event object to determine the mouse’s current position and then uses that
value to place the sprite:

1. Get the event object.

Use the cross-platform technique to get the event object.
function mouseListener(e){

if (!e){
e = window.event;

} // end IE catch

2. Determine the sprite’s width and height.

The top and left properties point to the sprite’s top-left corner.
Placing the mouse in the center of the sprite looks more natural. To cal-
culate the center, you need the height and width. Don’t forget to add
these values to the local style for the sprite.

//get width and height
height = parseInt(sprite.style.height);
width = parseInt(sprite.style.width);

3. Use e.pageX and e.pageY to get the mouse position.

These properties return the current position of the mouse.

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 475

Creating Automatic Motion476

4. Determine x and y under the mouse cursor.

Subtract half of the sprite’s width from the mouse’s x (e.pageX) so that
the sprite’s horizontal position is centered on the mouse. Repeat with
the y position.

//move center of sprite to mouse
x = e.pageX - (width/2);
y = e.pageY - (height/2);

5. Move the mouse to the new x and y coordinates.

Use the conversion techniques to move the sprite to the new position.
sprite.style.left = x + “px”;
sprite.style.top = y + “px”;

Another fun effect is to have the sprite influenced by the mouse. Don’t make
it follow the mouse directly, but check to see where the mouse is in relation-
ship with the sprite. Have the sprite move up if the mouse is above the
sprite, for example.

Creating Automatic Motion
You can make a sprite move automatically by attaching a special timer to the
object. Figure 7-5 shows the ball moving autonomously across the page.

Timer.html is surprisingly simple because it borrows almost everything
from other code.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>timer.html</title>

<link rel = “stylesheet”
type = “text/css”
href = “keyboard.css” />

<script type = “text/javascript”
src = “movement.js”>

</script>

<script type = “text/javascript”>
function init(){

sprite = document.getElementById(“sprite”);
setInterval(“moveSprite(5, 3)”, 100);

} // end init

</script>
</head>

<body onload = “init()”>
<h1>Timer-based movement</h1>

<div id = “surface”>

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 476

Book IV
Chapter 7

Anim
ating Your

Pages
Creating Automatic Motion 477

<div id = “sprite”
style = “position: absolute;
top: 100px;
left: 100px;
height: 25px;
width: 25px;” >

<img src = “ball.gif”
alt = “ball” />

</div>
</div>

<p id = “output”>
x = 100, y = 100

</p>
</body>

</html>

The HTML and CSS is exactly the same as the button.html code. Most of
the JavaScript comes from movement.js. The only thing that’s really new is
a tiny but critical change in the init() method.

Creating a setInterval() call
JavaScript contains a very useful function called setInterval. This thing
takes two parameters:

✦ A function call. Create a string containing a function call including any
of its parameters.

Figure 7-5:
This sprite is
moving on
its own. (I
added the
arrow to
show
motion.)

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 477

Building Image-Swapping Animation478

✦ A time interval in milliseconds. You can specify an interval in 1000ths
of a second. If the interval is 500, the given function is called twice per
second, 50 milliseconds is 20 times per second, and so on.

You can set the interval at whatever speed you want, but that doesn’t guar-
antee things will work that fast. If you put complex code in a function and
tell the browser to execute it 1,000 times a second, it probably won’t be able
to keep up (especially if the user has a slower machine than you do).

The browser will call the specified function at the specified interval. Put any
code that you want repeated inside the given function.

Don’t put anything in an interval function that doesn’t have to go there. Because
this code happens several times per second, it’s called a critical path, and any
wasteful processing here can severely slow down the entire program. Try to
make the code in an interval function as clean as possible. (That’s why I created
the sprite as a global variable. I didn’t want to re-create the sprite 20 times per
second, making my program impossible for slower browsers to handle.)

Automatically moving objects are a great place to play with other kinds of
boundary detection. If you want to see how to make something bounce when
it hits the edge, look at bounce.html and bounce.js on the CD-ROM.

Building Image-Swapping Animation
The other kind of animation you can do involves rapidly changing an image.
Look at Figure 7-6 to see one frame of an animated figure.

Animation is never that easy to show in a still screen shot, so Figure 7-7 shows
the sequence of images used to build the kicking sprite.

You can use any series of images you want. I got these images from a site
called Reiner’s Tilesets (http://reinerstileset.4players.de/
englisch.htm). It includes a huge number of sprites, each with several
animations. These animations are called Freya.

Preparing the images
You can build your own images, or you can get them from a site like Reiner’s.
In any case, here are a few things to keep in mind when building image
animations:

✦ Keep them small. Larger images take a long time to download and don’t
swap as smoothly as small ones. My images are 128 by 128 pixels, which
is a good size.

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 478

Book IV
Chapter 7

Anim
ating Your

Pages
Building Image-Swapping Animation 479

✦ Consider adding transparency. The images from Reiner have a brown
background. I changed the background to transparent using my favorite
graphics editor (Gimp).

✦ Change the file format. The images came in .bmp format, which is ineffi-
cient and doesn’t support transparency. I saved them as .gif images to
make them smaller and enable the background transparency.

Figure 7-7:
I used this
series of
images to
build the
animation.

Figure 7-6:
This sprite is
kicking!

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 479

Building Image-Swapping Animation480

✦ Consider changing the names. I renamed the images to make the names
simpler and to eliminate spaces from the filenames. I called the images
kick00.gif to kick12.gif.

✦ Put animation images in a subdirectory. With ordinary page images, I
often find a subdirectory to be unhelpful. When you start building ani-
mations, you can easily have a lot of little images running around. A
large number of small files is a good place for a subdirectory.

Building the page
The code for animation just uses variations of techniques described
throughout this chapter: a setInterval function and some DOM coding.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>imageSwap.html</title>
<script type = “text/javascript”>

//<![CDATA[
var imgList = new Array (
“freya/kick00.gif”,
“freya/kick01.gif”,
“freya/kick02.gif”,
“freya/kick03.gif”,
“freya/kick04.gif”,
“freya/kick05.gif”,
“freya/kick06.gif”,
“freya/kick07.gif”,
“freya/kick08.gif”,
“freya/kick09.gif”,
“freya/kick10.gif”,
“freya/kick11.gif”,
“freya/kick12.gif”

);

var frame = 0;
var spriteImage

function init(){
setInterval(“animate()”, 100);
spriteImage = document.getElementById(“image”);

} // end init

function animate(){
frame += 1;
if (frame > imgList.length){

frame = 0;
} // end if
spriteImage.src = imgList[frame];

}
//]]>

</script>
</head>

<body onclick = “init()”>
<div id = “sprite”>

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 480

Book IV
Chapter 7

Anim
ating Your

Pages
Building Image-Swapping Animation 481

<img id = “image”
src = “freya/kick00.gif”
alt = “kicking sprite” />

</div>
</body>

</html>

The HTML is incredibly simple:

1. Set up the body with an init() method.

As usual, the body’s onclick event calls an init() method to start
things up.

2. Create a sprite div.

Build a div named sprite. Because you aren’t changing the position of
this div (yet), you don’t need to worry about the local style.

3. Name the img.

In this program, you animate the img inside the div, so you need to give
it an id.

Building the global variables
The JavaScript code isn’t too difficult, but it requires a little bit of thought.

1. Create an array of image names.

You have a list of images to work with. The easiest way to support sev-
eral related images is with an array of image names. Each element of the
array is the filename of an image. Put them in the order you want the ani-
mation frames to appear.

var imgList = new Array (
“freya/kick00.gif”,
“freya/kick01.gif”,
“freya/kick02.gif”,
“freya/kick03.gif”,
“freya/kick04.gif”,
“freya/kick05.gif”,
“freya/kick06.gif”,
“freya/kick07.gif”,
“freya/kick08.gif”,
“freya/kick09.gif”,
“freya/kick10.gif”,
“freya/kick11.gif”,
“freya/kick12.gif”

);

2. Build a frame variable to hold the current frame number.

Because this animation has 12 frames, the frame variable goes from 0 to 11.
var frame = 0;

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 481

Building Image-Swapping Animation482

3. Set up spriteImage to reference to the img tag inside the sprite tag.
var spriteImage

Setting up the interval
The init() function attaches the spriteImage variable to the image
object and sets up the animate() method to run ten times per second.

function init(){
setInterval(“animate()”, 100);
spriteImage = document.getElementById(“image”);

} // end init

Animating the sprite
The actual animation happens in the (you guessed it...) animate() function.
The function is straightforward:

1. Increment frame.

Add one to the frame variable.
frame += 1;

2. Check for bounds.

Any time you change a variable, you should consider whether it may go
out of bounds. I’m using frame as an index in the imgList array, so I
check to see that frame is always less than the length of imgList.

if (frame > imgList.length){
frame = 0;

} // end if

3. Reset frame, if necessary.

If the frame counter gets too high, reset it to zero and start the animation
over.

4. Copy the image filename over from the array to the src property of
the spriteImage object.

This step causes the given file to display.
spriteImage.src = imgList[frame];

JavaScript is not an ideal animation framework, but it will do. You do get some
delays on the first pass as all the images load. (Making the images smaller and
in the GIF or PNG formats will help with this issue.) Most browsers store
images locally, so the images animate smoothly after the first pass.

If you want smoother animation, you can either preload the images or combine
all the frames into a single image and simply change what part of the image is
displayed.

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 482

Book IV
Chapter 7

Anim
ating Your

Pages
Movement and Swapping 483

Even if you don’t like animation, these techniques can be useful. You can use
the setInterval() technique for any kind of repetitive code you want,
including the dynamic display of menus or other page elements. In fact,
before CSS became the preferred technique, most dynamic menus used
JavaScript animation.

Movement and Swapping
Finally, you can combine motion effects with image-swapping to have an image
move around on the screen with animated motion. Figure 7-8 tries to show this
effect (but you need to use a browser to really see it).

Making this program requires nothing at all new. It’s just a combination of
the techniques used throughout this chapter. Figure 7-9 shows the list of
images used to make Freya run. (I added the arrow again just so you can see
how the movement works.)

Figure 7-8:
Now Freya’s
running
around the
screen. Run,
Freya, Run!

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 483

Movement and Swapping484

The HTML is (as usual) pretty minimal here:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>run.html</title>
<script type = “text/javascript”

src = “run.js”>
</script>

</head>

<body onload = “init()”>
<div id = “sprite”

style = “position: absolute;
top: 100px;
left: 100px;”>

<img src = “freya/run0.gif”
id = “image”
alt = “running image” />

</div>
</body>

</html>

When you want to create a moving image-swap animation:

1. Import the script.

You can build the script locally (as I did in the last example), but any
time the script gets complex, it may be better in an external file.

2. Call an init() method.

Most animation requires an init() method called from
body.onload(), and this one is no exception.

3. Name the sprite.

The sprite is a div that moves, so it needs absolute position, top and left
all defined as local styles.

Figure 7-9:
These are
the running
images from
Reiner’s
Tilesets.

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 484

Book IV
Chapter 7

Anim
ating Your

Pages
Movement and Swapping 485

4. Name the image.

You also animate the image inside the sprite. The only property you
change here is the src, so no local styles are necessary.

Building the code
The JavaScript code is familiar because all the elements can be borrowed
from previous programs. Here’s the code in its entirety:

//run.js

var frame = 0;
var imgList = new Array(
“freya/run0.gif”,
“freya/run1.gif”,
“freya/run2.gif”,
“freya/run3.gif”,
“freya/run4.gif”,
“freya/run5.gif”,
“freya/run6.gif”,
“freya/run7.gif”

);

var sprite;
var spriteImage;
var MAX_X = 500;

function init(){
sprite = document.getElementById(“sprite”);
spriteImage = document.getElementById(“image”);

setInterval(“animate()”, 100);
} // end init

function animate(){
updateImage();
updatePosition();

} // end animate

function updateImage(){
frame++;
if (frame > imgList.length){

frame = 0;
} // end if
spriteImage.src = imgList[frame];

} // end updateImage

function updatePosition(){
sprite = document.getElementById(“sprite”);
var x = parseInt(sprite.style.left);
x += 10;
if (x > MAX_X){

x = 0;
} // end if
sprite.style.left = x + “px”;

} // end function

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 485

Movement and Swapping486

Defining global variables
You’ll have a few global variables in this code:

✦ Frame is the frame number. It is an integer from 0 to 11, which serves as
the index for the imgList array.

✦ imgList is an array of filenames with the animation images.

✦ sprite is the div that moves around the screen.

✦ spriteImage is the img element of sprite and the image that is
swapped.

✦ MAX_X is a constant holding the maximum value of X. In this program,
I’m only moving in one direction, so the only boundary I’m worried
about is MAX_X. If the sprite moved in other directions, I’d add some
other constants for the other boundary conditions.

Initializing your data
The init() function performs its normal tasks: setting up sprite variables
and calling the animate() function on an interval.

function init(){
sprite = document.getElementById(“sprite”);
spriteImage = document.getElementById(“image”);

setInterval(“animate()”, 100);
} // end init

When you move and swap images, sometimes you have to adjust the animation
interval and the distance traveled each frame so that the animation looks
right. Otherwise, the sprite may seem to skate rather than run.

Animating and updating the image
I really have two kinds of animation happening at once, so in the grand tradi-
tion of encapsulation, the animate() function passes off its job to two
other functions:

function animate(){
updateImage();
updatePosition();

} // end animate

The updateImage() function handles the image-swapping duties:

function updateImage(){
frame++;
if (frame > imgList.length){

frame = 0;
} // end if
spriteImage.src = imgList[frame];

} // end updateImage

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 486

Book IV
Chapter 7

Anim
ating Your

Pages
Movement and Swapping 487

Moving the sprite
The sprite is moved in the updatePosition() function:

function updatePosition(){
sprite = document.getElementById(“sprite”);
var x = parseInt(sprite.style.left);
x += 10;
if (x > MAX_X){

x = 0;
} // end if
sprite.style.left = x + “px”;

} // end function

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 487

Book IV: Client-Side Programming with JavaScript488

30_186275 bk04ch07.qxp 3/28/08 10:51 PM Page 488

Book V

Server-Side Programming
with PHP

31_186275 pp05.qxp 3/28/08 10:51 PM Page 489

Contents at a Glance

Chapter 1: Setting Up Your Server .491
Introducing Server-Side Programming ..491
Installing Your Web Server..495
Inspecting phpinfo() ..498

Chapter 2: Generating HTML with PHP .501
Creating Your First PHP Program...501
Coding with Quotation Marks...503
Working with Variables PHP Style..504
Building XHTML Output ..507

Chapter 3: PHP and XHTML Forms .513
Exploring the Relationship between PHP and XHTML............................513
Sending Data to a PHP Program ...516
Choosing the Method of Your Madness ..521
Retrieving Data from Other Form Elements ...526

Chapter 4: Control Structures .535
Introducing if-else Conditionals ...535
Comparing with switch Structures ..545
Looping It Up with Loops..548

Chapter 5: Working with Arrays .555
Using One-Dimensional Arrays...555
Introducing Associative Arrays..559
Expanding to Multidimensional Arrays...560
Using foreach Loops to Simplify Array Management565
Breaking a String into an Array ..570

Chapter 6: Using Functions and Session Variables 575
Creating Your Own Functions...575
Managing Persistence with Session Variables..582

Chapter 7: Working with Files and Directories 587
Text File Manipulation ...587
Working with File and Directory Functions ..600

Chapter 8: Connecting to a MySQL Database .605
Retrieving Data from a Database..605
Improving the Output Format ..615
Allowing User Interaction ...620

31_186275 pp05.qxp 3/28/08 10:51 PM Page 490

Chapter 1: Setting Up Your Server

In This Chapter
� Introducing server-side programming

� Installing and starting your server

� Testing the installation

� Inspecting phpinfo()

Welcome to the server-side programming portion of the book. In this
minibook, you discover all the basics of PHP and how you can use

PHP to make your pages dynamic and relevant in today’s Internet.

In this chapter, you read about getting your server set up and ready to go. I
walk you through the process as painlessly as possible, and by the end,
you’ll be up and running, and ready to serve up your own Web pages in a
test environment. (I talk about making them available to the rest of the
world in Book VIII.)

Introducing Server-Side Programming
I begin with an introduction to server-side programming. If you already
know how this all works, you can safely skip ahead to the section “Installing
Your Web Server,” later in this chapter.

Programming on the server
Server-side programming is what you’d use to create pages dynamically on
the server before sending them to the client. Whereas client-side program-
ming is executed on the client’s machine, server-side programming all hap-
pens on the server before the Web page is even sent to the user.

Client-side programming (as done in JavaScript) does most of the work on
the individual user’s machine. This has advantages because those machines
have doohickeys, like mice and graphics cards. Client-side programs can be
interactive in real-time.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 491

Introducing Server-Side Programming492

The client has a big problem, though. Programs written on the client usually
have a form of forced amnesia (no long term memory). For security reasons,
client-side applications can’t store information in files and can’t interact with
other programs on the computer. Also, you never know exactly what kind of
setup the user has, so you can’t really be sure if your program will work.

This is where server-side programming comes in. In a pure server-side pro-
gramming environment, all the action happens on the Web server. The user
thinks she’s asking for a Web page like normal, but the address really goes to
a computer program. The program does some magic and produces a Web
page. The user sees a Web page, perhaps never knowing that an ordinary
program was in the mix.

A program running on a Web server has some really nice advantages, such as

✦ A server-side program can access the local file system. Asking a server
program to load and save files on the server is no problem at all.

✦ A server-side program can call external programs. This is a very big
deal because many Web applications are really about working with data.
Database programs are very important to modern Web development.
See Book VI for much more on this.

✦ All the user sees is ordinary XHTML. You can set up your program to
do whatever you want, but the output is regular XHTML. You don’t have
to worry about what browser the user has or whether he has a Mac. Any
browser that can display XHTML can be used with PHP.

Serving your programs
When using a browser to retrieve Web pages, you send a request to a server.
The server then looks at the extension (.html, .php, .js, and so on) at the
end of your requested file and decides what to do. If the server sees .html
or .js, it says, “Cool, nothing doing here, just gotta send her back as is.”
When the server sees .php, it says, “Oh boy, they need PHP to build some-
thing here.”

The server takes the page and hollers for PHP to come along and construct
the requested Web page on the fly. Usually, PHP goes through and looks at
the programmer’s blue print, and then constructs the working page out of
XHTML.

The server then takes that page from PHP and sends it back to the client for
the browser to display to the user.

When you write ordinary (non-PHP) documents, your pages can go just any-
where because the browser does all the processing. When you write PHP

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 492

Book V
Chapter 1

Setting Up
Your Server

Introducing Server-Side Programming 493

programs, a Web server must process the form before the browser can see
it. This means you have to have a Web server available and place the file in a
specific place on your computer for the server to serve it. You can’t run a
PHP file directly from your Desktop. It must be placed in the htdocs direc-
tory under the server.

Picking a language
There are all sorts of different ways to go about dynamically creating Web
pages with server-side programming. Back in the day when the Internet was
still in diapers, people used things like Perl and CGI scripting to handle all
their server-side programming. Eventually, people placed more and more
demand on their Web sites, and soon these languages just weren’t enough.

The prevalent languages today are

✦ ASP.NET: Microsoft’s contender

✦ Java: The heavyweight offering from Sun Microsystems

✦ PHP: The popular language described in this minibook

ASP.NET
ASP.NET is event-driven, compiled, and object-oriented. ASP.NET replaced
the ’90s language ASP in 2002. Microsoft repurposed it for use with their
.NET framework to facilitate cross-compatibility with their Desktop applica-
tions (apps) and integration into Visual Studio (although you can write
ASP.NET apps from any text editor). ASP.NET runs on Microsoft’s IIS Web
server, which isn’t free. I don’t recommend it to cost-conscious users.

Object-oriented (OO) versus procedural
What is the difference between object-oriented
programs and procedural programs?

A procedural program normally has all the code
contained in one file. You start at the top and go
to the bottom, possibly calling functions on vari-
ables, but ultimately running through the whole
thing, start to finish, just as you see it.

Object-Oriented Programming (OOP) allows
you to create objects and call methods on them
(a method is just a function; but in OOP, func-
tions are sometimes dubbed methods). Each

object gets its own text file and contains all its
own methods. An object is like a mold that you
can cast multiple copies from.

The great thing about PHP is that you can
choose if you want OOP or procedural pro-
gramming. This book covers both. When it
makes sense, I utilize the object-oriented capa-
bilities, and for the simple stuff, I use the pro-
cedural approach. Don’t worry if you don’t
understand this right now. You’ll get the hang of
it later when you begin using OOP in your PHP.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 493

Introducing Server-Side Programming494

Java
Java’s been a strong contender for a long time now. The language is indeed
named after coffee. If you work for a banking company or insurance com-
pany, or need to build the next eBay or Amazon.com, you might want to con-
sider Java. However, Java can consume a lot of time, and it’s hard to figure
out. You may have to write up to 16 lines of code to do in Java what it could
take a mere 4 lines of code in PHP. Java is absolutely free, as is the Apache
Tomcat Web server that it uses to serve its Web components. Java was origi-
nally created to write Desktop applications and is still very good at doing
that. If you’re comfortable with C/C++, you’ll be very comfortable with Java
because it’s very similar. It’s fully object-oriented, and it’s compiled. Java is
powerful, but it can be challenging for beginners. It’d be a great second lan-
guage to work with.

PHP
PHP was born from a collection of modifications for Perl and has boomed
ever since (in a way, replacing Perl, which was once considered the duct
tape and bubble gum that held the Internet together).

PHP works great for your server-side Web development purposes. MediaWiki
(the engine that was written to run the popular Internet encyclopedia Wiki-
pedia) runs on PHP, as do many other popular large-, medium-, and small-
scale Web sites. PHP’s a solid, easy-to-learn, well-established language (it’s
13 years old). PHP can be object-oriented or procedural (you can take your
pick!). PHP is interpreted rather than compiled.

Compile versus interpret?
What’s the difference between an interpreted
language and a compiled language? A compiled
language is compiled one time into a more com-
puter-friendly format for faster processing when
called by the computer. Compiled languages
are typically very fast but not very flexible.
Interpreted languages have to be interpreted on

the spot by the server every time they’re called,
which is slower but provides more flexibility.
With blazing fast servers these days, interpreted
languages can normally stand under the load,
and the ability to handle changes without
recompiling can be an advantage in the fast-
paced world of Web development.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 494

Book V
Chapter 1

Setting Up
Your Server

Installing Your Web Server 495

Installing Your Web Server
In order for PHP to work usefully, you have to have some other things
installed on your computer, such as

✦ A Web server: This is a special program that enables a computer to
process files and send them to Web browsers. I’ll use Apache because
it’s free, powerful, and works very well with PHP.

✦ A database backend: Modern Web sites rely heavily on data, so a pro-
gram that can manage your data needs is very important. I’ll use MySQL
(a free and powerful tool) for this. Book VI is entirely dedicated to creat-
ing data with MySQL and some related tools.

✦ A programming language: Server-side programming relies on a lan-
guage. I’ll use PHP because it works great, and it’s free.

Setting up a server-side programming environment can be a daunting task.
That’s a lot of software to download and install, and each piece needs to
know how to work with all the others.

Thanks to friends at www.apachefriends.org, it’s now easier than ever to
install all those things in the list. Apachefriends.org bundles them all into
one little program — XAMPP. Here’s how you load it up:

1. Go to www.apachefriends.org.

2. Scroll down and click XAMPP.

3. Scroll down and click XAMPP for Windows.

4. Scroll down and click XAMPP under the Download heading.

At this point, you can take your pick. I always click the EXE for no other
reason than it’s the smallest. I use that one for this example.

5. Click EXE (7-Zip).

This takes you to a SourceForge.net page. (You won’t need the 7-Zip soft-
ware. This program is simply an archive created with 7-Zip.)

6. Click Save File (Firefox).

If you’re in Internet Explorer, you might get the annoying yellow bar at
the top of the page letting you know it didn’t download the file. Click the
yellow bar and choose to download the file, and then click Save in the
File Download pop-up. Go ahead and save the file to your Desktop.

7. Double-click the xampp-win....exe file on your Desktop.

Windows might ask you at this point if it’s okay to run the file. Click Run.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 495

Installing Your Web Server496

8. Pick a place to extract the program to.

I chose C:\ because that’s the easiest place to find it.

9. Click Extract, and you’re done!

At this point, it’s safe to delete the EXE file from your Desktop.

Okay, great, you’ve installed XAMPP. See? Easy as pie, just like I said!

Starting your server
Okay, so you’ve installed XAMPP, and you’re ready to get your server up and
running. Here’s how:

1. Browse to the folder where you unzipped XAMPP.

2. Run the XAMPP Controller (xampp-control.exe).

You may want to put a shortcut to this program on your Desktop, as
you’ll use it frequently to manage the various parts of the XAMPP
system.

At this point, a little utility opens with all sorts of buttons, like some
sort of crazy universal remote for your server. This program looks like
Figure 1-1.

3. Under Modules and to the right of Apache, click the Start button.

You’ll probably get a Windows Security Alert that asks if you want to
keep blocking the Apache HTTP Server program. Click Unblock.

4. Check to see that your server is running correctly.

Figure 1-1:
The XAMPP
Control
Panel lets
you turn on
the various
parts of
XAMPP.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 496

Book V
Chapter 1

Setting Up
Your Server

Installing Your Web Server 497

If all is working well, the Start button (in the Control Panel, not the
Windows Start button) should change to read Stop, and to the left of it,
you should see a green area containing Running. The server doesn’t
have a graphic interface like most programs, so without this indication,
you might not know it’s running.

You can also start Apache (and MySQL) by clicking xampp_start.exe. This
opens a command or console window telling you that ### APACHE + MYSQL
IS STARTING NOW ###. You can stop them by clicking xampp_stop.exe. I
personally prefer the XAMPP Control Panel because it’s more user-friendly
and pretty.

For now, Apache is the only thing you need to have running. See more details
about the other parts of XAMPP in Book VIII, Chapter 1.

Testing the installation
How do you know if your server really is working? Follow these steps:

1. Open a Web browser.

2. Browse to http://localhost.

You should get a XAMPP page with a congratulatory message on it that looks
like Figure 1-2.

Figure 1-2:
The server
is installed!

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 497

Inspecting phpinfo()498

Great job, you’re now officially a Server Admin! Don’t put that on your
resume just yet, though. . . .

What do you do if it doesn’t work? Check www.apachefriends.org/en/
faq-xampp-windows.html to see if it addresses your problem. Otherwise,
try Googling the specific problem you’re having. Lastly, you could try post-
ing on www.apachefriends.org/f/?language=english to see if anyone
can help you.

Inspecting phpinfo()
Using your shiny new server is really quite simple, but a lot of beginners can
get confused at this point.

One thing you have to remember is that anything you want the server to
serve must be located in the server’s file structure. If you have a PHP file on
your Desktop and you want to view it in your browser, it won’t work because
it isn’t in your server. Although, yes, technically it is on the same machine as
your server (XAMPP), it is not in the server.

So, to serve a file from the server, it must be located in the htdocs directory
of your server install. Go to the folder where you installed XAMPP (probably
either c:/xampp or c:/Program Files/xampp) and locate the htdocs
directory. This is where you’ll put all your PHP files. Make note of it now.

To get the hang of placing your files in the correct place and accessing them
through localhost, create a test file that will display all your PHP, Apache,
and MySQL settings.

The following numbered list creates a file in Aptana Studio that will test your
XAMPP configuration to ensure that Apache is up and running:

1. Open Aptana Studio.

As always, you can use any text editor you want, but Aptana is opti-
mized for working with PHP code, so that’s the one I use for this
example.

2. From the File menu, choose New➪Other.

This will take you to a list of file types Aptana knows how to handle.

3. Pick Untitled PHP File from the resulting dialog box.

This tells Aptana you want to write a PHP file, and it automatically cre-
ates a very simple but powerful PHP sample program.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 498

Book V
Chapter 1

Setting Up
Your Server

Inspecting phpinfo() 499

4. Save the file as test.php.

It’s important that you save the file in the htdocs directory.

5. Open your browser.

Point your browser to http://localhost/test.php. You’ll see a
page like Figure 1-3.

This phpinfo page that you’re looking at is critical in inspecting your server
configuration. It displays all the different settings for your server, describing
what version of PHP is running and what modules are currently active. This
can be very useful information.

You generally should not have a page with all the phpInfo() information
running on a live server because it tells the bad guys information they might
use to do mischief.

This test.php program shows one of the most interesting things about
PHP. The program itself is just a few lines long, but when you run it, the
result is a complex Web page. If you view the source on the Web page, you’ll
see a lot of code you didn’t write. That’s the magic of PHP. You write a pro-
gram, and it creates a Web page for you.

Figure 1-3:
That tiny
PHP
program
sure puts
a lot of
information
on the
screen.

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 499

Inspecting phpinfo()500

By default, Apache will load index.html or index.php automatically if
you type a directory path into the Web browser. There’s already a program
in htdocs called index.php. Rename it index.php.off. Now, if you navi-
gate to http://localhost/, you’ll see a list of directories and files your
server can run, including test.php. When you have a live site, you’ll typi-
cally name one file index.html or index.php so the user doesn’t have to
type the entire filename.

To reveal line numbers in Aptana, right-click in the margin to the left of the
document body (where you’d expect line numbers to be).

32_186275 bk05ch01.qxp 3/28/08 10:51 PM Page 500

Chapter 2: Generating HTML
with PHP

In This Chapter
� Creating your first PHP program

� Using quotation marks

� Working with variables PHP style

� Interpolating variables into text

� Creating heredocs

In PHP, you aren’t actually printing anything to the user; you’re building
an HTML document that will be sent to the browser, which will interpret

the HTML and then print that (the HTML) out to the user. Therefore, all your
code gets interpreted twice; first on the server to generate the HTML and
then on the user’s machine to generate the output display.

If you’ve used XHTML, CSS, and JavaScript, you might have been frustrated
because all of these environments run on the client, and you have no con-
trol of the client environment. You don’t know what browser the user will
have, and thus you don’t know exactly how XHTML, CSS, and JavaScript will
run there. When you program in PHP, you’re working on a machine (the
server) that you actually control. You know exactly what the server’s capa-
bilities are because (in many cases) you configured it yourself.

It’s still not a perfect situation, though, because your PHP code will generate
XHTML/CSS pages (sometimes even with JavaScript), and those pages still
have to contend with the wide array of client environments.

Creating Your First PHP Program
The first program you ever write in any language is invariably the “Hello
World!” program or some variant thereof. Follow these steps:

1. Create a new PHP file in Aptana Studio.

See Chapter 1 of this minibook for instructions on creating a PHP file in
Aptana.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 501

Creating Your First PHP Program502

If you’re using some other text editor, just open a plain text file however
you normally do that (often File➪New) and be sure to save it under
htdocs with a .php extension.

2. Enter the following code:

<?php
print “Hello World!”;
?>

Depending on your installation of Apache, you may be able to use the
shorter <? ?> version of the PHP directive (instead of <?php ?>).

3. Save the file by pressing Ctrl+S, choosing File➪ Save from the menu,
or clicking the picture of the computer disk.

Remember to save directly into htdocs or a subdirectory of htdocs.

4. View the file in a Web browser, as shown in Figure 2-1.

The address of a Web page begins with the http:// protocol and then
the server name. Since this page is on the local machine, the server
name is localhost, which corresponds directly to your htdocs direc-
tory. If you have a file named thing.php in the htdocs directory, the
address would be http://localhost/thing.php. Likewise, if it’s in a
subdirectory of htdocs called project, the address would be
http://localhost/project/thing.php.

Figure 2-1:
The “Hello
World!”
program
example.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 502

Book V
Chapter 2

Generating HTM
L

w
ith PHP

Coding with Quotation Marks 503

So, what is it that you’ve done here? You’ve figured out how to use the
print statement. This allows you to spit out any text you want to the user.

Note that each line ends with a semicolon (;). There may be times when
your program throws an error that you just can’t figure out. In these cases, I
recommend looking first for missing semicolons. It seems obvious, but time
and time again, it turns out to be a missing semicolon (same goes with
brackets and parentheses). Aptana will give you a red squiggly if you forget
the semicolon.

Coding with Quotation Marks
There are many different ways to use print. The following are all legal ways
to print text, but they have subtle differences:

print (“<p>Hello World!</p>”);
print (“<p>Hello World!

Hello Computer!</p>”);
print ‘<p>Hello Google!</p>’;

Any way you cut it, you have to have some form of quotations around text
that you want printed.

What if you want to print double quotation marks inside a print statement
surrounded by double quotation marks? You escape them (you tell PHP to
treat them as literal characters, rather than the end of the string) with a
backslash, like this:

print “A Link”;

This can get tedious, so a better solution is discussed in the “Generating
output with heredocs” section, later in this chapter.

echo or print?
echo is another way to generate your code for
the browser. In almost all circumstances, you
use echo exactly like you use print.
Everyone knows what print does, but echo
sounds like I should be making some sort of dol-
phin noise.

The difference is that print returns a value
and echo doesn’t. print can be used as part
of a complex expression and echo can’t. It

really just comes down to the fact that print
is more dynamic, whereas echo is slightly (and
I’m talking very slightly here) faster.

I prefer print because there’s nothing that
echo can do that print can’t.

To see a more detailed discussion go here:
www.faqts.com/knowledge_base/
view.phtml/aid/1/fid/40.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 503

Working with Variables PHP Style504

This backslash technique works only with text encased inside double quotes.
Single quotes tell PHP to take everything inside the quotes exactly as is.
Double quotes give PHP permission to analyze the text for special charac-
ters, like escaped quotes (and variables, which you learn about in the next
section of this chapter).

Working with Variables PHP Style
Variables are extremely important in any programming language and no less
so in PHP.

A variable in PHP always begins with a $.

A PHP variable can be named almost anything. There are some reserved
words that you can’t name a variable (like print, which already has a mean-
ing in PHP), so if your program isn’t working and you can’t figure out why,
try changing some variable names or looking at the reserved words list (in
the online help at http://www.php.net) to find out if your variable name
is one of these illegal words.

PHP is very forgiving about the type of data in a variable. When you create a
variable, you simply put content in it. PHP automatically makes the variable
whatever type it needs. This is called loose typing. The same variable can
hold numeric data, text, or other more complicated kinds of data. PHP deter-
mines the type of data in a variable on-the-fly by examining the context.

Escape sequences
In the first section of this chapter, “Creating
Your First PHP Program,” you see that you can
escape double quotation marks with a back-
slash. Quotation marks aren’t the only thing you
can escape, though. You can give a whole host
of other special escape directives to PHP.

The most common ones are

\t (creates a tab in the resulting HTML)

\n (creates a new line in the resulting HTML)

\$ (creates a dollar sign in the resulting HTML)

\” (creates a double quote in the resulting
HTML)

\’ (creates a single quote in the resulting
HTML)

\\ (creates a backslash in the resulting HTML)

PHP can take care of this for you automatically
if you’re receiving these values from a form. To
read more, go here: http://us3.php.
net/types.string.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 504

Book V
Chapter 2

Generating HTM
L

w
ith PHP

Working with Variables PHP Style 505

Even though PHP is cavalier about data types, it’s important to understand
that data is still stored in one of several standard formats based on its type.
PHP supports several forms of integers and floating-point numbers. PHP also
has great support for text data. Programmers usually don’t say “text,” but
call text data string data. This is because the internal data representation of
text reminded the early programmers of beads on a string. You rarely have
to worry about what type of information you’re using in PHP, but you do
need to know that PHP is quietly converting data into formats it can use.

Concatenation
Concatenation is the process of joining smaller strings together to form a
larger string. (See Book IV, Chapter 1 for a description of concatenation as
it’s applied in JavaScript.) PHP uses the period (.) symbol to concatenate
two string values, so the following code returns the phrase “oogie boogie”:

$word = “oogie “;
$dance = “boogie”;

Print $word . $dance

If you already know some JavaScript or another language, most of the ideas
transfer, but details can trip you up. JavaScript uses the + sign for concate-
nation, and PHP uses the period. These are annoying details, but with prac-
tice, you’ll be able to keep it straight.

When PHP sees a period, it treats the values on either side of the period as
strings (text) and concatenates (joins) them together. If PHP sees a plus sign,
it treats the values on either side of the plus sign as numbers and attempts
to perform mathematical addition on them. The operation helps PHP figure
out what type of data it is working with.

The following program illustrates the difference between concatenation and
addition (see Figure 2-2 for the output):

<?php
$output = “World!”;

print “<p>Hello “ . $output . “</p>”;

print “<p>” . $output + 5 . “</p>”;
?>

The previous code takes the variable output with the value World and con-
catenates it to Hello when printed. Next, it adds the variable output to the
number 5. When PHP sees the plus sign, it interprets the values on either
side of it as numbers. Because output has no logical numerical value,
PHP assigns it the value of 0, which it adds to 5, resulting in the output of
<p>5</p> being sent to the browser.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 505

Working with Variables PHP Style506

Interpolating variables into text
If you have a bunch of text to print with variables thrown in, it can get a
little tedious to use concatenation to add in the variables. Luckily, you don’t
have to!

With PHP, you can include the variables as follows (see Figure 2-3 for the
output):

<?php
$firstName = “John”;
$lastName = “Doe”;

print “Hello $firstName $lastName!”;
?>

This process is called interpolation. Since all PHP variables begin with
quotes, you can freely put variables right inside your string values, and
when PHP sees a variable, it will automatically replace that variable with its
value.

Interpolation only works with double-quoted strings because double quotes
indicate PHP should process the string before passing it to the user.

Figure 2-2:
The differ-
ence
between
addition and
concate-
nation.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 506

Book V
Chapter 2

Generating HTM
L

w
ith PHP

Building XHTML Output 507

Building XHTML Output
The output of a PHP program is usually an XHTML page. As far as PHP is
concerned, XHTML is just string data, so your PHP program often has to do a
lot of string manipulation. You’ll often be writing long chunks of text (XHTML
code) with several variables (generated by your PHP program) interspersed
throughout the code. This type of text (XHTML output) will often stretch
over several lines, requires carriage returns to be preserved, and often con-
tains special characters like quotes and <> symbols. The ordinary quote
symbols are a little tedious if you want to use them to build a Web page.
Here’s an example.

Say you wanted to create a program which could take the value of the $name
and $address variables and put them into a table like this:

<table style = “border: 1px solid black”>
<tr>
<td>name</td>
<td>John</td>

</tr>
<tr>

<td>address</td>
<td>123 Main St.</td>

</tr>
</table>

Figure 2-3:
The
variables
are printed
out without
having to do
annoying
concate-
nations.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 507

Building XHTML Output508

There are a few ways to combine the PHP and XHTML, code as shown in the
following sections.

Using double quote interpolation
Using regular double quotes, the code would look something like this:

$name = “John”;
$address = “123 Main St.”;
$output = “”;
$output .= “<table style = \”border: 1px solid black\”> \n”;
$output .= “ <tr> \n”;
$output .= “ <td>name</td> \n”;
$output .= “ <td>$name</td> \n”;
$output .= “ </tr> \n”;
$output .= “ <tr> \n”;
$output .= “ <td>address</td> \n”;
$output .= “ <td>$address</td> \n”;
$output .= “ </tr> \n”;
$output .= “</table> \n”;

print $output

However, using quotes to generate XHTML output is inconvenient for the fol-
lowing reasons:

✦ The $output variable must be initialized. Before adding anything to
the $output variable, give it an initial null value.

✦ You must repeatedly concatenate data onto the $output variable. The
.= operator allows me to append something to the end of a string
variable.

✦ All quotes must be escaped. Because double quotes indicate the end
of the string, all internal double quotes must be preceded with the
backslash (\).

✦ Every line must end with a newline (\n) sequence. PHP creates
XHTML source code. Your PHP-derived code should look as good as
what you write by hand, so you need to preserve carriage returns. This
means you need to end each line with a newline.

✦ The XHTML syntax is buried inside PHP syntax. The example shows
PHP code creating HTML code. Each line contains code from two
languages interspersed. This can be disconcerting to a beginning
programmer.

Generating output with heredocs
PHP uses a clever solution called heredocs to resolve all these issues. A here-
doc is simply a type of multi-line quote, usually beginning and ending with
the word HERE.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 508

Book V
Chapter 2

Generating HTM
L

w
ith PHP

Building XHTML Output 509

The best way to understand heredocs is to see one in action, so here’s the
same example written as a heredoc:

<?
$name = “John”;
$address = “123 Main St.”;
print <<<HERE
<table style = “border: 1px solid black”>

<tr>
<td>name</td>
<td>$name</td>

</tr>
<tr>

<td>address</td>
<td>$address</td>

</tr>
</table>
HERE;
?>

Heredocs have some great advantages:

✦ All carriage returns are preserved. There’s no need to put in any new-
line characters. Whatever carriage returns are in the original text will
stay in the output.

✦ Heredocs preserve quote symbols. There’s also no need to escape your
quotes because the double quote is not the end-of-string character for a
heredoc.

✦ Variable interpolation is supported. You can use variable names in a
heredoc, just like you do for an ordinary quoted string.

✦ The contents of a heredoc feel like ordinary XHTML. When you’re
working inside a heredoc, you can temporarily put your mind in XHTML
mode, but with the ability to interpolate variables.

The following are some things to keep in mind about heredocs:

✦ A heredoc is opened with three less-than symbols (<<<) followed by a
heredoc symbol that will act as a “superquote” (instead of single or
double quotation marks, you make your own custom quotation mark out
of any value that you want).

✦ A heredoc symbol can be denoted by almost any text, but HERE is the
most common delimiter (thus, heredoc). You can make absolutely any-
thing you want serve as a heredoc symbol. You probably should just
stick to HERE because that’s what other programmers are expecting.

✦ You need only one semicolon for the whole heredoc. Technically, the
entire heredoc counts as one line. That means the only semicolon you
need is after the closing symbol.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 509

Building XHTML Output510

✦ A heredoc must be closed with the same word it was opened with.

✦ The closing word for the heredoc must be on its own line.

✦ You can’t indent the closing word for the heredoc; there can’t be any
spaces or tabs preceding the closing word.

By far the most common problem with heredocs is indenting the closing
token. The HERE (or whatever other symbol you’re using) must be flush with
the left margin of your editor, or PHP will not recognize it. This usually
means PHP interprets the rest of your program as part of a big string and
never finishes executing it.

Heredocs have one disadvantage: They tend to mess up your formatting
because you have to indent heredocs differently than the rest of the code.

When writing a heredoc, don’t put a semicolon after the first <<<HERE and
don’t forget that the last HERE; can’t have any whitespace before it — it
must be alone on a new line without any spaces preceding it.

Switching from PHP to XHTML
There’s one more way to combine PHP and XHTML code. The server treats a
PHP document mainly as an XHTML document. Any code not inside the
<?php ?> symbols is treated as XHTML, and anything inside the PHP sym-
bols is interpreted as PHP.

This means you can switch in and out of PHP, like the following example:

<?php
$name = “John”;
$address = “123 Main St.”;
// switch ‘out’ of PHP temporarily

?>
<table style = “border: 1px solid black”>

<tr>

Printing shortcut
When switching in and out of PHP, if you have
just one variable you want to print, depending
upon your server setup, you may be able to do
print the variable like this:

<?= $name ?>

You don’t have to actually write print. Note
that this doesn’t work if you have to type php
after the question mark in the opening PHP tag.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 510

Book V
Chapter 2

Generating HTM
L

w
ith PHP

Building XHTML Output 511

<td>name</td>
<td><?php print $name; ?></td>

</tr>
<tr>

<td>address</td>
<td><?php print $address; ?></td>

</tr>
</table>
<?php

//I’m back in PHP
?>

This option (switching back and forth) is generally used when you have a lot
of XHTML code with only a few simple PHP variables.

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 511

Book V: Server-Side Programming with PHP512

33_186275 bk05ch02.qxp 3/28/08 10:52 PM Page 512

Chapter 3: PHP and XHTML Forms

In This Chapter
� Understanding the relationship between XHTML and PHP

� Using the date() function

� Formatting date and time information

� Creating XHTML forms designed to work with PHP

� Choosing between get and post data transmission

� Retrieving data from your XHTML forms

� Working with XHTML form elements

P HP is almost never used on its own. PHP is usually used in tight con-
junction with XHTML. Many languages have features for creating input

forms and user interfaces, but with PHP, the entire user experience is based
on XHTML. The user never really sees any PHP. Most of the input to PHP
programs comes from XHTML forms, and the output of a PHP program is an
XHTML page.

In this chapter, you discover how to integrate PHP and XHTML. You explore
how PHP code is embedded into XHTML pages, how XHTML forms can be
written so they will send information to a PHP program, how to write a PHP
program to read that data, and how to send an XHTML response back to the
user.

Exploring the Relationship between PHP and XHTML
PHP is a different language than XHTML, but they are very closely related. It
may be best to think of PHP as an extension that allows you to do things you
cannot do easily in XHTML. See Figure 3-1 for an example.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 513

Exploring the Relationship between PHP and XHTML514

Every time you run getTime.php, it generates the current date and time,
and returns these values to the user. This would not be possible in ordinary
XHTML because the date and time (by definition) always change. While you
could make this page using JavaScript, the PHP approach is useful for
demonstrating how PHP works. First, take a look at the PHP code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>showDate.php</title>

</head>

<body>
<body>
<h1>Getting the Time, PHP Style</h1>
<?php

print “ <h2>Date: “;
print date(“m-d”);
print “</h2> \n”;

print “ <h2>Time: “;
print date(“h:i”);
print “</h2>”;

Figure 3-1:
This pro-
gram gives
me the
current date
and time.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 514

Book V
Chapter 3

PHP and XHTM
L

Form
s

Exploring the Relationship between PHP and XHTML 515

?>

</body>
</html>

Embedding PHP inside XHTML
The PHP code has some interesting characteristics:

✦ It’s structured mainly as an XHTML document. The doctype definition,
document heading, and initial H1 heading are all ordinary XHTML. Begin
your page as you do any XHTML document. A PHP page can have as
much XHTML code as you wish. (You might have no PHP at all!) The
only thing the PHP designation does is inform the server that PHP code
may be embedded into the document.

✦ PHP code is embedded into the page. You can switch from XHTML to
PHP with the <?php tag. Signify the end of the PHP code with the ?>
symbol.

✦ The PHP code creates XHTML. PHP is usually used to create XHTML
code. In effect, PHP takes over and prints out the part of the page that
can’t be created in static XHTML. The result of a PHP fragment is usually
XHTML code.

✦ The date() function returns the current date with a specific format.
The format string indicates how the date should be displayed. (See the
sidebar “Exploring the date() format function,” in this chapter, for more
information about date formatting.)

✦ The result of the PHP code will be an XHTML document. When the
PHP code is finished, it will be replaced by XHTML code.

Viewing the results
If you view showDate.php in your browser, you won’t see the PHP code.
Instead, you’ll see an XHTML page. It’s even more interesting when you use
your browser to view the page source. Here’s what you’ll see:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>showDate.php</title>

</head>

<body>
<h1>Getting the Time, PHP Style</h1>
<h2>Date: 02-13</h2>
<h2>Time: 10:02</h2>

</body>
</html>

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 515

Sending Data to a PHP Program516

The remarkable thing is what you don’t see. When you look at the source of
showDate.php in your browser, the PHP is completely gone! This is one of
the most important points about PHP: The browser never sees any of the
PHP. The PHP code is converted completely to XHTML before anything is sent
to the browser. This means that you don’t need to worry about whether a
user’s browser understands PHP. Because the user never sees your PHP code
(even if he views the XHTML source), PHP code will work on any browser.

Sending Data to a PHP Program
You can send data to a PHP program from an HTML form. For an example of
this technique, see askName.html in Figure 3-2.

XHTML forms (described fully in Book I, Chapter 7) allow the user to enter
data onto a Web page. However, XHTML cannot respond to a form on its
own. You need some sort of program to respond to the form. Book IV
describes how to use JavaScript to respond to forms, but you can also write
PHP code to handle form-based input. When the user submits the form, the
askName.html disappears completely from the browser and is replaced
with greetUser.php, as shown in Figure 3-3.

Exploring the date() format function
The showDate.php program takes advan-
tage of one of PHP’s many interesting and pow-
erful functions to display the date. The PHP
date() function returns the current date.
Generally, you’ll pass the date() function a
special format string that indicates how you
want the date to be formatted. Characters in
the date string indicate a special code. Here
are a few of the characters and their meanings:

� d: day of the month (numeric)

� D: three character abbreviation of weekday
(“Wed”)

� m: month (numeric)

� M: three character abbreviation of month
(“Feb”)

� F: text representation of month (“February”)

� y: two-digit representation of the year
(“08”)

� Y: four-digit representation of the year
(“2008”)

� h: hour (12 hours)

� H: hour (24 hours)

� i: minutes

� s: seconds

You can embed standard punctuation in the
format, as well, so d/m/y will include the
slashes between each part of the date. There
are many more symbols available. Check the
PHP documentation at http://us3.php.
net/manual/en/function.date.php
for more information about date and time
formatting.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 516

Book V
Chapter 3

PHP and XHTM
L

Form
s

Sending Data to a PHP Program 517

Figure 3-3:
This
program
uses the
entry from
the previous
form.

Figure 3-2:
This XHTML
page has a
simple form.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 517

Sending Data to a PHP Program518

The greetUser.php program retrieves the data from the previous page
(askName.html, in this case) and returns an appropriate greeting.

Creating a form for PHP processing
The askName.html program is a standard XHTML form, but it has a couple
of special features which make it suitable for PHP processing. (See Book I,
Chapter 7 for more information about how to build XHTML forms.) Here is
the XHTML code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>askName.html</title>

</head>

<body>
<form action = “greetUser.php”

method = “get”>
<fieldset>

<label>Please enter your name</label>
<input type = “text”

name = “userName” />
<button type = “submit”>

submit
</button>

</fieldset>

</form>
</body>

</html>

To build a form designed to work with PHP, there are a few special steps to
take:

1. Write an XHTML page as the framework.

This page is a regular XHTML page. Begin with the same XHTML frame-
work you use for building your standard XHTML pages. You can use CSS
styles, if you wish (but I’m leaving them out of this simple example).

Normally, you can create an XHTML document anywhere you want, but
this is not so when your page will be working with PHP. This page is meant
to be paired with a PHP document. PHP documents will run only if they
are in a server’s file space, so you should save your XHTML document
under htdocs to be sure it will be able to call the PHP form correctly.

2. Set the form’s action property to point to a PHP program.

The form element has an attribute called action. The action attribute
is used to determine which program should receive the data transmitted

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 518

Book V
Chapter 3

PHP and XHTM
L

Form
s

Sending Data to a PHP Program 519

by the form. I want this data to be processed by a program called
greetUser.php, so I set greetUser.php as the action:

<form action = “greetUser.php”
method = “get”>

3. Set the form’s method attribute to get.

The method attribute indicates how the form data will be sent to the
server. For now, use the get method. See the section “Choosing the
Method of Your Madness,” later in this chapter, for information on the
various methods available:

<form action = “greetUser.php”
method = “get”>

4. Add any input elements your form needs.

The point of a form is to get information from the user and send it to a
program on the server. Devise a form to ask whatever questions you
want from the server. My form is as simple as possible, with one text
field, but you can use any XHTML form elements you want:

<form action = “greetUser.php”
method = “get”>

<fieldset>
<label>Please enter your name</label>
<input type = “text”

name = “userName” />
<button type = “submit”>

submit
</button>

</fieldset>

5. Give each element a name attribute.

If you want a form element to be passed to the server, you must give it a
name attribute (note this is a different attribute than id, which is used in
client-side processing):

<input type = “text”
name = “userName” />

The name attribute will be used by the PHP program to extract the infor-
mation from the form.

A form element can have both a name and an ID, if you wish. The name
attribute will be used primarily by server-side programs, and the id
attribute is mainly used for CSS and JavaScript. The name and ID can
(and probably should) have the same value.

6. Add a submit button to the page

The most important difference between a client-side form and a form
destined for processing on the server is the button. A special submit
button packages all the data in the form and passes it to the program

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 519

Sending Data to a PHP Program520

indicated in the action property. Submit buttons can be created in two
forms:

<input type = “submit” value = “click me”/>

Or
<button type = “submit”>click me</button>

Specify submit as the button’s type attribute to ensure the button
sends the data to the server.

If your form has a submit button and a blank action attribute, the cur-
rent page will be reloaded.

Receiving data in PHP
PHP code is usually a two-step process. First, you create an XHTML form,
and then you send that form to a PHP program for processing. Be sure
you’ve read the previous section on “Creating a form for PHP processing”
because now I show you how to read that form with a PHP program.

The XHTML form in the last section pointed to a program named greetUser.
php. This tells the server to go to the same directory that contained the orig-
inal XHTML document (askName.html) and look for a program named
greetUser.php in that directory. Because greetUser is a PHP program, the
server passes it through PHP, which will extract data from the form. The pro-
gram then creates a greeting using data that came from the form. Look over
all the code for greetUser.php before I explain it in more detail:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>greetUser.php</title>

</head>

<body>
<?php
$userName = $_REQUEST[“userName”];
print “<h1>Hi, $userName!</h1>”
?>

</body>
</html>

greetUser.php is not a complex program, but it shows the most common
use of PHP: retrieving data from a form. Here’s how you build it:

1. Build a new PHP program.

This program should be in the same directory as askName.html, which
should be somewhere the server can find (usually under the htdocs or
public_html directory).

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 520

Book V
Chapter 3

PHP and XHTM
L

Form
s

Choosing the Method of Your Madness 521

2. Start with ordinary XHTML.

PHP programs are usually wrapped inside ordinary XHTML, so begin the
document as if it were plain XHTML. Use whatever CSS styling and ordi-
nary HTML tags you want. (I’m keeping this example as simple as possi-
ble, although I’d normally add some CSS styles to make the output less
boring.)

3. Add a PHP segment.

Somewhere in the page, you’ll need to switch to PHP syntax so you can
extract the data from the form. Use the <?php symbol to indicate the
beginning of your PHP code:

<?php
$userName = $_REQUEST[“userName”];
print “<h1>Hi, $userName!</h1>”;
?>

4. Extract the username variable.

PHP stores all the data sent to the form inside a special variable called
$_REQUEST. This object contains a list of all the form elements in the
page that triggered this program. In this case, I want to extract the value
of the userName field and store it in a PHP variable called $userName:

$userName = $_REQUEST[“userName”];

See the section called “Getting data from the form,” later in this chapter,
for more information on the $_REQUEST object and some of the other
tools that are available for retrieving information.

5. Print the greeting.

Now, your PHP program has a variable containing the user’s name, so
you can print a greeting to the user. Remember that all output of a PHP
program is XHTML code, so be sure to embed your output in a suitable
XHTML tag. I’m putting the greeting inside a level-one heading:

print “<h1>Hi, $userName!</h1>”;

The greetUser.php script is not meant to be run directly. It relies on
askName.html. If you provide a direct link to greetUser.php, the pro-
gram will run, but it will not be sent the username, so it will not work as
expected. Do not place links to your PHP scripts unless you’ve designed
them to work without input.

Choosing the Method of Your Madness
The key to server-side processing is adding method and action properties
to your XHTML form. You have two primary choices for the method property:

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 521

Choosing the Method of Your Madness522

✦ get: The get method gathers the information in your form and appends
it to the URL. The PHP program extracts form data from the address.
The contents of the form are visible for anyone to see.

✦ post: The post method passes the data to the server through a mecha-
nism called environment variables. This mechanism makes the form ele-
ments slightly more secure because they aren’t displayed in public as
they are with the get method.

Using get to send data
The get method is easy to understand. View getRequest.php after it has
been called from askName.html in Figure 3-4. Pay careful attention to the
URL in the address bar.

The address sent to the PHP program has additional material appended to
the end:

http://localhost/xfd/ar/xfd5.3_AR_AH/greetUser.php?userName=Andy%20Harris

Most of this address is the (admittedly convoluted) address of the page on
my test server. The interesting part is the section after greetUser.php:

greetUser.php?userName=Andy%20Harris

Figure 3-4:
The address
has been
modified!

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 522

Book V
Chapter 3

PHP and XHTM
L

Form
s

Choosing the Method of Your Madness 523

This line shows exactly how the get method passes information to the pro-
gram on the server:

✦ The URL is extracted from the form action property. When the
submit button is activated, the browser automatically creates a special
URL beginning with the action property of the form. The default
address is the directory as the original XHTML file.

✦ A question mark indicates form data is on the way. The browser
appends a question mark to the URL to indicate form data follows.

✦ Each field/value pair is listed. The question mark is followed by each
field name and its associated value in the following format:

URL?field1=value1&field2=value2

✦ An equal sign (=) follows each field name. Each field name is separated
by the value of that field with an equal sign (and no spaces).

✦ The field value is listed immediately after the equal sign. The value of
each field follows the equal sign.

✦ Spaces are converted to hexadecimal symbols. get data is transmitted
through the URL, and URLS are not allowed to have spaces or other spe-
cial characters in them. The browser will automatically convert all
spaces in field names or values to the %20 symbol. Other special charac-
ters (like ampersands and equal signs) are also automatically converted
to special symbols.

Sometimes, the spaces are converted to + signs, rather than %20. It isn’t
really that important, as the conversion is done automatically. Just know
that URLs can’t contain spaces.

✦ Ampersand (&) is used to add a new field name/value pair. This partic-
ular example (the URL created by askName.html) has only one name/
value pair. If the form had more elements, they would all be separated
by ampersands.

You don’t have to do any of the URL formatting. It automatically happens
when the user clicks the submit button. You’ll also never have to decode all
this, as PHP will do it for you.

If you understand how the get method works, you can take advantage of it
to send data to programs without the original form. For example, take a look
at this address:

http://www.google.com/search?q=dramatic%20chipmunk

If you type this code into your browser’s location bar, you’ll get the Google
search results for a classic 5-second video. (If you haven’t seen this video,
it’s worth viewing.) If you know a particular server-side program (like
Google’s search engine) uses the get protocol, and you know which fields

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 523

Choosing the Method of Your Madness524

are needed (q stands for the query in Google’s program), you can send a
request to a program as if that request came from a form.

You can also write a link with a pre-loaded search query in it:

Google search for the dramatic chipmunk

If a user clicks on the resulting link, he would get the current Google search
for the dramatic chipmunk video. (Really, it’s a prairie dog, but “dramatic
chipmunk” just sounds better.)

Of course, if you can send requests to a program without using the intended
form, others can do the same to you. You can never be 100-percent sure that
people are sending requests from your forms. This can cause some prob-
lems. Look at the next section for a technique to minimize this problem by
reading only data sent via the post method.

Using the post method to transmit form data
The get method is easy to understand because it sends all data directly in
the URL. This makes it easy to see what’s going on, but there are some down-
sides to using get:

✦ The resulting URL can be very messy. Addresses on the Web can
already be difficult without the added details of a get request. A form
with several fields can make the URL so long it is virtually impossible to
follow.

✦ All form information is user-readable. The get method displays form
data in the URL, where it can easily be read by the user. This may not be
desired, especially when the form sends potentially sensitive data.

How did I know how to write the Google query?
You might wonder how I knew what fields the
Google engine expects. If the program uses
get, just use the intended form to make a
search and look at the resulting URL. Some
practice and experience told me that only the
q field is absolutely necessary.

This trick (bypassing the form) could be con-
sidered rude by some because it circumvents
safety features that may be built into the form.
Still, it can be helpful for certain very public fea-
tures, like pre-loaded Google searches, or look-
ing up weather data for a particular location
through a hard-coded link.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 524

Book V
Chapter 3

PHP and XHTM
L

Form
s

Choosing the Method of Your Madness 525

✦ The amount of information that can be passed is limited. The Apache
server (in its default form) will not accept URLs longer than 4,000 char-
acters. If you have a form with many fields or with fields that contain a
lot of data, you will easily exceed this limit.

The answer to the limitations of the get method is another form of data
transmission: the post method.

Here’s how it works:

✦ You specify that the form’s method will be post. You create the
XHTML form in exactly the same way. The only difference is the form
method attribute. Set it to post:

<form action = “greetUser.php”
method = “post”>

✦ Data is gathered and encoded, just like it is in the get method. When
the user clicks the submit button, the data is encoded in a format similar
to the get request, but it is not attached to the URL.

✦ The form data is sent directly to the server. The PHP program can still
retrieve the data (usually through a mechanism called environment vari-
ables), even though the data is not encoded on the URL. Again, you will
not be responsible for the details of extracting the data. PHP makes it
pretty easy.

The post method is often preferable to get because

✦ The URL is not polluted with form data. The data is no longer passed
through the URL, so the resulting URL is a lot cleaner than one gener-
ated by the get method.

✦ The data is not visible to the user. Since the data is not presented in the
URL, it is slightly more secure than get data.

✦ There is no practical size limit. The size of the URL is not a limiting
factor. If your page will be sending a large amount of data, the post
method is preferred.

With all these advantages, you might wonder why anybody uses get at all.
Really, there are two good reasons. The get approach allows you to embed
requests in URLs (which can’t be done with post). Also, get is sometimes a
better choice for debugging because it’s easier to see what is being passed
to the server.

Getting data from the form
PHP includes a number of special built-in variables that give you access to
loads of information. Each of these variables is stored as an associative
array (see Chapter 5 of this minibook for more on associative arrays). These

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 525

Retrieving Data from Other Form Elements526

special variables are available anywhere in your PHP code, so they’re called
superglobals. Here’s a few of the most important ones:

✦ $_GET: A list of variables sent to this program through the get method

✦ $_POST: A list of variables sent to this program through the post method

✦ $_REQUEST: A combination of $_GET and $_POST

You can use these variables to look up information posted in the form. For
example, the askName.html page contains a field called userName. When
the user views this page, it sends a request to greetUser.php via the get
method. greetUser.php can then check its $_GET variable to see if a field
named userName exists:

$userName = $_GET[“userName”];

This line checks all the data sent via get, looks for a field named userName,
and copies the contents of that field to the variable $userName.

If you want to retrieve a value sent through the post method, use this
variation:

$userName = $_POST[“userName”];

If you don’t care whether the data was sent via get or post, use $_REQUEST:

$userName = $_REQUES[“userName”];

The $_REQUEST superglobal grabs data from both get and post requests,
so it works, no matter how the form was encoded. Many programmers use
the $_REQUEST technique because then they don’t have to worry about the
encoding mechanism.

If you don’t like the idea of somebody accessing your data without a form,
use $_POST in your PHP program. If data is encoded in the URL, your pro-
gram ignores it because you’re only responding to post data, and data
encoded in the URL is (by definition) get data.

This solution is far from foolproof. There’s nothing to prevent a bad guy from
writing his own form using the post method and passing data to your pro-
gram that way. You can never be 100-percent safe.

Retrieving Data from Other Form Elements
It’s just as easy to get data from drop-down lists and radio buttons as it is to
get data from text fields. In PHP (unlike JavaScript), you use exactly the
same technique to extract data from any type of form element.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 526

Book V
Chapter 3

PHP and XHTM
L

Form
s

Retrieving Data from Other Form Elements 527

Building a form with complex elements
For an example of a more complex form, look over monty.html in Figure
3-5. This program is a tribute to my favorite movie of all time. (You might
just have to rent this movie if you’re really going to call yourself a program-
mer. It’s part of the culture.)

Figure 3-5:
The Monty
Python quiz
features a
drop-down
list, radio
buttons, and
check
boxes.

Can’t I just have automatic access
to form variables?

The earliest forms of PHP had a feature called
register_globals which automatically
did the $_REQUEST extraction for you. If your
program comes from a userName field,
the program will “magically” just have a
$userName variable pre-loaded with the
value of that field. While this was a very con-
venient option, evildoers soon learned how to
take advantage of this behavior to cause all
kinds of headaches. Convenient as it may be,
the register_globals feature is now

turned off on most servers and isn’t even
available on the next version of PHP. The
$_REQUEST approach is safer and not much
harder. If you want even more control of how
information is passed to your programs, inves-
tigate the filter functions that are in the
latest versions of PHP. They are not quite com-
plete (as of this writing), but by the time PHP6
rolls around, they’ll probably become an even
better way to extract data from forms.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 527

Retrieving Data from Other Form Elements528

The XHTML form poses the questions. (Check out Book I, Chapter 7 for a
refresher on XHTML forms, if you need it.) Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>monty.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “monty.css” />

</head>

<body>
<h1>Monty Python Quiz</h1>
<form action = “monty.php”

method = “post”>
<fieldset>

<p>
<label>What is your name?</label>
<select name = “name”>

<option value = “Roger”>
Roger the Shrubber

</option>
<option value = “Arthur”>

Arthur, King of the Britons
</option>
<option value = “Tim”>

Tim the Enchanter
</option>

</select>
</p>

<p>
<label>What is your quest?</label>

<input type = “radio”
name = “quest”
value = “herring” />

To chop down the mightiest tree in the forest
with a herring

<input type = “radio”
name = “quest”
value = “grail” />

I seek the holy grail.

<input type = “radio”
name = “quest”
value = “shrubbery” />

I’m looking for a shrubbery.

</p>

<p>

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 528

Book V
Chapter 3

PHP and XHTM
L

Form
s

Retrieving Data from Other Form Elements 529

<label>How can you tell she’s a witch?</label>

<input type = “checkbox”
name = “nose”
value = “nose”/>

She’s got a witch nose.

<input type = “checkbox”
name = “hat”
value = “hat”/>

She has a witch hat.

<input type = “checkbox”
name = “newt”
value = “newt” />

She turned me into a newt.

</p>
<button type = “submit”>

Submit
</button>

</fieldset>
</form>

</body>
</html>

There’s nothing too crazy about this code. Please note the following features:

✦ The action attribute is set to monty.php. This page (monty.html)
will send data to monty.php, which should be in the same directory on
the same server.

✦ The method attribute is set to post. All data on this page will be passed
to the server via the post method.

✦ Each form element has a name attribute. The name attributes will be
used to extract the data in the PHP program.

✦ All the radio buttons have the same name value. The way you get radio
buttons to work together is to give them all the same name. While they
all have the same name, each has a different value. When the PHP pro-
gram receives the request, it will get only the value of the currently
selected radio button.

✦ Each check box has an individual name. Check boxes are a little bit dif-
ferent. Each check box has its own name, but the value is sent to the
server only if the check box is currently checked.

I don’t cover text areas, passwords fields, or hidden fields here because, to
PHP, they are just like text boxes. Retrieve data from these elements just like
you do for text fields.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 529

Retrieving Data from Other Form Elements530

Responding to a complex form
The monty.php program is designed to respond to monty.html. You can
see it respond when I submit the form in monty.html, as shown in Figure 3-6.

It’s no coincidence that monty.html uses monty.css and calls
monty.php. I deliberately gave these files similar names so it will be easy to
see how they fit together.

This program works like most PHP programs: It loads data from the form
into variables and assembles output based on those variables. Here’s the
PHP code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>monty.php</title>
<!-- Meant to run from monty.html -->

</head>

<body>
<h1>Monty Python quiz results</h1>
<?php

//gather the variables
$name = $_REQUEST[“name”];

Figure 3-6:
The
monty.php
program
responds to
the Monty
Python quiz.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 530

Book V
Chapter 3

PHP and XHTM
L

Form
s

Retrieving Data from Other Form Elements 531

$quest = $_REQUEST[“quest”];
$nose = $_REQUEST[“nose”];
$hat = $_REQUEST[“hat”];
$newt = $_REQUEST[“newt”];

//send some output
$reply = <<< HERE

<p>
Your name is $name.

</p>

<p>
Your quest is $quest.

</p>

HERE;
print $reply;

//determine if she’s a witch
$witch = false;
if ($nose != “”){

$witch = true;
} // end if

if ($hat != “”){
$witch = true;

} // end if

if ($newt != “”){
$witch = true;

} // end if

if ($witch == true){
print “<p>She’s a witch!</p> \n”;

} // end if
?>

</body>
</html>

If you want to respond to a form with multiple types of data, here’s how it’s
done:

1. Begin with the XHTML form.

Be sure you know the names of all the fields in the form, as your PHP
program will need this information.

2. Embed your PHP inside an XHTML framework.

Use your standard XHTML framework as the starting point for your PHP
documents, too. The results of your PHP code should still be standards-
compliant XHTML. Use the <?php and ?> symbols to indicate the pres-
ence of PHP code.

3. Create a variable for each form element.

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 531

Retrieving Data from Other Form Elements532

Use the $_REQUEST technique described in the “Receiving data in PHP”
section of this chapter to extract form data and store it in local variables:

//gather the variables
$name = $_REQUEST[“name”];
$quest = $_REQUEST[“quest”];
$nose = $_REQUEST[“nose”];
$hat = $_REQUEST[“hat”];
$newt = $_REQUEST[“newt”];

4. Build your output in a heredoc.

PHP programming almost always involves constructing an XHTML docu-
ment influenced by the variables that were extracted from the previous
form. The heredoc method (described in Chapter 2 of this minibook) is
an ideal method for packaging output:

//send some output
$reply = <<< HERE

<p>
Your name is $name.

</p>

<p>
Your quest is $quest.

</p>

HERE;
print $reply;

5. Check for the existence of each check box.

Check boxes are the one exception to the “treat all form elements the
same way” rule of PHP. The important part of a check box isn’t really
its value. What you really need to know is whether the check box is
checked or not. Here’s how it works: If the check box is checked, a name
and value are passed to the PHP program. If the check box is not
checked, it’s like the variable never existed:

a. Create a variable called $witch set to false. (We’ll assume inno-
cent until proven guilty in this witch hunt.)

Each check box, if checked, would be proof that she’s a witch. If the
field was not passed (which will happen if the check box is not
checked), the resulting variable will be empty (“”).

b. Check each check box variable. If it’s not empty, the correspon-
ding check box was checked, so she must be a witch (and she must
weigh the same as a duck — you’ve really got to watch this movie).

After testing for the existence of all the check boxes, the $witch
variable will still be false if none of the check boxes were checked.
If any combination of check boxes is checked, $witch will be true:

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 532

Book V
Chapter 3

PHP and XHTM
L

Form
s

Retrieving Data from Other Form Elements 533

//determine if she’s a witch
$witch = false;
if ($nose != “”){

$witch = true;
} // end if

if ($hat != “”){
$witch = true;

} // end if

if ($newt != “”){
$witch = true;

} // end if

if ($witch == true){
print “<p>She’s a witch!</p> \n”;

} // end if

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 533

Book V: Server-Side Programming with PHP534

34_186275 bk05ch03.qxp 3/28/08 10:52 PM Page 534

Chapter 4: Control Structures

In This Chapter
� Getting familiar with if-else conditionals

� Using switch structures

� Working with while and for loops

� Using comparison operators

Control structures allow you to make decisions or control the order of
execution of your program. if-else conditionals, case statements,

for loops, and while loops are all control structures.

Introducing if-else Conditionals
If you have two or more courses of action to choose from in your program, a
perfect way to handle this is through if-else conditionals.

if conditionals
The simplest form of a control statement is the if conditional, also known
as an if statement or an if construct.

An if conditional evaluates an expression down to its True or False value.
If the value is equal to True, some code will be executed. If the value is
False, the code won’t be executed.

Here’s how you construct an if conditional:

1. Start with if.

2. Follow this with a condition expression in parentheses, ().

3. Follow this with the code to be executed if the expression is met.

This code must be surrounded by curly braces.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 535

Introducing if-else Conditionals536

The simplest form of an if conditional uses a variable that you expect to
contain the value True or False (known as a Boolean variable) as the
expression to be evaluated by the if statement:

$expression = true;

if($expression){
print “true!”;

}

This code would print true!.

If you wanted to check $expression to see if it was equal to False, you
could precede it with an exclamation point:

$expression = true;

if(!$expression){
print “false!”;

}

In this case, nothing would print as a result of the execution of this code
because $expression is set to True.

The if conditional also evaluates to True if a variable simply exists and
isn’t equal to the Boolean values True or False. So, the following code
would evaluate to True because I’m using the string “false” instead of the
Boolean False:

$expression = “false”;

if($expression){
print “true”;

}

Be careful when setting Booleans to True or False. If you put quotes
around either True or False, the value won’t be treated as a Boolean, but
rather as a string.

Beyond checking to see whether variables exist or are equal to the Boolean
values True and False, you can use an if statement to compare two or
more variables.

The most common form of comparison is the check for equality. When
checking for equality, use a double equal sign (==), not a single one (=).
Single equal signs assign (a sign assigns!), whereas double equal signs com-
pare (one sign for each value!).

So, this code would always evaluate to True and print 2, even though it’s
obvious to you that that is not what you intended:

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 536

Book V
Chapter 4

Control Structures

Introducing if-else Conditionals 537

<?
$var = 1;
if($var = 2){

print “$var”;
}
?>

Here’s a dice-rolling game where the user tries to roll a six. You’ll use an if
conditional to make sure the $userNumber variable exists and another to
determine whether the user wins (see Figure 4-1 for the output):

<h1>Dice Rolling Game</h1>
<p>Welcome to the dice rolling game. See if you can roll a six!</p>

<?php

$userNumber = rand(1,6);

if($userNumber){
print “<p></p>”;

if($userNumber == 6){
print “<p>You rolled a six!</p>”;

}
}

?>

<p>Try Again!</p>

Figure 4-1:
If a six is
rolled, a
special
message is
shown.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 537

Introducing if-else Conditionals538

Each time you come to the page, it chooses a random number from 1 to 6
and then evaluates that number to see if you rolled a six. If you did roll a six,
it displays the special “You rolled a six!” message.

