


PRAISE	FOR
The	Hardware	Hacker

“Hardware,	says	bunnie,	is	a	world	without	secrets:	if	you	go	deep	enough,	even	the	most	important	key	is
expressed	 in	silicon	or	 fuses.	bunnie’s	 is	a	world	without	mysteries,	only	unexplored	spaces.	This	 is	a
look	inside	a	mind	without	peer.”
—EDWARD	SNOWDEN

“A	tour	de	force	that	combines	the	many	genius	careers	of	one	of	the	world’s	great	hacker-communicators:
practical,	theoretical,	philosophical,	and	often	mind-blowing.”
—CORY	DOCTOROW,	AUTHOR	OF	LITTLE	BROTHER	AND	TECHNOLOGY	ACTIVIST

“bunnie	 lives	 in	 the	 world	 of	 hardware	 where	 the	 solder	 meets	 the	 PCB.	 He	 has	 more	 practical
experience	and	 is	a	better	 teacher	of	how	the	ecosystem	of	hardware	works	 than	any	other	person	I’ve
ever	met,	and	I	know	a	lot	of	people	in	this	space.	He	has	rendered	this	experience	and	expertise	into	an
amazing	book—a	hacker’s-point-of-view	bible	to	anyone	trying	to	work	in	or	understand	and	work	in	the
emerging	and	evolving	world	of	hardware.”
—JOI	ITO,	DIRECTOR,	MIT	MEDIA	LAB

“bunnie	is	the	ultimate	tour	guide	of	hardware	hacking	as	it	stands	today,	with	an	eye	toward	the	sublime
art	of	how	things	are	really	made.	The	Hardware	Hacker	will	take	you	on	a	journey	through	the	factories
of	the	world,	covering	both	the	technical	and	ethical	implications	of	the	‘stuff	’	we	manufacture	and	buy.”
—LIMOR	“LADYADA”	FRIED,	FOUNDER	&	ENGINEER,	ADAFRUIT	INDUSTRIES

“Curious	how	the	devices	in	our	daily	lives	come	into	being?	Want	to	manufacture	your	own	project?	In
this	well-written	book,	bunnie	describes	the	ins	and	outs	of	the	manufacturing	process	in	China.	A	very
entertaining	and	informative	read.”
—MITCH	ALTMAN,	INVENTOR	OF	TV-B-GONE®

“The	Hardware	Hacker	 is,	 at	 its	core,	 the	primer	 for	understanding	 the	culture	of	making	something	 in
China,	how	to	build	thousands	of	things,	and	why	Open	Hardware	works.”
—HACKADAY
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preface
When	 Bill	 Pollock,	 founder	 of	 No	 Starch	 Press,	 first	 contacted	 me	 with	 the	 idea	 of	 publishing	 a
compilation	 of	 my	 writings,	 I	 was	 skeptical.	 I	 didn’t	 think	 there	 would	 be	 enough	 material	 to	 fill	 a
hundred	pages.	It	seems	I	was	wrong.
My	mother	often	said,	“It	doesn’t	matter	what’s	in	your	head	if	you	can’t	tell	people	what’s	in	it,”	and

when	I	was	in	seventh	grade,	she	enrolled	me	in	an	after-school	essay	writing	class.	I	hated	the	class	at
the	 time,	but	 in	retrospect,	 I’m	thankful.	Starting	with	my	college	application	essays	and	up	 to	 this	day,
I’ve	found	the	ability	to	organize	my	thoughts	into	prose	invaluable.
Most	of	 the	material	 in	 this	book	was	originally	published	on	my	blog,	but	as	you’ll	soon	see,	 those

posts	 weren’t	 puff	 pieces	 written	 to	 drive	 ad	 revenue.	 One	 reason	 I	 write	 is	 to	 solidify	 my	 own
understanding	of	complicated	subjects.	It’s	easy	to	believe	you	understand	a	topic	until	you	try	to	explain
it	to	someone	else	in	a	rigorous	fashion.	Writing	is	how	I	distill	my	intuition	into	structured	knowledge;	I
only	write	when	I	find	something	interesting	to	write	about,	and	then	I	post	it	with	a	CC	BY-SA	license	to
encourage	others	to	share	it.
This	book	includes	a	selection	of	my	writings	on	manufacturing,	intellectual	property	(with	a	focus	on

comparing	Western	versus	Chinese	perspectives),	open	hardware,	reverse	engineering,	and	biology	and
bioinformatics.	The	good	editors	at	No	Starch	Press	also	curated	a	couple	of	interviews	I’ve	done	in	the
past	that	were	particularly	informational	or	insightful.	The	common	thread	throughout	these	diverse	topics
is	hardware:	how	it’s	made,	 the	 legal	 frameworks	around	 it,	and	how	it’s	unmade.	And	yes,	biological
systems	are	hardware.
I’ve	 always	gravitated	 toward	hardware	because	while	 I’m	not	particularly	gifted	when	 it	 comes	 to

abstract	thought	(hence	the	need	to	write	to	organize	my	thoughts),	I	am	pretty	good	with	my	hands.	I	have
a	much	better	chance	of	understanding	things	that	I	can	see	with	my	own	two	eyes.
My	entire	understanding	of	the	world	has	always	been	built	on	a	series	of	simple,	physical	experiences,

starting	from	when	I	stacked	blocks	and	knocked	them	over	as	a	child.	This	book	shares	some	of	my	more
recent	 experiences.	 I	 hope	 that	 by	 reading	 them,	 you	will	 gain	 a	 deeper	 understanding	of	 the	world	 of
hardware,	without	having	to	spend	decades	stacking	blocks	and	knocking	them	over.

Happy	hacking,
—b.



Part	1
adventures	in	manufacturing
I	first	set	foot	in	China	in	November	2006.	I	had	no	idea	what	I	was	walking	into.	When	I	told	my	mother	I
was	going	 to	visit	Shenzhen,	she	exclaimed,	“Why	are	you	going	 there?	It’s	 just	a	 fishing	village!”	She
wasn’t	wrong:	Shenzhen	was	just	a	town	of	300,000	back	in	1980,	but	it	had	exploded	into	a	megacity	of
10	million	in	less	than	30	years.	Between	my	first	visit	and	the	time	I	wrote	this	book,	Shenzhen	gained	an
estimated	4	million	people—more	than	the	population	of	Los	Angeles.
In	a	way,	my	understanding	of	manufacturing	over	 the	years	has	mirrored	Shenzhen’s	growth.	Before

going	to	China,	I	had	never	mass-produced	anything.	I	didn’t	know	anything	about	supply	chains.	I	had	no
idea	 what	 “operations	 and	 logistics”	 meant.	 To	 me,	 it	 sounded	 like	 something	 out	 of	 a	 math	 or
programming	textbook.
Still,	 Steve	Tomlin,	my	 boss	 at	 the	 time,	 charged	me	with	 figuring	 out	 how	 to	 build	 a	 supply	 chain

suitable	 for	our	hardware	startup,	Chumby.	Sending	a	novice	 into	China	was	a	big	risk,	but	my	 lack	of
preconceived	 notions	 was	 more	 of	 an	 asset	 than	 a	 liability.	 Back	 then,	 venture	 capitalists	 shunned
hardware,	and	China	was	only	for	established	companies	looking	to	build	hundreds	of	thousands	of	units
of	a	given	product.	My	 first	 set	of	 tours	 in	China	certainly	 supported	 that	notion,	 as	 I	primarily	 toured
mega-factories	serving	the	Fortune	500.
Chumby	was	 lucky	 to	 be	 taken	under	 the	wing	of	PCH	 International	 as	 its	 first	 startup	 customer.	At

PCH,	I	was	mentored	by	some	of	the	finest	engineers	and	supply	chain	specialists.	I	was	also	fortunate	to
be	allowed	to	share	my	experiences	on	my	blog,	as	Chumby	was	one	of	the	world’s	first	open	hardware
startups.
Although	 meeting	 the	 minimum	 order	 volumes	 of	 our	 conventional	 manufacturing	 partners	 was	 a

constant	 struggle,	 I	 kept	 noticing	 small	 things	 that	 didn’t	 square	with	 conventional	wisdom.	 Somehow,
local	Chinese	companies	were	able	to	remix	technology	into	boutique	products.	The	so-called	shanzhai
integrated	 cell	 phones	 into	 all	 kinds	 of	whimsical	 forms,	 from	 cigarette	 lighters	 to	 ornamental	 golden
Buddha	statuettes	 (more	on	 this	 in	Chapter	4).	The	niche	nature	of	 these	products	meant	 they	had	 to	be
economical	 to	produce	 in	smaller	volumes.	 I	also	noticed	 that	somehow	factories	were	able	 to	 rapidly
produce	 bespoke	 adapter	 circuits	 and	 testing	 apparatuses	 of	 surprisingly	 high	 quality	 in	 single-unit
volumes.	I	felt	 there	was	more	to	the	ecosystem—a	story	that	was	being	told	over	and	over	again—but
few	had	the	time	to	listen,	and	those	who	did	heard	only	the	parts	they	wanted	to	hear.
The	 financial	 crisis	of	2008	changed	everything.	The	consumer	electronics	market	was	crushed,	 and

factories	that	were	once	too	busy	printing	money	were	now	swimming	in	excess	capacity.	I	made	friends
at	several	medium-sized	factories	in	the	area.	I	started	to	inquire	about	how,	exactly,	these	factories	were
able	 to	 so	 nimbly	 produce	 their	 internal	 test	 equipment,	 and	how	 shanzhai	were	 able	 to	 prototype	 and
build	such	bespoke	phones.
The	bosses	and	engineers	were	initially	reticent,	not	because	they	wanted	to	hide	potential	competitive

advantages	 from	 me,	 but	 because	 they	 were	 ashamed	 of	 their	 practices.	 Foreign	 clients	 were	 full	 of
corporate	process,	documentation,	and	quality	procedures,	but	 they	also	paid	dearly	for	such	overhead.
Local	companies	were	much	more	informal	and	pragmatic.	So	what	if	a	bin	is	labeled	“scrap”?	If	the	bits
inside	are	suitable	for	a	job,	then	use	them!
I	wanted	in.	As	an	engineer,	tinkerer,	and	hacker,	I	cared	a	lot	about	the	cost	to	produce	a	few	units,	and



a	couple	of	minor	assembly	defects	was	nothing	compared	to	the	design	issues	I	had	to	debug.	I	eventually
managed	 to	 coax	 a	 factory	 into	 letting	me	 build	 a	 part	 using	 its	 low-quality	 but	 ultra-cheap	 assembly
process.
The	 trick	 was	 to	 guarantee	 that	 I	 would	 pay	 for	 all	 the	 product,	 including	 defective	 units.	 Most

customers	refuse	to	pay	for	imperfect	goods,	forcing	the	factory	to	eat	the	cost	of	any	part	that	isn’t	exactly
to	 specification.	 Thus,	 factories	 strongly	 dissuade	 customers	 from	 using	 cheaper	 but	 low-quality
processes.
Of	course,	my	promise	to	pay	for	defective	product	meant	there	was	no	incentive	for	the	factory	to	do	a

good	job.	It	could	have,	in	theory,	just	handed	me	a	box	of	scrap	parts	and	I’d	still	have	had	to	pay	for	it.
But	in	reality,	nobody	had	such	ill	intentions;	as	long	as	everyone	simply	tried	their	best,	they	got	it	right
about	80	percent	of	the	time.	Since	small-volume	production	costs	are	dominated	by	setup	and	assembly,
my	bottom	line	was	still	better	despite	 throwing	away	20	percent	of	my	parts,	and	 I	got	parts	 in	 just	a
couple	of	days	instead	of	a	couple	of	weeks.
Having	options	to	trade	cost,	schedule,	and	quality	against	each	other	changes	everything.	I’ve	made	it

a	point	to	discover	more	alternative	production	methods	and	continue	shortening	the	path	between	ideas
and	products,	with	ever	more	options	along	the	cost-schedule-quality	spectrum.
After	Chumby,	I	decided	to	remain	unemployed,	partly	to	give	myself	time	for	discovery.	For	example,

every	January,	instead	of	going	to	the	frenzied	Consumer	Electronics	Show	(CES)	in	Las	Vegas,	I	rented	a
cheap	apartment	in	Shenzhen	and	engaged	in	the	“monastic	study	of	manufacturing”;	for	the	price	of	one
night	in	Las	Vegas,	I	lived	in	Shenzhen	for	a	month.	I	deliberately	picked	neighborhoods	with	no	English
speakers	 and	 forced	 myself	 to	 learn	 the	 language	 and	 customs	 to	 survive.	 (Although	 I’m	 ethnically
Chinese,	my	 parents	 prioritized	 accent-free	 fluency	 in	 English	 over	 learning	Chinese.)	 I	wandered	 the
streets	at	night	and	observed	the	back	alleys,	trying	to	make	sense	of	all	the	strange	and	wonderful	things	I
saw	going	on	during	the	daytime.	Business	continues	in	Shenzhen	until	the	wee	hours	of	the	morning,	but	at
a	much	slower	pace.	At	night,	I	could	make	out	lone	agents	acting	out	their	interests	and	intentions.
If	there’s	one	thing	those	studies	taught	me,	it’s	that	I	have	a	lot	more	to	learn.	The	Pearl	River	Delta

ecosystem	is	incomprehensibly	vast.	As	with	the	Grand	Canyon,	simply	hiking	one	trail	from	rim	to	base
doesn’t	mean	you’ve	seen	it	all.	I	have,	however,	picked	up	enough	knowledge	to	build	a	custom	laptop
and	to	develop	a	new	process	for	peel-and-stick	electronic	circuits.
In	this	part	of	the	book,	you’ll	follow	my	journey	as	I	learned	the	Shenzhen	ecosystem	over	the	years,

via	 a	 remix	of	 blog	posts	 that	 I	wrote	 along	 the	way.	Some	of	 the	 essays	 are	 reflections	 on	particular
aspects	of	Chinese	culture;	others	are	case	studies	of	specific	manufacturing	practices.	I	conclude	with	a
chapter	 called	 “The	 Factory	 Floor,”	 a	 set	 of	 summary	 recommendations	 for	 anyone	 considering
outsourced	manufacturing.	If	you’re	in	a	hurry,	you	can	skip	all	the	background	and	go	directly	there.
However,	 hindsight	 is	 20/20.	 Once	 you’ve	 walked	 a	 path,	 it’s	 easy	 to	 point	 out	 the	 shortcuts	 and

hazards	along	the	way;	it’s	even	easier	to	forget	all	of	the	wrong	turns	and	bad	assumptions.	There’s	no
one-size-fits-all	method	 for	 approaching	China,	 and	my	 hope	 is	 that	 by	 reading	 these	 stories,	 you	 can
come	to	your	own	(perhaps	different)	conclusions	that	better	serve	your	unique	needs.



1.	made	in	china
Before	my	first	visit	to	China,	I	was	convinced	that	Akihabara	in	Tokyo	was	the	go-to	place	for	the	latest
electronics,	knickknacks,	and	components.	That	changed	in	January	2007,	when	I	first	set	eyes	on	the	SEG
Electronics	Market	in	Shenzhen.	SEG	is	eight	floors	of	all	the	components	a	hardware	addict	could	ever
want,	and	only	later	did	I	learn	that	it’s	just	the	tip	of	the	Hua	Qiang	electronics	district	iceberg.
As	the	lead	hardware	engineer	at	Chumby	at	the	time,	I	was	in	China	with	then-CEO	Steve	Tomlin	to

figure	out	how	to	make	chumbys	(an	open	source,	Wi-Fi-enabled	content	delivery	device)	cheaply	and	on
time.	With	prices	like	those	at	SEG,	we	were	definitely	in	the	right	country	to	make	at	least	the	first	part
of	that	mission	a	success.



Shenzhen’s	SEG	Electronics	Market,	the	new	electronics	mecca.	Akihabara,	eat	your	heart	out!

THE	ULTIMATE	ELECTRONIC	COMPONENT	FLEA	MARKET



When	 I	 first	 stepped	 into	 the	SEG	building,	 I	was	assaulted	by	a	whirlwind	of	electronic	components:
tapes	 and	 reels	 of	 resistors	 and	 capacitors,	 ICs	 of	 every	 type,	 inductors,	 relays,	 pogo	 pin	 test	 points,
voltmeters,	 and	 trays	of	memory	chips.	As	a	 total	newcomer	 to	manufacturing	 in	volume,	 I	was	blown
away	by	everything	I	saw	at	SEG.
All	 of	 those	 parts	were	 crammed	 into	 tiny	 six-by-three-foot	 booths,	 each	with	 a	 storekeeper	 poking

away	at	a	laptop.	Some	storekeepers	played	Go,	and	some	counted	parts.	Some	booths	were	true	mom-
and-pop	shops,	with	mothers	tending	to	babies	and	kids	playing	in	the	aisles.



A	couple	of	family-run	component	shops



Other	booths	were	professional	 setups	with	uniformed	staff,	 and	 these	worked	 like	a	bar—complete
with	stools—for	electronic	components.

A	swanky	professional	parts	seller

No	one	at	SEG	says,	“Oh,	you	can	get	10	of	these	LEDs	or	a	couple	of	these	relays,”	like	you	might
hear	in	Akihabara.	No,	no.	These	booths	specialize,	and	if	you	see	a	component	you	like,	you	can	usually
buy	several	tubes,	trays,	or	reels	of	it;	you	can	get	enough	to	go	into	production	the	next	day.
Looking	around	the	market,	I	saw	a	woman	sorting	stacks	of	1GB	mini-SD	cards	like	poker	chips.	A

man	was	putting	sticks	of	1GB	Kingston	memory	into	retail	packages,	and	next	to	him,	a	girl	was	counting
resistors.



The	bottom-left	corner	of	this	display	was	packed	with	all	kinds	of	SD	cards.

Another	 booth	 had	 stacks	 of	 power	 supplies,	 varistors,	 batteries,	 and	 ROM	 programmers,	 and	 yet
another	had	chips	of	every	variety:	Atmel,	Intel,	Broadcom,	Samsung,	Yamaha,	Sony,	AMD,	Fujitsu,	and
more.	Some	chips	were	clearly	ripped	out	of	used	equipment	and	remarked,	some	of	them	in	brand-new
laser-marked	OEM	packaging.



The	sheer	quantity	of	chips	for	sale	at	a	single	booth	at	SEG	was	incredible.

I	saw	chips	that	I	could	never	buy	in	the	United	States,	reels	of	rare	ceramic	capacitors	that	I	could	only
dream	about	at	night.	My	senses	 tingled;	my	head	spun.	 I	couldn’t	suppress	a	smile	of	anticipation	as	 I
walked	around	the	next	corner	to	see	shops	stacked	floor	to	ceiling	with	probably	100	million	resistors
and	capacitors.

Reels	and	reels	of	components,	in	every	shop	window



Sony	CCD	and	CMOS	camera	elements!	I	couldn’t	buy	those	in	the	United	States	if	I	pulled	teeth	out	of
the	sales	reps.	(Some	sellers	even	have	the	datasheets	behind	the	counter;	always	ask.)	Next,	I	spotted	a
stack	of	Micrel	regulator	chips,	followed	by	a	Blackfin	DSP	chip	for	sale.	Nearby,	a	lady	counted	256Mb
DRAM	chips—trays	of	108	components,	stacked	20	high,	in	perhaps	10	rows.

The	equivalent	of	Digi-Key’s	entire	stock	of	DRAM	chips	sat	right	in	front	of	me!

And	across	from	her	were	a	half-dozen	more	little	shops	packed	with	chips	just	like	hers.	At	one	shop,
a	man	stood	proudly	over	a	tray	of	4Gb	NAND	flash	chips.	All	of	this	was	available	for	a	little	haggling,
a	bit	of	cash,	and	a	hasty	good-bye.



A	close	look	at	a	tray	of	4GB	flash	chips

And	that’s	just	the	first	two	floors	of	SEG.	There	are	six	more	floors	of	computer	components,	systems,
laptops,	motherboards,	digital	cameras,	 security	cameras,	 thumb	drives,	mice,	video	cameras,	high-end
graphics	 cards,	 flat-panel	 displays,	 shredders,	 lamps,	 projectors—you	 name	 it.	 On	 weekends,	 “booth
babes”	dressed	in	outrageous	Acer-branded	glittery	bodysuits	loiter	around,	trying	to	pull	you	in	to	buy
their	wares.	This	market	has	all	the	energy	of	a	year-round	CES	meets	Computex,	except	instead	of	just
showing	off	 the	 latest	 technology,	 the	point	 is	getting	you	 into	 these	booths	 to	buy	 that	hardware.	Trade
shows	always	feel	 like	a	bit	of	a	strip	 tease,	with	your	breath	making	ghostly	rings	on	the	glass	as	you
hover	over	the	unobtainable	wares	underneath.
But	SEG	is	no	strip	tease.	It’s	the	orgy	of	consumer	and	industrial	electronic	purchasing,	where	you	can

get	 your	 grubby	 paws	 on	 every	 piece	 of	 equipment	 for	 enough	 kuai*	 out	 of	 your	wallet.	 Between	 the
smell,	the	bustle,	and	the	hustle,	SEG	is	the	ultimate	electronic	component	flea	market.	It’s	as	if	DigiKey
went	mad	and	let	monkeys	into	its	Minnesota	warehouse,	and	the	resulting	chaos	spilled	into	a	flea	market
in	China.
Of	course,	a	lot	of	the	parts	I	marveled	at	in	2007	are	antiques	now.	For	example,	4Gb	flash	chips	are

trash,	and	1GB	flash	disks	are	old	news.	At	the	time,	however,	those	things	were	a	big	deal,	and	SEG	is
still	the	best	place	to	get	the	latest	tech	in	bulk.

THE	NEXT	TECHNOLOGICAL	REVOLUTION
Three	blocks	down	the	street	from	SEG	lay	the	Shenzhen	Bookstore.†	The	first	and	most	visible	rack	was
a	foreign	book	section,	packed	with	classics	like	Stanford	University	professor	Thomas	Lee’s	The	Design
of	CMOS	Radio-Frequency	Integrated	Circuits	and	several	titles	by	UCLA	professor	Behzad	Razavi.	I
picked	up	Lee’s	book,	and	it	cost	68	kuai,	or	$8.50	USD.	Holy	cow!	Jin	Au	Kong’s	book	on	Maxwell’s
equations?	$5.	Jin	Au	Kong	taught	me	Maxwell’s	equations	at	MIT.



I	went	on	a	spree,	packing	my	bag	with	six	or	seven	titles,	probably	around	$700	worth	of	books	if	I’d
bought	them	in	the	United	States.	At	the	checkout	counter,	I	bought	them	for	less	than	$35,	complete	with
the	supplemental	CDs,	saving	about	$665.	That’s	equivalent	 to	buying	an	economy-class	 ticket	 to	Hong
Kong!
In	China,	 knowledge	 is	 cheap.	Components	 are	 cheap.	The	 knowledge	 in	 the	 books	 at	 the	 Shenzhen

Bookstore	was	the	Real	Deal,	the	parts	to	use	that	knowledge	are	down	the	street	at	SEG,	and	within	an
hour’s	drive	north	are	probably	200	factories	 that	can	 take	any	electronics	 idea	and	pump	it	out	by	 the
literal	boatload.	These	are	no	backward	factories,	either.	With	my	own	eyes,	I	saw	name-brand,	1,550-
nanometer,	 single-mode,	 long-haul,	 fiber-optic	 transceivers	 being	 built	 and	 tested	 there.	 Shenzhen	 is
fertile	ground,	and	you	need	to	see	it	to	understand	it.
Shenzhen	has	 the	pregnant	 feel	of	 the	 swapfests	 in	Silicon	Valley	back	 in	 the	 ’80s,	when	all	 the	big

companies	were	just	being	founded	and	starting	up,	except	magnified	by	25	years	of	progress	in	Moore’s
law	and	the	speed	of	information	flow	via	the	internet.	In	this	city	of	12	million	people,	most	are	involved
in	tech	or	manufacturing,	many	are	learning	English,	and	all	of	them	are	willing	to	work	hard.
There	has	to	be	a	Jobs	and	Wozniak	there	somewhere,	quietly	building	the	next	revolution.	But	I’m	a

part	of	Shenzhen,	too,	and	I	still	tremble	in	my	boots	with	terror	and	excitement	at	the	thought	of	being	part
of	that	revolution.	This	is	my	story,	starting	with	that	eye-opening	trip	to	Shenzhen	for	Chumby.

TOURING	FACTORIES	WITH	CHUMBY
In	September	2006,	Chumby	was	just	a	team	of	about	a	half-dozen	people,	and	we	had	just	given	away
about	 200	 early	 prototype	 chumby	 devices	 at	 FOO	Camp,	 a	 conference	 put	 on	 by	 Tim	O’Reilly.	 The
devices	were	well	received	by	the	FOO	Camp	attendees,	so	I	got	the	go-ahead	to	build	the	Asian	supply
chain.
Steve	and	I	went	to	China	to	visit	potential	factories	in	November,	but	before	we	left,	we	had	a	trusted

vendor	in	the	United	States	give	their	best	price	for	the	job	as	a	baseline	for	negotiations	with	the	Chinese
manufacturers.	Then,	we	called	up	a	lot	of	friends	with	experience	in	China	and	lined	up	about	six	factory
tours.	We	hit	quite	a	variety	of	places,	from	specialty	factories	as	small	as	500	people	to	mega-factories
with	over	40,000	people.
There’s	no	substitute	for	going	to	China	to	tour	a	factory.	Pictures	can	only	tell	the	story	framed	by	the

photographer,	 and	 you	 can’t	 get	 a	 sense	 of	 a	 facility’s	 scale	 and	 quality	without	 seeing	 it	 firsthand.	 In
general,	factories	welcome	you	to	take	a	tour,	and	I	wouldn’t	work	with	one	that	didn’t	allow	me	to	visit.
However,	 most	 factories	 do	 appreciate	 a	 week’s	 notice,	 although	 as	 your	 relationship	 with	 them
progresses,	things	should	become	more	open	and	transparent.
Speaking	of	openness,	Chumby’s	open	source	nature	helped	the	factory	selection	process	a	lot.	First,

we	had	no	fears	about	people	stealing	our	design	(we	were	giving	it	away	already),	so	we’d	eliminated
the	 friction	 of	 NDAs	 (non-disclosure	 agreements)	 when	 sharing	 critical	 information	 like	 the	 bill	 of
materials.	I	think	this	gave	us	a	better	reception	with	factories	in	China;	they	seemed	more	willing	to	open
up	to	us	because	we	were	willing	to	open	up	to	them.	Second,	there	was	no	question	in	any	factory’s	mind
that	 this	was	 a	 competitive	 situation.	Anybody	could	 and	would	quote	 and	bid	on	our	 job	 (in	 fact,	we
received	 a	 few	unsolicited	 quotations	 that	were	 quite	 competitive),	 so	 it	 saved	 a	 round	of	 huffing	 and
puffing.
After	reviewing	several	manufacturing	options,	Steve	and	I	eventually	decided	to	work	with	a	company

called	PCH	China	Solutions.	PCH	itself	owns	only	a	few	facilities,	but	it	has	a	comprehensive	network	of
trusted	 and	 validated	 vendors,	 primarily	 in	 China	 but	 also	 in	 Europe	 and	 the	 United	 States.	 Not



surprisingly,	the	factories	that	PCH	subcontracts	to	were	some	of	the	best	facilities	we	visited	in	China.
PCH	is	actually	headquartered	out	of	Ireland—thus	most	of	their	staff	engineers	are	Irish—so	there	was
also	no	 language	barrier	 for	us.	 (PCH	engineers	are	also	hardworking,	 resourceful,	and	well	 trained—
and,	as	a	bonus,	they	always	seem	to	know	the	best	place	to	find	a	pint,	no	matter	where	they	are.	I	had	no
idea	China	had	so	many	Guinness	taps!)
There’s	 a	 lot	 to	 take	 in	when	 you	 tour	 even	 one	 factory,	 let	 alone	 a	 half-dozen,	 and	 it’s	 easy	 to	 get

overwhelmed	 and	 lost	 in	 the	 vagaries	 of	 electronics	manufacturing.	But	 there	were	 some	key	 details	 I
found	most	fascinating	during	my	factory	tours	for	Chumby	and	in	working	with	PCH	to	bring	the	chumby
to	life.

Scale	in	Shenzhen
One	stunning	thing	about	working	in	China	is	the	sheer	scale	of	the	place.	I	haven’t	been	to	an	auto	plant	in
Michigan	or	 to	 the	Boeing	plant	 in	Seattle,	 but	 I	 get	 the	 sense	 that	Shenzhen	gives	both	 a	 run	 for	 their
money	in	terms	of	scale.	In	2007,	Shenzhen	had	9	million	people.
To	give	you	an	idea	of	the	scale	of	a	Shenzhen	factory,	the	New	Balance	factory	there	employed	40,000

people	and	had	the	capacity	to	produce	over	a	million	shoes	a	month.	I	estimate	that	from	raw	fabric	to
finished	 shoe,	 the	 process	 took	 about	 50	 minutes,	 and	 every	 perfectly	 stitched	 bundle	 of	 plastic	 and
leather	was	sewn	by	hand	on	an	industrial	sewing	machine.	The	stations	are	designed	so	that	each	stage	in
the	process	takes	a	worker	about	30	seconds.
Of	course,	the	New	Balance	factory	is	dwarfed	by	Foxconn,	the	factory	where	iPods	and	iPhones	are

made.

You	know	you’re	big	when	you	have	your	own	exit	off	the	freeway.



Foxconn	 is	 a	huge	 facility,	 apparently	with	over	250,000	employees,	 and	 it	has	 its	own	special	 free
trade	status.	The	entire	facility	 is	walled	off,	and	I’ve	heard	you	need	to	show	your	passport	and	clear
customs	 to	 get	 into	 the	 facility.	That’s	 just	 short	 of	 the	 nuclear-powered	 robotic	 dogs	 from	 the	 nation-
corporation	franchulates	of	Neal	Stephenson’s	Snow	Crash.

Feeding	the	Factory
There’s	an	old	Chinese	saying:	min	yi	shi	wei	tian.	A	literal	translation	would	be	“people	consider	food
divine”	or	“for	people,	food	is	next	to	heaven.”	You	can	also	look	at	it	as	a	piece	of	governing	advice:
“the	government’s	mandate	[synonymous	with	heaven]	is	only	as	robust	as	the	food	on	people’s	plates.”
Or,	you	can	interpret	it	as	an	excuse	to	procrastinate:	“let’s	eat	first	[since	it	is	as	important	as	heaven].”
Whichever	way	you	cut	it,	I	think	the	saying	still	holds	in	China.	One	important	metric	for	gauging	how

well	 a	 factory	 treats	 its	 employees	 is	how	good	 the	 food	 is,	 as	 it’s	 common	 for	 factory	workers	 to	be
housed,	fed,	and	cared	for	on	site.
The	food	 is	actually	quite	good	at	some	factories.	For	example,	when	eating	with	 the	workers	at	 the

factory	that	manufactured	chumby	circuit	boards,	I	was	served	a	mix	of	steamed	fish,	broiled	pork,	egg
rolls,	clean	fried	vegetables,	and	some	pickled-vegetable-and-meat	combo.	Rice,	soup,	and	apples	were
also	provided	in	“help	yourself	”	quantities.

A	meal	from	the	factory	that	made	the	chumby	circuit	boards

Every	facility	I	visited	also	had	separate	utensils	and	plates	for	guests.	At	one	factory,	my	food	was
served	on	a	Styrofoam	plate	with	disposable	chopsticks,	while	a	factory	worker	I	ate	with	was	served
food	on	 a	 steel	 plate	with	 steel	 chopsticks.	 I	 hadn’t	 passed	 the	 factory’s	physical	 examination,	 so	 they
gave	 me	 disposable	 eating	 tools	 to	 prevent	 me	 from	 contaminating	 the	 factory	 with	 potential	 foreign
diseases.
Going	 back	 to	 scale,	 some	 factory	 food	 operations	 are	 impressively	 large.	 I	 heard	 that	 Foxconn’s



workers	consume	3,000	pigs	a	day.	From	pigs	to	iPhones,	it	all	happens	right	here	in	Shenzhen!

A	truckload	of	pigs,	exiting	the	highway	toward	Foxconn

Dedication	to	Quality
After	I	started	working	with	PCH	on	actually	manufacturing	the	chumby,	I	ran	into	a	situation	sometime
around	 June	2007	 that	 showed	me	 just	how	dedicated	 the	 factory	workers	 in	Shenzhen	were	 to	getting
their	jobs	right.
I	 had	 updated	 the	 chumby	motherboard	 to	 include	 an	 electret	microphone,	with	 an	 integral	 pre-amp

field-effect	transistor	(FET).	The	microphone	needed	to	be	inserted	in	the	correct	orientation	with	respect
to	the	circuit	so	the	FET	would	receive	a	proper	bias	current.
The	 first	 samples	 I	 got	 back	 from	PCH’s	 factory	 had	 the	microphone	 in	 backward,	 and	 I	 called	 the

factory	to	tell	them	to	reverse	its	polarity.	I	was	going	to	visit	the	factory	the	next	week,	and	I	wanted	to
see	 corrected	 samples.	 When	 I	 arrived	 and	 tested	 the	 microphone,	 I	 found	 to	 my	 dismay	 that	 the
microphones	were	still	not	working.
How	could	that	be?	There	are	only	two	ways	to	connect	a	microphone.
It	turns	out	there	were	two	operators	on	the	line	assembling	the	microphone.	One	soldered	the	red	and

black	wires	 to	 the	microphone.	The	 next	 soldered	 these	 red	 and	 black	wires	 to	 the	 circuit	 board.	The
operators	were	told	to	reverse	the	order,	and	both	of	them	dutifully	complied—giving	me	a	microphone
that	was	still	soldered	in	backward,	but	with	the	color	of	 the	wires	swapped.	(This	is	actually	a	pretty
typical	story	for	problems	in	China.)
The	 factory	 was	 scheduled	 to	 manufacture	 a	 first	 pilot	 run	 of	 450	 circuit	 boards	 the	 next	 day.

Everything	had	to	go	perfectly	for	Chumby’s	production	timeline	 to	stay	on	schedule.	We	had	soldering
stencils	 rebuilt	 (we	were	debugging	a	yield	 issue	with	 the	QFN	packaged	audio	CODEC	as	well)	and
ready	by	around	noon,	and	by	around	6	PM,	I	had	the	first	boards	in	my	hands	to	test.	I	ran	the	final	factory



test,	 and	 the	device	 failed	again—at	 the	microphone.	This	was	not	a	happy	moment	 for	anybody	 in	 the
factory,	as	the	factory	was	liable	for	any	manufacturing	defects.
I	donned	my	smock	and	marched	onto	the	line	to	start	debugging	the	problem.
For	 the	 rest	 of	 the	 night,	 I	 remained	 in	 the	 factory,	 and	 so	 did	 every	manager	 and	 tech	 involved	 in

manufacturing	 the	 chumby.	 The	 pressure	 was	 enormous:	 right	 next	 to	 us	 was	 a	 line	 churning	 out	 450
potentially	defective	circuit	boards,	and	I	was	unwilling	to	pull	the	plug	because	I	still	didn’t	know	what
the	root	cause	was,	and	we	had	to	stay	on	schedule.

I	was	debugging	circuits	at	3	AM	on	the	day	of	the	final	factory	test	for	the	chumby.

I	 literally	had	a	panel	of	 factory	workers	 standing	by	 the	entire	night	 to	bring	me	anything	 I	needed:
soldering	 irons,	 test	 equipment,	more	 boards,	 X-ray	machines,	microscopes.	 Remarkably,	 not	 a	 single
person	hesitated;	not	a	single	person	complained;	not	a	single	person	lost	focus	on	the	problem.	People
canceled	dinner	plans	with	friends	without	batting	an	eyelash.	Anyone	who	wasn’t	needed	in	a	particular
moment	was	busy	overseeing	other	aspects	of	the	project.	I	hadn’t	seen	blind	dedication	like	that	since	I
worked	with	the	autonomous	underwater	robotics	team	at	MIT.
And	this	went	on	until	3	AM.
Embarrassingly,	the	problem	wasn’t	PCH’s	fault	in	the	end.	The	problem	was	the	new	firmware	release

I	received	earlier	that	day	from	the	team	in	the	United	States.	It	had	a	bug	that	disabled	the	microphone
due	to	a	hack	that	was	accidentally	checked	into	the	build	tree.
Even	more	impressively,	when	PCH	found	out,	nobody	was	angry,	and	nobody	complained.	(Well,	the

saleswoman	gave	me	a	hard	time,	but	I	deserved	it;	she	had	been	kind	enough	to	accompany	me	on	the
production	 line	all	night	 long	and	be	my	 translator,	 since	my	Mandarin	wasn’t	up	 to	 snuff.)	They	were
simply	relieved	that	it	wasn’t	their	fault.
We	all	parted	ways,	and	I	came	back	into	the	factory	the	next	day	at	11	AM,	after	a	good	night’s	sleep.	I

saw	Christy,	 the	 factory’s	project	manager	 for	manufacturing	 the	chumby	boards.	 I	 asked	her	when	 she
came	into	work,	and	she	told	me	she	always	has	to	report	by	8	AM.	I	started	to	feel	really	bad;	Christy



stayed	up	late	because	of	our	bug,	and	she	came	in	early	while	I	slept	in.	I	asked	her	why	she	stayed	up	so
late	even	though	she	knew	she	had	to	report	to	work	at	8	AM.	She	could	have	gone	home,	and	we	could
have	continued	the	next	day.
She	just	smiled	and	said,	“It’s	my	job	to	make	sure	this	gets	done,	and	I	want	to	do	a	good	job.”

Building	Technology	Without	Using	It
Here’s	 another	 interesting	 story.	 On	 our	 way	 out	 of	 the	 factory	 floor	 one	 day,	 Xiao	 Li	 (the	 quality
assurance	manager	at	 the	 factory	where	we	made	 the	chumby)	asked	me,	“What	does	a	chumby	do?”	 I
didn’t	speak	Chinese	very	well,	and	she	didn’t	speak	English	very	well	either,	so	I	decided	to	start	with	a
few	basic	questions.
I	asked	her	if	she	knew	what	the	World	Wide	Web	was.	She	said	no.
I	asked	her	if	she	knew	what	the	internet	was.	She	said	no.	I	was	stunned,	and	I	didn’t	know	what	to

say.	How	do	you	describe	the	color	blue	to	the	blind?
Xiao	Li	was	an	expert	in	building	and	testing	computers.	On	some	projects,	she	probably	built	PCs	and

booted	Windows	XP	a	hundred	thousand	times	over	and	over	again.	(God	knows	I	heard	that	darn	startup
sound	a	zillion	times	during	the	microphone	incident,	as	there	was	a	bank	of	final	test	stations	for	ASUS
motherboards	right	next	to	me.)	But	she	didn’t	know	what	the	internet	was.
I	had	assumed	that	if	you	touched	a	computer,	you	were	also	blessed	by	the	bounties	of	the	internet.	All

at	 once,	 I	 felt	 like	 a	 spoiled	 snob	 and	 a	 pig	 for	 forgetting	 that	 Xiao	 Li	 probably	 couldn’t	 afford	 a
computer,	much	less	broadband	internet	access.	Given	the	opportunity,	she	was	certainly	smart	enough	to
learn	it	all,	but	she	was	too	busy	making	money	that	she	probably	sent	back	home	to	her	family.
In	the	end,	the	best	I	could	do	was	to	tell	Xiao	Li	that	the	chumby	was	a	device	for	playing	games.

Skilled	Workers
Shenzhen	workers	may	not	know	a	lot	about	everything	they	make,	but	on	top	of	their	dedication,	they	are
highly	skilled.	I	once	watched	a	guy	working	at	the	same	factory	that	sewed	the	chumby	bags,	and	I	swear,
he	could	sew	cosmetic	cases	 together	at	a	 rate	of	5	 seconds	per	bag.	And	he	wasn’t	even	100	percent
focused	on	his	task;	he	was	listening	to	his	iPod	while	he	sewed.
And	apparently,	he	wasn’t	their	fastest	employee!	They	had	someone	about	twice	as	fast,	and	he’d	been

with	 the	company	for	about	seven	years.	 I	went	 to	watch	 the	 faster	worker,	but	he	had	already	gone	 to
lunch	because	he’d	finished	everything;	there	were	two	enormous	bins	of	finished	cosmetic	cases	next	to
his	workstation.
On	a	similar	note,	I	was	amazed	to	learn	how	rubberized	tags	(the	ones	you	see	all	over	clothes)	are

made	 in	China.	 I	 always	 thought	 they	were	 pressed	 by	 a	machine,	 but	 I	was	wrong.	All	 those	words,
colors,	and	letters	are	drawn	by	hand.	Someone	just	places	a	logo	stencil	over	the	blank	tag,	paints	over
the	stencil	with	amazing	precision,	and	moves	on	to	the	next	tag	in	their	queue.	When	there	are	multiple
colors,	there’s	a	person	for	each	color,	to	keep	the	process	quick.
I	asked	PCH	if	they	had	any	mechanized	factories	for	stuff	like	that.	They	told	me	the	facilities	exist,	but

the	 minimum	 order	 quantity	 is	 enormous	 (hundreds	 of	 thousands,	 sometimes	 millions)	 because	 of	 the
extraordinarily	low	cost	of	the	product	and	the	relatively	high	cost	of	tooling	for	the	automated	process.
This	 is	 consistent	 with	 what	 I’ve	 heard	 about	 McDonald’s	 Happy	 Meal	 toys.	 They’re	 usually	 held
together	 with	 screws	 because	 it’s	 cheaper	 to	 pay	 someone	 to	 screw	 together	 a	 toy	 over	 the	 whole
production	run	than	it	is	to	make	a	steel	injection-molding	tool	with	the	tolerances	necessary	for	snapping



the	toys	together.*
There	was	a	similar	trade-off	inside	the	chumby	hardware.	There	were	four	connectors	on	the	internal

chumby	electronics.	Using	the	US-based	vendors	 that	I	could	source,	one	connector	had	a	best	price	of
about	$1	USD,	and	 the	other	 three	had	a	best	price	of	about	$0.40	each.	PCH’s	very	 talented	sourcing
expert	(her	reputation	was	feared	and	respected	by	every	vendor)	managed	to	find	me	connectors	that	cost
$0.10	and	$0.06,	respectively,	saving	almost	a	full	$2	in	cost.	There’s	one	catch:	the	connectors	lacked
the	sacrificial	plastic	pick-and-place	pad	that	would	enable	them	to	be	machine-assembled.
The	solution?	A	person,	of	course.

This	man	hand-placed	the	cheaper	connectors	on	every	chumby,	for	about	a	nickel	per	unit.	Thanks	to	him,	chumbys	were	$2
cheaper,	which	freed	up	more	money	for	us	consumers	to	spend	at	Starbucks.

The	Need	for	Craftspeople
I’d	 like	 to	 introduce	 you	 to	 a	 man	 I	 know	 simply	 as	 Master	 Chao.	 I	 met	 him	 during	 the	 chumby
manufacturing	process,	and	I’m	pretty	sure	that	in	your	lifetime,	you	have	used	or	seen	something	that	he
created.
When	 I	went	 to	 the	 sample	 room	for	 the	 factory	where	Master	Chao	worked,	 I	was	 shocked	at	how

many	items	on	their	shelf	I	had	purchased,	used,	or	seen	in	a	store	in	the	United	States	myself.	Top-tier
consumer	brands	manufacture	their	stuff	in	this	factory,	and	to	the	best	of	my	knowledge,	the	factory	had
just	one	master	pattern	maker	at	 the	 time:	Master	Chao.	He’s	had	a	hand	 in	creating	cosmetic	bags	 for
Braun,	accessory	cases	for	Microsoft,	and	the	medical	braces	for	major	brands	sold	in	drugstores,	among
many	other	products.



Master	Chao	is	the	person	in	the	foreground;	in	the	background	is	Joe	Perrott,	Chumby’s	excellent	project	engineer	from	PCH	China
Solutions.

Master	Chao	is	a	craftsman	in	the	traditional	sense.	It	used	to	be	that	the	finest	furniture	was	designed
and	built	only	with	the	intuition	and	skill	of	a	master	craftsman.	Now,	we	all	go	to	IKEA	and	get	CAD-
designed,	 supply-chain-managed,	 picture-book-assembly	 furniture	 kits—and	 despite	 all	 that,	 it	 doesn’t
look	 too	 shabby.	 As	 a	 result,	 the	 word	 craft	 has	 been	 relegated	 to	 describe	 some	 scrapbook	 or
needlepoint	kit	you	buy	at	Michaels	and	put	together	on	a	slow	weekend.	We’ve	forgotten	that	in	an	age
before	machines,	“craft”	was	the	only	way	anything	of	any	quality	was	built.
It	 turns	out,	however,	that	traditional	craft	still	matters,	because	CAD	tools	haven’t	brought	about	the

ability	to	simulate	our	mistakes	before	we	make	them.
The	 creation	 of	 a	 flat	 pattern	 for	 textile	 goods	 is	 a	 good	 example	 of	 a	 process	 that	 requires	 a

craftsman.	A	flat	pattern	is	the	set	of	2D	shapes	used	to	guide	the	cutting	of	fabrics.	These	shapes	are	cut,
folded,	and	sewn	into	a	complex	3D	shape.	Mapping	the	projection	of	an	arbitrary	3D	shape	onto	a	2D
surface	with	minimal	waste	area	between	the	pieces	is	hard	enough.	The	fact	that	the	material	stretches
and	distorts,	sometimes	in	different	directions,	and	that	sewing	requires	ample	tolerances	for	good	yields,
makes	pattern	creation	a	difficult	problem	to	automate.
The	chumby	cases	added	another	level	of	complexity,	because	they	involved	sewing	a	piece	of	leather

onto	 a	 soft	 plastic	 frame.	 In	 that	 situation,	 as	 you	 sew	 the	 leather	 on,	 the	 frame	 distorts	 slightly	 and
stretches	 the	 leather	out,	 creating	a	 sewing	bias	dependent	upon	 the	direction	and	 rate	of	 sewing.	This
force	is	captured	in	the	seams	and	contributes	to	the	final	shape	of	the	case.	I	challenge	someone	to	make
a	computer	simulation	 tool	 that	can	accurately	capture	 those	forces	and	predict	how	a	product	 like	 that
will	look	when	sewn	together.
Yet,	somehow,	Master	Chao’s	proficiency	in	the	art	of	pattern	making	enabled	him	to	very	quickly,	and

in	very	few	iterations,	create	and	tweak	a	pattern	that	compensated	for	all	of	those	forces.	His	results,	all



obtained	with	cardboard,	scissors,	and	pencils,	were	astoundingly	clever	and	insightful.	Be	grateful	for
his	old-world	skills;	they’ve	likely	played	a	role	in	the	production	of	something	you’ve	used	or	benefited
from.

There	wasn’t	a	single	computer	in	Master	Chao’s	office,	yet	the	products	I	saw	here	wrapped	around	a	wide	array	of	high-tech
devices.

Automation	for	Electronics	Assembly
Before	my	work	at	Chumby,	I	thought	almost	everything	was	made	by	a	machine.	Of	course,	the	tours	of
the	 textile	 factories	corrected	my	 impression	very	quickly;	yet	high-tech	stuff	 like	electronics	assembly
does	still	tend	to	be	heavily	automated,	even	in	China.	The	only	exceptions	I	saw	during	my	factory	tours
were,	 ironically,	 the	 lowest-cost	 products,	 such	 as	 toys.	These	 shops	were	 still	 dominated	 by	 lines	 of
workers,	stuffing	and	dip-soldering	circuit	boards	by	hand.
One	interesting	dichotomy	related	to	automation	is	the	bimodal	distribution	of	products	that	use	chip-

on-board	 (CoB)	 technology.	 CoB	 assembly	 directly	 bonds	 a	 silicon	 die	 to	 a	 PCB.	 Finished	 CoB
assemblies	have	the	distinctive	“glob	of	epoxy”	look	to	them,	as	opposed	to	the	finished	plastic-package
look.	High-end,	dense	electronics	assemblies	often	employ	CoB	technologies.	I’ve	done	a	couple	of	CoB
designs	for	some	10	Gb	optical	transceivers	in	my	time,	and	they	were	not	cheap.
At	the	same	time,	however,	almost	all	toys	use	CoB	technology,	to	eliminate	the	cost	of	the	IC	package!

It’s	 a	 testament	 to	 toy	 factories’	 tenacity	 about	 cost	 reduction	 that	 they	 would	 buy	 an	 automated	 wire
bonder	and	stick	it	next	to	lines	molding	doll	heads	and	sewing	up	stuffed	animals	because	having	an	in-
house	wire	bonder	saves	a	nickel.
A	typical	wire	bonder	bonds	a	wire	as	thin	as	a	human	hair	to	a	site	on	a	silicon	chip	not	much	larger

than	the	wire	diameter,	and	it	does	this	several	times	a	second.	Wire	bonders	are	very	fast,	precise	pieces
of	 equipment.	The	bonding	happens	 so	quickly	 that	 the	board	 seems	 to	 swivel	 smoothly	 around,	but	 in
fact,	 it	 stops	16	 times	as	 it	 spins	around,	and	at	 each	stop,	 a	wire	 is	bonded	between	 the	chip	and	 the
board.
Immediately	 before	 bonding,	 however,	 the	 chip	 is	 glued	 very	 carefully	 to	 the	 board	 by	 hand,	 and

immediately	after	bonding,	the	chip	is	encapsulated	by	a	human	operator	dispensing	epoxy	very	carefully
by	hand.	That	means	wire	bonder	is	the	only	automated	piece	of	equipment	on	assembly	lines	for	simple



toys.	Seeing	that	process	gave	me	a	new	appreciation	for	what	goes	into	those	talking	Barney	dolls	that
sell	for	$10	at	Target.
The	 chumby	manufacturing	 process	 used	 a	 bit	 of	 automation,	 too,	 courtesy	 of	 a	 chip	 shooter.	 Chip

shooters	 (as	 well	 as	 pick-and-place	 machines)	 place	 surface-mount	 components	 on	 PCBs	 so	 the
components	can	be	soldered.

The	chumby	PCB	assembly	factory	in	China	had	dozens	of	lines	filled	with	tried-and-true	Fuji	chip	shooters

It’s	 absolutely	 mesmerizing	 to	 see	 a	 chip	 shooter	 in	 action.	 The	 chip	 shooters	 at	 the	 chumby	 PCB
assembly	 factory	 were	 capable	 of	 placing	 10,000	 to	 20,000	 components	 per	 hour,	 per	 machine.	 This
means	 that	each	machine	could	put	down	3	 to	6	components	per	 second.	The	 robotic	assemblies	move
faster	 than	 the	 eye	 can	 see,	 and	 it	 all	 turns	 into	 an	 awe-inspiring	 blur.	 The	 chip	 shooter	 I	 saw	 at	 the
chumby	factory	worked	something	like	a	Gatling	gun:	the	chip	gun	itself	was	fixed,	and	the	board	danced
around	beneath	the	gun.	The	chip	shooter	actually	“looked	at”	each	component	and	rotated	it	to	the	correct
orientation	before	putting	it	down	on	the	board.



This	is	the	end	of	the	line	for	a	chumby	core	board	assembly!

The	factory	we	used	for	the	chumby’s	PCB	assembly	also	produced	name-brand	PC	motherboards	and
seemed	to	have	no	problem	pushing	out	well	over	10,000	such	complex	assemblies	each	day.	But	even
though	processes	like	component	placement	can	be	automated,	there	are	some	things	a	machine	just	can’t
do.

Precision,	Injection	Molding,	and	Patience
In	the	course	of	engineering	the	chumby,	I	also	had	to	learn	about	injection	molding,	because	the	circuit
board	had	to	go	inside	a	case	of	some	kind.	For	an	electronics	guy	with	little	mechanical	background,	this
was	no	small	hill	to	climb.	The	concept	seems	simple:	you	make	a	cavity	out	of	steel,	push	molten	plastic
into	it	at	high	pressure,	 let	 it	cool,	and	voilà—	a	finished	part	comes	out,	 just	 like	 the	Play-Doh	molds
from	elementary	school.
Oh,	if	only	the	process	were	that	simple.
Sure,	plastic	flows,	but	it’s	not	particularly	runny.	It	moves	slowly,	and	it	cools	as	it	flows.	The	color

of	the	plastic	is	impacted	by	the	temperature	changes,	and	when	using	an	improperly	designed	mold,	you
can	even	see	flow	lines	and	knit	lines	in	the	final	product.	There’s	also	a	whole	assortment	of	issues	with
how	the	finished	part	is	pulled	from	the	mold,	how	the	mold	is	made	and	finished,	where	the	gates	and
runners	are	for	getting	the	plastic	inside	the	mold,	and	so	on.
Fortunately,	PCH	had	experts	in	China	who	knew	all	about	this,	and	I	got	to	learn	mostly	by	watching.
If	 I	were	 to	summarize	 injection	molding	with	a	single	adjective,	 it	would	be	precision.	When	done

right,	 the	 molds	 are	 precise	 to	 better	 than	 hair-thin	 tolerances,	 yet	 they	 are	 made	 out	 of	 hard	 steel.
Achieving	this	level	of	precision	out	of	such	a	durable	material	is	no	mean	feat,	and	it’s	impressive	to	see
a	machine	cut	a	mold	out	of	raw	steel.
The	machine	that	cut	the	molds	for	the	chumby	case	had	a	moving	stage	that	rapidly	pushed	around	a

block	of	steel	probably	weighing	several	hundred	pounds;	it	milled	away	at	the	metal	in	quite	a	hurry!



The	mold-cutting	machine	used	in	manufacturing	chumbys.
Compare	it	to	the	people	standing	next	to	it	for	scale.

But	machining	is	only	the	roughest	step	in	mold	making.	After	the	rough	shape	is	cut	out,	the	mold	is	put
into	an	electrical	discharge	machine	(EDM),	where	a	burst	of	electrons	knocks	microscopic	chunks	off
the	steel	surface.	This	 is	a	 terrifically	 tedious	process:	 I’ve	watched	many	EDMs	do	their	 job,	and	it’s
like	 watching	 paint	 dry.	 EDMs	 are,	 however,	 wicked	 precise,	 and	 they	 yield	 spectacular,	 repeatable
results.
From	 a	 project	 management	 standpoint,	 the	 phenomenally	 long	 lead	 times	 of	 production-quality

injection-molded	plastics	was	the	biggest	eye	opener	for	me.	All	told,	the	chumby	mold	transformed	from
a	block	of	raw	steel	into	a	first-shot	tool	in	four	to	six	weeks,	and	I	had	to	go	to	China	and	see	the	tooling
shop	do	its	work	before	I	was	convinced	there	wasn’t	some	gross	amount	of	schedule	padding.
Even	more	harrowing	 from	 the	 risk	management	 standpoint	was	 the	 lack	of	good	simulation	 tools	 to

predict	how	plastics	would	 flow	 through	a	mold.	 If	we	saw	visible	blemishes	 like	 flow	 lines	and	knit
lines,	we	had	to	wait	four	to	six	weeks	to	see	if	the	new	mold	was	better.	Ouch!
Fortunately,	the	toolmakers	Chumby	used	in	China	anticipated	these	issues,	and	they	made	the	tools	to

err	on	 the	side	of	excess	steel,	because	 removing	material	 to	 fix	a	problem	is	much	easier	 than	adding
material.	It’s	like	the	old	carpenter’s	saying:	measure	twice,	cut	once,	and	if	you	have	to	cut	wrong,	cut
long.
The	mold	that	was	used	to	create	the	chumby’s	back	bezel	was	extra	complex,	because	it	 involved	a

process	called	over-molding.	 If	you	happen	 to	own	a	chumby	classic,	 look	at	 the	back	side.	There’s	a
rubbery	TPE	surrounding	the	hard	ABS	bezel.	Many	people	assumed	this	was	a	glued-on	rubber	band.	In
fact,	the	TPE	is	molded	in	place	on	the	back	piece.	This	requires	a	two-shot	mold.



The	final	mold	for	the	chumby’s	back	bezel,	inside	an	injection-molding	machine

There	were	actually	two	molds,	and	one	side	of	the	mold	spun	around	so	that	the	alternating	material
systems	could	be	molded	at	the	right	points	in	the	process.
A	lot	of	hard	work	goes	into	the	humble	plastic	parts	you	see	every	day,	and	that’s	all	part	of	creating

quality	 products.	But	 at	 the	 same	 time,	 there’s	 also	 a	 very	 real	 need	 to	meet	 the	 expectation	 of	 cheap
prices.

The	Challenge	of	Quality
Clearly,	 with	 the	 expectation	 of	 low	 cost	 of	 China-made	 goods	 comes	 a	 great	 challenge	 in	 quality
management.	Look	at	the	media	coverage	on	topics	like	lead	paint	in	toys,	industrial	chemicals	in	food,
and	other	items	made	in	China,	and	you	can	see	some	of	the	bad	decisions	made	to	keep	prices	down.
When	considering	cases	like	that,	I	think	it’s	important	to	apply	Hanlon’s	razor.	To	paraphrase,	“Never

attribute	 to	malice	 that	which	 can	 be	 adequately	 explained	 by	 ignorance.”	The	Brits	 also	 have	 a	 nice,
pithy	version	of	the	aphorism:	“Cock-up	before	conspiracy.”
Some	manufacturers	are	indeed	out	there	to	make	a	buck	at	any	cost,	but	I	think	the	majority	of	mistakes

are	 made	 out	 of	 ignorance.	 Most	 of	 the	 rank-and-file	 in	 factories	 don’t	 know	 what	 their	 product	 is
ultimately	used	for,	and	under	intense	pressure	to	reduce	costs,	they	make	those	bad	decisions.	Factories
also	have	to	deal	with	products	that	are	woefully	underspecified,	as	well	as	customers	who	overwhelm
them	with	all	kinds	of	frivolous	requirements—and	most	customers	don’t	follow	up	in	either	case.	In	the
end,	the	factories	play	a	game	of	“ship	and	find	out,”	and	if	the	customer	doesn’t	notice	a	missing	spec,
then	the	spec	must	not	have	been	important.	It’s	not	a	great	game,	and	it	means	that	customers	need	to	be
ever	vigilant	about	audits	and	keeping	the	quality	standard	up.

THE	DISCONNECT	BETWEEN	AMERICA	AND	CHINA



One	fundamental	problem	behind	this	game	is	that	many	Chinese	residents	do	not	understand	or	appreciate
basic	things	that	we	take	for	granted	in	America,	and	vice	versa.	Many	Chinese	factory	workers	are	well
educated,	but	 they	didn’t	grow	up	 in	a	“gadget	culture”	 like	we	have	 in	 the	United	States,	so	you	can’t
assume	anything	about	their	abilities	to	subjectively	interpret	specifications	for	a	product.
For	 example,	 you	 can	 tell	 a	US	 engineer,	 “I’d	 like	 a	 button	 on	 that	 panel,”	 and	 you’ll	 probably	 get

something	 pretty	 close	 to	what	 you	 expect	 in	 terms	 of	 look	 and	 feel,	 since	 you	 and	 the	 engineer	 share
common	 experiences	 and	 expectations	 for	 a	 button	 on	 a	 panel.	 If	 you	 did	 the	 same	 in	 China,	 you’d
probably	get	something	that	looks	a	little	awkward	and	has	a	clunky	feel	but	is	darn	cheap	and	really	easy
to	 build	 and	 test.	 While	 the	 latter	 properties	 are	 desirable	 for	 practical	 reasons,	 American	 gadget
connoisseurs	just	won’t	buy	something	that’s	aesthetically	awkward	or	feels	clunky.
Yet,	ultimately,	it’s	those	consumers	who	want—nay,	demand—low-priced	goods,	and	that	need	drives

the	 decision	 to	manufacture	 in	China.	The	 trouble	 is	 that	 aside	 from	 the	 label	 on	 the	 product	 that	 says
“Made	 in	China”	or	“Made	 in	 the	USA,”	consumers	 really	don’t	care	about	 the	manufacturing	process.
What	markup	would	you	pay	for	a	gadget	that	said	“Made	in	the	USA”	on	it?	The	cost	premium	for	US
labor	is	10	times	what	it	is	in	China.	Think	about	it:	can	the	average	US	factory	worker	be	10	times	more
productive	than	the	average	Chinese	factory	worker?	It’s	a	hard	multiplier	to	play	against.
I’m	not	saying	there’s	no	value	in	domestic	vendors:	it	would	be	a	lot	less	effort	and	less	risk	for	me	to

get	stuff	made	in	the	United	States.	In	fact,	most	early	prototypes	are	made	there	because	of	the	enormous
value	that	 the	domestic	vendors	can	add.	However,	 the	pricing	just	doesn’t	work	out	for	a	mass-market
product.	Nobody	would	buy	it,	because	its	price	wouldn’t	justify	its	feature	set.	One	could	even	accuse
me	 of	 being	 lazy	 if	 I	 were	 to	 just	 stick	 with	 a	 domestic	 vendor	 and	 pass	 the	 higher	 cost	 on	 to	 the
customers.