Notice that the code inside the curly braces runs only if the condition inside
the parentheses is met. Otherwise, it just skips right to the closing curly
brace and resumes from there.

In this case, checking whether the $userNumber variable existed isn’t really
necessary because you set it immediately before you checked it. However, if
the $userNumber variable came from a form submitted to this page, ensur-
ing that the $userNumber variable was submitted successfully would be a
good idea.

else conditionals
When writing if conditionals, it’s good practice to always include at least
one else conditional.

When evaluating a Boolean to see if it equals True, the else conditional
would function as the code that would execute if the Boolean is equal to
False:

$expression = false;

if($expression){
print “true”;

}else{
print “false”;

}

This code would print false because the expression is equal to the Boolean
value False.

Conversely, just as you checked for the variable to equal False instead of
True, the else conditional would function as the check for True in the fol-
lowing statement:

$expression = true;

if(!$expression){
print “false”;

}else{
print “true”;

}

This code would print true.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 538

Book V
Chapter 4

Control Structures

Introducing if-else Conditionals 539

else conditionals can be stacked with ifs, so you can include as many as
you want. If you’re following an else with an if, you can write the else
statement as elseif or else if. I prefer else if over elseif simply
because it looks better to me.

Here are basically the two rules to remember with else:

✦ The else conditional goes right after the closing curly brace and can be
immediately followed by a new if conditional.

✦ The final else conditional can simply be followed by another opening
curly brace. This else is executed only if none of the if conditionals
are met.

Here’s a magic 8-ball game that gives you a different outcome dependent
upon a random number (see Figure 4-2 for the output):

<?php

$yourNumber = rand(1,8);

else and errors
Note the last else conditional in the 8-ball
program. This should never execute; but if it did
for some reason, you’re letting the user know
what to do. In this case, you’re giving the user
an error code to send back to you that you can
recognize. In this example, 8BIC stands for 8-
ball if conditional. It’s followed by the value
$yourNumber so that you’ll have enough
information to begin your investigation into why
the error occurred.

It’s really up to you as to what you want to
happen here, and it wouldn’t be very good
practice to print an error code to the user every
time things didn’t go the way you expected.
However, for the 8-ball program — because the
if statement really is the entire program —
you might consider printing the error code.
More realistically, however, you’d probably
want to arbitrarily hard code a valid number
and print the picture for that number. Who
cares if it isn’t the number that got rolled?

When printing errors to the user, think about
how important it is that the user lets you know
the error occurred. Is there some default value
you could’ve shown the user or some default
behavior you could’ve executed, leaving the
user none the wiser and ultimately happy?
Errors degrade faith in your program. How
excited would you be about making a credit
card purchase on a site that constantly spit
errors every time a tiny thing happened that you
didn’t care about?

A good solution for this 8-ball program may be
to swallow the error and never let the user
know anything went wrong. Instead, you can
have the program e-mail an error report with
relevant information to you. Even this solution
is extreme overkill, though, because it really
doesn’t matter how many times that else
runs, as long as the user doesn’t realize it. It
only becomes a problem if else runs every
time, but you’d probably notice that during your
testing phase.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 539

Introducing if-else Conditionals540

if($yourNumber == 1){
print “<p></p>”;

}else if($yourNumber == 2){
print “<p></p>”;

}else if($yourNumber == 3){
print “<p></p>”;

}else if($yourNumber == 4){
print “<p></p>”;

}else if($yourNumber == 5){
print “<p></p>”;

}else if($yourNumber == 6){
print “<p></p>”;

}else if($yourNumber == 7){
print “<p></p>”;

}else if($yourNumber == 8){
print “<p></p>”;

}else{
print “An error has occurred. Please try again, or contact
support@somesite.com for assistance. Error code: 8BIC:$yourNumber”;

}

?>

Ask another question!

Figure 4-2:
The results
of the
ifElse.php
code. A
simple 8-ball
simulator.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 540

Book V
Chapter 4

Control Structures

Introducing if-else Conditionals 541

Comparison operators
There are many ways to test variables to see if they’re equal to, less than,
greater than, or not equal to certain text, numbers, or even other variables,
as shown in the following:

✦ ==: Checks for equality

✦ !=: Checks for inequality

✦ <: Checks to see if the value on the left is less than the value on the right

✦ >: Checks to see if the value on the left is greater than the value on the
right

✦ <=: Checks to see if the value on the left is less than or equal to the
value on the right

✦ >=: Checks to see if the value on the left is greater than or equal to the
value on the right

Remember, these comparisons work on any sort of data, not just numbers.
You can compare letters from the alphabet, as shown here:

if(“a” < “b”)

This would evaluate to True because a comes before b in the alphabet, and
thus is smaller.

Here’s a program that rolls two ten-sided dice to get a percentile. Through a
series of if-else statements, the program determines what happens, based
on your roll, by using comparison operators (feel free to get the code from
the CD-ROM, rather than typing it all — Figure 4-3 shows the output):

<?php

$tensDie = rand(1,10);
$onesDie = rand(1,10);

print “<p><img src=\”10sided$onesDie.png\”
/>
”;

if($onesDie == 10)
$onesDie = 0;//if ones die == 10, make it zero.

if($tensDie == 10){
if($onesDie != 0){

print “You rolled a $onesDie</p>”;
}else{

print “You rolled 100!</p>”;
}

}else{
print “Your rolled $tensDie$onesDie</p>”;

}

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 541

Introducing if-else Conditionals542

print “<p>”;
if($tensDie != 10){

if($tensDie <= 4){
print “Your project is a failure. It is $tensDie years late and “ .

$onesDie .
“00% over budget before it finally gets canceled. All of your co-workers

are
disgruntled and send each other’s code to worsethanfailure.com”;

}else if($tensDie <= 7){
print “Your project is only a partial success. It is “ . $tensDie * 3 . “

months
late and “ . $onesDie . “0% over budget. It is never incredibly

successfully
implemented, but it puts food on the table.”;

}else if($tensDie < 9){
print “Your project is a success. It is only $tensDie weeks late and has

“ .
$onesDie . “% of the features originally planned, but it survives through

“ .
($tensDie + $onesDie) . “ more releases before it is obsolete.”;

}else{
print “Your project is a huge success! “;
if($onesDie == 9){

print “ It is purchased by Google, and you are snatched up along with
it. You

lucky entrepreneur you...”;
}else{

print “ It remains an industry standard for the next $onesDie years,
making

you filthy rich.”;
}

Figure 4-3:
A fortune
teller
program,
using ten-
sided dice
to determine
your fate.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 542

Book V
Chapter 4

Control Structures

Introducing if-else Conditionals 543

}
} else {

if($onesDie == 0){
print “When you were born, your mother christened you \”William

Gates\”, and the
rest is history.”;

}else{
print “Someone burns your office down and you lose your job. Better

luck next
time.”;

}
}
print “</p>”;

?>

Try Again!

Logical operators
You can cram as many comparisons as you want into the if statement. You
simply need to separate the comparisons with logical operators, such as the
following:

✦ AND or &&: Either can be placed between two conditionals to make sure
both conditions are met.

✦ OR or ||: Either can be placed between two conditionals to make sure at
least one is met.

✦ XOR: Can be placed between two conditionals to make sure at least one
is not met.

These logical operators go right inside the parentheses with the expressions:

if(“a” < “b” || 1 == 2)

Because you need only one of the expressions to evaluate to True (with an
OR logical operator), this code evaluates to True because even though 1 is
not equal to 2, a is less than b. However, if I replaced OR with AND:

if(“a” < “b” && 1 == 2)

This would evaluate to False because both expressions on either side of
AND don’t evaluate to True.

You can go pretty crazy with all the logical operators if you want (using
parentheses to organize them), much the way you would an equation in
math, as shown in the following (see Figure 4-4 for the output):

<h1>Spacewar!</h1>
<p>It is 1962. You are Steve Russell hard at work on your DEC PDP-1 Computer

trying to invent the very first computer game, “Spacewar!”</p>

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 543

Introducing if-else Conditionals544

<p>Everything would be going great if only you could get the Cathode-Ray Tubes to
work. There are two that are giving you trouble. They are getting either too
much, or too little power, but you just need one to work to play the game.
Try restarting until one works!</p>

<?php

//set random power level
$crt1 = rand(1,10);
$crt2 = rand(1,10);

print <<<HERE
<p>Your CRTs (need one to be green):

</p>
HERE;

//see if one crt’s power levels is between 4 and 6 (inclusive)...
if(($crt1 >= 4 && $crt1 <= 6) || ($crt2 >= 4 && $crt2 <= 6)){

print”<p>SPACEWAR!
</p>”;
}else{

print”<p>No Go... Try again...
</p>”;

}
?>

Figure 4-4:
The first
computer
game. Can
you get it to
work?

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 544

Book V
Chapter 4

Control Structures

Comparing with switch Structures 545

This really optimizes your if statements. Without the logical operators, this
same code would’ve taken about five if statements:

xif($crt1 >= 4){
if($crt1 <= 6){

print”<p>SPACEWAR!
</p>”;
}else if($crt2 >= 4){

if($crt2 <= 6){
print”<p>SPACEWAR!
</p>”;
}else{

print”<p>No Go... Try again...
<img

src=\”computerOff.png\” /></p>”;
}

}
}

Comparing with switch Structures
The switch statement is a great replacement for an if conditional if you
have a single variable that you want to compare to a set number of values by
using the double equal sign (==) comparison.

Here’s how you construct the switch statement:

1. Start with the keyword switch.

2. Add the variable you wish to evaluate in parentheses, ().

In this example, $theVar is the variable.

3. Insert a pair of curly braces ({}).

4. Put the case statements inside the curly braces, beginning with case.

5. Add the value to test the variable against.

In this example, 1, b, and False are all values to test the variable
against. These values are like the value on the right side of an if com-
parison, whereas the variable ($theVar, in this example) is like the vari-
able on the left side of an if comparison.

6. Enter the code to run if the variable test evaluates to True.

7. Add the break statement to exit the switch structure.

8. Put as many case statements as you want until you’ve exhausted all
of the reasonable possibilities you think might occur.

If you are rolling a six-sided die, for example, you would test for numbers
1 to 6 because those are reasonable possibilities.

9. (Optional) Include a default clause.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 545

Comparing with switch Structures546

You can compare against numbers, text, Booleans, or all three:

switch($theVar){
case 1:

//do something
break;

case “b”:
//do something
break;

case false:
//do something
break;

default:
//do something

}

Don’t forget the break statement, or every single line following the first
statement that evaluates to True will run! Try commenting the break state-
ments out of the magic 8-ball code following the next paragraph to see for
yourself.

Look at this modified version of the 8-ball program from earlier in this chap-
ter to see how the case statement can simplify your programs:

<p>Ask the magic 8 ball a yes or no question!</p>

<?php

$yourNumber = rand(1,8);

switch($yourNumber){
case 1:

print “<p></p>”;
break;

case 2:
print “<p></p>”;
break;

Loose comparisons with switch
The switch statement uses loose compar-
isons to check for equality. Basically, this
means that it’s a lot less strict about whether
the two values are equal. For instance, with
loose comparison, the following:

true == 1

evaluates to True. Whereas with strict com-
parisons, the same statement would evaluate
to False.

For more on strict versus loose comparisons,
see http://us2.php.net/manual/
en/types.comparisons.php#types.
comparisions-loose.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 546

Book V
Chapter 4

Control Structures

Comparing with switch Structures 547

case 3:
print “<p></p>”;
break;

case 4:
print “<p></p>”;
break;

case 5:
print “<p></p>”;
break;

case 6:
print “<p></p>”;
break;

case 7:
print “<p></p>”;
break;

case 8:
print “<p></p>”;
break;

default:
print “An error has occurred. Please try again, or contact
support@somesite.com for assistance. Error code: 8BIC:$yourNumber”;

}

?>

Ask another question!

if statements considered harmful
If you’ve followed along so far, you simplified
the 8-ball program with case statements
instead of if-else statements. Is there any-
thing else you could do that would simplify it
more?

The most efficient version of the 8-ball program
functions without ifs or cases and is only
two lines of PHP code:

$yourNumber = rand(1,8);
print “<p><img

src=\”8ball$yourNumber.png\”
/></p>”;

Often, you’ll find that if you’re doing something
extremely complicated with lots of nested ifs,
you’re probably doing something wrong. Many
new programmers use if statements for

everything because if your only tool is a
hammer, everything looks like a nail.

After you expand your toolbox with tools such
as arrays, multidimensional arrays, and simple
solutions like the one shown in this sidebar,
you’ll find that you write fewer and fewer if
statements. Very rarely do you write long, com-
plex if statements like the ones shown in this
chapter.

Note: if statements aren’t really considered
harmful, that was just a catchy title based on a
common phrase in computer science popular-
ized by a 1968 letter written about GOTO state-
ments. For more on this topic, see http://
blog.chomperstomp.com/?p=110.

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 547

Looping It Up with Loops548

Looping It Up with Loops
Many times, you’ll find that you want the computer to repeat a certain task.
The way to do this is through loops.

while loops
Loop structures rely heavily on if statements. In fact, the while loop looks
exactly like an if statement with the word if replaced with the word while.
The only difference is that whereas if executes only once, while continues
to repeat until it evaluates to False.

So, this code could go on forever unless something inside the curly braces
set $theVar to False:

$theVar = true;

while($theVar){
//do something

}

Look back at the dice-rolling program earlier in this chapter (refer to Figure
4-1). Instead of clicking Try Again! for every roll, you could easily modify this
program to simply roll the dice until you get a six (see Figure 4-5 for the
output):

<h1>Dice Rolling Game 2</h1>
<p>Welcome to the dice rolling game. See how many rolls it takes to get a

six!</p>

<?php
while ($userNumber != 6){

$userNumber = rand(1,6);
print “<p></p>”;

}

print “<p>You rolled a six!</p>”;
?>

<p>Try Again!</p>

for loops
A for loop is really just a convenient while loop. With while loops, you
have to initialize the variable, create the while loop with the if expression,
and then remember to make the expression evaluate to True:

$theVar = 0;

while($theVar < 10){
//do something
$theVar++;

}

35_186275 bk05ch04.qxp 3/28/08 10:52 PM Page 548

Book V
Chapter 4

Control Structures

Looping It Up with Loops 549

for loops take care of all this in a nice succinct, compact way in the expres-
sion area of the loop:

for($theVar = 0; $theVar < 10; $theVar++){
//do something

}

Each time PHP gets to the end of the loop (the last curly brace), it jumps
right back to the beginning if the expression still evaluates to False, and it
increments $theVar by 1.

Here’s what the for loop is doing:

$theVar = 0;
if ($theVar < 10){

//do something
$theVar++;

}
//go back to the first if

So, you can see it’s basically just a conveniently structured while loop.

You can make the loop increment by any value you like; it doesn’t have to
just be by 1.

Figure 4-5:
The dice
keep rolling
until you get
a six!

35_186275 bk05ch04.qxp 3/28/08 10:53 PM Page 549

Looping It Up with Loops550

If you made the dice-rolling game for the while loop in the preceding sec-
tion, you made it keep rolling until it rolled a six. What if, instead, you
wanted it simply to roll the dice 100 times and see how many times you
rolled a six? This would be extremely easy to do with a for loop (see Figure
4-6 for the output):

<h1>Dice Rolling Game 2</h1>
<p>Welcome to the dice rolling game. See how many rolls it takes to get a

six!</p>
<p>
<?php
$sixCount = 0;

for ($i = 0; $i < 100; $i++){
$userNumber = rand(1,6);
print “”;
if($userNumber == 6){

$sixCount++;
}

}

print “<p>You rolled $sixCount six(es)!</p>”;
?>
</p>
<p>Try Again!</p>

Figure 4-6:
100 dice
rolls with a
count of the
number of
sixes rolled.

35_186275 bk05ch04.qxp 3/28/08 10:53 PM Page 550

Book V
Chapter 4

Control Structures

Looping It Up with Loops 551

As you can see, the structure of the for loop is

for (expression1; expression2; expression3)
//do something

Here’s what each part of the code is doing:

✦ First expression: Executes exactly once at the beginning of the for
loop. This is where you initialize variables.

✦ Second expression: Evaluates at the beginning of each iteration of the
loop until it evaluates to False, at which point, the loop ends.

✦ Third expression: Executes at the end of each iteration of the loop.

More on control structures
Here are a few more control structures that I
haven’t discussed yet in this chapter:

� do-while: Exactly like while, except
that the if conditional is evaluated at the
end of the loop, rather than at the begin-
ning. This ensures that the loop executes at
least once, whereas with while, there’s a
chance it won’t execute at all.

� foreach: This works only on arrays; I
cover this in Chapter 5 of this minibook.

� continue: This is used within the loop
structure to skip the remaining code and
move to the next iteration of the loop.

� declare:declare constructs are used
to set an execution directive for blocks of
code. You’ll probably won’t use this often.

� return: Called from within a function.

� require: Includes and evaluates a spe-
cific file and kills the program if the file
doesn’t exist.

� include: Includes and evaluates a spe-
cific file.

� require_once: Same as require,
except that if the file has already been
included, it won’t be included again.

� include_once: Same as include,
except that if the file has already been
included, it won’t be included again.

These control structures aren’t quite as preva-
lent as the ones covered in this chapter, but you
may still run across them every now and then.

For more detail and alternative syntaxes for con-
trol structures, check out the PHP manual online
at http://us2.php.net/manual/en/
language.control-structures.php.

35_186275 bk05ch04.qxp 3/28/08 10:53 PM Page 551

Looping It Up with Loops552

Within each of these expressions, you can place multiple expressions sepa-
rated by commas. In this way, you can modify your dice-rolling program to
simplify the six count by putting the initialization of the $sixCount variable
inside the for loop in the expression1 place:

for ($i = 0, $sixCount = 0; $i < 100; $i++){

All the expressions places are optional. If you leave them empty, the loop
will still work. Leaving expression2 empty simply causes the loop to run
forever unless you exit it with a break directive. Take a look at this modified
version of the dice-rolling program. I leave the expression2 slot empty and
manually exit the loop if either the dice-roll count exceeds 100 or you roll
more than 20 sixes (see Figure 4-7 for the output):

<h1>Dice Rolling Game 3</h1>
<p>Welcome to the dice rolling game. See how many rolls it takes to get 20 sixes.

You can roll the dice up to 100 times!</p>
<p>
<?php
for ($i = 0, $sixCount = 0; ; $i++){

$userNumber = rand(1,6);
print “”;

if($userNumber == 6){
$sixCount++;

}

if($i > 99 || $sixCount > 19){
break;

}
}

print “<p>You rolled the dice $i times, and rolled $sixCount six(es)!</p>”;
if($sixCount < 20){

print “<h2>You failed to roll 20 sixes!!!</h2>”;
}

?>
</p>
<p>Try Again!</p>

You can do some amazing things with loops, and they’ll be one of the most
important tools in your toolbox, especially when using arrays (see Chapter 5
of this minibook for more about working with arrays).

35_186275 bk05ch04.qxp 3/28/08 10:53 PM Page 552

Book V
Chapter 4

Control Structures

Looping It Up with Loops 553

Figure 4-7:
Roll the dice
100 times
and try to
get more
than 20
sixes.

35_186275 bk05ch04.qxp 3/28/08 10:53 PM Page 553

Book V: Server-Side Programming with PHP554

35_186275 bk05ch04.qxp 3/28/08 10:53 PM Page 554

Chapter 5: Working with Arrays

In This Chapter
� Creating one-dimensional arrays

� Making the most of multidimensional arrays

� Using foreach loops to simplify array management

� Breaking a string into an array

In time, arrays will become one of the most important tools in your tool-
box. They can be a bit hard to grasp for beginners, but don’t let that stop

you. Arrays are awesome because they allow you to quickly apply the same
instructions to a large number of items.

In PHP, an array is a variable that holds multiple values that are mapped to
keys. Think of a golfing scorecard. You have several scores, one for each
hole on the golf course. The hole number is the key, and the score for that
hole is the value. Keys are usually numeric, but values can be any type. You
can have an array of strings, numbers, or even objects.

Using One-Dimensional Arrays
The most basic array is a one-dimensional array. It’s just one container with
slots, and each slot has only one variable in it. In this section, you find out
how to create this type of array and fill it.

Creating an array
Array creation is pretty simple. First, you need to create a variable and then
tell PHP that you want that variable to be an array:

$theVar = array();

Now, $theVar is an array. However, it’s an empty array waiting for you to
come along and fill it.

Technically, you can skip the variable creation step. It’s still a good idea to
explicitly define an array because it helps you remember the element is an
array, and there are a few special cases (such as passing an array into a
function) where the definition really matters.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 555

Using One-Dimensional Arrays556

Filling an array after creation
An array is a wonderful thing after you put something in it. Here are the
three ways you can fill an array after you create it:

✦ Reference a numerical index and place something in that slot of the array.

✦ Specify an index and place something in that slot of the array.

✦ Take the next highest available numerical index greater than zero.

Take a look at the following:

$theVar[0] = “something”;
$theVar[] = 4;

If you were paying close attention, you’ll notice that I used 0 as my first
array index. That’s because computers start counting from zero, and now
you do, too! So, in the example, index 0 holds the value something and
index 1 holds the value 4.

When filling an array, if you don’t specify an index, it simply takes the next
highest index equal to or greater than zero and places the value there.
Because I didn’t specify an index for the number 4, it looked at the current
numbered indices it had (which was index 0) and took the next highest num-
bered index (which was index 1) and placed 4 inside that index. If you had
indices 0, 5, 6, and 27, the next highest numbered index would be 28.

Filling an array upon creation
You can fill an array upon creation by placing values, separated with
commas, inside the parentheses, as shown here:

$theVar = array(“one”, $two, 3);

This creates an array whose 0th index is filled with the string one, the 1st
index is filled with the variable $two, and the 2nd index is filled with the
integer 3. You can explicitly define which index gets what by using little
arrows:

$theVar = array(2 => “one”, 0 => $two, 4 => 3);

Now, you have an array with the 0th index equal to the variable $two, the
2nd index equal to the string one (note that there’s no 1st index, or rather,
the first index is null), and the index 4 equal to the number 3.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 556

Book V
Chapter 5

W
orking w

ith
Arrays

Using One-Dimensional Arrays 557

Accessing an array index
To access one of the indices in an array (to get to the egg in a slot), call it by
name:

print $anArray[0];

This would print whatever was in the 0th index of the array. It’s as simple as
that. If you wanted to, you could even use a variable equal to the name of the
index you wanted to call, as shown here:

$anArray = array(0=>”first egg”, “second egg”, “bazaar”=>”third egg”);
$aVar = 0;

print $anArray[$aVar];

In this case, first egg would be printed because $aVar is equal to 0, and
first egg is in the 0th index. Changing $aVar to 1 would cause second
egg to be printed, and changing $aVar to bazaar would cause third egg
to be printed.

So, now take a look at all this in action:

<h1>Random Computer Quotes</h1>
<?

$theVar = array();

Why => instead of <=?
The arrows (=>) can be a little bit confusing.
Some might think they should go the other way
(<=) so that it’d be like placing the value into
the index:

$anArray[“anIndex”] <= “the value I’m
putting in the index”;

However, because of the way that if state-
ments function, if they had the arrow the more
logical way, PHP would get confused (the fol-
lowing code doesn’t work):

if(0 <= 1){
$anArray[“anIndex”] <= “the value I’m

putting in the index”;
}

PHP will get really confused if you do this. Are
you trying to do a comparison or place a value
into an index? Instead of looking at the arrow
as placing a value into a slot, look at it as plac-
ing a pointer from the slot to the variable. Also,
note that in OO PHP (see Chapter 1 of this mini-
book), you assign values to an object’s proper-
ties with the pointer arrow (=>). So, at least it is
consistent.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 557

Using One-Dimensional Arrays558

$theVar[] = “<p>If at first you don’t succeed; call it version 1.0 and ship it
anyways...</p>”;

$theVar[] = “<p>Some things Man was never meant to know. For everything else,
there’s Google.</p>”;

$theVar[] = “<p>SUPERCOMPUTER: what it sounded like before you bought it.</p>”;
$theVar[] = “<p>My software never has bugs. It just develops random

features.</p>”;
$theVar[] = “<p>If you give someone a program, you will frustrate them for a day;

if you teach them how to program, you will frustrate them for a
lifetime.</p>”;

$theVar[] = “<p>It is easier to change the specification to fit the program than
vice versa.</p>”;

$theVar[] = “<p>Programmers are tools for converting caffeine into code.</p>”;
$theVar[] = “<p>Always program as if the person who will be maintaining your

program is a violent psychopath that knows where you live.</p>”;

print $theVar[rand(0,7)];

?>

<p>See Another!</p>

In this program, you fill an array with eight different quotes and then get and
print a random array with the print() and rand() functions.

Debugging with print_r
A very useful tool when working with arrays is the print_r() function.
With this function, you can print every index and its value in an array.

When building the quotes.php program (see the previous section), if you
accidentally called the rand() function with 1 and 8 instead of 0 and 7,
you’d get a blank quote every now and then. A quick way to figure out the
problem if you didn’t catch your mistake immediately would have been to
call print_r() on the array and then capture and print the random value
you were trying to use to call the array with:

<h1>Random Computer Quotes</h1>
<p>”
<?

$theArray = array();

$theArray[] = “If at first you don’t succeed; call it version 1.0 and ship it
anyways...
”;

$theArray[] = “Some things Man was never meant to know. For everything else,
there’s Google.
”;

$theArray[] = “SUPERCOMPUTER: what it sounded like before you bought it.
”;
$theArray[] = “My software never has bugs. It just develops random features.
”;
$theArray[] = “If you give someone a program, you will frustrate them for a day;

if you teach them how to program, you will frustrate them for a lifetime.
”;

$theArray[] = “It is easier to change the specification to fit the program than
vice versa.
”;

$theArray[] = “Programmers are tools for converting caffeine into code.
”;

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 558

Book V
Chapter 5

W
orking w

ith
Arrays

Introducing Associative Arrays 559

$theArray[] = “Always program as if the person who will be maintaining your
program is a violent psychopath that knows where you live.
”;

$randNumber = rand(1,8);

print $theArray[$randNumber];

print “
Trying to get $randNumber in array:”;
print_r($theArray);

?>
“</p>

<p>See Another!</p>

Introducing Associative Arrays
You can use string values as keys. For example, you might create an array
like this:

$myStuff = array();
$myStuff[“name”] = “andy”;
$myStuff[“email”] = “andy@aharrisbooks.net”;

Print $myStuff[“name”];

Associative arrays are different than normal (numeric-indexed) arrays in
some subtle but important ways:

✦ The order is undefined. Regular arrays are always sorted based on the
numeric index. You don’t know what order an associative array will be
because the keys aren’t numeric.

✦ You must specify a key. If you’re building a numeric-indexed array, PHP
can always guess what key should be next. This isn’t possible with an
associative array.

✦ Associative arrays are best for name-value pairs. Associative arrays
are used when you want to work with data that comes in name/value
pairs. This comes up a lot in PHP and XHTML. XHTML attributes are
often in this format, as are CSS rules and form input elements.

✦ Some of PHP’s most important values are associative arrays. The
$_REQUEST variable (described in Chapter 3 of this minibook) is an
important associative array. So are $_GET, $_POST, and several others.

Make sure to include quotation marks if you’re using a string as an array
index. It will probably work if you don’t, but it’s bad programming practice
and may not work in the future.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 559

Expanding to Multidimensional Arrays560

Expanding to Multidimensional Arrays
A multidimensional array is an array that holds arrays. You can put as many
arrays inside as many arrays as you could possibly want.

Some uses for these are to group things or to use as lookup tables. See Book
IV, Chapter 4 for one possible use of lookup tables — using multidimensional
arrays to hold the distances between cities.

Another use of a multidimensional array is to store and group items. For
example, think of a deck of cards. You could use a multidimensional array to
simultaneously store the cards, which suit they belong to, and even whether
the cards are in the deck or dealt to a player or players.

Creating and filling multidimensional arrays
Multidimensional arrays are created exactly the same way a normal array is
created. If you desire, you initialize the parent array:

$yourArray = array();

The sub-arrays are created on the fly by PHP while you fill them.

Take a look at this program (also shown in Figure 5-1) that uses multidimen-
sional arrays to build a deck of cards:

<p>
<?
//set up arrays
$cardLocation = array();
$suits = array(“heart”, “diamond”, “spade”, “club”);

//fill deck
for($rank=0; $rank<13; $rank++){

//print “
”;
for($suit=0; $suit<4; $suit++){

$cardLocation[$rank][$suit] = “deck”;
print ‘<img style=”width: 150px;” src=”’ . $suits[$suit] . ($rank+1)

. ‘.png” />’;
}

}

print “</p>”;

The program uses an array to hold all the cards. The first dimension of the
array is the card ranks (1–13). Each rank has four possible suits (hearts, dia-
monds, spades, and clubs). The program uses nested for loops to cycle
through the array, filling the rank indices with suit arrays. The suit arrays
have four indices each, which contain the value deck to begin with, indicat-
ing that these cards are all located in the deck (as opposed to a player’s
hand).

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 560

Book V
Chapter 5

W
orking w

ith
Arrays

Expanding to Multidimensional Arrays 561

The program also uses a suits array to hold the name values of each suit to
aid in printing the correct pictures to the user.

You can look at multidimensional arrays as tables. The card deck array could
look something like this, if represented in tabular format:

0 0 “deck”

1 “deck”

2 “deck”

3 “deck”

1 0 “deck”

1 “deck”

2 “deck”

3 “deck”

2 0 “deck”

1 “deck”

2 “deck”

Figure 5-1:
Behold. An
entire deck
of cards
built from a
mere eight
lines of
code!

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 561

Expanding to Multidimensional Arrays562

3 “deck”

3 0 “deck”

1 “deck”

2 “deck”

3 “deck”

4 0 “deck”

1 “deck”

2 “deck”

3 “deck”

5 0 “deck”

1 “deck”

2 “deck”

3 “deck”

6 0 “deck”

1 “deck”

2 “deck”

3 “deck”

7 0 “deck”

1 “deck”

2 “deck”

3 “deck”

8 0 “deck”

1 “deck”

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 562

Book V
Chapter 5

W
orking w

ith
Arrays

Expanding to Multidimensional Arrays 563

2 “deck”

3 “deck”

9 0 “deck”

1 “deck”

2 “deck”

3 “deck”

10 0 “deck”

1 “deck”

2 “deck”

3 “deck”

11 0 “deck”

1 “deck”

2 “deck”

3 “deck”

12 0 “deck”

1 “deck”

2 “deck”

3 “deck”

The entire table is the multidimensional array. The far-left column in each
set represents the indices of the parent array, which in this example is the
card ranks. Each index in the parent array contains its own sub-array, which
in this example is the card suits. Each index in the sub-array contains a
value, which in this example is the location of the card. All the cards are
located in the deck in this example (you deal five to the player in the next
section).

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 563

Expanding to Multidimensional Arrays564

Accessing a value in a multidimensional array
Using the table in the previous example as a guide representing the
$cardLocation array, which holds your deck of cards, if you wanted to
access the queen of diamonds, you’d do so like this:

$cardLocation[11][1];

The first number in this example represents the card you want to access, the
queen, which is stored in the indice 11. The next number in this example rep-
resents the rank you want to access, the diamonds, which are stored in the
indice 1. So, the first number represents the indice in the parent array, and
the second number is the indice for the child array in that spot in the parent
array.

A longer, less convenient representation of this would be:

$queenSuits = $cardLocation[11];
$ownerOfCard = $queenSuits[1];

The value of $ownerOfCard in the latter example and
$cardLocation[11][1] in the former example, is deck.

Now, try dealing five cards to the player (see Figure 5-2 for the output):

<h1>Card Hand</h1>
<p>
<?
//set up arrays
$cardLocation = array();
$suits = array(“heart”, “diamond”, “spade”, “club”);

//fill deck
for($rank=0; $rank<13; $rank++){

for($suit=0; $suit<4; $suit++){
$cardLocation[$rank][$suit] = “deck”;

}
}

print “</p><p>”;

//deal hand
for($i=0; $i<5; $i++){

$duplicate = true;

while($duplicate){
$suit = rand(1,4);
$rank = rand(1,13);
if($cardLocation[$rank][$suit] == “deck”){

$cardLocation[$rank][$suit] = “player”;
$duplicate = false;

print ‘<img style=”width: 150px;” src=”’ . $suits[$suit] . ($rank
+ 1) . ‘.png” />’;

}
}

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 564

Book V
Chapter 5

W
orking w

ith
Arrays

Using foreach Loops to Simplify Array Management 565

}
?>
</p>

<p>deal</p>

Here, you generate two random numbers to pick a card rank and suit. Then,
you check to see if that card is in the player’s hand or in the deck. If the
card’s in the deck, give it to the player by setting the value at that index to
player instead of deck. You do this until five different indices are set to
player.

It’s a bit beyond the scope of this chapter, but you can use all this to make a
PHP poker game. See the CD-ROM for the source code and the start of an
algorithm for scoring poker hands.

Using foreach Loops to Simplify Array Management
foreach loops are great for when you want to step through all elements of
an array one by one and do something with them. They work like a for loop,
except they’re much simpler:

Figure 5-2:
A hand of
cards dealt
to the
player.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 565

Using foreach Loops to Simplify Array Management566

1. Start with the foreach() function.

2. Plug in the array ($languages, in this case) you want to use, followed
by . . .

3. The keyword as, followed by . . .

4. The variable you want to store the value of the current array indices
in ($language, in this case), followed by . . .

5. The code you want to execute upon each iteration inside brackets (if
more than one line long).

Take a look (see Figure 5-3 for the output):

<h1>Ancestry of PHP</h1>

<?
$languages = array(“FORTRAN”, “ALGOL58”, “ALGOL60”, “CPL”, “BCPL”, “B”, “C”,

“sh”, “awk”, “PERL”, “PHP”);

foreach($languages as $language){
print “$language”;

}
?>

<p>Reference:

History of Programming Languages Timeline from O’Reilly’s website</p>

Figure 5-3:
PHP’s family
tree, con-
densed.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 566

Book V
Chapter 5

W
orking w

ith
Arrays

Using foreach Loops to Simplify Array Management 567

The foreach loop allows you to just step through each array element one
by one and print it or do anything else you may want with it.

The foreach loop can be used just as easily with multidimensional arrays
(you don’t have to type all this; just look on the CD-ROM for the code and
view Figure 5-4 for the output):

<h1>Ancestry of PHP Expanded</h1>

<?
$languageDetails[“FORTRAN”] = array(“1954”, “FORmula TRANslation”, “John W.

Backus”, “IBM”, “Read
More”);

$languageDetails[“ALGOL58”] = array(“1958”, “ALGOrithmic Language”, “Friedric L.
Bauer”, “Hermann Bottenburch”, “Heinz Rutishauser”, “Klaus Samelson”, “John
Backus”, “Charles Katz”, “Alan Perlis”, “Joseph Henry Wegstein”, “Read More”);

$languageDetails[“ALGOL60”] = array(“1960”, “ALGOrithmic Language”, “Friedrich L.
Bauer”, “Peter Naur”, “Heinz Rutishauser”, “Klaus Samelson”, “Bernard
Vauguois”, “Adriaan Van Wijngaarden”, “Michael Woodger”, “John W. Backus”,
“Julien Green”, “Charles Katz”, “John McCarthy”, “Alan J. Perlis”, “Joseph
Henry Wegstein”, “Read
More”);

$languageDetails[“CPL”] = array(“1963”, “Combined Programming Language”,
“Christopher Strachey”, “University of Cambridge”, “University of London”,
“Read
More”);

$languageDetails[“BCPL”] = array(“1967”, “Basic Combined Programming Language”,
“Martin Richards”, “University of Cambridge”, “Read More”);

$languageDetails[“B”] = array(“1969”, “Ken Thomspon”, “Dennis Ritchie”, “Bell
Labs”, “Read
More”);

$languageDetails[“C”] = array(“1972”, “Dennis Ritchie”, “Bell Labs”, “Read
More”);

$languageDetails[“sh”] = array(“1971”, “tompson SHell”, “Ken Thompson”, “Ream More”);

$languageDetails[“awk”] = array(“1978”, “Accronym for first letters of author’s
last names”, “Alfred Aho”, “Peter Weinberger”, “Brian Kernighan”, “Read More”);

$languageDetails[“PERL”] = array(“1987”, “Doesn’t actually stand for anything”,
“Larry Wall”, “Read
More”);

$languageDetails[“PHP”] = array(“1995”, “PHP: Hypertext Preprocessor (originally:
Personal Home Page tools)”, “Rasmus Lendorf”, “Read More”);

foreach($languageDetails as $language => $details){
print “$language”;
print “”;
foreach($details as $detail){

print “$detail”;
}

print “”;
}
?>

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 567

Using foreach Loops to Simplify Array Management568

<p>Reference:
History

of Programming Languages Timeline from O’Reilly’s website</p>

The nested foreach loops work great for the nested arrays. In the main
foreach loop, each child array of the parent array is extracted into an array
variable $details with each iteration of the loop. Then, in the nested
foreach loop, each value of the extracted child $details array is stored in
the $detail variable and printed to the user.

Note that because I wanted to print the name of the language being detailed,
I used a variant of the foreach loop that extracted and stored not only the
value, but also the index. Because I’m using an associative array for the
parent array, each index is a word instead of a number. In this case, the word
is the programming language name. I store the index in the $language vari-
able and the value of the index (which, in this case, is an array) in the
$detail variable.

Figure 5-4:
An expand-
ed PHP
family tree.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 568

Book V
Chapter 5

W
orking w

ith
Arrays

Using foreach Loops to Simplify Array Management 569

Using foreach with associative arrays
It’s very common to have a large associative array that you want to evaluate.
For example, PHP includes a very useful array called $_SERVER that gives
you information about your server configuration (things like your hostname,
PHP version, and lots of other useful stuff). The following code snippet runs
through the entire $_SERVER array and prints each key/value pair:

foreach ($_SERVER as $key => $value){
print “<p> \n”;
print “ $key: $value \n”;
print “<\p>”;

} // end foreach

Here’s how it works:

1. Begin the foreach loop as normal.

The associative form of the foreach loop begins just like the regular one:
foreach ($_SERVER as $key => $value){

Associative arrays
When you use a string instead of an integer for
your array indices, this is an associative array.
It behaves the same as a normal array, but it
gets a special name because it is special (in
that it uses strings instead of integers as the
array indices).

One thing worth mentioning about associative
arrays is that although using strings without
quotes around them will work as array indices,
it is a big code-writing no-no. So don’t do this:

$myArray[blah] = “the stuff you want to
store”;

Instead, do this:

$myArray[“blah”] = “the stuff you want to
store”;

Forgetting to include quotes creates an unde-
fined constant blah as the indices, rather than

the string blah. This may seem like no big
deal, but it can lead to subtle errors. The most
simple scenario to explain is

$myArray[blah] = “the stuff you want to
store”;

$myArray[“blah”] = “stuff you are trying
to replace the original stuff
you stored with”;

Print $myArray[blah];

You can see that your program would print the
wrong thing. Your $myArray array would now
have two separate indices, “blah” and
blah, which each hold a different value. See
the manual at http://php.net for a more
detailed discussion on this, if you’re interested.
Best practices state that you use quotes
around the strings, which I also encourage you
to do.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 569

Breaking a String into an Array570

2. Identify the associative array.

The first parameter is the array name:
foreach ($_SERVER as $key => $value){

3. Create a variable for the key.

Each element of an associative array has a key and a value. I put the key
in a variable named $key:

foreach ($_SERVER as $key => $value){

4. Use the => symbol to indicate the associative relationship.

This symbol helps PHP recognize you’re talking about an associative
array lookup:

foreach ($_SERVER as $key => $value){

5. Assign the value of the element to a variable.

The $value variable holds the current value of the array item:
foreach ($_SERVER as $key => $value){

6. Use the variables inside your loop.

Each time PHP goes through the loop, it pulls another element from the
array, puts that element’s key in the $key array, and puts the associated
value in $value. You can then use these variables inside the loop how-
ever you wish:

print “ $key: $value \n”;

The $_SERVER variable is extremely useful for checking your environment,
but you shouldn’t make this program available on a publicly-accessible
server. Doing so gives the bad guys information they could use to cause you
headaches. Use it for testing and debugging, then remove it.

Breaking a String into an Array
Many times, it can be useful to break a string into an array programmatically,
especially when reading input from a file.

Here are the two different ways of doing this:

✦ explode: explode takes one parameter as a delimiter and splits the
string into an array based upon that one parameter.

✦ split: If you require regular expressions, split’s the way to go. split
allows you to take complicated chunks of text, look for multiple different
delimiters, and break it into an array based on the delimiters you specify.

explode works well with comma-separated value (CSV) files and the like,
where all the parameters you wish to break the text on are the same. split

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 570

Book V
Chapter 5

W
orking w

ith
Arrays

Breaking a String into an Array 571

works better for when there are many different parameters that you wish to
break the text on or when the parameter you’re looking for is complex.

Creating arrays with explode
Array creation with explode is very straightforward:

explode(“ “, $theString);

The first value is the parameter on which you’re splitting up the string. The
second value is the string you would like to split into an array. In this exam-
ple, the string would be split up on each space. You can put anything you
want as the split parameter.

So, if you have the string that you want to store each word as a value in,
enter the following code (see Figure 5-5 for the output):

<?
$theString = “PARC (Palo Alto Research Center) was one of the single most

important hubs of invention for modern computing”;

$theArray = explode(“ “, $theString);

print_r($theArray);
?>

Figure 5-5:
The string
exploded
into an
array.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 571

Breaking a String into an Array572

The delimiter can be anything you want. If you’re dealing with a comma-sep-
arated value (CSV) file, where each value is separated by a comma, your
explode method might look like this:

$theArray = explode(“,”, $theString);

Creating arrays with split
split is a bit more complicated. split uses regular expressions to split a
string into an array, which can make it a bit slower than explode, in some
instances.

split looks exactly like explode, but instead of one character inside quo-
tations, you can cram all the characters you want to split on into brackets
inside the quotations.

An instance where you’d want to use split instead of explode could be
when processing an e-mail address. A basic e-mail address has dots (.) and
an at sign (@). So, to split on both of these, you could do the following (see
Figure 5-6 for the output):

<?
$theString = “joe@somebody.net”;

$theArray = split(“[@.]”, $theString);

print_r($theArray);
?>

More on split and regex
If you’re more comfortable with PERL-style reg-
ular expressions, use preg_split() instead
of split().

If you’re looking for a character that can be in
either lower- or uppercase, you can use
split(), which is case-insensitive.

split can get really complicated, especially
after you really start using regular expressions.
I’ve only touched on the surface here. Other

functions, such as ereg() and ereg_
replace(), use regular expressions to make
sure that strings have certain elements in them
(to do things like make sure a user entered a
valid e-mail address) and even to replace cer-
tain elements in a string. Also, you can see
http://us2.php.net/manual/en/
ref.regex.php for more on split and
other regular expression functions.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 572

Book V
Chapter 5

W
orking w

ith
Arrays

Breaking a String into an Array 573

split works well for timestamps, e-mail addresses, and other things
where there’s more than just one unique delimiter that you wish to split the
string on.

Figure 5-6:
The e-mail
address
exploded
into an
array.

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 573

Book V: Server-Side Programming with PHP574

36_186275 bk05ch05.qxp 3/28/08 10:53 PM Page 574

Chapter 6: Using Functions and
Session Variables

In This Chapter
� Creating functions to manage your code’s complexity

� Enhancing your code by using functions

� Working with variable scope

� Getting familiar with session variables

� Incorporating session variables into your code

PHP programs are used to solve interesting problems, which can get
quite complex. In this chapter, you explore ways to manage this com-

plexity. You discover how to build functions to encapsulate your code. You
also learn how to use session variables to make your programs keep track of
their values, even when the program is called many times.

Creating Your Own Functions
It won’t take long before your code starts to get complex. Functions are
used to manage this complexity. As an example, take a look at Figure 6-1.

Rolling dice the old-fashioned way
Before I show you how to improve your code with functions, look at a program
that doesn’t use functions, so you have something to compare with.

The rollDice.php program creates five random numbers and displays a
graphic for each die. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>rollDice1.php</title>

</head>

<body>
<h1>RollDice 1</h1>
<h2>Uses Sequential Programming</h2>

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 575

Creating Your Own Functions576

<?php

$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;

$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;

$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;

$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

Figure 6-1:
This pro-
gram rolls
five dice.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 576

Book V
Chapter 6

Using Functions and
Session Variables

Creating Your Own Functions 577

<img src = “$image”
alt = “roll: $roll” />

HERE;

$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;
?>

</body>
</html>

There are some interesting features of this code:

✦ The built-in rand() function rolls a random number. Whenever possi-
ble, try to find functions that can help you. The rand() function pro-
duces a random integer. If you use two parameters, the resulting number
will be in the given range. To roll a standard six-sided die, use
rand(1,6):

$roll = rand(1,6);

✦ I have created an image for each possible roll. To make this program
more visually appealing, I created an image for each possible die roll.
The images are called die1.jpg, die2.jpg, and so on. All these images
are stored in the same directory as the PHP program.

✦ The img tag is created based on the die roll. Once I have a die roll, it’s
easy to create an image based on that roll:

$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;

✦ The die-rolling code is repeated five times. If you can roll one die, you
can easily roll five. It’s as easy as copying and pasting the code. This
seems pretty easy, but it leads to problems. What if I want to change the
way I roll the dice? If so, I’ll have to change the code five times. What if I
want to roll 100 dice? The program will quickly become unwieldy. In gen-
eral, if you find yourself copying and pasting code, you can improve the
code by adding a function.

Improving code with functions
Functions are pre-defined code fragments. Once you define a function, you can
use it as many times as you wish. The outward appearance of this program is
identical to rollDice1.php, but the internal organization is quite different:

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 577

Creating Your Own Functions578

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>rollDice2.php</title>

</head>

<body>
<h1>RollDice 2</h1>
<h2>Uses Functions</h2>
<?php

function rollDie(){
$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;
} // end rollDie

for ($i = 0; $i < 5; $i++){
rollDie();

} // end for loop

?>

</body>
</html>

Here’s how things have changed in this version:

1. Use the function keyword to define a function.

The function keyword indicates that a function definition will follow. The
code inside the definition won’t be run immediately, but instead, PHP will
“remember” the code inside the function definition and play it back on
demand:

function rollDie(){

2. Give the function a name.

The function name should indicate what the function does. I call my
function rollDie() because that’s what it does (rolls a die):

function rollDie(){

3. Specify arguments with parentheses.

You can send arguments (special variables for your function to work
with) by indicating them in the parentheses. This function does not need
arguments, so I leave the parentheses empty:

function rollDie(){

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 578

Book V
Chapter 6

Using Functions and
Session Variables

Creating Your Own Functions 579

For more information on functions, arguments, and the return state-
ment, turn to Book IV, Chapter 4. Functions in PHP act almost exactly
like their cousins in JavaScript.

4. Begin the function definition with a left brace ({).

The left brace is used to indicate the beginning of the function code.

5. Indent the code that makes up your function.

Use indentation to indicate which code is part of your function. In this
case, the function generates the random number and prints an image tag
based on that random number:

function rollDie(){
$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;
} // end rollDie

6. Denote the end of the function with a right brace (}).

7. Call the function by referring to it.

Once the function is defined, you can use it in your code as if it were
built into PHP. In this example, I call the function inside a loop:

for ($i = 0; $i < 5; $i++){
rollDie();

} // end for loop

Naming functions and variables
It can be hard to come up with a good naming
scheme for your variables and functions. Doing
so is very important because when you come
back to your program, if you haven’t named
your functions and variables consistently, you’ll
have a hard time understanding what you
wrote. Here are two common naming schemes
to make this simple: underscores “_” between
words or camel-casing.

Using underscores is as straightforward as
separating_each_word_with_an_un
derscore. It’s readable, but it’s ugly and can
cause the variable names to get awfully
lengthy.

The method I prefer and use throughout this
book is camel-casing — each new word after
the first word gets capitalized
justLikeThis. It takes up less space than
the underscore method and makes reading the
code quicker, and after you get used to it, you
won’t even notice it anymore.

Tons of naming schemes are out there, and
even if you don’t use either of these, picking one
and being consistent is important. Searching for
naming variables in Google returns over a mil-
lion hits, so plenty of resources are out there if
you want to find more.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 579

Creating Your Own Functions580

Because the code is defined in a function, it’s a simple matter to run it as
many times as I want. Functions also make your code easier to read because
the details of rolling the dice are hidden in the function.

Managing variable scope
Two kinds of scope are in PHP: global and local.

If you define a variable outside a function, it has the potential to be used
inside any function. If you define a variable inside a function, you can access
it only from inside the function in which it was created. See Book IV, Chapter
4 for more on variable scope.

So, if you have a variable that you want to access and modify from within the
function, you either need to pass it through the parentheses or access it
with the global modifier.

The following code will print “hello world!” only once:

<?php
$output = “<p>hello world!</p>”;

function helloWorld(){
global $output;

print $output;
}

function helloWorld2(){
print $output;

}

helloWorld();
helloWorld2();
?>

I left the global keyword off in the helloWorld2() function, so it didn’t
print at all because inside the function, the local variable $output is unde-
fined. By putting the global keyword on in the helloWorld() function, I let
it know I was referring to a global variable defined outside the function.

PHP defaults to local inside variables because it doesn’t want you to acci-
dentally access or overwrite other variables throughout the program. For
more information about global and local scoping, check out http://
us3.php.net/global.

Returning data from functions
At the end of the function, you can tell the function to return one (and only
one) thing. The return statement should be the last statement of your function.
The return statement isn’t required, but it can be handy.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 580

Book V
Chapter 6

Using Functions and
Session Variables

Creating Your Own Functions 581

The getName() function in the following code example will return world to
be used by the program. The program will print it once and store the text in
a variable to be printed multiple times later, as shown in the following code
and Figure 6-2:

<?php
function getName(){

return “world”;
}

print “<h1>Hello” . getName() . “</h1>”;

$name = getName();

print <<<HERE
<p>$name, welcome to our site. We are so very happy to have you here.</p>
<p>If you would like to contact us $name, just use the form on the contact

page.</p>
HERE;
?>

For more on return statements see http://de3.php.net/return.

Figure 6-2:
An example
of a function
with a return
statement.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 581

Managing Persistence with Session Variables582

Managing Persistence with Session Variables
Server-side programming is very handy, but it has one major flaw. Every con-
nection to the server is an entirely different transaction. Sometimes, you’ll
want to reuse a variable between several calls of the program. As an exam-
ple, take a look at rollDice3.php in Figure 6-3.

The interesting feature of rollDice3.php happens when you reload the
page. Take a look at Figure 6-4. This is still rollDice3.php, after I refreshed
the browser a few times. Take a look at the total. It increases with each roll.

The rollDice3.php program is interesting because it defies normal server-
side programming behavior. In a normal PHP program, every time you
refresh the browser, the program starts over from scratch. Every variable
starts out new.

Understanding session variables
The rollDice3.php program acts differently. It has a mechanism for keep-
ing track of the total rolls and number of visits to the page.

When a visitor accesses your Web site, she’s automatically assigned a
unique session id. The session id is either stored in a cookie or in the URL.
Sessions allow you to keep track of things for that specific user during her
time on your site and during future visits if she’s not cleared her cache or
deleted her cookies.

Any mundane hacker can sniff out your session ids if you allow them to be
stored in the URL. To keep this from happening, use the session.use_
only_cookies directive in your PHP configuration file. This may be incon-
venient to users who don’t want you to have a cookie stored on their machine,
but it’s necessary if you’re storing anything sensitive in their session.

Sessions are great because they are like a big box that the user carries around
with him that you can just throw stuff into. Even if the user comes back to the
site multiple times, the variables stored in the session retain their values. If
you have hundreds of users accessing your site at the same time, each one
will still have access to only their own versions of the variable.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 582

Book V
Chapter 6

Using Functions and
Session Variables

Managing Persistence with Session Variables 583

Figure 6-4:
The count
and total
values keep
on growing.

Figure 6-3:
This page
displays a
roll, the
number of
rolls, and
the total
rolls so far.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 583

Managing Persistence with Session Variables584

Here’s the code for rollDice3.php:

<?php
session_start();

?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>rollDice3.php</title>

</head>

<body>
<h1>RollDice 3</h1>
<h2>Uses a Session Variable</h2>

<?php

function rollDie(){
global $total;

$roll = rand(1,6);
$image = “die$roll.jpg”;
print <<< HERE

<img src = “$image”
alt = “roll: $roll” />

HERE;
$total = $_SESSION[“total”];
$total += $roll;
$_SESSION[“total”] = $total;

} // end rollDie

$count = $_SESSION[“count”];
$count++;
$_SESSION[“count”] = $count;

rollDie();

print “ <p>Rolls: $count</p> \n”;
print “ <p>Total: $total</p> \n”;

?>
</body>

</html>

This program rolls a die, but it uses session variables to keep track of the
number of rolls and total value rolled. The session variable is updated every
time the same user (using the same browser) visits the site.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 584

Book V
Chapter 6

Using Functions and
Session Variables

Managing Persistence with Session Variables 585

Adding session variables to your code
Here’s how to incorporate sessions into your programs:

1. Begin your code with a call to session_start().

If you want to use session variables, your code must begin with a ses-
sion_start() call, even before the DOCTYPE definition. I put a tiny
<?php ?> block at the beginning of the program to enable sessions:

<?php
session_start();

?>

2. Load session variables from the $_SESSION superglobal.

$_SESSION is a superglobal array (much like $_REQUEST). Create a
local variable and extract the current value from the $_SESSION asso-
ciative array:

$total = $_SESSION[“total”];

If there is no total element in the $_SESSION array, a null value is
assigned to the variable, instead (which evaluates to 0 in a numeric
context).

Sessions and security
The session mechanism is powerful and easy to
use. It isn’t quite foolproof, though. Sessions are
automatically handled through a browser mech-
anism called cookies. Cookies aren’t inherently
good or evil, but they’ve gotten a bad reputation
because some programs use them maliciously.
You’ll occasionally run across a user who’s
turned cookies off, but this is not a major prob-
lem, as PHP can automatically use other options
when cookies are not available. There’s rarely a
need to work with cookies directly in PHP, as
sessions are a higher-level abstraction of the
cookie concept.

Like all data passed through the HTTP protocol,
session and cookie information is passed entirely

in the clear. A person with evil intent can capture
your session information and use it to do bad
things.

Generally, you should stay away from sensitive
information (credit card data, Social Security
numbers, and so on) unless you’re extremely
comfortable with security measures. If you
must pass potentially sensitive data in your PHP
program, investigate a technology called TLS
(Transport Layer Security), which automatically
encrypts all data transferred through your site.
TLS replaces the older SSL technology and is
available as a free plugin to Apache servers.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 585

Managing Persistence with Session Variables586

3. Store session variables in the $_SESSION superglobal.

You can manipulate the local variable, but if you want to use the value
the next time the program runs for this user, you need to store the value
back into the session after you change it.

For example, the following code loads the variable $count from the ses-
sion, adds one to it, and stores it back into the session:

$count = $_SESSION[“count”];
$count++;
$_SESSION[“count”] = $count;

If you want to reset your sessions for testing purposes, you can write a quick
program to set the variables to 0, or you can use the Web Developer toolbar:
Cookies ➪ Clear Session Cookies. Note that the session data itself isn’t stored
in the cookie. The cookie just contains a reference number so the server can
look up the session data in a file stored on the server.

37_186275 bk05ch06.qxp 3/28/08 10:53 PM Page 586

Chapter 7: Working with Files
and Directories

In This Chapter
� Saving to text files

� Reading from text files

� Reading a file as an array

� Parsing delimited text data

� Working with file and directory functions

An important part of any programming language is file manipulations.
Whether you need to create a comma-separated value (CSV) file or

generate a dynamic list of files in a directory, or just need a semi-permanent
place to log records on the server, file manipulation functions are an indis-
pensable part of your PHP toolbox.

Text File Manipulation
Work with text files is split into two basic categories: writing and reading.
Writing and reading come down to six basic functions. See the following
bullet list for a brief explanation of the six basic file functions. Each of these
six functions has an entire sub-section in the following “Writing text to files”
and “Reading from text files” sections:

✦ fopen(): Stores a connection to a file you specify in a variable you
specify

✦ fwrite(): Writes text you specify to a file you specify

✦ fclose(): Closes the connection to a file you specify that you created
with fopen()

✦ fgets(): Reads a line from a file you specify

✦ feof(): Checks to see if you have hit the end of a file you specify
during a file read

✦ file(): Puts the entire contents of a file you specify into an array

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 587

Text File Manipulation588

Writing text to files
This section details the functions needed to access and write to a file, such
as how to request access to a file from PHP with the fopen() function, write
to the file using the fwrite() function, and let PHP know you are done with
the file with the fclose() function.

fopen()
In order to do any file manipulations, you must tell PHP about the file you would
like to manipulate and tell PHP how you would like to manipulate that file.

The fopen() function has two required parameters that you must pass to it;
the path to the file and the type of file manipulation you would like to per-
form (called the mode).

The fopen() function returns a connection to the requested file if it is suc-
cessful (the connection is called a pointer — see the “Official file manipulation
terminology” sidebar for more information). If there is an error, the fopen()
function returns False. Whatever the fopen() function returns (the connec-
tion or False), it should be assigned to a variable (called a stream).

Here is an example of the fopen() function (see the “Creating a CSV file” sec-
tion, later in this chapter, for an example of the fopen() function in action):

$fileConnection = fopen($theFile, $theMode);

In the preceding example, the file connection returned by the fopen() func-
tion is assigned to the variable $fileConnection. The variable $theFile
would contain the path to a file (for example, both C:\\xampp\\htdocs\\
inc\\info.txt and /inc/log.txt are valid file paths). The file must be
in a place the server can access, meaning that you can put the file anywhere
you could put a PHP page for the server to serve. For example, you couldn’t
normally try to serve the file from your My Documents folder. It has to be a
folder under the htdocs directory on your server. The variable $theMode
would contain one of the values from the following list:

✦ r: Grants read-only access to the file.

✦ w: Grants write access to the file. Be careful, though, if you specify this
mode for the fopen() function and use the fwrite() function, it will
completely overwrite anything that may have been in the file. Don’t use
w if there’s anything in the file you want to keep.

✦ a: Grants the right to append text to the file. When you specify this
mode for the fopen() function and use the fwrite() function, the
fwrite() function appends whatever text you specify to the end of the
existing file.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 588

Book V
Chapter 7

W
orking w

ith Files
and Directories

Text File Manipulation 589

✦ r+ or w+: Grants read and write access to the file. I don’t talk about r+
and w+ in this book, except to say that they’re a special way of accessing
the file. This special file access mode is called random access. This
allows you to simultaneously read and write to the file. If you require
this type of access, you probably should be using something more
simple and powerful, like relational databases.

fwrite()
After you have opened a file with the fopen() function and assigned the file
connection to a variable (see the “fopen()” section, earlier in this chapter,
for more information), you can use the file in your PHP code. You can either
read from the file, or you can write to the file with the fwrite() function.

Depending on what mode you specified when you opened the file with the
fopen() function, the fwrite() function will either overwrite the entire
contents of the file (if you used the w mode), or it will append the text you
specify to the end of the file (if you used the a mode).

Official file manipulation terminology
If you look at the documentation for fopen(),
or any of the file manipulation functions, you
will see some funny terminology. I decided, to
keep things simple, I would use more recogniz-
able, easily understandable terms. I wanted
you to know that I switched things up a little bit
and give you a quick primer to help you out if
you did happen to look at the official documen-
tation or talk to a more seasoned programmer
who might use the official terms.

According to the official online PHP documenta-
tion, the fopen() function returns a file pointer,
and binds a named resource to a stream.

What this means is that when you use the
fopen() function, it opens a file (much like
you would do if you opened the file in Notepad)
and returns a pointer to that file.

The pointer is like if you put your mouse arrow
at the beginning of the file and clicked there to
create the little blinky-line cursor telling

Notepad where you are focusing (where you
would like to begin editing the text). The pointer
is PHP’s focus on the file.

With the fopen() function, PHP’s focus is
bound to a stream, which means that it is
attached to a variable. When you use the
fopen() function, you associate the file with
a variable of your choosing. This variable is
how PHP keeps track of the location of the file
and keeps track of where PHP’s cursor is in the
file. Normally, when you think of a stream, you
might think of a one-way flow. But, in this case,
the stream can either be read into the program
character by character, line by line, or you can
move the cursor around to any point in the file
that you want. So, rather than being just a one-
way flow, the stream is really an open connec-
tion to a file.

See http://us.php.net/manual/
en/function.fopen.php for more detail
on the fopen() function.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 589

Text File Manipulation590

The fwrite() function has two required parameters you must pass to it;
the connection to the file that was established by the fopen() function and
the text you wish to write to the file. The fwrite() function returns the
number of bytes written to the file on success and False on failure.

Here is an example of the fwrite() function (see the “Creating a CSV file”
section, further in this chapter, for an example of the fwrite() function in
action):

$writeResults = fwrite($fileConnection, $text);

The fwrite() function can also be written fputs(). fwrite() and
fputs() both do the exact same thing. fputs() is just a different way of
writing fwrite() (fputs() is referred to as an alias of fwrite()).

fclose()
After you are finished working with the file, it’s important to close the file
connection.

To close the connection to a file you have been working with, you must pass
the connection to the file you wish to close to the fclose() function. The
fclose() function will return True if it is successful in closing the connec-
tion to the file and False if it is not successful in closing the connection to the
file.

Here is an example of the fclose() function:

fclose($fileConnection);

Creating a CSV file
The most common reason to write to text files from PHP is to create comma-
separated value (CSV) files. CSV files are usually opened in a spreadsheet
program, such as Microsoft Excel. This section is an example of how to use
the functions from previous sections in this chapter (fopen(), fwrite(),
and fclose()) to create a CSV file from a database table. (See Chapter 8 in
this minibook for more on working with databases in PHP.)

You can think of a CSV file as a big table. Each column is separated by
commas, and each row is separated by newline characters (\n). So, the fol-
lowing text

row1 item1, row1 item2\n
row2 item1, row2 item2

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 590

Book V
Chapter 7

W
orking w

ith Files
and Directories

Text File Manipulation 591

would generate the following cells if opened in a spreadsheet program (such
as Excel):

row1 item1 row1 item2
row2 item1 row2 item2

When reading items back into PHP from a CSV file, you use the commas and
newlines to parse the data so that it can be used by the program. (See the
“Reading from a CSV file” section, later in this chapter.)

Don’t forget to end each line with a newline (\n) character.

str_replace()
While commas are the most common delimiter, you can use tabs (\t), pipes
(|), tildes (~), or anything else you want to separate the text. Whatever you
decide to use as the delimiter, make sure errant occurrences of the delimit-
ing character don’t appear in the text and throw off the scheme. To protect
against this, you can run the str_replace() function on the text before
adding the delimiters and inserting it into the file; this replaces unwanted
occurrences of the delimiting character with an empty string.

The str_replace() function takes three parameters; the string to be replaced,
the string to replace it with, and the string the replacing is to be done in:

$text = str_replace(“,”, “”, $text);

Escaping with HTML entities
If you’re planning on displaying the user’s input
to the screen, escape all the special characters
before saving the user’s input to a file or send-
ing it to the browser. Otherwise, some mali-
cious user could use some simple CSS and
HTML to replace your entire Web page with
one of his choosing. Remember, paranoia is
your friend. The simplest way to guard against
this is to use the htmlentities() function:

$userInput =
htmlentities($userInput);

This function converts any HTML characters
the user may have entered into the character’s
HTML entities equivalent. That is, if the user
entered <div>, it’d be converted to
<div>. When you display it back to the
page, instead of creating a new HTML div, the
browser will simply output the literal string
<div> to the user.

If, for some reason, you want to decode these
entities, use the html_entity_decode()
function. This works exactly like its html
entities() counterpart, just in reverse.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 591

Text File Manipulation592

Because you may not want all of the commas removed from your text, you might
consider using something that is not likely to occur in your text as the delimiter,
such as a pipe (|) or tilde (~), or even just a custom multi-character delimiter like
~myDelimiter|. The problem with the multi-character delimiter method is
that if you plan on using the text file in a spreadsheet program (such as Excel),
the spreadsheet program may not support multi-character delimiters. The multi-
character delimiter method is best for storing text that you only plan on reading
back into PHP and not for text you plan on using in a spreadsheet program.

The CSV file creation example
This CSV file creation example performs the following tasks:

1. Opens a connection to a file

2. Connects to a database

3. Gets the desired information out of a database table

4. Writes information from the table to the file

5. Builds an HTML table showing what was written to the file

6. Closes the connection to the file

See Chapter 8 of this minibook for more on database connection and manip-
ulation. The CD-ROM contains the full code for this example, as well as the
SQL to generate the table used in this example. Figure 7-1 shows the HTML
and CSV file generated by this example.

Here is the PHP code for the CSV file creation example:

<body>
<?
//This is the CSV file we want to create
$theFile = “employees.csv”;
//We want to completely over-write the file, so use “w”.
$theMode = “w”;
//prepare the string to be filled with employees and printed to the file.
$employees = “”;

/*
* If we successfully connect to the file, do all of the file operations.
* Otherwise, print an error.
*/
if($fileConnection = fopen($theFile, $theMode)){

//connect to the database
$conn = mysql_connect(“localhost”, “xfd”, “xfd123”) or die(mysql_error());
mysql_select_db(“file_manipulation”, $conn) or die(mysql_error());

//get the employees out of the employee table
$sql = “SELECT * FROM employees”;
$result = mysql_query($sql, $conn);

/*

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 592

Book V
Chapter 7

W
orking w

ith Files
and Directories

Text File Manipulation 593

* for each employees row, print a new table row,
* and add the employee to the text string to be printed to the file.
*/
print “<table>”;
while($row = mysql_fetch_array($result, MYSQL_ASSOC)){

print “<tr>\n”;

foreach($row as $col=>$val){
print “\t<td>$val</td>\n”;

//escape commas in string
$val = str_replace(“,”, “\,”, $val);

$employees .= $val . “,”;
}
print “</tr>\n\n”;

//go to the next line in the CSV file to prepare for the next record.
$employees .= “\n”;

}
print “</table>”;

//print the employees to the file
if(fwrite($fileConnection, $employees)){

print “<p>$employees successfully written to the file.</p>”;
}else{

print “<p>There was an error while attempting to write $employees to the
file.</p>”;

}

//close the file
if(fclose($fileConnection)){

print “<p>Closed the file connection successfully.</p>”;
}else{

print “<p>Unable to close the file connection.</p>”;
}

}else{
print “<p>Unable to connect to the file.</p>”;

}

?>
</body>

In the CSV file creation example, the text file was written to only once, at the
very end of the program. If the a mode had been used, instead of the w
mode, each record could have been written to the file as it was read from the
database, but that would have put much more strain on the server and made
the program slower. File reads and writes are very expensive in terms of pro-
cessing time and memory for the server, in comparison to simple string con-
catenation in a PHP program.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 593

Text File Manipulation594

Reading from text files
This section details the functions needed to read from a text file. Requesting
access to a file from PHP with the fopen() function (See the “fopen()” sec-
tion, earlier in this chapter) grants you access to the file. When you have
access to the file, you can read from the file one line at a time with the
fgets() function. With a combination of the fgets() function and the
feof() function, you can iterate through the entire file, reading the file into
a PHP program one line at a time. With the file() function, you can read
the entire file into an array in a PHP program.

fgets()
After you have opened a file with the fopen() function and assigned the file
connection to a variable, you can use the file in your PHP code. You can
either write to the file, or you can read from the file. One method of reading
from the file is to use the fgets() function. The fgets() function reads
one line from the file. You can combine the fgets() function with the
feof() function to read each line of the file, starting with the first line. (See
the “feof()” section and the “file()” section, both later in this chapter).

In order to be able to read from the file, you must have specified either the r,
r+, or w+ mode when using the fopen() function.

Figure 7-1:
The HTML
file contains
the raw text
to be written
to the file;
the CSV file
(opened in
Excel)
renders as a
spreadsheet.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 594

Book V
Chapter 7

W
orking w

ith Files
and Directories

Text File Manipulation 595

To use the fgets() function, you must pass it a variable containing the connec-
tion to the file that you established with the fopen() function. The fgets()
function returns the string read from the file on success and False on failure.

Here is an example of the fgets() function (See the “Reading from a CSV file”
section, later in this chapter, for an example of the fgets() function in action):

$line = fgets($fileConnection);

If you know exactly how much of each line you want to read from a file, you
can pass the fgets() function an optional length parameter after the file
connection. See the online PHP documentation for more information (http://
us.php.net/fgets).

feof()
The feof() function tests to see if you have hit the end of a file when you
are reading from a file. When you combine the feof() function with the
fgets() function, you can read the contents of a file into your PHP program
one line at a time.

To use the feof() function, you must pass it a variable containing a connection
to the file that you established with the fopen() function. (See the “fopen()”
section, earlier in this chapter, for more information.) The feof() function
will return True if the end of the file has been reached (or if an error
occurs), otherwise it returns False.

Here is an example of the feof() function. This example will print a speci-
fied file, line by line, to the screen:

while(!feof($fileConnection)){
print fgets($fileConnection);

}

The actual feof() function itself is feof($fileConnection).

file()
The file() function allows you to read the entire file at once and load it
into an array. Using the file() function is convenient because, whereas the
fgets() function requires you to open the file, read it line by line, and then
close the file, when you use the file() function, it loads the file into an
array, which you can do whatever you want with. You do not have to use the
fopen() function or the fclose() function with the file() function. The
file() function performs the file open and close on it’s own.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 595

Text File Manipulation596

The only problem with the file() function is that when a file is particularly
large, loading the entire file into memory can be bad for your server. The
bigger the file, the more memory it takes up. Therefore, it isn’t recommended
you use the file() function for very large files. Instead, for large files, it is
better to read them in one line at a time with the fgets() function.

The file() function has only one parameter you must pass to it — the path
to the file you wish to read. This path can be relative to the PHP file calling
it, or it can be a URL. If successful, the file() function will return an array
containing the contents of the file. Each line of the file will include the new-
line character (\n) and will be a separate element in the array. (See Book IV,
Chapter 4 for more on arrays.) If it fails, the file() function will return False.

Here is an example of the file() function. This function stores the entire
contents of a file named log.dat in an array called $logData:

$logData = file(“log.dat”);

Reading from a CSV file
The most common reason to read from text files with PHP is to extract data
from comma-separated value (CSV) files. CSV files are usually created with a
spreadsheet program, such as Microsoft Excel. This section is an example of
how to use the functions explained in previous sections in this chapter
(fopen(), fgets(), feof(), and fclose()) to read from a CSV file and
insert the data from the file into a database table. (See Chapter 8 in this mini-
book for more on working with databases in PHP.)

Bringing text back in and parsing it is a little bit trickier than saving it to the
file (refer to the “Creating a CSV file” section, earlier in this chapter). For
parsing data, you have to expand the code to include the actual parsing.

split()
When you retrieve the text with the fgets() function, it’s all just one big
line. In order to use the text, you need to split it up by whatever you used as
the delimiter.

The split() function takes two parameters, the delimiter you wish to split
the text on and the text you wish to split. The split() function returns an
array of the split-up text if it is successful and False if it fails.

Here is an example of the split() function. This function stores the con-
tents of the $line variable split into an array on the pipe (|) delimiter in the
$lineArray variable:

$lineArray = split(“|”, $line);

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 596

Book V
Chapter 7

W
orking w

ith Files
and Directories

Text File Manipulation 597

list()
The list() function will take an array and distribute its contents to vari-
ables you specify. This makes it perfect for using with the split() function
and anything where you want to print the contents of an array out to the
screen or insert them into a database.

The list() function is different from most functions because it can take a
large number of parameters. To use the list() function, you need to know
exactly how many items your array has and pass a different parameter to the
list() function for each array item. The list function doesn’t return any-
thing. It assigns the array elements to the variables you specify. Normally,
functions return False if they fail, but if the list() function fails, PHP just
errors out and crashes. The list() function (like array()), technically
speaking, isn’t a function at all, but rather is a language construct.

Here is an example of the list() function. This function takes an array with
three items and stores each of the three items in a separate variable:

list($var1, $var2, $var3) = $anArray;

The list() function works only on numerical arrays and assumes that the
array index begins at 0. If you want to use the list() function with associa-
tive arrays, surround the array variable with the array_values() function.
(See http://us3.php.net/list for more information on the list()
function.)

stripslashes()
If you’re receiving the text to be split from a form
submitted by the user, you may end up with some
funny results from the split() function, espe-
cially if you used tabs to delimit your data.
Sometimes, PHP will add slashes before single
quotes (‘), double quotes (“), and backslashes
(\). This is because the PHP directive
magic_quotes_gpc is on by default (in your
php.ini file). This causes PHP to run
addslashes() on all text sent through post,

get, or cookies, which means that ‘, “, and \
will turn into \’, \”, and \\ when they’re sub-
mitted through a form. To reverse this for when
you’re printing to the page (so that you don’t have
funny output), run the stripslashes()
function on the line before you split it:

$line = stripslashes($line);

Now, you have an array containing the split ele-
ments of the line to do whatever you want with.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 597

Text File Manipulation598

Using split() and list() together
You can combine the split() and the list() functions to get one power-
ful, concise result:

list($fname, $lname, $position, $startDate, $salary, $age) = split(“,”, $line);

The split() generates an array that the list() catches and distributes to
variables. You can then take those variables and easily print them to the
screen (or do anything else you might want with them):

print “<p>$name
 $phone
 $email
 $comments</p>”;

Without the list() function, you’d be stuck doing something like this:

print “<p>” . $lineArray[0] . “
”;
print $lineArray[1] . “
”;
print $lineArray[2] . “
”;
print $lineArray[3] . “</p>”;

Not very convenient, is it?

The CSV file read example
This CSV file read example performs the following tasks:

1. Opens a connection to a file

2. Reads the text from the file, line by line

3. Closes the connection to the file

4. Connects to a database

5. Builds an HTML table showing what was read from the file

6. Builds a SQL statement to insert the data from the file into the database

7. Inserts the data from the file into the database

See Chapter 8 in this minibook for more on database connection and manip-
ulation. The CD-ROM contains the full code, as well as the text file, used in
this example. Figure 7-2 shows the HTML generated by this example. (See
the “Creating a CSV file” section for this example’s counterpart.)

Here is the PHP code for the CSV file read example:

<?
//This is the CSV file we want to create
$theFile = “employees.csv”;
//We want to read from the file, so use “r”.
$theMode = “r”;
//prepare the employees array to hold the contents of the file
$employees = array();

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 598

Book V
Chapter 7

W
orking w

ith Files
and Directories

Text File Manipulation 599

//prepare the sql string for insert
$sql = “INSERT INTO employees VALUES”;

/*
* If we successfully connect to the file, do all of the file operations.
* Otherwise, print an error.
*/
if($fileConnection = fopen($theFile, $theMode)){

print “<p>Opened file successfully</p>”;

while(!feof($fileConnection)){
$line = fgets($fileConnection);

$employees[] = split(“,”, $line);
}

//close the file
if(fclose($fileConnection)){

print “<p>Closed the file connection successfully.</p>”;
}else{

print “<p>Unable to close the file connection.</p>”;
}

//connect to the database
$conn = mysql_connect(“localhost”, “xfd”, “xfd123”) or die(mysql_error());
mysql_select_db(“file_manipulation”, $conn) or die(mysql_error());

/*
* prepare sql for insertion of data into employees table, and generate a table
* showing the contents of the file
*/
print “<table>”;
for($i = 0; $i < (count($employees)-1); $i++){

$sql .= “(“;
$sql .= $employees[$i][0] . “, “;
$sql .= $employees[$i][1] . “, “;
$sql .= $employees[$i][2] . “, “;
$sql .= $employees[$i][3] . “, “;
$sql .= $employees[$i][4] . “, “;
$sql .= $employees[$i][5];
$sql .= “)”;

if(($i + 1) < (count($employees)-1)){
$sql .= “, “;

}

print “<tr>\n”;
foreach($employees[$i] as $index=>$val){

print “\t<td>$val</td>\n”;
}
print “</tr>\n\n”;

}
print “</table>”;

//insert data into database
$result = mysql_query($sql, $conn);

}else{
print “<p>Unable to connect to the file.</p>”;

}

?>

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 599

Working with File and Directory Functions600

In the CSV file read example, the database was only written to once, at the
very end of the program. The program could have written to the database as
it read each line in, but that would have put much more strain on the server
and made the program slower. Database reads and writes are very expensive
in terms of processing time and memory for the server, in comparison to
simple string concatenation in a PHP program.

Working with File and Directory Functions
Sometimes, you may need PHP to work with files in a directory. Say you have
a reporting tool for a client. Each week, you generate a new report for the
client and place it in a directory. You don’t want to have to alter the page
each time you do this, so instead, make a page that automatically generates
a list of all the report files for the client to select from. This is the kind of
thing you can do with functions like openddir() and readdir().

opendir()
Using the opendir() function, you can create a variable (technically speak-
ing, this type of variable is called a handle) that allows you to work with a
particular directory.

Figure 7-2:
The HTML
file contains
a table of
the data
read from
the file.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 600

Book V
Chapter 7

W
orking w

ith Files
and Directories

Working with File and Directory Functions 601

The opendir() function takes one parameter: the path to the directory you
want to work with. The opendir() function returns a directory handle
(kind of like a connection to the directory) on success and False on failure.

Here is an example of the opendir() function (see the “Generating the list
of file links” section to see the opendir() function in action). This function
stores a directory handle to the C:\xampp\htdocs\XFD\xfd5.7 directory
in the $directoryHandle variable:

$directoryHandle = opendir(“C:\xampp\htdocs\XFD\xfd5.7”);

readdir()
After you’ve opened the directory with the opendir() function, you have a
cursor pointed at the first file. At this point, you can read the filenames one
by one with a while loop. To do this, you’ll use the readdir() function.

The readdir() function takes one parameter; the variable containing the
directory handle created with the opendir() function. The readdir()
function returns the name of a file currently being focused on by the cursor
on success and False on failure.

Here is an example of the readdir() function. This function iterates
through each file in the directory specified by $dp and assigns the filename
of the current file to a new index in $fileArray array:

while($currentFile !== false){
$currentFile = readDir($dp);
$filesArray[] = $currentFile;

}

The actual readdir() function itself is readdir($dp). For more on the
readdir() function, see the official PHP online documentation at
http://us.php.net/function.readdir.

In some circumstances, the readdir() function might return non-Boolean
values which evaluate to False, such as 0 or “”. When testing the return value
of the readdir() function, use === or !==, instead of == or !=, to accommo-
date these special cases.

chdir()
If you want to create a file in a directory other than the directory that the
PHP page creating the file is in, you need to change directories. You change
directories in PHP with the chdir() function.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 601

Working with File and Directory Functions602

If you want to be absolutely sure you’re in the right directory before writing
the file, you can use an if statement with the getcwd() function. This is
usually a bit of overkill, but I wanted to at least make you aware of the function.
Check out the PHP manual for more info on the getcwd() function.

The chdir() function takes one parameter; the path to the directory you
wish to work with. The chdir() function returns True on success and False
on failure.

Here is an example of the chdir(). This function changes to the C:\
xampp\htdocs\XFD\xfd5.7 directory:

chdir(“C:\xampp\htdocs\XFD\xfd5.7”);

When you change to a directory; you’re then free to write to it with the
fwrite() function (see the “fwrite()” section, earlier in this chapter).

Generating the list of file links
Using the opendir() and readdir() functions, you can generate a list of
links to the files in a directory.

The file links list example performs the following tasks:

1. Opens a directory

2. Reads each filename in the directory into an array

3. Prints a link to each file in the directory

Here is the PHP code for the file links list example (see Figure 7-3 for the
HTML generated by this example):

<?
$dp = opendir(“C:\\xampp\\htdocs\\XFD\\xfd5.7\\”);

while($currentFile !== false){
$currentFile = readDir($dp);
$filesArray[] = $currentFile;

}

$output = “”;
foreach($filesArray as $aFile){

$output .= “$aFile
”;
}

print “<p>$output</p>”;
?>

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 602

Book V
Chapter 7

W
orking w

ith Files
and Directories

Working with File and Directory Functions 603

On a Windows server, you have to escape the backslashes in the file path.
You do this by adding a backslash before the backslashes in the file path. (So
you would write C:\\xampp\\htdocs\\XFD\\xfd5.7\\ instead of
C:\xampp\htdocs\XFD\xfd5.7\.) On a UNIX server, you don’t have to do
this because file paths use forward slashes (/) instead of backslashes (\).

If you wanted just one particular file type, you could use regular expressions
to filter the files. If I had wanted only the .txt and .dat files from the direc-
tory, I could’ve run the files array through this filter to weed out the
unwanted file types:

$filesArray = preg_grep(“/txt$|dat$/”, $filesArray);

For more on regular expressions, check out the online PHP manual at
http://us.php.net/preg_grep.

Figure 7-3:
A list of links
to all files in
the directory
specified by
the opendir()
function.

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 603

Book V: Server-Side Programming with PHP604

38_186275 bk05ch07.qxp 3/28/08 10:54 PM Page 604

Chapter 8: Connecting
to a MySQL Database

In This Chapter
� Building the connection string

� Sending queries to a database

� Retrieving data results

� Formatting data output

� Allowing user queries

� Cleaning user-submitted data requests

Data has become the prominent feature of the Web. As you build more
sophisticated sites using XHTML and CSS, you will eventually feel the

need to incorporate data into your Web sites. You can do a certain amount
of data work with the basic data structures built into PHP. Increasingly, Web
sites turn to relational database management systems (RDBMSs) to handle
their data needs. The RDBMS is a special program which accepts requests,
processes data, and returns results.

This chapter assumes you already have a database available, and you have
some basic knowledge of how SQL (the language of databases) works. If you
are unfamiliar with these topics, please look over Book VI, which describes
using data in detail.

Retrieving Data from a Database
PHP programmers frequently use MySQL as their preferred data back end.
There are a number of good reasons for this:

✦ MySQL is open source and free. Like PHP, MySQL is open source, so
PHP and MySQL can be used together (with Apache) to build a very
powerful low-cost data solution.

✦ MySQL is very powerful. MySQL’s capability as a data program has
improved steadily, and it is now nearly as capable as commercial tools
costing thousands of dollars. (And it is better than many that cost hun-
dreds of dollars.)

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 605

Retrieving Data from a Database606

✦ PHP has built-in support for MySQL. PHP includes a number of functions
specifically designed to help programmers maintain MySQL databases.

✦ You probably already have MySQL. If you installed XAMPP, you proba-
bly already have an installation of MySQL ready to go.

✦ MySQL was designed with remote control in mind. MySQL is meant to
be managed from some other program (like the code you write in PHP). It’s
not designed with a user interface (like Access has), but it’s designed from
the beginning to be controlled through a programming language like PHP.

Before diving into details, here’s an overview of how you get information to
and from a MySQL database:

1. Establish a connection.

Before you can work with a database, you must establish a relationship
between you PHP program and the database. This process involves iden-
tifying where the database is and passing it a username and password.

2. Formulate a query.

Most of the time, you’ll have some sort of query or request you want to
pass to the database. You may want to see all the data in a particular table,
or you may want to update a record. In either case, you use Structured
Query Language (SQL) to prepare a request to pass to the database.

3. Submit the query.

Once you’ve built the query, you pass it (through the connection) to the
database. Assuming the query is properly formatted, the database will
process the request and return a result.

4. Process the result.

The database returns a special variable containing the results of your
query. You’ll generally need to pick through this complex variable to find
all the data it contains. (For example, it can contain hundreds of records.)

5. Display output to the user.

Most of the time, you’ll process the query results and convert them to
some sort of XHTML display the user can view.

As an example, take a look at contact.php in Figure 8-1.

The contact.php program contains none of the actual contact information.
All the data was extracted from a database. Here’s an overview of the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>showContact.php</title>

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 606

Book V
Chapter 8

Connecting to a
M

ySQL Database
Retrieving Data from a Database 607

</head>

<body>
<p>
<?php

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());
mysql_select_db(“xfd”);

$sql = “SELECT * FROM contact”;
$result = mysql_query($sql, $conn) or die(mysql_error());

while($row = mysql_fetch_assoc($result)){
foreach ($row as $name => $value){

print “$name: $value
\n”;
} // end foreach
print “
 \n”;

} // end while

?>
</p>
</body>

</html>

If you want to try this program at home, begin by running the buildContact
AutoIncrement.sql script (available in Book VI, Chapter 2) in your copy of
MySQL. This will ensure you have the database created. See Book VI, Chapter 2
if you need more information on creating databases.

Figure 8-1:
This pro-
gram gets all
the contact
data from a
database.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 607

Retrieving Data from a Database608

Understanding data connections
The key to all database work is the connection. Database connections
remind me of the pneumatic tubes at some bank drive-through locations.
There’s a little container you can stick your request into. You press a button,
and the container shoots through a tube to the teller, who processes your
request and sends you the results back through the tube.

In data programming, the connection is like that tube. It’s the pipeline
between your program (your car) and the data (the bank). To establish a
data connection, you need to know four things:

✦ The hostname (where the server is): Often, the data server will be
housed on the same physical machine as the Web server and PHP pro-
gram. In these cases, you can use localhost as the server name. Test
servers using XAMPP almost always use localhost connections. If
you’re working in a production environment, you may need to ask your
service provider for the server address of your database.

✦ Your database username: Database programs should always have some
type of security enabled. (See Book VI, Chapter 1 for information on setting
up database users and passwords.) Your program needs to know the user-
name it should use for accessing the data. (I often create a special user-
name simply for my programs. Chapter 1 of Book VI outlines this process.)

When you first install MySQL through XAMPP, it allows root access with
no password. These settings allow anybody to do anything with your
data. Obviously, that’s not a good solution, security-wise. Be sure to set
up at least one username and password combination for your database.
If you’re using an online hosting service, you probably don’t have root
access. In this case, you typically have a new user created for each data-
base you build. Book VI explains all.

✦ A password for the database: The username is not secure without a
password. Your PHP program also needs a password. This is established
when you create the database.

If you’re going to make your source code available (as I do on the CD
and Web site), be sure to change the username and password so people
can’t use this information to hack your live data.

✦ The database name: A single installation of MySQL can have many data-
bases available. You’ll typically have a separate database designed for
each project you build. MySQL needs to know which particular database
houses the information you’re seeking.

Building a connection
The data connection is created with the mysql_connect() function. Here’s
how to do it:

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 608

Book V
Chapter 8

Connecting to a
M

ySQL Database
Retrieving Data from a Database 609

1. Create a variable to house the connection.

When you build a connection, a special variable is created to house
information about that variable. I usually call my connection $conn:

$conn = mysql_connect(“localhost”,”user”,”password”) or
die(mysql_error());

2. Invoke the mysql_connect() function.

This function (usually built into PHP) attempts to build a connection to
the database given all the connection information:

$conn = mysql_connect(“localhost”,”user”,”password”) or
die(mysql_error());

3. Pass the hostname, username, and password to mysql_connect().

These three values are required parameters of the mysql_connect()
function:

$conn = mysql_connect(“localhost”,”user”,”password”) or
die(mysql_error());

You’ll need to supply your own username and password. My values here
are just samples.

4. Prepare for a graceful crash.

It’s very possible that something will go wrong when you attempt a data
connection. The or die() clause tells PHP what to do if something
goes wrong while making the connection:

$conn = mysql_connect(“localhost”,”user”,”password”) or
die(mysql_error());

How many times in your life have you heard that phrase? “Prepare for a
graceful crash.” You’ve got to love programming.

5. Invoke mysql_error() if something goes wrong.

If there’s a problem with the MySQL connection, the error message
will come from MySQL, not PHP. To ensure that you see the MySQL
error, use the mysql_error() function. If you made a mistake (like
misspelling the username), MySQL will report this error to PHP.
Use mysql_error() to print out the last error from MySQL:

$conn = mysql_connect(“localhost”,”user”,”password”) or
die(mysql_error());

6. Specify the particular database.

Once you’re connected to the server, you need to specify which
database on the server will be used for your transaction. I’m using
a database called xfd for all the examples in this book. The
mysql_select_db() function is used to handle this task:

mysql_select_db(“xfd”);

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 609

Retrieving Data from a Database610

Passing a query to the database
The reason for connecting to a database is to retrieve data from it (or to add
or modify data, but the basic approach is always the same). In any case, you
need to pass instructions to the database in SQL. (If you’re unfamiliar with
SQL, it is described in Book VI, Chapter 1.)

Your PHP program usually constructs an SQL statement in a string variable
and then passes this value to the database. For this basic example, I specify
the entire query. See the section “Processing the input,” later in this chapter,
for some warnings about how to incorporate user information in data queries.

The showContact.php program simply asks for a list of all the values in the
contact table of the xfd database. The SQL query for displaying all the
data in a table looks like this:

SELECT * FROM contact;

To use an SQL statement, package it into a string variable, like this:

$sql = “SELECT * FROM contact”;

Note that you don’t need to include the semicolon inside the string variable.
You can call the variable anything you wish, but it’s commonly called $sql.
SQL queries can get complex, so if the SQL requires more than one line, you
may want to encase it in a heredoc. (See Chapter 2 of this minibook for infor-
mation on using heredocs.)

Pass the request to the database using the msql_query() function:

$result = mysql_query($sql, $conn) or die(mysql_error());

The mysql_query() function has a lot going on. Here’s how you put it together:

1. Create a variable to house the results.

When the query is finished, it will send results back to the program. The
$result variable will hold that data:

$result = mysql_query($sql, $conn) or die(mysql_error());

2. Invoke mysql_query().

This function passes the query to the database:
$result = mysql_query($sql, $conn) or die(mysql_error());

3. Send the query to the database.

The first parameter is the query. Normally, this is stored in a variable
called $sql:

$result = mysql_query($sql, $conn) or die(mysql_error());

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 610

Book V
Chapter 8

Connecting to a
M

ySQL Database
Retrieving Data from a Database 611

4. Specify the connection.

The second parameter is the connection object created when you ran
mysql_connect(). If you leave out the connection object, PHP uses
the last MySQL connection that was created:

$result = mysql_query($sql, $conn) or die(mysql_error());

5. Handle errors.

If there’s an error in your SQL request, MySQL will send back an error
message. Prepare for this with the or die() clause (just like you used
for mysql_connect()):

$result = mysql_query($sql, $conn) or die(mysql_error());

6. Return the MySQL error if there was a problem.

If something went wrong in the SQL code, have your program reply with
the MySQL error so you’ll at least know what went wrong:

$result = mysql_query($sql, $conn) or die(mysql_error());

Processing the results
The results of an SQL query are usually data tables, which are a complex
data structure. The next step when you work with a database is to get all the
appropriate information from the $request object and display it in a
XHTML output for the user to understand.

This process is a little involved because SQL results are normally composed
of two-dimensional data. A query result typically consists of multiple records
(information about a specific entity — sometimes also called a row). Each
record consists of a number of fields (specific data about the current record).

I’m tossing a bunch of database terms at you here. Databases deserve (and
have) a minibook of their own. If nothing in this chapter makes sense to you,
build your own copy of the contact database following the instructions in
Book VI and then come back here to have your program present that data
through your Web site.

The $request variable has a lot of data packed into it. You get that data out
by using a pair of nested loops:

1. The outer loop extracts a record at a time.

The first job is to get each record out of the request, one at a time.

2. Use another loop to extract each field from the record.

Once you’ve got a record, you’ll need to extract each field from the record.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 611

Retrieving Data from a Database612

Here’s all the code for this segment (I explain it in detail in the following
sections):

while($row = mysql_fetch_assoc($result)){
foreach ($row as $name => $value){

print “$name: $value
\n”;
} // end foreach
print “
 \n”;

} // end while

Extracting the rows
The first task is to break the $result object into a series of variables that
each represent one record (or row). Here’s the line that does the job:

while($row = mysql_fetch_assoc($result)){

To break a result into its constituent rows, follow these steps:

1. Begin a while loop.

This code will continue as long as more rows are available in the result
object:

while($row = mysql_fetch_assoc($result)){

2. Extract the next row as an associative array.

Every time through the loop, you’ll extract the next row from the result.
There are several functions available for this task, but I use
mysql_fetch_assoc() because I think it’s easiest to understand (see
the sidebar “MySQL fetch options” for some other options and when you
might choose them):

while($row = mysql_fetch_assoc($result)){

3. Pass the resulting object to a variable called $row.

The output of mysql_fetch_assoc is an array (specifically, an associa-
tive array). Copy that value to a variable called $row:

while($row = mysql_fetch_assoc($result)){

4. Continue as long as there are more rows to retrieve.

mysql_fetch_assoc() has an important side effect. In addition to
extracting an associative array from $result, the function returns the
value false if no more records are left. Because I’m using this state-
ment inside a condition, the loop will continue as long as there is
another row available. When there are no rows left, the assignment will
evaluate to false, and the loop will exit.

while($row = mysql_fetch_assoc($result)){

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 612

Book V
Chapter 8

Connecting to a
M

ySQL Database
Retrieving Data from a Database 613

Extracting fields from a row
Each time you go through the while loop described in the previous section,
you’ll have a variable called $row. This will be an associative array contain-
ing all the field names and values from the current form. If you know a field
name, you can access it directly. For example, I know the contact table has
a field named company, so you can use an associative array lookup to see
the current company name:

print $row[“company”];

This will print the company name of the current record.

More often, you will want to print out all the information in the row, so you
can use the special form of foreach() loop used with associative arrays:

foreach ($row as $name => $value){

Here’s how it works:

1. Set up the foreach loop.

This form of for loop automatically loads variables with members of
the array:

foreach ($row as $name => $value){

MySQL fetch options
You can extract data from a MySQL result in
four different ways:

� mysql_fetch_row() creates an ordi-
nary (numeric index) array from the current
row.

� mysql_fetch_assoc() creates an
associative array from the current row,
with the field name as the key and field
value as the value in each key/value pair.

� mysql_fetch_array() can be used
to get numeric or associative arrays, based
on a parameter.

� mysql_fetch_object() returns a
PHP object corresponding to the current

row. Each field in the row is a property of
the object.

In general, the mysql_fetch_assoc()
provides the best combination of ease-of-use
and information. Use
mysql_fetch_array() when you don’t
need the field names (for example, you’re using
an XHTML table for output, and you’re getting
the field names from the
mysql_fetch_field() function). The
mysql_fetch_object() technique is
useful if you’re going to build a complete object
based on a query row, but that is beyond the
scope of this book.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 613

Retrieving Data from a Database614

2. Analyze the $row array.

The $row variable contains an associative array, so it’s a perfect candi-
date for this type of loop:

foreach ($row as $name => $value){

3. Assign each key to $name.

On each pass of the loop, assign the current key of the array (which will
contain the current field name) to the variable $name:

foreach ($row as $name => $value){

4. Indicate the relationship between $name and $value with the =>
operator.

This indicates that $name is the key and $value is the value in this
relationship:

foreach ($row as $name => $value){

5. Assign the value to $value.

The value of the current element will be placed in the $value variable:
foreach ($row as $name => $value){

When you use a foreach loop with an associative array, you assign each
element to two variables because each element in an associative array has a
name and a value. Check Chapter 5 of this minibook for more information
about associative arrays and the foreach loop.

Inside this loop, you’ll have the name of the current field in a variable called
$name and its value in a variable called $value. This loop will continue for
each field in the current record.

Printing the data
For this simple example, I’m using the simplest way I can think of to print out
the contents:

print “$name: $value
\n”;

This line simply prints out the current field name, followed by a colon and
the current field value. Because this simple line is inside the complex nested
loops, it ends up printing the name and value of every field in the query
result. Here’s the whole chunk of code again:

while($row = mysql_fetch_assoc($result)){
foreach ($row as $name => $value){

print “$name: $value
\n”;
} // end foreach
print “
 \n”;

} // end while

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 614

Book V
Chapter 8

Connecting to a
M

ySQL Database
Improving the Output Format 615

The result isn’t the most elegant formatting on the Internet, but it gets the
job done, and it’s easy to understand. Note I added a
 tag at the end
of each line, so each field will appear on its own line of XHTML output. I also
added a final
 at the end of each for loop. This will cause a line
break between each record, so the records are separated.

Improving the Output Format
Using
 tags for output is a pretty crude expedient. It’s fine for a basic
test, but
 tags are usually a sign of sloppy XHTML coding. Take a look
at this variation called contactDL.php in Figure 8-2.

Building definition lists
Definition lists are designed for name/value pairs, so they’re often a good
choice for data in associative arrays. It’s not too difficult to convert the basic
data result program into a form that uses definition lists:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>contactDL.php</title>
<style type = “text/css”>

dt {
float: left;
width: 7em;
font-weight: bold;
clear: left;

}

dd {
float: left;

}

dl {
float: left;
clear: left;

}

</style>
</head>

<body>
<?php

$conn = mysql_connect(“localhost”,”user”,”password”) or die(mysql_error());
mysql_select_db(“xfd”);

$sql = “SELECT * FROM contact”;
$result = mysql_query($sql, $conn) or die(mysql_error());

while($row = mysql_fetch_assoc($result)){

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 615

Improving the Output Format616

print “ <dl> \n”;
foreach ($row as $name => $value){

print “ <dt>$name</dt> \n”;
print “ <dd>$value</dd> \n”;

} // end foreach
print “ </dl> \n”;

} // end while

?>
</body>

</html>

The general design is copied from contact.html, with the following
changes:

1. Add CSS styling for the definition list.

Definition lists are great for this kind of data, but the default style is
pretty boring. I added some float styles to make the data display better.
(See Book III, Chapter 1 for how to use floating styles.)

2. Put each record in its own definition list.

The while loop executes once per record, so begin the definition list at
the beginning of the while loop. The </dl> tag goes at the end of the
while loop. Each pass of the while loop will create a new definition list.

Figure 8-2:
Now, the
output of
the query
is in a nice
definition list.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 616

Book V
Chapter 8

Connecting to a
M

ySQL Database
Improving the Output Format 617

3. Display the field names as <dt> elements.

The field name maps pretty well to the concept of a definition term, so
put each $name value in a <dt></dt> pair.

4. Place the values inside <dd> tags.

The values will be displayed as definition data. Now, you have the con-
tents of the data set up in a form that can be easily modified with CSS.

Using XHTML tables for output
The basic unit of structure in SQL is called a table because it’s usually dis-
played in a tabular format. XHTML also has a table structure, which is ideal
for outputting SQL data. Figure 8-3 shows contactTable.php, which dis-
plays the contact information inside an XHTML table.

Tables are a very common way to output SQL results. There’s one big differ-
ence between table output and the techniques that have been shown else-
where in this chapter. In a table, you have a separate row containing field
names. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>contactTable.php</title>
<style type = “text/css”>

table, th, td {
border: 1px solid black;

}
</style>

</head>

<body>
<h1>My Contacts</h1>

<?php
$conn = mysql_connect(“localhost”, “user”, “password”);
mysql_select_db(“xfd”);
$sql = “SELECT * FROM contact”;
$result = mysql_query($sql, $conn);

print “ <table> \n”;

//get field names first
print “ <tr> \n”;
while ($field = mysql_fetch_field($result)){

print “ <th>$field->name</th> \n”;
} // end while
print “ </tr> \n”;

while ($row = mysql_fetch_assoc($result)){
print “ <tr> \n”;
foreach ($row as $name => $value){

print “ <td>$value</td> \n”;
} // end foreach

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 617

Improving the Output Format618

print “ </tr> \n”;

} // end while loop

print “ </table> \n”;

?>
</body>

</html>

This code is still very similar to the basic contact.php program. It extracts
data from the database in exactly the same way. The main difference is the way
field names are treated. The field names will go in table headings, and only the
values are printed from each row. To make this work, follow these steps:

1. Build a normal MySQL connection.

Begin with the standard connection. Don’t worry about formatting until
you’re reasonably certain you can read data from the database.

2. Print the table tag before extracting any results.

All the query data will be displayed inside the table, so print the table
tag before you start printing anything that should go inside the table.

Figure 8-3:
The contact
information
displayed in
an XHTML
table.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 618

Book V
Chapter 8

Connecting to a
M

ySQL Database
Improving the Output Format 619

3. Print the table header row first.

The table headers must be printed before you can worry about the other
data:

//get field names first
print “ <tr> \n”;
while ($field = mysql_fetch_field($result)){

print “ <th>$field->name</th> \n”;
} // end while
print “ </tr> \n”;

4. Extract metadata from the result set with mysql_fetch_field().

After you’ve gotten a result from a data query, you can learn a lot about
the data by using the mysql_fetch_field() function:

while ($field = mysql_fetch_field($result)){

This function (mysql_fetch_field()) extracts the next field object
from the result and passes it to a variable called $field. It returns
false if there are no more fields in the result, so it can be used in a
while loop, like mysql_fetch_assoc().

5. Print the field’s name.

The field is an object, so you can extract various elements from it easily.
In this case, I’m interested in the field name. $field->name yields the
name of the current field (see the sidebar, in this chapter, “More about
metadata” for more information about information you can extract from
field objects):

print “ <th>$field->name</th> \n”;

6. Print each row’s data as a table row.

Each row of the data result maps to a table row. Use the preceding varia-
tion of nested loops to build your table rows.

7. Finish off the table.

The table tag must be completed. Don’t forget to print </table> when
you’re done printing out all the table information.

8. Clean up your XHTML.

Check your code in a browser. Make sure it looks right, but don’t stop
there. Check with a Validator to make sure that your program produces
valid XHTML code. View the source and ensure that the indentation and
white space are adequate. Even though a program produced this code, it
needs to be XHTML code you can be proud of.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 619

Allowing User Interaction620

Allowing User Interaction
If you’ve got a large database, you probably want to allow users to search
the database. For example, the form in Figure 8-4 allows the user to search
the My Contacts database.

There’s a couple of interesting things about the form in Figure 8-4:

✦ The search value can be anything. The first field is an ordinary text
field. The user can type absolutely anything here (so you should expect
some surprises).

✦ The user selects a field with a drop-down menu. You don’t expect the
user to know exactly what field names you are using in your database.
Whenever possible, supply this type of information in a format that’s
easier for the user and less prone to error.

✦ This form is built to fill in a query. The back-end program (search.
php) will be constructing a query from data gathered from this form.
The point of the form is to request two pieces of information from the
user: a field to search in and a value to look for in that field. search.php
will use the data gleaned from this form to construct and submit that
query to the database.

Figure 8-4:
The user
can check
for any
value in
any field.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 620

Book V
Chapter 8

Connecting to a
M

ySQL Database
Allowing User Interaction 621

✦ The user doesn’t know SQL. Even if the user does know SQL, don’t let
him use it. The SQL query should always be built on the server side. Get
enough information to build an SQL query, but don’t send a query to the
PHP. (Doing so exposes your database to significant abuse.)

✦ The form uses the post mechanism. From the XHTML perspective, it
isn’t important whether the form uses get or post, but when you’re
using forms to construct SQL queries, post is a bit safer because it
makes the bad guys work a little bit harder to spoof your site and send
bogus requests to your database.

Building an XHTML search form
Here’s the XHTML code for search.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>search.html</title>
<link rel = “stylesheet”

type = “text/css”
href = “search.css” />

More about metadata
You can find out all sorts of information about
the table you’re querying with the
mysql_fetch_field() function.

This function returns an object that has the fol-
lowing properties:

� table: The name of the table the field
(column) belongs to

� name: The field’s name

� type: The field’s datatype

� primary_key: If the field is a primary
key, will return a 1

� unique_key: If the field is a unique key,
will return a 1

� max_length: The field’s maximum length

� def: The field’s default value (if any)

� not_null: If the field can’t be NULL, will
return a 1

� multiple_key: If the field is a non-
unique key, will return a 1

� numeric: If the field is numeric, will
return a 1

� blob: If the field is a blob, will return a 1

� unsigned: If the field is unsigned, will
return a 1

� zerofill: If the field is zero-filled, will
return a 1

You’ll probably end up using table, name,
type, primary_key, and max_length
the most. Refer to any of these values using
object-oriented syntax, so if you’ve got a field
named $field, get its name with $field-
>name.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 621

Allowing User Interaction622

</head>

<body>
<h1>Search my contacts</h1>

<form action = “search.php”
method = “post”>

<fieldset>

<label>Search for</label>
<input type = “text”

name = “srchVal” />

<label>in</label>
<select name = “srchField”>

<option value = “contactID”>ID</option>
<option value = “name”>contact name</option>
<option value = “company”>company name</option>
<option value = “email”>email address</option>

</select>

<button type = “submit”>submit request</button>
</fieldset>

</form>
</body>

</html>

It’s really a pretty basic form. The interesting stuff happens in the
search.php program that’s triggered when the user submits this form.

Responding to the search request
When the user submits search.html, a page like Figure 8-5 appears, cre-
ated by search.php.

The search.php program isn’t really terribly different from contactTable.
php. It takes an SQL query, sends it to a database, and returns the result as
an XHTML table. The only new idea is how the SQL query is built. Rather
than pre-loading the entire query into a string variable, as I did in all other
examples in this chapter, I used input from the form to inform the query.
As usual, I provide the code in its entirety here, then I point out specific
features. Look at the big picture first:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>search.php</title>
<style type = “text/css”>

table, th, td {
border: 1px solid black;

}
</style>

</head>

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 622

Book V
Chapter 8

Connecting to a
M

ySQL Database
Allowing User Interaction 623

<body>
<h1>My Contacts</h1>

<?php

$sql = processInput();
printResults($sql);

function processInput(){
//extract information from previous form and build a safe query
$srchVal = $_POST[“srchVal”];
$srchField = $_POST[“srchField”];
$srchVal = mysql_real_escape_string($srchVal);
$srchField = mysql_real_escape_string($srchField);

$sql = “SELECT * FROM contact WHERE $srchField LIKE ‘%$srchVal%’”;
return $sql;

} // end processInput

function printResults($sql){
$conn = mysql_connect(“localhost”, “user”, “password”);
mysql_select_db(“xfd”);

$result = mysql_query($sql, $conn);

print “ <table> \n”;

Figure 8-5:
The program
searches the
database
according
to the para-
meters in
search.html.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 623

Allowing User Interaction624

//get field names first
print “ <tr> \n”;
while ($field = mysql_fetch_field($result)){

print “ <th>$field->name</th> \n”;
} // end while
print “ </tr> \n”;

while ($row = mysql_fetch_assoc($result)){
print “ <tr> \n”;
foreach ($row as $name => $value){

print “ <td>$value</td> \n”;
} // end foreach
$count++;
print “ </tr> \n”;

} // end while loop

print “ </table> \n”;
} // end printResults
?>
</body>

</html>

Breaking the code into functions
This code is complex enough to deserve functions. The program has two
main jobs, so it’s not surprising that a function is designated to perform each
major task. Here’s the main section of the PHP code:

$sql = processInput();
printResults($sql);

This code fragment nicely summarizes the entire program (as well-designed
main code ought to do). Here’s the overview:

1. Designate a variable called $sql to hold a query.

The central data for this program is the SQL query.

2. Create the query with processInput().

The job of processInput() is to get the data from the search.html
form and create a safe, properly-formatted query, which will be passed
to the $sql variable.

3. Process the query with the printResults() function.

This function will process the query and format the output as an XHTML
table.

Processing the input
The processInput() function does just what it says — processes input:

function processInput(){
//extract information from previous form and build a safe query

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 624

Book V
Chapter 8

Connecting to a
M

ySQL Database
Allowing User Interaction 625

$srchVal = $_POST[“srchVal”];
$srchField = $_POST[“srchField”];

$conn = mysql_connect(“localhost”, “user”, “password”);
$srchVal = mysql_real_escape_string($srchVal, $conn);
$srchField = mysql_real_escape_string($srchField, $conn);

$sql = “SELECT * FROM contact WHERE $srchField LIKE ‘%$srchVal%’”;
return $sql;

} // end processInput

It works by doing several small but important tasks:

1. Retrieve values from the form.

The key values for this program are $srchVal and $srchField. They
both come from the previous form. Note that I used $_POST rather than
$_REQUEST because post requests are mildly harder to hack than get,
and I really don’t want anybody spamming my database:

$srchVal = $_POST[“srchVal”];
$srchField = $_POST[“srchField”];

2. Filter each field with mysql_real_escape_string().

You never want to use input from a form without passing it through a
security check. It’s quite easy for a bad guy to post additional text in the
query that could cause you a lot of headaches. This bit of nastiness is
commonly called a SQL injection attack. Fortunately, PHP provides a very
useful function for preventing this sort of malice. The
mysql_real_escape_string() function processes a string and strips
out any potentially dangerous characters, effectively minimizing the
risks of SQL injection ickiness. The second parameter of
mysql_real_escape_string() is the name of the data connection,
so I make a connection and pass it as a parameter:

$conn = mysql_connect(“localhost”, “xfd”, “xfdaio”);
$srchVal = mysql_real_escape_string($srchVal, $conn);
$srchField = mysql_real_escape_string($srchField, $conn);

For more on database security and preventing SQL injection attacks, a
good place to start is this document in the PHP online manual:

http://us3.php.net/manual/en/security.database.sql-injection.php

3. Embed the cleaned-up strings in the $sql variable.

Now, you can build the query comfortably. Note that a LIKE clause is
more likely to provide the kinds of results your user is expecting. Also,
don’t forget that SQL often requires single quotes (see Book VI, Chapter
2 for more on building LIKE clauses):

$sql = “SELECT * FROM contact WHERE $srchField LIKE ‘%$srchVal%’”;

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 625

Allowing User Interaction626

4. Return the final $sql variable.

The query is now ready to be sent back to the main code segment,
which will pass it on to the next function:

return $sql;

Generating the output
Now that query is complete, the job of printResults() is quite easy. This
code is really just a copy of the contactTable.php code packaged into a
function:

function printResults($sql){
$conn = mysql_connect(“localhost”, “user”, “password”);
mysql_select_db(“xfd”);

$result = mysql_query($sql, $conn);

print “ <table> \n”;

//get field names first
print “ <tr> \n”;
while ($field = mysql_fetch_field($result)){

print “ <th>$field->name</th> \n”;
} // end while
print “ </tr> \n”;

while ($row = mysql_fetch_assoc($result)){
print “ <tr> \n”;
foreach ($row as $name => $value){

print “ <td>$value</td> \n”;
} // end foreach
$count++;
print “ </tr> \n”;

} // end while loop

print “ </table> \n”;
} // end printResults

There’s only one twist here: SQL is now a parameter. This function won’t
create the $sql variable itself. Instead, it accepts $sql as a parameter. I
took out the line that created $sql as a hard-coded query because now
I want to implement the query created by processInput(). Otherwise,
the code in this function is a direct copy of contactTable.php.

39_186275 bk05ch08.qxp 3/28/08 10:54 PM Page 626

Well-defined data is the central element
in most commercial Web sites.

Book VI

Databases with MySQL

40_186275 pp06.qxp 3/28/08 10:54 PM Page 627

Contents at a Glance

Chapter 1: Getting Started with Data .629
Examining the Basic Structure of Data..629
Introducing MySQL ..634
Setting Up phpMyAdmin ...637
Making a Database with phpMyAdmin..649

Chapter 2: Managing Data with SQL .657
Writing SQL Code by Hand..657
Running a Script with phpMyAdmin..661
Using AUTO_INCREMENT for Primary Keys...664
Selecting Data from Your Tables ..666
Editing Records ..676
Exporting Your Data and Structure..677

Chapter 3: Normalizing Your Data .683
Recognizing Problems with Single-Table Data..683
Introducing Entity-Relationship Diagrams..687
Introducing Normalization..695
Identifying Relationships in Your Data..698

Chapter 4: Putting Data Together with Joins .701
Calculating Virtual Fields ..701
Calculating Date Values ...703
Creating a View...708
Using an Inner Join to Combine Tables ...710
Managing Many-to-Many Joins ...716

40_186275 pp06.qxp 3/28/08 10:54 PM Page 628

Chapter 1: Getting Started
with Data

In This Chapter
� Understanding databases, tables, records, and fields

� Introducing the relational data model

� Introducing a three-tier model

� Understanding MySQL data types

� Getting started with MySQL and phpMyAdmin

� Adding a password to your MySQL root account

� Creating new MySQL users

� Designing a simple table

� Adding data to the table

Most programs and Web sites are really about data. Data drives the
Internet, so you really need to understand how data works and how

to manage it well if you want to build high-powered modern Web sites.

The trend in Web development is to have a bunch of specialized languages
that work together. XHTML describes page content, CSS manages visual
layout, JavaScript adds client-side interactivity, and PHP adds server-side
capabilities. You’re probably not surprised when I tell you that yet another
language, SQL (Structured Query Language), specializes in working with data.

In this minibook, you discover how to manage data. Specifically, you find
out how to create databases, add data, create queries to retrieve data, and
create complex data models to solve real-world problems. In this chapter, I
show you some automated tools that automate the process of creating a
data structure and adding data to it. In later chapters in this minibook, I
show how to control the process directly through SQL.

Examining the Basic Structure of Data
Data has been an important part of programming from the beginning. Many
languages have special features for working with data, but through the years,
a few key ideas have evolved. A system called relational data modeling has

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 629

Examining the Basic Structure of Data630

become the primary method for data management, and a standard language
for this model, called SQL (Structured Query Language), has been developed.

SQL has two major components:

✦ Data Definition Language (DDL) is a subset of SQL that helps you create
and maintain databases. You use DDL to build your databases and add
data to them.

✦ Data Query Language (DQL) is used to pull data out of a database after
it’s been placed there. Generally, your user input is converted to queries
to get information from an existing database.

The best way to think about data is to simply look at some. The following
table contains some basic contact information:

Name Company E-mail

Bill Gates Microsoft bill@msBob.com

Steve Jobs Apple steve@rememberNewton.com

Linus Torvalds Linux Foundation linus@gnuWho.org

Andy Harris Wiley Press andy@aharrisBooks.net

All these e-mail addresses are completely made up (except mine). Bill Gates
hasn’t given me his actual e-mail address. He doesn’t answer my calls,
either. . . . (sniff).

It’s very common to think of data in the form of tables. In fact, the fancy offi-
cial database programmer name for this structure is table. A table (in database
terms) is just a two-dimensional representation of data. Of course, some fancy
computer-science words describe what’s in a table:

✦ Each row is a record. A record describes a discrete entity. In this table,
each record is a person in an e-mail directory.

✦ A record is made of fields. All the records in this table have three
fields: name, company, and e-mail. Fields are a lot like variables in pro-
gramming languages; they can have a type and a value. Sometimes,
fields are also called columns.

✦ A collection of records is a table. All records in a table have the same
field definitions but can have different values in the fields.

✦ A bunch of tables makes a database. Real-world data doesn’t usually
fit well in one table. Often, you’ll make several different tables that work
together to describe complex information. The database is an aggregate
of a bunch of tables. Normally, you restrict access to a database through
a user and password system.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 630

Book VI
Chapter 1

Getting Started
w

ith Data
Examining the Basic Structure of Data 631

Determining the fields in a record
If you want to create a database, you need to think about what entity you’re
describing and what fields that entity contains. In the table in the preceding
section, I’m describing e-mail contacts. Each contact requires three pieces of
information:

✦ Name: Gives the name of the contact, in 50 characters or less.

✦ Company: Describes which company the contact is associated with, in 30
characters or less.

✦ E-mail: Lists the e-mail address of the contact, in 50 characters or less.

Whenever you define a record, begin by thinking about what the table repre-
sents and then think of the details associated with that entity. The topic of
the table (the kind of thing the table represents) is the record. The fields are
the details of that record.

Before you send me e-mails about my horrible data design, know that I’m
deliberately simplifying this table. Sure, it should have separate fields for
first and last name, and it should also have a primary key. If you don’t know
about that stuff yet, I talk about them later in this minibook, as well as in the
section “Defining a primary key,” later in this chapter. If you do know about
them already, you probably don’t need to read this section. For the rest of
you, you should start with a simple data model, and I promise to add all
those goodies soon.

Introducing SQL data types
Each record contains a number of fields, which are much like variables in
ordinary languages. Unlike scripting languages, such as JavaScript and PHP
(which tend to be free-wheeling about data types), databases are particular
about the type of data that goes in a record.

Table 1-1 illustrates several key data types in MySQL (the variant of SQL
used in this book).

Table 1-1 MySQL Data Types
Data Type Description Notes

INT (INTEGER) Positive or negative integer Ranges from about –2 billion to 2
(no decimal point) billion. Use BIGINT for larger integers.

DOUBLE Double precision floating point Holds decimal numbers in scientific
notation. Use for extremely large or
extremely small values.

(continued)

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 631

Examining the Basic Structure of Data632

Table 1-1 (continued)
Data Type Description Notes

DATE Date stored in YYYY-MM-DD Can be displayed in various formats.
format.

TIME Time stored in HH:MM:SS format Can be displayed in various formats.

CHAR(length) Fixed-length text Always same length. Shorter text is
padded with spaces. Longer text is
truncated.

VARCHAR(length) ‘variable’-length text Still fixed length, but trailing spaces
are trimmed. Limit 256 characters.

TEXT Longer text Up to 64,000 (roughly) characters. Use
LONGTEXT for more space.

BLOB Binary data Up to 64K of binary data. LONGBLOB
for more space.

I list only the most commonly used data types in Table 1-1. These data types
handle most situations, but check the documentation of your database pack-
age if you need some other type of data.

Specifying the length of a record
Data types are especially important when you’re defining a database.
Relational databases have an important structural rule: Each record in a
table must take up the same amount of memory. This rule seems arbitrary,
but it’s actually very useful.

Imagine that you’re looking up somebody’s name in a phone book, but
you’re required to go one entry at a time. If you’re looking for Aaron Adams,
things will be pretty good, but what if you’re looking for Zebulon Zoom? This
sequential search would be really slow because you’d have to go all the way
through the phone book to find Zebulon. Even knowing that Zeb was in
record number 5,379 wouldn’t help much because you don’t know exactly
when one record ends and another begins.

If you’re name is really Zebulon Zoom, you have a very cool name — a good
sign in the open source world, where names like Linus and Guido are really
popular. I figure the only reason I’m not famous is my name is too boring. I’m
thinking about switching to a dolphin name or something. (Hi, my name is
“Andy Squeeeeeeek! Click Click Harris.”)

Relational databases solve this problem by forcing each record to be the
same length. Just for the sake of argument, imagine that every record takes
exactly 100 bytes. You would then be able to figure out where each record is

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 632

Book VI
Chapter 1

Getting Started
w

ith Data
Examining the Basic Structure of Data 633

on the disk by multiplying the length of each record by the desired record’s
index. (Record 0 would be at byte 0, record 1 is at 100, record 342 is at 34200,
and so on.) This mechanism allows the computer to keep track of where all
the records are and jump immediately to a specific record, even if hundreds
or thousands of records are in the system.

My description here is actually a major simplification of what’s going on, but
the foundation is correct. You should really investigate more sophisticated
database and data structures classes or books if you want more information.
It’s pretty cool stuff.

The length of the record is important because the data types of a record’s
fields determine its size. Numeric data (integers and floating point values)
have a fixed size in the computer’s memory. Strings (as used in other pro-
gramming languages) typically have dynamic length. That is, the amount of
memory used depends on the length of the text. In a database application,
you rarely have dynamic length text. Instead, you generally determine the
number of characters for each text field.

Defining a primary key
When you turn the contact data into an actual database, you generally add
one more important field. Each table should have one field that acts as a pri-
mary key. A primary key is a special field that’s

✦ Unique: You can’t have two records in a table with the same primary key.

✦ Guaranteed: Every record in the table has a value in the primary key.

Primary key fields are often (though not always) integers because you can
easily build a system for generating a new unique value. (Find the largest key
in the current database and add one.)

In this book, each table has a primary key. They are usually numeric and are
always the first field in a record definition. I also end each key field with the
letters ID to help me remember it’s a primary key.

Primary keys are useful because they allow the database system to keep a
Table of Contents for quick access to the table. When you build multitable
data structures, you can see how you can use keys to link tables together.

Defining the table structure
When you want to build a table, you begin with a definition of the structure of
the table. What are the field names? What is each field’s type? If it’s text, how
many characters will you specify?

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 633

Introducing MySQL634

The table definition for the e-mail contacts table may look like this:

Field Name Type Length (Bytes)

ContactID INTEGER 11

Name VARCHAR 50

Company VARCHAR 30

E-mail VARCHAR 50

Look over the table definition, and you’ll notice some important ideas:

✦ There’s now a contactID field. This field serves as the primary key. It’s
an INTEGER field.

✦ INTEGERs are automatically assigned a length. It isn’t necessary to
specify the size of an INTEGER field (as all INTEGERs are exactly 11
bytes long in MySQL).

✦ The text fields are all VARCHARs. This particular table consists of a lot
of text. The text fields are all stored as VARCHAR types.

✦ Each VARCHAR has a specified length. Figuring out the best length can
be something of an art form. If you make the field too short, you aren’t
able to squeeze in all the data you want. If you make it too long, you
waste space.

VARCHAR isn’t quite variable length. The length is fixed, but extra spaces are
added. Imagine that I had a VARCHAR(10) field called userName. If I enter
the name ‘Andy’, the field contains “Andy “ (that is, ‘Andy’ followed
by six spaces). If I enter the value ‘Rumplestiltskin’, the field contains the
value “Rumplestil” (the first 10 characters of ‘Rumplestiltskin’).

The difference between CHAR and VARCHAR is what happens to shorter
words. When you return the value of a CHAR field, all the padding spaces are
included. A VARCHAR automatically lops off any trailing spaces.

In practice, programmers rarely use CHAR because VARCHAR provides the
behavior you almost always want.

Introducing MySQL
Programs that work with SQL are usually called relational database manage-
ment systems (RDBMS). A number of popular RDBMSs are available:

✦ Oracle is the big player. Many high-end commercial applications use the
advanced features of Oracle. It’s powerful, but the price tag makes it pri-
marily useful for large organizations.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 634

Book VI
Chapter 1

Getting Started
w

ith Data
Introducing MySQL 635

✦ MS SQL Server is Microsoft’s entry in the high-end database market. It’s
usually featured in Microsoft-based systems integrated with .NET pro-
gramming languages and the Microsoft IIS server. It can also be quite
expensive.

✦ MS Access is the entry-level database system installed with most ver-
sions of Microsoft Office. While Access is a good tool for playing with
data design, it has some well-documented problems handling the large
number of requests typical of a Web-based data tool.

✦ MySQL is an open-source database that has made a big splash in the
open-source world. While it’s not quite as robust as Oracle or SQL
Server, it’s getting closer all the time. The latest version has features and
capabilities that once only belonged to expensive proprietary systems.

✦ SQLite is another open-source database that’s really showing some prom-
ise. This program is very small and fast, so it works well in places you
wouldn’t expect to see a full-fledged database (think cell phones and PDAs).

The great news is that almost all these databases work in the same general
way. They all read fairly similar dialects of the SQL language. No matter
which database you choose, the basic operation is roughly the same.

Why use MySQL?
This book focuses on MySQL because this program is

✦ Very accessible: If you’ve already installed XAMPP (see Book VIII), you
already have access to MySQL. Many hosting accounts also have MySQL
access built in.

✦ Easy to use: You can use MySQL from the command line or from a spe-
cial program. Most people manipulate SQL through a program called
phpMyAdmin (introduced in the section “Setting Up phpMyAdmin,” later
in this chapter). This program provides a graphical interface to do most
of the critical tasks.

✦ Reasonably typical: MySQL supports all the basic SQL features and a
few enhancements. If you understand MySQL, you’ll be able to switch to
another RDBMS pretty easily.

✦ Very powerful: MySQL is powerful enough to handle typical Web server
data processing for a small to mid-size company. Some extremely large
corporations even use it.

✦ Integrated with XAMPP and PHP: PHP has built-in support for MySQL,
so you can easily write PHP programs that work with MySQL databases.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 635

Introducing MySQL636

Understanding the three-tier architecture
Modern Web programming often uses what’s called the three-tiered architec-
ture, as shown in Table 1-2.

Table 1-2 The Three-Tiered Architecture
Tier Platform (Software) Content Language

Client Web browser (Firefox) Web page XHTML/CSS/JS

Server Web server (Apache) Business rules PHP (or other similar
and logic language)

Data Data server (MySQL) Data content SQL (through MySQL or
another data server)

The user talks to the system through a Web browser, which manages XHTML
code. CSS and JavaScript may be at the user tier, but everything is handled
through the browser. The user then makes a request of the server, which is
sometimes passed through a server-side language like PHP. This program then
receives a request and processes it, returning HTML back to the client. Many
requests involve data, which brings the third (data) tier into play. The Web
server can package up a request to the data server through SQL. The data
server manages the data and prepares a response to the Web server, which
then makes HTML output back for the user.

Figure 1-1 provides an overview of the three-tier system.

Practicing with MySQL
MySQL is a server, so it must be installed on a computer in order to work. To
practice with MySQL, you have a few options:

✦ Run your own copy of MySQL from the command line. If you have
MySQL installed on your own machine, you can go to the command line
and execute the program directly. This task isn’t difficult, but it is tedious.

✦ Use phpMyAdmin to interact with your own copy of MySQL. This solu-
tion is often the best. phpMyAdmin is a set of PHP programs that allow
you to access and manipulate your database through your Web browser.
If you’ve set up XAMPP, you’ve got everything you need. (See Book VIII
for more information about XAMPP.) You can also install MySQL and
phpMyAdmin without XAMPP, but you should really avoid the headaches
of manual configuration, if you can. In this chapter, I do all MySQL through
phpMyAdmin, but I show other alternatives in Book V (where you can
connect to MySQL through PHP) and Chapter 2 of this minibook.

✦ Run MySQL from your hosting site. If you’re using Free Hostia or some
other hosting service, you generally access MySQL through phpMyAdmin.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 636

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 637

Setting Up phpMyAdmin
By far the most common way to interact with MySQL is through
phpMyAdmin. If you’ve installed XAMPP, you already have phpMyAdmin.
Here’s how you use it to get to MySQL:

1. Turn on MySQL with the XAMPP Control Panel, shown in Figure 1-2.

You also need Apache running (because XAMPP runs through the
server). You don’t need to run MySQL or Apache as a service, but you
must have them both running.

2. Go to the XAMPP main directory in your browser.

If you used the default installation, you can just point your browser to
http://localhost/xampp. It should look like Figure 1-3.

Don’t just go through the regular file system to find the XAMPP directory.
You must use the localhost mechanism so that the PHP code in php
MyAdmin is activated.

HTML results

HTML Form

Server
PHP program

PHP program

SQL Code

Database

SQL results

Client
(browser)

Figure 1-1:
An overview
of the three-
tier data
model.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 637

Setting Up phpMyAdmin638

3. Find phpMyAdmin in the Tools section of the menu.

The phpMyAdmin page looks like Figure 1-4.

4. Create a new database.

Type the name for your database in the indicated text field. I call my
database xfd. (Xhtml For Dummies — get it?)

Figure 1-3:
Locating the
XAMPP
subdirectory
through
localhost.

Figure 1-2:
Turning on
MySQL and
Apache.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 638

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 639

Changing the root password
MySQL is a powerful system, which means it can cause a lot of damage in the
wrong hands. Unfortunately, the default installation of MySQL has a security
loophole you could drive an aircraft carrier through. The default user is
called root and has no password whatsoever. Although you don’t have to
worry about any pesky passwords, the KGB can also get to your data with-
out passwords, either.

Believe me, the bad guys know that root is the most powerful account on
MySQL and that it has no password by default. They’re glad to use that infor-
mation to do you harm (or worse, to do harm in your name). Obviously,
giving the root account a password is a very good idea. Fortunately, it’s not
difficult to do. . . .

1. Log into phpMyAdmin as normal.

The main screen looks like Figure 1-5. Note the scary warning of gloom
at the bottom. You’re about to fix that problem.

2. Click the Privileges link to modify user privileges.

The new screen looks something like Figure 1-6.

Figure 1-4:
The php-
MyAdmin
main page.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 639

Setting Up phpMyAdmin640

Figure 1-6:
The various
users are
stored in a
table.

Figure 1-5:
Here’s the
main php-
MyAdmin
screen with
a privileges
link.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 640

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 641

3. Edit the root user.

Chances are good that you have only one user, called root, and the
Password field says No. You’ll be adding a password to the root user.
The icon at the right allows you to edit this record. (Hover your mouse
over the small icon to see ToolTips if you can’t find it.) The edit screen
looks like Figure 1-7.

4. Examine the awesome power of the root administrator.

Even if you don’t know what all these things are, root can clearly do lots of
things, and you shouldn’t let this power go unchecked. (Consult any
James Bond movie for more information on what happens with unfettered
power.) You’re still going to let root do all these things, but you’re going to
set a password so that only you can be root on this system. Scroll down a
bit on the page until you see the segment that looks like Figure 1-8.

5. Assign a password.

Simply click the box that says Password and then type the password in
this box and the next one. Be sure that you type the same password
twice. Follow all your typical password rules (six or more characters
long, no spaces, case-sensitive).

Figure 1-7:
You can use
this tool to
modify the
root user’s
permissions.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 641

Setting Up phpMyAdmin642

6. Hit the Go button.

If all went well, the password changes.

7. Recoil in horror.

Try to go back to the phpMyAdmin home (with the little house icon),
and something awful happens, as shown in Figure 1-9.

Don’t panic about the error in Figure 1-9. Believe it or not, this error is good.
Up to now, phpMyAdmin was logging into your database as root without a
password (just like the baddies were going to do). Now, phpMyAdmin is
trying to do the same thing (log in as root without a password), but it can’t
because now root has a password.

What you have to do is tell phpMyAdmin that you just locked the door and
give it the key. (Well, the password, but I was enjoying my metaphor.)

1. Find the phpMyAdmin configuration file.

You have to let phpMyAdmin know that you’ve changed the password.
Look for a file in your phpMyAdmin directory called config.inc.php.
(If you used the default XAMPP installation, the file is in C:\Program
Files\xampp\phpMyAdmin\config.inc.php.)

Figure 1-8:
This area is
where you
add the
password.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 642

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 643

2. Find the root password setting.

Using the text editor’s search function. I found it on line 70, but it may be
someplace else in your editor. In Notepad++, it looks like Figure 1-10.

3. Change the root setting to reflect your password.

Enter your root password. For example, if your new password is
myPassword, change the line so that it looks like

$cfg[‘Servers’][$i][‘password’] = ‘myPassword’; // MySQL password

Of course, myPassword is just an example. It’s really a bad password.
Put your actual password in its place.

4. Save the config.inc.php file.

Save the configuration file and return to phpMyAdmin.

5. Try getting into phpMyAdmin again.

This time, you don’t get the error, and nobody is able to get into your
database without your password. You shouldn’t have to worry about
this issue again, but whenever you connect to this database, you do
need to supply the username and password.

Figure 1-9:
That mes-
sage can’t
be good.
Maybe I
should
have left it
vulnerable.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 643

Setting Up phpMyAdmin644

Adding a user
Changing the root password is the absolute minimum security measure, but
it’s not the only one. You can add various virtual users to your system to
protect it further.

You’re able to log into your own copy of MySQL (and phpMyAdmin) as root
because you’re the root owner. (If not, then refer to the preceding section.)
It’s your database, so you should be allowed to do anything with it.

You probably don’t want your programs logging in as root because that can
allow malicious code to sneak into your system and do mischief. You’re
better off setting up a different user for each database and allowing that user
access only to the tables within that database.

I’m really not kidding about the danger here. A user with root access can get
into your database and do anything, including creating more users or chang-
ing the root password so that you can no longer get into your own database!
You generally shouldn’t write any PHP programs that use root. Instead, have
a special user for that database. If the bad guys get in as anything but root,
they can’t blow up everything.

Figure 1-10:
Here’s the
username
and con-
figuration
information.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 644

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 645

Fortunately, creating new users with phpMyAdmin isn’t a difficult procedure:

1. Log into phpMyAdmin with root access.

If you’re running XAMPP on your own server, you’ll automatically log in
as root.

2. Activate the Privileges tab to view user privileges.

3. Add a new user using the Add a New User link on the Privileges page.

4. Fill in user information on the new user page (see Figure 1-11).

Be sure to add a username and password. Typically, you use ‘local-
host’ as the host.

5. Create a database, if it doesn’t already exist.

If you haven’t already made a database for this project, you can do so
automatically with the Create Table Automatically radio button.

6. Do not assign global privileges.

Only the root user should have global privileges. You want this user to
have the ability to work only within a specific database.

Figure 1-11:
Here’s the
new xfd
user being
created.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 645

Setting Up phpMyAdmin646

7. Create the user by clicking the Go button.

You see a new screen like Figure 1-12 (you need to scroll down a bit to
see this part of the page).

8. Specify the user’s database.

Select the database in the drop-down list. This user (xfd) will have
access only to tables in the xfd database. Note that you probably don’t
have many databases on your system when you start out.

9. Apply most privileges.

You generally want your programs to do nearly everything within their
own database so that you can apply almost all privileges (for now,
anyway). I typically select all privileges except grant, which allows the
user to allow access to other users. Figure 1-13 shows the Privileges page.

As you’re starting out, your programs have access to one database and are
able to do plenty with it. As your data gets more critical, you’ll probably want
to create more restrictive user accounts so that those programs that should
only be reading your data don’t have the ability to modify or delete records.
This change makes it more difficult for the bad guys to mess up your day.

Figure 1-12:
You can
specify a
specific
database for
this user.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 646

Book VI
Chapter 1

Getting Started
w

ith Data
Setting Up phpMyAdmin 647

Your database users won’t usually be people. This idea is hard, particularly
if you haven’t used PHP or another server-side language yet. The database
users are usually programs you have written that access the database in
your name.

Using phpMyAdmin on a remote server
If you’re working on some remote system with your service provider, the
mechanism for managing and creating your databases may be a bit different.
Each host has its own quirks, but they’re all pretty similar. As an example,
here’s how I connect to the system on Free Hostia at http://freehostia.
com (where I post the example pages for this book):

1. Log onto your service provider using the server login.

You usually see some sort of control panel with the various tools you
have as an administrator. These tools often look like Figure 1-14.

2. Locate your database settings.

Not all free hosting services provide database access, but some (like Free
Hostia — at least, as of this writing) do have free MySQL access. You usu-
ally can access some sort of tool for managing your databases. (You’ll
probably have a limited number of databases available on free servers,
but more with commercial accounts.) Figure 1-15 shows the database
administration tool in Free Hostia.

Figure 1-13:
The xfd user
can do
everything
but grant
other
privileges
on this
database.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 647

Setting Up phpMyAdmin648

Figure 1-15:
The data-
base admini-
stration tool
lets me
create
or edit
databases.

Figure 1-14:
The Free
Hostia site
shows a
number of
useful
admini-
stration
tools.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 648

Book VI
Chapter 1

Getting Started
w

ith Data
Making a Database with phyMyAdmin 649

3. Create a database according to the rules enforced by your system.

Sometimes, you can create the database within phpMyAdmin (as I did in
the last section), but more often, you need to use a special tool like the
one shown in Figure 1-15 to create your databases. Free Hostia imposes
a couple of limits: The database name begins with the system username,
and it can’t be more than 16 characters long.

Don’t freak out if your screen looks a little different than Figure 1-15.
Different hosting companies have slightly different rules and systems, so
things won’t be just like this, but they’ll probably be similar. If you get
stuck, be sure to look at the hosting service’s Help system. You can also
contact the support system. They’re usually glad to help, but they’re
(understandably) much more helpful if you’ve paid for the hosting serv-
ice. Even the free hosting systems offer some online support, but if
you’re going to be serious, paying for online support is a good deal.

4. Create a password for this database.

You probably need a password (and sometimes another username) for
your databases to prevent unauthorized access to your data. Because
the database is a different server than the Web server, it has its own
security system. On Free Hostia, I must enter a password, and the
system automatically creates a MySQL username with the same name as
the database. Keep track of this information because you need it later
when you write a program to work with this data.

5. Use phpMyAdmin to add tables to your database.

Once you’ve defined the database, you can usually use phpMyAdmin to
manipulate the data. With Free Hostia, you can simply click a database
name to log into phpMyAdmin as the administrator of that database.
Figure 1-16 shows the new database in phpMyAdmin, ready for action.

Typically, a remote server doesn’t give you root access, so you don’t have to
mess around with the whole root password mess described in the “Changing
the root password” section of this chapter. Instead, you often have either
one password you always use in phpMyAdmin, or you have a different user
and password for each database.

Making a Database with phpMyAdmin
When you’ve got a database, you can build a table. When you’ve defined a
table, you can add data. When you’ve got data, you can look at it. Begin by
building a table to handle the contact data described in the first section of
this chapter, “Examining the Basic Structure of Data”:

1. Be sure you’re logged into phpMyAdmin.

The phpMyAdmin page should look something like Figure 1-17, with
your database name available in the left column.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 649

Making a Database with phyMyAdmin650

Figure 1-17:
The main
screen of
the php-
MyAdmin
system.

Figure 1-16:
Now, I can
edit the
database
in php-
MyAdmin.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 650

Book VI
Chapter 1

Getting Started
w

ith Data
Making a Database with phyMyAdmin 651

2. Activate the database by clicking the database name in the left column.

If the database is empty, an Add Table page, shown in Figure 1-18, appears.

3. Create a new table using the phpMyAdmin tool.

Now that you have a database, add the contacts table to it. The contacts
database has four fields, so type a 4 into the box and let ’er rip. A form
like Figure 1-19 appears.

4. Enter the field information.

Type the field names into the grid to create the table. It should look like
Figure 1-20.

In Figure 1-20, you can’t see it, but a radio button appears to the far right
that you can use to set the contactID as a primary key. Be sure to add
this indicator.

5. Click the Save button and watch the results.

phpMyAdmin automatically writes some SQL code for you and executes
it. Figure 1-21 shows the code and the new table.

Now, the left panel indicates that you’re in the xfd database, which has
a table called contact.

Figure 1-18:
Type a table
name to
begin adding
a table.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 651

Making a Database with phyMyAdmin652

Figure 1-20:
Enter field
data on this
form.

Figure 1-19:
Creating the
contacts
table.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 652

Book VI
Chapter 1

Getting Started
w

ith Data
Making a Database with phyMyAdmin 653

After you define a table, you can add data. Click contact in the left column, and
you see the screen for managing the contact table, as shown in Figure 1-22.

You can add data with the Insert tab, which gives a form like Figure 1-23,
based on your table design.

After you add the record, choose Insert Another Row and click the Go button.
Repeat until you’ve added all the contacts you want in your database.

After you add all the records you want to the database, you can use the
Browse tab to see all the data in the table. Figure 1-24 shows my table after I
added all my contacts to it and browsed.

Figure 1-21:
php-
MyAdmin
created this
mysterious
code and
built a table.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 653

Making a Database with phyMyAdmin654

Figure 1-23:
Adding a
record to
the table.

Figure 1-22:
I’ve added
the fields.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 654

Book VI
Chapter 1

Getting Started
w

ith Data
Making a Database with phyMyAdmin 655

Figure 1-24:
Viewing the
table data
in phpMy-
Admin.

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 655

Book VI: Databases with MySQL656

41_186275 bk06ch01.qxp 3/28/08 10:55 PM Page 656

Chapter 2: Managing Data
with SQL

In This Chapter
� Working with SQL script files

� Using AUTO_INCREMENT to build primary key values

� Selecting a subset of fields

� Displaying a subset of records

� Modifying your data

� Deleting records

� Exporting your data

Although we tend to think of the Internet as a series of interconnected
documents, the Web is increasingly about data. The HTML and XHTML

languages are still used to manage Web documents, but the SQL (Structured
Query Language) — the language of data — is becoming increasingly central.
In this chapter, you discover how SQL is used to define a data structure, add
data to a database, and modify that data.

Writing SQL Code by Hand
Although you can use phpMyAdmin to build databases, all it really does is
write and execute SQL code for you. You should know how to write SQL
code yourself for many reasons:

✦ It’s pretty easy. SQL isn’t terribly difficult (at least, to begin with —
things do get involved later). The basics are actually probably easier to
code yourself than to create them using phpMyAdmin.

✦ You need to write code in your programs. You probably run your data-
base from within PHP programs. You need to be able to write SQL com-
mands from within your PHP code, and phpMyAdmin doesn’t help much
with that job.

✦ You can’t trust computers. You should understand any code that has
your name on it, even if you use a tool like phpMyAdmin to write it. If
your program breaks, you have to fix it eventually, so you really should
know how it works.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 657

Writing SQL Code by Hand658

✦ SQL scripts are portable. Moving an entire data structure to a new
server is difficult, but if you have a script that creates and populates
the database, that script is just an ASCII file. You can easily move a
complete database (including the data) to a new machine.

✦ SQL scripts allow you to quickly rebuild a corrupted database. As
you’re testing your system, you’ll commonly make mistakes that can
harm your data structure. It’s very nice to have a script that you can use
to quickly reset your data to some standard test state.

Understanding SQL syntax rules
SQL is a language (like XHTML, JavaScript, CSS, and PHP), so it has its own
syntax rules. The rules and traditions of SQL are a bit unique because this lan-
guage has a different purpose than more traditional programming languages:

✦ Keywords are in uppercase. Officially, SQL is not case-sensitive, but
the tradition is to make all reserved words in uppercase and the names
of all your custom elements camel-case. Some variations of SQL are
case-sensitive, so you’re safest assuming that they all are.

✦ One statement can take up more than one line in the editor. SQL
statements aren’t usually difficult, but they can get long. Having one
statement take up many lines in the editor is common.

✦ Logical lines end in semicolons. Like PHP and JavaScript, each statement
in SQL ends in a semicolon.

✦ White space is ignored. DBMS systems don’t pay attention to spaces
and carriage returns, so you can (and should) use these tools to help
you clarify your code meaning.

✦ Single quotes are used for text values. MySQL usually uses single
quotes to denote text values, rather than the double quotes used in
other languages. If you really want to enclose a single quote in your text,
backslash it.

Examining the buildContact.sql script
Take a look at the following code:

-- buildContact.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
contactID int PRIMARY KEY,
name VARCHAR(50),
company VARCHAR(30),
email VARCHAR(50)

);

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 658

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Writing SQL Code by Hand 659

INSERT INTO contact VALUES
(0, ‘Bill Gates’, ‘Microsoft’, ‘bill@msBob.com’);

INSERT INTO contact VALUES
(1, ‘Steve Jobs’, ‘Apple’, ‘steve@rememberNewton.com’);

INSERT INTO contact VALUES
(2, ‘Linus Torvalds’, ‘Linux Foundation’, ‘linus@gnuWho.org’);

INSERT INTO contact VALUES
(3, ‘Andy Harris’, ‘Wiley Press’, ‘andy@aharrisBooks.net’);

SELECT * FROM contact;

This powerful code is written in SQL. I explain each segment in more detail
throughout the section, but here’s an overview:

1. Delete the contact table, if it already exists.

This script completely rebuilds the contact table, so if it already exists,
it is temporarily deleted to avoid duplication.

2. Create a new table named contact.

As you can see, the table creation syntax is spare but pretty straight-
forward. Each field name is followed by its type and length (at least, in
the case of VARCHARs).

3. Add values to the table by using the INSERT command.

Use a new INSERT statement for each record.

4. View the table data using the SELECT command.

This command displays the content of the table.

Dropping a table
It may seem odd to begin creating a table by deleting it, but there’s actually a
good reason. As you experiment with a data structure, you’ll often find your-
self building and rebuilding the tables.

The line

DROP TABLE IF EXISTS contact

means “look at the current database and see whether the table contact
appears in it. If so, delete it.” This syntax ensures that you start over fresh,
as you are rebuilding the table in the succeeding lines. Typical SQL scripts
begin by deleting any tables that will be over-written to avoid confusion.

Creating a table
You create a table with the (aptly named) CREATE TABLE command. The
specific table creation statement for the contact table looks like

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 659

Writing SQL Code by Hand660

CREATE TABLE contact (
contactID int PRIMARY KEY,
name VARCHAR(50),
company VARCHAR(30),
email VARCHAR(50)

);

Creating a table involves several smaller tasks:

1. Specify the table name.

The CREATE TABLE statement requires a table name. Specify the table
name. Table names (like variables and filenames) should generally not
contain spaces or punctuation without good reason.

2. Begin the field definition with a parenthesis.

The left parenthesis indicates the beginning of the field list. You tradi-
tionally list one field per line, indented as in regular code, although that
format isn’t required.

3. Begin each field with its name.

Every field has a name and a type. Begin with the field name, which
should also be one word.

4. Indicate the field type.

The field type immediately follows the field name (with no punctuation).

5. Indicate field length, if necessary.

If the field is a VARCHAR or CHAR field, specify its length in parentheses.
You can specify the length of numeric types, but I don’t recommend it
because MySQL automatically determines the length of numeric fields.

6. Add special modifiers.

Some fields have special modifiers. For now, note that the primary key is
indicated on the contactID field.

7. End the field definition with a comma.

The comma character indicates the end of a field definition.

8. End the table definition with a closing parenthesis and a semicolon.

Close the parenthesis that started the table definition and end the entire
statement with a semicolon.

Adding records to the table
You add data to the table with the INSERT command. The way this com-
mand works isn’t too surprising:

INSERT INTO contact VALUES
(0, ‘Bill Gates’, ‘Microsoft’, ‘bill@msBob.com’);

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 660

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Running a Script with phpMyAdmin 661

Follow these steps:

1. Begin with the INSERT keyword.

Use INSERT to clarify that this instruction is a data insertion command.

2. Specify the table you want to add data to.

In my example, I have only one table, so use INTO contact to specify
that that’s where the table goes.

3. (Optional) Specify field names.

You can specify a list of field names, but this step is unnecessary if you
add data to all fields in their standard order. (Normally, you don’t bother
with field names.)

4. Use the VALUES keyword to indicate that a list of field values is
coming.

5. Enclose the values in parentheses.

Use parentheses to enclose the list of data values.

6. Put all values in the right order.

Place values in exactly the same order the fields were designated.

7. Place text values in single quotes.

MySQL uses single quotes to specify text values.

8. End the statement with a semicolon, as you do with all SQL com-
mands.

9. Repeat with other data.

Add as many INSERT commands as you want to populate the data table.

Viewing the sample data
Once you’ve created and populated a table, you’ll want to look it over. SQL
provides the SELECT command for this purpose. SELECT is amazingly pow-
erful, but its basic form is simplicity itself:

SELECT * FROM contact;

This command simply returns all fields of all records from your database.