BEING	INVOLVED	IN	THE	MANUFACTURING	PROCESS
In	the	end,	manufacturing	in	China	is	the	best	way	to	keep	costs	down,	and	to	maintain	quality,	there	is	no
substitute	for	going	to	China	and	getting	directly	involved.	Almost	every	factory	will	“clean	up”	the	day
you	come	to	visit,	but	with	a	sharp	eye	and	the	right	questions,	you	can	see	through	any	quick	veneers	put
in	place.
When	I	evaluated	factories	for	Chumby,	I	always	visited	the	quality	control	(QC)	room.	I	expected	to

see	 rows	 of	well-maintained	 and	well-worn	 binders	with	 design	 documentation	 and	QC	 standards,	 as
well	as	golden	samples,	which	are	pre-production	samples	of	a	product.	I’d	demand	to	see	the	contents	of
a	random	binder	and	the	golden	sample	associated	with	it,	and	verify	that	the	employees	knew	what	was
going	on	in	the	binder.	(Some	factories	do	fill	product	binders	with	random	data.)	I	also	considered	hard
investments	 in	 equipment	 a	good	 sign:	 the	best	manufacturers	 I	 visited	 all	 had	 a	 couple	of	 rooms	with
sophisticated	 equipment	 for	 thermal,	mechanical,	 and	 electrical	 limit	 testing,	 and	 of	 course,	 operators
were	in	the	room	actually	using	the	equipment.	(I	could	definitely	imagine	a	Chinese	manufacturer	buying
a	room	of	equipment	just	for	show.)
But	 I	 suspect	 that	 toy	 manufacturers	 and	 food	 manufacturers	 don’t	 fly	 technicians	 like	 me	 out	 to

factories	in	China	to	oversee	things	on	a	regular	basis.	Contrast	that	with	Apple,	which	regularly	sends	a
cadre	 of	 engineers	 to	 work	 intense	 two-week	 (or	 longer)	 shifts	 in	 the	 factories	 (usually	 Foxconn,
affectionately	nicknamed	“Mordor”	by	some	at	Apple).	As	a	result,	I	bumped	into	many	Apple	engineers
at	the	expat	bars	in	Shenzhen.
The	 fact	 that	 PCH	China	 Solutions	 offered	Western-style	management	 and	 quality	 control	 on	 site	 in

China	was	 important	 for	 us	 at	Chumby.	 If	we	had	 a	 problem	with	 a	 vendor,	PCH	 sent	 someone	 to	 the
factory	right	away	to	see	what	was	going	on—no	phone	tag,	no	FedEx	filibuster.	And	factory	owners	in



China	tend	to	be	very	responsive	when	you	show	up	at	their	doorstep.
Thus,	Chumby’s	approach	to	the	quality	conundrum	was	holistic.	We	started	by	having	an	engineer	(me)

at	 the	factory	almost	on	day	one	to	survey	the	situation.	It’s	 important	 to	learn	what	 the	factory	can	and
cannot	do.	 I	 looked	at	what	was	being	built	on	 the	 line	and	what	 techniques	were	used.	Then,	when	 it
came	time	to	engineer	the	product,	I	tried	to	use	the	processes	and	techniques	that	were	most	comfortable
for	the	factory.	When	I	had	to	do	something	new	(and	any	good,	innovative	product	will	need	to),	I	picked
my	battles	and	focused	on	them,	because	anything	new	would	be	a	multiweek	challenge	to	get	right.	This
strategy	applies	to	even	the	smallest	details:	if	the	factory	shrink-wraps	goods	in	plastic,	and	you	want	to
wrap	 your	 product	 in	 paper,	 then	 plan	 to	 focus	 heavily	 on	 developing	 the	 paper-wrapping	 process,
because	it’s	quite	possible	that	none	of	the	line	workers	at	your	factory	of	choice	have	even	seen	a	paper-
wrapped	product	before.
Of	course,	when	developing	a	new	process	for	the	chumby,	I	preferred	to	be	in	the	factory,	and	I	still

do.	There’s	nothing	like	standing	on	the	line	and	showing	the	workers	who	will	be	building	your	device
how	it	should	be	made.	For	example,	I	personally	trained	the	chumby	assembly-line	workers	on	how	to
attach	a	piece	of	copper	tape	to	the	LCD	assembly	to	form	a	proper	EMI	shield.
It’s	difficult	 to	describe	 the	 intricacies	of	how	to	fold	 tape	across	a	complex	piece	of	sheet	metal	 to

ensure	it	makes	good	electrical	contact	to	the	grounding	surfaces	without	risking	a	short	circuit	to	other
components.	Subtleties	like	the	fact	that	the	adhesive	on	one	side	is	a	poor	insulator	also	require	a	basic
understanding	 of	 physics	 that	 line	 workers	 simply	 don’t	 have.	 Worse	 yet,	 explaining	 these	 concepts
requires	technical	words	that	your	translator	might	not	even	know.
In	my	case,	even	a	good	3D	drawing	or	photograph	of	the	finished	assembly	couldn’t	have	gotten	the

whole	 concept	 across,	 because	 the	 stiffness	 of	 the	 tape	 required	 a	 particular	 motion	 to	 fold	 without
tearing.	Describing	the	process	remotely,	approving	samples	via	photographs,	and	ultimately	approving	a
unit	delivered	via	FedEx	might	have	taken	a	couple	of	weeks,	but	standing	in	front	of	a	group	of	workers
and	demonstrating	the	process	firsthand	took	only	a	few	minutes.	And	despite	the	language	barrier,	I	could
tell	 from	 their	 facial	 expressions	 and	 body	 language	 whether	 they	 understood	 the	 importance	 of	 a
particular	step.	Given	those	cues,	I	immediately	reviewed	processes	that	were	ambiguous	or	difficult	to
master.
Typically,	when	you	can	demonstrate	a	process	at	this	level	of	detail	and	intimacy,	the	workers	will	get

it	right	within	hours,	instead	of	weeks.	This	is	part	of	the	reason	I	spent	so	much	time	in	China	during	the
development	of	the	chumby’s	manufacturing	process.



Everyone	was	involved	in	the	chumby	quality	process.	This	photo	shows	CEO	Steve	Tomlin	(far	left)	and	Artistic	Director	Susan	Kare
(middle)	at	the	sewing	factory,	working	out	the	details	of	logo	silkscreening.

HOMEGROWN	REMOTE	TESTING
However,	 it	wasn’t	always	possible	for	Chumby	to	send	someone	 to	China.	 I,	 for	one,	preferred	not	 to
live	in	China,	so	at	Chumby,	we	relied	a	lot	on	PCH	to	watch	the	quality	and	make	sure	things	went	well,
and	they	did	a	superb	job.
Often,	working	 long	 distance	meant	 that	 new	 processes	 took	weeks	 to	 phase	 in	 if	 I	wasn’t	 there	 to

tweak	and	approve	on	the	spot,	because	every	single	tweak	involved	sending	something	almost	round-trip
through	FedEx.	After	going	through	that	process	a	few	times,	I	learned	to	allocate	two	weeks	per	tweak,
as	opposed	to	the	few	hours	it	took	when	I	was	on	the	factory	floor.
Those	sets	of	two	weeks	added	up	fast.
Given	 the	 difficulty	 of	 overseeing	 operations	 in	 China	 from	 the	 United	 States,	 remote	 electronic

monitoring	of	 the	products’	 test	 results	was	essential.	For	 the	chumby,	 I	developed	a	 set	of	 testers	 that
programmed,	personalized,	booted,	verified,	and	measured	every	device	off	the	assembly	line.	All	data
from	 the	 testing	process	was	 recorded	 to	a	 log,	 and	at	 the	end	of	 the	day,	 the	 log	was	 transferred	 to	a
server	in	the	United	States.
This	data	let	me	debug	a	plethora	of	problems	on	the	floor.	I	could	tell	 if	an	operator	at	a	particular

tester	 was	 having	 trouble	 with	 their	 barcode	 scanner.	 I	 also	 immediately	 knew	 if	 there	 was	 a	 yield
problem	that	day,	or	if	the	throughput	was	slower	than	expected.	It	was	very	powerful	to	have	this	home-
grown	audit	 capability	 in	place,	 because	 the	 factory	knew	 I	was	watching	 them.	 In	 fact,	 having	 such	a
capability	 in	place	can	make	relationships	with	 the	 factory	 run	better:	 the	 factory	eats	 the	cost	of	yield
problems	(at	least	initially),	so	they	appreciate	it	when	the	design	engineer	can	offer	expedient	advice	and
help	before	any	problems	get	out	of	hand.



A	pair	of	chumby	test	stations	in	the	factory	in	China.	There’s	quite	a	story	about	the	trouble	we	went	through	getting	those	laptops
into	China.

FURTHER	FACTORY	TESTING
Once	you’ve	finished	setting	up	the	testing	process,	it	can	run	autonomously	at	the	factory.	For	example,	at
the	chumby’s	PCB	factory,	the	first	pass	of	final	inspection	was	done	manually—	one	person	went	over
every	 circuit	 board,	 and	 then	with	 the	 help	 of	 a	 cardboard	 template,	 another	 operator	 ensured	 that	 no
components	were	missing.	The	units	then	went	on	to	automated	testing.
Periodically,	both	PCH	and	 the	 factory	also	performed	Restriction	of	Hazardous	Substances	 (RoHS)

testing	 on	 chumby	 units	 to	 ensure	 that	 there	 was	 no	 contamination	 with	 a	 specified	 set	 of	 potentially
harmful	chemicals,	including	lead.	RoHS	is	a	hazardous	chemical	safety	standard	required	in	Europe	but,
ironically,	 not	 in	 the	 United	 States.	 Factories	 routinely	 do	 this	 test	 on	 all	 products,	 even	 those	 only
shipping	 to	 the	 United	 States,	 because	 latent	 contamination	 on	 the	 line	 could	 prevent	 other	 products
manufactured	on	the	same	line	from	shipping	to	Europe.
Even	 after	 all	 that	 testing,	 back	 in	 the	 United	 States,	 Chumby	 continued	 to	 sample	 units	 for	 QC

purposes.	To	 this	end,	we	regularly	ordered,	characterized,	and	dissected	devices	 to	ensure	 that	all	 the
operating	procedures	were	being	followed.

MISTAKES	STILL	HAPPEN
Despite	such	safeguards,	some	mistakes	will	be	made	on	any	product.	Every	product	goes	through	a	phase
where	bugs	that	weren’t	caught	by	internal	QA	get	pounded	out.	You	have	to	rely	on	a	top-notch	customer
service	and	support	 team,	and	you	have	to	plan	on	being	very	agile	and	innovative	during	this	phase	to
solve	the	problems	and	prevent	them	from	ever	happening	again.
When	I	was	at	Chumby,	if	I	heard	about	a	unit	in	the	wild	with	hardware	problems,	I	actually	called	the

customer	who	reported	it.	I	wanted	to	know	what	went	wrong	so	I	could	fix	the	problem	and	make	sure	it
never	happened	again,	to	anyone!



My	biggest	hope	with	the	chumby,	however,	was	to	avoid	what	happened	to	Microsoft	and	the	Xbox
360’s	“red	ring	of	death,”	where	consoles	would	experience	a	major	hardware	failure,	stop	working,	and
just	display	a	red	light	around	the	power	button,	causing	huge	frustration	for	players.	This	problem	only
exhibited	 itself	 after	 the	 Xbox	 360	 had	 been	 out	 for	 years,	 after	 millions	 of	 units	 had	 been	 shipped.
Situations	like	the	red	ring	of	death	are	a	product	engineer’s	worst	nightmare.
So	you	see,	getting	the	chumby	(or	any	product)	to	the	point	where	it	can	ship	to	consumers	is	just	the

beginning.	The	real	challenge	starts	after.
If	you	ever	find	yourself	at	this	point	in	the	manufacturing	process,	I	wish	you	luck!

CLOSING	THOUGHTS
The	 stories	 told	 here	 share	 some	 of	 my	 adventures—and	 failures—learning	 how	 to	 build	 products	 in
volume.	 The	 next	 two	 chapters	 are	more	 reflective	 and	 less	 narrative.	 The	 next	 chapter	 takes	 us	 on	 a
virtual	tour	of	three	factories	to	see	what	we	can	learn	from	them,	and	Chapter	3	attempts	to	summarize	all
the	lessons	I’ve	learned	about	manufacturing	so	far.



2.	inside	three	very	different	factories
It’s	hard	to	understand	how	a	computer	works	without	opening	it	and	looking	around	inside.	Likewise,	it’s
hard	to	understand	how	products	are	made	without	going	into	a	factory	and	touring	the	line.	Although	we
often	think	of	manufacturing	as	the	necessary	but	boring	step	after	innovation,	in	reality,	the	two	are	tightly
coupled.	An	inventor	thinks	about	a	product	once;	a	factory	thinks	about	the	same	product	day	in	and	day
out,	sometimes	for	years	on	end.
The	 importance	 of	 factories	 as	 an	 innovation	 node	 is	 only	 growing	 in	 today’s	 connected	 global

economy.	The	 reality	 is	 that	 there	 is	no	“Apple	 factory”	or	 “Nike	 factory.”	Rather,	 there	 is	 a	 series	of
facilities	that	are	domain	experts	in	processes	(such	as	PCB	fabrication	or	zipper	manufacturing)	that	are
curated	by	the	familiar	brands.	Thus,	it’s	not	uncommon	to	see	two	competitors’	products	running	side	by
side	down	similar	lines	in	a	single	facility.	This	concentration	of	domain-specific	expertise	means	that	the
best	place	 to	 learn	how	 to	make	an	aspect	of	your	product	better	 is	often	 the	 same	place	 that	makes	a
similar	aspect	in	everybody	else’s	products.
Some	of	the	greatest	insights	I’ve	had	into	improving	a	product	have	come	from	observing	technicians

at	work	on	a	line	and	seeing	the	clever	optimization	tricks	they’ve	developed	after	doing	the	same	thing
over	and	over	for	so	long.
This	chapter	takes	you	on	a	tour	of	three	factories	that	make	everyday	things:	PCBs	(in	particular,	the

ones	used	in	the	Arduino),	USB	memory	sticks,	and	zippers.	By	peeling	back	the	curtain,	you’ll	get	some
insight	 into	 the	 design	 trade-offs	 behind	 the	 products,	 and	 how	 they	 can	 be	 made	 better.	 In	 the	 PCB
factory,	 I	 discovered	 the	 secret	 of	 how	 they	 print	 a	 high-resolution	map	 of	 Italy	 on	 the	 back	 of	 every
Arduino;	 in	 the	 USB	 memory	 stick	 factory,	 I	 witnessed	 a	 strange	 marriage	 of	 high-	 and	 low-tech
manufacturing	 techniques;	and	 in	 the	zipper	 factory,	 I	 found	out	how	even	 the	humblest	of	products	can
bear	valuable	lessons	for	product	designers.

WHERE	ARDUINOS	ARE	BORN
It	was	July	2012,	and	it	had	been	about	six	months	since	my	previous	startup,	Chumby,	ceased	operations.
I	had	decided	to	take	a	year	off	to	figure	things	out	and	cross	a	few	items	off	the	bucket	list,	one	of	which
was	a	trip	to	Italy.	My	girlfriend	had	the	bright	idea	of	reaching	out	to	the	Arduino	team	to	see	if	I	could
visit	their	factory	in	Scarmagno	(this	was	years	before	the	Arduino/Genuino	split)	as	part	of	our	itinerary.
Members	 of	Officine	Arduino	 (particularly	managing	 director	Davide	Gomba)	 kindly	 took	 time	 out	 of
their	 busy	 schedules	 to	 show	me	 around	 their	 factory.	 They	 patiently	 waited	 as	 I	 expressed	my	 inner
shutterbug	and	general	love	for	all	things	hardware,	and	I	definitely	came	away	with	a	lot	of	great	photos.
A	small	town	in	northern	Italy,	Scarmagno	is	about	an	hour	and	a	half	west	of	Milan	by	car,	near	the

Olivetti	 factories	 on	 the	 outskirts	 of	Torino.	The	 town	 handles	 all	 the	 circuit	 board	 fabrication,	 board
stuffing,	and	distribution	for	officially	branded	Arduinos.	I	was	really	excited	to	see	the	factories,	and	the
highlight	of	my	tour	was	seeing	System	Elettronica,	the	PCB	factory	that	made	the	Arduino	PCBs.
One	charming	aspect	of	System	Elettronica	is	that	the	owner	painted	the	factory	green,	white,	and	red	to

match	 the	colors	of	 the	 Italian	 flag.	On	 the	 factory	 floor,	 I	 saw	some	of	 that	 spirit	 in	 the	 red	and	green
posts	that	ran	the	length	of	the	facility.



A	wide	view	of	the	factory	floor	at	System	Electtronica	in	August	2012

But	 I	 soon	 stopped	paying	much	attention	 to	 the	décor,	 as	 that	 factory	 floor	was	also	where	 I	got	 to
follow	a	 fresh	batch	of	Arduino	Leonardos	 through	 the	entire	manufacturing	process.	Here’s	how	those
boards	were	made.

Starting	with	a	Sheet	of	Copper
Arduino	Leonardo	boards	start	as	huge	sheets	of	virgin	copper-clad	FR-4,	a	material	made	of	fiberglass
and	epoxy	that	most	PCBs	use	for	a	substrate,	an	insulating	and	structural	layer	between	the	copper	layers.
The	sheets	were	1.6mm	thick	(the	most	common	thickness	for	a	PCB,	which	corresponds	to	1/16	inch),
probably	a	meter	wide,	and	about	a	meter	and	a	half	long.

A	stack	of	copper	sheets	waiting	to	become	Arduino	boards

The	 first	 step	 in	processing	PCBs	 is	 to	drill	 all	 the	holes—	pads,	vias	 (the	small	holes	 that	connect
different	layers	of	the	PCB),	mounting	holes,	plated	slots,	and	so	forth.	When	a	PCB	is	manufactured,	the



holes	are	drilled	before	patterning,	 the	stage	where	a	masking	chemical	is	photographically	defined	on
the	sheet	everywhere	the	final	boards	need	to	have	copper,	including	locations	of	traces,	solder	pads,	and
so	on.	Some	of	 the	drilled	holes	are	used	to	align	the	masks	 that	pattern	 the	traces	 later	 in	 the	process.
Drilling	 is	 also	 a	 dirty	 and	 messy	 process	 that	 could	 damage	 circuit	 patterns	 if	 they	 were	 in	 place
beforehand.

The	CNC	drilling	head	used	to	drill	the	Arduino	boards

The	blank	 copper	 panels	were	 stacked	 three	 high,	 and	 a	CNC	drill	 took	 a	 single	 pass	 for	 all	 three,
allowing	it	to	drill	three	substrates	at	a	time.

The	drill	rack	used	by	the	CNC	drilling	machine.	If	you’ve	ever	had	to	create	NC-drill	files,	this	is	that	"drill	rack"

Every	hole	in	the	Arduino	board	was	mechanically	drilled,	including	vias.	The	same	is	true	of	any	PCB
with	through-holes,	which	is	why	the	via	count	is	such	an	important	parameter	in	calculating	the	cost	of	a



PCB.
Note	that	the	particular	drill	I	saw	at	System	Elettronica	was	relatively	small.	I’ve	seen	massive	drill

decks	 in	China	 that	gang	 (mechanically	attach)	 four	or	 six	drill	heads	 together	 in	a	 truck-size	machine,
processing	dozens	of	panels	at	the	same	time	as	opposed	to	the	three	panels	this	drill	could	handle.	The
reasoning	behind	this	approach	is	that	the	precise,	robotic	positioning	assembly	is	the	expensive	part	of	a
drilling	machine.	The	drill	itself	is	cheap—just	a	spinning	motor	to	drive	the	bit.	So,	one	way	to	increase
throughput	 is	 to	 gang	 several	 drills	 together	 on	 one	 large	 assembly	 and	 move	 them	 in	 concert.	 Each
individual	drill	still	goes	through	its	own	stack	of	panels,	but	for	the	price	of	one	X-Y	positioner,	you	get
four	to	six	times	the	throughput	as	the	drill	I	saw	on	my	trip	to	Italy.	Those	bigger	machines	drill	so	fast
and	hard	that	the	ground	shakes	with	every	via	drilled,	even	from	several	meters	away.
Once	the	panels	are	drilled,	cleaned,	and	deburred,	they	are	ready	for	the	next	step	in	the	manufacturing

process.

A	stack	of	finished,	drilled	panels	of	Arduino	Leonardo	boards

Applying	the	PCB	Pattern	to	the	Copper
The	next	step	is	to	apply	a	photoresist,	a	light-sensitive	chemical,	to	the	panel	and	expose	a	pattern.	At
System	Elettronica,	 this	 process	 used	 a	 light	 box	 and	 a	 high-contrast	 film.	 I’ve	 also	 seen	 direct	 laser
imaging—in	the	form	of	a	raster-scanning	laser—used	to	apply	a	pattern	to	a	PCB.	Direct	laser	scanners
are	more	common	in	quick-turn	prototype	houses,	and	film	imaging	is	more	common	in	mass-production
houses.



Before	and	after:	the	right	panel	shows	photoresist	prior	to	exposure,	and	the	left	panel	after.

A	PCB	being	mounted	into	a	light	box	that	will	expose	its	unprocessed	backside	film

After	the	pattern	is	applied,	each	panel	of	boards	is	sent	into	a	machine	to	be	developed.	In	this	case,
the	same	machine	is	used	to	develop	both	the	photoresist	and	the	soldermask.



The	machine	that	develops	the	photoresist

This	photo	of	a	panel	with	developed	photoresist	is	one	of	my	favorite	photos	from	the	System	Elettronica	factory.	Also,	something
about	“Codice:	Leonardo”	just	sounds	cool.

Etching	the	PCBs
After	photo	processing	and	development,	 the	panels	go	through	a	series	of	chemical	baths	that	etch	and
plate	the	copper.
The	panels	are	swished	gently	back	and	forth	in	a	chemical	bath	to	expedite	the	etching	process.	The

movement	also	circulates	used	etchant	away	from	the	panels,	ensuring	a	more	uniform	etch	rate	regardless
of	 the	 amount	 of	 copper	 to	 be	 removed.	 Moving	 the	 panels	 through	 these	 chemical	 baths	 was	 fully
automated	 at	 Scarmagno.	Automation	 is	 necessary	 because	 the	 panels	must	 be	 treated	with	 a	 series	 of
caustic	chemical	baths	with	minimal	exposure	to	oxygen.	Oxygen	can	spoil	a	panel	in	a	matter	of	seconds,
so	the	transfer	between	the	baths	needs	to	be	fast,	and	the	amount	of	time	a	panel	spends	in	a	bath	must	be
consistent.	The	baths	also	contain	chemicals	harmful	to	humans,	so	it’s	much	safer	for	a	robot	to	do	this
work.



A	machine	that	moves	panels	around	in	etchant

Once	the	panels	are	processed	in	this	series	of	solutions,	a	dull,	white	plating	(which	I’m	guessing	is
nickel	 or	 tin)	 develops	 on	 all	 the	 surfaces	 of	 the	 panel	 not	 treated	 with	 photoresist,	 including	 the
previously	unplated	through-hole	vias	and	pads.

Panels	of	Arduino	Leonardo	boards	after	going	through	a	series	of	chemical	baths

At	this	point,	the	resist	and	unplated	copper	are	stripped	off,	leaving	just	the	raw	FR-4	and	the	plated
copper.	The	final	step	of	processing	produces	a	bright	copper	finish.



A	panel	etched	of	unwanted	copper

PCB	panels	with	bright,	shiny	copper.	This	photo	doesn’t	show	an	Arduino	panel,	as	those	weren’t	going	through	the	machine	when	I
photographed	it.

Applying	Soldermask	and	Silkscreen
Once	the	copper	is	polished,	the	panels	are	ready	for	the	soldermask	(a	protective,	lacquer-like	layer	that
insulates	 the	 copper	 traces	below	and	prevents	 solder	 bridging	 above)	 and	 silkscreen	 (the	 ink	used	 to
label	components,	draw	logos,	and	so	on).	These	are	applied	in	a	process	very	similar	to	that	of	the	trace
patterns,	using	a	photomask	and	developer/stripper	machine.



A	panel	of	Arduino	boards	with	both	soldermask	and	silkscreen	developed

In	 the	 case	 of	 Arduinos,	 the	 silkscreen	 is	 actually	 a	 second	 layer	 of	 soldermask.	 A	 very	 specific
formulation	of	 dry-film	white	 soldermask	was	procured	 for	 the	Arduino	 team	 to	 create	 a	 sharp,	 good-
looking	layer	that	resolved	the	intricate	artwork	you	see	on	Arduino	boards—particularly	the	map	of	Italy
on	the	backside.	Other	techniques	I’ve	seen	for	producing	silkscreen	layers	include	high-resolution	inkjet
printing,	which	is	better	suited	for	quick-turn	board	houses,	and	of	course,	 the	namesake	squeegee-and-
paint	silkscreen	process.

Testing	and	Finishing	the	Boards
After	all	that	chemical	processing,	the	panels	receive	a	protective	plating	of	solder	from	a	hot-air	solder
leveling	machine.
With	the	solder	plating	in	place,	every	board	is	100	percent	tested.	Every	trace	has	its	continuity	and

resistance	measured	with	a	pair	of	flying	probes.	The	process	I	saw	is	called	flying	head	testing	 (also
referred	to	as	flying	probe	testing),	and	in	that	sort	of	setup,	several	pairs	of	arms	with	needlelike	probes
test	continuity	between	pairs	of	traces	in	a	swift	tapping	motion.	Considering	all	the	traces	on	an	Arduino
Leonardo,	that’s	a	lot	of	probing!	Fortunately	the	robot’s	arms	move	like	a	blur,	as	it	can	probe	hundreds
of	points	per	minute.

NOTE

An	alternative	to	flying	head	testing	is	clamshell	testing,	where	a	set	of	pogo	pins	is	put	into	a
fixture	that	can	test	the	entire	board	with	a	single	mechanical	operation.	However,	clamshell
fixtures	are	very	labor-intensive	to	assemble	and	maintain,	and	require	physical	rewiring	every
time	the	Gerber	files	describing	the	PCB	images	are	updated.	So,	in	lower	volumes,	flying	probe
testing	is	more	cost-effective	and	flexible	than	clamshell	testing.



A	stack	of	near-finished	PCB	panels,	ready	for	a	final	step	of	routing	out	the	individual	boards

This	particular	facility	only	created	the	panels;	a	different	factory	actually	populated	the	components.	In
situations	like	that,	before	the	panels	can	be	sent	to	the	next	factory,	the	individual	PCBs	need	to	be	routed
so	 they’ll	 fit	 inside	 surface	 mount	 technology	 (SMT)	 machines	 to	 have	 the	 components	 placed.	 The
panels	are	once	again	stacked	up	and	batch-processed	through	a	machine	that	uses	a	router	bit	to	cut	and
release	the	boards.	After	that,	the	boards	are	finally	ready	to	ship	to	the	SMT	facility.

Several	Arduino	panels,	stacked	for	routing



Smaller	2×6	panels	make	SMT	processing	more	efficient.

A	veritable	stack	of	about	25,000	bare	Arduino	PCBs,	ready	to	leave	the	PCB	factory.	From	there,	they	were	stuffed,	shipped,	and
sold	to	makers	around	the	world!

I’m	glad	I	made	the	side	trip	to	visit	the	Arduino	PCB	factory.	I’ve	visited	several	PCB	factories,	and
every	 one	 has	 a	 different	 character	 and	 its	 own	 set	 of	 tricks	 to	 improve	 yield,	 as	 well	 as	 unique
limitations	that	designers	need	to	compensate	for.	It	was	also	interesting	to	see	the	little	trick	about	using
an	 extra	 layer	 of	 soldermask	 instead	 of	 silkscreen	 for	 achieving	 high	 cosmetic	 quality.	 While	 the
resolution	of	a	silkscreen	is	limited	by	the	mesh	of	the	silk	barrier	to	hold	the	paint,	soldermask	is	limited
by	the	quality	of	the	optics	and	chemical	developing,	giving	over	an	order	of	magnitude	improvement	in
resolution	 and	 ultimately	 a	 higher	 perceived	 quality.	 Normally	 the	 lower	 quality	 of	 silkscreen	 is
acceptable	 because	 end	 users	 don’t	 see	 the	 circuit	 boards	 inside	 computers,	 but	 for	 Arduino,	 the	 end
product	is	the	circuit	board.

WHERE	USB	MEMORY	STICKS	ARE	BORN



Several	months	after	my	tour	of	the	Arduino	factory,	I	had	the	good	fortune	of	being	a	keynote	speaker	at
Linux	Conference	Australia	(LCA)	2013.	In	my	talk,	“Linux	in	the	Flesh:	Adventures	Embedding	Linux	in
Hardware,”	 I	 discussed	how	Linux	 is	 in	 all	 kinds	of	devices	we	 see	 every	day.	This	 story	 isn’t	 about
Linux,	but	it	does	connect	me	and,	tangentially,	LCA	to	a	factory.
One	of	the	tchotchkes	I	received	from	the	LCA	organizers	was	a	little	USB	memory	stick	with	Tux	the

penguin,	the	Linux	mascot,	on	the	outside.	When	I	saw	the	device,	I	thought	it	was	a	neat	coincidence	that
about	a	week	before	the	conference,	I	had	been	in	a	factory	that	manufactured	USB	memory	sticks	exactly
like	it.	I	saw	the	USB	stick	board	assembly	process	from	start	to	finish,	and	it	surprisingly	involved	a	lot
less	automation	than	the	Arduino	manufacturing	process	did.

The	Beginning	of	a	USB	Stick
USB	 sticks	 start	 life	 as	 bare	 flash	 memory	 chips.	 Prior	 to	 being	 mounted	 on	 PCBs,	 these	 chips	 are
screened	for	memory	capacity	and	functionality.

A	workstation	where	flash	memory	chips	are	screened.
The	metal	rectangle	on	the	left	with	the	circular	cutaway	is	the	probe	card.

At	a	workstation	in	this	factory,	stacks	of	bare-die	flash	chips	awaited	testing	and	binning	with	a	probe
card,	which	has	tiny,	very	accurately	positioned	pins	used	to	touch	down	on	pads	only	a	little	bit	wider
than	 a	 human	 hair	 on	 a	 silicon	wafer’s	 surface.	 (I	 love	 how	 the	worker	 at	 this	 particular	 station	 used
rubber	bands	to	hold	an	analog	current	meter	to	the	probe	card.)



The	probe	card,	up	close

Looking	through	the	microscope	on	the	microprobing	station.	Notice	the	needles	touching	the	square	pads	at	the	edge	of	the	flash
chip’s	surface.	Each	pad	is	perhaps	100	microns	on	a	side—a	human	hair	is	about	70	microns	in	diameter.

Interestingly,	the	chips	I	saw	were	absolutely	not	tested	in	a	clean-room	environment.	Workers	handled
chips	with	tweezers	and	hand	suction	vises	and	mounted	the	probe	cards	into	their	jigs	by	hand.



Hand-Placing	Chips	on	a	PCB
Once	the	chips	were	screened	for	functionality,	they	were	placed	by	hand	onto	the	USB	stick	PCBs.	This
is	not	an	unusual	practice;	every	value-oriented	wire-bonding	 facility	 I’ve	visited	 relies	on	 the	manual
placement	of	bare	die.

A	controller	IC	being	placed	on	a	panel	of	USB-stick	PCBs.	The	tiny	bare	dies	are	on	the	right,	sitting	in	a	waffle	pack.

A	zoomed-out	view	of	the	die-placing	workstation

The	lady	I	watched	placing	the	bare	die	was	using	a	chopstick-like	tool	made	of	hand-cut	bamboo.	I
still	haven’t	figured	out	exactly	how	the	process	works,	but	my	best	guess	is	that	the	bamboo	sticks	have
just	the	right	surface	energy	to	adhere	to	the	silicon	die,	such	that	silicon	sticks	to	the	tip	of	the	bamboo
rod.	A	dot	of	glue	is	preapplied	to	the	bare	boards,	so	when	the	operator	touches	the	die	down	onto	the
glue,	the	surface	tension	of	the	glue	pulls	the	die	off	of	the	bamboo	stick.
It’s	trippy	to	think	that	the	chips	inside	my	USB	stick	were	handled	using	modified	chopsticks.



Bonding	the	Chips	to	the	PCB
Once	the	chips	were	placed	on	the	PCB,	they	were	wire	bonded	to	the	board	with	an	automated	bonding
machine,	which	uses	computer-assisted	 image	 recognition	 to	 find	 the	 location	of	 the	bond	pads	 (this	 is
part	of	the	reason	the	factories	can	get	away	with	manual	die	placement).	Wire	bonding	is	the	process	that
connects	an	integrated	circuit	to	its	packaging,	and	the	automated	bonding	machine	connected	wires	to	the
IC	at	an	insane	speed,	rotating	the	circuit	board	all	the	while.	As	I	watched	this	process,	the	operator	had
to	pull	off	and	replace	a	misbonded	wire	by	hand	and	then	refeed	the	wire	into	the	machine.	Given	that
these	wires	are	 thinner	 than	a	strand	of	hair	and	 that	 the	bonding	pads	on	 the	packaging	and	 the	 IC	are
microscopic,	that	was	no	mean	feat	of	manual	dexterity.