Running a Script with phpMyAdmin
phpMyAdmin provides terrific features for working with SQL scripts. You can
write your script directly in phpMyAdmin, or you can use any text editor.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 661

Running a Script with phpMyAdmin662

Aptana Studio is fine for editing SQL files, but it doesn’t have built-in SQL
support, such as syntax checking and coloring. You can download a plugin
to add these features (search for eclipse SQL plugins); use another editor
like Notepad++, which does have syntax coloring for SQL; or just do without
syntax coloring in Aptana (which is what I do).

If you’ve written a script in some other editor, you’ll need to save it as a text
file and import it into phpMyAdmin.

To run a script in phpMyAdmin

1. Connect to phpMyAdmin.

Be sure that you’re logged in and connected to the system.

2. Navigate to the correct database.

Typically, you use a drop-down list to the left of the main screen to pick
the database. (If you haven’t created a database, see the instructions in
Chapter 1 of this minibook.) Figure 2-1 shows the main phpMyAdmin
screen with the xfd database enabled.

Figure 2-1:
The xfd
database is
created and
ready to go.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 662

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Running a Script with phpMyAdmin 663

3. Activate the SQL pop-up window.

You can do so by clicking the small SQL icon in the left-hand navigation
menu. The resulting window looks like Figure 2-2.

4. (Optional) Type your SQL code directly into this dialog box.

This shortcut is good for making quick queries about your data, but
generally, you create and initialize data with prewritten scripts.

5. Move to the Import Files tab.

In this tab, you can upload the file directly into the MySQL server.
Figure 2-3 shows the resulting page. Use the Browse button to locate
your file and the Go button to load it into MySQL.

If you’ve already created the contact database by following the instruc-
tions in Chapter 1 of this minibook, you may be nervous that you’ll over-
write the data. You will, but for this stage in the process, that’s exactly
what you want. The point of a script is to help you build a database and
rebuild it quickly. After you’ve got meaningful data in the table, you
won’t be rebuilding it so often, but during the test and creation stage, it’s
a critical skill.

Figure 2-3:
Importing an
externally
defined SQL
script.

Figure 2-2:
The SQL
script
window.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 663

Using AUTO_INCREMENT for Primary Keys664

6. Examine your handiwork.

Look back at the phpMyAdmin page, and you see something like Figure
2-4. It shows your script and, if you ended with a SELECT statement, an
output of your table.

Using AUTO_INCREMENT for Primary Keys
Primary keys are important because you use them as a standard index for
the table. The job of a primary key is to uniquely identify each record in the
table. Remember that primary keys have a few important characteristics:

✦ It must exist. Every record must have a primary key.

✦ It must be unique. Two records in the same table can’t have the same key.

✦ It should not be null. There must be a value in each key.

When you initially create a table, you have all the values in front of you, but
what if you want to add a field later? Somehow, you have to ensure that the
primary key in every record is unique.

Figure 2-4:
Here’s the
script and
its results,
shown in
phpMy-
Admin.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 664

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Using AUTO_INCREMENT for Primary Keys 665

Over the years, database developers have discovered that integer values are
especially handy as primary keys. The great thing about integers is that you
can always find a unique one. Just look for the largest index in your table
and add one.

Fortunately, MySQL (like most database packages) has a wonderful feature
for automatically generating unique integer indices.

Take a look at this variation of the buildContact.sql script:

-- buildContactAutoIncrement.sql

DROP TABLE IF EXISTS contact;

CREATE TABLE contact (
contactID int PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(50),
company VARCHAR(30),
email VARCHAR(50)

);

INSERT INTO contact VALUES
(null, ‘Bill Gates’, ‘Microsoft’, ‘bill@msBob.com’);

INSERT INTO contact VALUES
(null, ‘Steve Jobs’, ‘Apple’, ‘steve@rememberNewton.com’);

INSERT INTO contact VALUES
(null, ‘Linus Torvalds’, ‘Linux Foundation’, ‘linus@gnuWho.org’);

INSERT INTO contact VALUES
(null, ‘Andy Harris’, ‘Wiley Press’, ‘andy@aharrisBooks.net’);

SELECT * FROM contact;

Here are the changes in this script:

✦ Add the AUTO_INCREMENT tag to the primary key definition. This tag
indicates that the MySQL system will automatically generate a unique
integer for this field. You can apply the AUTO_INCREMENT tag to any
field, but you most commonly apply it to primary keys.

✦ Replace index values with null. When you define a table with
AUTO_INCREMENT, you should no longer specify values in the affected
field. Instead, just place the value null. When the SQL interpreter sees
the value null on an AUTO_INCREMENT field, it automatically finds the
next largest integer.

You may wonder why I’m entering the value null when I said primary keys
should never be null. Well, I’m not really making them null. The null value is
simply a signal to the interpreter: “Hey, this field is AUTO_INCREMENT, and I
want you to find a value for it.”

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 665

Selecting Data from Your Tables666

Selecting Data from Your Tables
Creating a database is great, but the real point of a database is to extract
information from it. SQL provides an incredibly powerful command for
retrieving data from the database. The basic form looks like

SELECT * FROM contact;

The easiest way to practice SQL commands is to use phpMyAdmin. Figure 2-5
shows phpMyAdmin with the SQL tab open.

Note that you can enter SQL code in multiple places. If you’re working with
a particular table, you can invoke that table’s SQL tab (as I do in Figure 2-5).
You can also always enter SQL code into your system with the SQL button
on the main phpMyAdmin panel (on the left panel of all phpMyAdmin
screens).

If you have a particular table currently active, the SQL dialog box shows
you the fields of the current table, which can be handy when you write
SQL queries.

Try the SELECT * FROM contact; code in the SQL dialog box, and you
see the results shown in Figure 2-6.

Latin-Swedish?
phpMyAdmin is a wonderful tool, but it does have
one strange quirk. When you look over your table
design, you may find that the collation is set
to latin1_swedish_ci. This syntax refers
to the native character set used by the internal
data structure. Nothing is terribly harmful about
this set (Swedish is a wonderful language), but I
don’t want to incorrectly imply that my database
is written in Swedish.

Fortunately, it’s an easy fix. In phpMyAdmin, go
to the Operations tab and look for Table Options.

You can then set your collation to whatever you
want. I typically use latin1_general_ci
as it works fine for American English, which is
the language used in most of my data sets. (See
the MySQL documentation about international-
ization if you’re working in a language that needs
the collation feature.)

I’ve only run into this problem with phpMyAdmin.
If you create your database directly from the
MySQL interpreter or from within PHP programs,
the collation issue doesn’t seem to be a problem.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 666

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Selecting Data from Your Tables 667

Figure 2-6:
The
standard
SELECT
statement
returns the
entire table.

Figure 2-5:
You can
easily test
queries in
phpMy-
Admin.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 667

Selecting Data from Your Tables668

Selecting only a few fields
As databases get more complex, you’ll often find that you don’t want every-
thing. Sometimes, you only want to see a few fields at a time. You can replace
the * characters with field names. For example, if you want to see only the
names and e-mail addresses, use this variation of the SELECT statement:

SELECT name, email FROM contact;

Only the columns you specify appear, as you can see in Figure 2-7.

Here’s another really nice trick you can do with fields. You can give each
column a new virtual field name:

SELECT
name as ‘Person’,
email as ‘Address’

FROM contact;

This code also selects only two columns, but this time, it attaches the spe-
cial labels Person and Address to the columns. You can see this result in
Figure 2-8.

Figure 2-7:
Now, the
result is only
two col-
umns wide.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 668

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Selecting Data from Your Tables 669

The capability to add a virtual name for each column doesn’t seem like a big
deal now, but it becomes handy when your database contains multiple
tables. (For example, you may have a table named pe and another table
named owner that both have a name field. The virtual title feature helps
keep you (and your users) from being confused.

Selecting a subset of records
One of the most important jobs in data work is returning a smaller set of the
database that meets some kind of criterion. For example, what if you want to
dash off a quick e-mail to Steve Jobs? Use this query:

SELECT *
FROM contact
WHERE

name = ‘Steve Jobs’;

This query has a few key features:

✦ It selects all fields. This query selects all the fields (for now).

✦ A WHERE clause appears. The WHERE clause allows you to specify a
condition.

Figure 2-8:
You can
create
virtual titles
for your
columns.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 669

Selecting Data from Your Tables670

✦ It has a condition. SQL supports conditions, much like ordinary pro-
gramming languages. MySQL returns only the records that match this
condition.

✦ The condition begins with a field name. SQL conditions usually com-
pare a field to a value (or to another field).

✦ Conditions use single equals signs. You can easily get confused on
this detail because SQL uses the single equal sign (=) in conditions,
where most programming languages use double equals (==) for the
same purpose.

✦ All text values must be in single quotes. I’m looking for an exact match
on the text string ‘Steve Jobs’.

✦ It assumes that searches are case-sensitive. Different databases have
different behavior when it comes to case-sensitivity in SELECT state-
ments, but you’re safest assuming that case matters.

Figure 2-9 shows the result of this query.

SQL is pretty picky about the entire text string. The following query doesn’t
return any results in the contact database:

SELECT *
FROM contact
WHERE

name = ‘Steve’;

Figure 2-9:
Here’s a
query that
returns the
result of a
search.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 670

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Selecting Data from Your Tables 671

The contact table doesn’t have any records with a name field containing
Steve (unless you added some records when I wasn’t looking). Steve Jobs is
not the same as Steve, so this query returns no results.

Searching with partial information
Of course, sometimes all you have is partial information. Take a look at the
following variation to see how it works:

SELECT *
FROM contact
WHERE

company LIKE ‘L%’;

This query looks at the company field and returns any records with a com-
pany field beginning with L. Figure 2-10 shows how it works.

The LIKE clause is pretty straightforward:

✦ The keyword LIKE indicates a partial match is coming. It’s still the
SELECT statement, but now it has the LIKE keyword to indicate an
exact match isn’t necessary.

✦ The search text is still in single quotes, just like the ordinary SELECT
statement.

✦ The percent sign (%) indicates a wildcard value. A search string of
‘W%’ looks for W followed by any number of characters.

✦ Any text followed by % indicates that you’re searching the beginning
of the field. So, if you’re looking for people named Steve, you can write
SELECT * FROM contact WHERE name LIKE ‘Steve%’;.

Searching for the ending value of a field
Likewise, you can find fields that end with a particular value. Say that you
want to send an e-mail to everyone in your contact book with a .com
address. This query does the trick:

SELECT *
FROM contact
WHERE

email LIKE ‘%.com’;

Figure 2-11 shows the results of this query.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 671

Selecting Data from Your Tables672

Figure 2-11:
You can
build a
query to
check the
end of a
field.

Figure 2-10:
This query
returns
companies
that begin
with L.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 672

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Selecting Data from Your Tables 673

Searching for any text in a field
One more variant of the LIKE clause allows you to find a phrase anywhere
in the field. Say that you remember somebody in your database writes
books, and you decide to search for e-mail addresses containing the phrase
book:

SELECT *
FROM contact
WHERE

email LIKE ‘%book%’;

The search phrase has percent signs at the beginning and the end, so if the
phrase book occurs anywhere in the specified field, you get a match. And
what do you know? Figure 2-12 shows this query matches on the record of a
humble yet lovable author!

Figure 2-12:
This query
searched
for the
phrase
‘book’
anywhere in
the e-mail
string.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 673

Selecting Data from Your Tables674

Searching with regular expressions
If you know how to use regular expressions, you know how great they can be
when you need a more involved search. MySQL has a special form of the
SELECT keyword that supports regular expressions:

SELECT *
FROM contact
WHERE

company REGEXP ‘^.{5}$’;

The REGEXP keyword lets you search using powerful regular expressions.
(Refer to Book IV, Chapter 6 for more information on regular expressions.)
This particular expression checks for a company field with exactly five let-
ters. In this table, it returns only one value, shown in Figure 2-13.

Unfortunately, not all database programs support the REGEXP feature, but
MySQL does, and it’s really powerful if you understand the (admittedly
arcane) syntax of regular expressions.

Figure 2-13:
Regular
expressions
are even
more
powerful
than the
standard
LIKE clause.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 674

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Selecting Data from Your Tables 675

Sorting your responses
You can specify the order of your query results with the ORDER BY clause. It
works like

SELECT *
FROM contact
ORDER BY email;

The ORDER BY directive allows you to specify a field to sort by. In this case, I
want the records displayed in alphabetical order by e-mail address. Figure
2-14 shows how it looks.

By default, records are sorted in ascending order. Numeric fields are sorted
from smallest to largest, and text fields are sorted in standard alphabetic
order.

Well, not quite standard alphabetic order . . . SQL isn’t as smart as a librar-
ian, who has special rules about skipping “the” and so on. SQL simply looks
at the ASCII values of the characters for sorting purposes.

You can also invert the order:

SELECT *
FROM contact
ORDER BY email DESC;

Figure 2-14:
Now, the
result is
sorted by
e-mail
address.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 675

Editing Records676

Inverting the order causes the records to be produced in reverse alphabetic
order by e-mail address. DESC stands for descending order. ASC stands for
ascending order, but because it’s the default, it isn’t usually specified.

Editing Records
Of course, the purpose of a database is to manage data. Sometimes, you
want to edit data after it’s already in the table. SQL includes handy com-
mands for this task: UPDATE and DELETE. The UPDATE command modifies
the value of an existing record, and the DELETE command removes a record
altogether.

Updating a record
Say that you decide to modify Bill Gates’ address to reinforce his latest mar-
keting triumph. The following SQL code does the trick:

UPDATE contact
SET email = ‘bill@vistaRocks.com’
WHERE name = ‘Bill Gates’;

The UPDATE command has a few parts:

✦ The UPDATE command. This indicates which table you will modify.

✦ The SET command. This indicates a new assignment.

✦ Assign a new value to a field. This uses a standard programming-style
assignment statement to attach a new value to the indicated field. You
can modify more than one field at a time. Just separate the field =
value pairs with commas.

✦ Specify a WHERE clause. You don’t want this change to happen to all the
records in your database. You want to change only the e-mail address in
records where the name is Bill Gates. Use the WHERE clause to specify
which records you intend to update.

More than one person in your database may be named Bill Gates. Names
aren’t guaranteed to be unique, so they aren’t really the best search criteria.
This situation is actually a very good reason to use primary keys. A better
version of this update looks like

UPDATE contact
SET email = ‘bill@vistaRocks.com’
WHERE contactID = 1;

The contactID is guaranteed to be unique and present, so it makes an ideal
search criterion. Whenever possible, UPDATE (and DROP) commands should
use primary key searches so that you don’t accidentally change or delete the
wrong record.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 676

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Exporting Your Data and Structure 677

Deleting a record
Sometimes, you need to delete records. SQL has a command for this eventu-
ality, and it’s pretty easy to use:

DELETE FROM contact
WHERE contactID = 1;

This command deletes the entire record with a contactID of 1.

Be very careful with this command, as it is destructive. Be absolutely sure that
you have a WHERE clause, or you may delete all the records in your table with
one quick command! Likewise, be sure that you understand the WHERE clause
so that you aren’t surprised by what gets deleted. You’re better off running an
ordinary SELECT using the WHERE clause before you DELETE, just to be sure
that you know exactly what you’re deleting. Generally, you should DELETE
based on only a primary key so that you don’t produce any collateral damage.

Exporting Your Data and Structure
After you’ve built a wonderful data structure, you probably will want to
export it for a number of reasons:

✦ You want a backup. Just in case something goes wrong!

✦ You want to move to a production server. It’s smart to work on a local
(offline) server while you figure things out, but eventually, you’ll need to
move to a live server. Moving the actual database files is tricky, but you
can easily move a script.

✦ You want to perform data analysis. You may want to put your data in a
spreadsheet for further analysis or in a comma-separated text file to be
read by programs without SQL access.

✦ You want to document the table structure. The structure of a data set is
extremely important when you start writing programs using that struc-
ture. Having the table structure available in a word-processing or PDF
format can be extremely useful.

MySQL (and thus phpMyAdmin) have some really nice tools for exporting
your data in a number of formats.

Figure 2-15 shows an overview of the Export tab, showing some of the features.

The different styles of output are used for different purposes:

✦ CSV (comma-separated value) format: A plain ASCII comma-separated
format. Each record is stored on its own line, and each field is separated
by a comma. CSV is nice because it’s universal. Most spreadsheet

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 677

Exporting Your Data and Structure678

programs can read CSV data natively, and it’s very easy to write a pro-
gram to read CSV data, even if your server doesn’t support MySQL. If
you want to back up your data to move to another server, CSV is a good
choice. Figure 2-16 shows some of the options for creating a CSV file.

The data file created using the specified options looks like
‘contactID’,’name’,’company’,’email’
‘1’,’Bill Gates’,’Microsoft’,’bill@msBob.com’
‘2’,’Steve Jobs’,’Apple’,’steve@rememberNewton.com’
‘3’,’Linus Torvalds’,’Linux Foundation’,’linus@gnuWho.org’
‘4’,’Andy Harris’,’Wiley Press’,’andy@aharrisBooks.net’

The CSV format often uses commas and single quotes, so if these char-
acters appear in your data, you may encounter problems. Be sure to test
your data and use some of the other delimiters if you have problems.

✦ MS Excel and Open Document Spreadsheet: These are the two currently
supported spreadsheet formats. Exporting your data using one of these
formats gives you a spreadsheet file that you can easily manipulate, which
is handy when you want to do charts or data analysis based on your data.
Figure 2-17 shows an Excel document featuring the contact table.

✦ Word-processing formats: Several are available to create documentation
for your project. Figure 2-18 shows a document created with this feature.
Typically, you use these formats to describe your format of the data and
the current contents. LaTeX and PDF are special formats used for printing.

Figure 2-15:
These are
some of the
various out-
put tech-
niques.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 678

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Exporting Your Data and Structure 679

Figure 2-17:
This Excel
spreadsheet
was auto-
matically
created.

Figure 2-16:
You have
several
options for
creating
CSV files.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 679

Exporting Your Data and Structure680

Exporting SQL code
One of the neatest tricks is to have phpMyAdmin build an entire SQL script
for re-creating your database. Figure 2-19 shows the available options.

The resulting code looks like

-- phpMyAdmin SQL Dump
-- version 2.9.2
-- http://www.phpmyadmin.net
--
-- Host: localhost
-- Generation Time: Dec 08, 2007 at 12:15 PM
-- Server version: 5.0.33
-- PHP Version: 5.2.1
--
-- Database: `xfd`
--

-- --

--
-- Table structure for table `contact`
--

CREATE TABLE `contact` (
`contactID` int(11) NOT NULL auto_increment,
`name` varchar(50) collate latin1_general_ci default NULL,
`company` varchar(30) collate latin1_general_ci default NULL,
`email` varchar(50) collate latin1_general_ci default NULL,
PRIMARY KEY (`contactID`)

Figure 2-18:
Word-
processing,
PDF, and
LaTeX for-
mats are
great for
documen-
tation.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 680

Book VI
Chapter 2

M
anaging Data
w

ith SQL
Exporting Your Data and Structure 681

) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci
AUTO_INCREMENT=5 ;

--
-- Dumping data for table `contact`
--

INSERT INTO `contact` VALUES (1, ‘Bill Gates’, ‘Microsoft’, ‘bill@msBob.com’);
INSERT INTO `contact` VALUES (2, ‘Steve Jobs’, ‘Apple’,

‘steve@rememberNewton.com’);
INSERT INTO `contact` VALUES (3, ‘Linus Torvalds’, ‘W3C’, ‘linus@gnuWho.org’);
INSERT INTO `contact` VALUES (4, ‘Andy Harris’, ‘Wiley Press’,

‘andy@aharrisBooks.net’);

You can see that phpMyAdmin made a pretty decent script that you can use
to re-create this database. You can easily use this script to rebuild the data-
base if it gets corrupted or to copy the data structure to a different imple-
mentation of MySQL.

Generally, you use this feature for both purposes. Copy your data structure
and data every once in a while (just in case Godzilla attacks your server or
something).

Typically, you build your data on one server and want to migrate it to
another server. The easiest way to do it is by building the database on one
server. You can then export the script for building the SQL file and load it
into the second server.

Figure 2-19:
You can
specify
several
options for
outputting
your SQL
code.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 681

Exporting Your Data and Structure682

Creating XML data
One more approach to saving data is through XML. phpMyAdmin creates a
standard form of XML encapsulating the data. The XML output looks like

<?xml version=”1.0” encoding=”utf-8” ?>
<!--
-
- phpMyAdmin XML Dump
- version 2.9.2
- http://www.phpmyadmin.net
-
- Host: localhost
- Generation Time: Dec 08, 2007 at 08:16 PM
- Server version: 5.0.33
- PHP Version: 5.2.1
-->

<!--
- Database: ‘xfd’
-->
<xfd>

<!-- Table contact -->
<contact>

<contactID>1</contactID>
<name>Bill Gates</name>
<company>Microsoft</company>
<email>bill@msBob.com</email>

</contact>
<contact>

<contactID>2</contactID>
<name>Steve Jobs</name>
<company>Apple</company>
<email>steve@rememberNewton.com</email>

</contact>
<contact>

<contactID>3</contactID>
<name>Linus Torvalds</name>
<company>W3C</company>
<email>linus@gnuWho.org</email>

</contact>
<contact>

<contactID>4</contactID>
<name>Andy Harris</name>
<company>Wiley Press</company>
<email>andy@aharrisBooks.net</email>

</contact>
</xfd>

XML is commonly used as a common data language, especially in AJAX
applications.

42_186275 bk06ch02.qxp 3/28/08 10:57 PM Page 682

Chapter 3: Normalizing Your Data

In This Chapter
� Understanding why single-table databases are inadequate

� Recognizing common data anomalies

� Creating entity-relationship diagrams

� Using DBDesigner to create data diagrams

� Understanding the first three normal forms

� Defining data relationships

Databases can be deceptive. Even though databases are pretty easy to
create, beginners usually run into problems as soon as they start

working with actual data.

Computer scientists (particularly a gentleman named E.F. Codd in the 1970s)
have studied potential data problems and defined techniques for organizing
data. This scheme is called data normalization. In this chapter, you discover
why single-table databases rarely work for real-world data and how to create
a well-defined data structure according to basic normalization rules.

On the CD-ROM, I include a script called buildHero.sql that builds all the
tables in this chapter. Feel free to load that script into your MySQL environ-
ment to see all these tables for yourself.

Recognizing Problems with Single-Table Data
Packing everything you’ve got into a single table is tempting. Although you
can do it pretty easily (especially with SQL) and it seems like a good solu-
tion, things can go wrong pretty quickly.

Table 3-1 shows a seemingly simple database describing some superheroes.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 683

Recognizing Problems with Single-Table Data684

Table 3-1 A Sample Database
Name Powers Villain Plot Mission Age

The Plumber Sewer snake Septic Overcome Stop the 37
of doom, Slime Chicago Septic Slime
unclogging, Master with slime
ability to
withstand
smells

Binary Boy Hexidecimation Octal Eliminate Make the world 19
beam, the numerals safe for binary
obfuscation 8 and 9 representation

The Janitor Mighty Mop Septic Slime Overcome Stop the Septic 41
Master New York Slime

with slime

It seems that not much can go wrong here because the database is only
three records and six fields. The data is simple, and there isn’t that much of
it. Still, a lot of trouble is lurking just under the surface. The following sec-
tions outline potential problems.

The identity crisis
What’s Table 3-1 about? At first, it seems to be about superheroes, but some
of the information isn’t about the superhero as much as things related to the
superhero, such as villains and missions. This issue may not seem like a big
deal, but it causes all kinds of practical problems later on. A table should be
about only one thing. When it tries to be about more than that, it can’t do its
job as well.

Every time a beginner (and, often, an advanced data developer) creates a
table, the table usually contains fields that don’t belong there. You have to
break things up into multiple tables so that each table is really about only one
thing. The process for doing so solves a bunch of other problems, as well.

The listed powers
Take a look at the powers field. Each superhero can have more than one
power. Some heroes have tons of powers. The problem is, how do you
handle a situation where one field can have a lot of values? You frequently
see the following solutions:

✦ One large text field: That’s what I did in this case. I built a massive (255
character) VARCHAR field and hoped it would be enough. The user just
has to type all the possible skills.

✦ Multiple fields: Sometimes, a data designer just makes a bunch of fields,
such as power1, power2, and so on.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 684

Book VI
Chapter 3

N
orm

alizing
Your Data

Recognizing Problems with Single-Table Data 685

Both these solutions have the same general flaw. You never know how much
room to designate because you never know exactly how many items will be
in the list. Say that you choose the large text field approach. You may have a
really clever hero with a lot of powers, so you fill up the entire field with a
list of powers. What happens if your hero learns one more power? Should
you delete something just to make things fit? Should you abbreviate?

If you choose to have multiple power fields, the problem doesn’t go away. You
still have to determine how many skills the hero can have. If you designate
ten skill fields and one of your heroes learns an eleventh power, you’ve got a
problem.

The obvious solution is to provide far more room than anybody needs. If it’s
a text field, make it huge, and if it’s multiple fields, make hundreds of them.
Both solutions are wasteful. Remember, a database can often have hundreds
or thousands of records, and each one has to be the same size. If you make
your record definition bigger than it needs to be, this waste is multiplied
hundreds or thousands of times.

You may argue that this is not the 1970s. Processor power and storage space
are really cheap today, so why am I worrying about saving a few bytes here
and there? Well, cheap is still not free. Programmers tend to be working with
much larger data sets than they did in the early days, so efficiency still mat-
ters. And here’s another important change. Today, data is much more likely
to be transmitted over the Internet. The big deal today isn’t really processor
or storage efficiency. Today’s problem is transmission efficiency, which
comes down to the same principle: Don’t store unnecessary data.

When databases have listed fields, you tend to see other problems. If the
field doesn’t have enough room for all the data, people will start abbreviat-
ing. If you’re looking for a hero with invisibility, you can’t simply search for
“invisibility” in the powers field because it may be “inv,” “in,” or “invis” (or
even “can’t see”). If you desperately need an invisible hero, the search can
be frustrating, and you may miss a result because you didn’t guess all the
possible abbreviations.

If the database uses the listed fields model, you have another problem. Now,
your search has to look through all ten (or hundred) power fields because you
don’t know which one holds the “invisible” power. This problem makes your
search queries far more complicated than they would have been otherwise.

Another so-called solution you sometimes see is to have a whole bunch of
Boolean fields: Invisibility, Super-speed, X-ray vision, and so on. This fix solves
part of the problem because Boolean data is small. It’s still troublesome,
though, because now the data developer has to anticipate every possible
power. You may have an other field, but it then re-introduces the problem of
listed fields.

Listed fields are a nightmare.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 685

Recognizing Problems with Single-Table Data686

Repetition and reliability
Another common problem with data comes with repetition. If you allow data
to be repeated in your database, you can have some really challenging side
effects. Refer to Table 3-1, earlier in this chapter, and get ready to answer
some questions about it. . . .

What is the Slime Master’s evil plot?

This question seems simple enough, but Table 3-1 provides an ambiguous
response. If you look at the first row (The Plumber), the plot is Overcome
Chicago with slime. If you look at The Janitor, you see that the plot is to
Overcome New York with slime. Which is it? Presumably, it’s the same plot,
but in one part of the database, New York is the target, and elsewhere, it’s
Chicago. From the database, you can’t really tell which is correct or if it
could be both. I was required to type in the plot in two different records. It’s
supposed to be the same plot, but I typed it differently. Now, the data has a
conflict, and you don’t know which record to trust.

Is it possible the plots were supposed to be different? Sure, but you don’t
want to leave that assumption to chance. The point of data design is to ask
exactly these questions and to design your data scheme to reinforce the
rules of your organization.

Here’s a related question. What if you needed to get urgent information to
any hero fighting the Septic Slime Master? You’d probably write a query like

SELECT * FROM hero WHERE villain = ‘Septic Slime Master’

That query is a pretty reasonable request, but it wouldn’t work. The villain in
The Janitor record is the Septic Slim Master. Somebody mistyped something
in the database, and now The Janitor doesn’t know how to defeat the Slime
Master.

If your database allows duplication, this type of mistake will happen all
the time.

In general, you don’t want to enter anything into a database more than once.
If you had a way to enter in the Septic Slime Master one time, that should
eliminate this type of problem.

Fields that change
Another kind of problem is evident in the Age field. (See, even superheroes
have a mandatory retirement age.) Age is a good example of a field that
shouldn’t really be in a database because it changes all the time. If you have
age in your database, how are you going to account for people getting older?
Do you update the age on each hero’s birthday? (If so, you need to store that

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 686

Book VI
Chapter 3

N
orm

alizing
Your Data

Introducing Entity-Relationship Diagrams 687

birthday, and you need to run a script every day to see whether it’s any-
body’s birthday.) You could just age everybody once a year, but this solution
doesn’t seem like a good option, either.

Whenever possible, you want to avoid fields that change regularly and instead
use a formula to generate the appropriate results when you need them.

Deletion problems
Another kind of problem is lurking right under the surface. Say that you had
to fire the Binary Boy. (With him, everything is black and white. You just
can’t compromise with him.) You delete his record, and then you want to
assign another hero to fight Octal. When you delete Binary Boy, you also
delete all the information about Octal and his nefarious scheme.

In a related problem, what if you encounter a new villain, and you haven’t
yet assigned a hero to this villain? The current data design doesn’t allow you
to add villains without heroes. You have to make up a fake hero, and that
just doesn’t seem right.

Introducing Entity-Relationship Diagrams
You can solve all the problems with the database shown in Table 3-1 by
breaking the single table into a series of smaller, more specialized tables.

The typical way of working with data design is to use a concept called an
Entity-Relationship (ER) diagram. This form of diagram usually includes

✦ Entities: Typically, a table is an entity, but you see other kinds of entities,
too. An entity is usually drawn as a box with each field listed inside.

✦ Relationships: Relationships are drawn as lines between the boxes. As
you find out about various forms of relationships, I show you the partic-
ular symbols used to describe these relationship types.

Using DBDesigner 4 to draw ER diagrams
You can create ER diagrams with anything (I typically use a whiteboard), but
some very nice free software can help. One particularly nice program is
called DBDesigner 4. This software has a number of really handy features:

✦ Visual representation of database design: DBDesigner allows you to
define a table easily and then see how it looks in ER form. You can create
several tables and manipulate them visually to see how they relate.

✦ An understanding of ER rules: DBDesigner is not simply a drawing pro-
gram. It’s specialized for drawing ER diagrams, so it creates a standard

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 687

Introducing Entity-Relationship Diagrams688

design for each table and relationship. Other data administrators can
understand the ER diagrams you create with this tool.

✦ Integration with MySQL: Once you’ve created a data design you like,
you can have DBDesigner create a MySQL script to create the databases
you’ve defined. In fact, you can even have DBDesigner look at an existing
MySQL database and create an ER diagram from it.

✦ Ability to manipulate data: You can connect to an actual MySQL data-
base and use DBDesigner as a front end. You can view queries, and add
and edit data, all through the tool.

Creating a table definition in DBDesigner
Creating your tables in DBDesigner is a fairly easy task:

1. Create a new model.

Choose File➪New to create a new model. Figure 3-1 shows DBDesigner in
action.

2. Create a new table.

You can use the icons along the left border to control the diagram. The
New Table icon looks like two grids. It’s near the center of the icon strip.
You see a blank table like Figure 3-2.

Figure 3-1:
The DB-
Designer
main screen.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 688

Book VI
Chapter 3

N
orm

alizing
Your Data

Introducing Entity-Relationship Diagrams 689

3. Edit the table.

Right-click the table and choose Edit Object to define the table’s charac-
teristics. You get a screen that looks something like Figure 3-3. Add the
fields as I’ve done in the example. Note that the first field is automatically
the primary key.

Figure 3-3:
Editing the
table
definition.

Figure 3-2:
Now, your
model has a
table in it.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 689

Introducing Entity-Relationship Diagrams690

4. Extract the code.

If you want, you can see the SQL code used to create the table you just
designed. Simply right-click the table and choose Copy SQL Table
Create. The CREATE statement for this table is copied to the Clipboard,
and you can paste it to your script. Figure 3-4 shows the hero table in
ER form.

Connecting to a database with DBDesigner
You don’t ever have to connect to a database using DBDesigner, but it can be
useful. If you’ve already got MySQL running on your local machine, here’s
how you connect DBDesigner to your database:

1. Make sure that MySQL is running.

DBDesigner is looking for a running version of MySQL.

2. Connect to the database.

Choose Data➪Connect to Database. Selecting this tool creates a dialog
box like Figure 3-5.

Figure 3-4:
Now, the
diagram of
the hero
table is
visible.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 690

Book VI
Chapter 3

N
orm

alizing
Your Data

Introducing Entity-Relationship Diagrams 691

3. Navigate to MySQL Localhost.

You’ll be connecting to a MySQL database on the local server (most
likely), so highlight Localhost under MySQL. Click the plus sign to see
the list of databases under Localhost. You’ll probably be prompted for a
username and password.

4. Select the database you want to work with.

Each diagram should be about only one database (at least, in this stage
of your career.) Find the database you want to use and select it, as
shown in Figure 3-6.

5. Create a new database connection.

The New Database Connection button appears on the bottom of the
screen. You see the Database Connection Editor dialog box, shown in
Figure 3-7.

6. Enter connection details.

Give the connection a name and specify the username and password
used to access that database. (Check Chapter 2 of this minibook for
more details on assigning users and passwords to databases.)

Figure 3-6:
I’m selecting
the xfd
database.

Figure 3-5:
This is the
database
connection
dialog box.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 691

Introducing Entity-Relationship Diagrams692

7. Test your connection.

Go back to the Localhost entry in the Select Database Connection
window, and you should now see your new connection, as shown in
Figure 3-8. Select the connection, check the username and password,
and click Connect.

8. Verify your connection.

If nothing went wrong, it probably worked. When you get back to the
DBDesigner screen, you see text in the lower-right corner saying
Connected to Database. Now, your changes in the diagram can be
reflected in the actual database.

Figure 3-8:
Now, the xfd
connection
is available.

Figure 3-7:
Enter the
name of
your data-
base, the
username,
and pass-
word.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 692

Book VI
Chapter 3

N
orm

alizing
Your Data

Introducing Entity-Relationship Diagrams 693

Manipulating your data from DBDesigner
You can use DBDesigner to view and manipulate your database, as well. You
can copy data from your modeling software to the database with the
Synchronization command, or extract data from the database and bring it
into the model with the Reverse Engineer command. Both are found on the
Database menu.

I’ve found the Reverse Engineer command to be more reliable. I still like to
build scripts in a text editor and then have the DBDesigner show me what it
sees, but DBDesigner doesn’t always write code as well as I can.

The easiest way to work with your data is to type commands in Query mode:

1. Be sure you’re connected to your database.

Queries are pretty silly without a database.

2. Get DBDesigner into Query mode.

The top button toggles between Design and Query mode. Query mode
looks like Figure 3-9.

Figure 3-9:
DBDesigner
in query
mode. Note
that I’m
connected
to xfd.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 693

Introducing Entity-Relationship Diagrams694

3. Type a query into the query box.

The bottom-center panel allows you to enter queries.

4. Execute the query.

An icon next to the query window looks like a barrel with lightning. This
icon executes whatever query you’ve just entered. The query results
appear in the bottom-right panel.

5. Use Query mode shortcuts.

If you click the mouse over a table and drag, you see a little context
menu of SQL commands, similar to Figure 3-10. Use this menu to get a
quick SQL query started in the query window. You still need to edit the
query, but this shortcut is a really handy timesaver.

6. Edit data.

If you have a table query available, you can add and modify records in
the database. Experiment with the buttons on the right-hand panel to
see how this function works.

Figure 3-10:
DBDesigner
can help
you build
queries.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 694

Book VI
Chapter 3

N
orm

alizing
Your Data

Introducing Normalization 695

Introducing Normalization
Trying to cram all your data into a single table usually causes problems. The
process for solving these problems is called data normalization. Normalization
is really a set of rules. When your database follows the first rule, it’s said to be
in first normal form. For this introductory book, you get to the third normal
form, which is suitable for most applications.

First normal form
The official definitions of the normal forms sound like the offspring of a lawyer
and a mathematician. Here’s an official definition of the first normal form:

A table is in first normal form if and only if it represents a relation. It does
not allow nulls or duplicate rows.

Yeah, whatever.

Here’s what it means in practical terms:

Eliminate listed fields.

A database is in first normal form if

✦ It has no repeating fields. Take any data that would be in a repeating
field and make it into a new table.

✦ It has a primary key. Add a primary key to each table. (Some would
argue that this requirement isn’t necessarily part of first normal form,
but it’ll be necessary in the next step, anyway.)

In a practical sense, the first normal form means getting rid of listed fields
and making a new table to contain powers. Figure 3-11 shows an ER diagram
of the data in first normal form.

A couple of things happen here:

1. Make a new table called power.

This table contains nothing but a key and the power name.

2. Take the power field away from the hero table.

The hero table no longer has a power field.

3. Add a primary key to both tables.

Both tables now have an integer primary key. Looking over my tables,
there are no longer any listed fields, so I’m in first normal form.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 695

Introducing Normalization696

All this is well and good, but the user really wants this data connected, so
how do you join it back together? For that answer, see Chapter 4 of this
minibook.

Second normal form
The official terminology for the second normal form is just as baffling as the
first normal form:

A table is in second normal form (2NF) only if it is in 1NF and all nonkey fields
are dependant entirely on the entire candidate key, not just part of it.

Huh? You’ve gotta love these computer scientists.

In practical terms, second normal form is pretty easy, too. It really means

Eliminate repetition.

Look at all those places where you’ve got duplicated data and create new
tables to take care of them.

In the heroes data (shown in Table 3-1, earlier in this chapter), you can elimi-
nate a lot of problems by breaking the hero data into three tables. Figure 3-12
illustrates one way to break up the data.

Figure 3-11:
Now, I have
two tables.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 696

Book VI
Chapter 3

N
orm

alizing
Your Data

Introducing Normalization 697

Many of the problems in the badHero design happen because apparently
more than one hero can be on a particular mission, and thus the mission
data gets repeated. By separating mission data into another table, I’ve guar-
anteed that the data for a mission is entered only once.

Note that each table has a primary key, and none of them has listed fields. The
same data won’t ever be entered twice. The solution is looking pretty good!

Notice that everything related to the mission has been moved to the mission
table. I added one field to the hero table, which contains an integer. This
field is called a foreign key reference. You can find out much more about how
foreign key references work in Chapter 4 of this minibook.

Third normal form
The third normal form adds one more requirement. Here is the official
definition:

A table is in 3NF it is in 2NF and has no transitive dependencies on the candi-
date key.

Wow. These definitions get better and better. Once again, it’s really a lot
easier than it sounds:

Ensure functional dependency.

Figure 3-12:
Now, I have
three tables:
hero, power,
and mission.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 697

Identifying Relationships in Your Data698

In other words, check each field of each table and ensure that it really
describes what the table is about. For example, is the plot related to the
mission or the hero? What about the villain?

The tricky thing about functional dependency is that you often don’t really
know how the data is supposed to be connected. Only the person who uses
the data really knows how it’s supposed to work. (Often, they don’t know,
either, when you ask them.) You have to work with the client to figure out
exactly what the business rules (the rules that describe how the data really
works) are. You can’t really tell from the data itself.

The good news is that, for simple structures like the hero data, you’re often
already in third normal form by the time you get to second normal form.
Still, you should check.

Once a database is in third normal form, you’ve reduced the possibility of
several kinds of anomalies, so your data is far more reliable than it was in
the past. Several other forms of normalization exist, but third normal form is
enough for most applications.

Identifying Relationships in Your Data
After you normalize the data (see the preceding section), you’ve created the
entities (tables). Now, you need to investigate the relationships between
these entities.

Three main types of data relationships exist (and of these, only two are
common):

✦ One-to-one relationships: Each element of table A is related to exactly
one element of table B. This type of relationship isn’t common because if
a one-to-one relationship exists between two tables, the information can
be combined safely into one table.

✦ One-to-many relationship: For each element of table A, there could be
many possible elements in table B. The relationship between mission
and hero is a one-to-many relationship, as each mission can have many
heroes, but each hero has only one mission. (My heroes have attention
issues and can’t multitask very well.) Note that hero and mission are not
a one-to-many relationship, but a many-to-one. The order matters.

✦ Many-to-many relationship: This type of relationship happens when an
element of A may have many values from B, and B may also have many
values of A. Usually, listed fields turn out to be many-to-many relation-
ships. In the hero data, the relationship between hero and power is a
many-to-many relationship because each hero can have many powers,
and each power can belong to multiple heroes.

You can use an ER tool to diagram the various relationship types. Figure 3-13
shows this addition to the hero design.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 698

Book VI
Chapter 3

N
orm

alizing
Your Data

Identifying Relationships in Your Data 699

Note that DBDesigner doesn’t actually allow you to draw many-to-many
joins. I drew that into Figure 3-13 to illustrate the point. In the next chapter, I
show how to emulate many-to-many relationships with a special trick called
a link table.

ER diagrams use special symbols to represent different kinds of relation-
ships. The line between tables indicates a join, or relationship, but the type
of join is indicated by the markings on the ends of the lines. In general, the
crow’s feet or filled-in circle indicate many, and the double lines indicate 1.

ER diagrams get much more complex than the simple ones I show here, but for
this introduction, the one and many symbols are enough to get you started.

Figure 3-13:
Now, I’ve
added
relation-
ships.

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 699

Book VI: Databases with MySQL700

43_186275 bk06ch03.qxp 3/28/08 10:57 PM Page 700

Chapter 4: Putting Data
Together with Joins

In This Chapter
� Using SQL functions

� Creating calculated fields

� Working with date values

� Building views

� Creating inner joins and link tables

Single tables aren’t sufficient for most data. If you understand the rules
of data normalization (see Chapter 3 of this minibook), you know how

to break your data into a series of smaller tables. The question remains,
though: How do you recombine all these broken-up tables to make some-
thing the user can actually use?

In this chapter, you discover several techniques for combining the data in
your tables to create useful results.

I wrote a quick PHP script to help me with most of the figures in this chap-
ter. Each SQL query I intend to look at is stored in a separate SQL file, and I
can load up the file and look at it with the PHP code. Feel free to look over
the code for showQuery on the CD-ROM. If you want to run this code your-
self, be sure to change the username and password to reflect your data set-
tings. I also include a script called buildHero.sql that creates a database
with all the tables and views I mention in this chapter. Feel free to load that
script into your database so that you can play along at home.

Calculating Virtual Fields
Part of data normalization means that you eliminate fields that can be calcu-
lated. In the hero database described in Chapter 3 of this minibook, data
normalization meant that you don’t store the hero’s age, but his or her
birthday instead (see Chapter 3 of this minibook). Of course, if you really
want the age, you should be able to find some way to calculate it. SQL
includes support for calculating results right in the query.

Begin by looking over the improved hero table in Figure 4-1.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 701

Calculating Virtual Fields702

The original idea for the database, introduced in Table 3-1 in Chapter 3 of
this minibook, was to keep track of each hero’s age. This idea was bad
because the age changes every year. Instead, I stored the hero’s birthday.
But what if you really do want the age?

Introducing SQL Functions
It turns out SQL supports a number of useful functions that you can use to
manipulate data. Table 4-1 shows especially useful MySQL functions. Many
more functions are available, but these functions are the most frequently used.

Table 4-1 Useful MySQL Functions
Function Description

CONCAT(A, B) Concatenates two string results. Can be used to create a single
entry from two or more fields. For example, combine
firstName and lastName fields.

FORMAT(X, D) Format the number X to the number of digits D.

CURRDATE(), Return the current date or time.
CURRTIME()

NOW() Return the current date and time.

Figure 4-1:
The hero
table after
normaliza-
tion.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 702

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Calculating Date Values 703

Function Description

MONTH(), DAY(), Extract the particular value from a date value.
YEAR(), WEEK(),
WEEKDAY()

HOUR(), MINUTE(), Extract the particular value from a time value.
SECOND()

DATEDIFF(A, B) Frequently used to find the time difference between two events
(age).

SUBTIMES(A, B) Determine the difference between two times.

FROMDAYS(INT) Converts an integer number of days into a date value.

Typically, you use a programming language, such as PHP, to manage what
the user sees, and programming languages tend to have a much richer set of
functions than the database. Still, it’s often useful to do certain kinds of func-
tionality at the database level.

Knowing when to calculate virtual fields
You calculate data in these situations:

✦ You need to create a single field from multiple text fields. You might
need to combine first, middle, and last name fields to create a single
name value. You can also combine all the elements of an address to
create a single output.

✦ You want to do a mathematical operation on your data. Imagine that
you’re writing a database for a vegetable market, and you want to calcu-
late the value from the costPerPound field plus the poundsPurchased
field. You can add the mathematical operation in your query.

✦ You need to convert data. Perhaps you stored weight information in
pounds, and you want a query to return data in kilograms.

✦ You want to do date calculations. Often, you need to calculate ages from
specific days. Date calculations are especially useful on the data side
because databases and other languages often have different date formats.

Calculating Date Values
The birthday value is stored in the hero table, but what you really want to
know is the hero’s age. It’s very common to have an age stored in a database.
You often need to output this age in years, or perhaps in years and months.
Functions can help you do this calculation.

Begin by looking at a simple function that tells you the current date and
time, as I do in Figure 4-2.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 703

Calculating Date Values704

The current date and time by themselves aren’t that important, but you can
combine this information with other functions, described in the following
sections, to do some very interesting things.

Using DATEDIFF to determine age
The NOW() function is very handy when you combine it with the DATEDIFF()
function, as shown in Figure 4-3.

This query calculates the difference between the current date, NOW(), and
each hero’s birthday. The DATEDIFF function works by converting both
dates into integers. It can then subtract the two integers, giving you the
result in number of days.

You normally name the fields you calculate because, otherwise, the formula
used to calculate the results becomes the virtual field’s name. The user
doesn’t care about the formula, so use the AS feature to give the virtual field
a more useful name.

Adding a calculation to get years
Of course, most people don’t think about age in terms of days. Age (at least,
of people) is typically measured in years. One simple solution is to divide
the age in days by 365 (the number of days in a year). Figure 4-4 shows this
type of query.

Figure 4-2:
The NOW()
function
returns the
current date
and time.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 704

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Calculating Date Values 705

Figure 4-4:
You can
divide by
365 to
determine
the number
of years.

Figure 4-3:
The
DATEDIFF
function
determines
the differ-
ence
between
dates.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 705

Calculating Date Values706

This code is almost like the query shown in Figure 4-3, except it uses a math-
ematical operator. You can use most of the math operators in queries to do
quick conversions. Now, the age is specified in years, but the decimal part is
a bit odd. Normally, you either go with entire year measurements or work
with months, weeks, and days.

Converting the days integer into a date
The YEAR() function extracts only the years from a date, and the MONTH()
function pulls out the months, but both these functions require a date
value. The DATEDIFF() function creates an integer. Somehow, you need to
convert the integer value produced by DATEDIFF() back into a date value.
(For more on this function, see the section “Using DATEDIFF to determine
age,” earlier in this chapter.)

Figure 4-5 is another version of a query that expresses age in terms of years
and months.

This query takes the DATEDIFF() value and converts it back to a date. The
actual date is useful, but it has some strange formatting. If you look carefully
at the dates, you’ll see that they have the age of each hero, but it’s coded as
if it was a particular date in the ancient world.

Figure 4-5:
The age is
now con-
verted back
to a date.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 706

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Calculating Date Values 707

Using YEAR() and MONTH() to get
readable values
After you’ve determined the age in days, you can use the YEAR() and
MONTH() functions to pull out the hero’s age in a more readable way, as
illustrated by Figure 4-6.

The query is beginning to look complex, but it’s producing some really nice
output. Still, it’s kind of awkward to have separate fields for year, month,
and day.

Concatenating to make one field
If you have year, month, and day values, it would be nice to combine some of
this information to get a custom field, as you can see in Figure 4-7.

This query uses the CONCAT() function to combine calculations and literal
values to make exactly the output the user is expecting. Even though the
birthday is the stored value, the output can be the age.

Figure 4-6:
The YEAR(),
MONTH(),
and DAY()
functions
return parts
of a date.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 707

Creating a View708

Creating a View
The query that converts a birthday into a formatted age is admittedly com-
plex. Normally, you’ll have this query predefined in your PHP code so that
you don’t have to think about it any more. If you have MySQL 5.0 or later,
though, you have access to a wonderful tool called the VIEW. A view is some-
thing like a virtual table.

Figure 4-7:
Now, the
age is back
in one field,
as originally
intended.

There’s no way I’m writing that every time. . . .
I know what you’re thinking. All this fancy func-
tion stuff is well and good, but there’s no stinkin’
way you’re going to do all those function gym-
nastics every time you want to extract an age
out of the database. Here’s the good news: You
don’t have to. It’s okay that the queries are get-
ting a little tricky because you’ll write code to
do all the work for you. You write it only once,

and then your code does all the heavy lifting.
Generally, you write PHP code to manage each
query inside a function. Once you’ve tested it,
you run that function and off you go. . . . You can
also use a little gem called the view, described
in the “Creating a View” section. Views allow
you to store complex queries right in your data-
base.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 708

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Creating a View 709

The best way to understand a view is to see a sample of it in action. Take a
look at this SQL code:

CREATE VIEW heroAgeView AS
SELECT

name as ‘hero’,
CONCAT(

YEAR(FROM_DAYS(DATEDIFF(NOW(), birthday))),
‘ years, ‘,
MONTH(FROM_DAYS(DATEDIFF(NOW(), birthday))),
‘ months’

) AS ‘age’
FROM

hero;

If you look closely, it’s exactly the same query used to generate the age from
the birth date, just with a CREATE VIEW statement added. When you run
this code, nothing overt happens, but the database stores the query as a
view called heroView. Figure 4-8 shows the cool part.

This code doesn’t look really fancy, but look at the output. It’s just like you
had a table with all the information you wanted, but now the data is guaran-
teed to be in a decent format.

Figure 4-8:
This simple
query hides
a lot of
complexity.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 709

Using an Inner Join to Combine Tables710

After you create a view, you can use it in subsequent SELECT statements
as if it were a table! Here are a couple of important things to know about
views:

✦ They aren’t stored in the database. The view isn’t really data; it’s just a
stored query. It looks and feels like a table, but it’s created in real time
from the tables.

✦ You can’t write to a view. Because views don’t contain data (they reflect
data from other tables), you can’t write directly to them. You don’t use
the INSERT or UPDATE commands on views, as you do ordinary tables

✦ They’re a relatively new feature of MySQL. Useful as they are, views
weren’t added to MySQL until Version 5.0. If your server uses an earlier
version, you’ll have to do some workarounds, described in the sidebar
“So what if I’m stuck with MySQL 4.0?”.

✦ You can treat views as tables in SELECT statements. You can build
SELECT statements using views as if they were regular tables.

Some database packages make it appear as if you can update a view, but
that’s really an illusion. Such programs reverse-engineer views to update
each table. This approach is far from foolproof, and you should probably
avoid it.

Using an Inner Join to Combine Tables
When I normalized the hero database in Chapter 3 of this minibook, I broke
it up into several tables. Take a quick look at the hero table in Figure 4-9.

So what if I’m stuck with MySQL 4.0?
Views are so great that it’s hard to imagine
working with data without them. However, your
hosting service may not have MySQL 5.0 or
later installed, which means you aren’t able to
use views. All is not lost. You can handle this
issue in two ways.

The most common approach is to store all
the queries you’re likely to need (the ones
that would be views) as strings in your PHP
code. Execute the query from PHP, and you’ve

essentially executed the view. This method is
how most programmers did it before views
were available in MySQL.

Another approach is to create a new table
called something like storeQuery in your
database. Put the text of all your views inside
this table, and then you can extract the view
code from the database and execute it using a
second pass at the data server.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 710

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Using an Inner Join to Combine Tables 711

You probably noticed that most of the mission information is now gone from
this table, except one important field. The missionID field is an integer field
that contains the primary key of the mission table. A foreign key is a field that
contains the primary key of another table. Foreign keys are used to reconnect
tables that have been broken apart by normalization.

Look at the mission table in Figure 4-10, and it begins to make sense.

The mission table doesn’t have a link back to the hero. It can’t because any
mission can be connected to any number of heroes, and you can’t have a
listed field.

Building a Cartesian join and an inner join
Compare the hero and mission tables, and you see how they fit together. The
missionID field in the hero table identifies which mission the hero is on.
None of the actual mission data is in the hero field, just a link to which mis-
sion the player is on.

Creating a query with both tables, as in Figure 4-11, is tempting. This query
appears to join the tables, but it obviously isn’t doing the right thing. You
have only three heroes and two missions, yet this query returns six rows!
What’s happened here is called a Cartesian join. It’s a combination of all the
possible values of hero and mission, which is obviously not what you want.

Figure 4-9:
The hero
table has a
link to the
mission
table.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 711

Using an Inner Join to Combine Tables712

Figure 4-11:
This query
joins both
tables, but it
doesn’t
seem right.

Figure 4-10:
The mis-
sion table
handles
mission
data but
has no link
to the hero.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 712

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Using an Inner Join to Combine Tables 713

You don’t really want all these values to appear; you want to see only the ones
where the hero table’s missionID matches up to the missionID field in the
mission table. In other words, you want a query that says only return rows
where the two values of missionID are the same. That query may look like
Figure 4-12. It’s almost identical to the last query, except this time, a WHERE
clause indicates that the foreign key and primary key should match up.

This particular setup (using a foreign key reference to join up two tables) is
called an inner join. Sometimes, you see the syntax like

SELECT
hero.name AS ‘hero’,
hero.missionID AS ‘heroMID’,
mission.missionID AS ‘missMID’,
mission.description as ‘mission’

FROM
hero INNER JOIN mission

ON
hero.missionID = mission.missionID;

Some of Microsoft’s database offerings prefer this syntax, but it really does
the same thing: join up two tables.

Figure 4-12:
Now, you
have an
inner join.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 713

Using an Inner Join to Combine Tables714

Enforcing one-to-many relationships
Whenever your ER diagram indicates a many-to-one relationship, you gener-
ally use an inner join (see the preceding section). Here’s how you do it:

1. Start with the ER diagram.

No way are you going to get this right in your head! Make a diagram. Use
a tool like DBDesigner, some other software, pencil and paper, lipstick on
a mirror, whatever. You need a sketch.

2. Identify one-to-many relationships.

You may have to talk with people who use the data to determine which
relationships are one-to-many. In the hero data, a hero can have only
one mission, but each mission can have many heroes. Thus, the hero is
the many side, and the mission is the one side.

3. Find the primary key of the one table and the many table.

4. Make a foreign key reference to the one table in the many table.

Add a field to the table on the many side of the relationship that con-
tains only the key to the table on the one side.

You don’t need a foreign key in the one table. This concept confuses
most beginners. You don’t need (or want) a link back to the many table
because you don’t know how many you’ll need.

If the preceding steps are hard for you to understand, think back to the hero
example. Each hero (according to the business rules) can be on only one
mission. Thus, it makes sense to put a link to the mission in the hero table
because you have only one mission. Each mission can be related to many
heroes, so if you try to link missions to heroes, you have listed fields in the
mission table, violating the first normal form. (For information on the types
of normal forms, see Chapter 3 of this minibook.) Figure 4-13 shows how it
works in action. The result of this join looks a lot like the original intention of
the database, but now it’s normalized!

Counting the advantages of inner joins
Even though the table in Figure 4-13 contains everything in the original non-
normalized data set (except for the repeated field), the new version is con-
siderably better for several reasons:

✦ No data is repeated. The plot is stored only one time in the database.
Even though it may appear several times in this output, each value is
stored only once.

✦ Searching is much more efficient. Because the data is stored only one
time, you no longer have to worry about spelling and typing errors. If
the entry is wrong, it is universally wrong, and you can repair it in only
one place.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 714

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Using an Inner Join to Combine Tables 715

✦ The data is organized correctly. Although the user can’t see it from this
output, the tables are now separated so that each type of data goes
where it belongs.

✦ The output still looks like what the user wants. Users don’t care about
the third normal form. (For more on forms, see Chapter 3 of this mini-
book.) They just want to get to their data. This table gives them a query
that returns the data they’re looking for, even though the underlying
data structure has changed dramatically.

Building a view to encapsulate the join
The inner join query is so useful, it’s a dandy place for a view. I created a
view from it:

CREATE VIEW heroMissionView AS
SELECT

hero.name AS ‘hero’,
mission.description AS ‘mission’,
mission.villain AS ‘villian’,
mission.plot AS ‘plot’

FROM hero, mission
WHERE

hero.missionID = mission.missionID;

Having a view means that you don’t have to recreate the query each time.
You can treat the view as a virtual table for queries:

SELECT * FROM heroMissionView;

Figure 4-13:
Here’s a
nice join of
the hero and
mission
tables.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 715

Managing Many-to-Many Joins716

Managing Many-to-Many Joins
Inner joins are a perfect way to implement one-to-many relationships. If you
look at ER diagrams, you often see many-to-many relationships, too. Of course,
you also need to model them. Here’s the secret: You can’t really do it. It’s true.
The relational data model doesn’t really have a good way to do many-to-many
joins. Instead, you fake it out. It isn’t hard, but it’s a little bit sneaky.

You use many-to-many joins to handle listed data, such as the relationship
between hero and power. Each hero can have any number of powers, and each
power can belong to any number of heroes (see the table in Figure 4-14).

The inner join was easy because you just put a foreign key reference to the
one side of the relationship in the many table. (See the section “Using an
Inner Join to Combine Tables,” earlier in this chapter.) In a many-to-many
join, there is no ‘one’ side, so where do you put the reference? Leave it to
computer scientists to come up with a sneaky solution.

First, review the hero table in Figure 4-14.

Note that this table contains no reference to powers. Now, look at the power
table in Figure 4-15. You see a lot of powers, but no reference to heroes.

Figure 4-14:
The hero
table has no
reference to
powers.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 716

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 717

Here’s the tricky part. Take a look at a new table in Figure 4-16.

Figure 4-16:
This new
table con-
tains only
foreign keys!

Figure 4-15:
The power
table has no
reference to
heroes.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 717

Managing Many-to-Many Joins718

The results of this query may surprise you. The new table contains nothing
but foreign keys. It doesn’t make a lot of sense on its own, yet it represents
one of the most important ideas in data.

Understanding link tables
The hero_power table shown in Figure 4-16 is a brand new table, and it’s
admittedly an odd little duck:

✦ It contains no data of its own. Very little appears inside the table.

✦ It isn’t about an entity. All the tables shown earlier in this chapter are
about entities in your data. This one isn’t.

✦ It’s about a relationship. This table is actually about relationships
between hero and power. Each entry of this table is a link between hero
and power

✦ It contains two foreign key references. Each record in this table links
an entry in the hero table with one in the power table.

✦ It has a many-to-one join with each of the other two tables. This
table has a many-to-one relationship with the hero table. Each record
of hero_power connects to one record of hero. Likewise, each record of
hero_power connects to one record of power.

✦ The two many-to-one joins create a many-to-many join. Here’s the
magical part: By creating a table with two many-to-one joins, you create
a many-to-many join between the original tables!

✦ This type of structure is called a link table. Link tables are used to
create many-to-many relationships between entities.

Using link tables to make many-to-many joins
Figure 4-17 displays a full-blown ER diagram of the hero data.

Link tables aren’t really useful on their own because they contain no actual
data. Generally, you use a link table inside a query or view:

SELECT
hero.name AS ‘hero’,
power.name AS ‘power’

FROM
hero, power, hero_power

WHERE
hero.heroID = hero_power.heroID

AND
power.powerID = hero_power.powerID;

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 718

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 719

Here are some thoughts about this type of query:

✦ It combines three tables. That complexity seems scary at first, but it’s
really fine. The point of this query is to use the hero_power table to
identify relationships between hero and power. Note that the FROM
clause lists all three tables.

✦ The WHERE clause has two links. The first part of the WHERE clause links
up the hero_power table with the hero table with an inner join. The
second part links up the power table with another inner join.

✦ You can use another AND clause to further limit the results. Of course,
you can still add other parts to the AND clause to make the results solve
a particular problem, but I leave that alone for now.

Figure 4-18 shows the result of this query. Now, you have results you can use.

Once again, this query is an obvious place for a view:

CREATE VIEW heroPowerView AS
SELECT

hero.name AS ‘hero’,
power.name AS ‘power’

FROM
hero, power, hero_power

Figure 4-17:
Here’s the
actual ER
diagram of
the hero
data.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 719

Managing Many-to-Many Joins720

WHERE
hero.heroID = hero_power.heroID

AND
power.powerID = hero_power.powerID;

Typically, you won’t do your results exactly like this view. Instead, you dis-
play information for, say, Binary Boy, and you want a list of his powers. It isn’t
necessary to say Binary Boy three times, so you tend to use two queries
(both from views, if possible) to simplify the task. For example, look at these
two queries:

SELECT * FROM heroMissionView WHERE hero = ‘binary boy’;
SELECT power FROM heroPowerView WHERE hero = ‘binary boy’;

The combination of these queries give you enough data to describe every-
thing in the original table. Typically, you attach all this data together in your
PHP code. Figure 4-19 shows a PHP page using both queries to build a com-
plete picture of Binary Boy.

Figure 4-18:
The Link
Query joins
up heroes
and powers.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 720

Book VI
Chapter 4

Putting Data
Together w

ith Joins
Managing Many-to-Many Joins 721

The code is standard PHP data access, except it makes two passes to the
database:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=”content-type” content=”text/xml; charset=iso-8859-1” />
<title>showDetails.php</title>
<style type = “text/css”>

dt {
float: left;
width: 4em;
clear: left;

}

dd {
float: left;
width: 20em;

}
</style>

</head>

<body>
<?php

Figure 4-19:
Use two
different
queries to
get the
formatting
you want.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 721

Managing Many-to-Many Joins722

//connect
$conn = mysql_connect(“localhost”, “xfd”, “password”);
//change this password and username to work on your system
mysql_select_db(“xfd”);

//get most information for requested hero
$hero = “binary boy”;
$query = <<<HERE
SELECT

*
FROM

heroMissionView
WHERE

hero = ‘$hero’
HERE;

print “<dl> \n”;
$result = mysql_query($query, $conn);
$row = mysql_fetch_assoc($result);
foreach ($row as $field => $value){

print <<<HERE
<dt>$field</dt>
<dd>$value</dd>

HERE;
} // end foreach
print “ <dt>powers</dt> \n”;
print “ <dd> \n”;
print “ \n”;

//create another query to grab the powers
$query = <<<HERE
SELECT

power
FROM

heroPowerView
WHERE hero = ‘$hero’
HERE;

//put powers in an unordered list
$result = mysql_query($query, $conn);
while ($row = mysql_fetch_assoc($result)){

foreach ($row as $field => $value){
print “ $value \n”;

} // end foreach
} // end while looop
print “ \n”;
print “</dd> \n”;
print “</dl> \n”;
?>
</body>
</html>

Refer to Book V to read more on PHP and how it’s used to access databases.

44_186275 bk06ch04.qxp 3/28/08 10:58 PM Page 722

Book VII

Into the Future
with AJAX

45_186275 pp07.qxp 3/28/08 10:58 PM Page 723

Contents at a Glance

Chapter 1: AJAX Essentials .725
AJAX Spelled Out..727
Making a Basic AJAX Connection...728
All Together Now — Making the Connection Asynchronous735

Chapter 2: Improving JavaScript with jQuery 739
Introducing jQuery...739
Putting jQuery to Work..747
Managing Events through jQuery ..756

Chapter 3: Animating with jQuery .759
jQuery’s Special Effects ...759
Interfacing with the Official UI Plugin..764
Interface Elements for jQuery ..775

Chapter 4: Sending and Receiving Data .787
Working with XML..787
Introducing JSON ...795

45_186275 pp07.qxp 3/28/08 10:58 PM Page 724

Chapter 1: AJAX Essentials

In This Chapter
� Understanding AJAX

� Using JavaScript to manage HTTP requests

� Creating an XMLHttpRequest object

� Building a synchronous AJAX request

� Retrieving data from an AJAX request

� Managing asynchronous AJAX requests

If you’ve been following the Web trends, you’ve no doubt heard of AJAX.
This technology has generated a lot of interest. Depending on who you

listen to, it’s either going to change the Internet or it’s a lot of overblown
hype. In this minibook, I show you what AJAX really is, how to use it, and
how to use a particular AJAX library to supercharge your Web pages.

The first thing is to figure out exactly what AJAX is and what it isn’t. It isn’t:

✦ A programming language: It isn’t one more language to learn along
with the many others you encounter.

✦ New: Most of the technology used in AJAX isn’t really all that new; it’s
the way the technology’s being used that’s different.

✦ Remarkably different: For the most part, AJAX is about the same things
you’ll see in the rest of this book: building compliant Web pages that
interact with the user.

So you’ve got to be wondering why people are so excited about AJAX. It’s a
relatively simple thing, but it has the potential to change the way people
think about Internet development. Here’s what it really is:

✦ Direct control of client-server communication: Rather than the auto-
matic communication between client and server that happens with Web
sites and server-side programs, AJAX is about managing this relation-
ship more directly.

✦ Use of the XMLHttpRequest object: This is a special object that’s been
built into the DOM of all major browsers for some time, but it wasn’t
used heavily. The real innovation of AJAX was finding creative (perhaps
unintentional) uses for this heretofore virtually unknown utility.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 725

AJAX Essentials726

✦ A closer relationship between client-side and server-side programming:
Up to now, client-side programs (usually JavaScript) did their own thing,
and server-side programs (PHP) operated without too much knowledge of
each other. AJAX helps these two types of programming work together
better.

✦ A series of libraries that facilitate this communication: AJAX isn’t that
hard, but it does have a lot of details. Several great libraries have sprung
up to simplify using AJAX technologies. You’ll find AJAX libraries for both
client-side languages like JavaScript, and server-side languages like PHP.

Let’s say you’re making an online purchase with a shopping cart mechanism.

In a typical (pre-AJAX) system, an entire Web page is downloaded to the user’s
computer. There may be a limited amount of JavaScript-based interactivity,
but anything that requires a data request needs to be sent back to the server.
For example, if you’re on a shopping site and you want more information
about that fur-lined fishbowl you’ve had your eye on, you might click on the
“more information” button. This causes a request to be sent to the server,
which builds an entire new Web page for you containing your new request.

Every time you make a request, the system builds a whole new page on the
fly. The client and server have a long-distance relationship.

In the old days when you wanted to manage your Web site’s content, you had
to refresh each Web page — time-consuming to say the least. But with AJAX,
you can update the content on a page without refreshing the page. Instead of
the server sending an entire page response just to update a few words on the
page, the server just sends the words you want to update and nothing else.

If you’re using an AJAX-enabled shopping cart, you might still click on the fish
bowl image. An AJAX request goes to the server and gets information about
the fish bowl, which is immediately placed in the current page, without requir-
ing a complete page refresh.

AJAX technology allows you to send a request to the server, which can then
change just a small part of the page. With AJAX, you can have a whole bunch
of smaller requests happening all the time, rather than a few big ones that
rebuild the page in large distracting flurries of activity.

To the user, this makes the Web page look more like traditional applications.
This is the big appeal of AJAX: It allows Web applications to act more like
desktop applications, even if these Web applications have complicated fea-
tures like remote database access.

Google’s Gmail was the first major application to use AJAX, and it blew people
away because it felt so much like a regular application inside a Web browser.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 726

Book VII
Chapter 1

AJAX Essentials

AJAX Spelled Out 727

AJAX Spelled Out
Technical people love snappy acronyms. There’s nothing more intoxicating
than inventing a term. AJAX is one term which has taken on a life of its own.
Like many computing acronyms, it may be fun to say, but it doesn’t really
mean much. AJAX stands for Asynchronous JavaScript And XML. Truthfully,
these terms were probably chosen to make a pronounceable acronym rather
than for their accuracy or relevance to how AJAX works.

A is for asynchronous
An asynchronous transaction (at least in AJAX terms) is one in which more
than one thing can happen at once. For example, you can make an AJAX call
process a request while the rest of your form is being processed. AJAX
requests do not absolutely have to be asynchronous, but they usually are.

When it comes to Web design, asynchronous means that you can independ-
ently send and receive as many different requests as you want. Data may
start transmitting at any time without having any effect on other data trans-
missions. You could have a form that saves each field to the database as
soon as it’s filled out. Or perhaps a series of drop-down lists that generates
the next drop-down list based upon the value you just selected. (It’s OK if
this doesn’t make sense right now. It’s not an important part of understand-
ing AJAX, but vowels are always nice in an acronym.)

In this chapter, I show you how to do both synchronous and asynchronous
versions of AJAX.

J is for JavaScript
If you want to make an AJAX call, you simply write some JavaScript code that
simulates a form. You can then access a special object hidden in the DOM
(the XMLHttpRequest object) and use its methods to send that request to
the user. Your program acts like a form, even if there was no form there. In
that sense, when you’re writing AJAX code, you’re really using JavaScript. Of
course, you can also use any other client-side programming language that can
speak with the DOM, including Flash and (to a lesser extent) Java. JavaScript
is the dominant technology, so it’s in the acronym.

A lot of times, you also use JavaScript to decode the response from the AJAX
request.

A is for . . . and?
I think it’s a stretch to use “and” in an acronym, but AJX just isn’t as cool as
AJAX. I guess they didn’t ask me.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 727

Making a Basic AJAX Connection728

And X is for . . . data
The X is for XML, which is one way to send the data back and forth from the
server.

Since the object we’re using is the XMLHttpRequest object, it makes sense
that it requests XML. It can do that, but it can also get any kind of text data.
You can use AJAX to retrieve all kinds of things:

✦ Plain old text: Sometimes you just want to grab some text from the
server. Maybe you have a text file with a daily quote in it or something.

✦ Formatted HTML: You can have text stored on the server as a snippet of
HTML/XHTML code and use AJAX to load this page snippet into your
browser. This gives you a powerful way to build a page from a series of
smaller segments. You can use this to reuse parts of your page (say
headings or menus) without duplicating them on the server.

✦ XML data: XML is a great way to pass data around. (That’s what it was
invented for.) You might send a request to a program that goes to a data-
base, makes a request, and returns the result as XML.

✦ JSON data: A new standard called JSON (JavaScript Object Notation) is
emerging as an alternative to XML for formatted data transfer. It has
some interesting advantages.

Making a Basic AJAX Connection
AJAX uses some pretty technical parts of the Web in ways that may be unfa-
miliar to you. Read through the rest of this chapter so you know what AJAX
is doing, but don’t get bogged down in the details. Nobody does it by hand!
(Except people who write AJAX libraries or books about using AJAX.) In
Chapter 2 of this minibook I show a library that does all the work for you. If
all these details are making you misty-eyed, just skip ahead to the next chap-
ter and come back here when you’re ready to see how all the magic works.

The basicAJax.html program shown in Figure 1-1 illustrates AJAX at work.

When the user clicks on the link, a small pop-up shown in Figure 1-2 appears.

If you don’t get the joke, you need to go rent Monty Python and the Holy Grail.
It’s part of the geek culture. Trust me. In fact, you should really own a copy.

It’s very easy to make JavaScript pop up a dialog, but the interesting thing
here is where that text comes from. The data is stored on a text file on the
server. Without AJAX, there is no easy way to get data from the server with-
out reloading the entire page.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 728

Book VII
Chapter 1

AJAX Essentials

Making a Basic AJAX Connection 729

Figure 1-2:
This text
came from
the server.

Figure 1-1:
Click on the
link and
you’ll see
some AJAX
magic.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 729

Making a Basic AJAX Connection730

You might claim that HTML frames allow you to pull data from the server,
but frames have been deprecated in XHTML because they cause a lot of
other problems. You can use a frame to load data from the server, but you
can’t do all the other cool things with frame-based data that you can with
AJAX. Even if frames were allowed, AJAX is a much better solution most of
the time.

You won’t be able to run this example straight from the CD-ROM. Like PHP,
AJAX requires a server to work properly. If you want to run this program, put
it in a subdirectory of your server and run it through localhost as you do
for PHP programs.

This particular example uses a couple of shortcuts to make it easier to
understand:

✦ It isn’t fully asynchronous. The program will pause while it retrieves
data. As a user, you won’t even notice this, but as you’ll see, this can
have a serious drawback. It’s a bit simpler, so I start with this example
and then extend it to make the asynchronous version.

✦ It isn’t completely cross-browser-compatible. The AJAX technique I use
in this program works fine for IE 7 and all versions of Firefox (and most
other standards-compliant browsers). It does not work correctly in IE 6
and earlier. I recommend you use jQuery or another library (described
in Chapter 2 of this minibook) for cross-browser compatibility.

Look over the code, and you’ll find it reasonable enough:

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

<title>Basic AJAX</title>
<script type = “text/javascript”>
//<![CDATA[

function getAJAX(){
var request = new XMLHttpRequest();
request.open(“GET”, “beast.txt”, false);
request.send(null);

if (request.status == 200){
//we got a response
alert(request.responseText);

} else {
//something went wrong
alert(“Error- “ + request.status + “: “ + request.statusText);

} // end if
} // end function
//]]>

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 730

Book VII
Chapter 1

AJAX Essentials

Making a Basic AJAX Connection 731

</script>

</head>

<body>
<h1>Basic AJAX</h1>

<form action = “”>
<p>

<button type = “button”
onclick = “getAJAX()”>

Summon the vicious beast of Caerbannog
</button>

</p>
</form>

</body>
</html>

Building the HTML form
You don’t absolutely need an HTML form for AJAX, but I have a simple one
here. Note that the form is not attached to the server in any way.