A	Close	Look	at	the	USB	Stick	Boards
Just	 as	 the	 Arduino	 factory	 used	 panels	 containing	 multiple	 Leonardo	 boards,	 the	 USB	memory	 stick
factory	used	panels	of	eight	USB	sticks	each.	Each	stick	in	the	panel	consisted	of	a	flash	memory	chip	and
a	 controller	 IC	 that	 handled	 the	 bridging	 between	 USB	 and	 raw	 flash,	 a	 nontrivial	 task	 that	 includes
managing	bad	block	maps	and	error	correction,	among	other	things.	The	controller	was	probably	an	8051-
class	CPU	running	at	a	few	dozen	MHz.



The	partially	bonded	but	fully	die-mounted	PCB	that	the	factory	owner	gave	me	as	a	memento	from	my	visit.	Some	of	the	wire	bonds
were	crushed	in	transit.



Interestingly,	the	entire	USB	stick	assembly	is	flexible	prior	to	encapsulation.

The	die	marking	from	the	flash	chip.	Apparently,	it’s	made	by	Intel.



A	die	shot	of	the	controller	chip	that	went	inside	the	USB	sticks

Once	 the	 panels	 were	 bonded	 and	 tested,	 they	 were	 over-molded	 with	 epoxy	 and	 then	 cut	 into
individual	pieces,	ready	for	sale.
But	that’s	enough	about	electronics	manufacturing;	next,	I	want	to	show	you	a	different	kind	of	factory

floor.

A	TALE	OF	TWO	ZIPPERS
My	friend	Chris	“Akiba”	Wang	has	a	similar	background	to	mine,	except	in	his	younger	years	he	was	way
hipper:	he	was	a	dancer	for	acts	like	LL	Cool	J	and	Run	DMC	in	the	’90s.	After	going	through	a	phase
working	 for	 big	 semiconductor	 companies,	 he	 eventually	 quit	 and	 followed	 his	 passion	 to	 design	 and
manufacture	his	own	hardware	projects.	An	expert	in	short-range,	low-power	wireless	networking	(he’s
co-authored	 a	 book	 on	 Bluetooth	 low	 energy	 and	 sells	 an	 Arduino	 +	 802.15.4	 variant	 called	 the
“Freakduino”),	 he	 now	 consults	 for	 organizations	 like	 the	 United	 Nations	 and	 Keio	 University,	 runs
FreakLabs,	and	collaborates	with	various	dance	acts,	such	as	the	Wrecking	Crew,	to	provide	unique	and
compelling	lighting	solutions	for	stage	shows.
I	had	the	good	fortune	of	introducing	Akiba	to	the	greater	Shenzhen	area	on	a	trip	with	MIT	Media	Lab

students	 in	2013—the	same	 trip	where	we	 toured	 the	USB	memory	stick	 factory.	Since	 then,	he’s	been
exploring	 deeper	 and	 deeper	 into	 the	 area.	 As	 his	 work	 spans	 the	 disciplines	 of	 performance	 art,
wearables,	and	electronics,	his	network	of	factories	 is	quite	different	from	mine,	so	I	always	relish	the
opportunity	to	learn	more	about	his	world.
In	January	2015,	Akiba	took	me	to	visit	his	friend’s	zipper	factory.	I	was	very	excited	for	the	tour:	no



matter	how	humble	 the	product,	 I	 always	 learn	 something	new	by	visiting	 its	 factory.	This	 factory	was
very	different	from	both	the	Arduino	and	the	USB	stick	facilities.	There	were	far	fewer	employees,	and	it
was	a	highly	automated,	vertically	integrated	manufacturer.	To	give	you	an	idea	of	what	that	means,	this
facility	turned	metal	ingots,	sawdust,	and	rice	into	zipper	parts.

Approximately	1	ton	of	ingots,	composed	of	93	percent	zinc	and	7	percent	aluminum	alloy

Compressed	sawdust	pellets,	used	to	fuel	the	ingot	smelter



Rice,	used	to	feed	the	workers

Finished	zipper	puller	and	slider	assemblies

Let’s	look	at	one	side	of	how	that	process	actually	works.

A	Fully	Automated	Process
Between	the	three	input	materials	and	the	output	product	was	a	fully	automated	die-casting	line	to	create
the	zipper	pullers	and	sliders,	a	set	of	tumblers	and	vibrating	pots	(or,	as	I	like	to	call	them,	“vibrapots”)
to	release	and	polish	the	zippers,	and	a	set	of	machines	to	deburr	and	join	each	puller	to	its	slider.	I	think	I



counted	 fewer	 than	 a	 dozen	 employees	 in	 the	 facility,	 and	 I’m	 guessing	 their	 capacity	well	 exceeds	 a
million	zippers	a	month.
I	was	mesmerized	by	the	vibrapots*	that	put	the	zippers	together.	There	were	two	vibrapots:	one	with

pullers	 and	 one	 with	 sliders.	 Both	 sliders	 and	 pullers	 were	 deposited	 onto	 a	 moving	 rail,	 and	 as	 I
watched	these	miracles	at	work,	it	looked	as	if	the	sliders	and	pullers	were	lining	themselves	up	in	the
right	orientation	by	magic.	Each	fell	into	its	rail,	and	at	the	end	of	the	line,	they	were	pressed	together	into
a	familiar	zipper	form,	all	in	a	single,	fully	automated	machine.
When	 I	 put	my	hand	 in	 the	 pot,	 I	 found	 there	was	 no	 stirrer	 to	 cause	 the	motion;	 I	 just	 felt	 a	 strong

vibration.	I	relaxed	my	hand,	and	found	it	started	to	move	along	with	all	the	other	items	in	the	pot.	The
entire	 pot	 was	 vibrating	 in	 a	 biased	 fashion,	 such	 that	 the	 items	 inside	 tended	 to	 move	 in	 a	 circular
motion.	This	pushed	the	pullers	and	sliders	onto	the	set	of	rails,	which	were	shaped	to	take	advantage	of
asymmetries	 in	 the	objects	 to	allow	only	 the	pieces	 that	 jumped	on	the	rail	 in	 the	correct	orientation	 to
continue	to	the	next	stage.

A	Semiautomated	Process
Despite	 the	 high	 level	 of	 automation	 in	 this	 factory,	many	 of	 the	workers	 I	 saw	were	 performing	 one
operation.	They	fed	the	pullers	for	a	different	kind	of	zipper	into	a	device	connected	to	another	vibrapot
containing	sliders,	while	the	device	put	the	sliders	and	pullers	together.
Of	course,	I	asked,	“Why	do	some	zippers	have	fully	automated	assembly	processes,	whereas	others

are	semiautomatic?”
The	answer,	it	turns	out,	is	very	subtle,	and	it	boils	down	to	shape.

Note	the	difference	in	these	two	pullers,	indicated	by	the	arrows.

One	tiny	tab,	barely	visible,	was	the	difference	between	full	automation	and	needing	a	human	to	join
millions	of	sliders	and	pullers	together.	To	understand	why,	let’s	review	one	critical	step	in	the	vibrapot
operation.	 A	 worker	 kindly	 paused	 the	 vibrapot	 responsible	 for	 sorting	 the	 pullers	 into	 the	 correct
orientation	for	the	fully	automatic	process	so	I	could	take	a	photo	of	the	key	step.



Pullers	coming	through	the	vibrapot

When	the	pullers	came	around	the	rail,	their	orientation	was	random:	some	faced	right,	some	left.	But
the	joining	operation	must	only	insert	the	slider	into	the	smaller	of	the	two	holes.	That	tiny	tab	allowed
gravity	to	cause	all	the	pullers	to	hang	in	the	same	direction	as	they	fell	into	a	rail	toward	the	left.
The	semiautomated	zipper	design	doesn’t	have	this	 tab;	as	a	result,	 the	design	is	 too	symmetric	for	a

vibrapot	to	align	the	puller.	I	asked	the	factory	owner	if	adding	the	tiny	tab	would	save	this	labor,	and	he
said	absolutely.
At	 this	 point,	 it	 seemed	 blindingly	 obvious	 to	me	 that	 all	 zippers	 should	 have	 this	 tiny	 tab,	 but	 the

zipper’s	designer	wouldn’t	have	it.	Even	though	such	a	tab	is	very	small,	consumers	can	feel	the	subtle
bumps,	and	some	perceive	it	as	a	defect	in	the	design.	As	a	result,	the	designer	insisted	upon	a	perfectly
smooth	tab,	which	accordingly	had	no	feature	to	easily	and	reliably	allow	for	automatic	orientation.

The	Irony	of	Scarcity	and	Demand
I’d	 like	 to	 imagine	 that	 most	 people,	 after	 watching	 a	 person	 join	 pullers	 to	 sliders	 for	 a	 couple	 of
minutes,	would	be	quite	content	to	suffer	a	tiny	bump	on	the	tip	of	their	zipper	to	save	another	human	the
fate	of	manually	aligning	pullers	 into	sliders	for	eight	hours	a	day.	Alternatively,	I	suppose	an	engineer
could	spend	countless	hours	trying	to	design	a	more	complex	method	for	aligning	the	pullers	and	sliders,
but	there	are	two	problems	with	that:

•	The	zipper’s	customer	probably	wouldn’t	pay	for	that	effort.

•	It’s	probably	net	cheaper	to	pay	unskilled	labor	to	manually	perform	the	sorting.

This	 zipper	 factory	 owner	 had	 already	 automated	 everything	 else	 in	 the	 facility,	 so	 I	 figure	 they’ve
thought	long	and	hard	about	this	problem,	too.	My	guess	is	that	robots	are	expensive	to	build	and	maintain;
people	are	self-replicating	and	largely	self-maintaining.	Remember	that	third	input	to	the	factory—rice?
Any	robot’s	spare	parts	have	to	be	cheaper	than	rice	for	the	robot	to	earn	a	place	on	this	factory’s	floor.
In	 reality,	 however,	 it’s	 too	much	 effort	 to	 explain	 this	 concept	 to	 end	 customers;	 in	 fact,	 quite	 the

opposite	happens	in	the	market.	Putting	the	smooth	zippers	 together	 involves	extra	labor,	so	the	zippers
cost	more;	therefore,	they	tend	to	end	up	in	high-end	products.	This	further	enforces	the	notion	that	really
smooth	zippers	with	no	tiny	tab	on	them	must	be	the	result	of	quality	control	and	attention	to	detail.



My	world	is	full	of	small	frustrations	like	this.	For	example,	most	customers	perceive	plastics	with	a
mirror	 finish	 to	 be	 of	 a	 higher	 quality	 than	 those	with	 a	 satin	 finish.	 There	 is	 no	 functional	 difference
between	the	 two	plastics’	structural	performance,	but	making	something	with	a	mirror	finish	 takes	a	 lot
more	effort.	The	 injection-molding	 tools	must	be	painstakingly	and	meticulously	polished,	and	at	every
step	 in	 the	 factory,	 workers	 must	 wear	 white	 gloves.	 Mountains	 of	 plastic	 are	 scrapped	 for	 hairline
defects,	and	extra	films	of	plastic	are	placed	over	mirror	surfaces	to	protect	them	during	shipping.
For	all	that	effort,	for	all	that	waste,	what’s	the	first	thing	users	do?	They	put	their	dirty	fingerprints	all

over	 the	mirror	finish.	Within	a	minute	of	a	product	coming	out	of	 the	box,	all	 that	effort	 is	undone.	Or
worse	 yet,	 the	 user	 leaves	 the	 protective	 film	on,	 resulting	 in	 a	 net	worse	 cosmetic	 effect	 than	 a	 satin
finish.
Contrast	 this	 to	 satin-finished	 plastic.	 Satin	 finishes	 don’t	 require	 protective	 films,	 are	 easier	 for

workers	and	users	to	handle,	last	longer,	and	have	much	better	yields.	In	the	user’s	hands,	they	hide	small
scratches,	 fingerprints,	 and	 bits	 of	 dust.	 Arguably,	 the	 satin	 finish	 offers	 a	 better	 long-term	 customer
experience	than	the	mirror	finish.
But	that	mirror	finish	sure	does	look	pretty	in	photographs	and	showroom	displays!



3.	the	factory	floor
The	previous	two	chapters	were	filled	with	stories	of	my	personal	experiences	learning,	making	mistakes,
and	growing	with	 the	manufacturing	ecosystem	 in	 the	greater	Shenzhen	area.	 In	 January	2013,	 after	 I’d
learned	the	ropes,	the	MIT	Media	Lab	asked	me	to	start	mentoring	graduate	students	on	supply	chain	and
manufacturing,	and	I	 took	them	on	a	 tour	of	Shenzhen	(the	same	tour	where	I	met	Akiba	and	visited	 the
USB	memory	stick	factory).	This	chapter	is	an	attempt	to	distill	everything	I	taught	over	a	course	of	weeks
into	a	couple	dozen	pages.
The	 challenges	 and	 trade-offs	 in	 low-volume	manufacturing	 are	 different	 from	 those	 of	well-funded

corporate	 exercises	 that	 prototype	 at	 the	 scale	 of	 thousands	 of	 units.	 I	 learned	 this	 over	 time,	 but	 not
everyone	has	six	years	to	bumble	through	all	the	newbie	mistakes.	If	you’re	already	in	a	fast-moving	tech
startup,	you	probably	don’t	have	the	luxury	of	doing	any	exploration	at	all.	The	lessons	in	this	chapter	are
applicable	 to	 anyone	 looking	 to	 bootstrap	 a	 hardware	 product	 from	 an	 initial	 prototype	 to	 moderate
volumes	 (perhaps	 hundreds	 of	 thousands	 of	 units).	 Treat	 this	 summary	 as	 a	 general	 guideline,	 not	 a
detailed	 roadmap.	 The	 devil	 is	 always	 in	 the	 details,	 and	 one	 fun	 part	 of	 making	 new,	 innovative
hardware	products	is	there’s	no	end	of	novel	and	interesting	challenges	to	be	solved.

HOW	TO	MAKE	A	BILL	OF	MATERIALS
Most	makers	trying	to	scale	up	their	output	quickly	realize	the	only	practical	path	forward	is	to	outsource
production.	If	only	outsourcing	were	as	easy	as	schematic	+	cash	=	product!
Whether	you	work	with	 the	assembly	 shop	down	 the	 street	or	 send	your	work	 to	China,	 a	 clear	and

complete	bill	of	materials	(BOM)	is	the	first	step	to	outsourcing	production.	Every	single	assumption	you
make	about	your	circuit	board,	down	to	the	color	of	the	soldermask,	has	to	be	spelled	out	unambiguously
for	a	third	party	to	faithfully	reproduce	your	design.	Missing	or	incomplete	documentation	is	the	leading
cause	of	production	delays,	defects,	and	cost	overruns.

A	Simple	BOM	for	a	Bicycle	Safety	Light
For	a	case	study,	suppose	you	ran	a	successful	Kickstarter	campaign	for	a	bicycle	safety	light.	It	contains
a	circuit	that	uses	a	555	timer	to	flash	a	small	array	of	LEDs.	After	a	great	marketing	campaign,	several
hundred	orders	need	to	be	filled	in	a	few	months’	time.
At	first,	a	BOM	for	the	bicycle	light,	as	automatically	generated	by	a	design	tool	such	as	Altium,	might

look	like	this:

Quantity Comment Designator

1 0.1μF C1

1 10μF C2

3 white	LEDD1,	D2,	D3

1 2N3904 Q1



1 100 R1

2 20k R2,	R4

1 1k R3

1 555	timer U1

A	very	basic	bicycle	safety	light	BOM

This	BOM,	along	with	a	schematic,	is	likely	sufficient	for	any	graduate	of	a	US	electrical	engineering
program	 to	 reproduce	 the	prototype,	but	 it’s	 far	 from	adequate	 for	a	manufacturing	cost	quotation.	This
version	 of	 the	 BOM	 addresses	 only	 electronics.	 A	 complete	 BOM	 for	 an	 LED	 flasher	 also	 needs	 to
include	the	PCB,	battery,	plastic	case	pieces,	lens,	screws,	any	labeling	(like	a	serial	number),	a	manual,
and	packaging	 (plastic	bag	plus	cardboard	box,	 for	example).	 It	may	also	need	a	master	carton	 to	ship
multiple	LED	flashers	together,	as	a	single	boxed	LED	flasher	is	too	small	to	ship	on	its	own.	Although
cardboard	boxes	are	cheap,	they	aren’t	free,	and	if	they	aren’t	ordered	on	time,	inventory	will	sit	on	the
dock	until	a	master	carton	is	delivered	for	final	pack-out	prior	to	shipment.
The	following	key	information	is	also	missing:

•	Approved	manufacturer	for	each	component

•	Tolerance,	material	composition,	and	voltage	specification	for	passive	components

•	Package	type	information	for	all	parts

•	Extended	part	numbers	specific	to	each	manufacturer

Let’s	look	at	each	of	the	missing	items	in	more	detail.

Approved	Manufacturers
A	 proper	 factory	 will	 require	 you	 to	 supply	 an	 approved	 vendor	 list	 (AVL)	 specifying	 the	 allowed
manufacturer(s)	for	every	part	on	a	PCB.	A	manufacturer	is	not	a	distributor	but	rather	the	company	that
actually	makes	 a	 part.	A	 capacitor,	 for	 example,	 could	 be	made	 by	TDK,	Murata,	Taiyo	Yuden,	AVX,
Panasonic,	 Samsung,	 and	 so	 on.	 I’m	 still	 surprised	 at	 how	 many	 BOMs	 I’ve	 reviewed	 list	 DigiKey,
Mouser,	Avnet,	or	some	other	distributor	as	the	manufacturer	for	a	part.
It	may	 seem	 silly	 to	 trifle	 over	who	makes	 a	 capacitor,	 but	 there	 are	 definitely	 situations	where	 the

maker	of	a	component	matters—even	for	the	humble	capacitor.	For	example,	blindly	substituting	the	filter
capacitors	on	a	switching	regulator,	even	if	the	substitute	has	the	same	rated	capacitance	and	voltage,	can
lead	to	unstable	operation	and	even	boards	catching	fire.
Of	course,	some	parts	in	a	design	can	be	truly	insensitive	to	the	manufacturer,	in	which	case	I	would

mark	“any/open”	on	the	BOM	for	the	AVL.	(This	is	particularly	true	for	parts	like	pull-up	resistors.)	This
invites	the	factory	to	suggest	their	preferred	supplier	on	your	behalf.

Tolerance,	Composition,	and	Voltage	Specification
For	passive	components	marked	“any/open,”	you	should	always	specify	the	following	key	parameters	to
ensure	the	right	part	is	purchased:



•	For	resistors,	specify	at	minimum	the	tolerance	and	wattage.	A	1	kΩ,	1	percent	tolerance,	1/4	W	carbon
resistor	is	a	very	different	beast	from	a	1	kΩ,	5	percent	tolerance,	1	W	wire-wound	resistor!

•	For	capacitors,	specify	at	minimum	the	tolerance,	voltage	rating,	and	dielectric	type.	For	special
applications,	also	specify	certain	parameters	such	as	ESR	or	ripple	current	tolerance.	A	10	μF,
electrolytic,	10	percent	tolerance	capacitor	rated	for	50V	has	vastly	different	performance	at	high
frequencies	compared	to	a	10	μF,	ceramic,	20	percent	tolerance	capacitor	rated	for	16V.

Inductors	are	sufficiently	specialized	that	I	don’t	recommend	ever	labeling	them	as	“any/open”	in	your
BOM.	 For	 power	 inductors,	 the	 basic	 parameters	 to	 specify	 are	 core	 composition,	 DC	 resistance,
saturation,	temperature	rise,	and	current,	but	unlike	resistors	and	capacitors,	 inductors	have	no	standard
for	 casing.	 Furthermore,	 important	 parameters	 such	 as	 shielding	 and	 potting,	 which	 can	 have	material
impacts	on	a	circuit’s	performance,	are	often	implicit	in	a	part	number;	hence,	it’s	best	to	fully	specify	the
inductor.	The	same	goes	for	RF	inductors.

Electronic	Component	Form	Factor
Always	 fully	 specify	 the	 form	 factor,	 or	 package	 type,	 of	 a	 component.	 Poorly	 specified	 or
underspecified	 package	 parameters	 can	 lead	 to	 assembly	 errors.	 Beyond	 basic	 parameters	 like	 the
Electronic	Industries	Alliance	(EIA)	or	JEDEC	Solid	State	Technology	Association	package	code	(that
is,	0402,	0805,	TSSOP,	and	so	on),	consider	the	following	package	information	as	you	create	your	BOM:

Surface	mount	packages	The	height	of	a	component	can	vary,	particularly	for	packages	larger	than
1206	or	for	inductors.	Pay	attention	to	whether	the	board	is	slotting	into	a	tight	case.

Through-hole	packages	Always	specify	lead	pitch	and	component	height.

For	ICs	in	general,	try	to	also	specify	the	common	name	that	corresponds	to	the	package,	not	just	the
manufacturer’s	internal	code.	For	example,	a	Texas	Instruments	“DW”	type	package	code	corresponds	to
an	SOIC	package.	This	consistency	check	helps	guard	against	errors.

Extended	Part	Numbers
Designers	often	think	about	components	in	abbreviated	part	numbers.	A	great	example	of	this	is	the	7404.
The	venerable	7404	is	a	hex	inverter	and	has	been	in	service	for	decades.	Because	of	its	ubiquity,	7404
can	be	used	as	a	generic	term	for	an	inverter	among	design	engineers.
When	going	to	production,	however,	you	must	specify	information	like	the	package	type,	manufacturer,

and	logic	family.	A	complete	part	number	for	a	particular	hex	inverter	might	be	74VHCT04AMTC,	which
specifies	 an	 inverter	made	 by	 Fairchild	 Semiconductor,	 from	 the	VHCT	 series,	 in	 a	 TSSOP	 package,
shipped	 in	 tubes.	 The	 extra	 characters	 are	 very	 important,	 because	 small	 variations	 can	 cause	 big
problems,	 such	 as	 quoting	 and	 ordering	 the	 wrong	 packaged	 device	 and	 being	 stuck	 with	 a	 reel	 of
unusable	parts	or	subtle	reliability	problems.
For	example,	on	a	robotics	controller	I	designed	(codenamed	Kovan),	I	encountered	a	problem	due	to	a

mistaken	 substitution	of	VHC	 in	 the	part	 number	 for	 a	 component	 in	 the	VHCT	 logic	 family.	Using	 the
VHC	part	switched	the	input	thresholds	of	the	inverter	from	TTL	to	CMOS	logic-compatible,	and	some
units	had	an	asymmetric	 response	 to	 input	 signals	as	a	 result.	Fortunately,	 I	 caught	 this	problem	before
production	ramped.	The	correct	part	was	used	on	all	other	units,	and	I	avoided	a	whole	lot	of	potential
rework—or	worse,	returns	from	upset	customers.	Luckily,	the	only	cost	of	the	mistake	was	reworking	the



few	prototypes	I	was	validating	before	production.
Here’s	 another	 example	 of	 how	 missing	 a	 few	 characters	 in	 a	 part	 number	 can	 cost	 thousands	 of

dollars.	 A	 fully	 specified	 part	 number	 for	 the	 LM3670	 switching	 regulator	 might	 be	 LM3670MFX-
3.3/NOPB.	If	/NOPB	is	omitted,	the	part	number	is	still	valid	and	orderable—but	that	version	uses	leaded
solder.	 This	 could	 be	 disastrous	 for	 products	 exporting	 to	 a	 region	 that	 requires	 RoHS	 compliance
(meaning	lead-free,	among	other	things),	like	the	European	Union.
The	X	in	the	part	number	is	another,	more	subtle	issue.	Part	numbers	with	an	X	come	in	reels	of	3,000

pieces,	 and	 those	 lacking	 an	X	 come	 in	 reels	 of	 1,000	 pieces.	While	many	 factories	will	 question	 an
/NOPB	omission	since	they	typically	assemble	RoHS	documentation	as	 they	purchase	parts,	 they	rarely
flag	the	reel	quantity	as	an	issue.
But	you	should	care	about	the	reel	quantity.	If	you	plan	to	build	only	1,000	products,	including	the	X	in

the	 part	 number	means	 you’ll	 have	 2,000	 extra	 LM3670s.	And	 yes,	 you’re	 on	 the	 hook	 to	 pay	 for	 the
excess,	 since	your	BOM	specified	 that	part	number.	There	 are	many	valid	 reasons	 for	ordering	excess
parts,	so	factories	will	rarely	question	a	decision	like	that.
On	 the	 other	 hand,	 parts	 ordered	 in	 lots	 of	 1,000	units	 are	 a	 bit	more	 expensive	per	 unit	 than	 those

ordered	in	lots	of	3,000.	So,	if	you	leave	out	the	X	as	your	volume	increases,	you’ll	end	up	paying	more
for	 the	part	 than	you	have	 to.	Either	way,	 the	factory	will	quote	your	BOM	exactly	as	specified,	and	 if
your	quantity	specifiers	are	incorrect,	you	could	be	leaving	money	on	the	table—or	worse,	losing	money.
The	bottom	line?	Every	digit	and	character	counts,	and	lack	of	attention	to	detail	can	cost	real	money!

The	Bicycle	Safety	Light	BOM	Revisited
With	those	four	points	in	mind,	consider	how	a	proper,	fully	specified	BOM	for	the	bicycle	safety	light
example	might	look.



The	improved	bicycle	safety	light	BOM

There’s	a	big	difference	between	a	BOM	that	any	engineer	could	use	to	produce	a	prototype,	like	the
first	one	I	showed	for	the	bicycle	safety	light,	and	a	BOM	like	this,	which	any	factory	could	use	to	mass-
produce	 a	 product.	 Notice	 the	MOQ	 (minimum	 order	 quantity)	 and	 Lead	 Time	 columns	 in	 particular.
These	columns	are	irrelevant	when	you’re	building	low-volume	prototypes,	as	you’d	typically	buy	parts
from	 distributors	 that	 have	 few	 MOQ	 restrictions	 and	 maintain	 stock	 for	 next-day	 deliveries.	 When
scaling	into	production,	however,	you	save	a	lot	of	money	by	cutting	the	distributor	overhead	and	buying
through	wholesale	channels.	In	wholesale	channels,	MOQs	and	lead	times	matter.
The	good	news	is	that	the	factory	will	fill	in	the	MOQ	and	lead	time	as	part	of	the	quotation	process.

But	 you’ll	 find	 it	 helpful	 to	 track	 these	 parameters	 from	 the	 beginning.	 If	 the	 MOQ	 of	 a	 particular
component	is	very	high,	the	factory	may	have	to	buy	massive	numbers	of	excess	parts,	which	increases	the
effective	price	of	the	project.	If	the	lead	time	of	a	part	is	very	long,	you	may	want	to	consider	redesigning
for	 a	 part	 with	 a	 shorter	 lead	 time.	 Using	 parts	 with	 shorter	 lead	 times	 not	 only	 saves	 time	 but	 also
improves	cash	flow:	no	one	wants	to	tie	up	cash	on	long-lead	components	four	months	in	advance	of	sales
revenue.
This	 BOM	 also	 includes	 several	 nonelectronic	 items—like	 the	 box,	 a	 bar	 code	 label,	 and	 so	 on—

which	wouldn’t	be	on	the	engineering	prototype’s	BOM.	These	miscellaneous	bits	are	easy	to	forget,	but	a
missing	 user	 manual	 in	 an	 initial	 BOM	 is	 often	 not	 discovered	 until	 the	 final	 sample	 is	 opened	 for
approval,	leading	to	a	last-minute	scramble	to	get	the	manual	into	the	final	product.	Many	products	have
been	delayed	 simply	because	a	user	manual	or	box	art	wasn’t	 completed	and	approved	 in	 time,	 and	 it
sucks	to	have	a	hundred	thousand	dollars’	worth	of	inventory	idling	in	a	warehouse	for	want	of	a	slip	of
paper.
Beyond	 a	 proper	BOM,	providing	 the	 factory	with	 golden	 samples	 of	 your	 product	 along	with	 your

CAD	 files	 is	 another	 best	 practice.	 These	 working	 prototypes	 enable	 the	 factory	 to	 make	 smarter



decisions	about	any	ambiguities	in	your	submitted	BOM.	Hand-soldering	one	more	unit	just	for	the	factory
may	seem	annoying,	but	in	my	opinion,	a	few	hours	of	soldering	beats	a	week	of	trading	emails	with	the
factory.

NOTE

When	you’re	building	a	business	model,	parts	and	packaging	still	aren’t	the	only	costs	to	consider.
Even	this	detailed	BOM	doesn’t	list	factory	margin,	labor	for	assembly,	pack-out,	shipping,	duties,
and	so	on.	I	discuss	these	“soft	costs”	in	“Picking	(and	Maintaining)	a	Partner”	on	page	107.

Planning	for	and	Coping	with	Change
Of	course,	even	if	your	design	is	perfect	and	your	BOM	is	ideal,	your	design	may	still	have	to	change	if
vendors	end-of-life	(EOL),	or	stop	making,	components	you	selected.	And	let’s	face	it:	there’s	always	a
chance	your	design	assumptions	won’t	survive	contact	with	real	consumers,	too.
Before	 crossing	 the	 threshold	 into	 production,	 formalize	 the	 process	 for	 changing	 a	 design	with	 the

factory.	It’s	best	practice	to	use	written,	formal	engineering	change	orders	(ECO)	 to	update	the	factory
on	any	changes	after	the	initial	quotation.	At	minimum,	here’s	what	an	ECO	template	should	include:

•	The	details	of	each	changed	part,	and	a	brief	explanation	of	why	the	change	is	needed

•	A	unique	revision	number	for	conveniently	referencing	the	change	down	the	road

•	A	method	to	record	the	factory’s	receipt	of	the	ECO	paperwork

Be	thorough	with	ECOs,	rather	than	relying	on	casual	emails,	or	the	buyers	at	your	factory	may	buy	the
wrong	part.	Worse	yet,	the	factory	might	install	the	wrong	part,	and	entire	lots	of	your	product	will	need
to	be	scrapped	or	reworked.	Even	after	troubleshooting	a	problem	with	the	factory	engineers,	I	still	write
up	a	formal	ECO	and	submit	it	to	the	production	staff	to	formalize	the	findings.	I	hate	paperwork	as	much
as	the	next	engineer,	but	in	production,	one	small	mistake	can	cost	tens	of	thousands	of	dollars,	and	that
thought	keeps	me	disciplined	on	ECOs.
On	the	next	page	is	an	actual	ECO	I	issued	that	ended	up	saving	me	time	and	money.
Note	 the	date	on	 this	ECO:	February	27,	2014.	This	ECO	was	 issued	 right	before	 the	Chinese	New

Year,	when	the	factories	go	on	holiday	for	a	couple	of	weeks.	There	is	significant	turnover	of	unskilled
labor	inside	factories	after	the	holidays,	and	thus	there’s	a	lot	of	opportunity	for	work	orders	to	get	lost
and	 forgotten.	Worried	 that	 the	ECO	would	 be	missed,	 I	 consulted	with	 the	managers	 after	 the	 factory
resumed	production	to	ensure	the	ECO	wasn’t	forgotten.	They	assured	me	it	was	applied,	but	I	still	felt	a
vague	paranoia,	so	I	asked	for	photos	of	 the	circuit	board	 to	confirm.	Sure	enough,	 the	first	production
batch	was	missing	the	change	in	my	ECO.
Thanks	to	the	detailed	ECO,	the	factory	readily	admitted	its	error,	repaired	the	entire	production	run,

and	paid	for	the	reworking.	But	if	I’d	sent	the	change	order	in	a	quick	email	without	referencing	specific
batches	or	work	orders,	there	could	have	been	sufficient	ambiguity	for	the	factory	to	get	out	of	the	rework
charges.	The	factory	could	have	argued	that	it	thought	I	meant	to	apply	the	change	to	a	future	production
run,	 or	 it	 could	 simply	 deny	 receiving	 a	 confirmed	 order,	 as	 emails	 are	 a	 fairly	 casual	 form	 of
communication.	Either	way,	a	 few	minutes	of	documentation	saved	days	of	negotiation	and	hundreds	of
dollars	in	rework	fees.



Example	of	an	actual	ECO	used	in	production.	Thanks	to	the	formal	documentation	process,	a	production	mix-up	related	to	this	ECO
was	resolved	in	my	favor.

PROCESS	OPTIMIZATION:	DESIGN	FOR	MANUFACTURING
While	you’re	designing	your	final	product	and	putting	together	a	BOM,	considering	yield,	the	number	of
good	units	 that	 come	out	 of	 the	manufacturing	process,	 is	 also	 important.	Yield	 is	 a	 boring	 subject	 for
many	 engineers,	 but	 for	 entrepreneurs,	 success	 or	 failure	 will	 be	 determined	 in	 part	 by	 whether	 they



achieve	a	reasonable	yield.	Fortunately,	you	can	help	your	yield	by	designing	with	it	in	mind.

Why	DFM?
Unlike	 software,	 every	 copy	 of	 a	 physical	 good	 has	 slight	 imperfections.	 Sometimes	 the	 imperfections
cancel	out;	sometimes,	they	gang	up	and	degrade	performance.	As	production	volume	ramps,	a	fraction	of
the	 product	 always	 ends	 up	 nonsalable.	 In	 a	 robust	 design,	 the	 failing	 fraction	 may	 be	 so	 small	 that
functional	 tests	 can	 be	 simplified,	 leading	 to	 further	 cost	 reductions.	 In	 contrast,	 designs	 sensitive	 to
component	 tolerances	require	extensive	testing	and	will	suffer	heavy	yield	losses.	Reworking	defective
units	incurs	extra	labor	and	parts	charges,	ultimately	eroding	profits.
Thus,	 redesigning	 to	 improve	 robustness	 in	 the	 face	 of	 normal	manufacturing	 tolerances	 is	 a	 major

challenge	of	moving	 from	 the	engineering	bench	 to	mass	production.	This	process	 is	 called	design	 for
manufacturing	(DFM).

Left,	before	DFM,	almost	half	the	units	are	not	meeting	the	acceptance	level	and	are	therefore	failing.	Right,	after	DFM,	the
acceptance	level	is	the	same,	but	the	average	performance	is	improved,	leading	to	most	units	passing.

To	understand	the	importance	of	DFM,	consider	these	graphs.	Each	depicts	a	bell	curve,	which	 is	an
assumed	statistical	distribution	of	a	particular	parameter.	The	x-axis	is	a	parameter	of	interest,	and	the	y-
axis	is	the	number	of	items	produced	that	hit	the	given	parameter.	For	example,	in	a	plot	of	the	brightness
of	thousands	of	LEDs,	the	x-axis	would	be	brightness,	and	the	y-axis	would	be	the	number	of	LEDs	that
reach	a	given	brightness.	The	position	of	the	bell	curve	relative	to	the	pass/fail	criteria	determines	the	net
production	yield.
On	 the	 right-hand	 curve,	 most	 LEDs	 are	 bright	 enough,	 and	 most	 of	 the	 production	 inventory	 is

shippable.	 On	 the	 left-hand	 curve,	 maybe	 40	 percent	 of	 the	 LEDs	 pass.	 Given	 that	 most	 hardware
companies	 operate	 with	 about	 a	 30	 to	 50	 percent	 gross	 margin,	 scrapping	 40	 percent	 of	 the	material
would	mean	the	end	of	the	business.	In	such	a	situation,	the	only	viable	options	are	to	spend	the	time	and
effort	to	rework	the	LEDs	until	they	pass	or	to	lower	the	performance	requirement.	The	product	wouldn’t
be	as	high	quality	as	hoped,	but	at	least	the	business	could	keep	operating.

Tolerances	to	Consider
The	goal	of	DFM	is	to	ensure	that	your	product	always	passes	muster	and	that	you’re	never	faced	with	the
unsavory	choice	of	reducing	margins,	lowering	quality	standards,	or	going	out	of	business.	But	there	are
some	component	aspects	to	think	about	when	applying	DFM.

ELECTRONIC	TOLERANCES



Passive	component	tolerances	are	the	most	obvious	tolerances	to	design	for.	If	a	resistor’s	true	value	can
be	+/-5	percent	of	its	labeled	value,	be	sure	the	rest	of	your	circuit	can	cope	with	the	edge	cases.
Active	 component	 datasheet	 parameters—like	 current	 gain	 (hFE)	 for	 bipolar	 transistors,	 threshold

voltage	(Vt)	for	field	effect	 transistors	(FETs),	and	forward	bias	voltage	(Vf)	 for	LEDs—can	also	vary
widely.	 Always	 read	 the	 datasheet,	 and	 watch	 for	 parameters	 with	 a	 great	 disparity	 between	 their
minimum	and	maximum	values,	a	difference	often	referred	to	as	a	min-max	spread.	For	example,	the	min-
max	 on	 hFE	 for	 Fairchild’s	 2N3904	 ranges	 from	 40	 to	 300,	 and	 the	 Vf	 on	 a	 superbright	 LED	 from
Kingbright	is	between	2	and	2.5V.
Nominal	operating	voltage	aside,	a	component’s	maximum	voltage	rating	is	particularly	important	for

capacitors	and	input	networks.	I	 try	 to	use	capacitors	rated	for	 twice	 the	nominal	voltage;	for	example,
where	possible,	I	use	10V	capacitors	for	5V	rails	and	6.3V	capacitors	for	3.3V	rails.	To	understand	why,
consider	 ceramic	 capacitor	 dielectrics,	 which	 have	 reduced	 capacitance	 with	 increasing	 voltage.	 In
designs	operating	near	a	ceramic	capacitor’s	maximum	voltage,	 that	component’s	operating	capacitance
will	be	at	the	negative	end	of	its	tolerance	range.	Also,	input	networks	(any	part	of	the	circuit	that	a	user
can	plug	something	into)	are	subject	to	punishing	electrostatic	discharge	and	other	transient	abuses,	so	pay
special	attention	to	the	ratings	of	capacitors	there	to	achieve	your	desired	reliability.
Finally,	after	you	have	a	good	sense	of	the	components	you’ll	use,	pay	close	attention	to	trace	widths

and	 layer	 stack	 variations	when	 designing	 your	 PCB.	 These	will	 impact	 systems	 that	 require	matched
impedance	or	deal	with	high	currents.

MECHANICAL	TOLERANCES
Electronic	 tolerances	 aren’t	 the	 end	of	 your	worries,	 though;	mechanical	 tolerances	 are	 important,	 too.
Neither	PCBs	nor	cases	will	come	out	exactly	the	right	size,	so	design	your	case	with	some	wiggle	room.
If	your	case	design	has	zero	tolerance	for	the	PCB	dimensions,	half	the	time	the	factory	will	force	PCBs
into	cases,	when	either	the	PCB	is	cut	a	little	large	or	the	case	comes	out	a	little	small.	This	can	cause
unintentional	mechanical	damage	to	the	circuitry	or	the	case.
And	don’t	forget	about	cosmetic	blemishes!	Any	manufactured	product	 is	subject	 to	small	blemishes,

such	as	dust	trapped	in	plastics,	small	scratches,	sink	marks,	and	abrasions.	It’s	important	to	work	out	the
acceptance	criteria	for	such	defects	with	the	factory	ahead	of	time.	For	example,	you	might	tell	the	factory
that	 a	 unit	 can	 be	 considered	 “good”	 if	 it	 has	 no	more	 than	 two	 dot	 blemishes	 larger	 than	 0.2mm,	 no
scratch	 longer	 than	0.3mm,	and	so	on.	Most	 factories	will	have	a	particular	 system	 they’ve	adopted	 to
describe	and	enforce	these	standards.	If	you	discuss	these	parameters	in	advance,	the	factory	can	craft	the
manufacturing	process	 to	 avoid	 such	defects,	 as	opposed	 to	 the	more	expensive	alternative	of	building
extra	units	and	throwing	away	those	that	don’t	meet	criteria	imposed	late	in	the	game.
Of	 course,	 avoiding	 defects	 isn’t	 free.	 To	 keep	 your	 product	 cheaper,	 avoid	 high-gloss	 finishes	 and

consider	using	matte	or	textured	finishes	that	naturally	hide	blemishes.

Following	DFM	Helps	Your	Bottom	Line
To	imagine	DFM	in	a	real-world	scenario,	return	to	the	bicycle	safety	flasher	case	study	from	“How	to
Make	 a	 Bill	 of	Materials”	 on	 page	 74.	 Say	 the	 prototype	 design	 calls	 for	 an	 array	 of	 three	 LEDs	 in
parallel,	each	with	 its	own	resistor	 to	set	 the	current.	The	 forward	bias	voltage,	or	Vf,	of	an	LED	at	a
given	brightness	can	vary	by	perhaps	20	percent	between	devices;	in	this	case,	that	swing	is	from	2.0	to
2.5V.



A	 design	 that	 limits	 the	 current	 to	 the	 LEDs	 with	 resistors,	 called	 resistive	 current	 limiting,	 will
amplify	 this	 variation.	 This	 happens	 because	 an	 efficient	 circuit	would	 drop	 a	minority	 of	 the	 voltage
across	the	current-limiting	resistor,	leaving	the	parameter	that	sets	the	current	(the	voltage	drop	across	the
resistor)	more	sensitive	to	the	variation	in	Vf.	Since	the	brightness	of	an	LED	is	not	proportional	to	the
voltage	but	rather	the	current	flowing	through	it,	setting	the	LED	brightness	with	resistive	current	limiting
can	cause	jarring	inconsistencies	in	LED	brightness.

Comparing	high	Vf	and	low	Vf	corners

In	 this	 example,	 a	 20	 percent	 LED	 Vf	 variation	 (from	 2.0V	 to	 2.5V,	 per	 the	 LED	 manufacturer’s
specification)	 leads	 to	a	40	percent	change	 in	 the	voltage	across	a	current-set	 resistor	 for	a	 fixed	3.3V
supply.	 This	will	 cause	 a	 40	 percent	 change	 in	 the	 current	 flowing	 through	 the	 LED.	As	 brightness	 is
directly	 proportional	 to	 current,	 the	 change	 manifests	 as	 up	 to	 a	 40	 percent	 variation	 in	 perceived
brightness	 between	 individual	LEDs.	A	 design	 like	 that	may	work	well	most	 of	 the	 time;	 the	 problem
would	only	be	pronounced	when	a	high	Vf	unit	is	observed	next	to	a	low	Vf	unit.

Setting	current	for	individual	LEDs	using	resistors	can	lead	to	dramatic	variations	in	brightness.

The	 one	 or	 two	 units	 prepared	 on	 the	 lab	 bench	 during	 development	may	 have	 looked	 great,	 but	 in



production	 a	meaningful	 fraction	may	have	 such	 serious	brightness	 uniformity	 issues	 that	 units	must	 be
rejected.	As	most	large	hardware	businesses	have	to	survive	on	lean	margins,	losing	even	10	percent	of
finished	goods	to	defects	is	a	terrible	outcome.
One	stop-gap	option	is	to	rework	the	failed	units.	A	factory	can	identify	an	LED	that	is	too	dim	or	too

bright	in	an	array	and	replace	it	with	one	that	better	matches	its	cohorts.	But	that	rework	would	drive	up
costs	 and	 result	 in	 an	 unexpected	 and	 unpleasant	 invoice	 at	 the	 11th	 hour	 of	 a	manufacturing	 program.
Naive	designers	may	be	inclined	to	blame	the	factory	for	poor	quality	and	argue	over	who	should	bear	the
cost,	but	 it’s	better	 to	proactively	avoid	 these	kinds	of	problems	by	subjecting	every	design	 to	a	DFM
check	and	using	a	small	pilot	run	to	sanity-check	yield	before	punching	out	a	whole	bunch	of	units.
The	 cost	 of	 yield	 fallout	 quantifies	 how	much	money	 to	 spend	 on	 extra	 circuitry	 to	 compensate	 for

normal	component	variability.	For	example,	a	product	with	a	$10	cost	of	goods	sold	(COGS)	that	yields
80	percent	good	units	has	an	effective	cost	per	salable	unit	of	$12.50,	as	calculated	with	this	formula:

Effective	cost	=	COGS	×	total	units	built	/	yielded	units

Increasing	 the	COGS	by	$2.50	 to	 improve	yield	 to	100	percent	would	allow	you	 to	break	even.	But
using	the	same	formula,	spending	$1	extra	dollar	in	COGS	to	improve	yield	to	99	percent	would	actually
improve	the	bottom	line	by	$1.38.

A	circuit	to	set	the	current	on	three	LEDs,	created	by	applying	DFM

In	the	case	of	the	bicycle	safety	light,	that	dollar	could	be	spent	on	a	current-feedback	boost	regulator
IC	like	the	SP6699EK-L/TR,	allowing	the	LEDs	to	be	stacked	in	series	 instead	of	parallel.	The	design
would	be	far	more	complicated	and	expensive	than	using	individual	resistors,	but	it	would	guarantee	each
LED	has	a	 consistent,	 identical	 current	 flowing	 through	 it	by	driving	all	 three	LEDs	 in	a	 series	 circuit
with	a	fixed-current	feedback	loop.	That	would	virtually	eliminate	brightness	variation.	While	the	cost	of
the	boost	regulator	is	much	greater	than	the	penny	spent	on	three	current-limiting	LEDs,	the	improvement
in	manufacturing	yield	more	than	pays	for	the	extra	component	costs.	In	fact,	this	trick	is	standard	practice
for	applications	that	require	good	uniformity	of	brightness	out	of	LEDs,	such	as	in	the	backlights	of	LCD
panels.	A	typical	mobile	phone	backlight	uses	about	a	dozen	LEDs,	but,	 thanks	to	circuits	like	this,	you
never	see	light	or	dark	splotches	despite	the	large	variations	in	Vf	between	the	constituent	LEDs.

The	Product	Behind	Your	Product
Alongside	dealing	with	 tolerances,	 another	often-neglected	design	 responsibility	 is	 the	 test	program.	A
factory	can	only	detect	the	problems	it	is	instructed	to	look	for.	Therefore,	every	feature	of	a	product	must



be	 tested,	 no	matter	 how	 trivial.	 For	 example,	 on	 a	 chumby	 device,	 every	 user-facing	 feature	 had	 an
explicit	 factory	 test,	 including	 the	LCD,	 touchscreen,	audio,	microphone,	all	 the	expansion	ports	 (USB,
audio),	battery,	buttons,	knobs,	and	so	on.	I	made	sure	that	even	the	simplest	buttons	were	tested.	While
it’s	 tempting	 to	 skip	 testing	 such	 simple	 components,	 I	 guarantee	 that	 anything	 not	 tested	 will	 lead	 to
returns.
I	 like	 to	call	 the	 factory	 tester	“the	product	behind	your	product.”	That’s	because	 in	 some	cases,	 the

factory	 tester	 is	more	complicated	and	more	difficult	 to	engineer	 than	 the	product	you’re	 trying	 to	sell.
This	is	particularly	true	of	simple	products.

A	REAL-WORLD	TEST	PROGRAM
As	a	case	study,	consider	this	microcontroller	sticker	from	Chibitronics,	a	project	I	discuss	at	length	in
Chapter	8.

A	microcontroller	circuit—on	a	sticker

This	circuit	is	very	simple:	it	consists	of	just	an	8-bit	AVR	microcontroller	and	a	handful	of	resistors
and	capacitors.	(It’s	also	the	same	product	referred	to	in	the	ECO	example	on	page	84.)	My	collaborator
and	I	sketched	in	Adobe	Illustrator	for	about	two	days	before	we	derived	the	final	shape	for	this	product.
Then	we	spent	about	a	day	in	Altium	designing	the	circuit,	and	about	a	week	coding	in	the	Arduino	IDE	to
create	 its	 firmware.	 In	 all,	 the	 development	 process	 took	 about	 two	 weeks.	 For	 production,	 the
microcontroller	is	paired	with	a	set	of	sensors	that	can	process	sound,	light,	and	touch,	and	as	a	result,	the
test	program	runs	on	all	four	at	the	same	time.



The	testing	machine	for	the	Chibitronics	microcontroller	sticker

The	test	rig	pictured	consists	of	a	32-bit	ARM	computer	running	Linux	with	a	graphical	UI	rendered	on
an	HDMI	monitor.	 Behind	 this	 is	 an	 FPGA,	 some	 adapter	 electronics	 to	 create	 analog	waveforms	 for
testing,	and	a	mechanical	pogo-pin	assembly	for	touching	down	on	the	sticker.	Breaking	down	the	design
process	for	this	rig	into	its	component	parts,	we	spent:

•	Several	days	designing	in	Altium

•	A	week	programming	in	the	Xilinx	ISE	for	the	FPGA

•	A	couple	of	weeks	hacking	on	Linux	drivers

•	A	couple	of	solid	months	hacking	in	C++,	to	create	the	Qt	integration	framework

•	A	couple	of	days	in	SolidWorks,	to	create	the	mechanical	apparatus	to	hold	the	whole	thing	together

Altogether,	 creating	 the	 tester	 for	 the	microcontroller	 sticker	 took	over	 two	months,	 compared	 to	 the
two	weeks	to	create	the	product	itself.
Why	 go	 through	 all	 this	 effort?	 Because	 time	 is	 money,	 and	 defects	 and	 returns	 are	 expensive	 to

process.	The	tester	can	process	one	board	in	under	30	seconds;	and	in	those	30	seconds,	the	tester	has	to
program	two	microcontrollers;	test	sensors	for	light,	sound,	and	touch;	and	confirm	operation	at	both	5V
and	3V.	A	manual	test	for	all	these	operations	could	take	several	minutes	of	skilled	labor	and	wouldn’t	be
as	reliable.	Thanks	to	this	tester,	we	processed	zero	returns	due	to	defective	material.	Also,	the	graphical
UI	on	the	tester	makes	it	very	easy	for	the	factory	to	determine	exactly	which	point	in	the	circuit	is	failing,
facilitating	fast	rework	of	any	imperfect	material.



GUIDELINES	FOR	CREATING	A	TEST	PROGRAM
As	a	rule	of	thumb,	for	every	product	you	make,	you’re	actually	making	two	related	products:	one	for	the
end	user,	and	a	test	for	 the	factory.	In	many	ways,	 the	test	for	 the	factory	has	to	be	as	user-friendly	and
foolproof	as	the	product	 itself;	after	all,	 tests	are	not	run	by	electrical	engineers.	But	the	related	testing
product	 will	 be	 much	 quicker	 and	 faster	 to	 build	 if	 adequate	 testing	 features	 are	 designed	 into	 the
consumer	product.
And	 no,	 don’t	 outsource	 the	 test	 program	 to	 the	 factory,	 even	 if	 the	 factory	 offers	 that	 service.	 The

factory	often	won’t	understand	your	design	intent,	so	their	test	programs	will	either	be	inefficient	or	test
for	the	wrong	behavior.	Factories	also	have	an	incentive	to	pass	as	much	material	as	possible,	as	quickly
as	possible,	so	their	test	programs	tend	to	be	primitive	and	inadequate.
Here	are	some	guidelines	to	follow	when	designing	your	own	program:

Strive	for	100	percent	feature	coverage.
Don’t	 overlook	 simple	 or	 secondary	 features	 like	 status	LEDs	or	 an	 internal	 voltage	 sensor.	When
creating	the	test	list,	I	take	an	“outside/inside”	approach.	First,	look	at	the	product	from	the	outside:
list	 every	 way	 a	 consumer	 can	 interact	 with	 it.	 Does	 your	 test	 program	 address	 every	 interaction
surface,	even	if	only	superficially?	Is	every	LED	lit,	every	button	pressed,	every	sensor	stimulated,
and	every	memory	device	touched?	Has	every	bullet	point	in	your	marketing	material	been	confirmed?
Promising	“world-class”	RF	sensitivity	is	different	from	simply	advertising	the	presence	of	a	radio.
Then,	think	about	the	inside:	from	the	schematic,	look	at	every	port	and	consider	key	internal	nodes	to
monitor.	If	the	product	has	a	microcontroller,	review	which	drivers	are	loaded	to	cross-check	the	test
list,	and	make	sure	no	components	are	forgotten.

Minimize	incremental	setup	effort.
Optimize	the	amount	of	time	required	to	set	up	the	test	for	each	unit.	This	is	often	done	through	jigs
that	 employ	pogo	pins	or	 prealigned	 connector	 arrays.	A	 test	 that	 requires	 an	operator	 to	manually
probe	a	dozen	test	points	with	a	multimeter	or	insert	a	dozen	connectors	is	time-consuming	and	error-
prone.	Most	factories	in	China	can	help	design	the	jig	for	a	nominal	cost,	but	jig	design	is	easier	and
more	effective	if	the	design	itself	already	includes	adequate	test	points.

Automate	test	procedure	into	a	linear	flow.
An	ideal	test	runs	with	a	single	button	press,	and	produces	a	pass	or	fail	result.	In	practice,	there	are
always	stop	points	 that	 require	operator	 intervention,	but	 try	not	 to	 require	 too	much.	For	example,
don’t	require	an	operator	to	key	in	or	select	an	SSID	from	a	list	during	each	Wi-Fi	connectivity	test.
Instead,	fix	the	test	target’s	SSID	and	hardcode	that	value	into	a	test	script	so	the	connection	cycle	is
automatic.

Use	icons	and	colors,	not	text,	to	communicate	with	operators.
Not	every	operator	is	guaranteed	to	be	literate	in	a	given	language.

Employ	audit	logs.
Record	 test	 results	correlated	 to	device	serial	numbers	by	 incorporating	a	barcode	scanner	 into	 the
test	rig.	Alternatively,	have	the	device	print	a	coupon	with	a	unique,	 timestamped	code	or	a	 locally
stored	audit	 log	to	prove	which	units	passed	a	 test.	Logs	will	help	you	figure	out	what	went	wrong
when	a	consumer	returns	a	failed	product,	and	they	let	you	quickly	check	that	all	products	were	tested.
After	 an	 eight-hour	 shift	 of	 testing,	 an	 operator	may	make	mistakes,	 such	 as	 accidentally	 putting	 a
defective	unit	 into	the	“good”	bin.	Being	able	to	check	that	every	shipped	product	was	subjected	to



and	passed	the	full	test	can	help	you	identify	and	isolate	such	problems.

Provide	an	easy	update	mechanism.
Like	any	program,	test	programs	have	bugs.	Tests	also	need	to	evolve	as	your	product	is	patched	and
upgraded.	Have	a	mechanism	to	update	and	fix	 test	programs	without	visiting	 the	factory	 in	person.
Many	of	my	test	fixtures	can	“phone	home”	via	a	VPN,	and	I	can	SSH	into	the	jig	itself	to	fix	bugs.
Even	my	simplest	jig	employs	a	Linux	laptop	(or	equivalent)	at	its	core.	This	is	in	part	because	Linux
is	 easier	 to	update	 and	maintain	 than	 a	bespoke	microcontroller	 that	 requires	 a	 special	 adapter	 for
firmware	updates.

These	guidelines	are	easy	to	implement	if	your	product	is	designed	with	testability	in	mind.	Most	of	the
products	I	design	run	Linux,	and	I	 leverage	the	processor	 inside	the	product	 itself	 to	run	most	 tests	and
help	manage	the	test	user	interface.	For	products	that	lack	user	interaction	surfaces,	an	Android	phone	or	a
laptop	connected	via	Wi-Fi	or	serial	can	be	used	to	render	the	test	user	interface.

Testing	vs.	Validation
Production	tests	are	meant	to	check	for	assembly	errors,	not	parametric	variations	or	design	issues.	If	a
test	 is	 screening	 out	 devices	 because	 of	 normal	 parametric	 component	 variations,	 either	 buy	 better
components	or	redo	your	design.
For	consumer-grade	products,	you	don’t	need	to	run	a	five-minute	comprehensive	RAM	test	on	every

unit.	In	theory,	your	product	should	be	designed	well	enough	that	if	it’s	all	soldered	together	correctly,	the
RAM	will	do	its	job.	A	quick	test	to	check	that	there	are	no	stuck	or	open	address	pins	is	often	enough.
Name-brand	chip	vendors	typically	have	very	low	defectivity,	so	you’re	not	validating	the	silicon;	rather,
you’re	validating	the	solder	joints	and	connectors	and	checking	for	missing	or	swapped	components.	(But
if	 you	 buy	 clone	 chips	 or	 off-brand,	 remarked,	 or	 partially	 tested	 devices	 to	 cut	 costs,	 I	 recommend
making	a	mini	validation	program	for	those	components.)

VALIDATING	A	SWITCH
To	illustrate	the	difference	between	production	testing	and	validation,	let’s	look	at	how	both	might	work
for	a	switch.
A	production	test	for	a	switch	may	simply	ask	the	operator	to	hit	the	switch	a	few	times	and	verify	that

the	feel	is	right,	and	that	electrical	contact	is	made	through	a	simple	digital	indicator.	A	validation	test,	on
the	other	hand,	may	involve	selecting	a	few	devices	at	random,	measuring	the	switch	contact	resistance
with	a	multimeter	that	is	accurate	to	five	significant	digits	(also	called	a	five-digit	multimeter),	subjecting
the	devices	to	elevated	humidity	and	temperature	for	a	couple	of	days,	and	then	putting	the	devices	into	an
automated	 jig	 that	 cycles	 the	 switches	 10,000	 times.	 Finally,	 you	 might	 remeasure	 the	 switch	 contact
resistance	with	a	five-digit	multimeter	and	note	any	degradation	in	close-state	contact	resistance.
Clearly,	 this	 level	 of	 validation	 can’t	 be	 performed	 on	 every	 device	 manufactured.	 Rather,	 the

validation	 program	 evaluates	 the	 switch’s	 performance	 over	 the	 expected	 lifetime	 of	 the	 product.	 The
production	test,	on	the	other	hand,	just	makes	sure	the	switch	is	put	together	right.

NOTE

It’s	good	practice	to	rerun	validation	tests	on	a	couple	of	randomly	sampled	units	out	of	every
several	thousand	units	produced.	There	are	formulas	and	tables	you	can	use	to	compute	how	much



sampling	you	need	to	achieve	a	certain	level	of	quality;	just	search	online	for	“manufacturing
validation	test	table.”

But	 how	much	 testing	 is	 enough?	You	 can	 derive	 one	 threshold	 for	 testing	 through	 a	 cost	 argument.
Every	additional	test	run	incurs	equipment	costs,	engineering	costs,	and	the	variable	cost	of	the	test	time.
As	 a	 result,	 testing	 is	 subject	 to	 diminishing	 returns:	 at	 some	point,	 it’s	 cheaper	 just	 to	 take	 a	 product
return	 than	 to	 test	 more.	 Naturally,	 the	 testing	 bar	 is	 much	 higher	 for	 medical	 or	 industrial-grade
equipment,	 as	 the	 liability	 associated	 with	 faulty	 equipment	 is	 also	 much	 higher.	 Likewise,	 a	 novelty
product	meant	to	be	given	away	may	need	much	less	testing.

DESIGNING	YOUR	TEST	JIG
A	final	thought:	always	apply	solid	engineering	to	your	test	jig	design.	When	I	worked	on	the	chumby	8,
there	 was	 a	 problem	where	 a	 50-pin	 flat	 flex	 cable	 adapter	 was	 exhibiting	 random	 cold-solder-joint
failures.	I	asked	the	factory	to	build	a	test	to	validate	the	adapters.	Their	solution	was	to	hang	LEDs	from
every	pin	of	the	adapter,	apply	a	test	voltage	to	one	side	of	the	cable,	and	look	for	LEDs	that	didn’t	light
on	the	other	side.	The	cold	solder	 joints	weren’t	simply	open	or	closed;	some	just	had	high	resistance.
Enough	current	would	flow	to	light	an	LED,	yet	there	was	also	enough	resistance	to	cause	a	fault	in	the
design.
The	 factory	proposed	buying	50	multimeters	 and	 attaching	 them	 to	 every	pin	 to	 check	 the	 resistance

manually,	which	would	have	been	expensive	and	error-prone.	It’s	not	reasonable	to	expect	an	operator	to
look	at	50	displays	hundreds	of	times	a	day	and	be	able	to	reliably	find	the	out-of-spec	numbers.	Instead,	I
chose	 to	 daisy-chain	 the	 connections	 across	 the	 adapter	 and	 use	 a	 single	 multimeter	 to	 check	 the	 net
resistance	of	the	daisy	chain.	By	putting	the	connections	in	series,	I	could	check	all	50	connections	with	a
single	numeric	measurement,	as	opposed	to	the	subjective	observation	of	an	LED’s	brightness.
As	this	case	illustrates,	there	are	good	and	bad	ways	to	implement	even	a	test	as	simple	as	checking	for

cold	solder	joints	on	a	cable	adapter.	Ever	more	complicated	components	require	ever	more	subtle	tests,
and	there’s	real	value	in	using	engineering	skills	to	craft	efficient	yet	foolproof	tests.

FINDING	BALANCE	IN	INDUSTRIAL	DESIGN
Even	 if	 your	 product	 passes	 all	 validation	 tests	 with	 flying	 colors,	 it	 still	 may	 not	 be	 successful	 if
consumers	don’t	want	it.	Remember:	sex	sells.	To	within	a	factor	of	two	or	so,	the	performance	of	a	CPU
or	amount	of	RAM	in	a	box	 is	 less	 important	 to	a	 typical	 consumer	 than	how	 the	device	 looks.	Apple
devices	 command	 a	 hefty	 premium	 in	 part	 because	 of	 their	 slick	 industrial	 design,	 and	many	 product
designers	 aim	 to	 emulate	 the	 success	 of	 Sir	 Jonathan	 Ive,	 Apple’s	 chief	 design	 officer,	 in	 their	 own
products.
There	are	many	schools	of	thought	in	 industrial	design,	 the	process	of	designing	how	a	product	will

look	before	actually	making	it.	One	school	invokes	the	monastic	designer,	who	creates	a	beautiful,	pure
concept,	and	the	production	engineers,	who	spoil	the	design’s	purity	when	they	tweak	it	for	functionality.
Another	school	invokes	the	pragmatic	designer,	who	works	closely	with	production	engineers	to	hammer
out	gritty	compromises	to	produce	an	inexpensive	and	high-yielding	design.
In	 my	 experience,	 neither	 extreme	 is	 compelling.	 The	 monastic	 approach	 often	 results	 in	 an

unmanufacturable	product	that	is	either	late	to	market	or	expensive	to	produce.	The	pragmatist	approach
often	 results	 in	 a	 product	 that	 looks	 and	 feels	 so	 cheap	 that	 consumers	 have	 trouble	 assigning	 it	 a



significant	value.	The	real	trick	is	understanding	how	to	strike	a	balance	between	the	two,	and	it	begins	by
getting	into	the	factory	and	understanding	how	things	are	done.	Here’s	a	couple	of	examples	of	what	I’ve
learned	about	how	different	factory	processes	affect	that	balance,	from	Chumby	and	Arduino.