<form action = “”>
<p>

<button type = “button”
onclick = “getAJAX()”>

Summon the vicious beast of Caerbannog
</button>

</p>
</form>

This code uses a button, and the button is attached to a JavaScript function
called getAJAX().

All you really need is some kind of structure that can trigger a JavaScript
function.

AJAX isn’t a complex technology, but it does draw on several other technolo-
gies. You may need to look over the JavaScript chapters in Book IV if this
material is unfamiliar to you. Although these examples don’t require PHP, they
do involve server-side responses like PHP does, so AJAX is usually studied by
people already familiar with both JavaScript and PHP.

Creating an XMLHttpRequest object
The key to AJAX is a special object called the XMLHttpRequest object. All
the major browsers have it, and knowing how to use it in code is what makes
AJAX work. It’s pretty easy to create:

var request = new XMLHttpRequest();

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 731

Making a Basic AJAX Connection732

Internet Explorer 5 and 6 had an entirely different way of invoking the
XMLHttpRequest object involving a technology called ActiveX. If you want
to support these older browsers, use one of the libraries mentioned in
Chapter 2 of this minibook. I’ve decided not to worry about them in this
introductory chapter.

This line makes an instance of the XMLHttpRequest object. You’ll use meth-
ods and properties of this object to control a request to the server.

AJAX is really nothing more than HTTP, the protocol that your browser and
server quietly use all the time to communicate with each other. You can
think of an AJAX request like this: Imagine you have a basket with a balloon
tied to the handle and a long string. As you walk around the city, you can
release the basket under a particular window and let it rise up. The window
(server) will put something in the basket, and you can then wind the string
to bring the basket back down and retrieve the contents.

Don’t worry about all the details in this Table 1-1. I describe these things as
you need them in the text. Also, some of these elements only pertain to asyn-
chronous connections, so you won’t always need them all.

Table 1-1 Useful Members of the XMLHttpRequest Object
Member Description Basket analogy

open(protocol, Opens up a connection to Stand under a particular window.
URL, the indicated file on the
synchronization) server.

send(parameters) Initiates the transaction Release the basket but hang
with given parameters onto the string.
(or null).

status Returns the HTTP status Check for error codes (“window
code returned by the server closed,” “balloon popped,”
(200 is success). “string broken,” or “everything’s

great”).

statusText Text form of HTTP status. Text form of status code.

responseText Text of the transaction’s Get the contents of the basket.
response.

readyState Describes current status Is the basket empty, going up,
of the transaction (4 is coming down, or here and ready
complete). to get contents?

onReadyState Event handler. Attach a What should I do when the state
Change function to this parameter, of the basket changes? For

and when the ready example, should I do something
State changes, the when I’ve gotten the basket
function will be called back?
automatically.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 732

Book VII
Chapter 1

AJAX Essentials

Making a Basic AJAX Connection 733

Opening a connection to the server
The XMLHttpRequest object has several useful methods. One of the most
important is the open() method.

request.open(“GET”, “beast.txt”, false);

The open() method opens up a connection to the server. As far as the
server is concerned, this connection is identical to the connection made
when the user clicks a link or submits a form. The open() method takes the
following three parameters:

✦ Request method: The request method describes how the server should
process the request. The values are identical to the form method values
described in Chapter 3 of Book V. Typical values are GET and POST.

✦ A file or program name: The second parameter is the name of a file or
program on the server. This is usually a program or file in the same
directory as the current page.

✦ A synchronization trigger: AJAX can be done in synchronous or asyn-
chronous mode. (Yea, I know, then it would just be JAX, but stay with me
here.) The synchronous form is easier to understand, so I use it first. The
next example (and all the others in this book) will use the asynchronous
approach.

For this example, I use the GET mechanism to load a file called beast.txt
from the server in synchronized mode.

Sending the request and parameters
Once you’ve opened up a request, you need to pass that request to the
server. The send() method performs this task. It also provides you a mech-
anism for sending data to the server. This only makes sense if the request is
going to a PHP program (or some other program on the server). Since I’m
just requesting a regular text document, I send the value null to the server.

request.send(null);

This is a synchronous connection, so the program pauses here until the server
sends the requested file. If the server never responds, the page will hang.
(This is exactly why you’ll usually use asynchronous connections.) Since this
is just a test program, assume everything will work OK and motor on.

Returning to the basket analogy, the send() method releases the basket,
which floats up to the window. In a synchronous connection, we’re assuming
the basket is filled and comes down automatically. The next step won’t
happen until the basket is back on earth. (But, if something went wrong, the
next step may never happen, because the basket will never come back.)

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 733

Making a Basic AJAX Connection734

Checking the status
The next line of code won’t happen until the server passes some sort of
response back. Any HTTP request is followed by a numeric code. Normally,
your browser checks these codes automatically, and you don’t see them.
Occasionally, you will run across an HTTP error code, like 404 (file not
found) or 500 (internal server error). If the server was able to respond to the
request, it will pass a status code of 200. The XMLHttpRequest object has a
property called status that returns the HTTP status code. If the status is
200, everything went fine and you can proceed. If the status is some other
value, some type of error occurred.

You’ll want to make sure that the status of the request is successful before
you run the code that’s dependant upon the request. You can check for all
the various status codes if you wish, but for this simple example I’m just
ensuring that the status is 200.

if (request.status == 200){
//we got a response
alert(request.responseText);

} else {
//something went wrong
alert(“Error- “ + request.status + “: “ + request.statusText);

} // end if

The request.status property will contain the server response. If this
value is 200, I want to do something with the results. In this case, I simply
display the text in an alert box. If the request is anything but 200, I use the

Fun with HTTP response codes
Just like the post office stamping success/error
messages on your envelope, the server sends
back status messages with your request.
You can see all the possible status codes on
the World Wide Web Consortium’s Web site at
www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html, but the important
ones to get you started are as follows:

� 200 = OK: This is a success code. Every-
thing went okay, and your response has
been returned.

� 400 = Bad Request: This is a client
error code. It means that something went

wrong on the user side. The request was
poorly formed and couldn’t be understood.

� 404 = Not Found: This is a client error
code. The page the user requested doesn’t
exist or couldn’t be found.

� 408 = Request Timeout: This is a
client error code. The server gave up on
waiting for the user’s computer to finish
making its request.

� 500 = Internal Server Error:
This is a server error code. It means that
the server had an error and couldn’t fill the
request.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 734

Book VII
Chapter 1

AJAX Essentials

All Together Now — Making the Connection Asynchronous 735

statusText property to determine what went wrong and pass that informa-
tion to the user in an alert.

The status property is like looking at the basket after it returns. It might
have the requested data in it, or it might have some sort of note. (“Sorry, the
window was closed. I couldn’t fulfill your request.”) There’s not much point
in processing the data if it didn’t return successfully.

Of course, I could do a lot more with the data. If it’s already formatted as
HTML code, I can use the innerHTML DOM tricks described in Book IV to
display the code in any part of my page. It might also be some other type of
formatted data (XML or JSON) that I can manipulate with JavaScript and do
whatever I want with.

All Together Now — Making the Connection
Asynchronous

The synchronous AJAX connection described in the previous section is easy
to understand, but it has one major drawback. The client’s page completely
stops processing while waiting for a response from the server. This doesn’t
seem like a big problem, but it is. If aliens attack the Web server, it won’t
make the connection, and the rest of the page will never be activated. The
user’s browser will hang indefinitely. In most cases, the user will have to
shut down the browser process with Ctl+Alt+Del (or the similar procedure
on other OSs). Obviously, it would be best to prevent this kind of error.

That’s why most AJAX calls use the asynchronous technique. Here’s the big
difference: When you send an asynchronous request, the client keeps on
processing the rest of the page. When the request is complete, an event han-
dler processes the event. If the server goes down, the browser will not hang
(although the page probably won’t do what you want).

In other words, the readyState property is like looking at the basket’s
progress. The basket could be sitting there empty, because you haven’t
begun the process. It could be going up to the window, being filled, coming
back down, or it could be down and ready to use. You’re only concerned
with the last state, because that means the data is ready.

I didn’t include a figure of the asynchronous version, because to the user, it
looks exactly the same as the synchronous connection. Be sure to put this
code on your own server and check it out for yourself.

The asynchronous version looks exactly the same on the front end, but the
code is structured a little differently.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 735

All Together Now — Making the Connection Asynchronous736

<!DOCTYPE html PUBLIC
“-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang = “EN” xml:lang = “EN” dir = “ltr”>
<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />

<title>asynch.html</title>
<script type = “text/javascript”>
//<![CDATA[

var request; //make request a global variable

function getAJAX(){
request = new XMLHttpRequest();
request.open(“GET”, “beast.txt”);
request.onreadystatechange = checkData;
request.send(null);

} // end function

function checkData(){
if (request.readyState == 4) {

// if state is finished
if (request.status == 200) {

// and if attempt was successful
alert(request.responseText);

} // end if
} // end if

} // end checkData

//]]>

</script>

</head>

<body>
<h1>Asynchronous AJAX transmission</h1>
<form action = “”>

<p>
<button type = “button”

onclick = “getAJAX()”>
Summon the beast of Caerbannogh

</button>
</p>

</form>
</body>
</html>

Setting up the program
The general setup of this program is just like the earlier AJAX example. The
HTML is a simple button which calls the getAJAX() function.

The JavaScript code now has two functions. The getAJAX() function sets
up the request, but a separate function (checkData()) responds to the
request. In an asynchronous AJAX model, you typically separate the request
and the response in different functions.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 736

Book VII
Chapter 1

AJAX Essentials

All Together Now — Making the Connection Asynchronous 737

Note that in the JavaScript code, I made the XMLHttpRequest object
(request) a global variable by declaring it outside any functions. I generally
avoid making global variables, but it makes sense in this case because I have
two different functions that require the request object.

Building the getAJAX() function
The getAJAX() function sets up and executes the communication with the
server.

function getAJAX(){
request = new XMLHttpRequest();
request.open(“GET”, “beast.txt”);
request.onreadystatechange = checkData;
request.send(null);

} // end function

The code in this function is pretty straightforward:

1. Create the request object.

The request object is created exactly as it was in the first example
under “Creating an XMLHttpRequest object” earlier in this chapter.

2. Call request’s open() method to open a connection.

Note that this time I left the synchronous parameter out, which creates
the (default) asynchronous connection.

3. Assign an event handler to catch responses.

You can use event handlers much like the ones in the DOM. In this par-
ticular case, I’m telling the request object to call a function called
checkData whenever the state of the request changes.

You can’t easily send a parameter to a function when you call it using this
particular mechanism. That’s why I made request a global variable.

4. Send the request.

As before, the send() method begins the process. Since this is now an
asynchronous connection, the rest of the page will continue to process.
As soon as the request’s state changes (hopefully because there’s been a
successful transfer), the checkData function will be activated.

Reading the response
Of course, you now need a function to handle the response when it comes
back from the server. This works by checking the ready state of the response.
Any HTTP request has a ready state, which is a simple integer value describ-
ing what state the request is currently in. There are many ready states, but
the only one we’re concerned with is 4, meaning the request is finished and
ready to process.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 737

All Together Now — Making the Connection Asynchronous738

The basic strategy for checking a response is to check the ready state in the
aptly-named request.readyState property. If the ready state is 4, check
the status code to ensure there’s no error. If ready state is 4 and status is
200, you’re in business, so you can process the form. Here’s the code:

function checkData(){
if (request.readyState == 4) {

// if state is finished
if (request.status == 200) {

// and if attempt was successful
alert(request.responseText);

} // end if
} // end if

} // end checkData

Once again, you can do anything you want with the text you receive. I’m just
printing it out, but the data can be incorporated into the page or processed
in any way you wish.

Ready, set, ready state!
The readyState property of the request
object indicates the ready state of the request.
It has five possible values:

� 0 = Uninitialized: The request object
has been created, but the open()method
hasn’t been called on.

� 1 = Loading: The request object has
been created, the open() method has
been called, but the send() method
hasn’t been called.

� 2 = Loaded: The request object has
been created, the open() method has
been called, the send()method has been
called, but the response isn’t yet available
from the server.

� 3 = Interactive: The request object has
been created, the open() method has

been called, the send()method has been
called, the response has started trickling
back from the server, but not everything
has been received yet.

� 4 = Completed: The request object has
been created, the open() method has
been called, the send()method has been
called, the response has been fully
received, and the request object is fin-
ished with all its request/response tasks.

Each time the readyState property of the
request changes, the function you map to
readyStateChanged is called. In a typical
AJAX program, this will happen four times per
transaction. There’s no point in reading the data
until the transaction is completed, which will
happen when readyState is equal to 4.

46_186275 bk07ch01.qxp 3/28/08 10:59 PM Page 738

Chapter 2: Improving JavaScript
with jQuery

In This Chapter
� Downloading and including the jQuery library

� Using component selectors

� Handling events

When building AJAX-enabled Web sites, it can be extremely tedious
to write all the JavaScript you need to do even the simplest things.

A good way around this is to use a JavaScript library. These are simply
JavaScript code fragments with a number of useful functions built in.

Many JavaScript libraries are out there, and none of them write the code for
you. What JavaScript libraries do is make complex JavaScript tasks easier to
perform. They give you functions to encapsulate complex code into simpler
function calls.

JavaScript libraries will vastly increase your productivity and allow you to
do a lot more fun and impressive things in much less time. They’ll also make
it much easier for you to maintain your code because you don’t have to
rebuild basic functionality. You can concentrate instead on creating a pro-
gram that solves a particular problem.

jQuery is a JavaScript library, so to use it, you must be familiar with Java-
Script and DOM programming. Check out Book IV if you need a refresher on
these topics.

Introducing jQuery
For this minibook, I use the jQuery JavaScript library to enhance JavaScript.
jQuery has good documentation, high community involvement, and is easy
to use.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 739

Introducing jQuery740

Getting acquainted with jQuery
To start with, go to the jQuery Web site at www.jquery.com, as shown in
Figure 2-1. You’ll find links to download the library as well as links to the
documentation, plugins, tutorials, discussion mailing lists, and a blog. The
Web site tends to change with some frequency, so don’t be surprised if you
go back in a week and it looks completely different.

Downloading the jQuery library
The first thing you need to do is download the jQuery library, by following
these steps:

1. With a browser, navigate to the jQuery Web site at www.jquery.com.

2. On the jQuery main page under Download jQuery, click the Download
link.

This takes you to a wiki-style page containing the different jQuery
releases. You’re presented with three options for downloading:

• Minified — Gzipped: A version of the file packed in a special
format called gzip. This makes the file much smaller than it
normally would be.

• Uncompressed: Normally formatted JavaScript code. This is the easi-
est version to read, but it will take a little bit longer for your users to
download.

• Packed: Another file format that works with nearly every browser.

JavaScript libraries
There are many other JavaScript libraries
besides jQuery. I chose jQuery for this book
because of its good documentation, ease of
use, shallow learning curve, and large follow-
ing. After you get the hang of jQuery, check out
some other JavaScript libraries:

� Prototype (www.prototypejs.org):
AJAX and form functions.

� Script.aculo.us (http://script.
aculo.us): Add-on to Prototype that
gives you basic animation and effects.

� Moo Tools (http://demos.mootools.
net): Complete AJAX and user interface
tools.

� Moo.fx (http://moofx.mad4milk.
net): Add-on to Prototype and Moo Tools
allows you to add special effects to Moo.fx.

� MochiKit (www.mochikit.com): Com-
plete (but complex) AJAX and user inter-
face library.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 740

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Introducing jQuery 741

3. For this example, select Minified.

Most modern browsers can read the gzip version with no problems, but
occasionally you’ll run across an older browser which can’t handle this
format. These browsers are going to have trouble with most of jQuery’s
other features, too. By the time you’re working in AJAX, you’re going to
have to assume the user is using a reasonably recent browser.

4. Download the latest version and save it to your computer somewhere
you can find it easily.

If you’re using Aptana, all the most popular JavaScript libraries are already
on your computer, so you probably already have the jQuery library, but you
may not have the most recent version.

Using the documentation
There are several different helpful documentation options for jQuery. The
official documentation can be found on the Web site (http://jquery.com);
it appears in a wiki-style and is constantly updated and improved. There are
also tutorials, mailing lists, and IRC (chat) channels. One more interesting
piece of jQuery documentation is Visual jQuery.

Figure 2-1:
The jQuery
Web site
gives you
an idea
what this
package
can do.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 741

Introducing jQuery742

The official documentation
When using the jQuery documentation (http://docs.jquery.com), the
main points of interest are the API (Application Programming Interface) ref-
erence and the UI (user interface) reference. At first, you’ll just use the API,
but eventually after you get the hang of things, you’ll use the UI to start
adding nifty effects to your site to really make it shine.

Two places in the jQuery API where you’ll probably spend most your time
starting off are the Attributes and Manipulation sections, followed closely by
the CSS section after you start dabbling in some effects. Here’s some more
information about each section:

✦ Attributes: Allows you to set the values of different HTML elements for
your AJAX calls and functions.

✦ Manipulation: Allows you to build and remove different page elements
entirely.

✦ CSS: Allows you to change the look and feel of the page on the fly.

Becoming familiar with these three sections of the documentation is a good
way to get up and running with jQuery and the jQuery documentation. After
you have these sections under your belt, you’ll be more comfortable branch-
ing out into the rest of the documentation.

Tutorials
Many tutorials are on the jQuery Web site to get you started. After you
master these and are eager to dive in and discover more, check out the tuto-
rials at http://docs.jquery.com/Tutorials.

The tutorials are great but can be a little confusing for non-programmers just
starting out with JavaScript, HTML, and CSS. Luckily for you, you have this
chapter to take you through the basics of jQuery, but if you need more info,
these tutorials are a great place to go.

Visual jQuery
Visual jQuery is a neat reference tool for the jQuery library. It provides a
drill-down view of the documentation, which is great for beginners who
don’t know exactly where to find what they’re looking for in jQuery.

With the official documentation, it can take a while to actually remember
where the thing you’re looking for is and then find it. If you click Selectors
and you’re looking for something that’s really in the Manipulation section,
you have to wade through the Selectors page, realize it’s not there, and
guess where it might be. Obviously, this can take valuable development time
away, get you out of the zone, and can be frustrating.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 742

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Introducing jQuery 743

Visual jQuery puts all the documentation on one page in an easy-to-navigate
view (see Figure 2-2). No reloading the entire page and wading through text
just to realize the thing you’re looking for is somewhere else.

Unfortunately, Visual jQuery is still at jQuery 1.1.2, whereas jQuery has
moved all the way on to jQuery 1.2.1, so it’s five versions behind (and hasn’t
been updated at the time of this writing). However, the library hasn’t
changed that drastically in the last five versions, so the Visual jQuery docu-
mentation is still relevant. After you’ve been using jQuery for a month or so,
you won’t need Visual jQuery because you’ll know exactly where everything
is within the official documentation.

Getting started with jQuery
After you download jQuery, you’re ready to go. No installation or compila-
tion is required.

You can place jQuery in any directory you wish, but since you will frequently
use jQuery with AJAX and PHP, it makes sense to place jQuery somewhere in
your main server path, which is usually under xampp/htdocs. (PHP and
AJAX only work through the server, which requires all files to be in this
path.) Look at Book VIII, Chapter 1 for more information on configuring your
server.

Figure 2-2:
Visual
jQuery is a
useful
documen-
tation
system for
jQuery.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 743

Introducing jQuery744

Copy the library you downloaded from the jQuery Web site into the direc-
tory you’ll be using for this chapter’s Web site examples.

Including the library
You include the library just like you would any other JavaScript code:

<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”>
</script>

This is a special variation of the script tag introduced in Book IV. This tag
is different because rather than including script directly, the script is loaded
from the indicated JavaScript file.

Including the JavaScript code does increase page-loading times for your
users, so don’t include the jQuery library if you don’t intend to use it. The
gzip version of the library is quite small. It takes as long to download as a
small image does.

Hello World, jQuery-style
The best way to understand any technology is to put it in action. Figure 2-3
shows a jQuery version of the famous Hello World program.

Figure 2-3:
This page
uses jQuery
and AJAX to
display a
simple
greeting.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 744

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Introducing jQuery 745

If you have looked over Chapter 1 of this minibook, you know that AJAX calls
can be used to insert text into your pages. You also know that AJAX requires
a little bit of work to get working correctly. The jQueryHello.html page
uses jQuery to make AJAX incredibly easy. Here’s the code:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>jQueryHello.html</title>
<script type = “text/javascript”

src = “jquery-1.2.3.min.js”></script>

<script type = “text/javascript”>
//<![CDATA[
$(document).ready(getAJAX);

function getAJAX(){
$(“#output”).load(“hello.txt”);

}
//]]>

</script>

</head>

<body>
<div id = “output”></div>

</body>
</html>

This code has a number of interesting features:

✦ It imports jQuery. The first script tag imports the jQuery library.
<script type = “text/javascript”

src = “jquery-1.2.3.min.js”></script>

✦ It contains regular a JavaScript section. The second pair of script
tags contains the actual JavaScript code. I describe the code in detail in
the section called “Coding with jQuery” later in this chapter.

Aptana’s easy setup
If you’re using Aptana, you don’t have to set up
the library. Simply start a new project; to do so:

1. Choose Ajax Projects ➪Ajax Library
Project.

2. Save your project with an appropriate
name.

3. Choose jQuery as your Ajax library.

A sample jQuery page is generated that you
can use as reference for using or including the
jQuery library. (Aptana calls this subdirectory
lib and places jQuery in yet another subdi-
rectory called jQuery.)

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 745

Introducing jQuery746

<script type = “text/javascript”>
//<![CDATA[
$(document).ready(getAJAX);

function getAJAX(){
$(“#output”).load(“hello.txt”);

}
//]]>

</script>

✦ It has an empty div named output. This element will contain text
extracted from a file called hello.txt after the document runs.

<div id = “output”></div>

✦ The actual greeting is not in this file. When you run this program, you’ll
see a greeting, but the text of that greeting is not in this page. It will be
loaded into the output div with an AJAX call.

Coding with jQuery
The JavaScript code in this section illustrates several primary features of
jQuery.

//<![CDATA[
$(document).ready(getAJAX);

function getAJAX(){
$(“#output”).load(“hello.txt”);

}
//]]>

Here’s how it works:

1. Place code in a CDATA section.

Like all JavaScript code, this example should go inside a CDATA block to
ensure the XHTML validator doesn’t try to check this code as XHTML.

2. Specify a function to trigger when the document is ready.

Most jQuery code is designed to run as soon as the page is finished load-
ing. The $(document).ready() syntax means “when the document is
ready, run the following function.” In this case, I want to run the
getAJAX function as soon as the document has finished loading.

$(document).ready(getAJAX);

3. Create a function.

Use an ordinary JavaScript function to perform the AJAX call.
function getAJAX(){

$(“#output”).load(“hello.txt”);
}

4. Identify the output div.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 746

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Putting jQuery to Work 747

jQuery has a great feature for working with parts of the page. It uses most
of the same selectors you’re already familiar with in CSS. $(“#output”)
is shorthand for document.getElementById(“output”). See the sec-
tion called “Selecting elements in jQuery” for more on how to selector
elements.

$(“#output”).load(“hello.txt”);

5. Load a file into the div using AJAX.

The load() function sets up an AJAX connection with the specified file
or program and loads the results into the indicated element. In this case,
I want to load the contents of the hello.txt file into the output div.

$(“#output”).load(“hello.txt”);

If you compare this code to the AJAX code in Chapter 1 of this minibook, you
can see right away that jQuery makes AJAX much simpler. If that was all
jQuery did, that would be exciting enough. jQuery has a lot more surprises
up its sleeve.

Putting jQuery to Work
jQuery is fairly straightforward and easy to use. There are just a few con-
cepts you need to know to get you started:

✦ The jQuery node object

✦ Component selection

✦ The enhanced event mechanism

The key to jQuery is the jQuery object. This is a special object that jQuery
uses to describe any XHTML element. It works a little bit like the classic

What if it isn’t working?
If the test page doesn’t work, try these solutions:

� Did you include the jQuery file correctly?
The most common error is misspelling the
jQuery library name.

� Is the jQuery library where you actually
told the page it’d be? Make sure the library
is where you say it is.

� Is the correct version being used? The
minified version will usually work, but, if it
doesn’t, try one of the other versions.

� Is JavaScript working at all? Try some
JavaScript code that doesn’t rely on jQuery.
It’s possible that JavaScript is turned off in
your browser or you’ve made a fundamental
JavaScript error. (Don’t feel bad, I still do
that.)

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 747

Putting jQuery to Work748

getElementById found in ordinary JavaScript, but the jQuery approach
builds a more interesting and capable object around each element.

✦ Any XHTML element can become a jQuery object. You can turn any
part of an XHTML page into a jQuery object.

✦ Multiple selection options. You determine which XHTML element you
want to turn into a jQuery object using the same general rules as selec-
tion in CSS. That is, you can identify all the objects of a specific type, all
the objects with a specific class, or an object with a particular ID.

✦ jQuery objects have methods. Once you have a jQuery object, you can
tell it to do things. jQuery objects have many useful methods which
allow you to manipulate them on the fly, add new event handlers, ani-
mate them, load AJAX content, and much more.

✦ jQuery events can be chained. Each jQuery method returns another
jQuery object, so you can chain your commands together (write a com-
plex command that does several things to one element in one line).

Most of jQuery’s functionality is handled in the following format:

$([component selector]).function([optional function
variables]);

Selecting elements in jQuery
If you want a JavaScript program to interact with part of your Web page,
you have to somehow select the element from the DOM (Document Object
Model) hierarchy. The most common way to do this in plain JavaScript is
with code like this:

var myThing = document.getElementById(“elementId”);

jQuery allows you to do the same thing in a much shorter syntax.

var myThing = $(“#elementId”);

Here’s how this line works:

1. Create a JavaScript variable.

You can place a jQuery object in an ordinary JavaScript variable.

2. The dollar sign indicates a jQuery object.

Use the dollar sign symbol followed by a pair of parentheses to indicate
you are constructing a jQuery object.

3. Use a CSS-style selector to indicate which object you are referring to.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 748

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Putting jQuery to Work 749

In CSS syntax, you can use #myThing to indicate an element with the
myThing ID. You can also use p to indicate all paragraphs, or .myClass
to indicate all elements with the myClass class defined.

4. The resulting object can do more than a regular DOM object.

Because the $ function creates a special jQuery object, your resulting
variable can do anything jQuery objects can do.

The jQuery code is shorter and easier to read, is more flexible, and creates a
more powerful object than the JavaScript original.

Selecting all elements of a specific type
You may find that you want to do something interesting with all the elements
of a particular type of tag. As an example, look at the modList.html pro-
gram in Figure 2-4.

Although there is a border element around the list, the page has no CSS! The
border was added dynamically through jQuery.

There’s another surprise: Click on any list item, and the contents of that item
appear in a dialog box, as shown in Figure 2-5.

Figure 2-4:
Each ele-
ment of this
list has a
border.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 749

Putting jQuery to Work750

These features can be added in plain JavaScript, but they would be tedious.
jQuery makes it very easy to manipulate all the elements of a particular type.
Here’s the code for modList.html:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>modList.html</title>

<script type = “text/javascript”
src = “jquery-1.2.3.min.js”></script>

<script type = “text/javascript”>
//<![CDATA[
$(document).ready(modifyListItems);

function modifyListItems(){
var items = $(“li”);
items.css(“border”, “1px red solid”);
items.click(sayValue);

} // end modifyListItems

function sayValue(){
alert($(this).html());

} // end sayValue

//]]>

Figure 2-5:
The list
items all
now have
a click()
method.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 750

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Putting jQuery to Work 751

</script>
</head>

<body>
<h1>Show items</h1>

uno
dos
tres
quatro
sinco

</body>
</html>

The overall structure isn’t too hard to see:

✦ There is no CSS style. No internal or external CSS is defined for this
page. Any CSS is generated dynamically by the JavaScript/jQuery code.

✦ The XHTML document contains a list. For this example, I add some
functionality to all the li elements on the page, but I could just as
easily add functionality to any other element — all p tags or headers,
for example.

✦ The jQuery library is included. The jQuery library adds the functional-
ity required for this project.

✦ The modifyListItems() method is called when the document is
ready. Like most jQuery programs, much of the action happens once the
page is ready for processing. In this case, I call the modifyListItems()
method as soon as the DOM object is ready. (See the upcoming section,
“Modifying the list items,” for details on how to write this function.)

✦ The sayValue() method will be used to indicate the text associated
with a specific element. This function is used to output the value of an
element. Its use is explained in the next section.

Modifying the list items
The main purpose of the jQuery code in this page is to illustrate how to
change the appearance and behavior of all instances of a particular element
(in this case, all li elements).

function modifyListItems(){
var items = $(“li”);
items.css(“border”, “1px red solid”);
items.click(sayValue);

} // end modifyListItems

function sayValue(){
alert($(this).html());

} // end sayValue

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 751

Putting jQuery to Work752

Here’s how it works:

1. Create a jQuery object called items.

Use the $(“li”) selector to refer to every li element on the page. All
li items will now be encased in a special variable called items.

var items = $(“li”);

2. Add a CSS style to items.

The css() function lets you apply a CSS style to all the elements associ-
ated with this jQuery object. The CSS style requires two parameters: a
style rule and its associated value. In this case, I apply a thin red border
to all list items.

items.css(“border”, “1px red solid”);

3. Add a click event to items.

The click() method allows you to call a specified function whenever
any element in the items object is clicked. In effect, this adds an event
handler to all the list items with one line of code. In this particular case,
I run the sayValue() function if any li is clicked.

items.click(sayValue);

Note that when I called the sayValue() function from within the jQuery
click events, I left off the parentheses. It won’t work with the parentheses.

4. The sayValue() function returns the text associated with the current
element.

$(this) refers to the current element. The .html() function returns
the code associated with that item. In the case of the li elements, the
text of the li will be repeated.

function sayValue(){
alert($(this).html());

} // end sayValue

You don’t have to call an outside function from your event if you don’t want
to. If you know for sure that the event on the element in question is the only
place you’ll be doing whatever it is you’ll be doing, you can simply insert the
function right there during the event bind:

$(“#clickButton”).click(function(){
//insert your functionality here

});

You can use ordinary JavaScript code to achieve all these effects, but once
you understand how to use jQuery, you’ll find it extremely easy to manipu-
late all the elements of a specific type in your page.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 752

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Putting jQuery to Work 753

Selecting elements by class name
Often you’ll want to perform some sort of task with all the elements having a
specific class name. It’s surprising that JavaScript doesn’t have an easy way
to do this. Fortunately, jQuery overcomes this oversight quite easily. Figure 2-6
illustrates with a simple program called showSurprise.html.

Some of the page elements are hidden when the page is initially loaded.
When you click on the indicated heading, these hidden elements are
revealed, as shown in Figure 2-7.

jQuery makes it quite simple to hide and show page elements. In this case,
all the elements of the surprise class are hidden when the page loads, and
revealed when the user clicks on the indicated h2 element.

The code reveals all:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>showSurprise.html</title>
<script type = “text/javascript”

src = “jquery-1.2.3.min.js”></script>

Figure 2-6:
The page
looks
simple —
click for a
surprise.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 753

Putting jQuery to Work754

<script type = “text/javascript”>
//<![CDATA[
$(document).ready(setupTrigger);

function setupTrigger(){
$(“.surprise”).hide();
$(“.trigger”).click(showSurprise);

} // end setupTrigger

function showSurprise(){
$(“.surprise”).show();

} // end showSurprise

//]]>
</script>

</head>

<body>
<h1>Show Surprise</h1>
<h2 class = “trigger”>

Click me to see hidden parts of the page
</h2>
<p class = “surprise”>

Surprise! Now I’m visible!
</p>

<h2 class = “surprise”>Isn’t jQuery cool?</h2>
</body>

</html>

Figure 2-7:
The hidden
features are
revealed.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 754

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Putting jQuery to Work 755

Building this program requires a few new jQuery tricks, but nothing terribly
difficult:

1. Import jQuery as usual.

The jQuery library makes the task of identifying elements by class name
much easier than standard JavaScript.

<script type = “text/javascript”
src = “jquery-1.2.3.min.js”></script>

2. Create the XHTML framework.

I use two classes in the XHTML. The trigger class is applied to the h2
element that will make the hidden features appear when clicked. The
surprise class is applied to any element that will begin life hidden and
appear on demand.

<body>
<h1>Show Surprise</h1>
<h2 class = “trigger”>

Click me to see hidden parts of the page
</h2>
<p class = “surprise”>

Surprise! Now I’m visible!
</p>

<h2 class = “surprise”>Isn’t jQuery cool?</h2>
</body>

3. Call the setupTrigger() function when the page is ready.

This function will do all the necessary setup.
$(document).ready(setupTrigger);

4. In setupTrigger(), hide all elements with the surprise class.

The (“.surprise”) selector is used to make a jQuery object contain-
ing all the elements with the surprise class attached. (Check Book II to
see that CSS uses the same technique to indicate class elements.) The
hide() method makes each element of the class invisible. Since this
code is called when the document is ready, the user will not initially see
any surprise elements on the screen.

function setupTrigger(){
$(“.surprise”).hide();
$(“.trigger”).click(showSurprise);

} // end setupTrigger

5. Attach a click event to the trigger class.

The trigger class is selected using the class selection technique. In
this case, the click() method is used to indicate the showSurprise()
method should run whenever the user clicks on an element of the
trigger class.

$(“.trigger”).click(showSurprise);

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 755

Managing Events through jQuery756

6. Show the surprise elements on demand.

When the showSurprise() method is activated, it selects all elements
with the surprise class attached, and makes them visible.

function showSurprise(){
$(“.surprise”).show();

} // end showSurprise

If you prefer, you can use the following variation to make the surprise
elements toggle between visible and invisible:

function showSurprise(){
$(“.surprise”).toggle();

} // end showSurprise

Managing Events through jQuery
You can easily add an event handler to a jQuery object using the click()
method. This is not the only event handler that jQuery recognizes. You can
add the following events to any jQuery object:

✦ Change: The content of the element changes.

✦ Click: The user has clicked on the element.

✦ Dblclick: The user has double-clicked on the element.

✦ Focus: The user has selected the element.

✦ Keydown: The user has pressed a key while the element has the focus.

✦ Hover: The mouse is over the element, but has not been clicked.

✦ Mousedown: A mouse button has been pressed while the element has
the focus.

✦ Select: The user has selected text in a text-style input.

These are the most commonly used events, but not all. Check the jQuery
documentation for other events you can trap.

Using bind to bind events to elements
You can use the jQuery bind function to attach events to elements, as
shown here:

$(“#clickButton”).bind(“click”, changeColors);

When you call a function through the bind event, you can’t include parenthe-
ses after the function to be called.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 756

Book VII
Chapter 2

Im
proving

JavaScript
w

ith jQuery
Managing Events through jQuery 757

Just like when attaching events by their name (see the preceding section),
you can insert your function during the event binding rather than calling an
external function if you want:

$(“#clickButton”).bind(“click”, function(){
alert(“here”);

});

Unbinding
You can unbind event functions from elements if you want:

$(“#rollDiv”).unbind();

This particular version of unbind (with empty parentheses) unbinds all
events attached to the specified element. If there’s a specific function you
want to unbind, you can specify it:

$(“#rollDiv”).unbind(“mouseover”);

If you’ve bound events to an element through some sort of nonspecific bind-
ing (like if you’ve bound events to a whole class or by tag names), attempt-
ing to unbind the event from just one sub-element of the element group
won’t work:

$(“#clickButton”).bind(“click”, function(){
//this does absolutely nothing in this case
$(“#rollDiv”).unbind();

});

//ultimate jQuery bind
$(“*”).mouseover(changeColors);

Check out eventComparrison.php on the CD to see all these examples
side-by-side in working code.

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 757

Book VII: Into the Future with AJAX758

47_186275 bk07ch02.qxp 3/28/08 10:59 PM Page 758

Chapter 3: Animating with jQuery

In This Chapter
� Adding jQuery effects

� Getting familiar with the jQuery user interface

� Working with Interface Elements for jQuery

In this chapter, you work with some slightly more advanced jQuery selec-
tors, as well as discover how to use neat effects and other user Interface

Elements, such as draggable items and custom dialog boxes.

jQuery’s Special Effects
After you’re comfortable with the jQuery library, you can start doing fun
and flashy things that really add a little zing to your Web site. When used
correctly, effects can take your site from an amateur-looking homepage to a
professionally done Web site.

Predefined animations
All the jQuery effects really come down to showing and hiding elements in
slightly different ways. Showing and hiding elements gives you a perfect way
to make custom pop-ups, drop-down navigation menus, and many other
nifty-looking page elements. The effects are broken down into four different
categories:

✦ Show: Make a hidden element appear.

✦ Slide: The element slides into place.

✦ Fade: Change the transparency.

✦ Custom animations: Move the element along a specified path.

The most basic form of showing and hiding elements is done through the
Show effect. Simply indicate the hidden page element you wish to show and
tell it to show itself by entering the following code:

$(“#hiddenElement”).show();

You can hide it again with the hide function:

$(“#visibleElement”).hide();

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 759

jQuery’s Special Effects760

You can indicate the speed at which the element should be shown or hidden,
as well as implement a callback function to be executed after the showing
or hiding is complete. You indicate speed in increments of slow, medium,
fast, or thousandths of a second (1000 = 1 second):

$(“p”).show(1000, anyFunction());

The callback function doesn’t always run when it’s supposed to, and most
of the time, it actually executes before the show or hide, so don’t rely on
this too much. You can skip it, if you prefer:

$(“p”).show(1000);

You can even leave the timing out if you’re okay with the default timing:

$(“p”).show();

With the show() and hide() functions, if you specify a length of time for
the animation to execute, the Slide and Fade effects combine to form one
graceful effect.

All the other effects follow the same format as the Show and Hide effects,
except that with the other elements, you must specify a speed. All the possi-
ble effects are

✦ slideDown: The element appears to slide down into place.

✦ slideUp: The element appears to slide up into place.

✦ slideToggle: The element slides into place if it was invisible or slides
away if it’s currently visible.

✦ fadeIn: The element transitions from transparent to opaque.

✦ fadeOut: The element transitions from opaque to transparent.

✦ fadeTo: This effect requires you to specify not only the speed but the
opacity to stop at.

You can do some really nifty things with these effects. Take a look at Figure 3-1,
which uses special selectors to show the section you hover over and to hide
all other sections:

<head>
<meta http-equiv=”Content-type” content=”text/html; charset=utf-8” />
<title>helloAJAX</title>
<style type=”text/css”>

div{
border: solid black;
border-width: 2px 4px;
padding-left: 15px;
width: 400px;

}

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 760

Book VII
Chapter 3

Anim
ating

w
ith jQuery

jQuery’s Special Effects 761

h2{
text-decoration: underline;

}
</style>

</head>
<body>

<div class=”section” id=”home”>
<h2 id=”homeHeader”>Home</h2>
<p>Welcome to Fake Website Inc. LLC. We hope you find everything you need

here.</p>
</div>
<div class=”section” id=”news”>

<h2 id=”newsHeader”>News</h2>
<p>We have recently added a FAQ section to this page!</p>

</div>
<div class=”section” id=”faq”>

<h2 id=”faqHeader”>FAQ</h2>
<p>Q. Is this a FAQ section?</p>
<p>A. Yes, it most certainly is! Thanks for asking!</p>

</div>
<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<script type=”text/javascript”>

$(“.section p”).hide();

$(“.section h2”).mouseover(function(){
$(“#” + $(this).attr(“id”) + “ ~ p”).slideDown(300);
$(“h2:not(#” + $(this).attr(“id”) + “ ~ p) ~ p”).hide(300);

});
</script>
</body>

Figure 3-1:
The con-
tents of each
box pop up
when you
hover over
the titles.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 761

jQuery’s Special Effects762

Several advanced selector functions are here. The tilde (~) selects all sib-
lings after the specified element. The this keyword specifies the current
element that triggered the function. The :not selector excludes all elements
found by the selector.

After hiding all paragraphs with the class type of “section”, the jQuery
code adds a mouseover event to each “section” header (the h2s). When
this event is triggered, the code finds all paragraph siblings following the
triggering h2 and shows them. It then finds all h2 elements that aren’t the
triggering h2 element and hides the paragraph siblings that follow them.

Custom animations
You can create your own custom effects. Any style that takes a numeric
value can be manipulated through the animate function.

The animate() function takes four values:

✦ Parameters that indicate the elements to be animated.

✦ The intended duration of the animation.

✦ Easing specifies the style of the animation (this requires a plugin).
Easing indicates how an animation will begin and end. Some animations
start slowly to imply the element has mass.

✦ Callback specifies a function to be executed upon completion of ani-
mation for each element.

animate({“width”: “100”}, 1000, “linear”, someFuntion())

CSS selectors are indicated using the standard DOM style, so border width
would be borderWidth. (Check Book IV, Chapter 5 for more on referring to
CSS elements through the DOM.)

Easing has two built-in functions that don’t require plugins: linear and
swing. It appears that swing starts slow, speeds up, and then slows down
again; and linear is steady throughout.

You can specify an absolute value to animate to or add/subtract values
with –= and +=.

This program expands the width of divs when they’re rolled over by the
user. With some clever CSS backgrounds, these functions can turn some
simple HTML and a few lines of JavaScript into a worm race (see Figure 3-2):

<head>
<meta http-equiv=”Content-type” content=”text/html; charset=utf-8” />
<title>animate</title>
<style type=”text/css”>

div{

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 762

Book VII
Chapter 3

Anim
ating

w
ith jQuery

jQuery’s Special Effects 763

background: #FFF url(“worm.gif”) right no-repeat;
width: 50px;
height: 25px;

}
</style>

</head>
<body>

<h1>Worm Race!</h1>
<p>Roll your cursor wildly randomly over the worms to spur them along...</p>
<div></div>
<div></div>
<div></div>
<p>Rolled over worms: 0 times.</p>

<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<script type=”text/javascript”>

var counter = 0;

function countUp(){
counter++;
$(“#counter”).text(counter);

}

$(“div”).mouseover(function(){
$(this).animate({“width”: “+=10”}, 500, “linear”, countUp());

});
</script>
</body>

Figure 3-2:
It’s a worm-
racing
page! Who
doesn’t love
worm
racing?

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 763

Interfacing with the Official UI Plugin764

Beyond these animations, there are also many plugins available on the
jQuery Web site. Also, a few more effects functions allow you to access the
animation queue, as well as to completely stop animations in their tracks.

Interfacing with the Official UI Plugin
jQuery’s official user interface (UI) library is somewhat incomplete. As
of this writing, many of the demos on the Web site don’t work. Probably
the most promising of them all seems to be the draggable() and
droppable() functions.

I describe how to use the drag and drop features, as well as the custom
dialog boxes and table sorting, but then I move on to the much more robust,
well-documented, and coded plugin — Interface Elements (see the section
“Interface Elements for jQuery,” later in this chapter).

Dragging and dropping
If you were building an online store, it’d be nice to allow the user to pick
what item he wanted and drop it into the shopping cart. You could do this
with jQuery through the draggable and droppable UI functions.

The draggable() function
You need the ui.mouse.js, ui.draggable.js, and ui.draggable.
ext.js libraries to implement draggable functionalities. You should down-
load these from http://ui.jquery.com and include them in your file,
like this:

<script type=”text/javascript” src=”inc/ui.mouse.js”></script>
<script type=”text/javascript” src=”inc/ui.draggable.js”></script>
<script type=”text/javascript” src=”inc/ui.draggable.ext.js”></script>

Making an element draggable is as easy as specifying an element(s) with a
selector and then making it draggable:

$(“.dragMe”).draggable();

You can specify many different things when making an element draggable.
The full list of these options is available at http://docs.jquery.com/
UI/Draggables/draggable#options.

Options are placed inside the parentheses after the draggable function call
and are separated by commas:

$(“.draggableElements”).draggable({
opacity: .5,
start: function(){

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 764

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interfacing with the Official UI Plugin 765

$(“#statusText”).append(“dragging Item”);
},
stop: function(){

$(“#statusText”).append(“dragged Item”);
$(this).draggableDisable();
$(this).fadeOut(400);

}
});

The helper option is very commonly used. This allows you to specify
another element entirely as the element that attaches to the cursor when
you begin dragging the target element. This option also allows you to clone
the target element and use that as the object being dragged:

$(“.dragMe”).draggable({
helper: “clone”,

});

You can also create an HTML element on the fly and return that to be used
as the helper:

$(“.dragMe”).draggable({
helper: function() {

return $(document.createElement(‘div’)).css({
‘background’: ‘url(worm.gif)’,
‘width’: ‘50px’,
‘height’: ‘25px’

}).appendTo(“body”)[0];
}

}

Dropping with the droppable() function
The counterpart to draggable is droppable. If you don’t have a draggable
element, there’s no point in having a droppable one.

With droppable, you specify the element to be made droppable, as well as
which draggable elements it’ll accept:

$(“.dragTarget”).droppable({
accept: “.dragMe”,

});

Just like draggable, droppable has many different options you can spec-
ify. Among the most useful of these is the drop option, which fires twice
each time something is dropped into it or fires once if only an object’s clone
is dropped into it. The way to fix this is to set the greedy option to True:

$(“.dragTarget”).droppable({
accept: “.dragMe”,

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 765

Interfacing with the Official UI Plugin766

greedy: true,
drop: function(){

alert(“dropped!”);
}

});

For a full list of options, see http://docs.jquery.com/UI/Droppables/
droppable#options.

Playing the Catch the Worms game
Listing 3-1 shows a little game that makes three worms crawl out onto the
screen and allows you to drag and drop them into a bucket (see Figure 3-3).
This sort of drag-and-drop effect would be fine for shopping carts or any
page where you’re adding items to a collection.

Listing 3-1: The Catch the Worms Game
<head>

<meta http-equiv=”Content-type” content=”text/html; charset=utf-8” />
<title>draggable</title>
<style type=”text/css”>

.dragMe{
cursor: move;
position: absolute;
top: 0px;
left: 0px;
background-image: url(“worm.gif”);
width: 50px;
height: 25px;

}

.dragTarget{
position: absolute;
top: 50px;
left: 500px;
width: 100px;
height: 100px;
background: #bbb;
border: 3px inset black;

}
</style>

</head>
<body>

<h1>Worm Catcher!</h1>
<p id=”wormsCaught”>Catch the worms, and place them in the worm bucket.</p>
<div class=”dragTarget” id=”wormBucket”>Worm Bucket. Put Worms Here!</div>
<div class=”dragMe” id=”worm1”></div>
<div class=”dragMe” id=”worm2”></div>
<div class=”dragMe” id=”worm3”></div>

<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<script type=”text/javascript” src=”inc/ui.mouse.js”></script>
<script type=”text/javascript” src=”inc/ui.draggable.js”></script>
<script type=”text/javascript” src=”inc/ui.draggable.ext.js”></script>
<script type=”text/javascript” src=”inc/ui.droppable.js”></script>
<script type=”text/javascript” src=”inc/ui.droppable.ext.js”></script>

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 766

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interfacing with the Official UI Plugin 767

<script type=”text/javascript”>
$(“.dragMe”).each(function(){

$(“#” + this.id).animate({“top”: Math.ceil(Math.random() * 400)},
{duration: 1000, queue: false});
$(“#” + this.id).animate({“left”: Math.ceil(Math.random() * 400)}, {duration:
1000, queue: false});
});

var wormsCaught = 0;
var whichWorm = null;

$(“.dragTarget”).droppable({
accept: “.dragMe”,
greedy: true,
drop: function(){

$(“#” + whichWorm).draggableDisable().appendTo(this).css({“left”:
Math.random() * 50 + “px”, “top”: Math.random() * 75 + “px”});

$(“#wormsCaught”).append(“
You caught a worm!”);

wormsCaught++;

if(wormsCaught == 3){
$(“#wormsCaught”).append(“
You caught all of the

worms!”);
}

}

});

$(“.dragMe”).draggable({
start: function(){

whichWorm = $(this).attr(“id”);
}

})
</script>
</body>

Sorting with the table sorter
jQuery comes with a table sorter that helps you enhance your XHTML
tables.

The tablesorter() function can be attached to any table to make it
sortable by its header rows. It requires the inclusion of two extra files, the
JavaScript plugin, and a CSS theme.

Making a basic table
The code for making a table sortable is surprisingly short and concise:

$(“#tableToBeSorted”).tablesorter();

Specify the element for the table sorter to be applied to and call the function.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 767

Interfacing with the Official UI Plugin768

You need to include the library and theme for this to work properly:

<link rel=”stylesheet” href=”inc/themes/flora/flora.all.css”
type=”text/css” media=”screen” title=”Flora (Default)”>

<script src=”inc/ui.tablesorter.js”></script>

If you have multiple tables on the page, you can apply the tablesorter()
function to the tablesorter class.

Your table has to have the class of tablesorter in order for the theme to
be applied to it.

See Listing 3-2 for an example of two sortable tables. A sortable table is
shown in Figure 3-4.

Sorting options
There are currently 11 different options for the tablesorter() function.
Two of them are pretty useful on a regular basis. The empty tablesorter()
function call does its job pretty well so that you probably won’t even need
options, but these two are actually pretty useful.

Figure 3-3:
In this
program,
you pick up
the worms
and drop
them on
a div.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 768

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interfacing with the Official UI Plugin 769

sortList
The sortList option allows you to specify columns to be sorted by default.
You pass this option a two-dimension array (multidimensional arrays are
described in Chapter 5 in Book V):

$(“.tablesorter”).tablesorter({
sortList: [[0, 1], [1, 1], [2, 0]]

});

The first number in each array specifies the column — starting with zero
(0) for the first column — you want the sort to be forced on. The second
number can be either zero (0) or one (1) and specifies the sort direction.
The sort direction can be set to either 0 for ascending or 1 for descending.

Make sure to use camel-casing for this option.

sortForce
The sortForce option’s functionality is a little bit more subtle. It prevents
the table from appearing to have a random secondary sort when the user’s
sorting. When applied to a column, it forces that column to sort secondarily
when the user sorts another column.

Figure 3-4:
Click on
any table
heading to
sort by that
value.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 769

Interfacing with the Official UI Plugin770

For example, if you put a sortForce on the last name column and the user
sorted by the first name column, a secondary sort would be placed on the
last name column so that if you had eight people with the same first name,
their last names would be in alphabetical order:

$(“.tablesorter”).tablesorter({
sortForce: [[0, 1], [1, 1], [2, 0]]

});

This options syntax is nearly identical to sortList, and the sub-arrays
function the same way.

This function is a little buggy. Be careful when you use it to make sure that
it’s functioning as you expect. Sometimes, the force overrides the user-
selected sort.

Listing 3-2: Two Tables Sorted by the Table Sorter
<table id=”scrubsCharacters” class=”tablesorter”>

<thead>
<tr>

<th>First Name</th>
<th>Last Name</th>
<th>Age</th>
<th>Title</th>

</tr>
</thead>
<tbody>

<tr>
<td>Robert</td>
<td>Kelso</td>
<td>65</td>
<td>Chief of Medicine</td>

</tr>
<tr>

<td>John</td>
<td>Dorian</td>
<td>32</td>
<td>Attending physician</td>

</tr>
<tr>

<td>Christopher</td>
<td>Turk</td>
<td>31</td>
<td>Attending surgeon</td>

</tr>
<tr>

<td>Elliot</td>
<td>Reid</td>
<td>30</td>
<td>Private Practice Physician</td>

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 770

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interfacing with the Official UI Plugin 771

</tr>
</tbody>

</table>

<table id=”officeCharacters” class=”tablesorter”>
<thead>

<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Age</th>
<th>Position</th>

</tr>
</thead>
<tbody>

<tr>
<td>Michael</td>
<td>Scott</td>
<td>43</td>
<td>Regional Manager of Dunder Mifflin Scranton</td>

</tr>
<tr>

<td>Pam</td>
<td>Beesly</td>
<td>28</td>
<td>Receptionist</td>

</tr>
<tr>

<td>Jim</td>
<td>Halpert</td>
<td>28</td>
<td>Sales Representative</td>

</tr>
</tbody>

</table>
<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<link rel=”stylesheet” href=”inc/themes/flora/flora.all.css” type=”text/css”

media=”screen” title=”Flora (Default)”>
<script src=”inc/ui.tablesorter.js”></script>
<script type=”text/javascript”>

$(“.tablesorter”).tablesorter({
sortList: [[0, 1], [1, 1], [2, 0]]

});
</script>

Creating dialog boxes
Custom dialog boxes have long been a desire for Web developers. Who
wants that nasty alert box that comes standard with browsers? With the
dialog function, you can turn any page element (normally a div) into a
dialog box.

Figure 3-5 shows a custom dialog box.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 771

Interfacing with the Official UI Plugin772

Basic dialog box
The basics you need to know about the dialog function are the creation
function, the open function, and the close function. With these three func-
tions, you can completely replace the standard browser dialog box and alert
pop-ups.

For the dialog() function, in addition to including the jQuery library, you
need to include the dialog, the dimensions, the mouse, the draggable and
resizable libraries, and a theme style package:

<link rel=”stylesheet” href=”inc/themes/flora/flora.all.css”
type=”text/css” media=”screen” title=”Flora (Default)”>

<script type=”text/javascript”
src=”inc/jquery.dimensions.js”></script>

<script type=”text/javascript”
src=”inc/ui.dialog.js”></script>

<script type=”text/javascript”
src=”inc/ui.resizable.js”></script>

<script type=”text/javascript”
src=”inc/ui.mouse.js”></script>

<script type=”text/javascript”
src=”inc/ui.draggable.js”></script>

Figure 3-5:
This dialog
box was
created
from a
special div
in the page.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 772

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interfacing with the Official UI Plugin 773

dialog()
Making a custom dialog box is as simple as creating a div, giving it the class
specified by your theme (default is flora), giving it a title, and then calling
the dialog() function on it:

<div id=”alertBox” class=”flora” title=”Alert!”>
I’m a custom alert box!

</div>

<script type=”text/javascript”>
$(“#alertBox”).dialog();

</script>

Don’t forget to apply the correct class to the div. Also, make sure you put the
title in there, or else the title bar of the dialog box will be empty.

dialogClose()
This is how you close the dialog box:

$(“#yourDiv”).dialogClose()

You can call this from an event within another block of JavaScript or jQuery,
or even just through a button:

<div id=”alertBox” class=”flora” title=”Alert!”>
<p>I’m a custom alert box!</p>
<p><button id=”hideAlert” type=”button”>Ok</button></p>

</div>
$(“#hideAlert”).click(function(){$(“#alertBox”).dialogClose()

});

You might also consider calling this function on the dialog box immediately
after you create the dialog so that it doesn’t begin visible to the user.

Use the button option to specify OK, Cancel, Save, and other buttons.

dialogOpen()
You trigger the appearance of the dialog box with the following line:

$(“#yourDiv”).dialogOpen()

You can call this from an event within another block of JavaScript or jQuery,
or even with a button:

<p><button id=”showAlert” type=”button”>Show Alert!
</button></p>

$(“#showAlert”).click(function(){$(“#alertBox”).dialogOpen()}
);

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 773

Interfacing with the Official UI Plugin774

Dialog box options
jQuery provides many options for customizing your dialog box. A few of
them are as follows.

buttons
With the buttons option, you can create custom buttons for your dialog box:

$(“#alertBox”).dialog({
buttons: {

‘ok’: function(){$(“#alertBox”).dialogClose();},
‘cancel’:

function(){$(“#alertBox”).dialogClose();}
}

});

As of this writing, there’s a bug with the buttons option. You’re supposed
to be able to use this keyword instead of having to re-specify the div.
Perhaps this will be fixed soon.

draggable
With the draggable option, you can specify with a Boolean (True or
False; don’t surround with quotes) whether the dialog box can be moved
around. As of this writing, this option doesn’t actually work, though, but at
least it defaults to True.

position
This function allows you to specify a position where your dialog box pops
up. It’ll take ‘center’, ‘top’, ‘right’, ‘bottom’, or ‘left’ values and
allows you to choose where the dialog box should appear on the page:

$(“#alertBox”).dialog({
position: ‘top’

});

Other options
There are many other options for the dialog box, including:

✦ height

✦ maxHeight

✦ minHeight

✦ maxWidth

✦ minWidth

✦ resizable

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 774

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interface Elements for jQuery 775

✦ title

✦ width

In addition to these, there are also callback methods.

Listing 3-3 shows a page that allows you to click a button to view a custom
dialog box, which can be closed by clicking either OK or Cancel.

Listing 3-3: A Custom Dialog Box
<div id=”alertBox” class=”flora” title=”Alert!”>

<p>I’m a custom alert box!</p>
</div>
<p><button id=”showAlert” type=”button”>Show Alert!</button></p>
<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<link rel=”stylesheet” href=”inc/themes/flora/flora.all.css” type=”text/css”

media=”screen” title=”Flora (Default)”>
<script type=”text/javascript” src=”inc/jquery.dimensions.js”></script>
<script type=”text/javascript” src=”inc/ui.dialog.js”></script>
<script type=”text/javascript” src=”inc/ui.resizable.js”></script>
<script type=”text/javascript” src=”inc/ui.mouse.js”></script>
<script type=”text/javascript” src=”inc/ui.draggable.js”></script>

<script type=”text/javascript”>
$(“#alertBox”).dialog({

height: 200,
position: ‘top’,
buttons: {

‘ok’: function(){$(“#alertBox”).dialogClose();},
‘cancel’: function(){$(“#alertBox”).dialogClose();}

}
});
$(“#alertBox”).dialogClose();
$(“#showAlert”).click(function(){$(“#alertBox”).dialogOpen()});

</script>

Unlike a normal alert box (the kind you build with regular JavaScript), this
dialog box doesn’t actually cancel any action when closed by clicking
Cancel.

Interface Elements for jQuery
When you’re ready to really get into making some swell user interfaces for
jQuery, you might want to move away from the standard effects library and
check out some plugins, like Interface Elements.

You can access Interface Elements’ documentation and demos at
http://interface.eyecon.ro. This is also where you’ll download the
library. Just like with the jQuery standard UI library, clicking the Download
link takes you to a page that allows you to select which UI effects you desire
and then to download the library packages for those effects. You can also

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 775

Interface Elements for jQuery776

just download everything by clicking the link under the Download heading in
the navigation pane on the left side of the page.

Download everything as one big package and unzip it into the directory
you’re building your site from. All you have to do to implement these
elements for any page, no matter which effect you want, is include the
interface.js file in your page, as shown here:

<script type=”text/javascript” src=”inc/interface1.2/
interface.js”></script>

Make sure the src attribute in your <script> tag points to the location of
your interface.js file. I placed mine under inc/interface1.2/, but
you may have placed yours somewhere else.

Getting to know the Interface Elements
Most of the Interface Elements functions follow the same sort of structure.
I’ll take a bit of an in-depth look at the sorting function and then give you an
overview of two other major ones.

Super dragging and dropping with the sortables interface
The sortables interface is extremely easy to implement. It’s sort of a super
drag-and-drop. Like most of the Interface Elements, a basic function can take
options and trigger an event the elements controlled by the event change.

Basic sorting
The sortable interface requires that you have containers (which are drop-
pables) and items (which are draggables). After you’ve set up these, you
specify the container class as Sortable and then specify the item class as
the element that the container class can accept:

<div class=”container”>
<p>container 1</p>
<div class=”item”>the item</div>

</div>
<div class=”container”>

<p>container 2</p>
</div>
<script type=”text/javascript”>

$(‘.container’).Sortable({
accept: ‘item’

});
</script>

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 776

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interface Elements for jQuery 777

Options
Most of the Interface Elements functions take options. A few of the major
options for the sortables function are as follows:

✦ accept: This one’s required. Use it to specify the class names of the
sortable items.

✦ activeclass: Use this to specify the CSS class to be used for all the
valid drop points of a sortable item whenever an item is being dragged
for sorting.

✦ hoverclass: Use this to specify the CSS class to be used for a valid
drop point when a sortable item is hovering over it while being dragged
for sorting.

✦ helperclass: Use this to specify the CSS class to be used for the exact
spot a sortable item will be placed in when it’s being dragged for sorting.
This is sort of like a target area; it shows exactly where the item would
fall if you released it at any moment during a drag.

✦ opacity: This should be a number between zero (0) and one (1), where
1 is completely visible and 0 is completely transparent. For instance, .5
would be half invisible and would look ghostlike.

✦ ghosting: This is a Boolean. If you set it to True, the current drop
target for the sortable item will contain a copy of the element being
dragged. Be careful when using this because it’s buggy and may not
work properly. When I used it, upon releasing my dragged item, it and its
ghost both disappeared.

✦ containment: This confines the element to its parent container. The
only acceptable value here is ‘parent’. Its implementation is slightly
buggy.

✦ axis: This confines the element’s draggability to one axis or the other. It
accepts ‘vertically’ or ‘horizontally’. Although it confines the
element being dragged to only one axis, it can’t confine your mouse, and
therefore, it doesn’t really change the functionality of where you can
drop the element — it only appears to. Your mouse cursor decides
where the element gets dropped.

Don’t forget to surround the string values for the options with quotes (either
single or double are accepted). It’s also best to remember to separate
options with commas (,) instead of semi-colons (;).

If your active, hover, and/or helper classes seem to not be working,
check the order of your rules in your style sheet. Because they cascade, if
you put the active rule after the hover rule, the hover rule will be over-
written by the active rule and thus be rendered useless. This can be

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 777

Interface Elements for jQuery778

extremely frustrating if you don’t realize what’s going on because it just
silently fails. So, make sure you place the rules in the order that the options
are written above and in the documentation. (This is the order: normal
base rule, active, hover, and finally helper.)

Note that these options are not camel-cased. So, helperclass really is
helperclass and not helperClass. Camel-casing will break these
options.

onchange
In order for this to be useful as a user input device, you have to be able to
detect which elements were changed. Sortable allows you to detect this with
the onchange option.

The onchange option returns an array of the container elements that were
changed by their ID.

Make sure you have a unique ID for every container and item. Otherwise,
this option won’t work. It won’t give you any errors if you don’t have IDs; it
just won’t do anything. This is the worst kind of failure because it’s not
immediately apparent that it isn’t working, and it’ll leave you very frustrated.

The basic onchange function looks like this:

onchange: function(arrayOfChangedContainers){}

You can name the function arrayOfChangedContainers or anything you
want. In the documentation, they call the function “ser”. This is an array of
the container elements that were changed. Normally, this array will have a
length of either one or two because you’ll either be dragging an item from
one container to another or within one container.

You can serialize the container into a $_REQUEST-friendly hash through the
$.SortSerialize() function in conjunction with the .hash() function:

onchange: function(ser){
var changedItems = “”;
for(var i=0; i<ser.length; i++){

changedItems += ($.SortSerialize(ser[i])).hash;
changedItems += “&”

}
alert(changedItems);

}

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 778

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interface Elements for jQuery 779

The $.SortSerialize() and .hash function combination returns a string
containing the container element’s IDs, as well as the item element’s IDs. It’ll
look something like this:

container1[]=item1&container2[]=item3&container2=item2&

This allows you to send the new order for each element to the server for
saving. Just replace the alert with a call to an AJAX function that saves the
new order. See Chapter 1 and Chapter 4 of this minibook for more on send-
ing, receiving, and processing requests.

Listing 3-4 shows a sample program that allows you to arrange four tasks
over a three-day period. It could easily be expanded to allow for adding
custom tasks and removing unwanted tasks.

Listing 3-4: The Day Planner
<head>

<meta http-equiv=”Content-type” content=”text/html; charset=utf-8” />
<title>sortables</title>
<style type=”text/css”>

.task{
border: 3px dotted #090;
background-color: #AFA;
width: 200px;
padding: 0px 10px;

}

.taskDrag{
border: 3px dashed #900;

}

.day{
border: 2px solid #009;
background-color: #AAF;
width: 250px;
padding: 10px 10px;
float: left;

}

.taskHover{
background-color: #F00;

}
</style>

</head>
<body>
<h1>Day Planner</h1>
<div id=”monday” class=”day”>

<h2>Monday</h2>
<div id=”laundry” class=”task”>

<h3 class=”taskTitle”>Laundry</h3>
<p class=”taskDescription”>Do all of the laundry for the week.</p>

</div>
<div id=”food” class=”task”>

(continued)

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 779

Interface Elements for jQuery780

Listing 3-4 (continued)
<h3 class=”taskTitle”>Make Food</h3>
<p class=”taskDescription”>Make all of the Food for the week and freeze

it.</p>
</div>

</div>
<div id=”tuesday” class=”day”>

<h2>Tuesday</h2>
<div id=”shopping” class=”task”>

<h3 class=”taskTitle”>Grocery Shopping</h3>
<p class=”taskDescription”>Go grocery shopping for the week.</p>

</div>
</div>
<div id=”wednesday” class=”day”>

<h2>Wednesday</h2>
<div id=”randr” class=”task”>

<h3 class=”taskTitle”>R & R</h3>
<p class=”taskDescription”>Sit around, play video games and read.</p>

</div>
</div>

<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<script type=”text/javascript” src=”inc/interface1.2/interface.js”></script>
<script type=”text/javascript”>

$(‘.day’).Sortable({
accept: ‘task’,
helperclass: ‘taskDrag’,
hoverclass: ‘taskHover’,
opacity: ‘.5’,
onchange: function(ser){

var changedItems = “”;
for (var i = 0; i < ser.length; i++) {

changedItems += serialize(ser[i]) + “&”;
}
save(changedItems);

}
});

function serialize(theContainer){
serial = $.SortSerialize(theContainer);
return serial.hash;

}

function save(changedItems){
$.ajax({

type: “POST”,
url: “saveSchedule.php”,
data: changedItems,
success: function(msg){

alert(“Data Saved: “ + msg);
}

});
}

</script>

The day planner is shown in Figure 3-6.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 780

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interface Elements for jQuery 781

See Chapter 4 in this minibook for more on sending and receiving AJAX
requests with jQuery. This program has just enough of a back-end setup to
make it look like it’s working, although it doesn’t really do anything. It could
be easily modified to save to a text file or a database. The current code in
saveSchedule.php, which is just enough to give some sort of meaningful
response, consists of two foreach loops and a print statement:

<?
$i = 1;

foreach($_POST as $day => $task){
foreach($task as $task){

print $i . “) “ . $day . “: “ . $task . “\n”;
$i++;

}
}
?>

See Book V, Chapter 3 for more on request/response processing with PHP
and Book V, Chapter 5 for more on foreach loops.

Every container and item needs to have its own ID. Otherwise, you get subtle
errors without any error messages. It’s possible you could go for quite some
time without realizing you forgot an ID on an element.

Figure 3-6:
The user
can drag the
tasks to a
different
day!

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 781

Interface Elements for jQuery782

Selectables
The selectables function allows you to select items by dragging a box
around them. It can return an array of the selected items that you can use in
an AJAX function to save the chosen items however you wish.

For a more in-depth look at an Interface Elements function, see the “Getting
to know the Interface Elements” section, earlier in this chapter. This is a
basic overview to get you started.

Basic selectables
This function takes a page element (probably a div) and denotes it as being
selectable — the child elements specified by the function’s mandatory
accept option are selectable (see Figure 3-7):

<head>
<style type=”text/css”>

.item{
width: 100px;
height: 100px;
background-color: black;
border: 1px solid white;

}
.selectedItem{

background-color: blue;
border: 1px solid #888;

}
.selectionHelper{

border: 3px double red;
}

</style>
</head>
<body>
<div id=”container”>

<div id=”item1” class=”item”></div>
<div id=”item2” class=”item”></div>
<div id=”item3” class=”item”></div>

</div>
<script type=”text/javascript” src=”inc/jquery-

1.2.1.min.js”></script>
<script type=”text/javascript”

src=”inc/interface1.2/interface.js”></script>
<script type=”text/javascript”>

$(‘#container’).Selectable({
accept : ‘item’,
selectedclass : ‘selectedItem’,
helperclass : ‘selectionHelper’

});
</script>
</body>

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 782

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interface Elements for jQuery 783

Although accept is the only required option, this function appears to not be
working if you don’t specify at least the selectedclass option.

Hold down the Ctrl or Shift key to help with multiple item selection.

Selectables options
The selectables have very few options, as follows:

✦ accept: This option is mandatory. It specifies the classes within the
parent element that are actually selectable.

✦ selectedclass: This might as well be mandatory. It specifies the class
that will be applied to the selected items.

✦ helperclass: This specifies the CSS rule for the box that you use to
select items.

✦ opacity: This specifies the opacity for the box that you use to select
items.

✦ onselect: This is the function that’s called upon selection completion.
It receives an array of the selection elements that can be used to call an
AJAX function, as in the sortables example, above.

Figure 3-7:
These items
can be
individually
selected.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 783

Interface Elements for jQuery784

See http://interface.eyecon.ro/docs/select for more information
about this function.

Making a slider
One of my favorite Interface Elements is the slider. With a little work, it can
function like a radio button group.

For a more in-depth look at an Interface Elements function, see the “Getting
to know Interface Elements” section, earlier in this chapter. This is a basic
overview to get you started.

Basic slider
The basic slider consists of a container element, which functions as the
track that the indicator slides on, and an indicator that slides along the track
(see Figure 3-8). Listing 3-5 shows a sample of a basic slider.

Listing 3-5: The Basic Slider

<head>
<title>slider</title>
<style type=”text/css”>

#track{
top: 20px;
left: 10px;
height: 100px;
width: 20px;
background-color: #00F;

}

.indicator{
height: 25px;
width: 20px;
background-color: black;

}
</style>

</head>
<body>
<div id=”track”>

<div id=”indicator” class=”indicator”></div>
</div>
<script type=”text/javascript” src=”inc/jquery-

1.2.1.min.js”></script>
<script type=”text/javascript”

src=”inc/interface1.2/interface.js”></script>
<script type=”text/javascript”>

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 784

Book VII
Chapter 3

Anim
ating

w
ith jQuery

Interface Elements for jQuery 785

$(“#track”).Slider({
accept: ‘.indicator’,

});
</script>
</body>

You can have multiple indicators on the same track. You can also go horizon-
tal instead of vertical. I suppose you could have a horizontal and vertical
slider, but unless done very carefully, that could be a usability nightmare.

Slider options
Unlike other Interface Elements functions, the slider function’s options do
use camel-casing. Don’t forget to camel case them (onSlide() instead of
onslide()).

The slider has very few options, which are as follows:

✦ accept: This option is mandatory. It accepts a CSS class, indicating the
indicators (what you move along the slider track) inside the slider.

✦ fractions: This is a number (don’t put it inside quotes). This divides
the slider along into fractions based on the number you specify. Note

Figure 3-8:
This item
is a little
slider.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 785

Interface Elements for jQuery786

that it starts counting at 0, so 3 is really 4, 4 is 5, and so on. Think of it as
making however many slices you indicate into the slider.

✦ onSlide: This is a callback function. It executes while you’re sliding the
indicator. It returns four parameters belonging to the indicator at any
given moment:

• x-percentage

• y-percentage

• x-coordinate

• y-coordinate

✦ onChange: This is a callback function. It executes when you stop sliding
the indicator. It returns the final result of the same four parameters
returned on the onSlide() function.

✦ values: This allows you to specify where the indicator(s) should start
on the slider bar. It accepts an array of arrays (one inner array for each
indicator’s start position):

[[20,20],[50,100]]

✦ restricted: This requires a Boolean value (don’t surround it with
quotes). If restricted is set to True and there are multiple indicators,
the indicators won’t pass each other on the slider bar.

See http://interface.eyecon.ro/docs/slider for more information
about this function.

48_186275 bk07ch03.qxp 3/28/08 11:00 PM Page 786

Chapter 4: Sending and
Receiving Data

In This Chapter
� Summarizing XML

� Generating an XML response

� Traversing XML with JavaScript

� Introducing JSON

AJAX can be used to send information to the client from the server.
Elsewhere in Book VII, I concentrate on using complete XHTML code

that can be integrated directly into the page. There’s another powerful way
to work with AJAX. You can pass data around in a specialized format and let
the JavaScript/jQuery code manipulate the data on the client. The data is
usually packed in XML format, but JSON is an increasingly popular tech-
nique. Both systems are introduced in this chapter.

Working with XML
eXtensible Markup Language (XML) is an extremely useful tool for sending
and receiving data. XML data is easy to read and understand, even by
humans. It’s not too difficult to write programs that can read XML data, and
the structure of the data is preserved by the tags. When you create your
own XML format, you define custom tags to describe the data as follows:

<person>
<name>

<first>John</first>
<middle>L</middle>
<last>Doe</last>

</name>
<age>25</age>
<gender>Male</gender>

</person>

XML is nothing new if you’ve read any other part of this book. XHTML is
simply a form of HTML that also follows XML rules. The new idea is this:
Rather than having to conform to somebody else’s list of tags, you can
invent your own and transmit information using your custom XML syntax.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 787

Working with XML788

These tags can be parsed with JavaScript and generated with PHP fairly easily.

Every XML element must have an opening and closing tag. (This is just like
the XHTML rule.)