The	chumby	One’s	Trim	and	Finish
Trim	and	finish	are	difficult,	making	them	points	of	distinction	in	a	product’s	appearance.	When	I	worked
at	Chumby,	we	wanted	the	final	product	to	have	a	minimalist,	honest	finish.	(Honest	finishes	 feature	 the
natural	properties	of	 the	material	systems	in	play	and	eschew	the	use	of	paints	and	decals.)	Minimalist
designs	are	very	hard	to	manufacture	because	with	fewer	features,	even	tiny	blemishes	stand	out.	Honest
finishes	can	be	difficult,	too,	as	all	the	burs,	gates,	sinks,	knits,	scoring,	and	flow	lines	that	are	facts	of	life
in	manufacturing	 are	 laid	 naked	before	 the	 consumer.	As	 a	 result,	 this	 school	 of	 design	 requires	well-
made	manufacturing	tools	that	are	constantly	checked	and	maintained	throughout	production.
If	you	don’t	have	pockets	deep	enough	to	invest	in	new	equipment	and	capabilities	on	behalf	of	your

factory	(that	is,	if	you’re	not	a	Fortune	500	company),	the	first	step	is	to	learn	the	vocabulary	available.	A
design	vocabulary	is	defined	by	the	capabilities	of	the	factory	or	factories	producing	the	goods,	like	what
materials	 you	 can	 obtain,	 what	 finish	 is	 possible,	 what	 tolerances	 are	 achievable,	 and	what	 fastening
technology	exists.	These	are	all	heavily	dependent	upon	the	processes	available	to	your	factory.
Therefore,	I	find	that	visiting	a	factory	in	person	early	in	the	design	process	results	in	a	better	design.

After	a	factory	visit,	you’ll	discard	some	design	vocabulary,	but	you’ll	discover	some	new	vocabulary	as
well.	The	engineers	who	work	in	the	factory	day	in	and	day	out	develop	process	innovations	that	can	open
up	novel	design	possibilities	that	you	won’t	discover	unless	you	visit.
The	 chumby	One	 is	 a	 concrete	 example	 of	 the	 impact	 manufacturing	 processes	 can	 have	 on	 design

outcome.	 In	 the	 original	 concept	 art,	 a	 blue	 highlight	 was	 added	 around	 the	 front	 edge	 to	 resemble	 a
speech	balloon,	like	those	used	in	comic	strips.	The	idea	was	that	the	chumby	would	caption	your	world
with	snippets	from	the	internet.



A	finished	chumby	One	unit

But	applying	a	blue	trim	across	a	raised	surface	was	very	hard.	The	first	factory	used	paint,	because	the
front	 edge	 wasn’t	 flat	 enough	 to	 make	 silk	 screening	 an	 option.	Pad	 printing	 (also	 known	 as	 tampo
printing,	 a	 process	 in	 which	 ink	 is	 transferred	 from	 a	 silicone	 pad	 to	 an	 object)	 can	 handle	 curved
surfaces,	but	the	alignment	of	the	ridge	on	the	chumby	One	wasn’t	good	enough,	and	the	tiniest	ink	bleed
over	the	edge	looked	terrible	from	the	side.	Decals	and	stickers	likewise	couldn’t	achieve	the	alignment
we	 wanted.	 In	 the	 end,	 a	 small	 channel	 was	 carved	 to	 contain	 the	 paint,	 and	 the	 factory	 created	 the
highlight	with	a	stencil	and	spray	paint.
The	yield	was	terrible.	In	some	lots,	over	40	percent	of	the	chumby	One	cases	were	thrown	away	due

to	painting	errors.	Fortunately,	plastic	is	cheap,	so	throwing	away	every	other	case	after	painting	had	a	net
cost	impact	of	about	$0.35.



Two	chumby	One	units	with	bad	paint	jobs

Midway	through	production,	we	started	producing	chumby	One	units	 in	a	second-source	facility.	The
second	factory	had	different	plastic	molding	equipment,	and	unlike	the	first	factory,	this	facility	could	do
double-shot	molds.	 A	 double-shot	mold	 involves	 twice	 the	 number	 of	 tools	 of	 a	 single-shot	 injection
mold,	but	it	can	injection-mold	two	different	colors,	or	even	two	different	materials,	into	the	same	mold.
At	the	new	factory,	we	tried	a	double-shot	process	instead	of	painting	for	the	thin	blue	strip.

A	perfect	chumby	One	ridge,	from	the	double-injection	mold	process

The	 results	were	 stunning.	Every	unit	 came	off	 the	 line	with	a	 crisp	blue	 line,	 and	no	paint	meant	 a
cleaner,	 more	 honest	 finish.	 But	 the	 cost	 per	 case	 jumped	 to	 $0.94	 apiece	 with	 the	 more	 expensive
process,	despite	the	100	percent	yield.	It	would	have	been	cheaper	to	throw	away	more	than	half	of	the
painted	cases,	but	even	the	best	painted	cases	could	not	compare	to	the	quality	of	the	finish	delivered	by



the	double-shot	tool.

The	Arduino	Uno’s	Silkscreen	Art
Another	 great	 example	 of	 how	 tweaking	 a	 factory	 process	 can	 improve	 a	 product’s	 appearance	 is	 the
Arduino	motherboard.	The	wonderfully	detailed	artwork	on	the	back	side,	sporting	an	outline	of	Italy	and
very	 fine	 lettering,	 isn’t	 silkscreen.	The	 factory	 that	makes	 these	boards	 actually	puts	on	 two	 layers	of
soldermask:	one	blue	and	one	white.

The	underside	of	an	Arduino	Uno	R3

When	Arduino	boards	are	manufactured,	soldermask	is	applied	through	the	photolithographic	process	I
described	in	“Where	Arduinos	Are	Born”	on	page	44.	This	process	results	in	artwork	with	much	better
resolution,	consistency,	and	alignment	than	a	silkscreen.	And	since	an	Arduino’s	look	is	the	circuit	board,
this	art	gives	the	product	a	distinctive,	high-quality	appearance	that	is	difficult	to	copy	using	conventional
processing	methods.
Thus,	the	process	capability	of	a	factory	(whether	it’s	painting	versus	double-shot	molding,	or	double

soldermasking	versus	 silkscreening)	 can	have	 a	 real	 effect	 on	 a	 product’s	 perceived	quality,	without	 a
huge	impact	on	cost.	The	factory,	however,	may	not	appreciate	the	full	potential	of	its	processes,	and	until
a	designer	interacts	with	the	facility	directly,	your	product	can’t	harness	that	potential,	either.
Unfortunately,	many	designers	don’t	visit	a	factory	until	something	has	gone	wrong.	At	 that	point,	 the

tools	are	cut,	and	even	if	you	discover	a	cool	process	that	could	solve	all	your	problems,	it’s	often	too
late.

My	Design	Process



Design	is	an	intensely	personal	activity,	and	as	a	result,	every	designer	will	develop	their	own	process.	If
you	 need	 a	 framework	 for	 developing	 your	 own,	 however,	 this	 is	 the	 general	 process	 I	 might	 use	 to
develop	a	product	on	a	tight,	startup	budget:

1.	 Start	with	a	sketchbook.	Decide	on	the	soul	and	identity	of	the	design,	and	pick	a	material	system	and
vocabulary	that	suits	your	concept.	But	don’t	fall	in	love	with	it,	because	it	may	have	to	change.

2.	 Break	down	the	design	by	material	system,	and	identify	a	factory	capable	of	producing	each	material
system.

3.	 Visit	the	facility,	and	note	what	is	actually	running	down	the	production	lines.	Don’t	assume	anything
based	on	the	one-off	units	from	the	sample	room.	Practice	makes	perfect,	and	from	the	operators	to
the	 engineers,	 factory	 workers	 execute	 procedures	 they	 do	 daily	much	 better	 than	 they	 would	 an
arcane	capability	they	don’t	use	often.

4.	 Reevaluate	your	design	based	on	a	new	understanding	of	what’s	possible	at	the	factory,	and	iterate.
Go	 back	 to	 step	 1	 if	 small	 tweaks	 aren’t	 enough.	 This	 is	 the	 stage	 when	 it’s	 easiest	 to	 make
compromises	without	sacrificing	the	purity	of	your	design.

5.	 Rough	out	 the	details	of	your	design.	Pick	sliding	surfaces,	parting	 lines	where	pieces	of	 the	case
snap	together,	finishes,	fastening	systems,	and	so	on	based	on	what	the	factory	can	do	best.

6.	 Pass	a	revised	drawing	 to	 the	factory,	and	work	with	 them	to	finalize	details	such	as	draft	angles,
fastening	surfaces,	internal	ribbing,	and	so	on.

7.	 Validate	the	design	using	a	3D	print	and	extensive	3D	model	checks.

8.	 Identify	features	prone	to	tolerance	errors,	and	trim	the	initial	manufacturing	tool	so	that	the	tolerance
favors	modifications	that	will	help	you	minimize	costly	changes	to	the	tool.	For	example,	consider
injection	molding,	where	a	steel	tool	is	the	negative	of	the	plastic	it’s	molding.	Removing	steel	from
a	tool	(adding	plastic)	is	easier	than	adding	steel	(removing	plastic),	so	target	the	initial	test	shot	to
use	 more	 steel	 on	 critical	 dimensions,	 as	 opposed	 to	 too	 little.	 A	 button	 is	 one	 mechanism	 that
benefits	 from	tuning	 like	 this:	predicting	exactly	how	a	button	will	 feel	 from	CAD	or	3D	prints	 is
hard,	and	perfecting	the	tactile	feel	usually	requires	a	little	trimming	of	the	tool.

Of	course,	this	process	isn’t	a	set	of	hard	rules	to	follow.	You	may	need	to	add	or	repeat	steps	based	on
your	experience	with	your	factory,	but	if	you	choose	a	good	factory,	this	should	be	a	good	starting	point.

PICKING	(AND	MAINTAINING)	A	PARTNER
Just	like	the	wands	from	Harry	Potter,	a	good	factory	chooses	you	as	much	as	you	choose	it,	so	forget	the
term	vendor	and	replace	it	with	partner.	If	you’re	doing	it	right,	you	aren’t	simply	instructing	the	factory;
there	should	be	a	frank	dialogue	about	the	trade-offs	involved	and	how	the	manufacturing	process	can	be
improved.	That’s	the	only	way	to	get	the	best	product	possible.
A	healthy	relationship	with	a	factory	can	also	lead	to	better	payment	terms,	which	improves	your	cash

flow.	 In	 some	cases,	 factory	credit	 can	directly	 replace	 raising	venture	capital,	 taking	 loans,	or	getting
Kickstarter	funding.	As	a	result,	I	treat	good	factories	with	the	same	respect	as	investors	and	partners	in	a
business.	 For	 an	 idea	 of	 what	 that	 means,	 here	 are	 some	 tips	 on	 how	 to	 choose	 and	 work	 with	 your
factory.



Tips	for	Forming	a	Relationship	with	a	Factory
First,	 pick	 the	 right-sized	 factory	 for	 your	 product.	 If	 you	work	with	 a	 factory	 that’s	 too	 big,	 you	 risk
getting	 lost	 in	bureaucracy	and	pushed	out	of	 the	production	 line	by	bigger	 customers	at	 critical	 times.
Work	with	a	factory	too	small,	and	it	won’t	be	able	to	provide	the	services	you	need.	As	a	rule,	I	pick	the
biggest	facility	where	I	can	get	direct	access	to	the	lao	ban	(factory	boss)	on	a	regular	basis,	because	if
you	can’t	talk	to	the	boss,	you’re	nobody.	It’s	a	good	sign	if	the	lao	ban	is	there	on	the	first	meeting	to	give
you	a	tour	and	asks	astute	questions	about	your	business	over	lunch.
Second,	 follow	 the	 adage	 “Sunlight	 is	 the	 best	 disinfectant.”	 If	 a	 factory	won’t	 quote	with	 an	 open

BOM,	where	the	cost	of	every	component,	process,	and	margin	is	explicitly	disclosed,	I	won’t	work	with
them.	Cost	reduction	discussions	cannot	function	without	transparency,	because	there	are	too	many	places
to	bury	costs	otherwise.	Likewise,	if	cost	discussions	turn	into	a	game	of	whack-a-mole,	where	reduced
costs	on	one	line	item	are	inexplicably	popping	up	in	another,	run	away.
This	final	tip	applies	primarily	to	startups.	In	your	early	stages,	everyone	knows	your	cash	supplies	are

finite.	Even	if	you’ve	just	closed	a	big	round	of	financing,	swaggering	into	a	factory	with	money	bags	is
not	a	sustainable	approach.	Smart	factories	know	your	cash	supplies	are	limited,	and	if	the	greatest	value
you	propose	to	bring	to	the	factory	is	piles	of	money,	your	value	is	limited;	in	the	best	case,	it	won’t	really
pay	out	until	years	down	the	road	when	the	product	is	shipping	in	high	volumes.	As	a	result,	it’s	helpful	to
try	to	deliver	value	to	the	factory	in	nonmonetary	ways.
As	silly	as	it	sounds,	being	a	pleasant	and	constructive	person	goes	a	long	way	in	currying	the	favor	of

your	facility.	Manufacturing	is	a	high-stress,	low-margin	business,	and	everyone	in	the	facility	has	to	deal
with	difficult	problems	all	day.	I	find	I	get	better	service—even	better	than	customers	with	deeper	pockets
—if	 I	 treat	 my	 factories	 as	 I	 would	 treat	 a	 friendly	 acquaintance,	 and	 not	 as	 slave	 labor	 or	 a	 mere
subcontractor.	Mistakes	 happen,	 and	 being	 able	 to	 turn	 a	 bad	 situation	 into	 a	 learning	 experience	will
benefit	you	on	the	day	you	make	a	stupid	(and	perhaps	expensive)	mistake.

Tips	on	Quotations
Openness	aside,	know	that	if	a	quote	seems	too	good	to	be	true,	it	often	is.	When	negotiating	prices	with	a
factory,	step	back	and	check	 if	 the	quote	makes	sense.	Factories	 that	 lose	money	on	a	deal	will	stop	at
nothing	to	make	it	back,	and	many	manufacturing	horror	stories	have	roots	in	unhealthy	cost	structures.	A
factory’s	first	prerogative	is	survival,	even	if	that	means	mixing	defective	units	into	lots	to	boost	margin,
or	assigning	novice	engineers	 to	a	flagging	project	 to	better	monetize	 their	seasoned	engineers	on	more
profitable	customers.
As	you	evaluate	a	quote,	make	sure	it	includes	the	following:

•	The	price	of	each	part

•	The	excess	material	for	the	job	due	to	minimum	order	quantities	(MOQs)

•	Labor	costs

•	The	factory’s	overhead	cost

•	Nonrecurring	engineering	(NRE)	fees

Let’s	look	at	a	few	of	these	items	in	detail.



KEEPING	AN	EYE	ON	EXCESS
Excess	 is	the	result	of	what	I	call	the	“hot	dogs	and	buns”	problem.	Hot	dogs	come	in	packs	of	10,	but
buns	come	in	packs	of	8.	Unless	you	buy	40	servings,	you’ll	have	leftover	buns	or	hot	dogs.
Likewise,	many	components	only	come	in	3,000-piece	reels.	A	10,000-piece	build	requires	4	reels	for

a	 total	of	12,000	pieces,	 leaving	2,000	pieces	of	excess.	Factories	can	buy	parts	 in	cut	 tape	or	partial
reels,	but	 the	cost	per	part	of	cut	 tape	 is	much	higher,	as	 the	 risk	of	excess	material	 is	 shifted	onto	 the
distributor.
Excess	 isn’t	 all	 bad,	 though:	 it	 can	be	 folded	 into	 future	 runs	of	 a	product.	As	 long	as	your	product

sustains	a	decent	production	rate,	excess	component	inventory	should	turn	into	cash	on	a	regular	basis.	At
some	point,	however,	production	will	end	or	pause,	and	the	bill	for	the	excess	will	arrive,	putting	a	crimp
on	cash	flow.	If	a	quote	lacks	an	excess	column,	the	factory	may	charge	you	for	the	full	reel	but	keep	the
excess	for	their	own	purposes;	this	is	where	many	of	the	gray-market	goods	in	Shenzhen	come	from.	They
may	also	just	send	an	unexpected	invoice	for	it	down	the	road,	which	often	arrives	at	the	worst	possible
time—revenue	 from	 the	 product	 has	 already	 ceased,	 but	 bills	 keep	 coming	 in.	 Either	way,	 it’s	 best	 to
know	up	front	the	complete	cradle-to-grave	business	model.

FIGURING	OUT	LABOR	COSTS
Labor	costs	are	devilishly	tricky	to	estimate,	but	the	good	news	is	that	for	high-tech	assemblies,	labor	is
typically	a	small	fraction	of	total	cost.	The	labor	cost	of	assembling	small	volumes	of	a	straightforward
board	with	200	parts	may	be	about	$2	or	$3	in	China,	while	the	cost	of	assembling	in	the	United	States	is
closer	to	$20	or	$30.	Even	if	labor	prices	double	overnight	in	China	and	halve	in	the	United	States,	China
may	still	be	competitive.
This	 is	 in	 contrast	 to	 the	 lower-value	 goods	moving	out	 of	China	 (such	 as	 textiles),	where	 the	 base

value	of	the	raw	material	is	already	low,	so	labor	costs	are	a	significant	portion	of	the	final	product	cost.
I	usually	don’t	argue	much	over	labor	costs,	since	the	end	result	of	scrimping	on	labor	is	often	lowered
quality,	and	pushing	too	hard	on	labor	costs	can	force	the	factory	to	reduce	the	workers’	quality	of	life	by
trimming	benefits.

THE	FACTORY’S	OVERHEAD
Negotiating	factory	margin	is	also	a	bit	of	an	art,	and	there	are	no	hard-and-fast	rules.	I’ll	give	guidance
here,	but	there	are	always	exceptions	to	the	rule,	and	every	factory	can	cut	you	a	special	deal	depending
on	the	circumstances.	Ultimately,	it’s	important	to	look	at	the	big	picture	when	reviewing	a	factory’s	quote
and	use	some	common	sense.
What	constitutes	a	fair	margin	for	a	factory	depends	on	how	much	value	it	adds	to	your	product,	and	the

volume	of	production.	The	definition	of	“margin”	also	varies	depending	on	 the	 facility.	Some	facilities
include	 scrap,	 handling	 overhead,	 and	 even	 research	 and	 development	 expenses	 in	 the	 margin,	 while
others	may	break	those	out	on	separate	lines.
In	 general,	 margin	 ranges	 between	 single-digit	 and	 low	 double-digit	 percentages,	 depending	 upon

volume,	 value	 add,	 and	 project	 complexity.	 For	 very	 low-quantity	 production	 lots	 (fewer	 than	 1,000
pieces),	you	may	also	be	charged	a	per-lot	 line	 fee.	This	 fee	partially	defrays	 the	cost	of	setting	up	an
assembly	line	only	to	tear	it	down	after	a	couple	of	hours.	A	line’s	throughput	may	be	very	fast,	producing
hundreds	to	thousands	of	units	a	day,	but	it	also	takes	days	to	set	up.



NONRECURRING	ENGINEERING	COSTS
NRE	costs	are	onetime	fees	required	to	set	up	a	production	run,	such	a	stencils,	SMT	programming,	jigs,
and	test	equipment.	Note	that	reusing	test	equipment	between	customers	is	considered	bad	practice;	if	a
multimeter	is	required	as	part	of	a	production	test,	don’t	be	surprised	if	a	bill	for	a	multimeter	is	tacked
onto	 the	 NRE.	 Customers	 have	 drastically	 varying	 standards	 around	 the	 maintenance	 and	 use	 of	 test
equipment,	so	good	factories	don’t	take	chances	with	it.

Miscellaneous	Advice
Who	 you	 can	 talk	 to	 and	 how	 open	 the	 factory	 is	 about	 costs	 are	 certainly	 key	 concerns,	 but	 with
experience,	 you’ll	 learn	 a	 lot	 more	 about	 dealing	 with	 factories	 that	 doesn’t	 fall	 into	 any	 particular
category.	To	close,	here	are	a	few	more	important	points	to	keep	in	mind	when	selecting	a	factory.

SCRAP	AND	YIELD
Ideally,	 you’d	 pay	 a	 factory	 only	 for	 good,	 delivered	 items,	 and	 the	 factory	would	 bear	 the	 burden	 of
defective	units.	This	gives	the	factory	an	incentive	to	maintain	a	high	production	quality,	because	every
percent	of	defectiveness	eats	away	at	its	margin.	But	if	your	design	has	a	flaw	or	is	too	hard	to	build,	and
defectiveness	is	high,	 the	factory	may	start	shipping	lower-quality	units	as	a	desperate	measure	to	meet
production	and	margin	targets.	It	may	also	start	selling	defective	goods	on	the	gray	market	to	recover	cost,
leading	to	brand	reputation	problems	down	the	road.
To	avoid	situations	like	that,	reach	an	understanding	with	the	factory	ahead	of	time	on	how	to	handle

scrap	units	or	exceptional	yield	loss.	This	may	include,	for	example,	a	dedicated	“scrap”	line	item	inside
the	quotation	to	handle	defectiveness	explicitly.

ORDER	MORE	UNITS	THAN	THE	PROVEN	DEMAND
Despite	 everyone’s	 best	 efforts,	mistakes	will	 happen,	 customers	will	 receive	 bad	devices,	 and	you’ll
want	 extra	 working	 units	 for	 returns	 and	 exchanges.	 Ordering	 1,000	 pieces	 to	 fulfill	 a	 1,000-piece
Kickstarter	campaign	means	if	customers	want	to	return	or	exchange	units	that	were	broken	in	shipping,
all	you	can	do	is	issue	refunds.	It’s	just	not	practical	to	fire	up	the	factory	to	make	a	dozen	replacement
units.
As	 a	 general	 rule,	 I	 order	 a	 few	 percent	 excess	 beyond	 the	 number	 of	 units	 I	 need	 to	 deliver	 to

customers,	 to	 have	 stock	 on	 hand	 to	 handle	 returns	 and	 exchanges.	Units	 that	 don’t	 get	 used	 up	 by	 the
returns	process	can	be	turned	into	demo	loaners	or	business	development	giveaways	to	drum	up	the	next
set	of	orders!

SHIPPING	COSTS	MONEY
Keep	an	eye	on	shipping	costs.	These	fees	aren’t	typically	built	into	a	factory’s	quotation,	but	they	impact
your	bottom	line,	even	more	so	for	low-volume	products.	Shipping	FedEx	is	a	great	way	to	save	time,	but
it’s	also	very	expensive.	Courier	fees	can	easily	wash	out	the	profit	on	a	small	project,	so	manage	those
costs.

NOTE



Couriers	offer	discounts	to	frequent	shippers,	but	you	have	to	call	in	to	negotiate	the	special	rates.

FACTOR	IN	IMPORT	DUTIES
Components	imported	to	China	without	an	import	license	are	levied	a	roughly	20	percent	compulsory	duty
on	 their	 value.	 The	 general	 rule	 for	 China	 is	 dutiable	 on	 import,	 duty	 free	 on	 export.	 If	 something	 is
accidentally	shipped	across	the	border	to	Hong	Kong,	expect	to	pay	a	duty	to	get	it	back	into	China,	too.
Get	a	customs	broker	to	work	angles	for	saving	money;	for	example,	some	brokers	can	get	goods	taxed

by	their	weight	and	not	their	value,	which	for	microelectronics	is	typically	a	good	deal.	I	haven’t	figured
out	all	 the	customs	rules,	as	 they	seem	to	be	a	moving	target.	Every	month	 it	seems	there’s	a	new	rule,
fine,	exceptional	fee,	or	tariff	to	deal	with.	There	are	also	plenty	of	shady	ways	to	get	goods	into	China,
but	I	sleep	better	at	night	knowing	I	do	my	best	to	comply	with	every	rule.
Quotations	 don’t	 include	 duties,	 because	 factories	 assume	 by	 default	 that	 you	 will	 have	 an	 import

license.	 Import	 licenses	 enable	 the	duty-free	 import	of	goods.	But	 import	 licenses	 cost	 a	 few	 thousand
bucks,	take	weeks	to	process,	and	have	no	room	for	flexibility,	as	they	are	tied	to	an	exact	BOM	for	the
product.	Small	engineering	change	orders	can	invalidate	an	import	license.	I’ve	known	customs	officers
to	count	the	number	of	decoupling	caps	on	a	PCB,	and	if	it	doesn’t	match	the	count	in	the	license,	a	fine	is
levied	and	the	license	is	 invalidated.	Even	deviations	in	 the	material	used	to	 line	a	decorative	box	can
invalidate	a	license.	In	short,	this	import	license	scheme	favors	high-volume	products,	and	punishes	low-
volume	producers,	so	tread	lightly.

CLOSING	THOUGHTS
Going	 to	China	 for	manufacturing	 clearly	 isn’t	 for	 everyone.	Particularly	 if	 you’re	based	 in	 the	United
States,	the	overhead	of	courier	fees,	travel,	duties,	and	late-night	conference	calls	adds	up	rapidly.	As	a
rule	of	 thumb,	 a	 small	US-based	company	 is	often	better	off	 assembling	PCBs	 in	 the	United	States	 for
volumes	under	1,000	units,	and	you	won’t	start	seeing	clear	advantages	until	volumes	of	perhaps	5,000	to
10,000	units.
That	math	shifts	in	China’s	favor	as	processes	like	injection	molding	and	chassis	assembly	come	into

play,	due	to	the	expertise	Chinese	factories	have	in	these	labor-intensive	processes.	The	break-even	point
can	also	be	much	lower	if	you	live	in	or	near	China,	as	courier	fees,	travel,	and	time-zone	impact	are	all	a
small	fraction	of	what	they’d	be	from	the	United	States.	This	compounds	with	the	fact	that	locals	are	more
effective	at	leveraging	the	component	ecosystem	in	China,	leading	to	further	cost	reductions	compared	to
a	design	produced	using	only	US	parts.
On	the	other	hand,	physically	large	assemblies	or	systems	built	using	lots	of	dutiable	components	may

be	cheaper	to	build	domestically,	as	they	save	on	shipping	costs	and	tariffs.	In	the	end,	keep	an	open	mind
and	try	to	consider	all	the	possible	secondary	costs	and	benefits	of	domestic	versus	foreign	manufacturing
before	deciding	where	to	park	production.



Part	2
thinking	differently:	intellectual	property	in
china
China	has	a	reputation	for	lax	enforcement	of	intellectual	property	(IP)	laws,	and	that	leads	to	problems
like	fake	and	copycat	products.	This	part	of	the	book	takes	a	nuanced	look	at	China’s	IP	ecosystem	and
finds	a	novel	way	to	reward	innovation	that	serves	as	an	alternative	to	traditional	Western	IP	practices.
First,	 consider	 this	 question:	what,	 exactly,	 constitutes	 a	 fake?	 It	 seems	 relatively	 straightforward	 to

answer;	anything	 that’s	not	an	original	must	be	a	 fake.	The	situation	becomes	muddied,	however,	when
you	consider	the	possibility	that	some	contract	manufacturers	produce	fakes	by	running	a	ghost	shift,	an
after-hours	production	 run	not	 reported	 to	 the	product’s	brand	owner.	These	 items	are	produced	on	 the
same	equipment,	by	the	same	people,	and	with	the	same	procedures	as	 the	original	product,	but	 they’re
sold	directly	to	customers	at	a	much	higher	margin	to	the	manufacturer.
In	 fact,	 the	 spectrum	 of	 fakes	 runs	 an	 entire	 gamut	 of	 possibilities.	 Used	 and	 damaged	 goods	 get

upcycled;	production	rejects	with	minor	flaws	are	refurbished	and	sold	as	originals;	original	products	get
relabeled	 to	 advertise	 a	 higher	 capability	 or	 capacity	 (for	 example,	 memory	 cards	 with	 4GB	 actual
capacity	are	sold	as	8GB),	and	so	on.	Chapter	4	relates	several	encounters	I’ve	had	with	fake	goods	in
China,	and	dives	into	the	issues	and	incentives	enabling	the	rise	of	such	fakes.
Cloning	and	copying	are	also	common	practices	in	China.	A	nebulous	and	sometimes	shadowy	group	of

rogue	innovators	known	as	shanzhai	creates	products	that	attempt	to	mimic	the	features	and	function	of	an
original	product,	often	with	assistance	from	the	original’s	blueprints.	But	the	clones	are	heavily	modified
to	save	cost	or	include	unique	features.	Often,	the	most	offensive	aspect	of	the	practice	is	the	use	of	the
original	product’s	brands	and	trade	dress	on	the	clones.	Aside	from	trademark	violations,	a	look	inside
the	products	reveals	an	incredible	amount	of	original	engineering	and	innovation.
Dismissing	the	shanzhai	as	mere	thieves	and	copycats	overlooks	the	fact	that	they	can	achieve	what	few

Western	 companies	 can:	 they	 can	 build	 complete	 mobile	 phones,	 and	 on	 a	 shoestring	 budget	 to	 boot.
Chapter	5	takes	a	deep	dive	into	a	prime	example	of	shanzhai	engineering,	a	feature	phone	designed	for
emerging	markets	that	costs	under	$10.	The	phone	is	a	tour	de	force	of	cost	reduction	and	a	fresh	look	at
ways	of	building	to	address	markets	that	are	untouchable	with	Western	engineering	practices.
One	of	 the	most	 insightful	 lean	 engineering	practices	 enabling	 the	 creation	of	 complex	 systems	on	 a

shoestring	budget	is	the	shanzhai	method	for	sharing	IP.	I’ll	explore	this	by	comparing	and	contrasting	the
Western	notion	of	open	 source	with	 the	 shanzhai	method,	which	 I	 refer	 to	as	gongkai.	 In	Western	 law,
open	source	has	a	formal	definition,	referring	specifically	to	an	IP	sharing	system	governed	by	an	explicit
license	 to	 share.	 This	 license	 is	 granted	 by	 the	 copyright	 holder,	 often	 with	 significant	 commercial
restrictions.	Open	source	advocates	vigorously	defend	this	notion	and	are	quick	to	dis-avow	any	IP	that
doesn’t	explicitly	use	an	approved	license.
In	gongkai,	if	you	can	obtain	a	copy	of	the	blueprints,	you	can	use	them	as	you	please;	it	doesn’t	matter

who	 made	 them.	 Yet	 people	 still	 share	 their	 ideas	 because	 the	 blueprints	 act	 as	 an	 advertisement.
Blueprints	often	refer	explicitly	to	certain	chips	or	contain	contact	information	for	the	firm	that	drew	them.
The	creators	hope	circulating	their	blueprints	will	bring	business	to	their	factory	when	people	order	parts
or	sub-assemblies	referenced	within,	or	when	people	call	their	firm	to	improve	or	customize	the	design.