XML is a little bulky. Just look at the previous example: You have to use all
those tags just to get that little bit of data back to the browser. See the sec-
tion “Introducing JSON,” later in this chapter, for an alternative to XML.

Generating XML with PHP
When you send an AJAX request to the server, the server then generates a
response. This response can be plain text, an HTML fragment, or some code
generated by a PHP program. If you’re using PHP, you have to decide whether
that response is an XML response or a plain XHTML response. If you want
PHP to generate XML, you have to set the content type of the response.

Setting the content type
The first thing you need to do to send an XML response is to set the content
type in your response header. When the browser receives the response, it
checks the header to see what kind of data you’re sending so that it can have
a better idea of what to do with the data. Here’s how you let the browser
know that you’re sending XML:

<? header(‘Content-Type: text/xml’); ?>

You must set the content type at the beginning of your response generation
page. If you don’t set the content type explicitly, the content type will be
automatically set to text/html. The browser will try to read the data as
XHTML, when the data should be read as XML.

If you forget to set the content type, you’ll get weird errors in Internet
Explorer. Firefox works just fine whether or not you set the content type.

The XML declaration
Besides specifying your content type in the header, you also need to declare
your document type as XML in the text of the response. The tag for declaring
the document type as XML is sort of like the tag for declaring the document
type as HTML:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

The document type declaration for XML is similar to the one for XHTML
because XHTML is a subset of XML

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 788

Book VII
Chapter 4

Sending and
Receiving Data

Working with XML 789

This xml declaration specifies the XML version as 1.0 and the encoding as
UTF-8, and that the XML document is a standalone, with no external DTD
(document type declaration). You don’t need to worry about what all this
means because it never changes throughout all the XML documents you gen-
erate. Just copy and paste this into your header.

Note the PHP-friendly <? ?> tags surrounding the XML declaration. Those
make it impossible to place this tag inside a PHP document without putting
it inside a print or echo statement surrounded with single quotes (‘):

print ‘<?xml version=”1.0” encoding=”UTF-8” standalone=
”yes”?>’;

See Book V, Chapter 2 for more on print and echo statements in PHP.

Populating the XML document with data
Generating your XML with PHP is exactly like generating text with PHP. Use
print and echo statements to print your XML response to be sent back to
the browser:

print <<<HERE
<person>

<name>
<first>$fname</first>
<middle>$mname</middle>
<last>$lname</last>

</name>
<age>$age</age>
<gender>$gender</gender>

</person>
HERE;

See Book V, Chapter 2 for more on print and heredocs with PHP.

I can’t stress this enough. You absolutely must have one almighty, super
one-to-rule-them-all element that contains all other elements. Note that in
the XML code in this section, I’ve used one super-person element that con-
tains all the other elements. If I was to add a new person, I’d then have to
surround the two separate person elements with one super-people element.
If you don’t set it up this way, you’ll get a parse error.

Handling the XML response with jQuery
Because XHTML and XML are nearly identical at their roots, JavaScript can
parse XML just like it parses XHTML.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 789

Working with XML790

The easiest way to parse the XML is by tag name. You can read more about
accessing page elements by tag name in Book IV, Chapter 5, but the basic
JavaScript and jQuery code for this is as follows:

JavaScript

document.getElementsByTagName(“desiredTagNameHere”);

jQuery

$(“desiredTagNameHere”);

Getting the XML from the server
The PHP page that generates the XML and the HTML page that uses this XML
need a way to talk to each other. That’s where AJAX comes in. You can see
how to send and receive a basic text request with AJAX in Chapter 1 in this
minibook. In this section, you see how to use jQuery to do the same thing
and then parse the XML.

Sending the request with jQuery
The code in Chapter 1 of this minibook that you used to send the request to
the PHP page was a horrible, confusing, ridiculous monster compared to the
code I’m about to show you:

$.ajax({
type: “POST”,
url: “page.php”,
dataType: “xml”,
success: pageUpdate

});

This little bit of jQuery packs a wallop. It replaces the request object cre-
ation required in normal JavaScript, as well as replaces the code that does
the request generating and sending. You can specify many options with this
function, but the important ones are as follows:

✦ type: This specifies what type of request you want to use. Possible
types include

• “POST”

• “GET”

• “PUT”

• “DELETE”

If the type option isn’t specified, it defaults to “GET”, so the main
reason to use this is if you want to use “POST” (which you should make
a habit of doing).

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 790

Book VII
Chapter 4

Sending and
Receiving Data

Working with XML 791

✦ url: This specifies the page you want to send the request to. In most
cases, this is the PHP page that you’re using to process the request and
generate a response. You can also specify a page in XML, JavaScript,
ASP, or a Java resource.

✦ dataType: This specifies the type of data you’re expecting to receive
back in the response. In Chapter 1 of this minibook, you received text
with a responseText object when processing the plain text response.
In plain JavaScript, a sister object, responseXML, is used to process
XML responses, so you can traverse the response with DOM (Document
Object Model) techniques. Here, you can specify which of these you
want jQuery to use. If you don’t specify this here, jQuery usually figures
it out for itself. The different values you can specify are

• “xml”

• “html”

• “script”

• “json”

• “jsonp”

• “text”

Specifying “script” will override your type specification with “GET” if
you tried to use “POST”.

✦ error: This specifies the function to be called if the request fails. The
function will automatically be passed through three parameters: The
XMLHttpRequest, an error string, and optionally (if one occurred) an
exception object.

Inserting foreign HTML with jQuery
What if you just want to insert an external
HTML page directly into the current HTML page
and have no reason to process anything before
the insertion?

jQuery has an extremely convenient function
for you! Check out the jQuery load() func-
tion. With it, you specify a page element to have
the foreign HTML inserted into and then call the
load() function, into which you pass a
parameter indicating the page you wish to be
loaded:

$(“#localElement”).load
(“foreignHtml.php”);

You can pass data through to the foreign page
if it needs data in order to generate a dynamic
response. You can also specify a callback func-
tion to be executed upon the completion of the
load. Check out http://docs.jquery.
com/Ajax/load#urldatacallback
for more information.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 791

Working with XML792

✦ success: This specifies the function to be called if the request suc-
ceeds. The function will automatically be passed through two parame-
ters: the data returned by the response (formatted according to your
specification in the dataType option) and the status.

✦ complete: This specifies a function to be called upon completion,
whether or not the request was successful.

Receiving the response with jQuery
In Chapter 1 of this minibook, you can see how you’d normally handle the
response with JavaScript. Make sure the response is finished and successful,
and then access the response. Finally, you can parse and do something with it.

jQuery vastly simplifies this. In the previous section, you can see how to
specify a function to be called upon a successful response (as well as an
error response).

This function can be placed right there in the send function:

$.ajax({
url: “page.php”,
success: pageUpdate = function (data, statusText){

},
error: errorHandler = function(request, error){

}
});

Or it can be referenced from the success option in the send function:

$.ajax({
url: “page.php”,
success: pageUpdate,
error: errorHandler

});

function pageUpdate(data, statusText){

}

Remember not to put the parentheses on the function reference for the suc-
cess, error, or completion options in the send function. So, if you want to
call the pageUpdate() function on success, you’d put “pageUpdate” and
not “pageUpdate()”.

The XML, text, or whatever it is that you happened to request from the server
is contained in that “data” parameter in the success function. You can name
this parameter anything you want, like “theXML” or “responseText” or
“josh”.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 792

Book VII
Chapter 4

Sending and
Receiving Data

Working with XML 793

Parsing the XML
After you have your XML, you’re ready to make the AJAX magic happen.

The most important thing you need to know right off is how to access the
XML with the selector techniques. The easiest way to handle the XML is by
tag name. In Chapter 3 of this minibook, you can see how to access page ele-
ments by tag name with jQuery. For instance, if you wanted to access all the
paragraph (<p>) tags in the page, you could do so like this:

$(“p”)

Accessing the returned XML elements by tag name is almost exactly the
same. In your success function, access the tag name that you want by using
the tag name function and passing on the XML object you want it to search
through instead of the current page:

function testUpdate(data, statusText){
$(“desiredTag”, data);

}

Retrieving a table of data and printing it to the screen is a common task.
Normally, you send some search terms to a PHP page. The PHP program
would perform some SQL magic on those terms, generate some XML repre-
senting the data it retrieved from the database, and then send the data back
to the browser as an XML response. Then, you’d take the XML response and
parse it, turning it into your table.

Here’s an example of code where the PHP page sends the XML back to the
browser:

<?php
header(‘Content-Type: text/xml’);

print <<<HERE
<?xml version=”1.0” encoding=”utf-8”?>
<characters>
<character>

<first>Robert</first>
<last>Kelso</last>
<age>65</age>
<occupation>Chief of Medicine</occupation>

</character>
<character>

<first>John</first>
<last>Dorian</last>
<age>32</age>
<occupation>Attending physician</occupation>

</character>
<character>

<first>Christopher</first>
<last>Turk</last>
<age>31</age>
<occupation>Attending surgeon</occupation>

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 793

Working with XML794

</character>
<character>

<first>Elliot</first>
<last>Reid</last>
<age>30</age>
<occupation>Private Practice Physician</occupation>

</character>
</characters>
HERE;

?>

Here’s the page that turns the XML into a table and displays it to the user:

<div id=”response”></div>
<button id=”getCharacters”>Get The Characters!</button>

<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<link rel=”stylesheet” href=”inc/themes/flora/flora.all.css” type=”text/css”

media=”screen” title=”Flora (Default)”>
<script src=”inc/ui.tablesorter.js”></script>
<script type=”text/javascript”>
$(“#getCharacters”).click(function(){

$.ajax({
type: “POST”,
url: “characters.php”,
dataType: “xml”,
success: pageUpdate,
error: pageError = function(request, error){

alert(error);
},
complete: pageComplete = function(){

alert(“done”);
}

})
});

function pageUpdate(data, statusText){
var character = $(“character”, data);
var theTable = ‘<table class=”tablesorter”><thead><tr><td>First
Name</td><td>Last
Name</td><td>Age</td><td>Occupation</td></tr></thead><tbody>’;
jQuery.each(character, function(i, val){

theTable += “<tr>”;
attr = $(character[i]).children();
jQuery.each(attr, function(ii, val){

theTable += “<td>” + $(attr[ii]).text() + “</td>”;
});
theTable += “</tr>”;

});
theTable += “</table>”;
$(“#response”).html(theTable);

$(“.tablesorter”).tablesorter();
}
</script>

Figure 4-1 shows this program in action, translating the XML response to a
data query to an XHTML table.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 794

Book VII
Chapter 4

Sending and
Receiving Data

Introducing JSON 795

You can use the jQuery.each() function to easily iterate through an object
or array. See http://docs.jquery.com/Utilities/jQuery.each#
objectcallback for more info on this function and http://docs.
jquery.com/Utilities for more on other useful utility functions.

Introducing JSON
XML is easy to understand; you can look at it and know exactly what you’re
dealing with, but it’s still just a bit bloated. You have to have at least two
tags (a tag opener and close) for one piece of data.

It’d be nice if there was a leaner way to describe data without having to
use this fat, chunky data structure. Well there is — it’s JavaScript Object
Notation (JSON). It’s been gaining popularity over the last few years, espe-
cially as AJAX has become more prevalent.

Overview of JSON
JSON is basically just object-oriented JavaScript, which is an enhanced form
of multidimensional JavaScript arrays:

var character = {
“first” : “John”,

Figure 4-1:
The data in
this table
came from
an XML
response.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 795

Introducing JSON796

“last” : “Dorian”,
“age” : 32,
“occupation” : “Attending Physician”

};

Looks familiar, doesn’t it? It’s almost the exact same syntax you’ve been
using for all jQuery functions:

$.ajax({
url: “somePage.php”,
dataType: “text”,
success: pageUpdate

});

You can access the different elements of your JSON data with ease. Say you
wanted to access the first name index of the character array in the same
JSON data. You could do this with JavaScript syntax, like so:

character.first

It doesn’t get any simpler than that. You can even iterate through the data as
you would with a JavaScript array:

jQuery.each(character, function(){
alert(this);

});

The above code sample would alert the value of each array index, so you’d
get four alert boxes (“John”, “Dorian”, “32”, and “Attending Physician”) while
it cycled through the array and alerted what it found.

See Book IV, Chapter 4 for more on working with JavaScript objects and
arrays.

If you give JSON a chance, I guarantee you’ll find it easier to use than XML
after you get used to it.

Using JSON with PHP
As of version 5.2, PHP can natively encode and decode JSON, which means
that there’s nothing extra you have to do to be able to use JSON instead of
XML. JSON also speeds up your AJAX because it makes your already-small
data calls even leaner.

You only need to know two new PHP functions to use JSON with PHP.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 796

Book VII
Chapter 4

Sending and
Receiving Data

Introducing JSON 797

json_encode()
You can use the json_encode() function in PHP to generate JSON to be
sent back to the browser in response to an AJAX request.

First, create your array as normal with PHP:

$jd => array(
“first” => “John”,
“last” => “Dorian”,
“age” => 32,
“occupation” => “Attending Physician”);

Then, use the json_encode() function to turn the PHP array into JSON:

$jd = json_encode($jd);

After it’s encoded, it could be printed to the page the same way you’d print
XML or text to be sent back to the browser as the response to an AJAX
request. Check out http://us.php.net/manual/en/function.
json-encode.php for more on the json_encode() function.

json_decode()
You use the json_decode() function in PHP to generate a PHP object or
associative array from JSON:

$jd = json_decode($jd);

This code takes the JSON that you encoded (in the json_encode() exam-
ple) and turns it into a PHP object:

$jd = json_decode($jd, true);

The next line takes the JSON that you encoded (in the json_encode()
example) and turns it right back into a PHP associative array.

Check out http://us.php.net/manual/en/function.json-decode.
php for more on json_decode().

Using JSON with AJAX
There are some differences when using JSON with AJAX instead of XML. You
need to send the request a little bit differently, and parsing the response is
much simpler.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 797

Introducing JSON798

Sending the request
When sending the request with jQuery, you can specify that you’re expecting
to receive back JSON by setting the dataType to “json”:

$.ajax({
url: “somePage.php”,
dataType: “json”,
success: pageUpdate

});

This lets jQuery know that you expect to get back JSON instead of XML or
just plain text. This way, you can just jump right into your JSON processing.

Receiving the response
If you’re using jQuery and you specify the dataType as JSON, you don’t
have to do anything special when you receive the response before you can
dive in and start using the data.

If you’re not using jQuery, you’ll need to evaluate the text returned from the
PHP in the response:

var theJSON = eval(‘(‘ + response.responseText + ‘)’);

Evaluating the responseText will take it from some plain text and turn it
into JSON recognized by JavaScript.

Generating tables with JSON
At the end of the “Parsing the XML” section, earlier in this chapter, the exam-
ple uses XML and AJAX to create a characters table. This time, I take the
same code and show you how to use JSON and AJAX to do the same thing.

Here’s the PHP that sends back the JSON to the browser:

<?php

$characters = array(
“jd” => array(

“first” => “John”,
“last” => “Dorian”,
“age” => 32,
“occupation” => “Attending Physician”),

“elliot” => array(
“first” => “Elliot”,
“last” => “Reid”,
“age” => 30,
“occupation” => “Private Practice Physician”),

“turk” => array(

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 798

Book VII
Chapter 4

Sending and
Receiving Data

Introducing JSON 799

“first” => “Christopher”,
“last” => “Turk”,
“age” => 31,
“occupation” => “Attending Surgeon”),

“bob” => array(
“first” => “Robert”,
“last” => “Kelso”,
“age” => 65,
“occupation” => “Chief of Medicine”)

);

print (json_encode($characters));

?>

The following is the page that turns the JSON into a table and displays it to
the user (see Figure 4-2):

<div id=”response”></div>
<button id=”getCharacters”>Get The Characters!</button>

<script type=”text/javascript” src=”inc/jquery-1.2.1.min.js”></script>
<link rel=”stylesheet” href=”inc/themes/flora/flora.all.css” type=”text/css”

media=”screen” title=”Flora (Default)”>
<script src=”inc/ui.tablesorter.js”></script>
<script type=”text/javascript”>
$(“#getCharacters”).click(function(){

$.ajax({
url: “json.php”,
dataType: “json”,
success: pageUpdate,
error: pageError = function(request, error){

alert(error);
},
complete: pageComplete = function(){

alert(“done”);
}

})
});

function pageUpdate(data, statusText){
var theTable = ‘<table class=”tablesorter”><thead><tr><td>First
Name</td><td>Last
Name</td><td>Age</td><td>Occupation</td></tr></thead><tbody>’;
jQuery.each(data, function(){

theTable += “<tr>”;
jQuery.each(this, function(){

theTable += “<td>” + this + “</td>”;
});
theTable += “</tr>”;

});
theTable += “</table>”;
$(“#response”).html(theTable);

$(“.tablesorter”).tablesorter();
}
</script>

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 799

Introducing JSON800

Note the double-nested each loop. In the outer each loop, “this” repre-
sents the main array for each character that’s taken out of the response data
while the loop iterates through all the characters. In the inner each loop,
“this” represents each element of the character array. It can be confusing
to have two this keywords that each contain different data, but try not to
let it mix you up. If you want, instead of having an each loop inside the outer
each loop, you could access each element individually by hand because you
know the structure of the data you are getting back:

jQuery.each(data, function(){
theTable += “<tr>”;
theTable += “<td>” + this.first + “</td>”;
theTable += “<td>” + this.first + “</td>”;
theTable += “<td>” + this.age + “</td>”;
theTable += “<td>” + this.occupation + “</td>”;
theTable += “</tr>”;

});

With the two previous examples, there’s about a 30-percent decrease in
the non-data code that’s sent back to the browser in the request (the XML
response has about 400 non-data characters, and the JSON response has
about 270). That means that with JSON, the response time with AJAX will be
at least 30-percent faster, and you type 30-percent less code.

Figure 4-2:
This version
of the pro-
gram uses
JSON data.

49_186275 bk07ch04.qxp 3/28/08 11:00 PM Page 800

Book VIII

Moving from Web Pages
to Web Sites

50_186275 pp08.qxp 3/28/08 11:01 PM Page 801

Contents at a Glance

Chapter 1: Managing Your Servers .803
Understanding Clients and Servers ...803
Creating Your Own Server with XAMPP..806
Choosing a Web Host...812
Managing a Remote Site ..815
Naming Your Site ..821
Managing Data Remotely...825

Chapter 2: Moving from Pages to Sites .829
Creating a Multipage Web Site..829
Planning a Larger Site ..830
Understanding the Client ..830
Understanding the Audience ..833
Building a Site Plan ..835
Creating Page Templates...839
Fleshing Out the Project..847

Chapter 3: Introducing Content Management Systems 849
Overview of Content Management Systems...850
Previewing Common CMSs ...851
Installing a Content Management System...855

Chapter 4: Taking Control of Content .871
Getting Started with CMSMS...871
Customizing CMSMS ..877
Building a “Poor Man’s CMS” with Your Own Code.................................884
Creating Your Own Data-Based CMS..890

50_186275 pp08.qxp 3/28/08 11:01 PM Page 802

Chapter 1: Managing Your Servers

In This Chapter
� Understanding the client-server relationship

� Reviewing tools for client-side development

� Gathering server-side development tools

� Installing a local server with XAMPP

� Setting essential security settings

� Choosing a remote server

� Managing the remote servers

� Choosing and registering a domain name

Web pages are a complex undertaking. The basic Web page itself isn’t
too overwhelming, but Web pages are unique because they have

meaning only in the context of the Internet — a vastly new undertaking with
unique rules.

Depending where you are on your Web development journey, you may need
to understand the entire architecture, or you may be satisfied with a smaller
part. Still, you should have a basic idea of how the Internet works and how
the various technologies described in this book fit in.

Understanding Clients and Servers
A person using the Web is a client. You can also think of the user’s computer
or browser as the client. Clients on the Internet have certain characteristics:

✦ Clients are controlled by individual users. You have no control
over what kind of connection or computer the user has. It may not
even be a computer, but may be instead a cellphone or (I’m not kidding)
refrigerator.

✦ Clients have temporary connections. Clients typically don’t have per-
manent connections to the Internet. Even if a machine is on a perma-
nent network, most machines used as clients have temporarily assigned
addresses that can change.

✦ Clients might have wonderful resources. Client machines may have
multimedia capabilities, a mouse, and real-time interactivity with the user.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 803

Understanding Clients and Servers804

✦ Clients are limited. Web browsers and other client-side software are
often limited so that programs accessed over the Internet can’t make
major changes to the local file system. For this reason, most client pro-
grams operate in a sort of “sandbox” to prevent malicious coding.

✦ Clients can be turned off without penalty. It doesn’t really cause any-
body else a problem if you turn off your computer. Generally, client
machines can be turned off or moved without any problems.

Servers are the machines that typically host Web pages. They have a much
different set of characteristics:

✦ Servers are controlled by server administrators. A server administra-
tor is responsible for ensuring that all data on the server is secure.

✦ Servers have permanent connections. The purpose of a server is to
allow requests. For this reason, a server needs to have an IP number
permanently assigned to it.

✦ Servers usually have names, too. To make things easier for users,
server administrators usually register domain names to make their
servers easier to find.

✦ Servers can access other programs. Web servers often talk to other pro-
grams or computers (especially data servers).

✦ Servers must be reliable. If a Web server stops working, anybody trying
to reach the pages on that server is out of luck. This is why Web servers
frequently run Unix or Linux because these operating systems tend to be
more stable.

✦ Servers must have specialized software. The element that truly makes a
computer a server is the presence of Web server software. Although sev-
eral options are available, only two dominate the market: Apache and
Microsoft IIS.

Parts of a client-side development system
A development system is made up of several components. If you’re program-
ming on the client (using XHTML, CSS, and JavaScript), you need the follow-
ing tools:

✦ Web browsers: You need at least a couple of browsers so that you can
see how your programs behave in different ones. Firefox is especially
useful for Web developers because of its numerous available extensions.

✦ Browser extensions: Consider adding extensions to Firefox to improve
your editing experience. Web Developer, Firebug, and HTML Validator
are extremely helpful.

✦ Text editor: Almost all Web development happens with plain text files.
A standard text editor should be part of your standard toolkit. I prefer

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 804

Book VIII
Chapter 1

M
anaging

Your Servers
Understanding Clients and Servers 805

Notepad++ for Windows and prefer VI or emacs for other operating
systems.

✦ Integrated Development Environment: Aptana Studio is a specialized
text editor with added features for Web programming. It understands all
the main Web languages and has syntax help, code coloring, and pre-
view features.

For client-side development, you don’t necessarily need access to a server.
You can test all your programs directly on your own machine with no other
preparation. Of course, you’ll eventually want a server so that you can show
your pages to everyone.

The client-side development tools listed here are described in more detail in
Book I, Chapter 3.

Parts of a server-side system
When you start working on the server side (with PHP, MySQL, and AJAX),
you need a somewhat more complex setup. In addition to everything you
need for client-side development, you also need these items:

✦ A Web server: This piece of software allows users to request Web pages
from your machine. You must either sign on to a hosting service and use
its server or install your own. (I show you both techniques in this chap-
ter.) By far the most common server in use is Apache. Web server soft-
ware usually runs all the time in the background because you never
know when a request will come in.

✦ A server-side language: Various languages can be connected to Web
servers to allow server-side functionality. PHP is the language I chose in
this book because it has an excellent combination of power, speed, price
(free), and functionality. PHP needs to be installed on the server
machine, and the Web server has to be configured to recognize it.

✦ A data server: Many of your programs work with data, and they need
some sort of application to deal with that data. The most common data
server in the open-source world is MySQL. This data package is free,
powerful, and flexible. The data server is also running in the background
all the time. You have to configure PHP to know that it has access to
MySQL.

✦ A mail server: If your programs send and receive e-mail, you need some
sort of e-mail server. The most popular e-mail server in the Windows
world is Mercury Mail, and Sendmail is popular in the world of Unix and
Linux. You probably won’t bother with this item on a home server, but
you should know about it when you’re using a remote host.

✦ An FTP server: Sometimes, you want the ability to send files to your
server remotely. The FTP server allows this capability. Again, you

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 805

Creating Your Own Server with XAMPP806

probably don’t need this item for your own machine, but you definitely
should know about it when you use a remote host.

✦ phpMyAdmin: There’s a command-line interface to MySQL, but it’s lim-
ited and awkward. The easiest way to access your MySQL databases is
to use the phpMyAdmin program. Because it’s a series of PHP programs,
it requires a complete installation of PHP, MySQL, and Apache.

Creating Your Own Server with XAMPP
If the requirements for a Web hosting solution seem intimidating, that’s
because they are. It’s much more difficult to set up a working server system
by hand than it is to start programming with it.

I don’t recommend setting up your own system by hand. It’s simply not
worth the frustration because very good options are available.

XAMPP is an absolutely wonderful open-source tool. It has the following
packages built in:

✦ Apache: The standard Web server and the cornerstone of the package

✦ PHP: Configured and ready to start with Apache and MySQL

✦ MySQL: Also configured to work with Apache and PHP

✦ phpMyAdmin: A data management tool that’s ready to run

✦ Mercury Mail: A mail server

✦ FileZilla FTP server: An FTP server

✦ PHP libraries: A number of useful PHP add-ons, including gd (graphics
support), Ming (Flash support), and more

✦ Additional languages: Perl, another extremely popular scripting and
server language, and SQLite, another useful database package

✦ Control and configuration tools: A Control Panel that allows you to
easily turn various components on and off.

This list is a description of the Windows version. The Mac and Linux ver-
sions have all the same types of software, but the specific packages vary.

Considering the incredible amount of power in this system, the download is
remarkably small. The installer is only 34MB. A copy is included on the
CD-ROM that accompanies this book.

XAMPP installation is pretty painless: Simply download the installer and
respond to all the default values.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 806

Book VIII
Chapter 1

M
anaging

Your Servers
Creating Your Own Server with XAMPP 807

If you’re using Vista, you may want to change where the package is installed
because the program files directory is causing problems for some users.

Running XAMPP
After you install XAMPP, you can manage your new tools with the XAMPP
Control Panel. Figure 1-1 shows this program in action.

Some components of XAMPP (PHP, for example) run only when they’re
needed. Some other components (Apache and MySQL) are meant to run con-
stantly in the background. Before you start working with your server, you
need to ensure that it’s turned on.

You can choose to run Apache and MySQL as a service, which means that
the program is always running in the background. This arrangement is con-
venient, but it slightly reduces the performance of your machine. I generally
turn Apache on and off as I need it and leave MySQL running as a service
because I have a number of other programs that work with MySQL.

Leaving server programs open on your machine constitutes a security
hazard. Be sure to take adequate security precautions. See the section
“Setting the security level,” later in this chapter, for information on setting
up your security features.

Testing your XAMPP configuration
Ensure that Apache and MySQL are running, and then open your Web
browser. Set the address to http://localhost, and you see a screen like
the one shown in Figure 1-2.

Figure 1-1:
The XAMPP
Control
Panel
allows you
to turn
features on
and off.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 807

Creating Your Own Server with XAMPP808

This page indicates that XAMPP is installed and working. Feel free to experi-
ment with the various items in the Demos section. Even though you may not
know yet what they do, you should know what some of their capabilities are.

Adding your own files
Of course, the point of having a Web server is to put your own files in it. Use
your file management tool to find the XAMPP directory in your file system.
Right under the XAMPP directory is the htdocs folder, the primary Web
directory. Apache serves only files that are in this directory or under it.
(That way, you don’t have to worry about your love letters being distributed
over the Internet.)

All the files you want Apache to serve must be in htdocs or in a subdirec-
tory of it.

When you specified http://localhost as the address in your browser,
you were telling the browser to look on your local machine in the main
htdocs directory. You didn’t specify a particular file to load. If Apache isn’t
given a filename and it sees the file named index.html or index.php, it
displays that file, instead. So, in the default htdocs directory, the index.php
program is immediately being called. Although this program displays the
XAMPP welcome page, you don’t usually want that to happen.

Figure 1-2:
The XAMPP
main page.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 808

Book VIII
Chapter 1

M
anaging

Your Servers
Creating Your Own Server with XAMPP 809

Rename index.php to index.php.old or something similar. It’s still
there if you want it, but now there’s no index page, and Apache simply gives
you a list of files and folders in the current directory. Figure 1-3 shows my
localhost directory as I see it through the browser.

You typically don’t want users to see this ugly index in a production server,
but I prefer it in a development environment so that I can see exactly what’s
on my server. After everything is ready to go, I put together index.html or
index.php pages to generate more professional directories.

Generally, you want to have subdirectories to all your main projects. I added
a few others for my own use, including xfd, which contains all the code for
this book.

If you want to display the XAMPP welcome screen after you remove the
index.php program, simply point your browser to http://localhost/
xampp.

Setting the security level
When you have a Web server and a data server running, you create some
major security holes. You should take a few precautions to ensure that
you’re reasonably safe:

Figure 1-3:
After
disabling
index.php,
I can see
a list of
files and
directories.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 809

Creating Your Own Server with XAMPP810

✦ Treat your server only as a local asset. Don’t run a home installation of
Apache as a production server. Use it only for testing purposes. Use a
remote host for the actual deployment of your files. It’s prepared for all
the security headaches.

✦ Run a firewall. You should run, at an absolute minimum, the Windows
firewall that comes with all recent versions of Windows. You might also
consider an open-source or commercial firewall. Block incoming access
to all ports by default and open them only when needed. There’s no real
need to allow incoming access to your Web server. You only need to run
it in localhost mode.

If you want to see which ports XAMPP uses for various tools, they are
listed on the security screen shown in Figure 1-4.

✦ Run basic security checks. The XAMPP package has a handy security
screen. Figure 1-4 shows the essential security measures. I’ve already
adjusted my security level, so you’ll probably have a few more “red
lights” than I do. Click the security link at the bottom of the page for
some easy-to-use security utilities.

✦ Change the MySQL root password. If you haven’t already done so,
use the security link to change the MySQL root password, as shown in
Figure 1-5. (I show an alternative way to change the password in Book VI,
Chapter 1.)

Figure 1-4:
The XAMPP
Security
panel
shows a
few weak-
nesses.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 810

Book VIII
Chapter 1

M
anaging

Your Servers
Creating Your Own Server with XAMPP 811

✦ Add an XAMPP Directory password. Type a password into the lower
half of the security form to protect your xampp directory from unautho-
rized access. When you try to go to the xampp directory, you’re
prompted for this password.

Security is always a compromise. When you add security, you often intro-
duce limits in functionality. For example, if you changed the root password
for MySQL, some of the examples (and phpMyAdmin) may not work any
more because they’re assuming that the password is blank. You often have
to tweak. See Chapter 1 in Book VI for a complete discussion of password
issues in MySQL and phpMyAdmin.

Compromising between functionality and security
You may be shocked that my example still has a couple of security holes. It’s
true, but it’s not quite as bad as it looks:

✦ The firewall is the first line of defense. If your firewall blocks external
access to your servers, the only real danger your system faces is from
yourself. Begin with a solid firewall and ensure that you don’t allow
access to port 80 (Apache) or port 3306 (MySQL) unless you’re
absolutely sure that you have the appropriate security measures in
place.

Figure 1-5:
Changing
the MySQL
root pass-
word.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 811

Choosing a Web Host812

✦ I left phpMyAdmin open. phpMyAdmin needs root access to the MySQL
database, so if anybody can get to phpMyAdmin through the Web server,
they can get to my data and do anything to it. Because my firewall is
blocking port 80 access, you can’t get to phpMyAdmin from anything
other than localhost access, and it’s not really a problem.

✦ I’m not running PHP in secure mode. Secure mode turns off several
PHP features to make the connection a bit more secure. Unfortunately,
this process also removes some important functionality. For localhost
access, I normally leave the default PHP configuration in place.

Choosing a Web Host
Creating a local server is useful for development purposes because you can
test your programs on a server you control and you don’t need a live con-
nection to the Internet.

However, you should avoid running a production server on your own com-
puter, if you can. A typical home connection doesn’t have the guaranteed IP
number you need. Besides, you probably signed an agreement with your
broadband provider that you won’t run a public Web server from your
account.

This situation isn’t really a problem because thousands of Web hosting serv-
ices are available that let you easily host your files. You should consider an
external Web host for these reasons:

✦ The host, not you, handles the security headaches. This reason alone is
sufficient. Security isn’t difficult, but it’s a never-ending problem
(because the bad guys keep finding new loopholes).

✦ The remote server is always up. Or, at least, it should be. The dedicated
Web server isn’t doing anything other than serving Web pages. Your Web
pages are available, even if your computer is turned off or doing some-
thing else.

✦ A dedicated server has a permanent IP address. Unlike most home
connections, a dedicated server has an IP address permanently assigned
to it. You can easily connect a domain name to a permanent server so
that users can easily connect.

✦ Ancillary services usually exist. Many remote hosting services offer
other services, like databases, FTP, and e-mail hosting.

✦ The price can be quite reasonable. Hosting is a competitive market,
which means that some good deals are available. Decent hosting is avail-
able for free, and improved services are extremely reasonable.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 812

Book VIII
Chapter 1

M
anaging

Your Servers
Choosing a Web Host 813

You can find a number of free hosting services at sites like http://
free-webhosts.com.

Finding a hosting service
When looking for a hosting service, ask yourself these questions:

✦ Does the service have limitations on the types of pages you can host?
Some servers are strictly for personal use, and some allow commercial
sites. Some have bandwidth restrictions and close your site if you draw
too many requests.

✦ How much space are you given? Ordinary Web pages and databases
don’t require a huge amount of space, but if you do a lot of work
with images, audio, and video files, your space needs will increase
dramatically.

✦ Is advertising forced on you? Many free hosting services make money
by forcing advertisements on your pages. This practice can create a
problem because you might not always want to associate your page with
the company being advertised. (A page for a day care center probably
should not have advertisements for dating services, for example.)

✦ Which scripting languages (if any) are supported? Look for PHP
support.

✦ Does the host offer prebuilt scripts? Many hosts offer a series of pre-
built and preinstalled scripts. These can often include content manage-
ment systems, message boards, and other extremely useful tools. If you
know that you’re going to need Moodle, for example (a course manage-
ment tool for teachers), you can look for hosting services that have it
built in.

✦ Does the host provide access to a database? Is phpMyAdmin support
provided? How many databases do you get? What is the size limit?

✦ What sort of Control Panel does the service provide? Does it allow
easy access to all the features you need?

✦ What type of file management is used? For example, determine how
you upload files to the system. Most services use browser-based upload-
ing. This system is fine for small projects, but it’s quite inconvenient if
you have a large number of files you want to transfer. Look for FTP sup-
port to handle this.

✦ Does the host have an inactivity policy? Many free hosting services
automatically shut down your site if you don’t do anything with it (usu-
ally after 30 to 90 days of inactivity). Be sure you know about this policy.

✦ Do you have assurances that the server will remain online? Are back-
ups available? What sort of support is available? Note that these serv-
ices are much more likely on a paid server.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 813

Choosing a Web Host814

✦ How easily can you upgrade if you want? Does a particular hosting
plan meet your needs without being too expensive?

✦ Does the service offer you a subdomain, and can you register your
own? You may also want to redirect a domain that you didn’t get
through the service. (See the section “Naming Your Site,” later in this
chapter, for information on domain names.)

Connecting to a hosting service
The sample pages for this book are hosted on Freehostia.com, an excellent,
free hosting service. You can find many great hosting services, but the rest
of the examples in this chapter use Free Hostia. I chose this service for the
examples because

✦ Its free account is terrific. At the time of this writing, the features of
the free account at Free Hostia are as good as they are at many paid
accounts.

✦ The pages have no forced advertising. Free Hostia doesn’t place any
ads on your pages (a major selling point for me).

✦ PHP, phpMyAdmin, and MySQL are supported — all on the free
account. Often, you have to upgrade to a paid service to get these
features.

✦ You get enough space to start with. The free account comes with 250MB
of space. This amount is fine for ordinary Web pages, PHP, and database
needs. You need more, though, if you do a lot of image or video hosting.

✦ You can have a subdomain for free. Even if your site doesn’t have a
domain name, you can choose a subdomain so that your site has a rec-
ognizable address, like http://myStuff.freehostia.com.

✦ It has a good list of script installers. It comes with a nice batch of
scripts that you can install effortlessly.

✦ The upgrade policy is reasonable. Free Hostia makes money on com-
mercial Web hosting. It offers an excellent free service that, ideally, gets
you hooked so that you then upgrade to a commercial plan. It has a
number of good upgrade packages for various sizes of businesses.

✦ You get a nice batch of extras. The free service comes with FTP and
e-mail support and also a MySQL database.

✦ Customer support is excellent. Most free hosting services offer no cus-
tomer support. Free Hostia provides good support, even to the free serv-
ices. (I asked a couple of questions before anyone there knew that I was
writing this book, and I was impressed with the speed and reliability of
the responses.)

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 814

Book VIII
Chapter 1

M
anaging

Your Servers
Managing a Remote Site 815

Choose whichever hosting service works for you. If you find a free hosting
service that you really like, upgrade to a paid service. Hosting is a reason-
ably cheap commodity, and a quality hosting service is well worth the
investment.

Managing a Remote Site
Obviously, having a hosting service isn’t much fun if you don’t have pages
there. Fortunately, there are a lot of ways to work with your new site.

Using Web-based file tools
Most of the time, your host has some sort of Control Panel that looks like the
one shown in Figure 1-6.

There’s usually some sort of file management tool that might look like the
one shown in Figure 1-7.

In this particular case, all my Web files are in the www/aharrisbooks.net
directory, so I click to see them. Figure 1-8 shows what you might see in an
actual directory.

Figure 1-6:
This Control
Panel
allows you
to manage
your site
remotely.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 815

Managing a Remote Site816

Figure 1-8:
Now, you
can see
some files
here.

Figure 1-7:
This file
manage-
ment tool
allows
you to
manipulate
the files on
your system.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 816

Book VIII
Chapter 1

M
anaging

Your Servers
Managing a Remote Site 817

This page allows you to rename, upload, and edit existing files and change
file permissions.

You can create a new file directly, with the Create File button. Type a file-
name into the text area and click the button, and you see the text editor
shown in Figure 1-9.

You can write an entire Web site using this type of editor, but the Web-based
text editing isn’t helpful, and it’s kind of awkward. More often, you create
your files on your own XAMPP system and upload them to the server when
they’re basically complete. Use server-side editing features for quick fixes
only.

Understanding file permissions
Most hosting services use Linux or Unix. These operating systems have a
more sophisticated file permission mechanism than the Windows file system
does. At some point, you may need to manipulate file permissions.

Essentially, the universe is divided into three populations: Yourself, your
group, and everybody else. You can allow each group to have different kinds
of permission for each file. Each of the permissions is a Boolean (true or
false) value:

Figure 1-9:
The hosting
service has
a limited
text editor.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 817

Managing a Remote Site818

✦ Read permission: The file can be read. Typically, you want everybody to
be able to read your files, or else you wouldn’t put them on the Web
server.

✦ Write permission: The file can be written, changed, and deleted.
Obviously, only you should have the ability to write to your files.

✦ Execute permission: Indicates that the file is an executable program or a
directory that can be passed through. Normally, none of your files is
considered executable, although all your directories are.

Using FTP to manage your site
Most of the work is done on a local machine and then sent to the server in a
big batch. (That’s how I did everything in this book.) The standard Web-
based file management tools are pretty frustrating when you want to effi-
ciently upload a large number of files.

Fortunately, most hosts have the FTP (File Transfer Protocol) system avail-
able. FTP is a client/server mechanism for transferring files efficiently. To use
it, you may have to configure some sort of FTP server on the host to find out
which settings, username, and password you should use. Figure 1-10 shows
the Free Hostia Control Panel with this information displayed.

You also need an FTP client. Fortunately, many free clients are available. I
like FireFTP, for a number of reasons:

✦ It’s free and open source. That’s always a bonus.

✦ It works as a Firefox plugin. I always know where it is.

✦ It’s easy to use. It feels just like a file manager.

Figure 1-11 shows FireFTP running in my browser.

What’s with all the permissions?
Permissions are typically treated as binary
numbers: 111 means “read, write, execute.”
This (111 value) is also a 7 permission because
111 binary translates to 7 in base ten (or base
eight, but let’s skip that detail for now).

A permission is read as three digits, each one a
number indicating the permissions, so 644 per-
mission means rw- r-- r--. This example

can be translated as “The owner should be
able to read and write this file. Everyone else
can read it. Nobody can execute it.”

If you don’t understand this concept, don’t
worry about it. The guidelines are very simple:
Make sure that each of your files has 644 per-
mission and that each directory has 755 per-
mission. That’s all you really need to know.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 818

Book VIII
Chapter 1

M
anaging

Your Servers
Managing a Remote Site 819

Figure 1-11:
FireFTP is a
complete
FTP pro-
gram that
runs inside
Firefox.

Figure 1-10:
Configuring
the FTP
server.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 819

Managing a Remote Site820

If you want to connect to your server with FTP, follow these steps:

1. Look up the configuration settings.

You may have to dig around in the server documentation, but you
should find the server name, username, and password to access your
server. Sometimes, you have to configure these elements yourself.

2. Create a profile for your server.

Use the Manage Accounts feature to create a profile using the FTP set-
tings. Figure 1-12 shows a profile for my aharrisbooks account.

3. Connect to the remote server.

FTP programs look a lot like the Windows Explorer you might have on
your machine, except that they usually have two file panels. The left
panel represents the files on your local system, and the right panel
shows files on the remote system.

4. Navigate to the directories you’re interested in.

If you want to move a file from the local system to the remote one, use
the two file explorers to find the appropriate directory on each system.

5. Drag the file to transfer it.

FireFTP automatically determines the type of transfer you need to make.

6. Wait for the transfer to complete.

It usually takes some time to transfer a large number of files. Be sure the
transfer is complete before you close the FTP window.

Figure 1-12:
The profile
editor for
FireFTP.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 820

Book VIII
Chapter 1

M
anaging

Your Servers
Naming Your Site 821

7. Manipulate remote files.

You can right-click on the remote file system to display a context menu.
This menu has commands for changing permissions, creating directo-
ries, and performing other handy tasks.

FTP is a completely unsecure protocol. Anything you transfer with FTP is
completely visible to any bad guys sniffing the Internet. For this reason,
some servers use a different protocol: Secure FTP (SFTP). FireFTP doesn’t
support this protocol, but search Google for open-source SFTP clients, and
you’ll find plenty.

Naming Your Site
After you have a site up and running, you need to give it an address that
people can remember. The Domain Name System (DNS) is sort of an address
book of the entire Internet. DNS is the mechanism by which you assign a
name to your site.

Understanding domain names
Before creating a domain name, you should understand the basics of how
this system works:

✦ Every computer on the Internet has an IP (Internet Protocol) address.
When you connect to the Internet, a special number is assigned to your
computer. This IP address uniquely identifies your computer. Client
machines don’t need to keep the same address. For example, my note-
book has one address at home and another at work. The addresses are
dynamically allocated. A server needs a permanent address that doesn’t
change.

✦ IP addresses are used to find computers. Any time you request a Web
page, you’re looking for a computer with a particular IP address. For
example, the Google IP address is 66.102.9.104. Type it into your
browser address bar, press Enter, and you see the Google main page.

✦ DNS names simplify addressing. IP numbers are too confusing for
human users. The Domain Name System (DNS) is a series of databases
connecting Web site names with their associated IP numbers. When you
type http://www.google.com, for example, the DNS system looks
up the text www.google.com and finds the computer with the associ-
ated IP.

✦ You have to register a DNS name. Of course, to ensure that a particular
name is associated with a page, you need to register that relationship.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 821

Naming Your Site822

Registering a domain name
In this section, I show you how to register a domain using Freehostia.com.
Check the documentation on your hosting service. Chances are that the
main technique is similar, even if the details are different.

To add a domain name to your site, follow these steps:

1. Log in to the service.

Log in to your hosting service administration panel. You usually see a
Control Panel something like the one shown in Figure 1-13.

2. Find the domain manager.

In Free Hostia, the domain manager is part of the regular administration
panel.

3. Pick a subdomain.

In a free hosting service, the main domain (freehostia.com, for exam-
ple) is often chosen for you. Sometimes, you can set a subdomain (like
mystuff.freehostia.com) for free. The page for managing this
process might look like Figure 1-14.

Figure 1-13:
This Control
Panel
shows all
the options,
including
domain and
subdomain
tools.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 822

Book VIII
Chapter 1

M
anaging

Your Servers
Naming Your Site 823

4. Look for a domain search tool.

Often, you have a tool, like the one shown in Figure 1-15, that allows you
to search for a domain.

5. Search for the domain name you want.

You can type a domain name to see whether it’s available.

6. If the domain name is available to register and you want to own it,
purchase it immediately.

If a domain is available to transfer, it means that somebody else proba-
bly owns it.

Don’t search for domains until you’re ready to buy them. Unscrupulous
people on the Web look for domains that have been searched and then
buy them immediately, hoping to sell them back to you at a higher price.
If you search for a domain name and then go back the next day to buy it,
you often find that it’s no longer available and must be transferred.

7. Register the domain.

The domain-purchase process involves registering yourself as the
domain owner. Figure 1-16 shows a typical form for this transaction.
WHOIS information provides your information to people inquiring about
the domain name.

Figure 1-14:
Use this
page to
create a
subdomain
for your
account.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 823

Naming Your Site824

Figure 1-16:
Registering
the domain
name.

Figure 1-15:
I’m search-
ing for
aharris
books.net —
it seems
like a good
domain
name!

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 824

Book VIII
Chapter 1

M
anaging

Your Servers
Managing Data Remotely 825

8. Wait a day or two.

Your new domain name won’t be available immediately. It takes a couple
of days for the name to be registered everywhere.

9. Remember to renew your domain registration.

Domain-name registration isn’t expensive (typically about $10 per year),
but you must renew it or risk losing it.

Managing Data Remotely
Web sites often work with databases. Your hosting service may have features
for working with MySQL databases remotely. You should understand how
this process works because it’s often slightly different from working with the
database on your local machine.

Creating your database
Often, a tool like the one shown in Figure 1-17 allows you to pick a defined
database or create a new one.

Figure 1-17:
You often
have to
create a
database
outside of
phpMy-
Admin.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 825

Managing Data Remotely826

This database creation step happens because you don’t have root access to
MySQL. (If everybody had root access, chaos would ensue.) Instead, you
usually have an assigned username and database name enforced by the
server. On Free Hostia, all database names begin with the username and an
underscore. To create a new database, you need to provide a database name
and a password. Usually, a MySQL user is created with the same name as the
database name.

After you create the database, you can select it to work with the data in
MySQL. Figure 1-18 shows the MySQL screen for my database on Free Hostia.

If you look carefully, you see that Free Hostia is still using MySQL 4. There-
fore, not all SQL scripts in this book work correctly. The only significant
problem is views because this feature wasn’t included in MySQL 4. I include
a version of the buildHero4.sql script on the CD-ROM that eliminates all
references to views. Otherwise, the script is the same.

You can see from Figure 1-18 that phpMyAdmin is somewhat familiar if you
read Book VI. Often, public servers remove the Privileges section because
you aren’t logged in as root. Everything else is basically the same. See Book
VI for details on how to use PHPMyAdmin to work with your databases.

Figure 1-18:
phpMy-
Admin is
just like the
one on your
home
machine!

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 826

Book VIII
Chapter 1

M
anaging

Your Servers
Managing Data Remotely 827

Finding the MySQL server name
Throughout Book VI, I assume that the MySQL server is on the same physi-
cal machine as the Web server. This situation is common in XAMPP installa-
tions, but commercial servers often have separate servers for data. You may
have to dig through the documentation or find a Server Statistics section to
discover how your PHP programs should refer to your server.

By far the biggest problem when moving your programs to a remote server
is figuring out the new connection. Make sure that you know the right combi-
nation of server name, username, and password. Test on a simple PHP appli-
cation before working on a complex one.

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 827

Book VIII: Moving from Web Pages to Web Sites828

51_186275 bk08ch01.qxp 3/28/08 11:01 PM Page 828

Chapter 2: Moving from
Pages to Sites

In This Chapter
� Planning multipage Web sites

� Working with the client

� Analyzing the audience

� Building a site plan

� Creating XHTML and CSS templates

� Fleshing out the project

At some point, your Web efforts begin to grow. Rather than think about
single Web documents, you begin to build more complex systems.

Most real-life Web problems require a lot more than a single page to do their
work. How do you make the transition to a site with many different but
interconnected pages? How do you think through the process of creating a
site that serves a specific purpose?

You might even be thinking about doing commercial Web development
work. If so, it’s definitely time to think about how to put together a plan for a
customer.

Creating a Multipage Web Site
A complete Web site has these characteristics:

✦ A consistent theme: All the pages in a Web site should be about
something — a product, a shop, a hobby. It doesn’t matter much what
the theme is, but the pages should be unified around it.

✦ Consistent design: The site should have a unified color scheme. All
pages should have the same (or similar) layout, and the font choices
and images should all use a similar style.

✦ A navigation scheme: Users must have a clear method to move around
from page to page. The organization of the pages and their relationships
should be clear.

✦ A common address: Normally, all pages in a site are on the same server
and have a common DNS name so that they’re easy to distinguish.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 829

Planning a Larger Site830

Obviously, the skills of Web design are critical to building a Web site, but
another, broader skill set is required when creating something larger than
individual pages.

If you’re starting to build a more complicated Web site, you need to have a
plan, or else you won’t succeed. This plan is even more important if you’re
building a site for somebody else.

Planning a Larger Site
Here are some questions you need to ask yourself when designing a larger
Web site:

✦ What’s the point of the site? The site doesn’t have to be serious, but it
does have to have a theme. If you don’t know what your site is about,
neither do your users (and they’ll leave in a hurry).

✦ Who am I talking to? Web sites are a form of communication, and you
can’t communicate well if you don’t understand your audience. Who is
the primary target audience for this site?

✦ Which resources do I have available? Resources involve a lot more
than money (but it helps). How much time do you have? Do you have
access to a solid technical framework? Can you get help if you need it?
Do you have all the copy and raw materials?

✦ What am I trying to say? Believe it or not, this question often poses a
huge problem. Somebody says, “I need a Web site.” When you ask what
she wants on the site, she says, “Oh, lots of things.” When you try to pin
down the answers, though, people often don’t know what they want
their Web site to say.

✦ What are the visual design constraints? If you’re building a page for a
small business, it probably already has some kind of visual identity
(through brochures or signage, for example). The business owner often
wants you to stick within the company’s current branding, which may
involve negotiation with graphic artists or advertisers the business has
worked with.

✦ Where will I put this thing? Does the client already have a domain
name? Will moving the domain name cause a problem? Does content
that’s already on the Web need to be moved? Do you already have host-
ing space and a DNS name in mind?

Understanding the Client
Often, a larger site is created at the behest of somebody else. Even if you’re
making a site for your own purposes, you should consider yourself a client.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 830

Book VIII
Chapter 2

M
oving from

Pages to Sites

Understanding the Client 831

If the project is going to be successful, you need to know a few things about
the client, as described in the following sections.

Ensuring that the client’s expectations are clear
The short answer to the question of whether a client’s expectations are clear
is “Not usually.”

A client who truly understands the Internet and knows what it takes to real-
ize her vision for the site probably doesn’t need you. Most of the time, a
client’s own concepts of what should happen on the site are vague, at best.
Here are some introductory questions you can ask to get a sense of your
client’s expectations:

✦ What are you trying to say with this site? If the Web site has a single
message that can be boiled down to one phrase or sentence, find out
what that message is.

✦ Who are you trying to reach with this site? Determine who the client
expects to be the typical users of the site. Find out whether she expects
others and whether the site has more than one potential type of user.
(For example, customers and employees may need different things.)

✦ What problem is this site trying to solve? Sometimes, a Web site is envi-
sioned as a solution to a particular problem (getting the schedule online
or keeping an online newsletter updated, for example).

✦ What kind of design framework is already in place? Determine
whether the organization already has some sort of branding and design
strategy or whether you have freedom in this arena.

✦ What is the time constraint? Find out how quickly the client needs the
site completed. Does the client want the entire project at one time, or
can it be phased in?

✦ Do you already have a technical framework in place? Determine
whether the project needs to work with an existing database, Web
server, Web site, or domain name and whether you have complete
access to those resources.

✦ Are there security concerns? First ask whether you will be asked to
post data (personal information, credit card numbers, or Social Security
numbers, for example) on the Internet that shouldn’t be there. Run from
any project that requires you to work with this potentially dangerous
data, unless you’re extremely comfortable with security measures.

✦ How will you get the copy? Any professional Web developer can tell
you that the client usually promises to make the copy available immedi-
ately but rarely delivers it without a lot of pleading. If the content is
available, it’s often incomplete or incorrect. You need to have some plan

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 831

Understanding the Client832

for getting the material from the client, or else you cannot proceed past
a certain point.

✦ Does the client have a remuneration strategy? If you will be paid for
your work, find out how you will be paid and whether it’s hourly or by
the project. If you have a business arrangement, treat it as such and
write out a contract. Even if the page is written for free for a friend, a
written contract is a good idea because you don’t want to ruin a friend-
ship over something as silly as a Web site.

Delineating the tasks
Building a Web site can involve a lot of different tasks. Your contract should
indicate which of these tasks is expected. This list describes the potential
scope of the project:

✦ Site layout: Determine which pages the site has and how they’re con-
nected to each other.

✦ XHTML coding: Some projects simply require XHTML coding and CSS.
Presumably, the copy has already been provided, and you simply need
to convert it to XHTML format. This work isn’t difficult, but it’s tedious.
Use a text editor with macro capability — after you create an XHTML
template.

✦ XHTML template design: Devise an overall page design. The content
isn’t important here, but the general page design is the issue. This task
requires sample data and an editor. It’s normally done in conjunction
with CSS templating.

✦ CSS design: After you have an XHTML template or two (so that you
know the logical structure of the pages), you can work on the visual
design. Start with sketches on paper and maybe images from a paint pro-
gram. After you have a layout approved, write the CSS to implement it.

✦ Data design: If the project will have a database component, take some
time to analyze (and, often, rebuild) the data structure to follow the nor-
malization rules. Data work is difficult because it doesn’t have a visual
result, yet it’s critical to the overall site. This step is usually put off until
the end, and that decision often dooms Web projects. If you need data
design, start it early.

✦ Data implementation: If the project has a data component, write and
test the SQL code to build the database, including tables, views, and
sample queries. You need time to write PHP code to connect the data-
base to the XHTML front end.

✦ Site integration and implementation: It takes some effort to fit all the
pieces back together and make them work. Usually, this process is ongo-
ing. The site needs to be set up on a production server and then tested
and launched.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 832

Book VIII
Chapter 2

M
oving from

Pages to Sites

Understanding the Audience 833

✦ Testing: Testing your work with live users is critical. You can use formal
usability studies, but failing that, you still learn a lot by asking people to
use your system and watching them do it (with your mouth shut). This
method is the best way to see whether your assumptions are correct
and the site is doing what it needs to do.

Understanding the Audience
Understanding your audience is one of the trickiest parts of Web planning.
You need to anticipate the audience in a number of ways, as described in the
following sections.

Determining whom you want to reach
Before you make a lot of design decisions, you need to think carefully about
the type of person you’re trying to reach in the Web site.

Try to anticipate the mindset that people have when they use a particular
site. For example, one of my students simultaneously worked on two sites:
one for a graduate program at a university and another for a spa and salon.
She had to think quite differently about the users of the two sites, which had
implications for how she approached each step of the process.

The graduate program page was part of a Web site for a university. The uni-
versity already had its own style and branding guidelines, official colors, and
a number of (evolving) standards. The potential users of this site were grad-
uate students seeking online degrees. The focus of this site was all business.
People were there to learn about the graduate program and set up their
schedules. They wanted information about classes, instructors, and sched-
ules, but they didn’t want anything that interfered with the problem at hand.
The writing was efficient and official, the color scheme was standard, and
the layout was also official.

The spa and salon page had an entirely different feel. The owner loves design
and spent long hours picking exactly the right paint color for the walls in the
physical space. She’s really happy with her brochure, and although she’s not
sure exactly what she wants, she knows when something isn’t right. She
wants to give her customers information about the salon, but more impor-
tantly, she wants them to get a sense of how invigorating, relaxing, and femi-
nine the experience of visiting her salon can be. The salon now has a site
that was hastily created by somebody’s cousin.

These two sites, although they require the same general technical skills,
demand vastly different visual and technical designs because the clients and
their users are vastly different.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 833

Understanding the Audience834

Ironically, one person could simultaneously be a graduate student and a
patron of the salon, but the same person would still have a different identity
in these different sites. If you’re going to a university site, you’re in a student
mindset, and you want quick, reliable information. After you sign up for
classes, if you’re looking for a salon, you want to be pampered.

Web sites are experiences. The design of the site should reflect the experi-
ence you’re trying to give the user when he visits your site.

Finding out the user’s level of technical expertise
Understanding the user isn’t just an exercise in psychology. You also need to
estimate the users’ technical proficiency because it can have a major impact
on your site. Consider these issues for the typical user:

✦ Whether the user has broadband access: University students, hard-core
gamers, and Web developers often have high-speed Internet access, so
they don’t mind a page with lots of video, multimedia assets, and large
file sizes. (In fact, they may expect a page like this.) Lots of people still
use dialup connections. If your audience has slower connections, every
image creates a delay. Audio and video assets are completely unavail-
able to this group — and even make your site unattractive to them.

✦ Whether the user has a recent browser: You have no way to predict
which browser a user has, but think about whether your target audience
has a reason to install any of the current browsers. By and large, grand-
mothers use whichever browsers were on their machines when they
purchased them. (I do know some L337 H@XX0R grandmas, however.) If
most people in your audience are still using the AOL browser — believe
it or not, it’s still used a lot — using advanced CSS and JavaScript tricks
on your page may not be the best choice.

✦ Whether the user has a recent computer: As technical people, we tend
to assume that everyone else keeps up-to-date on technology. That’s not
necessarily an accurate assumption.

✦ Whether the user has certain proficiencies: If you include a Flash ani-
mation, for example, the user might not have the right version of Flash
installed. You have to decide whether it’s reasonable to expect the user
to install a plugin.

This process isn’t about stereotyping, but you must consider the user as
you’re building a site. You want to match users’ expectations and capabili-
ties, if possible.

Of course, you’re making assumptions here, and you may well be wrong. I
once did some work for a club for retired faculty members, and I based my
expectations on their being retired. I should have based my assumptions on
their being professors. And they let me have it! Be willing to adjust your

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 834

Book VIII
Chapter 2

M
oving from

Pages to Sites

Building a Site Plan 835

expectations after you meet real users. (For professional work, you must
meet and watch real users use your site.)

Building a Site Plan
Often, the initial work on a major site involves creating a plan for the site
design. I like to do this step early because it helps me see the true scope of
the project. A site plan is an overview of a Web site. Normally, it’s drawn as a
hierarchy chart.

I was asked to help design a Web site for an academic department at a major
university. The first question I asked was, “What do you want on the Web
site?” I wrote down everything on a whiteboard, with no thought of organiza-
tion. Figure 2-1 shows a (cleaned-up) version of that sketch.

For all the sketches in this chapter, I used Dia, the open-source drawing tool.
An excellent tool for this kind of work, it’s included on the CD-ROM so that
you can play with it.

After all participants suggested everything they thought their site needed, I
shooed them out of the room. Using only paper and pencil, I created a more
organized sketch based on how I thought the information should be organ-
ized. My diagram looked like the one shown in Figure 2-2.

Seminars

Department Page Needs

Alumni/PartnersKey Cards

Advising Work Requests

DE Support

Internships

System FAQ

LabsN100Course Info

Other Classes

Sections

Sections

BS
Requirements

Advising

PhD
Requirements

Advising

ACS
Requirements

Advising

MS
Requirements

Advising

Sections

695

BioInformatics

Intelligent Systems

Networks

Research
Faculty

Projects

Visiting Us

CS Club Staff

Facilities

Events Calendar

SPAN/AP

Figure 2-1:
We need a
lot of stuff
on this site.
Good grief!

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 835

Building a Site Plan836

Creating a site overview
Keep these suggestions in mind while creating a site overview diagram:

✦ Use the Law of Seven. This law suggests that people generally can’t
handle more than seven choices at a time. Try not to have more than
seven major segments of information at any level. Each of these can be
separated into as many as seven chunks, and each of these can have
seven chunks.

Note: Even this book uses the Law of Seven! (Well, sorta — this book has
eight minibooks.) The monster you’re holding is too intimidating to look
at as just one book, but if you break it into smaller segments, it becomes
easier to manage. Clever, huh?

✦ Identify commonalities. As you look over the data, general groupings
emerge. In the university example, I could easily see that we had a lot of
course data, degree information, information about faculty, and research.
I wanted to consider a few other topics that didn’t fit as well, until I real-
ized that they could be grouped as events and opportunities.

✦ Try to assign each topic to a group. If you read Book VI already, you
probably recognize that I’m doing a form of data normalization here.
This data structure isn’t necessarily a formal one, but I’m using the same
sort of thinking, so it could be. Clearly, I’m using the principle of func-
tional dependency.

Department Data Chart

Course Info

N100

Sections

Other Classes

Sections

699

Sections

People

Faculty

Staff

Advising

CS Club
Alumni/
Partners

Projects/
Internships

Facilities

Labs

System FAQ

Key Cards

DE Support

Work
Requests

Research

Networks

BioInformatics

Intelligent
Systems

Events/Opportunities

Projects

Internships

Visiting Us

Seminars

SPAN/AF

Events
Calendar

Degree Info

ACS

Requirements

Advising

BS

Requirements

Advising

MS

Requirements

Advising

PhD

Requirements

Advising

Figure 2-2:
This chart
shows an
organized
represen-
tation of the
data.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 836

Book VIII
Chapter 2

M
oving from

Pages to Sites

Building a Site Plan 837

✦ Arrange a hierarchy. Group the topics from most general to most spe-
cific. For example, the term course info is very broad. N100 is a specific
course, and it may have many sections (specific date, time, and instruc-
tor combinations). Thus, it makes sense to group sections under N100
and to group N100 under courses.

✦ Provide representative data. Not every single scrap of information is
necessary here. The point is to have enough data so you can see the
relationships among data.

✦ Keep in mind that this diagram does not represent the site design.
When I showed this diagram to people, many assumed that I was setting
up a menu structure, and they wanted a different kind of organization or
menu. That’s not the point yet. The purpose of this type of diagram is to
see how the data itself fits together. Of course, it usually turns out to
reflect the page setup and the menu structure, but it doesn’t have to.

✦ Not each box is a page. It might be, but it doesn’t have to be. Later in
the process, you can decide how to organize the parts of the site. For
example, we decided to put all sections of N100 on one page with the
N100 information using AJAX.

Building this sort of site diagram is absolutely critical for larger sites, or else
you never really grasp the scope of the project. Have the major stakeholders
look it over to see whether it accurately reflects the information you’re
trying to convey.

Building the site diagram
The site diagram is a more specific version of the site overview. At this point,
you make a commitment about the particular pages you want in the system
and their organizational relationship. Figure 2-3 shows a site diagram for the
department site.

The site diagram is a bit different from the overview, for these reasons:

✦ Each box represents a page. Now, you have to make some decisions
about how the pages are organized. Determine at which level of the
overview you have separate pages. For example, are all the course sec-
tions on one page, or all the sections of N100? Does each section of each
course have a different page? These decisions will help you determine
which technologies to use in constructing the page.

✦ The site diagram still doesn’t need every single page. If you have 30
classes, you still don’t need to account for each one, as long as you
know where they go and that they all have the same general purpose
and design.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 837

Building a Site Plan838

✦ The navigation structure should be clear. The hierarchy should
give you a clear navigation structure. (Of course, you can, and often
should, add a secondary navigation structure. See the sidebar “Semantic
navigation.”)

✦ Name each box. Each page should have a name. These box names trans-
late to page titles and help you form a unified title system. This arrange-
ment is useful for your navigation scheme.

✦ Identify overall layout for each box. Generally, a site uses only a few
layouts. You have a standard layout for most pages. Often, the front page
has a different layout (for news and navigation information). You may
have specialty layouts, as well. For example, the faculty pages all have a
specific layout with a prominent image. Don’t plan the layout here —
just identify it.

✦ Sort out the order. If the order of the pages matters, the site diagram is
the place to work it out. For example, I organized the degrees from
undergraduate to PhD programs.

Department Site Plan

Course Info

N100

Sections

Other Classes

Sections

699

Sections

People
(people tlpt)

Main page
News

Greeting
(main tplt)

Faculty

Staff

Advising

CS Club
Alumni/
Partners

Facilities

Labs

System FAQ

Key Cards

DE Support

Work
Requests

Research

Networks

BioInformatics

Intelligent
Systems

Events/Opportunities

Projects

Internships

Visiting Us

Seminars

SPAN/AF

Events
Calendar

Degree Info

All pages not otherwise indicated use std tplt.

ACS

Requirements

Advising

BS

Requirements

Advising

MS

Requirements

Advising

PhD

Requirements

Advising

Figure 2-3:
Now, you
have a site
diagram
for the
department
site.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 838

Book VIII
Chapter 2

M
oving from

Pages to Sites

Creating Page Templates 839

The goal for this part of the site-planning process is to have a clear under-
standing of what each page requires. This information should make it easy
for you to complete the data and visual design steps. The site diagram is an
absolutely critical document. After you have it approved, print it and tape it
to your monitor.

Creating Page Templates
If you’ve developed a site diagram, you should have a good feel for the over-
all requirements of the Web development project. You should know how
many layouts you need and the general requirements for each one. Your next
task is to think about the visual design. Here are some guidelines:

✦ Get help if you need it. Visual design is a skill that requires insight and
experience. If you “design like a programmer” (I sure do!), don’t be afraid
to get help from a person who has design sensibility. You still need to
translate the design into code, however.

✦ Identify unifying design goals. All pages on the site have certain char-
acteristics in common. Find out the overall color scheme, whether you
will have a logo, and whether all pages will have the same header and
retain the same fonts throughout.

✦ Identify a primary layout. Generally, a Web site requires one major
layout that’s repeated throughout the site. Often, the main page does
not use this primary layout, but most internal pages do. Determine, for
example, which broad design elements can be shared by most of the
pages, whether every page has a headline, whether you need columns,
and how important images are.

✦ Identify specialty designs. The main page is often a bit different from
the other pages because it serves as an overview to the site. Likewise, if
you have a certain kind of page that will be repeated (the course pages
and faculty pages in my university example), you have to know how

Semantic navigation
One idea that has been popular in Web design
circles is the notion of semantic navigation,
where you set up your menu structure so that it
reflects the jobs people are trying to do, rather
than reflect the hierarchy of your sites.

This idea is a good one that can be quite help-
ful if done properly, but don’t try to set up your

entire site this way because it involves too
much duplication of data. Instead, set up your
site in a normalized way, and then put another
menu system on your site that allows users to
choose the section of the site they want based
on problems they’re trying to solve. Then, you
create the best of both worlds.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 839

Creating Page Templates840

these designs differ from the primary layout. Keep design elements as
consistent as you can because unity makes your job easier and ties the
site pages together.

Sketching the page design
Do not write even a single line of code before sketching out some design
ideas. Figure 2-4 shows a page sketch for my sample site.

Your page sketch gives you enough information to create XHTML and CSS
code. It needs to start showing some detail, such as the following details:

✦ Draw out each element on the page. Any major page element (head-
lines, menus, columns) must be delineated.

Standard template for CS siteAll Div
Fixed width 800 px
Centered in browser

Font: double size
Color: white
Background-color: white

Font-size: 2em
Text-align: left
padding-left: 1em
Red circuit board background

Content h2 - right-justified white text on red circuit bg

Content class
Can be more than one
margin- left: 110px
double red border
white background
black text

Menu div
Float left
100px wide
Red circuit bg

Menu I
white text
on outset
red buttons
inset on
a: hover
a: block
no underline

Content class
Can be more than one
margin- left: 110px
double red border
white background
black text

Content h2 - right-justified white text on red circuit bg

Footer - white centered text on black bg

Heading div
Width: 100%
Background-color: #A11204
Color: #FFFFFF
Background image: header.jpg

Figure 2-4:
Here’s a
sample
sketch for
the standard
template on
this site.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 840

Book VIII
Chapter 2

M
oving from

Pages to Sites

Creating Page Templates 841

✦ Include the class or ID identifier for each element. If you have a seg-
ment that will be used as a menu, name it “menu,” for example. If you
have a content area, identify that name now. Write all names directly on
the diagram so that you’re clear about what belongs where.

✦ Include all relevant style information. Describe every font, the width of
every element (including measurement units), the foreground and back-
ground colors (with hex codes), the background images (including
sizes), and anything else you might need in order to code CSS styles for
the page.

✦ Build a page sketch following these guidelines for each page template
in your site. If you have three page designs, for example, you need three
separate diagrams.

These diagrams are finished only if they give you everything you need to
build the XHTML and CSS templates. The idea is to do all your design work
on paper and then implement and tweak your project with code. If you plan
well, the coding is easy.

The design sketch isn’t a page mock-up. It’s not meant to look exactly like
the page. Instead, it’s a sketch that explains with text all the various details
you need to code in XHTML and CSS. Often, designers produce beautiful
mock-ups that aren’t helpful in development because you need to know sizes
and colors, for example. If you want to produce a mock-up, by all means do
so, but also make a design sketch that includes things like actual font names
and hex color codes so that you can re-create the mock-up with live code.

Building the XHTML template framework
With a page layout in place, you can finally start writing some code. Begin
with your standard page layout diagram and create an XHTML template to
implement the diagram in working code. The XML template is quite simple
because most of the design should happen in the CSS. Keep these guidelines
in mind:

✦ Remember that the template is simply a framework. The XHTML is
mainly blank. It’s meant to be duplicated and filled in with live data.

✦ It has a reference to the style sheet. External CSS is critical for large
Web projects because many pages refer to the same style sheet. Make a
reference to the style sheet, even though it may not actually exist yet.

✦ Include all necessary elements. The elements themselves can be blank,
but if your page needs a list for a menu, add an empty list. If you need a
content div, put it in place.

✦ Create a prototype from the template. You use the template quite a bit,
but you need sample data in order to test the CSS. Build a prototype
page that contains typical data. The amount of data should be typical of
the actual site so that you can anticipate formatting problems.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 841

Creating Page Templates842

It’s very possible that you’ll never manually put code in your template.
There are several options for automating this process, which can be found in
Chapter 4 of this minibook.

The XHTML template should be easy to construct because everything you
need is in the page template diagram. Figure 2-5 shows an XHTML prototype.

Here’s the XHTML code for my prototype:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>CS Standard Template</title>
<link rel = “stylesheet”

type = “text/css”
href = “csStd.css” />

</head>

<body>
<div id = “all”>

<!-- This div centers a fixed-width layout -->
<div id = “heading”>

<h1>Heading</h1>
</div><!-- end heading div -->

Figure 2-5:
An XHTML
prototype
for my site
(with no
CSS
attached
yet).

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 842

Book VIII
Chapter 2

M
oving from

Pages to Sites

Creating Page Templates 843

<div id = “menu”>
menu

one
two
three

</div> <!-- end menu div -->

<div class = “content”>
<h2>Content 1</h2>
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content

</div> <!-- end content div -->

<div class = “content”>
<h2>Content 2</h2>
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content
One or more of these will contain content

</div> <!-- end content div -->

<div id = “footer”>
contact and footer info

</div> <!-- end footer div -->
</div> <!-- end all div -->

</body>
</html>

People commonly start writing pages at this point, but that’s a dangerous
idea. Don’t use any real data until you’re certain of the general XHTML struc-
ture. You can always change the style later, but if you create 100 pages and
then decide that each of them needs another <div> tag, you have to go back
and add 100 divs.

Creating page styles
With an XHTML framework in place, you can start working on the CSS. The
best way to incorporate CSS is by following these steps:

1. Begin with the page template diagram.

It should have all the information you need.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 843

Creating Page Templates844

2. Load your XHTML prototype into Firefox.

Nothing beats Firefox with the Web Developer CSS editor for CSS design
because it lets you see your changes in real time. Honestly, you can use
any browser you wish, but if you use another browser, you’ll need to
create the CSS file in a text editor and check it frequently in the browser.
(Check Books II and III to see how FireFox and Web Developer simplify
this task.)

3. Implement the CSS from your diagram.

You should be implementing the design you already created, not design-
ing the page. (That already happened in the diagramming process.)

4. Save the design.

If you’re using the Web Developer CSS editor, you can save your CSS
directly into a file. If your XHTML template had an external style defini-
tion, this is the default save file. If you’re editing CSS in a text editor,
save it in the normal way so the browser will be able to read it. (See
Book II for information on implementing external style sheets.)

5. Test and tweak.

Things are never quite what they seem with CSS because browsers don’t
conform to standards equally. You need to test and tweak on other
browsers, and you probably have to write a secondary style for IE
exceptions.

6. Repeat for other templates.

Repeat this process for each of the other templates you identified in
your site diagram.

The result of this process should be a number of CSS files that you can read-
ily reuse across your site.

Here’s the CSS code for my primary page:

body {
background-color: #000000;

}

#all {
background-color: white;
border: 1px solid black;
width: 800px;
margin-top:2em;
margin-left: auto;
margin-right: auto;
min-height: 600px;

}

#heading {
background-color: #A11204;
color: #FFFFFF;

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 844

Book VIII
Chapter 2

M
oving from

Pages to Sites

Creating Page Templates 845

height: 100px;
font-size: 2em;
padding-left: 1em;
border-bottom: 3px solid black;
margin-top: -1.5em;

}

#menu {
background-color: #A11204;
color: #FFFFFF;
float: left;
width: 100px;
min-height: 500px;

}

#menu li {
list-style-type: none;
margin-left: -2em;
margin-right: .5em;
text-align: center;

}

#menu a {
color: #FFFFFF;
display: block;
border: #A11204 3px outset;
text-decoration: none;

}
#menu a:hover {

border: #A11204 3px inset;
}

.content {
border: 3px double #A11204;
margin: 1em;
margin-left: 110px;
padding-left: 1em;
padding-bottom: 1em;
padding-right: 1em;

}

.content h2 {
background-color: #A11204;
color: #FFFFFF;
text-align: right;

}

#footer {
color: #FFFFFF;
background-color: #000000;
border: 1px solid #A11204;
float: left;
clear: both;
width: 100%;
text-align: center;

}

Figure 2-6 shows the standard template with the CSS attached.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 845

Creating Page Templates846

Building a data framework
The examples throughout this chapter assumed that a large Web project can
be done in straight XHTML and CSS. That’s always a good starting point, but if
your program needs data or interactivity, you probably have a data back end.

Most data-enabled site plans fail.

The reason is almost always that the data normalization wasn’t incorporated
into the plan early enough, and the other parts of the project inevitably
depend on a well-planned data back end.

If you suspect your project will involve a database, you should follow these
steps early in the process (during the early site-planning phase):

1. Identify the true data problem to be solved.

Data gets complicated in a hurry. Determine why exactly you need the
data on the site. Keep the data as simple as you can, or else you’ll
become overwhelmed.

2. Identify data requirements in your site diagram.

Find out where on the site diagram you’re getting data. Determine which
data you’re retrieving and record this information on the site diagram.

Figure 2-6:
The XHTML
template
looks good
with the
CSS
attached.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 846

Book VIII
Chapter 2

M
oving from

Pages to Sites

Fleshing Out the Project 847

3. Create a third normal form ER diagram.

Don’t bother building a database until you’re sure that you can create an
ER diagram in third normal form. Check Book VI, Chapter 3 for details on
this process.

4. Implement the data structure.

Create an SQL script that creates all the necessary data structures
(including tables and views) and includes sample data.

5. Create PHP middleware.

After the database is in place, you usually need PHP code to take
requests, pass them to the database, and return the results. Most of the
PHP code for the main site consists of simple queries from the database.
If you can use AJAX or SSI, it simplifies the process because your PHP
code doesn’t have to create entire pages — it simply creates snippets
of code.

See Chapter 4 of this minibook for help on implementing these
technologies.

6. Consider update capabilities.

Usually, when you have a database, you need another part of the site to
allow the client to update information. It’s often an administrative site
with password access. An administrative site is much more complex
than the main site because it requires the ability to add, edit, and update
records.

Fleshing Out the Project
If you completed all the steps in the preceding section, it becomes relatively
easy to create the page: It’s simply a matter of forming the copy into the tem-
plates you created, tying it all together, and launching on the site.

Making the site live
Typically, you do the primary development on a server that isn’t in public
view. Follow these steps to take the site to production:

1. Test your design.

Do some usability testing with real users. Watch people solve typical
problems on the site and see what problems they encounter.

2. Proofread everything.

Almost nothing demolishes credibility as quickly as sloppy writing. Get a
quality proofreader or copy editor to look over everything on the site to

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 847

Fleshing Out the Project848

check for typos and spelling errors. Have another expert check the site
for factual or content errors.

3. Prepare the online hosting environment.

Be sure that you have the server space to handle your requirements.
Make a copy of your database and test it. Check the domain name to be
sure that you have no legal encumbrances.

4. Move your site online.

Move the files from your development server to the main server.

5. Test everything again.

Try a beta test, where your page is available to only a few people.
Get input and feedback from these testers and incorporate the best
suggestions.

6. Take a vacation. You earned it!

Contemplating efficiency
As you start working with the site, you’ll probably encounter repeated code.
For example, each page may have exactly the same title bar. You obviously
don’t want to write exactly the same code for 100 different pages because it
might change, and you don’t want to make the change in 100 different
places. You have three major options in this case:

✦ Use AJAX to import the repeated code. Follow the AJAX instructions in
Chapter 4 of this minibook to import your header (or other repeated
code).

✦ Use Server-Side Includes (SSI) to import code on the server. If your
server allows it, you can use the SSI technology to import pages on the
server without using a language like PHP. SSI is explained in Chapter 4 of
this minibook.

✦ Build the pages with PHP. Put all segments in separate files and use a
PHP script to tie them together. When you do this, you’re creating a con-
tent management system, which is the topic of Chapters 3 and 4 of this
minibook.

52_186275 bk08ch02.qxp 3/28/08 11:02 PM Page 848

Chapter 3: Introducing Content
Management Systems

In This Chapter
� Understanding the need for content management systems

� Previewing typical content management systems

� Installing a content management system

� Adding content to a content management system

� Setting up the navigation structure

� Adding new types of content

� Changing the appearance with themes

If you’ve ever built a large Web site, you’ll probably agree that the process
can be improved. Experienced Web developers have discovered the fol-

lowing maxims about larger projects:

✦ Duplication should be eliminated whenever possible. If you find your-
self repeatedly copying the same XHTML code, you have a potential
problem. When (not if) that code needs to be changed, you have a lot of
copying and pasting to do.

✦ Content should be separated from layout. You’ve already heard this
statement, but it’s taken to a new level when you’re building a large site.
Separating all content from the layout would be helpful so that you
could create the layout only one time and change it in only one place.

✦ Content is really data. At some point, the content of the Web site is
really just data. It’s important data, to be sure, but the data can — and
should — be separated from the layout code, and should be, if possible.

✦ Content belongs to the user. Developing a Web site for somebody can
become a long-term commitment. If the client becomes dependent on
the site, he frequently pesters you for changes. It would be helpful if the
client could change his own content and ask you only for changes in
structure or behavior.

✦ A Web site isn’t a collection of pages — it’s a framework. If you can
help the client own the data, you’re more concerned with the frame-
work for manipulating and displaying that data. It’s a good deal for you
and the client.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 849

Overview of Content Management Systems850

A content management system (CMS) is designed to address exactly these
issues, as this chapter will show you.

Overview of Content Management Systems
CMSs are used in many of the sites you use every day. As you examine these
CMSs, you start to recognize them all over the Web. If you have your own
server space, a little patience, and a little bit of knowledge, you can create
your own professional-looking site using a CMS.

This list describes the general characteristics of a CMS:

✦ It’s written in a server-side language. The language is usually PHP, but
CMSs are sometimes written in other languages. Stick with PHP for now
because it’s described in this book, it’s easy to use, and it’s the most fre-
quently used CMS language.

✦ All content is treated as data. Almost all the content of the CMS is
stored in text files or (more commonly) a MySQL database. A CMS usu-
ally has few HTML files.

✦ The layout consists of data, too. The CSS and XHTML templates, and
everything else the CMS needs, are also stored as data, in either text
files or the database.

✦ All pages are created dynamically. When a user logs in to a CMS, she is
normally talking to a PHP program. This program analyzes the current
situation and generates an HTML document on the fly.

✦ There are different levels of access. Most CMSs allow anonymous
access (like regular Web pages) but also allow users to log in for
increased access.

✦ The content can be modified from within the system. Users with the
appropriate access can modify the content of the CMS without knowing
anything about PHP or databases. Often, you don’t even need HTML
or CSS.

✦ The layout can be often modified from within the system, too. Most
CMSs allow you to change the layout and design from within the system,
although the process is usually more involved.

✦ CMSs can be expanded. Most CMSs are easily modified with hundreds
of visual themes, add-in modules, and new capabilities available for free.
In most cases, if you need something that isn’t there, you can make it
yourself.

✦ Many of the best CMSs are open source. CMSs are a shocking value.
When you consider how much they can contribute to your online pres-
ence, it’s amazing that most CMS programs are absolutely free.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 850

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Previewing Common CMSs 851

Previewing Common CMSs
To get a true feel for the power of CMSs, you should test-drive a few. The
wonderful resource www.opensourcecms.com allows you to log in to hun-
dreds of different CMSs as a user and as an administrator to see how they
work. I show you a few typical CMSs so that you can get a feel for how they
work.

Moodle
Often, you have a special purpose in mind. For example, I wanted to teach an
online course without purchasing an expensive and complicated course
management system. I installed the special-purpose CMS Moodle. Figure 3-1
shows the Moodle screen for one of my courses.

Moodle has a lot of features that lend themselves to the educational setting:

✦ Student and instructor management: The system already understands
the roles of student and instructor, and makes appropriate parts of the
system available.

✦ Online assignment creation and submission: One of the biggest prob-
lems with online courseware is getting assignments to and from stu-
dents. Moodle has a complete system for handling this problem.

Figure 3-1:
Moodle is
useful for
managing
online
courses.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 851

Previewing Common CMSs852

✦ Online grade book: When a teacher grades an assignment (online
through Moodle), the student’s grades are automatically updated.

✦ Online testing support: Moodle has built-in modules for creating, man-
aging, and scoring online quizzes and exams.

✦ Communication tools: Moodle includes a wiki (a collaborative documen-
tation tool), online chat, and forum tools you can set up for improved
communication with your students.

✦ Specialized educational content: Moodle was put together by hundreds
of passionate (and geeky) teachers, so it has all kinds of support for var-
ious teaching methodologies.

Community-created software can be very good (as Moodle is) because it’s
built by people who know exactly what they want, and anybody with an idea
(and the skills to carry them out) can add or modify the features. The result
is an organic system that can often be better than the commercial offerings.

I personally find Moodle easier to use and more reliable than the commercial
course management system that my university uses. I keep a Moodle backup
for my classes because, when the “official” system goes down, I can always
make something available for my students.

WordPress
WordPress is another specialty CMS, meant primarily for blogging (short for
Web logging, or keeping an online public diary). WordPress has become the
dominant blogging tool on the Internet. Figure 3-2 shows a typical WordPress
page.

WordPress takes one simple idea (blogging) and pushes it to the limit.
Unregistered users see the blog output, but if you log in, you gain access to a
complete set of tools for managing your online musings.

Figure 3-3 illustrates the administrator view of WordPress.

Of course, you can change the layout and colors, add new templates, and do
much more, as you would do in a more traditional CMS.

Of course, hundreds of other specialized CMSs are out there. Before you try
to build your own CMS from the ground up, take a look at the other available
offerings and see whether you can start by using the work of somebody else.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 852

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Previewing Common CMSs 853

Figure 3-3:
You can
easily get
started
with Word-
Press —
just start
writing.

Figure 3-2:
Woot! I’m
blogging!

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 853

Previewing Common CMSs854

Drupal
Drupal is one of the most popular multipurpose CMSs out there. Intended for
larger sites, it’s more involved than the specialty CMSs — although it can do
almost anything.

Figure 3-4 shows a basic site running Drupal.

Drupal is meant to be community Web sites. It is commonly used in the fol-
lowing types of sites:

✦ Gaming sites: Many game communities are based around a CMS like
Drupal because it allows opportunities for users to share information,
opinions, news, and files.

✦ Software sites: A CMS like Drupal is an ideal place to post information
about your software, including downloads, documentation, and user
support.

✦ Forums: Although you can find many dedicated forum packages, Drupal
supports several good forum sites.

✦ Blogging: You can also use Drupal as a news site and place to post your
blog. You can add community features as you want or need them.

Figure 3-4:
Drupal is
intended to
support
online
commu-
nities.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 854

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 855

As you experiment with Drupal (in upcoming sections of this chapter) and
look over its themes, you’ll probably recognize it or one of its cousins as the
foundation of many of your favorite sites.

Installing a Content Management System
Content management systems usually require both PHP and MySQL access.
Installing a CMS usually involves following these steps (I’m using Drupal on
my localhost as an example, but the concept is much the same for all CMSs):

1. Download the CMS files.

Most CMSs are in plain PHP form, so they’re multiplatform. In this exam-
ple, I use Drupal 5.5, but other versions are similar.

2. Copy the files to your htdocs path.

Usually, you need to put the various files in a subdirectory of htdocs
because the CMS is a Web application. Check for any installation notes
that come with the CMS. If it has none, simply drag the entire directory
to htdocs.

3. Access the CMS through the server.

Use your browser to point to the CMS main page. (Don’t forget to use a
localhost reference so the program runs through your server.) Normally,
if a CMS hasn’t yet been initialized, you get some sort of database
prompt, like the one shown in Figure 3-5.

4. Create a MySQL database.

CMSs often require a MySQL database. If possible, create a new database
for each CMS to avoid table name conflicts. Make a database with a user
and password. See Book VI, Chapter 1 for information on creating data-
bases and users. Remember your database name, username, and pass-
word. In Figure 3-6, I’m creating a database, user, and password for
Drupal.

It’s a common occurrence to create a username and database name that
are the same. If you’re on a remote server, you may find restrictions on
creating the database name.

If you set up a new user in phpMyAdmin (the Privileges table), you can
also have phpMyAdmin set up a database with the same name and
assign the new user rights for only that database using the Database for
User panel (shown in Figure 3-6). That’s exactly what you want to
happen.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 855

Installing a Content Management System856

Figure 3-6:
Use phpMy-
Admin to
set up the
required
database.

Figure 3-5:
The CMS
complains
if you
haven’t yet
connected
to a data-
base.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 856

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 857

Do not set up a CMS to use the root database user, especially if you
haven’t set up a root password. The results can be disastrous because
anybody using the CMS can potentially destroy all your databases.
(That’s a bad thing!)

5. Specify the database, username, and password.

Go back to the CMS site and try to run the CMS again. Usually, the instal-
lation script logs in to MySQL using the information you provided, and
then it runs an SQL script to create all the various tables and joins
required by that CMS.

6. Run the installation script.

Normally, the CMS runs a few more magical scripts, creating various files
and directories, and changing permissions. You see a welcome screen
indicating that the script was run successfully and an invitation to visit
your new site, which looks like Figure 3-7.

7. Create an administrator login.

There’s usually some way to create an administrative account. The tech-
nique for creating an admin account varies from system to system. In
Drupal, the first account you create is automatically an admin account.
Create a username and password for this account, as shown in Figure 3-8.

Figure 3-7:
Congratu-
lations!
You’re the
proud
parent of a
bouncing
baby CMS!

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 857

Installing a Content Management System858

The admin login is different from the database login. The database user
is used by the CMS. You don’t use this (database) account directly, but
it’s stored in the CMS data. You use the admin account to make changes
to the database.

8. Test the installation.

You should be able to test the installation by logging back in to the CMS
main directory. This time, rather than see the installation screen, you
should see the guest access screen.

Adding content
Before you can do anything interesting with a CMS, you need to dig around
to see how things work. Follow these steps to define some structure and add
various types of content:

1. Log in as the administrator.

Use your new admin account to log in to the system. You need to be the
administrator to change content. Figure 3-9 shows the default screen for
Drupal administration.

Figure 3-8:
CMSs
almost
always have
a special
admin
account.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 858

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 859

In this installation, Drupal lets me know that I didn’t configure an e-mail
server (a program that sends e-mail) properly. That’s because I’m run-
ning this test installation on my personal machine, and I’m not running
an e-mail server.

2. Find the “create content” tool.

Most CMSs have a tool that allows you to create content. In Drupal, it’s
the Create Content link, which is available if you log in as administrator.
Clicking this link displays a screen like the one shown in Figure 3-10.

3. Create a new page by choosing Page from the simple menu shown in
Figure 3-10.

Drupal offers hundreds of types of content, but the two main ones are
stories and pages. Begin by making a new page. You see a page like the
one shown in Figure 3-11.

Note that you’re allowed to use XHTML tags in your pages. Different
CMSs have different rules about how much control you have over con-
tent. Drupal lets you choose how much control you want to have, from
automatically creating all XHTML code for you to allowing you to write
the code by hand.

Figure 3-9:
The admini-
stration
screen for
Drupal is
functional.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 859

Installing a Content Management System860

Figure 3-11:
The page
editor is the
mainstay of
all CMS
work.

Figure 3-10:
Building
content is a
big part of
using a
CMS.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 860

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 861

4. Submit the page.

Use the Submit button to commit this page to the database. At this
point, it has been created, but you want it to be the new front page when
someone enters the system.

5. Promote your page.

Click the Administration – Content Management link to see various
options for pages. This page looks like Figure 3-12.

Find the Content link and select it to see a page like the one shown in
Figure 3-12. Select the page and choose Promote to Front Page from the
drop-down list. Finally, click Update to update the page’s settings.

6. Click the title in the upper-left corner.

In admin mode, this is a special link that lets you see how the page looks
from a guest perspective. Now, your page is the front page of the CMS.

Building a menu system
You can add more pages easily. Just repeat the process: Be sure you’re
logged in as the administrator, navigate to the “Create content” page, and
edit your new page.

Figure 3-12:
You have to
specify a
page as the
front page in
Drupal.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 861

Installing a Content Management System862

When you have a lot of pages, you’ll definitely want to add some sort of navi-
gation system. When you create or edit a page, you can add it to Drupal’s
menu system. Figure 3-13 shows the menu settings for a new page.

To set a page’s place in the menu structure, follow these steps:

1. Modify the menu settings.

The page creation screen has a section called “Menu settings” (shown in
Figure 3-13).

2. Give the page a title.

The page will be displayed in the menu only if it has a title.

3. Provide a description for the page.

The description text will automatically appear when you hover over the
menu. This can be used to provide additional text to explain the page’s
contents.

4. Specify a parent item.

Typically, you’ll use “content” for the parent because this will cause a
link to appear on the primary navigation menu of the system.

Figure 3-13:
Designate
your page’s
place in the
menu
system.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 862

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 863

5. Submit the page.

Use the Submit button to save changes to your page.

6. Test the menu.

Your page should now appear on the left-side menu, as shown in
Figure 3-14.

If you want to modify the menu placement of a page after it has been cre-
ated, you can either edit the page (see the next section) or modify the
menu structure itself. Menus can be modified through the Administer
menu: Administer ➪ Site building ➪ Menus.

Editing your pages
You may want to change a page once you’ve added it to the system. You can
change the content to your heart’s content if you’re logged in as the adminis-
trator. Here’s how:

1. Log in as the administrator.

Only the administrator (or someone given special privileges by the
administrator) can change the content of a page.

Figure 3-14:
Now, the
new page
(Third Page)
shows in
the menu
structure.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 863

Installing a Content Management System864

2. Navigate to the Administer page.

The administrator has access to a special menu item called
“Administer.” Click this link to view the page shown in Figure 3-15.

Drupal uses the word “administrate” in a lot of different ways. Here’s the run-
down: The administrator is a person with special privileges. The account you
use as the administrator is sometimes called the admin account. When
you’re logged in as the administrator, you have access to a special page
called the Administer page.

Adding a new content block
You may want to add a new type of content to your page. Drupal comes with
several modules already, and you can choose from hundreds more. To begin
by adding a poll, follow these steps:

1. Log in as admin (if you haven’t already).

You’ll change the site design again.

2. Find the Modules page.

It’s in the Administer – Site Building section. You see a screen like the
one shown in Figure 3-16.

Figure 3-15:
The Admin-
ister page
allows you
to modify
various
parts of the
system.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 864

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 865

3. Look for the Poll module.

The Poll module allows you to ask a question and track user responses
to it. Select the Enabled check box for this module and click the Save
Configuration button.

4. Create a poll.

A poll is interesting only if you ask a question. You find the poll configu-
ration on the Create Content page, in the Submit Poll section (see
Figure 3-17).

5. Edit the poll.

Click the Edit button to add a new poll.

6. Display the Poll module.

Even though the Poll module is enabled, it hasn’t been placed in the site.
Use the Administer – Site Building – Blocks page, shown in Figure 3-18, to
make the poll visible.

7. Place the poll.

The poll is listed in the Disabled block by default. Choose another place-
ment for it by selecting from the drop-down list. I put the poll in the side-
bar on the right.

Figure 3-16:
You add a
new module
with the
Modules
page.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 865

Installing a Content Management System866

Figure 3-18:
Of course,
you want
the new poll
to be visible.

Figure 3-17:
Creating a
new poll
object.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 866

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 867

8. Test the poll.

You want to see whether it looks the way you expect. Figure 3-19 shows
my site with the new poll in place.

By default, users can create their own polls. You may want to disable this
feature for anonymous users, or else you’ll get spammed.

Of course, the poll is not the only module available. Drupal has several inter-
esting modules available to experiment with in the default package, with
hundreds more available for free download.

Almost all CMSs have plugin modules available. You can usually find a list of
modules on the CMS’s home page, or you can search for it at www.google.
com. Of course, modules are usually nothing more than PHP code, so you
can always write your own.

Changing the look
You can easily change the look and feel of Drupal. It uses (like most CMSs)
the concept of themes to organize the look and feel of a site. A theme is a
prepackaged layout and visual display configuration. To try one of the other
default themes, just go to Administer – Sitebuilding – Themes in Admin
mode and select a new theme.

Figure 3-19:
I’ve added
a new
module!

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 867

Installing a Content Management System868

You’ll see a list of all the installed themes. Each theme can be enabled or dis-
abled, and one theme can be set as the default theme.

Enabling a theme makes it available for users to choose, and setting a theme
as the default makes it the primary theme of your account. Figure 3-20 shows
the site using the Pushbutton theme.

Of course, you probably want more exciting options than the one in my
example. Hundreds of themes are available, so you should find one that suits
your needs. Follow these steps:

1. Download a theme from the Internet.

Nearly every CMS has a community of theme builders. Do a quick search
for Drupal themes to find the theme you’re looking for. Most Drupal
themes are saved as Zip files containing a single directory.

2. Copy the theme to the themes directory.

I found an attractive theme, named Aberdeen, so I copied the entire
directory found in the Zip file to the themes directory under the Drupal
main directory.

Figure 3-20:
I changed
the theme
with one
quick
setting.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 868

Book VIII
Chapter 3

Introducing Content
M

anagem
ent

System
s

Installing a Content Management System 869

3. Refresh or re-navigate to the themes directory.

If you’re already in the themes directory, refresh the browser. If you’re
not there, find the directory to see the new theme.

4. Select the theme and test it.

Figure 3-21 shows my Drupal site with the Aberdeen theme. It’s amazing
how easy it is to change the look and feel.

Of course, you can also create your own themes. In most cases, the CMS
themes are simply PHP files organized in a specific way. Check the documen-
tation for your specific theme system.

Figure 3-21:
You can
download
themes
easily to
most CMSs.

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 869

Book VIII: Moving from Web Pages to Web Sites870

53_186275 bk08ch03.qxp 3/28/08 11:02 PM Page 870

Chapter 4: Taking Control
of Content

In This Chapter
� Using CMS Made Simple (CMSMS)

� Adding new pages in CMSMS

� Adding themes

� Working with templates

� Approximating CMS with SSI and AJAX

� Creating a CMS with PHP and MySQL

The idea of a content management system (CMS) is very appealing because
it gives you a great deal of additional control of your site and allows the

user to manage his own content. Of course, when you use a content manage-
ment system, you’re somewhat at the mercy of that system’s designers. In this
chapter, I show you how to customize a relatively simple CMS, including
adding new styles and layouts.

I also show you several ways to approximate a CMS with your own code using
technologies introduced throughout this book. Finally, I develop a rudimen-
tary CMS using PHP and MySQL. Even if you don’t end up building your own
CMS, looking through this code helps you see how “real world” CMSs work.

Getting Started with CMSMS
Content management systems are certainly useful, but it’s no fun to be stuck
with somebody else’s design. You probably have your own design ideas
you’d like to implement in the CMS. Of course, you can build new themes for
any CMS, but that’s not always as easy as you might think. You have to be
comfortable with using most CMSs before you can write your own themes.

I show you CMSMS (or CMS Made Simple), a CMS that’s so simple you
should be able to customize your site with it completely in just a couple of
days. For small to medium-size projects, it’s a good blend of simplicity and
capability (and now my favorite CMS).

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 871

Getting Started with CMSMS872

Installing CMSMS
The installation of CMSMS is similar to any other CMS installation. Follow
these steps:

1. Download the package from the CD-ROM (or get the latest version
from the Web site).

The CMS itself is mainly a series of PHP files with a few images and other
materials.

2. Copy it to your htdocs directory.

Like other CMSs, CMSMS needs to be in your htdocs path because it
uses PHP.

3. Run CMSMS through localhost.

The first time CMSMS runs, it checks for the existence of a script named
config.php. You need to create an empty file of this name and put it in
the directory requested by the script.

4. Create an administration account when prompted by CMSMS.

This account sets up an administrator for CMSMS (not for the database).

5. Define the data configuration.

Figure 4-1 illustrates how CMSMS expects the data to be configured.
Define the database, username, and password you will use for the data-
base relating to this CMS.

Figure 4-1:
How the
database
will be con-
figured.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 872

Book VIII
Chapter 4

Taking Control
of Content

Getting Started with CMSMS 873

Data configuration is easier if you create a database and a user with the
same name.

6. Create a dedicated database.

Use phpMyAdmin to create a database with the settings you specified in
Step 5.

Playing around with the default package
CMSMS is unique because the default setup is the documentation! Most of
what you need to know is already available within CMSMS itself. Don’t worry,
though: The documentation is still available, even after you replace it with
your own content, and CMSMS isn’t that hard to use (much easier than
Drupal, in my opinion). The default setup of CMSMS is shown in Figure 4-2.

Before you change anything, take a look around and make sure to read the
default pages because they’re full of helpful information about how the
system is designed.

The philosophy of CMSMS is straightforward:

✦ Templates define structure. Templates are basically XHTML pages. If
you want a new XHTML structure, you simply modify or create a new
XHTML page.

Figure 4-2:
CMS Made
Simple is
clean-look-
ing.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 873

Getting Started with CMSMS874

✦ Templates include smarty tags. Templates contain XHTML structure,
but no content. You put special markers in the templates to indicate
where the content is placed. I tell you more on that topic as I describe
how to modify templates, later in this chapter.

✦ CSS describes layout. As always, use CSS to define the look and feel. The
CSS for CMSMS isn’t really any different than it is for regular XHTML,
except that a lot of it is already done for you (and done very well).

✦ Content is defined within the system. When you want to create content,
you specify a layout, and CMSMS provides a WYSIWYG editor to let you
type in the content.

Adding a new page
The easiest way to understand how CMSMS does its magic is to simply add a
new page. Here’s how it’s done:

1. Log in as admin.

Point your browser to the admin directory, under the cmsms directory,
and the login screen for administrative privileges is displayed. The
default screen looks like the one shown in Figure 4-3.

Figure 4-3:
As always,
you need to
log in as
admin to do
anything
really dan-
gerous.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 874

Book VIII
Chapter 4

Taking Control
of Content

Getting Started with CMSMS 875

2. Examine the main administration screen to see all your options.

After you click the Submit button, you’ll see a screen like Figure 4-4.

The first time you see this page, you see a warning that the install directory
is still in place. Delete the install directory (you don’t need it any more),
and then you don’t see the error any more.

3. Go to the Content section and pick pages. You can go directly to the
pages section by clicking the pages link.

This page, shown in Figure 4-5, is where you create and modify the pages
in your system.

4. Create a new page by clicking the Add New Content link.

You see a page editor like the one shown in Figure 4-6.

5. Edit the page.

CMSMS features a handy editor that feels a lot like a word processor. People
with no skill in using HTML are still reasonably comfortable creating con-
tent with this tool. Of course, if you prefer HTML, you can click the HTML
button and type your own XHTML text. (For basic editing, I let the editor do
the work, but when I want things a particular way, I write my own HTML.)

Figure 4-4:
The main
Control
Panel for
CMSMS.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 875

Getting Started with CMSMS876

Figure 4-6:
The page
editor.

Figure 4-5:
You spend a
lot of time
managing
your pages
here.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 876

Book VIII
Chapter 4

Taking Control
of Content

Customizing CMSMS 877

6. Choose a template from the provided drop-down list.

By default, CMSMS has five template choices. Of course, you can choose
many more, but this number is plenty to start with. Be aware that some
templates have more text areas than others, so your template choice
may be based on the type of text you want to incorporate.

The CSS style is integrated into the template, but you can change it later,
if you want.

7. Test the page by clicking the Preview button.

Go back and fix your page if there’s anything you want to change.

8. Click the Submit button to accept the changes to your page.

You return to the Pages section.

9. Modify your page settings.

Although the page is automatically linked to the menu system, you can
easily change each page’s position and settings. You can move a page up
or down in the menu system, and you can assign it a parent, making the
page a submenu of any other page.

Feel free to experiment by adding and manipulating pages and changing the
page styles.

Customizing CMSMS
Of course, you have the most fun working with a CMS when you totally change
the way it looks. Fortunately, CMSMS is easier to customize than most CMSs.

Adding a theme
Begin by finding a theme online that you want to modify. CMSMS has an
active and dynamic community of theme builders. Follow these steps:

1. Find a theme you like.

Search http://themes.cmsmadesimple.org, and you’re bound to
find something you like. It doesn’t have to be perfect. Find something
close, and then you can modify it with your own graphics and colors.

2. Download the theme.

Most CMSMS themes are XML files. You download the file, rather than
open it directly. You need to store the XML file somewhere on a disk.

3. Log into CMSMS in admin mode.

4. Find the theme manager on the Layout menu. It looks like Figure 4-7.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 877

Customizing CMSMS878

5. Import the theme.

You see the Import tab near the top of the theme manager. Navigate to
the XML file you just downloaded and click the Import button. The
Theme Manager returns, and your new theme should be available.

The theme is just the packaging of a template and some CSS files (and
sometimes images and other resources).

6. Activate the template by clicking the X to change it to a green check mark.

To activate the theme, go to the Template Manager on the Layout menu.
It looks like Figure 4-8.

Your new template is listed as Inactive by default so that you can test it
before you make it available.

7. Set all pages to use the new template by clicking the appropriate link.

Because this is just a test, try setting all your pages to use the template.

8. View the site with the new template in place.

Your site now follows the standards of the new template. Figure 4-9
demonstrates the site with a new template in place.

The new template, named ssAblaze, was ported from an earlier style at www.
styleshout.com. Take a look at this site to see some excellent CSS styles.

Figure 4-7:
The theme
manager in
CMSMS.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 878

Book VIII
Chapter 4

Taking Control
of Content

Customizing CMSMS 879

Figure 4-9:
The look
and feel
have
changed,
but the con-
tent is
unchanged.

Figure 4-8:
The
Template
Manager
manages
templates.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 879

Customizing CMSMS880

Working with templates
You can create a template from scratch if you want, but it may be easier to
modify an existing template. Here’s how:

1. Choose a template you like.

We recommend that you start with an existing template so that you can
take advantage of the previous coder’s skill. Identify a template you want
to modify and locate it in the Template Manager.

2. Duplicate the template.

Locate the small Duplicate button on the right side of the Template
Manager. Duplicate the template and work on a copy so that you don’t
risk breaking the original.

3. Assign the duplicated template a new name.

I named mine andyCSSTop2Col because it’s based on the CSSMenu
top 2 col template.

4. Edit the template.

You click the small Edit icon to edit the template. You won’t make a lot of
changes to it, but look over the code. Figure 4-10 shows a simple template
in the editor.

Figure 4-10:
In this basic
template,
notice the { }
tags.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 880

Book VIII
Chapter 4

Taking Control
of Content

Customizing CMSMS 881

5. Notice the smarty tags.

A template is just an XHTML framework, but it has special smarty tags.
The Smarty template engine, which is included with CMSMS, allows for
server-side replacement. The { content } tag is replaced with
whichever content has been added to that page, for example.

6. Make changes and close the Template Manager.

You can add boilerplate code, if you want. I thought that the left column
looked bare, for example, so I added a Quote of the Day feature.

7. Attach a style sheet or two.

You use the Attach Stylesheets button to attach one or more style sheets
to this template. Whenever the template is invoked, the indicated style
sheet is automatically loaded by the CMS. You can add more than one
style sheet (for example, the print style sheet already handles creating a
print layout). Figure 4-11 shows the style-sheet linking tool.

Figure 4-11:
The style-
sheet linking
tool con-
nects one or
more style
sheets to a
template.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 881

Customizing CMSMS882

Changing a style
Of course, you probably want to add your own styles, which is pretty easy to
do in CMSMS. Follow these steps:

1. Check the Assign Styles dialog box to see which styles are attached.

If your template was copied from another template, it probably inherited
some styles from the parent template. Identify any styles your template
is already using.

2. Duplicate a style before changing it.

Adjust one of the already existing styles. As with templates, never
change the original, but instead make a copy and then modify the copy.
Duplicate the style sheet and give it a new name.

3. Edit the new style sheet.

The new style sheet is simply a CSS document. Look it over to see which
changes you want to make. (As always, the Web Developer toolbar can
be a godsend for modifying styles.) Begin with basic changes, such as
colors, before doing the more dramatic stuff.

4. Attach the new style sheet to the template.

Tell the template that you want to use the new style sheet with your
changes by adjusting the CSS assignments. Also, remove the style sheet
that your new style replaces.

Adding a custom tag
One of the coolest features of CMSMS is also one of the easiest to use. You
can easily create custom tags that do anything you can do in PHP. Here’s
how it works:

1. Open the User-Defined Tags page in the Extensions menu.

2. Add a new user-defined tag by clicking the appropriately named link.

3. Insert some PHP code in the resulting text editor.

Just for fun, I added a simple loop, as shown in Figure 4-12.

4. Name and save the tag.

I named my new tag count because it creates an unordered list with a
for loop. Use the Submit button to save your tag.

This counting script is a completely made-up example. Normally, you’ll
use custom scripts for things like database lookup or other more
advanced PHP not already handled by the CMS.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 882

Book VIII
Chapter 4

Taking Control
of Content

Customizing CMSMS 883

5. Edit a page or template.

I’m adding the counter to “Andy’s Page,” for this example.

6. Add the count tag to the page.

Figure 4-13 shows a page with the new { count } tag included in the
source.

Figure 4-13 also illustrates my customized style on my custom page.
Slick, huh?

7. View the page and be amazed.

When you view the page, you see the tag replaced by the results of exe-
cuting the code.

The custom tag feature is incredibly useful because you can use it to do any-
thing you can do with ordinary PHP, which is quite a lot.

Even better, your PHP is in short snippets, which are usually easier to write
and understand than huge applications that create mounds of XHTML code.

Figure 4-12:
This quick
PHP script
is about to
become a
smarty tag.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 883

Building a “Poor Man’s CMS” with Your Own Code884

Building a “Poor Man’s CMS” with Your Own Code
The benefits of using a CMS are very real, but you may not want to make the
commitment to a full-blown CMS. For one thing, you have to learn each
CMS’s particular way of doing things, and most CMSs force you into a partic-
ular mindset. For example, you think differently about pages in Drupal than
you do in CMSMS. You can still get some of the benefits of a CMS with some
simpler development tricks, as described in the following sections.

Using Server-Side Includes (SSIs)
Web developers have long used the simple SSI (Server-Side Include) trick as
a quick and easy way to manage content. It involves breaking the code into
smaller code segments and a framework that can be copied. For example,
Figure 4-14 shows a variation of the Web site developed in Chapter 2 of this
minibook.

Even if you view the source code, you don’t find anything unusual about the
page.

Figure 4-13:
Now, when-
ever I use
the { count }
tag, the
PHP code
executes.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 884

Book VIII
Chapter 4

Taking Control
of Content

Building a “Poor Man’s CMS” with Your Own Code 885

However, if you look at the code in a text editor, you find some interesting
discoveries:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>CS Standard Template</title>
<link rel = “stylesheet”

type = “text/css”
href = “csStd.css” />

</head>

<body>
<div id = “all”>

<!-- This div centers a fixed-width layout -->
<div id = “heading”>

<!--#include virtual = “head.html” -->
</div><!-- end heading div -->

<div id = “menu”>
<!--#include virtual = “menu.html” -->

</div> <!-- end menu div -->

<div class = “content”>
<!--#include virtual = “story1.html” -->

</div> <!-- end content div -->

Figure 4-14:
This Web
page ap-
pears to
be a stan-
dard page.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 885

Building a “Poor Man’s CMS” with Your Own Code886

<div class = “content”>
<!--#include virtual = “story2.html” -->

</div> <!-- end content div -->

<div id = “footer”>
<!--#include virtual = “footer.html” -->

</div> <!-- end footer div -->
</div> <!-- end all div -->

</body>
</html>

Some interesting things are happening in this code snippet:

✦ The page has no content! All the actual content (the menus and the
phony news stories) are gone. This page, which contains only structural
information, is the heart of any kind of CSS — the structure is divorced
from the content.

✦ A funky new tag is in place of the content. In each place that you
expect to see text, you see an <!--#include --> directive, instead.
This special instruction tells the server to go find the specified file and
put it here.

✦ The filename is unusual. The server doesn’t normally look for include
tags (because most pages don’t have them). Typically, you have to save
the file with the special extension .shtml to request that the server
look for include directives and perform them.

✦ Servers don’t always allow SSI technologies. Not every server is config-
ured for Server-Side Includes. You may have to check with your server
administrator to make this work.

The nice thing about Server-Side Includes is the way that it separates the con-
tent from the structure. For example, look at the code for the first content block:

<!--#include virtual = “story1.html” -->

This code notifies the server to look for the file story1.html in the current
directory and place the contents of the file there. The file is a vastly simpli-
fied HTML fragment:

<h2>Factual Error Found on Internet</h2>

<p>
LONGMONT, CO - The Information Age was dealt a stunning blow Monday,
when a factual error was discovered on the Internet. The error
was found on TedsUltimateBradyBunch.com, a Brady Bunch fan site
that incorrectly listed the show’s debut year as 1968, not 1969.
</p>

<p>The Onion</p>

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 886

Book VIII
Chapter 4

Taking Control
of Content

Building a “Poor Man’s CMS” with Your Own Code 887

This approach makes it very easy to modify the page. If I want a new story, I
simply make a new file, story1.html, and put it in the directory. Writing a
program to do this automatically is easy.

Like PHP code, SSI code doesn’t work if you simply open the file in the
browser or drag the file to the window. SSI requires active participation from
the server; to run an SSI page on your machine, therefore, you need to use
localhost, as you do for PHP code.

Using AJAX/JQuery for client-side
If you don’t have access to Server-Side Includes, you can use AJAX to get the
same effect.

Figure 4-15 shows what appears to be the same page, but all is not what it
appears to be.

Figure 4-14 and 4-15 look identical, but they’re not. I used totally different
means to achieve exactly the same output, from the user’s point of view.

Figure 4-15:
This time, I
grabbed
content
from the
client side.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 887

Building a “Poor Man’s CMS” with Your Own Code888

The code reveals what’s going on:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>CS Standard Template</title>
<link rel = “stylesheet”

type = “text/css”
href = “csStd.css” />

<script type = “text/javascript”
src = “jquery-1.2.1.js”></script>

<script type = “text/javascript”>
//<![CDATA[

$(document).ready(function() {
$(“#heading”).load(“head.html”);
$(“#menu”).load(“menu.html”);
$(“#content1”).load(“story1.html”);
$(“#content2”).load(“story2.html”);
$(“#footer”).load(“footer.html”);

});
//]]>
</script>

</head>

<body>
<div id = “all”>

<!-- This div centers a fixed-width layout -->
<div id = “heading”>
</div><!-- end heading div -->

<div id = “menu”>
</div> <!-- end menu div -->

<div class = “content”
id = “content1”>

</div> <!-- end content div -->

<div class = “content”
id = “content2”>

</div> <!-- end content div -->

<div id = “footer”>
</div> <!-- end footer div -->

</div> <!-- end all div -->
</body>

</html>

Once again, the page content is empty. All the contents are available in the same
text files as they were for the Server-Side Includes example. This time, though, I
used a jQuery AJAX call to load each text file into the appropriate element.

The same document structure can be used with very different content by
changing the JavaScript. If you can’t create a full-blown CMS (because the
server doesn’t allow SSI, for example) but you can do AJAX, this is an easy
way to separate content from layout.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 888

Book VIII
Chapter 4

Taking Control
of Content

Building a “Poor Man’s CMS” with Your Own Code 889

Building a page with PHP includes
Of course, if you have access to PHP, it’s quite easy to build pages dynamically.

The csInclude.php program shows how this is done:

!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>

<head>
<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>CS PHP Includes</title>
<link rel = “stylesheet”

type = “text/css”
href = “csStd.css” />

</head>

<body>
<div id = “all”>

<!-- This div centers a fixed-width layout -->
<div id = “heading”>

<?php include(“head.html”); ?>
</div><!-- end heading div -->

<div id = “menu”>
<?php include(“menu.html”); ?>

</div> <!-- end menu div -->

<div class = “content”>
<?php include(“story1.html”); ?>

</div> <!-- end content div -->

<div class = “content”>
<?php include(“story2.html”); ?>

</div> <!-- end content div -->
<div id = “footer”>

<?php include(“footer.html”); ?>
</div> <!-- end footer div -->

</div> <!-- end all div -->
</body>

</html>

As you can see, using PHP is almost the same as using the SSI and AJAX
approaches from the last two sections of this chapter:

1. Start by building a template.

The general template for all three styles of page inclusion is the same.
There’s no need to change the general design or the CSS.

2. Create a small PHP segment for each inclusion.

In this particular situation, it’s easiest to write XHTML code for the main site
and write a small PHP section for each segment that needs to be included.

3. Include the HTML file.

Each PHP snippet does nothing more than include the appropriate HTML.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 889

Creating Your Own Data-Based CMS890

Creating Your Own Data-Based CMS
Of course, if you’ve come this far in the chapter, you ought to go all the way
and see how a relational database can add flexibility to a page-serving
system. If you really want to turn the corner and make a real CMS, you need
a system that stores all the data in a data structure and compiles the pages
from that structure dynamically. That sounds like a project. It’s not nearly as
intimidating as it sounds, though.

Using a database to manage content
The first step is to move from storing data in files to storing it a relational
database. Each page in a content management system is often the same
structure, and only the data is different. What happens if you move away
from text files altogether and store all the content in a database?

The data structure might be defined like this in SQL:

DROP TABLE IF EXISTS cmsPage;
CREATE TABLE cmsPage (

cmsPageID INTEGER PRIMARY KEY AUTO_INCREMENT,
title VARCHAR(30)

);

DROP TABLE IF EXISTS cmsBlock;
CREATE TABLE cmsBlock (

cmsBlockID INTEGER PRIMARY KEY AUTO_INCREMENT,
blockTypeID INTEGER,
title VARCHAR(50),
content TEXT,
pageID INTEGER

);

DROP TABLE IF EXISTS blockType;
CREATE TABLE blockType (

blockTypeID INTEGER PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(30)

);

DROP VIEW IF EXISTS pageView;
CREATE VIEW pageView AS

SELECT
blockType.name as ‘block’,
cmsBlock.title as ‘title’,
cmsBlock.content as ‘content’,
cmsPage.cmsPageID as ‘pageID’,
cmsPage.title as ‘page’

FROM
cmsBlock, blockType, cmsPage

WHERE
cmsBlock.blockTypeID = blockType.blockTypeID;

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 890

Book VIII
Chapter 4

Taking Control
of Content

Creating Your Own Data-Based CMS 891

This structure has three tables and a view:

✦ The cmsPage table: Represents the data about a page, which currently
isn’t much. A fuller version might put menu information in the page data
so that the page would “know” where it lives in a menu structure.

✦ The cmsBlock table: Represents a block of information. Each block is
the element that would be in a miniature HTML page in the other sys-
tems described in this chapter. This table is the key table in this struc-
ture because most of the content in the CMS is stored in this table.

✦ The blockType table: Lists the block types. This simple table describes
the various block types.

✦ The pageView view: Ties together all the other information. After all the
data is loaded, the pageView view ties it all together, as shown in
Figure 4-16.

Some of the data (the menu information and the link to The Onion) is being
read as HTML, but it’s still text data. I included the entire SQL file, including
the INSERT statements, on the CD-ROM as buildCMS.sql.

Figure 4-16:
This view
describes
all the data
needed to
build a
page.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 891

Creating Your Own Data-Based CMS892

Writing a PHP page to read from the table
The advantage of using a data-based approach is scalability. In using all the
other models in this chapter, I had to keep copying the template page. If you
decide to make a change in the template, you have to change hundreds of
pages. If you use data, you can write one PHP program that can produce any
page in the system. All this page needs is a page-number parameter. Using
that information, it can query the system, extract all the information needed
for the current page, and then display the page. Here’s the (simplified) PHP
code for such a system:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html lang=”EN” dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head>

<meta http-equiv=”content-type” content=”text/xml; charset=utf-8” />
<title>dbCMS.php.</title>
<link rel = “stylesheet”

type = “text/css”
href = “csStd.css” />

</head>
<?php

//get pageID from request if possible
$pageID = $_REQUEST[“pageID”];
$pageID = mysql_real_escape_string($pageID, $conn);
if ($pageID == “”){

$pageID = 1;
} // end if

//read current page information from the db
$conn = mysql_connect(“localhost”, “xfd”, “xfdaio”);
mysql_select_db(“xfd”);
$sql = “SELECT * FROM pageView WHERE pageID = 1”;
$result = mysql_query($sql, $conn);

//populate local variables from db result
while ($row = mysql_fetch_assoc($result)){

if ($row[“block”] == “head”){
$head = $row[“title”];

} else if ($row[“block”] == “menu”){
$menu = $row[“content”];

} else if ($row[“block”] == “content1”){
$c1Title = $row[“title”];
$c1Text = $row[“content”];

} else if ($row[“block”] == “content2”){
$c2Title = $row[“title”];
$c2Text = $row[“content”];

} else if ($row[“block”] == “footer”){
$footer = $row[“content”];

} // end if
} // end while

?>

<body>
<div id = “all”>

<!-- This div centers a fixed-width layout -->

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 892

Book VIII
Chapter 4

Taking Control
of Content

Creating Your Own Data-Based CMS 893

<div id = “heading”>
<h1>

<?php print $head; ?>
</h1>

</div><!-- end heading div -->

<div id = “menu”>
<?php print $menu; ?>

</div> <!-- end menu div -->

<div class = “content”>
<h2>

<?php print $c1Title; ?>
</h2>
<p>

<?php print $c1Text; ?>
</p>

</div> <!-- end content div -->

<div class = “content”>
<h2>

<?php print $c2Title; ?>
</h2>
<p>

<?php print $c2Text; ?>
</p>

</div> <!-- end content div -->

<div id = “footer”>
<?php print $footer; ?>

</div> <!-- end footer div -->
</div> <!-- end all div -->

</body>
</html>

Here’s the cool thing about dbCMS. This page is all you need! You won’t have
to copy it ever. The same PHP script is used to generate every page in the
system. If you want to change the style or layout, you do it in this one script,
and it works automatically in all the pages.

Looking at all the code at once may seem intimidating, but it’s quite easy
when you break it down, as explained in these steps:

1. Pull the pageID number from the request.

If possible, extract the pageID number from the GET request. If the user
has sent a particular page request, it has a value. If there’s no value, get
page number 1:

//get pageID from request if possible
$pageID = $_REQUEST[“pageID”];
$pageID = mysql_real_escape_string($pageID, $conn);
if ($pageID == “”){

$pageID = 1;
} // end if

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 893

Creating Your Own Data-Based CMS894

Don’t forget to escape the pageIDdata! Whenever you extract data from a page
to use in a query, remember to escape the data to prevent injection attacks.

2. Query pageView to get all the data for this page.

The pageView view was designed to give you everything you need to
build a page with one query.

If you’re using MySQL 4 (without views), just copy the query from the
view definition and insert it into your PHP code. The view is just a
shortcut — it’s never absolutely necessary.

3. Pull values from the query to populate the page.

Look at each response of the query. Then, look at the block value to see
which type of query it is and populate local variables:

//read current page information from the db
$conn = mysql_connect(“localhost”, “xfd”, “password”);
mysql_select_db(“xfd”);
$sql = “SELECT * FROM pageView WHERE pageID = $pageID”;
$result = mysql_query($sql, $conn);

4. Write out the page.

Go back to HTML and generate the page, skipping into PHP to print the
necessary variables.

Improving the dbCMS design
Although the simple PHP/MySQL combination described in the last section
is a suitable starting point, you probably want to do a bit more to make a
complete CMS because a better CMS might have the following features:

✦ Automatic menu generation: The menu system in dbCMS is too static as
it is. Your database should keep track of where each page is located in
the system, and your menu code should be dynamically generated
based on this information.

✦ Error-checking: This program isn’t nearly robust enough for real use
(yet). It crashes if the data isn’t complete. Before you can use this system
in a real application, you need a way to improve its “crashworthiness.”

✦ Data input: What would truly improve this system is a mechanism for
adding new data to the data tables. Allow the user to create new pages
and content. Provide a form for creating a new page. When the user adds
information, it’s passed to the database, where it’s immediately available
as a new page.

54_186275 bk08ch04.qxp 3/28/08 11:03 PM Page 894

Appendix A: What’s on the CD

In This Appendix:
� System requirements

� Using the CD with Windows and Mac

� What you’ll find on the CD

� Troubleshooting

System Requirements

Make sure that your computer meets the minimum system requirements
shown in the following list. If your computer doesn’t match up to most

of these requirements, you may have problems using the software and files on
the CD. For the latest and greatest information, please refer to the ReadMe file
located at the root of the CD-ROM.

✦ A PC running Microsoft Windows 98, Windows 2000, Windows NT4
(with SP4 or later), Windows Me, Windows XP, or Windows Vista.

✦ A Macintosh running Apple OS X or later.

✦ A PC running a version of Linux with kernel 2.4 or greater.

✦ An Internet connection

✦ A CD-ROM drive

If you need more information on the basics, check out these books pub-
lished by Wiley Publishing, Inc.: PCs For Dummies, by Dan Gookin; Macs For
Dummies, 9th Edition, by Edward C. Baig; iMac For Dummies, 5th Edition, by
Mark Chambers; Windows 95 For Dummies, Windows 98 For Dummies,
Windows 2000 Professional For Dummies, Microsoft Windows ME Millennium
Edition For Dummies, Windows Vista For Dummies, all by Andy Rathbone.

Using the CD
To install the items from the CD to your hard drive, follow these steps.

1. Insert the CD into your computer’s CD-ROM drive. The license agree-
ment appears.

55_186275 bapp01.qxp 3/28/08 11:04 PM Page 895

What You’ll Find on the CD896

Note to Windows users: The interface won’t launch if you have
autorun disabled. In that case, click Start➪Run (For Windows Vista,
Start➪All Programs➪Accessories➪Run). In the dialog box that
appears, type D:\Start.exe. (Replace D with the proper letter if your
CD drive uses a different letter. If you don’t know the letter, see how
your CD drive is listed under My Computer.) Click OK.

Note for Mac Users: The CD icon will appear on your desktop, double-
click the icon to open the CD and double-click the “Start” icon.

2. Read through the license agreement, and then click the Accept button
if you want to use the CD.

The CD interface appears. The interface allows you to install the pro-
grams and run the demos with just a click of a button (or two).

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of
the software and other goodies you’ll find on the CD. If you need help with
installing the items provided on the CD, refer back to the installation instruc-
tions in the preceding section.

Shareware programs are fully functional, free, trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities.
You can copy them to as many PCs as you like @md for free @md but they
offer no technical support.

GNU software is governed by its own license, which is included inside the
folder of the GNU software. There are no restrictions on distribution of GNU
software. See the GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by
time or functionality (such as not letting you save a project after you create it).

Author-created material
For Windows and Mac.

All the examples provided in this book are located in the Author directory
on the CD and work with Macintosh, Linux, Unix and Windows 95/98/NT and
later computers. These files contain the sample code from the book. The
structure of the examples directory is

Author/Book1/Chapter1

55_186275 bapp01.qxp 3/28/08 11:04 PM Page 896

What You’ll Find on the CD 897

Aptana Studio 1.1, Community Edition
Open source.

For Windows and Mac OS. A full-featured programmer’s editor that greatly
simplifies creating Web pages, CSS documents, and code in multiple lan-
guages.

CMS Made Simple 1.2.2
Open source.

For Windows and Mac OS. A content management system that’s easy to run
and modify.

DBDesigner 4.0.5.6
Open source.

For Windows. A visual database designer for building complex database
models.

Dia 0.96.1
Open source.

For Windows. A drawing tool suitable for site diagrams, flow diagrams, and
other vector-drawing applications.

FireFox 2.0.0.12 and Extensions
Open source.

For Windows and Mac OS. I’ve included several extensions to the Firefox Web
browser that turn it into a thoroughbred Web development platform. Web
Developer Toolbar 1.1.4 adds all kinds of features for creating and testing
pages; HTML Validator 0.840 checks your pages for standards-compliance;
the FireBug 1.05 extension adds incredible features for JavaScript and AJAX
debugging; and FireFTP, Mozilla’s FTP client program.

GIMP 2.4.4
Open source.

For Windows. A professional-level graphics editor in a free package. It does
everything the expensive graphics editors do.

55_186275 bapp01.qxp 3/28/08 11:04 PM Page 897

What You’ll Find on the CD898

IrfanView 4.10
Freeware.

For Windows. A useful graphics viewer program.

jQuery 1.2.1
Open source.

For Windows and Mac OS. A JavaScript Library that helps you transfer HTML
documents, handle events, and include AJAX features in your Web pages.

Nvu 1.0
Open source.

For Windows and Mac OS. A visual HTML editor that lets you see changes as
you make them.

prototype 1.6
Open source.

For Windows and Mac OS. A JavaScript library that simplifies form handling
and AJAX.

SQLite 303.5.6
Open source.

For Windows and Mac OS. A powerful software library as well as SQL data-
base engine.

WinSCP 4.0.5
Open source.

For Windows. WinSCP is an SFTP client and FTP client for Windows used to
secure file transfers between local and remote computers.

Vim 7.1
Open source.

For Windows and Mac OS. A venerable text editor with modern enhancements.

55_186275 bapp01.qxp 3/28/08 11:04 PM Page 898

Troubleshooting 899

XAMPP 1.6.4
GNU version.

For Windows and Mac OS. XAMPP is a complete server package that’s easy to
install and incredibly powerful. This package includes the incredible Apache
Web server, the PHP programming language, the MySQL database manager,
and tons of useful utilities.

Troubleshooting
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM)
for the programs you want to use, or you have other programs running that
are affecting installation or running of a program. If you get an error message
such as Not enough memory or Setup cannot continue, try one or
more of the following suggestions and then try using the software again:

✦ Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that it’s being infected by a virus.

✦ Close all running programs. The more programs you have running, the
less memory is available to other programs. Installation programs typi-
cally update files and programs; so if you keep other programs running,
installation may not work properly.

✦ Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, adding
more memory can really help the speed of your computer and allow
more programs to run at the same time.

Customer Care

If you have trouble with the CD-ROM, please call the Wiley Product Technical
Support phone number at (800) 762-2974. Outside the United States, call
1(317) 572-3994. You can also contact Wiley Product Technical Support at
http://support.wiley.com. John Wiley & Sons will provide technical support
only for installation and other general quality control items. For technical sup-
port on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products,
please call (877) 762-2974.

55_186275 bapp01.qxp 3/28/08 11:04 PM Page 899

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies900

55_186275 bapp01.qxp 3/28/08 11:04 PM Page 900

Symbols
- - operator, 373
!= (not equal operator),

361
!=: comparison operator,

541
#attribution selector,

187
#left div element, 278
#menu a:hover selector,

297
#menu li li li

attribute, 312
#myThing selector, 749
#quote style, 188
#right div element, 278
$ operator, 452, 749
% (percentages), 174,

324–325, 671
%20 symbol, 523
%d character, 385
%o character, 385
%s character, 385
& (ampersand), 523
&& logical operator, 541
* characters, 452, 456, 668
. (period) symbol, 452,

455, 505
.= operator, 508
/ (forward slashes), 13, 34,

125, 603
// (two slashes), 83, 340
/* */ (multi-line

comment) character,
232, 340

/> characters, 93
: (colon), 83, 367–368
:hover pseudo-class, 201,

303
:not selector, 762
; (semicolon), 340, 503, 658
? (question mark), 523
?> symbol, 515, 531
[] (square brace), 405

[char range] operator,
452

[characters] operator,
452

\ (backslash), 434, 504, 508,
597, 603

\\ directive, 504
\’ directive, 504
\” directive, 504
\$ directive, 504
\b operator, 452
\d operator, 452, 455
\n (newline) character,

407, 434, 504, 508, 590,
596

\t (tabs) characters, 504,
591

^ (caret), 452, 454
_ (underscore), 579
{ (left brace), 367, 579
{} (braces), 144, 456
{} (curly braces), 538, 545
{content} tag, 881
{count} tag, 883
{digit} operator, 452
{min, max} operator, 453
| (pipe) delimiter, 591, 596
|| logical operator, 541
} (right brace), 367, 579
~ (tilde) character, 83, 591,

762
+ (plus sign), 344, 353–354,

456
+ operator, 452
<!-- --> tag, 13
<? ?> tags, 789
< (less than operator), 361
<: comparison operator,

541
<= (less than or equal to

operator), 361
<=: comparison operator,

541
<> (angle braces), 12, 152
<> symbols, 507
<legend> tag, 123

<?php symbol, 510, 521, 531
<?php tag, 515
= (equal sign), 523
= (single equal sign), 536,

670
== (double equal sign),

361–362, 536, 545, 670
==: comparison operator,

541
=> (pointer arrow), 557, 570
> (greater-than operator),

304, 361
>: comparison operator,

541
>= (greater than or equal to

operator), 361
>=: comparison operator,

541
0 = Uninitialized

value, 738
1 = Loading value, 738
, (comma), 660
“ (double quotes), 508, 597
‘ (single quotes), 597, 789
2 = Loading value, 738
200 = OK code, 734
3 = Interactive value,

738
3D button filter, 110
4 = Completed value, 738
400 = Bad Request

code, 734
404 = Not Found code,

734
408 = Request Timeout

code, 734
500 = Internal Server

Error code, 734

A
<a href> tag, 82, 330
a value, 588
<a> tag, 81–82, 198, 200
absolute layouts, 319, 327

Index

56_186275 bindex.qxp 3/28/08 11:04 PM Page 901

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies902

absolute measurement,
172–173

absolute positioning
adding position

guidelines, 315–316
animation, 467
building page layouts

with, 319–327
managing z-index, 317
versus other techniques,

332
overview, 313–314
setting up HTML, 314–315
steps, 316–317

absolute references, 85–86
accept option, 777, 783,

785
Access, 635
action attribute, 121, 137,

421, 518, 520–521, 523,
529

action elements, 121
active rule, 777
activeclass option, 777
actual fonts, 163
Add Table page, 651
addInput program,

355–356
addNumbers.html

program, 351
$address variable, 507
addslashes() function,

597
Adjust Colors command,

221
admin account, 864
admin directory, 874
Administer page, 864
administration screen, 875
administrator login,

857–858
administrators, 864
Adobe Flash, 166, 251–252,

727

Adobe Photoshop 8BF
format, 112

Aesop, 25, 27
AJAX. See Asynchronous

JavaScript and XML
alert() statement, 340,

343, 355, 370
alignment, text, 180–181
all container, 325–326
all div, 289–291, 320
alpha ID, 330
alpha transparency, 102
alt (alternate text)

attribute, 94, 169–170
alternate text (alt)

attribute, 94
alternative Web

development tools,
40–42

ampersand (&), 523
Analogic color scheme, 157
anchor tags, 81–82, 89, 118,

235
anchors, 309
AND clause, 543, 719
angle braces (<>), 12, 152
animate() function, 482,

486, 762
animation

creating automatic
motion, 476–478

following mouse, 472–476
GIFs, 101
image-swapping, 478–483
jQuery, 759–764
motion effects, 459–467
overview, 459
reading input from

keyboards, 468–472
answer subclasses, 192
answer variable, 376
“Ants Go Marching, The”,

program, 396–402,
407–408

antsFunction.html
program, 397–398

Apache Web server, 806
Application Programming

Interfaces (APIs), 742
Apply to All Folders

button, 16
Aptana IDE, 57–60, 336, 498,

577-578, 636. See also
Debug Mode

arrays
building basic, 405–408
defined, 395
in PHP, 555–573
two-dimensional, 408–412

artifacts, 99
ASC keyword, 676
ASCII files, 658
askName.html page, 516,

526
aspect ratio, 105
ASP.NET, 493–494
Assign Styles dialog box,

882
associative arrays, 559,

569–570
asterisk characters, 127
Asynchronous JavaScript

and XML (AJAX). See
also jQuery JavaScript
library

asynchronous
connections, 735–738

basic connections,
728–735

JSON, 795–800
overview, 725–728
using for client-side CMSs,

887–888
XML, 787–789

Attach Stylesheets button,
881

attributes, 20, 72, 205–207
Attributes section, 742
attribution id, 187

56_186275 bindex.qxp 3/28/08 11:04 PM Page 902

Index 903

attribution value, 187
audiences, Web site,

833–835
auditory browsers, 51
AUTO_INCREMENT tag,

664–666
automatic indentation

feature, 379
automatic motion, 476–478
$aVar variable, 557
axis option, 777

B
 tag, 165, 188
background colors, 417–418
background images

gradients, 223–225
overview, 89, 216–217
potential problems with,

217–218
reducing contrast,

220–221
setting colors, 220
tiled images, 219–220
turning off repeat, 222–223
using to simulate

columns, 287
background-color

attribute, 144, 152
backgroundColor

property, 422
background-image

attribute, 216–217, 225
backgroundImage.html

page, 216, 219–220
background-repeat

attribute, 222, 225, 288
backslash (\), 434, 504, 508,

597, 603
bandwidth, 170
base colors, 208
base hues, 156
basic dialog boxes, 772–773
basic pages, 14

basicAJax.html
program, 728

basicDL.html, 69
basicLinks.html page,

81, 86
basicOL.html, 64
basicSelect.html, 131
basicTable.html, 70
Batch Conversion dialog

box, 112, 114
batch processing, 98,

112–114
Batch Rename Settings

area, 114
“Best viewed with”

disclaimers, 240
beta tests, 848
big() method, 348
binary encoding, 12, 252
binary notation, 147,

363–364
bind function, 756–757
black shading, 208
blah string, 569
bleed-over effects, 324
blink attribute, 180
<blink> tag, 180
BLOB data type, 632
blob property, 621
block value, 894
block-level elements, 82,

211, 238, 255–260
blockType table, 891
blogging, 852, 854
blue.html program, 417
blur filter, 108
.bmp format, 99, 102, 479
body object, 415
<body> tag, 13, 143, 174,

462
body.onload() function,

484
bold text, 176–177
Boolean values, 353, 361,

443, 536, 817

border attribute, 72, 308
border-color attribute,

208
borderProps.html

page, 206
borders

attributes, 205–207
box model, 212–214
overview, 205
partial, 210–211
shortcuts, 209–210
styles, 207–208
two-column floating

layout design, 276–279
borders.css page, 276
borderShortcut.html,

209
both attribute, 268
bounce.html page, 478
bounce.js script, 478
boundaries, animation,

466–467
box layout, 838
box model, 211–216
box names, 838

 tag, 55, 615
braces ({}), 144, 456
breadcrumbs syntax, 418
break statement, 367, 545,

552
breakpoints, 386–387,

390–391
Breakpoint/Variables

window, 389–390
Brightness option, 106
broadband, 834
broken.html page, 380
browser extensions, 804
Browser Wars, 47
browser windows, 10–11
browsers

alternative, 49–50
bottom line in, 50–51
features, 41
history of, 47–48

56_186275 bindex.qxp 3/28/08 11:04 PM Page 903

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies904

browsers (continued)
incompatibility, 19,

240–241, 834
links, 80
margins, 317
multiple, 41
overview, 47
prominent, 48–50

buildContact
AutoIncrement.sql
script, 607, 665

buildContact.sql
script, 658–659

buildHero.sql script,
683

built-in variables, 525
business rules, 698
button element, 262
button events, 419–422
button option, 773
button tag, 138
buttons, 121, 135–138, 774,

293, 295–297
bytes, 96

C
.ca domain, 84
calculated fields, 701–708
callback method, 760, 775
camel-casing method, 579
$cardLocation array, 564
caret (^) character, 452,

454
carriage returns, 14
Cartesian joins, 711–713
Cascading Style Sheets

(CSSs)
borders, 276–277
CSS 3 embedded fonts,

166
design of, 832
hacks, 241
hierarchy of, 237–238
inheriting, 236–237

overriding, 238–239
overview, 235
precedence of definitions,

240
steps to build code, 264
style attributes, 416
uses, 141
Web Developer toolbar,

54, 152–153, 274–275
cascadingStyles.html,

239
case statement, 545
Catch the Worms game,

766–767
CDATA element, 429, 746
<center> tag, 165, 180, 214
centered fixed-width

layouts, 288–291
centering, 214
centimeters (cm), 173
change event, 756
changeColor() function,

421–422, 439
CHAR data type, 632, 634,

660
character class, 455
characters, 350, 454
chdir() function,

601–602
check box variable, 532
check boxes, 120, 131–133,

444–446, 532
checkBounds() function,

466–467
checkData() function,

736–737
checked = “checked”

attribute, 448
checked property,

445–446, 449
child elements, 782
chorus() function,

399–400
class attribute, 192, 195,

262

class name, 753–756
classes, 191–195, 239
classes.html page,

191–192
clear attribute, 268–270,

278
click event, 752, 756
Click Me button, 434
click() method, 752,

755–756
clients

Internet, 803–804
Web site, 830–833

client-server
communication, 725

client-side development
systems, 804–805

client-side programming,
491, 726. See also
JavaScript

close function, 772
cm (centimeters), 173
CMS Made Simple

(CMSMS), 871
adding new pages,

874–877
customizing, 877–884
default package, 873–874
installing, 872–873
overview, 871

cmsBlock table, 891
CMSMS. See CMS Made

Simple
cmsms directory, 874
cmsPage table, 891
CMSs. See content

management systems
code

debugging
Aptana IDE, 378–379
Firebug, 382–383
Firefox, 381–382
Internet Explorer,

379–381
float attribute, 254–255

56_186275 bindex.qxp 3/28/08 11:04 PM Page 904

Index 905

indenting, 67–68
maintenance tools, 40
making IE-specific,

241–243
table-based layout, 78
validation of, 21, 41

code assist feature, 379
code completion feature,

336, 388
colon (:), 83, 367–368
color attribute, 144, 207,

418
Color Balance feature, 107
color names, 145–146
color palettes, 100, 149–150
Color Scheme Generator

tool, 154–157
colors

background, 417–418
choosing, 150–153
enhancing images,

106–107
overview, 141
schemes, 154–157, 272,

345
setting background

images, 220
specifying in CSS, 145–150
style sheets, 141–145

colorTester.html
program, 151

cols attribute, 128
colspan attribute, 76–77
columns, 75–78, 409, 630.

See also floating page
layouts

.com domain, 84
Comic Sans MS fonts, 159,

164
comma character (,), 660
comma-separated value

(CSV) files
creating, 590–594
explode function, 570,

572
overview, 677
reading from, 596–600

comment style sheets, 327
community-created

software, 852
company field, 670
comparison operators,

361–362, 541–543
comparisons, 545–547
compiled languages, 493
complementary colors, 157
complete object, 792
complex forms, 527–533
compliance, 48
compressed formats, 97
CONCAT() function, 702,

707
concatenation

calculating date values,
707–708

JavaScript, 343–345
PHP, 505–506

concat.html program,
344

conditional comments
checking IE version, 246
coping with

incompatibility,
240–241

making IE-specific code,
241–243

overview, 240
using with CSS, 243–246
Web page appearance, 273

conditions, 361
config.inc.php file, 642
configuration

settings, 820
testing XAMPP, 807–808
tools for, 806

connections
asynchronous AJAX,

735–736
database, 690–692
MySQL database, 608
synchronous AJAX,

728–735
Web hosts, 814–815

console, Firebug, 384–386

console commands, 386
console object, 384
console.log() function,

384–385, 387
constants, 464
contact database, 611
contact table, 613, 659
contactDL.php, 615
contact.html page, 616
contactID field, 634, 676
contact.php program,

606, 618
contactTable.php code,

626
container element, 20,

239
containment option, 777
content class, 330–331
content management

systems (CMSs)
adding content, 858–861
adding new content

blocks, 864–867
changing look of, 867–869
characteristics of, 850
creating data-based,

890–894
creating with code,

884–889
editing pages, 863–864
installing, 855–858
menu system, 861–863
overview, 849–850
previewing common,

851–855
content position, 331
Content section, 875
content type, 788
context, selecting in,

201–203
context-style.html

page, 201–202
continue control

structure, 551
contrast, 220–221
Contrast color scheme, 157
Contrast feature, 106

56_186275 bindex.qxp 3/28/08 11:04 PM Page 905

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies906

control structures
for loops, 548–553
if-else conditionals,

535–545
overview, 535
versus switch statements,

545–547
while loops, 548

control tools, 806
conversion tools, 354–355
cookies, 585
Copy SQL Table Create

option, 690
count tag, 882
counting loops

by 5, 374–375
backwards, 373
overview, 371–372
standard, 372

counting script, 882
Courier New fonts, 164
Create File button, 817
CREATE statement, 690
Create Table Automatically

radio button, 645
CREATE TABLE command,

659–660
CREATE VIEW statement,

709
creation function, 772
critical paths, 478
Cropping tools, 98
cross-platform technique,

475
csInclude.php program,

889
.css extension, 232
css() function, 752
CSS section, 742
CSSs. See Cascading Style

Sheets
CSS-style selectors, 748–749
CSV files. See comma-

separated value files
curly braces ({}), 538, 545
CURRDATE() function, 702

currentOption variable,
443

CURRTIME() function, 702
cursive font, 162, 191
custom animation, 762–764
Custom animations effects,

759
custom bullets, 89, 226
custom tags, 882–884

D
D: character, 516
d: character, 516
Dashed style, 208
.dat files, 603
data. See also Structured

Query Language
analysis of, 677
building framework for,

846–847
defining, 352–353
design of, 832
implementation of, 832
MySQL, 634–637
overview, 629
phpMyAdmin

adding users, 644–647
changing root password,

639–644
making database with,

649–655
overview, 637–639
using on remote server,

647–649
populating XML

documents with, 789
storage of, 342
structure of, 629–634

Data Definition Language
(DDL), 630

data normalization
entity-relationship

diagrams, 687–694
first normal form, 695–696

identifying data
relationships, 698–699

overview, 683
problems with single-table

data, 683–687
second normal form,

696–697
third normal form,

697–698
Web site plans, 836

data parameter, 792
Data Query Language

(DQL), 630
data relationships, 698–699,

714
data rows, 74
data servers, 805
database backends, 495
Database Connection Editor

dialog box, 691
data-based content

management systems
(dbCMSs)

improving design of, 894
overview, 890
using databases to

manage content,
890–891

writing PHP pages to read
from tables, 892–894

databases. See also data
normalization; MySQL
databases

calculating date values,
703–706

calculating virtual fields,
701–703

connections, 608
creating, 825–826
defined, 630
making with

phpMyAdmin, 649–655
managing dbCMS content,

890–891
managing many-to-many

joins, 716–722

56_186275 bindex.qxp 3/28/08 11:04 PM Page 906

Index 907

overview, 701
problems with single-

table, 683–687
using inner joins to

combine tables,
710–715

views, 708–710
dataType object, 791
DATE data type, 632
date() format function,

515
date values, calculating,

704–708
DATEDIFF() function,

702, 704, 706
DAY() function, 702
dbCMSs. See data-based

content management
systems

DBDesigner 4
connecting to databases,

690–692
creating table definitions,

688–690
drawing, 687–688
manipulating data from,

693–694
Dblclick event, 756
dd (definitions), 153
<dd> tag, 70, 617
DDL (Data Definition

Language), 630
debug mode, 386–393
debug window, 389
debugging. See also Aptana

IDE
arrays with print_r ()

function, 558–559
catching logical errors,

383–386
Firebug, 382–383
Firefox, 381–382
Internet Explorer, 379–381
overview, 378

debug.html program, 388

decision-making
comparison operators,

361–362
conditions, 361
else clause, 362–365
if statements, 359–361,

368–370
random numbers, 357–359
switch statement,

365–368
declarations, XML, 788–789
declare control structure,

551
def property, 621
default clause, 367
Default Extension, 59
default filter, 105
default formatting, 73
default layout, 313, 315
default link action, 250
default package, CMSMS,

873–874
definition lists, 68–70,

615–617
definition terms (dt), 68,

153
definitions (dd), 153
DELETE command, 676–677
deleting

in single-table databases,
687

SQL records, 677
delimiters, 592
depth, 317–319
DESC keyword, 676
descriptive text, 85
design sketches, 841
Design Traps cell, 77
Desktop, 16
$details variable, 568
DHTML (Dynamic HTML),

230
diagrams, 836–839
dialog boxes, 339, 771–775

dialog() function,
772–773

dialogClose() function,
773

dialogOpen() function,
773

digital images, 95
directories, thumbnail-

based image, 117–118
directory functions
chdir(), 601–602
generating list of file links,

602–603
opendir(), 600–601
overview, 600
readdir(), 601

directory passwords, 811
$directoryHandle

variable, 601
Display a Notification about

Every Script Error
setting, 380

display attribute, 296, 302
display: block

attribute, 303
display: none attribute,

302–303
displaying file extensions,

15–16
distance array, 410–411
distance.html page, 409
distraction variable, 401
distractionList array,

408
div element, 195–198, 211,

238, 276, 591, 843
divOutput variable, 429
<dl></dl> tag, 70, 616
DNS (Domain Name

System), 821
Doctype line, 28
DOCTYPE tag, 22–23
doctypes, 22–23
document object, 415–416

56_186275 bindex.qxp 3/28/08 11:04 PM Page 907

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies908

document object model
(DOM)

button events, 419–422
changing properties with

Firebug, 414–415
document object, 415–416
harnessing through

JavaScript, 417–418
navigating, 413–414
overview, 413
selecting elements from,

748
text elements, 430–436
text input and output,

422–426
writing to documents,

427–429
document type definition, 22
document type does

not allow error
message, 32–33

document variable, 414
documentation, jQuery

official, 742
overview, 741
tutorials, 742
visual jQuery, 742–743

document.getElementBy
Id() function, 433,
440, 443, 465

$(document).ready()
syntax, 746

DOM. See document object
model

domain managers, 822
Domain Name System

(DNS), 821
domain names, 83, 821–825
domain search tool, 823
Dotted style, 208
DOUBLE data type, 631
double equal sign (==),

361–362, 536, 545, 670
double quotes (“), 508, 597
Double style, 208

double-quoted strings, 506
do-while control structure,

551
downloading, jQuery

JavaScript library,
740–741

DQL (Data Query
Language), 630

draggable dialog boxes, 774
draggable() function,

764–765
draggable items, 776
drawing ER diagrams,

687–688
drop option, 765
drop-down lists, 129–131,

437–440
droppable containers, 776
droppable() function,

764–766
dropping tables, 659
Drupal CMS, 854–855, 868
dt (definition terms), 68,

153
<dt> element, 70, 617
Duplicate button, 880
dynamic color palette, 102
Dynamic HTML (DHTML),

230
dynamic length, 633
dynamic lists, 298–305

E
e object, 472
each loop, 800
echo statement, 503, 789
Edit CSS frame, 53
Edit HTML Entry option, 53
editing

CMS pages, 863–864
programs for, 20
SQL records, 676–677

.edu domain, 84

effects, IrfanView program,
107–112

Effects browser, 107
efficiency, Web site, 848
element style, 239
element-level style, 227–228
elements

absolute layout, 321
absolute positioning, 317
defining style, 144
with predefined width,

258–259
repeating, 67
selecting in jQuery,

748–756
else clause, 362–365,

535–545
else if clause, 365
em measurements, 174
 tag, 93, 188
Embedded fonts, 166
embedded games, 251
embedded images, 89
embedding

JavaScript code, 339–340
PHP inside XHTML, 515
quotes within quotes,

421–422
emboss filter, 110
emphasis, 93, 188–190
emphasis.html page, 188
emphasisStyle.html,

189
empty rows, 74
Enabled check box, 865
Encoding line, 28
end tag, 13, 20
ending values, 671–672
endless loops, 377–378, 386
endless.html page,

378, 387
Enhance Colors dialog box,

106, 110
enhanced text editors, 41
entities, 687, 718

56_186275 bindex.qxp 3/28/08 11:04 PM Page 908

Index 909

entity-relationship (ER)
diagrams

connecting to databases,
690–692

creating table definitions,
688–690

drawing, 687–688
manipulating data from,

693–694
overview, 687

environment variables, 522,
525

e.pageX property, 475
e.pageY property, 475
equal sign (=), 523
ER diagrams. See entity-

relationship diagrams
ereg() function, 572
ereg_ replace()

function, 572
error codes, 539
error messages, 29, 38
error object, 792
error warnings, 337
error-checking, 894
errors. See also debugging;

validation
logical, 383–386
loop, 376–378

essay.html program, 127
eval() function, 355
event function, 471–472,

475
event handlers, 470–471, 737
eventComparrison.php

file, 757
event-driven programming,

424
event-manipulation

code, 421
events, 346, 748, 756–757.