In	other	cases,	blueprints	are	traded.	For	example,	there	are	bulletin	board	exchanges	where	before	you
download	a	blueprint,	you	must	contribute	one	of	your	own.
In	 short,	 the	 gongkai	 IP	 ecosystem	 is	 a	 variant	 of	 the	 ad-driven	 business	 model,	 but	 optimized	 for

hardware-oriented	businesses.	Just	as	Google	provides	high-quality	search,	email,	and	mapping	services
for	free	 in	exchange	for	showing	ads,	shanzhai	 innovators	share	 ideas	 to	 land	follow-up	orders	 in	 their
factories.
Here	 lies	 a	 key	 distinction	 between	 most	 Western	 innovators	 and	 their	 counterparts	 in	 Shenzhen:

everyone	who	 is	 anyone	 in	 Shenzhen	 owns	 or	 has	 close	 ties	 to	 a	 factory.	 The	 fastest	 path	 to	material
wealth	is	selling	more	product.	Arguing	over	who	has	rights	to	abstract	ideas	is	a	waste	of	effort	best	left
for	baijiu-fueled	discussions	after	dinner.*	On	the	opposite	end	of	the	spectrum	are	Western	patent	trolls
so	removed	from	factories	that	they	probably	don’t	even	have	a	soldering	iron,	yet	they	invest	millions	of
dollars	into	litigation	and	collecting	royalties	on	ideas	they	didn’t	invent.
Neither	system	is	perfect,	but	the	gongkai	method	is	uniquely	adapted	to	the	fast	pace	of	technology.	In	a

world	where	chips	get	faster	and	cheaper	every	couple	of	years,	a	20-year	patent	lifetime	is	an	eternity.
Spending	a	decade	to	bring	a	product	 to	market	simply	is	not	an	option;	 the	best	factories	in	China	can
turn	a	napkin	sketch	into	a	prototype	in	days	and	bring	it	to	scale	production	in	weeks.	Long	patent	terms
may	be	appropriate	 for	markets	 like	pharmaceuticals,	but	 in	 fast-moving	markets,	 investing	months	and
tens	of	 thousands	of	dollars	 in	 lawyer	 fees	 to	negotiate	a	 license	or	 just	apply	 for	a	patent	can	 lead	 to
missed	opportunities.
Perhaps	a	discussion	on	reforming	the	Western	patent	system	is	long	overdue.	The	gongkai	ecosystem	is

living	proof	 that	granting	20-year	monopolies	on	 ideas	as	 trivial	as	“slide	 to	unlock”	 for	a	smartphone
may	not	be	the	One	True	Path	to	incentivize	innovation.	I	look	forward	to	starting	the	conversation	with
this	whirlwind	tour	of	the	good,	the	bad,	and	the	ugly	of	the	Chinese	IP.



4.	gongkai	innovation
If	the	term	intellectual	property	sounds	like	an	oxymoron	to	you,	you’re	not	alone.	If	I	give	you	an	apple
and	say,	“This	is	your	apple,”	what	that	means	is	pretty	clear.	You	can	do	what	you	want	with	that	apple:
you	can	eat	it,	sell	it,	or	even	use	the	seeds	to	plant	an	apple	tree	and	make	more	apples,	which	you	can
then	sell	or	use	to	feed	your	family.	But	if	I	hand	you	a	phone	and	say,	“This	Apple	iPhone	is	yours,”	you
own	the	collection	of	atoms	in	your	hand,	but	you	have	extremely	limited	rights	to	the	software,	patents,
and	 trademarks—the	 intellectual	 property—associated	with	 that	 phone.	Unlike	with	 the	 fruit,	 you	 can’t
take	what’s	inside	your	iPhone	and	use	that	knowledge	as	a	seed	to	make	more	iPhones.
Intellectual	property	works	very	differently	in	China,	though.	There,	you	could	(and	people	do)	use	a

phone	as	the	seed	for	your	own	original	works.	Two	experiences	I	had	in	China	opened	my	eyes	to	the
fact	that	there	isn’t	one	true	path	for	dealing	with	intellectual	property.

I	BROKE	MY	PHONE’S	SCREEN,	AND	IT	WAS	AWESOME
My	 first	 story	 begins,	 as	 many	 of	 my	 adventures	 do,	 with	 stepping	 out	 of	 a	 taxi	 at	 the	 Futian	 border
checkpoint	going	into	China.	It	was	May	2014,	and	I	was	heading	to	Shenzhen	to	hammer	out	production
plans	for	the	Novena	open	hardware	laptop,	which	I’ll	talk	more	about	in	Chapter	7.	As	I	stepped	out	of
the	taxi,	my	hand	caught	on	my	backpack,	sending	my	phone	tumbling	toward	the	concrete	sidewalk.	As
the	phone	smashed	into	the	ground,	I	heard	the	dry	“thud”	of	a	shattering	touchscreen.
There	 is	 no	 better	 place	 in	 the	 world	 to	 break	 your	 phone’s	 screen	 than	 the	 border	 crossing	 into

Shenzhen.	Within	an	hour,	I	had	a	new	screen	installed	by	skilled	hands	in	Hua	Qiang	Bei,	for	just	$25—
including	parts	and	labor.
I	originally	planned	to	replace	the	screen	myself.	The	phone	still	worked,	so	I	hastily	visited	iFixit	for

details	on	how	to	replace	the	screen	and	then	booked	it	to	Hua	Qiang	Bei	to	purchase	replacement	parts
and	 tools.	 The	 stall	 I	 visited	 quoted	me	 about	 $120	USD	 for	 a	 new	 screen,	 but	 then	 the	 shop	 owner
grabbed	my	phone	out	of	my	hands	and	launched	a	built-in	self-test	program	by	punching	*#0*#	into	the
dialer	UI.
She	 confirmed	 that	 there	 were	 no	 bad	 pixels	 on	 my	 OLED	 display	 and	 that	 the	 digitizer	 was	 still

functional,	 just	cracked.	She	then	offered	to	buy	my	broken	OLED	and	digitizer	module,	but	only	 if	her
shop	could	replace	my	screen.	I	said	that	would	be	fine	as	long	as	I	could	watch	to	make	sure	they	didn’t
swap	out	any	other	parts.
Of	course,	they	had	no	problem	with	that.	In	20	minutes,	they	took	my	phone	apart,	removed	the	broken

module,	stripped	the	adhesive	from	the	phone	body,	replaced	the	adhesive,	fitted	the	phone	with	a	“new”
(presumably	refurbished)	module,	and	put	it	all	back	together.	The	process	involved	a	hair	dryer	(used	as
a	heat	gun),	copious	amounts	of	contact	cleaner	(used	to	soften	the	adhesive),	and	a	very	long	thumbnail
(in	lieu	of	a	spudger/guitar	pick).	Unfortunately,	I	couldn’t	take	pictures	of	the	process	because	the	device
I	would	have	used	to	do	so	was	in	pieces	in	front	of	me.
This	 is	 the	power	of	 recycling	and	 repair.	 Instead	of	paying	$120	for	a	screen	and	 throwing	away	a

functional	piece	of	electronics,	I	just	paid	the	cost	to	replace	the	broken	glass.	I	had	assumed	that	the	glass
on	the	digitizer	was	inseparable	from	the	OLED,	but	apparently	those	clever	folks	in	Hua	Qiang	Bei	found
an	efficient	way	to	recycle	those	parts.	After	all,	the	bulk	of	the	module’s	cost	was	in	the	OLED	display.



The	 touchscreen	 sensor	 electronics,	which	were	 also	grafted	onto	 the	module,	were	undamaged	by	 the
fall.	Why	waste	perfectly	good	parts?
And	 so	my	phone	 had	 a	 broken	 screen	 for	 all	 of	 an	 hour,	 and	 it	was	 fixed	 for	 less	 than	 the	 cost	 of

shipping	spare	parts	to	Singapore	(my	country	of	residence).	Experiences	like	this	get	me	thinking:	why
aren’t	there	services	like	this	in	every	country?	What	makes	Shenzhen	so	unique	that	you	can	go	from	a
broken	 screen	 to	 a	 fixed	phone	 in	half	 an	hour	 for	much	 less	 than	 the	 cost	of	 a	monthly	phone	bill?	A
multitude	 of	 factors	 contribute	 to	 this	 phenomenon,	most	 of	which	 can	 be	 traced	 to	 a	 group	 of	 people
called	the	shanzhai.

SHANZHAI	AS	ENTREPRENEURS
The	 shanzhai	 of	 China	 originally	 became	 famous	 as	 the	 producers	 of	 knockoffs	 of	 products	 like	 the
iPhone,	 so	 they’ve	historically	been	dismissed	by	 the	popular	press	 as	 simply	“copycat	barons.”	But	 I
think	 they	may	have	 something	 in	 common	with	 teams	 like	Hewlett	 and	Packard	or	 Jobs	 and	Wozniak,
back	when	they	were	working	out	of	garages.

Who	Are	the	Shanzhai?
To	understand	why	I	think	this,	it	helps	to	understand	the	cultural	context	of	the	word	shanzhai.	Shanzhai
(山寨)	comes	from	the	Chinese	words	mountain	fortress,	but	 the	 literal	 translation	 is	a	bit	misleading.
The	English	term	fortress	connotes	a	large	fortified	structure	or	stronghold,	perhaps	conjuring	imagery	of
castle	turrets	and	moats.	On	the	other	hand,	its	denotation	states	that	it	is	simply	a	fortified	place,	and	this
is	closer	to	the	original	Chinese	meaning,	which	refers	to	something	like	a	cave	or	guerrilla-style	hideout.
In	its	contemporary	context,	shanzhai	is	a	historical	allusion	to	the	people	who	lived	in	such	hideouts,

like	Song	Jiang	and	his	108	bandits,	a	group	of	outlaws	who	lived	in	the	12th	century.	A	friend	of	mine
described	 Song	 Jiang	 as	 a	 sort	 of	 Robin	Hood	meets	 Che	Guevara.	He	was	 a	 rebel	 and	 a	 soldier	 of
fortune,	 yet	 selfless	 and	 kind	 to	 those	 in	 need.	 The	 tale	 is	 still	 popular	 today;	 my	 father	 instantly
recognized	it	when	I	asked	him	about	it.
Modern	 shanzhai	 innovators	 are	 rebellious,	 individualistic,	 underground,	 and	 self-empowered—just

like	 Song	 Jiang.	 They’re	 rebellious	 in	 the	 sense	 that	 they	 are	 celebrated	 for	 their	 copycat	 products.
They’re	 individualistic	 in	 the	 sense	 that	 they	 have	 a	 visceral	 dislike	 for	 the	 large	 companies.	 (Many
shanzhai	are	former	employees	of	large	companies,	both	American	and	Asian,	who	departed	because	they
were	 frustrated	 by	 the	 inefficiency	 of	 their	 employers.)	 They’re	 underground	 in	 the	 sense	 that	 once	 a
shanzhai	“goes	legit”	and	does	business	directly	through	traditional	retail	channels,	they	no	longer	belong
to	 the	 fraternity	 of	 the	 shanzhai.	 They’re	 self-empowered	 in	 the	 sense	 that	 they’re	 universally	 tiny
operations,	bootstrapped	on	minimal	capital,	and	their	attitude	is,	“If	you	can	do	it,	then	I	can	as	well.”
An	estimated	300	 shanzhai	organizations	were	operating	 in	Shenzhen	 in	2009.	Shanzhai	 shops	 range

from	just	a	couple	of	folks	to	a	few	hundred	employees.	Some	specialize	in	processes	like	tooling,	PCB
design,	PCB	assembly,	or	cell	phone	skinning,	while	others	have	broader	capabilities.
Since	 the	 shanzhai	 are	 small,	 they	 have	 to	 be	 efficient	 to	maximize	 output.	 One	 shop	 of	 under	 250

employees	can	churn	out	over	200,000	mobile	phones	per	month	with	a	high	mix	of	products,	sometimes
producing	runs	as	short	as	a	few	hundred	units.	Collectively,	shanzhai	in	the	Shenzhen	area	produced	an
estimated	20	million	phones	per	month	in	2009.	That’s	an	economy	approaching	a	billion	dollars	a	month.
Most	of	those	phones	sell	into	third-world	and	emerging	markets	like	India,	Africa,	Russia,	and	southeast
Asia.



More	Than	Copycats
Significantly,	the	shanzhai’s	product	portfolio	includes	more	than	just	copycat	phones.	They	innovate	and
riff	on	designs	to	make	original	products	as	well.	These	original	phones	integrate	wacky	features	like	7.1
stereo	sound,	dual	SIM	cards,	a	functional	cigarette	holder,	a	high-zoom	lens,	or	a	built-in	UV	LED	for
counterfeit	money	detection.
The	shanzhai	do	to	hardware	what	the	web	did	to	mashup	compilations.	Mobile	phones	that	are	also

toy	Ferraris	and	watch-phone	combos	(complete	with	camera!)	are	good	examples:	they	don’t	copy	any
single	idea,	but	rather	mix	IP	from	multiple	sources	to	create	a	new	heterogeneous	composition,	such	that
the	 original	 source	 material	 is	 still	 distinctly	 recognizable	 in	 the	 final	 product.	 Also,	 like	 many	 web
mashups,	 the	 result	might	 seem	nonsensical	 to	 a	mass	market	 (like	 the	Ferrari	 phone)	 but	 is	 extremely
relevant	 to	a	select	 long-tail	market.	 In	a	way,	some	shanzhai	products	are	 just	ahead	of	 their	 time;	 the
watch-phones	I	saw,	for	example,	predated	smartwatches	by	several	years.

Top:	The	front	and	back	sides	of	a	phone	made	to	look	like	a	pack	of	cigarettes.
Bottom	left:	An	Android-based	smart	watch,	which	unlike	the	Apple	Watch	includes	a	call-capable	phone	in	the	watch.	Bottom	right:

A	shanzhai-designed	“baby	iPhone,”	running	Android,	shown	next	to	an	Apple	iPhone	6	for	scale.

Community-Enforced	IP	Rules
The	shanzhai	also	employ	a	concept	called	the	open	BOM:	when	one	shanzhai	builds	something	new,	they
share	 the	 bill	 of	 materials	 and	 other	 design	 documents	 with	 the	 others.	 If	 the	 product	 is	 based	 on	 an
existing	product,	any	improvements	they	make	are	also	shared.	These	rules	are	policed	by	word	of	mouth
within	the	community	to	the	extent	that	if	someone	is	found	cheating,	they	are	ostracized	by	the	shanzhai
ecosystem.



This	system	is	viewed	very	positively	in	China.	For	example,	I	once	heard	a	local	say	it	was	great	that
the	shanzhai	could	not	only	clone	an	iPhone	but	also	improve	upon	the	original	by	giving	the	clone	a	user-
replaceable	 battery.	 US	 law	 would	 call	 this	 activity	 illegal	 and	 infringing,	 but	 given	 the	 fecundity	 of
mashup	 culture	 on	 the	 web,	 I	 can’t	 help	 but	 wonder	 if	 hardware	 mashup	 isn’t	 a	 bad	 thing.	 There’s
definitely	a	perception	in	the	United	States	that	if	it’s	strange	and	it	happens	in	China,	it	must	be	bad.	This
bias	 casts	 a	 long	 shadow	over	 objective	 evaluation	of	 a	 cultural	 phenomenon	 that	 could	 eventually	 be
very	relevant	to	the	United	States.
In	a	sense,	the	shanzhai	are	brethren	of	the	classic	Western	notion	of	hacker-entrepreneurs,	but	with	a

distinctly	 Chinese	 twist.	My	 personal	 favorite	 shanzhai	 story	 is	 about	 a	 chap	who	 owns	 a	 three-story
house	that	I	am	extraordinarily	envious	of.	His	bedroom	is	on	top,	the	middle	floor	is	a	complete	SMT
manufacturing	 line,	 and	 the	bottom	 floor	 is	 a	 retail	 outlet	 for	 the	products	produced	a	 floor	 above	 and
designed	in	his	bedroom.	Talk	about	a	vertically	integrated	supply	chain!	Owning	infrastructure	like	that
would	certainly	disrupt	the	way	I	innovate.	I	could	save	on	production	costs,	reduce	my	prototyping	time,
and	aggressively	turn	inventory	around,	thereby	reducing	inventory	capital	requirements.	And	if	my	store
were	 in	 a	 high-traffic	 urban	 location,	 I	 could	 also	 cut	 out	 the	 20	 to	 50	 percent	minimum	 retail	margin
typically	required	by	US	retailers.
I	 have	 a	 theory	 that	when	 the	 amount	 of	 knowledge	 and	 the	 scale	 of	 the	markets	 in	 Shenzhen	 reach

critical	 mass,	 the	 Chinese	 will	 stop	 being	 simply	 workers	 or	 copiers.	 They’ll	 take	 control	 of	 their
destinies	and,	ultimately,	become	innovation	leaders.	These	stories	about	the	shanzhai	and	their	mashups
are	 just	 the	 tip	of	an	 iceberg	with	 the	potential	 to	change	the	way	business	 is	done—perhaps	not	 in	 the
United	States,	but	certainly	in	that	massive,	untapped	market	often	referred	to	as	“the	rest	of	the	world.”

THE	$12	PHONE
Mashup	cell	phones	demonstrate	the	shanzhai’s	innovation	and	willingness	to	experiment.	But	despite	all
the	 bells	 and	 whistles,	 those	 phones	 are	 quite	 affordable.	 One	 question	 you	 might	 ask,	 then,	 is	 how
cheaply	can	you	make	a	phone?
A	 short	 jaunt	 to	 the	 northeast	 corner	 of	 the	 Hua	 Qiang	 Bei	 electronics	 district	 brings	 you	 to	 the

Mingtong	Digital	Mall.	It’s	a	four-story	maze	packed	with	tiny	shops	hawking	all	manner	of	quirky	phones
with	features	useful	in	economies	that	lack	the	infrastructure	of	consistent	electricity	or	cable	networks.
For	 instance,	 some	 phones	 can	 run	 for	 a	 month	 thanks	 to	 comically	 oversized	 batteries.	 Others	 have
analog	TV	 tuners,	 integral	 hand-crank	 chargers,	 and	multiple	 user	 profiles,	 enabling	 a	 family	 or	 small
village	to	share	a	single	phone.
During	a	visit	to	the	Hua	Qiang	Bei	district	in	2013,	I	paid	$12	for	a	complete	phone,	featuring	quad-

band	GSM,	Bluetooth,	MP3	playback,	an	OLED	display,	and	a	keypad	for	the	UI.	It’s	nothing	compared	to
a	 smartphone,	 but	 it’s	 useful	 if	 you’re	 going	 out	 and	worried	 about	 your	 primary	 phone	 getting	wet	 or
stolen.	And	for	a	couple	billion	people,	it	may	be	the	only	phone	they	can	afford.
Keep	in	mind	this	is	the	contract-free	price.	In	countries	that	allow	carriers	to	lock	phones,	such	as	the

United	States,	phones	are	often	given	away	or	sold	to	buyers	at	a	fraction	of	their	cost	in	exchange	for	a
subscription	 contract	 often	 worth	 several	 times	 the	 phone’s	 value.	 The	 fact	 that	 I	 paid	 $12	 over	 the
counter	 for	 a	 contract-free,	 nonpromotional,	 unlocked,	 new-in-box	 phone	 with	 a	 charger,	 protective
silicone	sleeve,	and	cable	means	that	the	phone’s	production	cost	has	to	be	somewhere	below	the	retail
price	of	$12.	Otherwise,	the	phone’s	maker	would	be	losing	money.	Rumors	placed	its	cost	below	$10.



My	simple	but	functional	$12	phone

This	 is	 a	 really	 amazing	 price	 point.	 That’s	 about	 the	 price	 of	 a	 large	Domino’s	 cheese	 pizza,	 or	 a
decent	glass	of	wine	in	an	urban	US	restaurant.	It’s	even	cheap	compared	to	an	Arduino	Uno.	Admittedly,
the	comparison	is	a	little	unfair,	but	humor	me	and	take	a	look	at	the	specs	for	both,	shown	in	Table	1.

Table	1:	Comparing	the	$12	Phone	with	an	Arduino

Spec This	phone Arduino	Uno

Price $12 $29

CPU	speed260	MHz,	32-bit 16	MHz,	8-bit

RAM 8MiB 2.5kiB

Interfaces USB,	microSD,	SIM USB

Wireless Quadband	GSM,	Bluetooth —

Power LiPo	battery,	includes	adapterExternal,	no	adapter

Display Two-color	OLED —



How	is	it	possible	that	this	phone	has	better	specs	than	an	Arduino	and	costs	less	than	half	the	price?	I
don’t	have	the	answers,	but	I’m	trying	to	learn	them.	Tearing	down	the	phone	yielded	a	few	hints.

Inside	the	$12	Phone
First,	there	are	no	screws	in	this	phone.	The	whole	case	snaps	together.

The	back	of	the	phone,	after	the	cover	is	removed

There	are	(almost)	no	connectors	on	 the	 inside.	For	shipping	and	storage,	you	get	 to	flip	a	switch	 to
hard-disconnect	 the	 battery.	As	 best	 as	 I	 can	 tell,	 the	 battery	 also	 has	 no	 secondary	 protection	 circuit.
Still,	the	phone	features	accoutrements	such	as	a	backlit	keypad	and	decorative	lights	around	the	edge.



Everything	from	the	display	to	the	battery	is	soldered	directly	to	the	board.

There	are	little	decorative	LEDs	all	over	this	PCB.



The	Bluetooth	antenna	is	the	small	length	of	wire	on	the	bottom	left.

The	electronics	consist	of	just	two	major	ICs:	the	MediaTek	MT6250DA	and	a	Vanchip	VC5276.	The
MT6250	is	rumored	to	sell	in	volume	for	under	$2.	I	was	able	to	anecdotally	confirm	the	price	by	buying
a	couple	of	pieces	on	cut	tape	from	a	retail	broker	for	about	$2.10	each.*	That	beats	the	best	price	I’ve
ever	been	able	 to	get	on	an	ATMega	of	 the	 types	used	 in	an	Arduino.	With	price	competition	 like	 this,
Western	 firms	are	 suing	 to	protect	ground:	Vanchip	got	 into	a	bit	of	 a	 legal	 tussle	with	RF	Micro,	 and
MediaTek	has	been	subject	to	a	few	lawsuits	of	its	own.

Two	MediaTek	MT6250	ICs

Of	course,	you	can’t	just	call	up	MediaTek	and	buy	these	chips.	It’s	extremely	difficult	to	engage	with
them	“going	through	the	front	door”	to	do	a	design.	However,	if	you	know	a	bit	of	Chinese	and	the	right
websites,	you	can	download	schematics,	board	layouts,	and	software	utilities	for	something	similar	to	this
phone,	possibly	with	some	different	parts	 ...	 for	“free.”	Free	 is	 in	quotes	because	you	could	obtain	 the
source	code	but	not	the	unambiguous	legal	right	to	use	it,	as	the	source	code	was	distributed	without	the
explicit	 legal	 consent	 of	 the	 copyright	 holders.	 But	 anyone	 unconcerned	 or	 unfamiliar	with	 such	 legal



frameworks	could	build	versions	of	this	phone,	with	minimal	cash	investment.	It	feels	like	open	source,
but	it’s	not:	it’s	a	different	kind	of	open	ecosystem.

Introducing	Gongkai
Welcome	 to	 the	Galapagos	 of	 Chinese	 “open”	 source.	 I	 call	 it	 gongkai	 (公开),	 which	 is	 the	 Chinese
transliteration	of	the	English	open,	as	applied	to	open	source.	There’s	a	literal	translation	for	open	source
into	 Chinese	 (kaiyuan),	 but	 the	 only	 similarity	 between	 gongkai	 practices	 and	 Western	 open	 source
practices	is	that	both	allow	you	to	download	source	code;	the	legal	and	cultural	frameworks	that	enable
such	 sharing	 couldn’t	 be	more	different.	 It’s	 like	 convergent	 evolution,	where	 two	 species	may	exhibit
similar	traits,	but	the	genes	and	ancestry	are	totally	different.
Gongkai	 refers	 to	 the	 fact	 that	 copyrighted	 documents,	 sometimes	 labeled	 “confidential”	 and

“proprietary,”	are	made	known	to	the	public	and	shared	overtly,	but	not	necessarily	according	to	the	letter
of	the	law.	This	copying	isn’t	a	one-way	flow	of	value,	as	it	would	be	in	the	case	of	copied	movies	or
music.	Rather,	these	documents	are	the	knowledge	base	someone	would	need	to	build	a	phone	using	the
copyright	owner’s	chips,	and	sharing	the	documents	promotes	sales	of	their	chips.	There	is	ultimately	a
quid	pro	quo	between	the	copyright	holders	and	the	copiers.

Comparing	IP	models.	On	the	left,	the	Western	“broadcast”	model,	with	a	single	owner	who	controls	and	disseminates	IP	and	is	paid
by	society.	On	the	right,	the	Chinese	“network”	model,	where	IP	trades	hands	like	a	commodity,	and	payment	is	often	in-kind	or	as

favors.

This	 gray	 relationship	 between	 companies	 and	 entrepreneurs	 is	 just	 one	 manifestation	 of	 a	 much
broader	 cultural	 gap	 between	 the	 East	 and	 the	 West.	 The	 West	 has	 a	 “broadcast”	 view	 of	 IP	 and
ownership:	good	ideas	and	innovation	are	credited	to	a	clearly	specified	set	of	authors	or	inventors,	and
society	pays	 them	a	 royalty	 for	 their	 initiative	and	good	works.	China	has	a	“network”	view	of	 IP	and
ownership:	one	attains	the	far-reaching	sight	necessary	to	create	good	ideas	and	innovations	by	standing
on	the	shoulders	of	others,	and	people	trade	these	ideas	as	favors.	In	a	system	with	such	a	loose	attitude
toward	 IP,	 sharing	with	 the	 network	 is	 necessary,	 as	 tomorrow	 your	 friend	 could	 be	 standing	 on	 your
shoulders,	and	you’ll	be	looking	to	them	for	favors.
In	 the	West,	 however,	 rule	 of	 law	 enables	 IP	 to	 be	 amassed	 over	 a	 long	 period	 of	 time,	 creating

impenetrable	 monopoly	 positions.	 That’s	 good	 for	 the	 guys	 on	 top	 but	 tough	 for	 upstarts,	 causing	 a
situation	 like	 the	modern	Western	cell	phone	market.	Companies	 like	Apple	and	Google	build	amazing



phones	of	outstanding	quality,	and	startups	can	only	hope	to	build	an	“appcessory”	for	their	ecosystem.
I’ve	 reviewed	 business	 plans	 for	 over	 100	 hardware	 startups,	 and	 the	 foundations	 for	 most	 are

overpriced	chipsets	built	with	antiquated	process	technologies.	I’m	no	exception	to	this	rule;	the	Novena
uses	a	Freescale	(now	NXP	after	an	acquisition)	i.MX6	processor,	which	was	neither	the	cheapest	nor	the
fastest	chip	on	the	market	when	I	designed	the	laptop.	But	it’s	a	chip	with	two	crucial	qualities:	anyone
can	freely	download	almost	complete	documentation	for	it,	and	anyone	can	buy	it	on	Digi-Key.
Scarce	documentation	and	supply	for	cutting-edge	technology	force	Western	hardware	entrepreneurs	to

look	primarily	at	Arduino,	Beaglebone,	and	Raspberry	Pi	as	starting	points	for	their	good	ideas.	Chinese
entrepreneurs,	on	the	other	hand,	churn	out	new	phones	at	an	almost	alarming	pace.

Every	object	pictured	here	is	a	phone.

Phone	models	 change	 on	 a	 seasonal	 basis.	 Entrepreneurs	 experiment	 all	 the	 time,	 integrating	wacky
features	into	phones,	such	as	cigarette	lighters,	extra-large	battery	packs	(to	charge	a	second	phone),	huge
buttons	(for	 the	visually	 impaired),	call-home	buttons	only	(to	give	 to	children	for	emergencies),	watch
form	 factors,	 and	 so	 on.	 This	 works	 because	 small	 teams	 of	 engineers	 can	 obtain	 complete	 design
packages	 for	 working	 phones—including	 the	 case,	 board,	 and	 firmware—	 allowing	 them	 to	 fork	 the
design	and	focus	only	on	changing	the	pieces	they	really	care	about.
As	a	hardware	engineer,	I	want	that.
I	want	to	be	able	to	fork	existing	cell	phone	designs.	I	saw	the	$12	phone,	and	I,	too,	wanted	to	use	a

364	MHz	32-bit	microcontroller	with	megabytes	of	integrated	RAM	and	dozens	of	peripherals	that	costs
$3	in	single	quantities.	The	Arduino	Uno’s	ATMega	microcontroller,	a	16	MHz	8-bit	microcontroller	with
a	few	kilobytes	of	RAM	and	a	smattering	of	peripherals,	pales	in	comparison	yet	costs	twice	as	much,	at
$6.

From	Gongkai	to	Open	Source
So,	I	decided	to	take	my	study	of	the	phone	one	step	further	from	a	teardown,	and	attempt	to	make	my	own



version—in	the	style	of	the	shanzhai,	but	interpreted	through	Western	eyes.	That’s	how	Sean	“xobs”	Cross
and	I	started	a	project	we	dubbed	Fernvale.	Sean	has	been	my	adventure	partner	on	dozens	of	projects
since	we	first	met	at	Chumby,	where	I	recognized	his	talent	as	a	firmware	engineer	when	he	showed	me
how	he	ported	Quake	to	chumby	in	his	spare	time.	Sean	has	always	marched	to	the	beat	of	his	own	drum.
Born	in	Germany	to	American	parents,	he	studied	cognitive	science	in	college,	and	prior	 to	working	at
Chumby,	he	spent	six	months	wandering	New	Zealand	and	Australia,	searching	for	adventure	and	work.
At	Chumby,	he	was	easy	to	spot,	thanks	to	his	ponytail	and	kilt	(actually,	a	Utilikilt).
After	Chumby	went	out	of	business,	Sean	and	I	found	ourselves	washed	up	on	the	shores	of	Singapore,

where	 I	 started	 a	 boutique	 hardware	 consulting	 firm	 called	 Sutajio	Ko-Usagi,	which	 is	bunniestudios
translated	to	Japanese	and	then	romanized	into	English	characters.	Sean’s	virtuoso	coding	abilities	have
been	 an	 excellent	 complement	 to	my	hardware	 design	 skills,	 and	 since	 then,	we’ve	 completed	 several
significant	open	source	projects.
We	figured	at	 first	we	should	at	 least	 try	 to	go	“through	the	front	door”	and	inquire	directly	with	 the

chipmakers	about	what	it	might	take	to	get	a	proper	Western-licensed	embedded	development	kit	(EDK)
for	the	chips	used	in	these	shanzhai	phones.	Our	inquiries	were	met	with	a	cold	shoulder.	I	was	told	the
volumes	for	our	 little	experiment	were	 too	small,	or	we’d	have	 to	enter	minimum	purchase	agreements
backed	by	a	prohibitive	cash	deposit	in	the	hundreds	of	thousands	of	dollars.
Even	for	people	who	jump	through	such	hoops,	these	EDKs	don’t	include	all	the	reference	material	the

Chinese	 get	 to	 play	 with.	 The	 datasheets	 are	 incomplete,	 and	 you’re	 forced	 to	 use	 the	 companies’
proprietary	OS	ports.	It	feels	like	a	case	of	the	nice	guys	finishing	last.	Could	we	find	a	way	to	get	ahead
yet	still	play	nice?