See also button events
Excel, 678
Execute permission, 818
expectations, client,

831–832
explode function, 570–572

exporting SQL data,
677–682

$expression variable, 536
expression window, 393
expressions. See also

regular expressions
Aptana Debug Mode, 386,

392–393
switch statements,

366–367
expressions panel, 391
eXtensible Markup

Language (XML), 20,
728

extensions, 15–16, 59–60,
492

Extensions menu, 882
external CSS, 425
external files, 463
external links, 89, 91
external programs, 492
external style sheets,

230–235
externalImage.html, 89
externalStyle.html

page, 231
ext.js libraries, 764

F
F: character, 516
Fade effects, 759
fadeIn element, 760
fadeOut element, 760
fadeTo element, 760
fake columns, 288
false expressions, 363
families, font. See also fonts
font-family style

attribute, 160–161
generic, 161–163
lists of, 164–165

family trees, 312
fancy class, 193
Fantasy fonts, 163, 236

fclose() function,
587–588, 590, 595

feof() function, 587,
594–595

fgets() function, 587,
594–596

field elements, 267
field value, 523
fields. See also calculated

fields
defined, 611, 630
in records, 631
single-table databases,

686–687
SQL table searches,

668–673
virtual, 701–703

fieldset demo, 123
fieldset element

adjusting width of,
267–268

forms, 121–124
file extensions, 15–16
file() function, 587,

594–596
File line, 28
file links to directories,

602–603
file management tools,

815–817
file management window,

388
file manager, 15
file manipulations

directory functions,
600–603

overview, 587
text files

creating CSV, 590–594
overview, 587
reading from, 594–596
reading from CSV,

596–600
writing text to, 588–590

file name parameter, 733
file permissions, 817–818
file pointer, 589

56_186275 bindex.qxp 3/28/08 11:04 PM Page 909

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies910

file size, 218
File Transfer Protocol

(FTP), 805–806, 818–821
$fileArray array, 601
$fileConnection

variable, 588
FileZilla FTP server,

805–806
filling arrays

after creation, 556
multidimensional, 560–563
upon creation, 556–557

filter functions, 527
filters, 107
Filters tools, 98
Firebug extension

changing DOM properties
with, 414–415

debugging with, 382–386
using, 54–55

Firefox browser
compatibility, 730
debugging with, 381–382
error reporting, 337
Firebug extension, 54–55
HTML Validator, 51–52
overview, 47–49
Web Developer toolbar,

52–54, 843
FireFTP, 818–820
firewalls, 810–811
first normal form, 695–696
fixed menu systems,

327–331
fixed positioning, 313, 327,

332
fixed widths, 271
fixed-width floating layouts

overview, 285–286
setting up XHTML,

286–287
using images to simulate

true columns, 287–288
fixedWidth.css style, 291
Flash, 166, 251–252, 727
flexible layout, 274

float attribute
code for property,

254–255
floating page layout,

252–254
layout pitfalls, 249–252
overview, 249
styling forms with,

260–270
using with block-level

elements, 255–260
using with images,

252–254
float-based layout, 257–258,

280
floated class, 257
floatForm.html page,

261, 264
floating page layouts

versus absolute
positioning, 332

fixed-width, 285–291
overview, 252
three-column design,

280–285
two-column design,

271–279
floating point numbers, 353,

357, 505
floating text, 94
float:left attribute, 254
fluid layouts, 280. See also

floating page layouts
Focus event, 756
Folder Options dialog

box, 15
followMouse.html

page, 473
font attribute, 183
font rule, 182–183
 tag, 165
fontColor() method, 348
font-family style

attribute, 160–161,
204, 237

fonts
families of, 159–165
font rule, 182–183
font-style for italics,

175–176
font-weight for bold,

176–177
overview, 159, 174–175
specifying size of, 170–174
subscripts, 183–184
superscripts, 183–184
text-align for basic

alignment, 180–181
text-decoration, 178–180
Web-based, problems

with, 165–170
font-size style attribute,

168, 171–172, 174–175,
183, 201

fontSize.html, 171
font-style attribute,

175–176, 183
font-variant attribute,

183
Font-variant tool, 181
font-weight attribute,

176–177, 183
footers, 278–279, 288
fopen() function,

587–589, 594–595
for loops

counting backwards, 373
counting by 5, 374–375
overview, 371–372,

548–553
standard, 372
using arrays with, 406–407

for statement, 372–373
foreach loops, 551,

565–570, 613–614, 781
foreign key references, 697,

711, 714, 718
form demo, 119
form element, 120, 133,

262, 424–425, 427, 529
FORMAT function, 702

56_186275 bindex.qxp 3/28/08 11:04 PM Page 910

Index 911

formats, image
BMP, 99
changing, 103–104
choosing, 102–103
GIF, 99–101
JPG/JPEG, 99
overview, 98
PNG, 102

formatted printing, 385
formatting text. See fonts
formDemo.html page, 120
forms. See also user input

buttons, 135–138
fieldsets, 121–124
float attribute, 260–270
HTML, 731
labels, 121–124
multiple selection

elements, 129–135
normal, 695–698
overview, 119–121
PHP and XHTML

building complex forms,
527–529

embedding PHP inside
XHTML, 515

method property,
521–526

overview, 513–515
responding to complex

forms, 530–533
sending data to PHP

program, 516–521
viewing results, 515–516

text input and output,
124–128, 422–426

working with other text
elements, 430–436

XHTML search, 621–624
forums, 854
forward slashes (/), 13, 34,

125, 603
fputs() function, 590
fractions option, 785
Frame global variable, 486
frame variables, 481–482
frames, 249–250

Free Hostia, 636, 647–649,
814, 826

FreeSans font, 164
FreeSerif font, 164
Freya animations, 478
FROM clause, 719
from variable, 412
FROMDAYS(INT) function,

702
FTP (File Transfer

Protocol), 805–806,
818–821

function call, 477
function keyword, 578
function pointers, 470
functionality, server,

811–812
functions. See also

individual functions
by name

breaking code into,
395–398

form text elements,
432–434

MySQL databases, 624
overview, 395
passing data into and out

of, 398–402
in PHP, 575–581
scope, 402–404
two-dimension array

program, 411–412
fwrite() function,

587–590, 602

G
gaming sites, 854
Gamma Correction feature,

106–107
generated source code,

434–436
generic elements, 195
generic fonts, 161–163
genre variable, 405
genre.html page, 406

Georgia fonts, 164
GET mechanism, 733
get method, 519, 522–525
$_GET superglobal, 526
getAJAX() function,

736–737, 746
getCity() function, 411
getcwd() function, 602
getElementById()

method, 425–426
getElementsByName tool,

449
getName() function, 581
getTime.php program,

514
ghosting option, 777
GIF image format, 99–102
Gimp program, 98
GimpShop program, 98
global modifier, 580
global scoping, 580
global variables

in animation, 463–464,
475, 481–482, 486

defined, 402
globalVar variable, 403
Gmail, 726
Google query, 524
GOTO statements, 547
.gov domain, 84
gradient backgrounds,

224–225
gradients, 223–225
graphic editor, 251
graphics tools, 169
grayscale, 154
greater than or equal to

operator (>=), 361
greater-than (>) symbol,

304, 361
greedy option, 765
greetUser.php page, 516,

520–521
Groove style, 208
Gueury, Marc, 51

56_186275 bindex.qxp 3/28/08 11:04 PM Page 911

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies912

H
h: character, 516
H: character, 516
<h1> tag, 14, 82, 143, 168,

173, 415
<h2> tag, 168, 753, 762
<h3> tag, 65, 67
handle variable, 600
.hash() function, 778
<head> tag, 13
headers, 13, 288
heading level one, 14
headings, 74
headlines, image, 167–170
heads, 13
height attribute, 94, 317,

321
Hello World! program,

343, 501, 744–746
hello.txt file, 746–747
helloWorld() function,

580
helloWorld2() function,

580
help features, 41
help files, 336
helper class, 777
helper option, 765
helperclass option, 777,

783
Helvetica font, 164
heredoc method, 508–510,

531
hex values, 131, 145–149,

152, 523
hidden elements, 753
hidden field, 430, 432
hidden files/folders, 16
hidden menus, 309
Hide Extensions for Known

File Types box, 15
hide() function, 755, 760
hierarchies, style, 237–238
history variable, 414
horizontal element, 298

horizontal lists, 297–298
horizontal menus, 309–312
host names, 83, 608
hosting services, Web

connecting to, 814–815
finding, 813–814
overview, 812–813

hosts, 812
HOUR() function, 702
Hover event, 756
hover rule, 777
hover state, 199, 201
hoverclass option, 777
hovered links, 200
href (hypertext reference)

attribute, 82, 90, 235
HSV (Hue, Saturation, and

Value) color schemes,
154, 156

htdocs directory, 493,
498–499, 502, 588, 872

htdocs folder, 808
htdocs path, 855
.htm extension, 59
HTML, formatted, 728
HTML editor, 59–60
html entities()

function, 591
.html extension, 10, 492
.html() function, 752
html page, 276
HTML style attribute, 240
HTML tables, 74–75
html tag, 13, 23
HTML Tags view, 55
HTML Tidy program,

36–38, 51
HTML Validator extension,

38, 51–52, 434
html_entity_decode()

function, 591
htmlentities()

function, 591
HTTP (hypertext transfer

protocol), 83
HTTP error code, 734

Hue, Saturation, and Value
(HSV) color schemes,
154, 156

hyperlinks
absolute references, 85–86
adding to images, 90–92
anchor tags, 81–82
block-level and inline

elements, 82
defining navigation as list

of, 294
lists of, 84–85
overview, 79–80
relative references, 86–88
turning into buttons,

295–297
URLs, 82–84
using images as, 115–118
using pseudo-classes to

style, 198–201
hypertext reference (href)

attribute, 82, 90, 235
hypertext transfer protocol

(HTTP), 83

I
i: character, 516
i variable, 392
<i> tag, 165, 188
id attribute
div element, 429
versus name attribute, 519
overview, 125
select object, 130
styles, 239

ID identifier, 841
ID quote, 188
id session, 582
IDEs. See Integrated

Development
Environments

IE. See Internet Explorer
IEorNot.html page, 243
IE-specific style, 246

56_186275 bindex.qxp 3/28/08 11:04 PM Page 912

Index 913

if statements
if-else, 363–365,

535–545
nesting, 368–370
overview, 359–361

if-else conditionals
comparison operators,

541–543
complex interaction,

363–365
else conditionals,

538–540
if conditionals, 535–538
logical operators, 543–545

image (img) tags, 92–94,
254, 482, 577

image editor, 112
image-manipulation

programs, 112
images

adding to pages, 89–94
background, 89, 216–225,

287
batch processing, 112–114
built-in effects, 107–112
changing formats, 103–104
enhancing colors, 106–107
float attribute, 252–254
formats, 98–103
layout pitfalls, 251
as links, 115–118
in lists, 225–226
other effects, 112
overview, 89, 103
resizing, 104–105
size of, 224
tools, 94–98
transparency of, 479
using for headlines,

167–170
using to simulate

columns, 287–288
image-swapping animation
animate() function,

482–483
building global variables,

481–482
building page, 480–481

combined with motion
effects, 483–487

overview, 478
preparing images, 478–480
setting up interval, 482

imageTitles.html, 168
img (image) tag, 92–94, 254,

482, 577
imgList array, 482, 486
inches, 173
include control structure,

551
include_once control

structure, 551
incompatibility, browser,

19, 240–241, 834
indentation, 38, 67–68, 238,

370
indexes, array, 557–558
index.html file, 83, 499,

808
indexOf() method, 348,

350
index.php file, 499,

808–809
Indiana University–Purdue

University Indianapolis
(IUPUI), 83

indicators, 785
inherited styles, 236–239
init() function

animation, 464, 475, 482,
486

overwriting, 470
initial value, 342
injection attacks, 625
inline elements, 82, 211
inline images, 92–94
inner join queries, 715–716
inner joins

advantages of, 714–715
building Cartesian joins

and, 711–713
building views to

encapsulate, 715
enforcing one-to-many

relationships, 714
overview, 710–711

inner lists
getting to appear on cue,

302–305
hiding, 301–302

innerHTML property
overview, 427–428
preparing HTML

framework, 428–429
writing JavaScript, 429

innerHTML.html
program, 428

input. See also user input
managing with DOM,

422–426
processing MySQL

database, 624–626
reading from keyboard for

animation, 468–472
input button, 137–138
input elements

check boxes, 445
defined, 121
fieldset element, 421,

425
forms, 261, 264, 432
select object, 130
<textarea> tag, 128
type attribute, 125

Input Files workspace, 113
input tag, 124–125, 128,

132, 136–137
input-style buttons,

136–137
Insert Another Row button,

653
INSERT command,

659–661, 710, 891
Inset style, 208
Inspect mode, 54
install directory, 875
installation script, 857
installing

CMSMS, 872–873
CMSs, 855–858
Web servers, 495–496

INT data type, 631
INTEGER field, 634

56_186275 bindex.qxp 3/28/08 11:04 PM Page 913

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies914

integer variable, 346
integers, 353, 357–358, 405,

505, 706
Integrated Development

Environments (IDEs)
Aptana, 57–60, 805
defined, 41
Nvu, 55–57
overview, 55

integrated help, 337
Interface Elements

making sliders, 784–786
overview, 775–776
selectables function,

782–784
sortables interface,

776–781
interface.js file, 776
internal double quotes, 508
internal links, 330
Internet Explorer (IE)

Browser Wars, 47–48
conditional comments,

240–246
debugging with, 379–381
embedded fonts, 166
floating ToolTips, 94
margins and padding, 283
PNG support, 102
versions of, 49

Internet Protocol (IP)
addresses, 812, 821

interpolation
double quote, 508
of variables into text,

506–507
interpreted languages, 493
interpreting radio buttons,

448–449
IP (Internet Protocol)

addresses, 812, 821
IrfanView program

batch processing images,
112–114

built-in effects, 107–112

changing formats, 103–104
choosing formats, 99–102
enhancing colors, 106–107
other effects, 112
overview, 97–98
resizing images, 104–105

italics, 61, 175–176, 185, 191
items variable, 752
IUPUI (Indiana University–

Purdue University
Indianapolis), 83

J
j variable, 392
Java, 336, 494
JavaScript. See also

animation; arrays;
decision-making;
document object
model; functions;
jQuery JavaScript
library; loops; user
input

browser detection, 241
concatenation, 343–345
overview, 335–336
string object, 345–350
test browsers, 337–338
text editors, 336–337
variables, 341–356
writing programs with,

338–340
javascript console, 337
JavaScript event object, 472
JavaScript Object Notation

(JSON)
generating tables with,

798–800
overview, 795–796
using with AJAX, 797–798
using with PHP, 796–797

jEdit text editor, 46
jello layouts, 288, 291

joins
combining tables with

inner, 710–715
many-to-many, 716–722
overview, 699

Joint Photographic Experts
Group (JPG/JPEG)
format, 98–99, 102

jQuery JavaScript library.
See also Interface
Elements

coding with, 746–747
downloading, 740–741
getting started with,

743–746
handling XML response

with, 789–795
interfacing with official UI

plugin, 764–775
jQuery object, 747–748
managing events through,

756–757
modifying list items,

751–752
overview, 739–740
selecting elements in,

748–756
special effects, 759–764
using documentation,

741–743
using for client-side CMSs,

887–888
jQuery object, 747–748,

756
jQuery subdirectory, 745
jQuery.each() function,

795
jQueryHello.html page,

745
.js extension, 492
JSON. See JavaScript Object

Notation
json_decode() function,

797
json_encode() function,

797

56_186275 bindex.qxp 3/28/08 11:04 PM Page 914

Index 915

K
Kalimati font, 164
$key variable, 570
keyboard script, 469
keyboard.html page, 468
keyboard.js script, 469
keyboards, reading input

from for animation
building keyboard pages,

468–469
keycodes, 472
overview, 468
overwriting init()

function, 470
responding to keystrokes,

471–472
setting up event handlers,

470–471
keycodes, 472
Keydown event, 756
keyListener() function,

470–471
keystrokes, 471–472
keywords, 658

L
<label> tag, 124, 262
labels, 121–124
language construct, 597
$language variable, 568
languages, 44, 493, 806
lap++ operator, 372
latin1_swedish_ci

syntax, 666
Law of Seven, 836
layouts. See also floating

page layouts;
positioning

content separate from,
21, 849

pitfalls, 249–252
size of, 323
table-based, 78

LCD panel, 170

left attribute, 316, 321,
331–332

left brace ({), 367, 579
left margin, 68
left property, 465, 475
legends, 121
length property, 347, 407,

443
less than operator (<), 361
less than or equal to

operator (<=), 361
Letter-spacing tool, 181
level of technical expertise,

834–835
levels, style. See also

external style sheets
local styles, 227–230
overview, 227

li a float:left value,
298

li elements, 298, 308,
751–752

$(“li”) selector, 752
 tag, 63, 65, 68, 85
lib subdirectory, 745
libraries, 726. See also

jQuery JavaScript
library

light beams, 146
li:hover class, 303, 306
li:hover ul attribute,

303
LIKE clause, 625, 670, 673
line numbers, 41
$line variable, 596
linear function, 762
$lineArray variable, 596
Line-height tool, 181
link mechanism, 86
link tables, 699, 718–722
<link> tag, 231, 234–235,

245–246, 274
linking behavior, 79
links

absolute references, 85–86
adding to images, 90–92
anchor tags, 81–82

block-level and inline
elements, 82

to directories, 602–603
lists of, 84–85
navigation as list of, 294
overview, 79–80
relative references, 86–88
turning into buttons,

295–297
URLs, 82–84
using images as, 115–118
using pseudo-classes to

style, 198–201
Linux, 44, 161, 165
list elements, 62
list() function, 597–598
listed fields, 685
listeners

keyboard, 470–471
mouse, 475–476

list-reappearing code, 303
lists

definition, 68–70
drop-down, 437–440
dynamic, 298–305
of fonts, 164–165
generating, 602–603
of links, 84–85
modifying items in jQuery,

751–752
MySQL database

definition, 615–617
nested, 65–68
ordered, 63–65
overview, 61
problems with single-table

databases, 684–685
styling, 293–298
unordered, 61–63
using images in, 225–226

list-style-image
attribute, 226

list-style-type
attribute, 308

literal values, 344
load() function, 747, 791
local file system, 492

56_186275 bindex.qxp 3/28/08 11:04 PM Page 915

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies916

local scoping, 580
local styles, 227–230, 239
local variables, 402
localhost connections,

608
localhost directory, 809
localhost mechanism,

637
localVar variable, 403
location variable, 414
$logData array, 596
log.html page, 384, 385
logical errors, 378, 383–386
logical operators, 543–545
loops. See also debugging

errors, 377–378
for, 371–375, 406–407,

548–553
foreach, 551, 565–570,

613–614, 781
nested, 611
overview, 371
while, 375–376, 548–549,

612–613, 616
loose typing, 504
Lorem Ipsum text, 274
lossless compression, 100,

102
lowercase tags, 14
Lucida Console fonts, 164
Lynx browser, 50

M
m: character, 516
M: character, 516
Mac TextEdit text editor,

42–43
macros, 41, 44
magic_quotes_gpc

directive, 597
mail server, 805
main() function, 411–412
Manage Accounts feature,

820
Manipulation section, 742

many-to-many joins
link tables, 718–722
overview, 716–718

many-to-many
relationships, 698

many-to-one joins, 718
many-to-one relationships,

714
margin: auto attribute,

291
margin-bottom attribute,

325
margin-left attribute,

215, 260, 288, 291, 296,
306, 325

margin-right attribute,
215, 291, 325

margins
box model, 212–216
setting with float

attribute, 259–260
three-column pages, 283

margin-top attribute, 325
markup tags, 14, 21
master pages, 250
match() method, 450,

452, 454
math operators, 706
Math.ceil() function,

355, 358–359
mathematical operations,

703
Math.floor() function,

355
Math.random() function,

357–358
Math.round() function,

355
max_length property, 621
MAX_X constant, 467, 486
maxlength attribute, 125
MB (megabytes), 96
MediaWiki engine, 494
megabytes (MB), 96
megapixels (MP), 95
memory, pattern, 456–457

menu div element, 295, 309,
330–331

menu links, 295
menu systems

CMSs, 861–863
fixed, 327–329
generating, 894
horizontal, 309–312
overview, 306–307
vertical, 307–309

Mercury Mail mail server,
806

meta tag, 23, 36
metadata, 621
method attribute, 519,

521–526, 529
methods

JavaScript string object,
347–350

jQuery object, 748
OOP, 493

mice, following for
animation

building mouse listeners,
475–476

HTML, 473–474
initializing code, 475
overview, 472–473

Microsoft Access, 635
Microsoft Excel, 678
Microsoft Internet Explorer.

See Internet Explorer
Microsoft SQL Server, 635
min-height attribute,

284–285
Minified — Gzipped

option, 740
MINUTE() function, 702
Miscellaneous menu, 53
missionID field, 711, 713
MochiKit JavaScript library,

740
modal dialog, 340
modal editor, 44
mode, defined, 588
modifiers, 660

56_186275 bindex.qxp 3/28/08 11:04 PM Page 916

Index 917

modifyListItems()
method, 751

modList.html program,
749–750

Monaco font, 164
Monochramatic (mono)

color scheme, 157
monospace font-family

attribute, 204
Monospace fonts, 163
MONTH() function, 702,

706–708
monty.php program,

529–530
Moo Tools JavaScript

library, 740
Moodle CMS, 851–852
Moo.fx JavaScript library,

740
Mosaic browser, 47
motion

automatic, 476–478
image-swapping

animation combined
with, 483–487

Mousedown event, 756
mouseListener event, 475
mouseover event, 762
mouses, following for

animation
building mouse listeners,

475–476
HTML, 473–474
initializing code, 475
overview, 472–473

movement.html page, 469
movement.js script, 462,

469, 472, 477
moveSprite() method,

462, 472
Mozilla browser, 50. See

also Firefox browser
MP (megapixels), 95
msql_query() function,

610
multi-character delimiter,

592

multi-column floating
layout, 297

multidimensional arrays
functions, 411–412
overview, 408–409
in PHP, 560–565
setting up, 409–411

multi-language support, 44
multi-layer list, 299
multi-line comment (/* */)

character, 232, 340
multi-line text input,

127–128
multimedia tools, 42
multipage Web sites,

829–830. See also Web
sites

multiple attribute, 442
multiple files, 44
multiple selection

check boxes, 131–133
coding select object,

441–442
drop-down lists, 129–131
overview, 440
radio buttons, 133–135
writing JavaScript code,

442–444
multiple_key property,

621
multiSelect.html page,

441
My Computer window, 15
$myArray array, 569
myClass class, 748
myFirst.html file, 10
MySQL databases

allowing user interaction,
620–626

creating, 825–826
data types, 631–632
finding server name, 827
improving output format,

615–619
overview, 605, 634–635
phpMyAdmin, 637–649
practicing with, 636–637

retrieving data from,
605–615

root password, 810
three-tiered architecture,

636
mysql_connect()

function, 608–609, 611
mysql_error() function,

609
mysql_fetch_array()

function, 613
mysql_fetch_assoc()

function, 612–613, 619
mysql_fetch_field()

function, 613, 619, 621
mysql_fetch_object()

function, 613
mysql_fetch_row()

function, 613
mysql_real_escape_str

ing() function, 625
mysql_select_db()

function, 609
myStyle.css file, 232–233

N
name attribute, 134, 446,

519, 529, 621
name field, 669
$name variable, 507, 614,

617
named font sizes, 173
names, color, 145–146
name-value pair, 144
National Center for

Supercomputing
Applications (NCSA), 47

navigation
defining as list of links, 294
DOM, 413–414
menus, 293
schemes, 829
structure, 838

NCSA (National Center for
Supercomputing
Applications), 47

negative value, 319

56_186275 bindex.qxp 3/28/08 11:04 PM Page 917

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies918

nested element, 67
nested lists, 65–68, 299–301,

306
nested loops, 611
nestedList.html, 65
nesting if statements,

368–370
Netscape browser, 47
New Database Connection

button, 691
New Table icon, 688
newline (\n) character,

407, 434, 504, 508, 590,
596

Nimbus fonts, 164
no-repeat value, 223
normal forms

first, 695–696
second, 696–697
third, 697–698

normal state, 199
normalizing data

ER diagrams, 687–694
identifying relationships

in data, 698–699
introducing normalization,

695–698
overview, 683
problems with single-table

data, 683–687
not equal operator (!=), 361
Notepad icon, 16
Notepad text editor, 42
Notepad++ text editor, 662
not_null property, 621
NOW() function, 702, 704
numbers

adding to JavaScript,
350–352

random, 357–359
numeric data, 633
numeric fields, 675
numeric values, 351, 368, 621
numerical index, 556
Nvu IDE, 55–57

O
object-oriented

programming (OOP),
346, 493

objects, 346, 353, 493, 748
oil paint filter, 110
 indicator, 65, 67
onChange option, 778–781,

786
onclick attribute, 421–422
onclick event, 425, 432,

462, 481
one string, 556
one verse function, 399
one-dimensional arrays,

555–559
one-to-many relationships,

698, 714
one-to-one relationships,

698
onload event, 462
only_cookies directive,

582
onReadyStateChange

member, 732
onselect option, 783
onSlide() function, 786
OOP (object-oriented

programming), 346, 493
opacity option, 777, 783
Open Document

Spreadsheet, 678
open member, 732
open() method, 733,

737–738, 772
opendir() function,

600–603
Opera browser, 50
operating system (OS)

shell, 46
operators

comparison, 541–543
logical, 543–545

<option> tag, 130, 442–443
or die() clause, 609, 611
OR logical operator, 541
Oracle, 634

ORDER BY clause, 675
order() function, 445
ordered lists, 63–65
ordinary text field, 432
.org domain, 84
OS (operating system)

shell, 46
other field, 685
outer list, 68
output

building XHTML from PHP,
507–511

generating MySQL
database, 626

innerHTML property,
427–429

JavaScript, 340
managing with DOM,

422–426
MySQL databases,

615–619
output directory, 116
output div, 434, 442,

746–747
output text, 401
output variable, 412, 505
$output variable, 508, 580
outset border, 296
Outset style, 208
overline attribute, 180
overloaded operator, 354
overriding styles, 238–239
overview diagrams, site,

836–837
$ownerOfCard array, 564
oxWheels1.html page, 26,

29, 36
oxWheels3.html page, 33
oxWheels4.html page, 34
oxWheels5.html page, 35
oxWheels.html page, 36

P
p { } selector, 152
<p> tag, 14, 15, 33, 82, 187,

171, 192, 793
Packed option, 740

56_186275 bindex.qxp 3/28/08 11:04 PM Page 918

Index 919

padding, 212–216, 279, 283
padding-left attribute,

321
padding-right attribute,

321
page element, 840
page flow, 271
page layouts. See layouts
page names, 83
Page preview, 44
page sketches, 841
page templates

building data framework,
846–847

building XHTML template
framework, 841–843

creating page styles,
843–846

overview, 839–840
sketching page design,

840–841
page validation. See

validation, Web page
pageID number, 893
page-level style rule, 240
page-level styles. See also

colors; fonts; selectors
background images, 89,

216–225, 287
borders, 205–211
box model, 211–216
using images in lists,

225–226
page-number parameter,

892
pageUpdate() function,

792
pageView view, 891, 894
Paint.net, 98
Palatino font, 164
paragraph tag. See <p> tag
paragraphs

applying float attribute,
255–257

defining more than one
kind of, 185–187

labels, 123

style attribute, 229
styling identified, 187–188

parallel pages, 241
parameters, 348, 400–401,

471, 733
parent array, 560
parent element, 215, 237,

259, 302
parentheses, 578, 660
parseFloat() function,

355, 426
parseInt() function,

354, 426, 465
parsing XML, 793–795
partial borders, 210–211
partial information,

searches with, 671
password fields, 120,

126–127, 430, 432, 641
passwords, 432, 608,

639–644
pattern memory, 456–457
paused programs, 389–391
percentage widths, 271
percentages (%), 174,

324–325, 671
period (.) symbol, 452, 455,

505
permissions, file, 817–818
perspective, 388–389
phone numbers, 450
Photoshop 8BF format, 112
PHP. See also arrays;

control structures;
MySQL databases

building CMS pages with
includes, 889

building XHTML output,
507–511

coding with quotation
marks, 503–504

configuration in secure
mode, 812

creating first program
with, 501–503

functions, 575–581
libraries, 806

MySQL and, 635
overview, 494, 501
relationship to XHTML

forms, 513–529
in server-side

programming, 492–493
session variables, 582–586
using with JSON, 796–797
variables, 504–507
writing pages to read from

tables, 892–894
.php extension, 492, 502
phpinfo (), 498–500
phpMyAdmin program

adding users, 644–647
changing root passwords,

639–644
configuration file, 642,

645–646
leaving open, 812
making databases with,

649–655
overview, 635–639
re-creating databases

with, 680–681
running SQL script with,

661–664
using on remote servers,

647–649
pipe (|) delimiter, 591, 596
pixels (px), 95, 146, 148,

172–173, 324
Pixia graphic editor, 98
plain text, 12, 124
plugins, 41, 818
plus sign (+) character, 344,

353–354, 456
PNG (Portable Network

Graphics) format, 102
pointer arrow (=>), 557, 570
pointers, 588
points (pt), 172
Poll module, 865
populating XML

documents, 789
portable browsers, 50

56_186275 bindex.qxp 3/28/08 11:04 PM Page 919

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies920

Portable Network Graphics
(PNG) format, 102

position: absolute
attribute, 321

position attribute, 316,
327, 331

position: relative
attribute, 327

positioning. See also
absolute positioning

determining layout
schemes, 332

dialog box, 774
overview, 313
types of, 327–332

post mechanism, 621
post method, 522, 524–526,

529
post requests, 625
$_POST superglobal, 526
pound sign (#), 148
precedence, style

definition, 240
predefined animation,

759–762
Preferences dialog box,

59–60
preg_split() function,

572
presentation, 78
Preview button, 877
primary attribute, 285
primary keys, 633, 664–666,

695, 714
primary layout, 839
primary_key property, 621
print() function, 558
print statement, 503, 781,

789
printing data, 614–615
print-oriented layout tool,

173
print_r () function,

558–559
printResults()

function, 624, 626

Privileges section, 826
procedural programs, 493
processInput()

function, 624–626
production, Web site,

847–848
program name parameter,

733
programming. See also

JavaScript; server-side
programming

event-driven, 424
text editors, 42–46

programs
“Ants Go Marching, The”,

396–402, 407–408
Aptana Debug Mode,

389–392
creating with PHP,

501–503
that roll dice, 358–359
two-dimension arrays,

408–412
Web development, 41–42
writing with JavaScript,

338–340
project subdirectory, 502
prompt statement, 342, 399
properties

changing DOM with
Firebug, 414–415

OOP, 346
Prototype JavaScript

library, 740
pseudo-classes

best link practices, 201
styling link states, 199–200
styling standard links,

198–199
pt (points), 172
punctuation characters, 455
Pushbutton theme, 868
px (pixels), 95, 146, 148,

172–173, 324

Q
queries, 610–611. See also

jQuery JavaScript
library; Structured
Query Language

Query mode, 693–694
question class, 192
question mark (?), 523
question subclasses, 192
quotation marks, 20, 82,

421–422, 503–504,
507–509

quotes.php program, 558

R
r value, 588
r+ value, 589
radio buttons

creating, 133–135
forms, 120
interpreting, 448–449
name value, 529
overview, 446–448

rand() function, 558, 577
random access, 589
random float, 358
random numbers

creating integer within
range, 357–358

overview, 357
program that rolls dice,

358–359
random seed, 357
rasterbased image formats,

103
raw images, 100
RDBMSs (relational

database management
systems), 605, 634

Read permission, 818
readdir() function,

600–603
readKeys.html page, 472

56_186275 bindex.qxp 3/28/08 11:04 PM Page 920

Index 921

readyState property, 732,
735, 737–738

readyStateChanged
function, 738

records
adding to SQL tables,

660–661
defined, 611, 630
editing SQL, 676–677
fields in, 631
selecting subsets of in

SQL tables, 669–671
specifying length of,

632–633
red banner, 28
red class, 195
red error icon, 382
Red-eye reduction filter, 112
references

absolute, 85–86
defined, 426
relative, 86–88

regex.html page, 453
REGEXP keyword, 674
register_globals

feature, 527
registering domain names,

822–825
regular expressions

basics of, 452–453
conducting repetition

operations, 456
marking beginning and

end of lines, 454
overview, 449–452
special characters, 455
SQL table searches with,

674
using characters in, 454
working with pattern

memory, 456–457
rel = “stylesheet”

attribute, 235
relational data modeling,

629

relational database
management systems
(RDBMSs), 605, 634

relationships, data, 687,
698–699, 714, 718

relative measurement units,
173–174

relative positioning
techniques, 313, 332

relative references, 86–88
reliability, single-table

database, 686
remembered patterns,

456–457
remote servers, 647–649,

812
remote site management

file permissions, 817–818
using FTP, 818–821
Web-based file tools,

815–817
remuneration strategy, 832
repeat value, 223
repeated digits, 151
repeating background

images, 222–225
repeat-x technique,

223–225
repeat-y technique,

223–225, 288
repetition, single-table

database, 686
repetition operations, 456
replace() method, 348,

452
request method, 733
request object, 737–738,

790
$_REQUEST superglobal,

521, 526–527, 532, 559,
778

$request variable, 611
request.readyState

property, 738
request.status

property, 734

require control structure,
551

require_once control
structure, 551

resampling, 105
reset buttons, 138
resizing, image, 104–105
Resizing tool, 97
responseText object, 732,

791, 798
responseXML object, 791
Restore Defaults button,

345
restricted option, 786
Result line, 28
result variable, 412, 443
$result variable, 610, 612
return control structure,

551
return statements,

579–581
return string, 433
reusing external style

sheets, 233–234
revalidating, 29
Reverse Engineer

command, 693
RGB color model, 154
Ridge style, 208
right brace (}), 367, 579
road map, 396
rollDice.html page, 359
rollDice.php program,

575
rollDie() function, 578
RollDie.html code, 358
root access, 826
Root Namespace line, 28
root passwords, 639–644,

810
root users, 641
$row variable, 612–614
rows, 72–78, 409
rows attribute, 128
rowspan attribute, 76–77

56_186275 bindex.qxp 3/28/08 11:04 PM Page 921

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies922

rule names, 144
run program, 392
run-length encoding, 100

S
s: character, 516
Safari browser, 50
Sans serif fonts, 162
saturation, color, 154
Saturation feature, 107
Save Configuration button,

865
Save Selected Thumbs as

Individual Images tool,
116

saveSchedule.php file,
781

Saving to different formats
tools, 98

sayHi() function, 425,
429

sayValue() method,
751–752

Scintilla text editor, 46
scope

function, 402–404
managing in PHP, 580

scope.html page, 402
screen readers, 251
screen space, 129
script class, 195
script installers, 814
<script> tag, 339, 461,

462, 744–746
Script.aculo.us JavaScript

library, 740
scripting language, 336, 418
seamless texture, 219
search engines, 13, 170
search forms, 621–624
search() method, 348
searching SQL tables

for any text in fields, 673

for ending value of fields,
671–672

with partial information,
671

with regular expressions,
674

search.php program, 622
SECOND() function, 702
second normal form,

696–697
section names, 271
Secure FTP (SFTP), 821
Secure Socket Layer (SSL)

technology, 127
security, 809–812, 831
Security Alerts, 496
select code, 441
SELECT command, 659,

661, 674, 677
Select Database Connection

window, 692
Select event, 756
select lists, 120
select objects, 121, 130,

438–439, 441–442, 448
SELECT statement, 663,

668, 670, 710
<select> tag, 130
selectables function,

782–784
selected property, 443
selectedclass option,

783
selecting elements in

jQuery
all elements of specific

type, 749–751
by class name, 753–756
overview, 748–749

selectors
defined, 143
defining classes, 191–195
defining more than one

kind of paragraph,
185–187

defining multiple styles at
once, 203–204

div and span, 195–198
emphasis and strong

emphasis, 188–190
overview, 185
selecting in context,

201–203
styling identified

paragraphs, 187–188
testing, 276
using pseudo-classes to

style links, 198–201
selLanguage variable,

441, 443
semantic navigation, 839
semicolon (;) character,

340, 503, 658
send() method, 732–733,

737, 792
sentry variable, 372–374
separate function, 736
Serif fonts, 162
$_SERVER array, 569–570
servers

client-side development
systems, 804–805

creating with XAMPP,
806–812

domain names, 821–825
handling XML response

with jQuery, 790–792
managing data remotely,

825–827
managing remote site,

815–821
overview, 803–804
server-side systems,

805–806
synchronous AJAX

connections, 733
using phpMyAdmin on

remote, 647–649
Web hosts, 812–815

56_186275 bindex.qxp 3/28/08 11:04 PM Page 922

Index 923

server-side editing features,
817

Server-Side Includes (SSIs),
848, 884–887

server-side programming.
See also PHP

AJAX, 726
inspecting phpinfo (),

498–500
installing Web server,

495–496
languages, 493–494
overview, 491–492
starting server, 496–497
testing installation,

497–498
server-side systems,

805–806, 850
$_SESSION superglobal,

585–586
session variables

adding to code, 585–586
overview, 582–584

session_start()
function, 585

Set Advanced Options
button, 114

setColor() function, 420
setInterval() function,

477–478, 480, 483
Settings For All Images

dialog box, 114
setupTrigger()

function, 755
SFTP (Secure FTP), 821
shaded styles, 208
sharpen filter, 108
shopping carts, 726
shortcut, border, 209–210
Show effects, 759
show() function, 760
showChoices() function,

442
showContact.php

program, 610
showDate.php program,

515–516

showSurprise()
method, 755–756

showSurprise.html
program, 753

.shtml extension, 886
simple.html program,

415
single digits, 151
single equal sign (=), 536,

670
single quotes (‘), 597, 789
single-element tags, 427
single-table databases

deletion problems, 687
fields that change,

686–687
lists, 684–685
overview, 683–684
repetition and reliability,

686
singletag elements, 432
Site Building section, 864
site management

file permissions, 817–818
using FTP, 818–821
Web-based file tools,

815–817
site plans

creating overviews,
836–837

diagrams, 837–839, 846
overview, 835–836

sites, Web. See Web sites
$sixCount variable, 552
size attribute, 125, 130
sketches, page design,

840–841
Skiljan, Irfan, 97
slice() method, 348
Slide effects, 759
slideDown element, 760
sliders, 784–786
slideToggle element, 760
slideUp element, 760
smarty tags, 874
Smarty template engine,

881

Social Networking element,
302

software. See also specific
software by name

cost of, 40
patents, 102
Web development tools,

39–40
Web page design, 16–17

Solid style, 208
Sortable class, 776
sortables interface

basic sorting, 776
onchange, 778–781
options, 777–778
overview, 776

sortForce option,
769–771

sorting options, 768–771
sorting responses, 675–676
sortList option, 769
$.SortSerialize()

function, 778
source (src) attribute, 94
source code, 30, 434–436
SourceForge.net page,

495
spaces, 67, 345
span element

organizing pages by
meaning, 196–197

overview, 195–196
tables, 197–198

 tag, 196
spanning rows/columns,

75–78
special characters, 455
special effects, jQuery

custom animations,
762–764

overview, 759
predefined animations,

759–762
spell checker, 21
split complementary

system, 157

56_186275 bindex.qxp 3/28/08 11:04 PM Page 923

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies924

split() function, 570,
572–573, 596–598

sprite div, 460, 462, 464,
469, 481, 486

sprite global variable,
463–464

sprite tag, 482
sprite variable, 475
spriteImage img

element, 486
spriteImage variable, 482
sprites

combining motion effects
and swapping, 487

defined, 460
image-swapping

animation, 482–483
motion effects, 464–466

SQL. See Structured Query
Language

SQL Server, 635
$sql variable, 610, 624–625
SQLite open-source

database, 635
square brace ([]) syntax,

405
src (source) attribute, 94
src property, 461, 482
$srchField value, 625
$srchVal value, 625
ssAblaze template, 878
SSIs (Server-Side Includes),

848, 884–887
SSL (Secure Socket Layer)

technology, 127
standard links, 198–199
standard text fields,

124–125
standards compliance,

40, 50
Stanicek, Petr, 155–156
states, link, 198–200
static layout, 322
status element, 414–415
status property, 732,

734–735
status, request, 734–735
statusText property, 732,

735

Step Into button, 391
storage, data, 342
storeQuery table, 710
story1.html file, 886
str_replace() function,

591–592
streams, 588–589
strikethrough.html

code, 179
string data, 345, 353, 505
string object
length property, 347
OOP, 346
overview, 345–346
using methods to

manipulate text,
347–350

string value, 362, 421
string variable, 349, 426,

433–434, 443
stringMethods.html

page, 348
strings, 346, 505, 570–573
strong emphasis, 93,

188–190
 tag, 93, 188
Structured Query Language

(SQL)
AUTO_INCREMENT,

664–666
data types, 631–632
DDL, 630
DQL, 630
editing records, 676–677
exporting data and

structure, 677–682
functions, 702–703
injection attacks, 625
overview, 657
running script with

phpMyAdmin, 661–664
selecting data from tables,

666–676
writing code by hand,

657–661
style attribute, 207, 239,

416
style definitions, 240

style element, 143, 204, 227
style sheets. See also

external style sheets;
lists; page-level styles

attaching to templates,
881

cascading styles, 235–240
changing colors, 144–145
conditional comments,

240–246
levels of style, 227–230
menu systems, 306–312
overview, 141–143, 227
setting up, 143–144

<style> tag, 143, 152, 229,
232, 235, 246

styles
border, 207–208
CMSMS, 882
creating page, 843–846

sub-arrays, 560
subdirectories, 83
subdomains, 83, 814, 822
sub-elements, 306
sublists, 299
submit attribute, 520
submit buttons, 121, 137,

877, 882
Submit Poll section, 865
sub-objects, 414
subscripts, 183–184
subsets of records, 669–671
substring() method,

348, 350
SUBTIMES(A, B) function,

702
success function, 792–793
suit arrays, 560
sum variable, 351
superglobals, 525–526, 585
superscripts, 183–184
super-slow mode, 391–392
surface div, 462, 469
surprise class, 753,

755–756
(“.surprise”) selector,

755
swing function, 762

56_186275 bindex.qxp 3/28/08 11:04 PM Page 924

Index 925

switch statement
comparing with, 545–547
creating expressions with,

366–367
important tips, 367–368
overview, 365–366

Synchronization
command, 693

synchronization trigger, 733
synchronous AJAX

connections
building HTML form, 731
checking status, 734–735
creating

XMLHttpRequest
object, 731–732

opening connections to
server, 733

overview, 728–731
sending request and

parameters, 733
SynEdit text editor, 46
syntax coloring, 49
syntax errors, 383
syntax highlighting,

43, 336, 345
syntax rules, 658

T
tab character, 67
tabbed browsing, 48
table data, 70
table headers, 70, 73
table property, 621
table rows, 70
table sorter, 767–771
<table> tag, 70, 72,

618–619
table-based layouts, 19, 78
tables

building, 70–72
creating in DBDesigner 4,

688–690
defined, 630
defining, 72–75, 633–634

div and span elements,
197–198

generating with JSON,
798–800

layout pitfalls, 250–251
link, 718–722
making basic with jQuery

UI plugin, 767–768
problems with, 78
spanning rows and

columns, 75–78
SQL, 659–676
steps to create, 660
using inner joins to

combine, 710–715
writing PHP pages to read

from, 892–894
XHTML, 617–619

tablesorter class, 768
tablesorter() function,

767–768
tableSpan code, 78
tabs (\t) characters, 504,

591
tag pairs, 14
tags

CMSMS custom, 882–884
Web page, 12–15
XHTML, 20

Tahoma fonts, 164
<td> tag, 70, 74, 77–78
technical expertise, user

level of, 834–835
technical frameworks, 831
template.html, 22, 60
templates

Aptana IDE, 60
CMSMS, 873, 880–881
page, 839–847
smarty tags, 874
XHTML, 832

temporary borders,
276–277, 282

terminate button, 391
test browsers, 337–338
testing code, 41, 833
test.php program, 499
Tetrad color scheme, 157

text
alignment, 180–181
“Ants Go Marching,The”

program, 401–402
interpolating PHP

variables into, 506–507
managing input and

output with DOM,
422–426

manipulating with
JavaScript string
methods, 347–350

SQL table searches for
any in field, 673

text areas, 120, 430, 432
text boxes form elements,

120
TEXT data type, 632
text editors

alternative, 46
basic, 42–43
building tables in, 74–75
client-side development

system, 804
Emacs, 45–46
JavaScript, 336–337
Notepad++, 43–44
overview, 42
VI and VIM, 44–45
versus word processors,

9–10
text fields, 426, 437
text file manipulations

CSV files, 590–600
overview, 587
reading from, 594–596
writing text to files,

588–590
text formatting. See fonts
text labels, 121
text manipulation tools, 181
Text Size option, 170
text variable, 353, 400
text-align attribute,

180–181
text-align: center

rule, 214–215
<textarea> tag, 128

56_186275 bindex.qxp 3/28/08 11:04 PM Page 925

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies926

text-decoration
attribute, 178–180, 296

text-decoration: none
attribute, 308

TextEdit text editor, 42–43
TextFX extension, 44
Text-indent tool, 181
text-only browsers, 51
text-style inputs

multi-line text input,
127–128

overview, 124
password field, 126–127
standard text field,

124–125
Text-transform tool, 181
<th> tag, 70, 73, 74
$theFile variable, 588
Theme Manager, 878
themes, 829, 867–868,

877–879
themes directory, 868–869
$theMode variable, 588
$theVar variable, 545, 548,

555
thing.php file, 502
third normal form, 697–698
this keyword, 762, 800
thread window, 390
three-column floating

layout design
overview, 280–281
problems with, 283–284
specifying min-height,

284–285
styling three-column

pages, 281–283
three-tiered architecture,

636
thumbnail images, 115–118
Thumbnails tool, 116
tilde (~) character, 83, 591,

762
tiled images, 219–220
TIME data type, 632

time interval, 478
Timer.html page, 476
Times New Roman fonts,

164
title attribute, 94
<title> tag, 13, 30, 31
TLS (Transport Layer

Security), 585
toLowerCase() method,

348–349
ToolTips, 94
top attribute, 317, 321, 331,

465, 475
toString() function, 355
total element, 585
toUpperCase() method,

348–349
<tr> tag, 70, 72, 73
traditional measurements,

173
Transport Layer Security

(TLS), 585
Trebuchet MS font, 164
Triad color scheme, 157
trigger class, 755
true expressions, 363
TSCu_Comic font, 164
tutorials, 742
.tv domain, 84
two slashes (//) character,

83, 340
$two variable, 556
two-column floating layout

design
adding preliminary CSS,

274–275
advantages of, 280
building XHTML, 273–274
designing pages, 271–273
setting up floating

columns, 277–278
temporary borders,

276–277
tuning up borders,

278–279

two-dimension arrays
functions, 411–412
overview, 408–409
setting up, 409–411

.txt files, 15, 603
txtName field, 425–426
txtOutput field, 425
type attribute, 125, 136,

138, 339, 520, 621, 790
TypeError: request.

loadGroup has no
properties error
message, 391

typefaces, 159. See also
fonts

U
UI library, jQuery. See user

interface library,
jQuery

.uk domain, 84
 tag, 63, 65, 67, 304
unbinding events, 757
uncompressed images, 100
Uncompressed option, 740
underline.html code,

178
underscores (_), 579
Uniform Resource

Identifiers (URIs), 83
Uniform Resource Locators

(URLs), 82–84, 94, 166
unique_key property, 621
UNIX editors, 44
unordered lists, 61–63
unsigned property, 621
UPDATE command, 676, 710
updateImage() function,

486
updatePosition()

function, 487
updating records, 676
upgrade policies, 814

56_186275 bindex.qxp 3/28/08 11:04 PM Page 926

Index 927

URIs (Uniform Resource
Identifiers), 83

url attribute, 226
url() keyword, 217
url object, 791
URLs (Uniform Resource

Locators), 82–84, 94,
166

Use This Directory as
Output button, 113

user input
check boxes, 444–446
drop-down lists, 437–440
multiple selections,

440–442
overview, 437
radio buttons, 446–449
regular expressions,

449–457
user interface (UI) library,

jQuery
creating dialog boxes,

771–775
dragging and dropping,

764–767
overview, 764
sorting with table sorter,

767–771
user preference, 239
User-Defined Tags page, 882
userName field, 521, 526
$userName variable,

521, 526–527
usernames, 83
$userNumber variable,

537–538
users

allowing interaction with
MySQL databases,
620–626

JavaScript, 342–352
level of technical

expertise, 834–835
phpMyAdmin, 644–647

utf character, 23

V
Validate by Direct Input

option, 24
Validate by File Upload

option, 24
Validate by URL option, 24
validate.html page, 450
validation. See also W3C

Validator
of input with regular

expressions, 449–457
overview, 21
reasons for using, 38
Web page, 19–24, 36–38

validation errors, 301
validation pane, 379
Validator

checking headline repair,
33–34

errors, 29–30, 32–33
examining overview,

28–29
fixing titles, 30–32
overview, 23–28
steps to submit code, 24
validated pages, 35–36
validating pages, 29

value, color, 154
value property, 125,

137–138, 426, 433, 440,
442, 445–446

$value variable, 570, 614
values

arrays, 406
variable types, 351

VALUES keyword, 661
values option, 786
var statement, 342
VARCHAR data type, 632,

634, 660
VARCHAR field, 684
variable interpolation, 509
variable scope, 402–404
variable types, 346, 353, 362

variables
global, 402, 481–482
JavaScript, 341–356
local, 402
managing scope of in PHP,

580
PHP, 504–507
session, 582–586
superglobals, 525–526

Variables pane, 389–390
variations, 40
vector-based image

formats, 103
vendor lock-in tools, 40
verbose text, 29
Verdana fonts, 164
verse() function,

400–402, 408
versions, Internet Explorer,

246
vertical menus, 307–309
Vertical-align tool, 181
VI (Visual Editor), 44
view generated source

tool, 436
view source command,

435, 436
View Source tool, 51–52
View Speed Report

option, 97
VIEW tool, 708
views

Aptana IDE, 60
building to encapsulate

joins, 715
creating, 708–710

VIM (Visual Editor
Improved), 44

virtual fields, 701–703
virtual fonts, 161, 163
visited links, 200–201
visited state, 199
visual design, 17
Visual Editor (VI), 44
Visual Editor Improved

(VIM), 44
visual jQuery tool, 742–743

56_186275 bindex.qxp 3/28/08 11:04 PM Page 927

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies928

W
w value, 588
w+ value, 589
W3C (World Wide Web

Consortium), 20. See
also W3C Validator

W3C Validator
checking headline repair,

33–34
errors, 29–30, 32–33
examining overview,

28–29
fixing titles, 30–32
overview, 23–28
steps to submit code, 24
validated pages, 35–36
validating pages, 29

Web addresses, 82, 829
Web browsers

alternative, 49–50
bottom line in, 50–51
features, 41
history of, 47–48
incompatibility, 19,

240–241, 834
links, 80
margins, 317
multiple, 41
overview, 47
prominent, 48–50

Web Developer CSS editor,
152–153

Web Developer toolbar,
51–54, 97, 152, 276, 436,
882

Web development tools.
See also Web browsers

alternative, 40–42
Firefox, 51–54
IDEs, 55–60
overview, 39
software for, 39–40
text editors, 42–46

Web hosts
connecting to, 814–815
finding service, 813–814
overview, 812–813

Web logging, 852, 854
Web pages. See also

animation; colors;
document object
model; validation; Web
sites

adding classes to, 192
adding images to, 89–94
adding new, 874–877
creating basic, 9–11
designing two-column

floating layout, 271–273
displaying file extensions,

15–16
organizing by meaning,

196–197
overview, 9
setting up software, 16–17
styling three-column

pages, 281–283
tags, 12–15
understanding HTML

in, 12
Web servers

defined, 805
installing, 495–496
starting, 496–497
testing installation,

497–498
Web sites. See also content

management systems
creating multipage,

829–830
creating page templates,

839–847
fleshing out projects,

847–848
management of, 815–821
overview, 829
planning larger sites, 830
site plans, 835–839

understanding audience,
833–835

understanding clients,
830–833

Web-based file tools,
815–817

Web-based fonts
overview, 165–166
possible solutions to

problems with, 166–167
using images for

headlines, 167–170
Web-safe color palette,

149–151
WEEK() function, 702
WEEKDAY() function, 702
whatBrowser.html, 241
“whatColor” element, 239
WHERE clause, 669, 676–677,

713, 719
while loops, 375–376,

548–549, 612–613, 616
width attribute

adjusting, 257–259
fieldsets, 267–268
measurement units, 206
menus, 331–332
overview, 94

window object, 414
Windows Notepad, 42
Windows Security Alerts,

496
Word, 42
word boundaries, 455
word processing, 9–10, 42,

678
WordPress CMS, 852–853
Word-spacing tool, 181
Work As box, 113
World Wide Web

Consortium (W3C), 20.
See also W3C Validator

Write permission, 818
writing code. See also

programs

56_186275 bindex.qxp 3/28/08 11:04 PM Page 928

Index 929

PHP pages to read from
tables, 892–894

SQL code by hand,
657–661

text to files, 588–590
WYSIWYG technology, 17,

39, 55, 74, 874

X
x global variable, 463
x parameter, 465
XAMPP Control Panel, 497,

637
XAMPP Controller, 496
XAMPP Directory

password, 811
XAMPP program

adding files, 808–809
functionality versus

security, 811–812
loading, 495
overview, 806–807
running, 807
setting security level,

809–811
testing configuration,

807–808
xemacs text editor, 46
xfd database, 646, 651
XHTML

code, 13, 262, 274, 421,
508, 518, 832

tables, 622
template design, 832
validator, 339

XHTML Strict doctype,
23, 35

XML (eXtensible Markup
Language), 20, 728

xml declaration, 788–789
XML NameSpace, 23
XML template, 841
XMLHttpRequest object,

725, 727–728, 731–732,
734

xmlns attribute, 23
XnView software, 98
XOR: logical operator, 541

Y
y: character, 516
Y: character, 516
y global variable, 463, 465
YEAR() function, 702,

706–707

Z
zerofill property, 621
z-index attribute, 317, 319

56_186275 bindex.qxp 3/28/08 11:04 PM Page 929

HTML, XHTML, and CSS All-in-One Desk Reference For Dummies930

56_186275 bindex.qxp 3/28/08 11:04 PM Page 930

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
Business Plans Kit For Dummies
0-7645-9794-9
Economics For Dummies
0-7645-5726-2
Grant Writing For Dummies
0-7645-8416-2
Home Buying For Dummies
0-7645-5331-3
Managing For Dummies
0-7645-1771-6
Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*
Resumes For Dummies
0-7645-5471-9
Selling For Dummies
0-7645-5363-1
Six Sigma For Dummies
0-7645-6798-5
Small Business Kit For Dummies
0-7645-5984-2
Starting an eBay Business For Dummies
0-7645-6924-4
Your Dream Career For Dummies
0-7645-9795-7

0-7645-9847-3 0-7645-2431-3

Also available:
Candy Making For Dummies
0-7645-9734-5
Card Games For Dummies
0-7645-9910-0
Crocheting For Dummies
0-7645-4151-X
Dog Training For Dummies
0-7645-8418-9
Healthy Carb Cookbook For Dummies
0-7645-8476-6
Home Maintenance For Dummies
0-7645-5215-5

Horses For Dummies
0-7645-9797-3
Jewelry Making & Beading
For Dummies
0-7645-2571-9
Orchids For Dummies
0-7645-6759-4
Puppies For Dummies
0-7645-5255-4
Rock Guitar For Dummies
0-7645-5356-9
Sewing For Dummies
0-7645-6847-7
Singing For Dummies
0-7645-2475-5

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-8404-9 0-7645-9904-6

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
Cleaning Windows Vista For Dummies
0-471-78293-9
Excel 2007 For Dummies
0-470-03737-7
Mac OS X Tiger For Dummies
0-7645-7675-5
MacBook For Dummies
0-470-04859-X
Macs For Dummies
0-470-04849-2
Office 2007 For Dummies
0-470-00923-3

Outlook 2007 For Dummies
0-470-03830-6
PCs For Dummies
0-7645-8958-X
Salesforce.com For Dummies
0-470-04893-X
Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8
Word 2007 For Dummies
0-470-03658-3
Quicken 2007 For Dummies
0-470-04600-7

0-470-05432-8 0-471-75421-8

Also available:
Blogging For Dummies
0-471-77084-1
Digital Photography For Dummies
0-7645-9802-3
Digital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1
Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1
eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3
HDTV For Dummies
0-470-09673-X

Home Entertainment PCs For Dummies
0-470-05523-5
MySpace For Dummies
0-470-09529-6
Search Engine Optimization For
Dummies
0-471-97998-8
Skype For Dummies
0-470-04891-3
The Internet For Dummies
0-7645-8996-2
Wiring Your Digital Home For Dummies
0-471-91830-X

 INTERNET & DIGITAL MEDIA

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
† Separate U.K. edition also available

57_186275 badvert01.qxp 3/28/08 11:04 PM Page 931

Also available:
3D Game Animation For Dummies
0-7645-8789-7
AutoCAD 2006 For Dummies
0-7645-8925-3
Building a Web Site For Dummies
0-7645-7144-3
Creating Web Pages For Dummies
0-470-08030-2
Creating Web Pages All-in-One Desk
Reference For Dummies
0-7645-4345-8
Dreamweaver 8 For Dummies
0-7645-9649-7

InDesign CS2 For Dummies
0-7645-9572-5
Macromedia Flash 8 For Dummies
0-7645-9691-8
Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6
Photoshop Elements 4 For Dummies
0-471-77483-9
Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6
Yahoo! SiteBuilder For Dummies
0-7645-9800-7

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
Catholicism For Dummies
0-7645-5391-7
Exercise Balls For Dummies
0-7645-5623-1
Fitness For Dummies
0-7645-7851-0
Football For Dummies
0-7645-3936-1
Judaism For Dummies
0-7645-5299-6
Potty Training For Dummies
0-7645-5417-4
Buddhism For Dummies
0-7645-5359-3

Pregnancy For Dummies
0-7645-4483-7 †
Ten Minute Tone-Ups For Dummies
0-7645-7207-5
NASCAR For Dummies
0-7645-7681-X
Religion For Dummies
0-7645-5264-3
Soccer For Dummies
0-7645-5229-5
Women in the Bible For Dummies
0-7645-8475-8

Also available:
Alaska For Dummies
0-7645-7746-8
Cruise Vacations For Dummies
0-7645-6941-4
England For Dummies
0-7645-4276-1
Europe For Dummies
0-7645-7529-5
Germany For Dummies
0-7645-7823-5
Hawaii For Dummies
0-7645-7402-7

Italy For Dummies
0-7645-7386-1
Las Vegas For Dummies
0-7645-7382-9
London For Dummies
0-7645-4277-X
Paris For Dummies
0-7645-7630-5
RV Vacations For Dummies
0-7645-4442-X
Walt Disney World & Orlando
For Dummies
0-7645-9660-8

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-471-76871-5 0-7645-7841-3

0-7645-7749-2 0-7645-6945-7

0-7645-8815-X 0-7645-9571-7

Also available:
Access 2007 For Dummies
0-470-04612-0
ASP.NET 2 For Dummies
0-7645-7907-X
C# 2005 For Dummies
0-7645-9704-3
Hacking For Dummies
0-470-05235-X
Hacking Wireless Networks
For Dummies
0-7645-9730-2
Java For Dummies
0-470-08716-1

Microsoft SQL Server 2005 For Dummies
0-7645-7755-7
Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9
Preventing Identity Theft For Dummies
0-7645-7336-5
Telecom For Dummies
0-471-77085-X
Visual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2
XML For Dummies
0-7645-8845-1

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-7728-X 0-471-74940-0

57_186275 badvert01.qxp 3/28/08 11:04 PM Page 932

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software”) solely for
your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the physical packet included with this Book
“Software Media”. Copyright to the individual programs recorded on the Software Media is
owned by the author or other authorized copyright owner of each program. Ownership of
the Software and all proprietary rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)
transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the “About the CD” appendix of this
Book or on the Software Media. These limitations are also contained in the individual license
agreements recorded on the Software Media. These limitations may include a requirement
that after using the program for a specified period of time, the user must pay a registration
fee or discontinue use. By opening the Software packet(s), you agree to abide by the licenses
and restrictions for these individual programs that are detailed in the “About the CD” appen-
dix and/or on the Software Media. None of the material on this Software Media or listed in
this Book may ever be redistributed, in original or modified form, for commercial purposes.

58_186275 blicense.qxp 3/28/08 11:06 PM Page 933

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO
THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN,
AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIRE-
MENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: HTML, XHTML, and CSS All-in-One Desk Reference For Dummies, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974.
Please allow four to six weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication. Any replacement
Software Media will be warranted for the remainder of the original warranty period or
thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

58_186275 blicense.qxp 3/28/08 11:06 PM Page 934

	HTML, XHTML, and CSS ALL-IN-ONE DESK REFERENCE FOR DUMMIES®
	Table of Contents
	Introduction
	Book I Creating the XHTML Foundation
	Chapter 1: Sound HTML Foundations
	Creating a Basic Page
	Understanding the HTML in the Basic Page
	Meeting Your New Friends, the Tags
	Setting Up Your System

	Chapter 2: It’s All about Validation
	Somebody Stop the HTML Madness!
	Building an XHTML Document
	Validating Your Page

	Chapter 3: Choosing Your Tools
	What’s Wrong with the Big Boys?
	Alternative Web Development Tools
	Picking a Text Editor
	The Web Developer’s Browser
	Tricking Out Firefox
	Using a Full-Blown IDE

	Chapter 4: Managing Information with Lists and Tables
	Making a List and Checking It Twice
	Building Tables

	Chapter 5: Making Connections with Links
	Making Your Text Hyper
	Making Lists of Links
	Working with Absolute and Relative References

	Chapter 6: Adding Images
	Adding Images to Your Pages
	Choosing an Image Manipulation Tool
	Choosing an Image Format
	Manipulating Your Images
	Using Images as Links

	Chapter 7: Creating Forms
	You Have Great Form
	Building Text-Style Inputs
	Creating Multiple Selection Elements
	Pressing Your Buttons

	Book II Styling with CSS
	Chapter 1: Coloring Your World
	Now You Have an Element of Style
	Specifying Colors in CSS
	Choosing Your Colors
	Creating Your Own Color Scheme

	Chapter 2: Styling Text
	Setting the Font Family
	The Curse of Web-Based Fonts
	Specifying the Font Size
	Determining Other Font Characteristics

	Chapter 3: Selectors, Class, and Style
	Selecting Particular Segments
	Using Emphasis and Strong Emphasis
	Defining Classes
	Introducing div and span
	Using Pseudo-Classes to Style Links
	Selecting in Context
	Defining Multiple Styles at Once

	Chapter 4: Borders and Backgrounds
	Joining the Border Patrol
	Introducing the Box Model
	Changing the Background Image
	Manipulating Background Images
	Using Images in Lists

	Chapter 5: Levels of CSS
	Managing Levels of Style
	Understanding the Cascading Part of Cascading Style Sheets
	Using Conditional Comments

	Book III Using Positional CSS for Layout
	Chapter 1: Fun with the Fabulous Float
	Avoiding Old-School Layout Pitfalls
	Introducing the Floating Layout Mechanism
	Using Float with Block-Level Elements
	Using Float to Style Forms

	Chapter 2: Building Floating Page Layouts
	Creating a Basic Two-Column Design
	Building a Three-Column Design
	Building a Fixed-Width Layout
	Building a Centered Fixed-Width Layout

	Chapter 3: Styling Lists and Menus
	Revisiting List Styles
	Creating Dynamic Lists
	Building a Basic Menu System

	Chapter 4: Using Alternative Positioning
	Working with Absolute Positioning
	Managing z-index
	Building a Page Layout with Absolute Positioning
	Creating a More Flexible Layout
	Exploring Other Types of Positioning
	Determining Your Layout Scheme

	Book IV Client-Side Programming with JavaScript
	Chapter 1: Getting Started with JavaScript
	Working in JavaScript
	Writing Your First JavaScript Program
	Using Concatenation to Build Better Greetings
	Understanding the String Object
	Understanding Variable Types
	Changing Variables to the Desired Type

	Chapter 2: Making Decisions with Conditions
	Working with Random Numbers
	Using if to Control Flow
	Using the else Clause
	Using switch for More Complex Branches
	Nesting if Statements

	Chapter 3: Loops and Debugging
	Building Counting Loops with for
	Looping for a While
	Introducing Bad Loops
	Debugging Your Code
	Catching Logic Errors
	Using the Aptana Debug Mode

	Chapter 4: Functions and Arrays
	Breaking Code into Functions
	Passing Data into and out of Functions
	Managing Scope
	Building a Basic Array
	Working with Two-Dimension Arrays

	Chapter 5: Talking to the Page
	Understanding the Document Object Model
	Harnessing the DOM through JavaScript
	Managing Button Events
	Managing Text Input and Output
	Writing to the Document
	Working with Other Text Elements

	Chapter 6: Getting Valid Input
	Getting Input from a Drop-Down List
	Managing Multiple Selections
	Check, Please: Reading Check Boxes
	Working with Radio Buttons
	Working with Regular Expressions

	Chapter 7: Animating Your Pages
	Making Things Move
	Reading Input from the Keyboard
	Following the Mouse
	Creating Automatic Motion
	Building Image-Swapping Animation
	Movement and Swapping

	Book V Server-Side Programming with PHP
	Chapter 1: Setting Up Your Server
	Introducing Server-Side Programming
	Installing Your Web Server
	Inspecting phpinfo()

	Chapter 2: Generating HTML with PHP
	Creating Your First PHP Program
	Coding with Quotation Marks
	Working with Variables PHP Style
	Building XHTML Output

	Chapter 3: PHP and XHTML Forms
	Exploring the Relationship between PHP and XHTML
	Sending Data to a PHP Program
	Choosing the Method of Your Madness
	Retrieving Data from Other Form Elements

	Chapter 4: Control Structures
	Introducing if-else Conditionals
	Comparing with switch Structures
	Looping It Up with Loops

	Chapter 5: Working with Arrays
	Using One-Dimensional Arrays
	Introducing Associative Arrays
	Expanding to Multidimensional Arrays
	Using foreach Loops to Simplify Array Management
	Breaking a String into an Array

	Chapter 6: Using Functions and Session Variables
	Creating Your Own Functions
	Managing Persistence with Session Variables

	Chapter 7: Working with Files and Directories
	Text File Manipulation
	Working with File and Directory Functions

	Chapter 8: Connecting to a MySQL Database
	Retrieving Data from a Database
	Improving the Output Format
	Allowing User Interaction

	Book VI Databases with MySQL
	Chapter 1: Getting Started with Data
	Examining the Basic Structure of Data
	Introducing MySQL
	Setting Up phpMyAdmin
	Making a Database with phpMyAdmin

	Chapter 2: Managing Data with SQL
	Writing SQL Code by Hand
	Running a Script with phpMyAdmin
	Using AUTO_INCREMENT for Primary Keys
	Selecting Data from Your Tables
	Editing Records
	Exporting Your Data and Structure

	Chapter 3: Normalizing Your Data
	Recognizing Problems with Single-Table Data
	Introducing Entity-Relationship Diagrams
	Introducing Normalization
	Identifying Relationships in Your Data

	Chapter 4: Putting Data Together with Joins
	Calculating Virtual Fields
	Calculating Date Values
	Creating a View
	Using an Inner Join to Combine Tables
	Managing Many-to-Many Joins

	Book VII Into the Future with AJAX
	Chapter 1: AJAX Essentials
	AJAX Spelled Out
	Making a Basic AJAX Connection
	All Together Now — Making the Connection Asynchronous

	Chapter 2: Improving Java Script with jQuery
	Introducing jQuery
	Putting jQuery to Work
	Managing Events through jQuery

	Chapter 3: Animating with jQuery
	jQuery’s Special Effects
	Interfacing with the Official UI Plugin
	Interface Elements for jQuery

	Chapter 4: Sending and Receiving Data
	Working with XML
	Introducing JSON

	Book VIII Moving from Web Pages to Web Sites
	Chapter 1: Managing Your Servers
	Understanding Clients and Servers
	Creating Your Own Server with XAMPP
	Choosing a Web Host
	Managing a Remote Site
	Naming Your Site
	Managing Data Remotely

	Chapter 2: Moving from Pages to Sites
	Creating a Multipage Web Site
	Planning a Larger Site
	Understanding the Client
	Understanding the Audience
	Building a Site Plan
	Creating Page Templates
	Fleshing Out the Project

	Chapter 3: Introducing Content Management Systems
	Overview of Content Management Systems
	Previewing Common CMSs
	Installing a Content Management System

	Chapter 4: Taking Control of Content
	Getting Started with CMSMS
	Customizing CMSMS
	Building a “Poor Man’s CMS” with Your Own Code
	Creating Your Own Data-Based CMS

	Appendix A: What’s on the CD
	System Requirements
	Using the CD
	What You’ll Find on the CD
	Troubleshooting

	Index