Engineers	Have	Rights,	Too
Thus,	Fernvale	had	two	halves:	the	technical	task	of	reverse	engineering	and	re-engineering	the	phone	and
the	legal	task	of	creating	a	general	methodology	for	absorbing	gongkai	IP	into	the	Western	ecosystem.	I’ll
recount	the	technical	task	in	Chapter	9	and	focus	on	the	legal	task	for	the	remainder	of	this	chapter.
After	some	research	into	the	legal	frameworks	and	challenges,	I	believed	I’d	found	a	path	to	repatriate

some	 of	 the	 IP	 from	 gongkai	 into	 proper	 open	 source.	 I	 must,	 however,	 give	 a	 disclaimer:	 I’m	 not	 a
lawyer.	I’ll	tell	you	my	beliefs,	but	don’t	construe	them	as	legal	advice.*
My	basic	idea	with	Fernvale	was	to	exercise	the	right	to	reverse	engineer	in	a	careful,	educated	fashion

to	increase	the	likelihood	that,	if	push	came	to	shove,	the	courts	would	agree	with	my	actions.	But	I	also
feel	that	shying	away	from	reverse	engineering	simply	because	it’s	controversial	 is	a	slippery	slope:	to
have	your	rights,	you	must	exercise	them.	If	women	didn’t	vote	and	black	people	sat	in	the	back	of	the	bus
because	they	were	afraid	of	controversy,	the	United	States	would	still	be	segregated	and	without	universal
suffrage.	 Although	 reverse	 engineering	 is	 a	 trivial	 issue	 compared	 to	 racial	 equality	 and	 universal
suffrage,	the	precedent	is	clear:	in	order	to	have	rights,	you	must	be	bold	enough	to	stand	up	and	assert
them.

DEALING	WITH	PATENTS	AND	OTHER	LAWS
Open	source	has	two	broad	categories	of	IP	issues	to	deal	with:	patents	and	copyrights.	Patents	present
complex	issues,	and	it	seems	the	most	practical	approach	is	to	essentially	punt	on	the	issue.	For	instance,
nobody,	as	far	as	I	know,	checks	their	Linux	commits	for	patent	infringement	before	upstreaming	them,	and
in	fact,	many	corporations	have	similar	policies	at	the	engineering	level.
Why?	Determining	which	patents	 apply	 and	 if	 a	product	 infringes	 takes	 a	huge	amount	of	 resources.



Even	after	expending	those	resources,	you	can’t	be	100	percent	sure.	Further,	becoming	very	familiar	with
the	 body	 of	 patents	 amplifies	 the	 possibility	 that	 any	 infringement	 is	 willful,	 thus	 tripling	 damages.
Finally,	it’s	not	even	clear	where	the	liability	for	infringement	lies,	particularly	in	an	open	source	context.
Thus,	Sean	and	I	did	our	best	not	to	infringe	with	Fernvale,	but	we	couldn’t	be	100	percent	sure	that	no

one	would	allege	infringement.	However,	we	did	apply	a	license	to	our	work	that	includes	a	“poison	pill”
clause	for	patent	holders	who	might	attempt	to	litigate.	Poison	pills	make	the	entire	body	of	open	source
work	unavailable	to	any	party	who	files	a	lawsuit	alleging	infringement	of	any	part	against	any	entity.*
For	copyrights,	 the	 issue	 is	also	extremely	complex.	The	Coders’	Rights	Project	 from	 the	Electronic

Frontier	Foundation	(EFF)	has	a	Reverse	Engineering	FAQ†	that’s	a	good	read	if	you	really	want	to	dig
into	the	issues.	To	sum	it	up,	courts	have	found	that	reverse	engineering	to	understand	the	ideas	embedded
in	code	and	 to	achieve	 interoperability	 is	 fair	use.	As	a	 result,	 anyone	 likely	has	 the	 right	 to	 study	 the
gongkai-style	IP,	understand	it,	produce	a	new	work,	and	apply	a	Western-style	Open	IP	license	to	it.
However,	before	I	could	attack	the	copyright	issues	for	Fernvale,	I	had	to	make	sure	we	wouldn’t	bump

into	other	laws	that	could	impede	our	fair	use	rights.	First,	there’s	the	Digital	Millennium	Copyright	Act
(DMCA).	 The	 DMCA	makes	 circumventing	 any	 encryption	 designed	 to	 enforce	 a	 copyright	 basically
illegal,	with	only	a	few	poorly	tested	exemptions	allowed.	Since	none	of	the	files	or	binaries	Sean	and	I
downloaded	were	encrypted	or	had	access	controlled	by	any	technological	measure,	we	didn’t	have	to	do
any	circumvention.	No	circumvention,	no	DMCA	problem.
All	the	files	we	obtained	came	from	searches	linking	to	public	servers,	so	there	would	be	no	Computer

Fraud	 and	Abuse	Act	 (CFAA)	problems.	None	of	 the	 devices	we	used	 in	 the	work	 came	with	 shrink-
wraps,	click-throughs,	or	other	end-user	license	agreements	(EULAs),	terms	of	use,	or	other	agreements
that	could	waive	our	rights.

DEALING	WITH	COPYRIGHTS
With	the	DMCA,	CFAA,	and	EULA	concerns	set	aside,	we	were	finally	able	to	address	the	core	issue:

what	to	do	about	copyrights.
The	 cornerstone	 of	 our	 methodology	 hinged	 on	 decisions	 rendered	 on	 several	 occasions	 by	 courts

stating	 that	 facts	 are	 not	 copyrightable.	 For	 example,	 Justice	 O’Connor	 wrote	 the	 following	 in	 Feist
Publications,	Inc.	v.	Rural	Telephone	Service	Co.,	Inc.	(449	U.S.	340,	345,	349	(1991):*

Common	 sense	 tells	 us	 that	 100	 uncopyrightable	 facts	 do	 not	 magically	 change	 their	 status	 when
gathered	together	in	one	place.	...	The	key	to	resolving	the	tension	lies	in	understanding	why	facts	are
not	copyrightable:	The	sine	qua	non	of	copyright	is	originality.

And:

Notwithstanding	a	valid	copyright,	a	subsequent	compiler	 remains	free	 to	use	 the	facts	contained	 in
another’s	publication	to	aid	in	preparing	a	competing	work,	so	long	as	the	competing	work	does	not
feature	the	same	selection	and	arrangement.

Based	 on	 this	 opinion,	 anyone	 has	 the	 right	 to	 extract	 facts	 from	 proprietary	 documentation	 and
carefully	re-express	those	facts	in	their	own	selection	and	arrangement.	Just	as	the	facts	that	“John	Doe’s
phone	number	is	555-1212”	and	“John	Doe’s	address	is	10	Main	St.”	are	not	copyrightable,	facts	such	as
“The	interrupt	controller’s	base	address	is	0xA0060000”	and	“Bit	1	controls	status	reporting	of	the	LCD”
aren’t	copyrightable,	either.	Sean	and	I	extracted	such	facts	from	datasheets	and	re-expressed	them	in	our
own	header	files	where,	as	 the	 legal	owners	of	newly	created	expressive	speech,	we	applied	a	proper



open	source	license	of	our	choice.

MAKING	A	PROGRAMMING	LANGUAGE
But	the	situation	was	further	complicated	by	hardware	blocks	we	had	absolutely	no	documentation	for.	In
some	cases,	we	couldn’t	even	learn	what	a	block’s	registers	meant	or	how	the	blocks	functioned	from	a
datasheet.	For	these	blocks,	we	isolated	and	extracted	the	code	responsible	for	initializing	their	state.	We
then	 reduced	 this	 code	 into	 a	 list	 of	 address	 and	 data	 pairs,	 and	 expressed	 it	 in	 a	 custom	 scripting
language	we	called	scriptic.	We	invented	our	own	language	to	avoid	subconscious	plagiarism—it’s	too
easy	 to	 read	 one	 piece	 of	 code	 and,	 from	 memory,	 code	 something	 almost	 exactly	 the	 same.	 By
transforming	the	code	into	a	new	language,	we	were	forced	to	consider	the	facts	presented	and	express
them	in	an	original	arrangement.
Scriptic	is	basically	a	set	of	assembler	macros,	and	the	syntax	is	very	simple.	Here	is	an	example	of	a

scriptic	script:

#include	"scriptic.h"
#include	"fernvale-pll.h"

sc_new	"set_plls",	1,	0,	0

sc_write16	0,	0,	PLL_CTRL_CON2
sc_write16	0,	0,	PLL_CTRL_CON3
sc_write16	0,	0,	PLL_CTRL_CON0
sc_usleep	1

sc_write16	1,	1,	PLL_CTRL_UPLL_CON0
sc_write16	0x1840,	0,	PLL_CTRL_EPLL_CON0
sc_write16	0x100,	0x100,	PLL_CTRL_EPLL_CON1
sc_write16	1,	0,	PLL_CTRL_MDDS_CON0
sc_write16	1,	1,	PLL_CTRL_MPLL_CON0
sc_usleep	1

sc_write16	1,	0,	PLL_CTRL_EDDS_CON0
sc_write16	1,	1,	PLL_CTRL_EPLL_CON0
sc_usleep	1

sc_write16	0x4000,	0x4000,	PLL_CTRL_CLK_CONDB
sc_usleep	1

sc_write32	0x8048,	0,	PLL_CTRL_CLK_CONDC
/*	Run	the	SPI	clock	at	104	MHz	*/
sc_write32	0xd002,	0,	PLL_CTRL_CLK_CONDH
sc_write32	0xb6a0,	0,	PLL_CTRL_CLK_CONDC
sc_end

This	script	 initializes	the	Phase	Locked	Loop	(PLL,	a	circuit	for	generating	clock	waveforms)	on	the
target	 chip	 for	 Fernvale,	 the	MediaTek	MT6260.	 To	 contrast,	 here	 are	 the	 first	 few	 lines	 of	 the	 code
snippet	from	which	that	scriptic	code	was	derived:

//	enable	HW	mode	TOPSM	control	and	clock	CG	of	PLL	control

*PLL_PLL_CON2	=	0x0000;	//	0xA0170048,	bit	12,	10	and	8	set	to	0
//	to	enable	TOPSM	control
//	bit	4,	2	and	0	set	to	0	to	enable
//	clock	CG	of	PLL	control
*PLL_PLL_CON3	=	0x0000;	//	0xA017004C,	bit	12	set	to	0	to	enable
//	TOPSM	control



//	enable	delay	control
*PLL_PLLTD_CON0=	0x0000;	//	0x	A0170700,	bit	0	set	to	0	to
//	enable	delay	control

//	wait	for	3us	for	TOPSM	and	delay	(HW)	control	signal	stable
for(i	=	0	;	i	<	loop_1us*3	;	i++);

//	enable	and	reset	UPLL
reg_val	=	*PLL_UPLL_CON0;
reg_val	|=	0x0001;
*PLL_UPLL_CON0	=	reg_val;	//	0xA0170140,	bit	0	set	to	1	to
//	enable	UPLL	and
//	generate	reset	of	UPLL

The	 original	 code	 actually	 goes	 on	 for	 pages	 and	 pages,	 and	 even	 this	 snippet	 is	 surrounded	 by
conditional	statements,	which	we	culled	as	they	were	irrelevant	to	initializing	the	PLL	correctly.
Knowledge	of	our	rights,	a	pool	of	documentation	to	extract	facts	from,	and	scriptic	were	tools	in	our

armory.	With	them,	Sean	and	I	derived	sufficient	functionality	for	our	Fernvale	project	to	eventually	boot
a	small,	BSD-licensed,	real-time	operating	system	(RTOS)	known	as	NuttX,	running	on	our	own	custom
hardware.	I’ll	go	more	into	the	gory	details	of	how	we	did	that	in	Chapter	9.

CLOSING	THOUGHTS
Rights	atrophy	and	get	squeezed	out	by	competing	interests	if	they	aren’t	vigorously	exercised.	Sean	and	I
did	 Fernvale	 because	we	 think	 it’s	 imperative	 to	 exercise	 our	 fair	 use	 rights	 to	 reverse	 engineer	 and
create	 interoperable,	 open	 source	 solutions.	For	decades,	 engineers	have	 sat	 on	 the	 sidelines	 and	 seen
ever	more	expansive	patent	and	copyright	 laws	shrink	their	 latitude	to	learn	freely	and	to	innovate.	I’m
sad	 that	 the	 formative	 tinkering	 I	 did	 as	 a	 child	 is	 no	 longer	 a	 legal	 option	 for	 the	 next	 generation	 of
engineers.
The	 rise	of	 the	shanzhai	and	 their	amazing	capabilities	 is	a	wake-up	call.	 I	 see	 it	as	evidence	 that	a

permissive	 IP	environment	 spurs	 innovation,	 especially	at	 the	grassroots	 level.	 If	more	engineers	 learn
their	fair	use	rights	and	exercise	them	vigorously	and	deliberately,	perhaps	this	can	catalyze	a	larger	and
much-needed	reform	of	the	patent	and	copyright	system.	Our	Fernvale	project	is	hopefully	just	a	signpost
pointing	 the	 way	 for	 much	 bigger	 efforts	 to	 bridge	 the	 gap	 between	 the	 gongkai	 and	 open	 source
communities.
Being	able	to	cherry-pick	the	positive	aspects	of	gongkai	into	the	Western	IP	ecosystem	is	an	important

tool.	Rule	of	law	has	its	place,	and	an	overly	permissive	system	has	its	own	problems.	The	next	chapter
explores	some	of	the	negative	consequences	of	an	overly	permissive	IP	ecosystem:	fake	and	counterfeit
goods.



5.	fake	goods
The	 gongkai	 system	 fosters	 an	 amazing	 amount	 of	 innovation	 in	 China,	 and	 the	 shanzhai	 can	 make
interesting	 original	 products,	 like	 the	 cell	 phones	 I	 showed	 you	 in	 Chapter	 4.	 That	 said,	 China	 does
produce	plenty	of	fake	electronic	goods,	and	they	aren’t	all	knockoff	iPhones.	Clever	counterfeiters	can
produce	fake	integrated	circuits,	including	microSD	cards	and	even	FPGAs.

WELL-EXECUTED	COUNTERFEIT	CHIPS
For	instance,	in	2007	(while	I	was	still	working	with	Chumby)	I	encountered	some	counterfeit	chips	so
well	executed	that	I	couldn’t	be	certain	they	were	fake	without	investigating.

Two	suspicious	chip	specimens	from	an	Asian	source

The	 chips	 claimed	 to	 be	 ST19CF68s,	 a	 chip	 made	 by	 STMicroelectronics	 and	 described	 on	 its
datasheet	 as	 a	 “CMOS	 MCU	 Based	 Safeguard	 Smartcard	 I/O	 with	 Modular	 Arithmetic	 Processor.”
ST19CF68	chips	 are	normally	 sold	prepackaged	 in	 smartcard	 (for	 example,	 the	 chip	on	 the	 front	 of	 a
credit	 card)	or	diced	wafer	 (a	 silicon	wafer	 that’s	 been	diced	 into	 individual	 chips,	 but	with	no	other
package	around	it)	format,	but	curiously,	 these	were	SOIC-20	packaged	devices.	To	find	out	the	reason
for	the	odd	package	choice,	I	dissolved	the	black	epoxy	packaging	off	the	top	of	one	chip	to	decapsulate	it
so	I	could	inspect	the	silicon	on	the	inside	using	a	microscope.
The	die	inside	the	package	was	much	too	small	and	simple	for	a	complex	microcontroller	unit	(MCU)

matching	the	description	of	 the	ST19CF68.	The	pattern	of	gold-colored	rectangles	 tiled	across	 the	chip
was	too	coarse;	I	could	make	out	individual	transistors	at	low	zoom	with	an	optical	microscope.	The	size



of	 these	 features	 is	 referred	 to	 as	 the	 chip’s	 process	 geometry.	 The	 process	 geometry	 of	 a	 smartcard
would	 typically	 trail	 a	 cutting-edge	CPU	by	 at	most	 three	 or	 four	 generations,	making	 transistors	 very
difficult	to	resolve	even	at	the	highest	levels	of	zoom.

The	silicon	inside	the	fake	ST19CF68

Along	with	the	unexpectedly	coarse	process	geometry,	why	did	this	part	have	20	bondable	pads	and	20
pins	when,	according	to	the	datasheet,	it	should	have	only	8	pads?	Zooming	in	a	bit	on	the	die	revealed
some	interesting	details.



The	chip	manufacturer	and	copyright	date

The	chip	wasn’t	made	by	STMicroelectronics	after	all!	The	label	on	the	silicon	said	FSC,	indicating	it
was	made	by	Fairchild	Semiconductor.	Of	course,	then	I	had	to	check	the	part	label	on	the	silicon,	too.

Discovering	the	true	part	number

The	die	within	that	chip	turned	out	to	be	a	Fairchild	74LCX244,	which	is	a	“Low	Voltage	Buffer/Line
Driver	with	5V	Tolerant	Inputs	and	Outputs.”	The	74LCX244	is	a	much	cheaper	piece	of	silicon	than	the
ST19CF68	the	package	supposedly	contained.
Of	course,	the	mismatched	pin	count	was	suspicious,	but	manufacturers	have	been	known	to	put	chips	in

larger	packages,	especially	during	early	runs	of	the	chip	before	it	has	been	size-optimized.	The	thing	that



really	got	me	was	the	convincing	quality	of	the	package	and	the	markings.
Normally,	remarked	or	fake	chips	look	cheesier	than	this	one.	The	original	chips	are	sanded	down	or

painted	over	to	remove	the	previous	markings,	and	the	new	marking	is	typically	applied	with	silkscreened
paint.
But	these	chips	showed	no	evidence	of	remarking	at	all.	The	markings	are	of	first-run	quality:	someone

acquired	 unmarked	 blanks	 of	 the	 74LCX244	 chip	 and	 programmed	 a	 production	 laser	 engraver	 to	 put
high-quality	fake	markings	on	an	otherwise	virgin	package.	They	even	got	the	proportions	of	the	ST	 logo
exactly	right.

A	close-up	of	the	outside	of	the	fake	ST19CF68

The	 quality	 difference	 between	 a	 remarked	 chip	 and	 first-run	marking	 is	 like	 the	 quality	 difference
between	spray	paint	used	to	hide	a	scratch	on	a	car	and	the	car’s	original,	factory-fresh	paint	job.	This
chip	definitely	had	the	“new	car”	look.
This	 discovery	 left	 me	 with	 a	 lot	 of	 unanswered	 questions.	 How	 did	 someone	 acquire	 unmarked

Fairchild	silicon?	Was	the	person	an	insider,	or	did	Fairchild	sloppily	throw	away	unmarked	reject	chips
without	grinding	them	up	or	clipping	off	leads	so	they	couldn’t	be	picked	out	of	a	dumpster	and	resold?
The	laser-marking	machine	used	to	make	those	markings	wasn’t	a	cheap	desktop	engraver,	either;	it	had	to
be	a	high-power	raster	engraver,	and	the	artwork	was	spot-on.
I	 still	 find	 it	hard	 to	believe	 those	 fake	chips	were	made	and	sold,	but	maybe	 I	 shouldn’t.	 I’ve	 seen

brazen	remarking	of	dual	inline	memory	modules	(DIMMs,	the	memory	used	in	personal	computers)	in	the
SEG	 Electronics	 Market,	 and	 many	 counterfeiters	 at	 the	 market	 openly	 display	 their	 arsenal	 of
professional-quality	thermal	transfer	label	printers	and	hologram	sticker	blanks.
If	 fakes	 of	 this	 quality	 become	 more	 common,	 they	 could	 present	 a	 problem	 for	 the	 supply	 chain.

Clearly,	whoever	made	the	counterfeit	ST19CF68	can	fake	just	about	any	chip,	and	the	fakes	are	gradually
appearing	 on	 the	 US	 market.	 Resellers,	 especially	 distributors	 that	 specialize	 in	 buying	 excess
manufacturer	inventory,	implicitly	trust	the	markings	on	a	chip.
I	don’t	think	chipmakers	will	put	anticounterfeiting	measures	on	chip	markings,	but	the	quality	of	these



fakes	definitely	made	me	wary	when	I	discovered	them,	and	it	still	does.	Not	all	fakes	get	spotted	before
they’re	used,	and	fake	components	pose	problems	in	any	project	where	they	appear.

COUNTERFEIT	CHIPS	IN	US	MILITARY	HARDWARE
Counterfeit	chips	can	be	particularly	problematic	when	they	find	their	way	into	military	projects.	The	US
military	has	a	unique	problem:	it’s	one	of	 the	biggest	and	wealthiest	buyers	of	really	old	parts	because
military	designs	have	shelf	lives	of	decades.	Like	anything	else,	the	older	a	part	is,	the	harder	it	is	to	find,
and	sometimes	contractors	are	sold	fakes.	For	example,	a	2011	Senate	hearing	report	revealed	that	some
parts	used	in	the	P-8	Poseidon	(a	plane	the	US	Navy	commissioned	from	Boeing)	were,	as	an	article	from
the	Defense	Tech	website	put	it,	“badly	refurbished,”	causing	a	key	system	to	fail.
The	US	government	attempted	to	reduce	fakes	in	its	supply	chain	with	Amendment	1092	to	the	National

Defense	Authorization	Act	for	Fiscal	Year	2012	(H.R.	1540).	The	amendment	 is	a	well-intentioned	but
misguided	provision	outlining	measures	designed	to	reduce	the	prevalence	of	counterfeit	chips	in	the	US
military	supply	chain.
Even	 before	Amendment	 1092	was	 put	 on	 the	 table,	 the	Defense	Authorization	Act	 drew	 flak	 for	 a

provision	 that	 authorizes	 the	US	military	 to	 detain	US	 citizens	 indefinitely	without	 trial.	 It	 also	 rather
ironically	 requires	 an	 assessment	 of	 the	US	 federal	 debt	 owed	China	 as	 a	 potential	 “national	 security
risk”	(section	1225	of	H.R.	1540).
Under	 the	 anticounterfeit	 amendment,	 first-time	 offenders	 can	 receive	 a	 $5	million	 fine	 and	 20-year

prison	sentence	for	individuals,	or	a	$15	million	fine	for	corporations—a	penalty	comparable	to	that	of
trafficking	 cocaine.*	 While	 the	 amendment	 explicitly	 defines	 counterfeit	 to	 include	 refurbished	 parts
represented	as	new,	 the	wording	 is	 regrettably	vague	on	whether	you	must	be	willfully	 trafficking	such
goods	to	also	be	liable	for	such	a	stiff	penalty.
If	you	took	a	dirty	but	legitimately	minted	coin	and	washed	it	so	that	it	looked	mint	condition,	nobody

would	accuse	you	of	counterfeiting.	Yet	this	amendment	puts	a	20-year,	$5	million	penalty	not	only	on	the
act	of	counterfeiting	chips	destined	 for	military	use	but	also	potentially	on	 the	unwitting	distribution	of
refurbished	chips	that	you	putatively	bought	as	new.	Unfortunately,	in	many	cases	an	electronic	part	can	be
used	for	years	with	no	sign	of	external	wear.

The	amendment	also	has	a	provision	to	create	an	“inspection	program”:

(b)	Inspection	of	Imported	Electronic	Parts	—

(1)	...	 the	Secretary	of	Homeland	Security	shall	establish	a	program	of	enhanced	inspection	by	U.S.
Customs	and	Border	patrol	of	electronic	parts	imported	from	any	country	that	has	been	determined	by
the	Secretary	of	Defense	to	have	been	a	significant	source	of	counterfeit	electronic	parts	...

Inspecting	fruits	and	vegetables	as	they	enter	the	country	for	pests	and	other	problems	makes	sense,	but
requiring	customs	officers	 to	become	experts	 in	detecting	fake	electronic	components	seems	misguided.
Burdening	vendors	with	detecting	fakes	when	there	are	such	high	penalties	for	failure	is	also	misguided,
given	how	easy	it	is	for	forgers	to	create	high-quality	counterfeits.

Types	of	Counterfeit	Parts
To	better	understand	the	magnitude	of	the	chip	counterfeiting	problem,	let’s	look	at	how	fakes	are	made.
The	fake	chips	I’ve	seen	fall	into	the	following	broad	categories.



EXTERNAL	MIMICRY
The	most	trivial	counterfeit	chips	are	simply	empty	plastic	packages	with	authentic-looking	top	marks,	or
remarked	parts	that	share	only	physical	traits	with	the	authentic	parts.	For	example,	a	simple	transistor-
transistor	 logic	 (TTL)	 chip	 might	 be	 placed	 inside	 the	 same	 package,	 with	 identical	 markings,	 as	 an
expensive	microcontroller.
I	consider	external	mimicry	trivial	because	fakes	produced	this	way	are	easy	to	detect	in	a	factory	test.

At	worst,	you’re	sold	a	mixture	of	mostly	authentic	parts	with	a	few	counterfeits	blended	in	so	that	testing
just	one	part	out	of	 a	 tube	or	 reel	 isn’t	good	enough	 to	catch	 the	 issue.	But	most	products	 employ	100
percent	 testing	 at	 the	 system	 level,	 so	 typically	 the	 problem	 is	 discovered	 before	 anything	 leaves	 the
factory.

REFURBISHED	PARTS
Counterfeits	don’t	technically	have	to	be	fake	at	all,	though.	Refurbished	parts	are	authentic	chips	that	are
desoldered	from	e-waste	and	reprocessed	to	look	new.	They’re	very	difficult	to	spot	since	the	chip	is	in
fact	authentic,	and	a	skilled	 refurbisher	can	produce	stunningly	new-looking	chips	 that	only	 isotopic	or
elemental	analysis	could	identify	as	used.
This	category	also	includes	parts	that	are	“new”	in	the	sense	that	they’ve	never	been	soldered	onto	a

board	but	have	been	stored	improperly,	perhaps	in	a	humid	environment.	Such	chips	should	be	scrapped
but	are	sometimes	stuck	in	a	fresh	foil	pack	with	a	more	recent	date	code,	and	sold	as	new.

REBINNED	PARTS
Counterfeiters	sometimes	remark	authentic	parts	 that	have	never	been	used	(and	so	can	be	classified	as
new)	 as	 a	 better	 version	 of	 an	 otherwise	 identical	 part.	 A	 classic	 example	 is	 grinding	 and	 remarking
CPUs	with	a	higher	speed	grade,	or	more	trivially,	marking	parts	that	contain	lead	as	RoHS-compliant.
But	rebinning	can	get	more	sophisticated.	Vendors	may	reverse	engineer	and	reprogram	the	fuse	codes

inside	the	remarked	chip	so	that	the	chip’s	electronic	records	actually	match	the	faked	markings	on	top.
Vendors	have	also	been	known	to	hack	flash	drive	firmware	so	that	a	host	operating	system	will	perceive
a	small	memory	as	much	larger.	Such	hacks	even	go	so	far	as	to	“loop”	memory	so	that	writes	beyond	the
device	capacity	appear	to	succeed,	thus	requiring	a	time-consuming	full	readback	and	comparison	of	the
written	data	to	detect	the	issue.

GHOST-SHIFT	PARTS
Some	fakes	are	created	on	the	exact	same	fabrication	facility	as	authentic	parts;	 they’re	run	very	late	at
night	by	rogue	employees	without	the	manufacturer’s	authorization	and	never	logged	on	the	books.	These
unlogged	production	runs	are	called	ghost	shifts.	It’s	like	an	employee	in	a	mint	striking	extra	coins	after-
hours.	Ghost-shift	parts	are	often	assigned	a	lot	code	identical	to	a	legitimate	run,	but	certain	testing	steps
are	skipped.
Ghost	 shifts	 often	 use	marginal	material	 left	 over	 from	 the	 genuine	 product	 that	would	 normally	 be

disposed	of	but	was	intercepted	on	the	way	to	the	grinder.	As	a	result,	the	markings	and	characteristics	of
the	material	often	look	absolutely	authentic.	These	fakes	can	be	extremely	hard	to	detect.

FACTORY	SCRAP



Factory	rejects	and	prototype	runs	can	be	recovered	from	the	scrap	heap	for	a	small	bribe,	given	authentic
markings,	 and	 resold	 as	 new.	 To	 avoid	 detection,	 workers	 often	 replace	 the	 salvaged	 scrap	 with
physically	 identical	 dummy	 packages,	 thus	 foiling	 attempts	 to	 audit	 the	 scrap	 trail.	 This	 practice	 of
replacing	salvageable	scrap	with	dummy	fakes	helps	drive	the	market	for	the	trivial	“external	mimicry”
fakes.	The	existence	of	an	industry	that	supplies	low-quality	fakes	to	dodge	audits	that	would	otherwise
prohibit	high-quality	fakes	gives	you	an	idea	of	how	sophisticated	and	mature	the	counterfeiting	industry
has	become.

SECOND-SOURCING	GONE	BAD
Second-sourcing	 is	a	standard	 industry	practice	where	competitors	create	pin-compatible	 replacements
for	popular	products	to	drive	price	competition	and	strengthen	the	supply	chain	against	events	like	natural
disasters.	The	practice	goes	bad	when	inferior	parts	are	remarked	with	the	logos	of	premium	brands.
High-value	 but	 functionally	 simple	 discrete	 analog	 chips	 such	 as	 power	 regulators	 are	 particularly

vulnerable	 to	 this	 problem.	 Premium	US-branded	 power	 regulators	 sometimes	 fetch	 a	 price	 10	 times
higher	than	drop-in	Asian-branded	substitutes.	However,	the	Asian-branded	parts	are	notorious	for	spotty
quality,	 cut	 corners,	 and	 poor	 parametric	 performance.	 Clearly,	 there	 is	 ample	 opportunity	 for
counterfeiters	to	make	a	lot	of	money	by	buying	unmarked	chips	from	the	second-source	fab	and	remarking
them	with	authentic-looking	top	marks	of	premium	US	brands.	In	some	cases,	there	are	no	inexpensive	or
fast	 tests	 to	detect	 these	 fakes,	 short	of	decapsulating	 the	chip	and	comparing	mask	patterns	and	cross-
sections,	as	I	did	for	the	ST19CF68.

Fakes	and	US	Military	Designs
The	variety	of	counterfeiting	methods	available,	combined	with	the	fact	that	many	commodity	parts	have
production	cycles	of	only	a	few	years,	presents	a	big	problem	for	institutions	like	the	US	military,	where
design	 lifetimes	 are	 often	 measured	 in	 decades.	 It’s	 like	 asking	 someone	 to	 build	 a	 NeXTcube*
motherboard	today	using	only	certifiably	new	parts,	with	no	secondhand	or	refurbished	parts	allowed.	I
don’t	think	it’s	possible.
The	 impossibility	 of	 this	 situation	 may	 sometimes	 make	 military	 contractors	 complicit	 in	 the

consumption	 of	 counterfeit	 parts	 to	 bad	 effect.	 In	 the	 P-8	 Poseidon	 case,	 people	 were	 quick	 to	 point
fingers	 at	 China,	 but	 a	 poor	 refurbishing	 job	 is	 probably	 detectable	 with	 a	 simple	 visual	 inspection.
Maybe	 part	 of	 the	 problem	 is	 that	 a	 subcontractor	 was	 lax	 in	 checking	 incoming	 stock—or	 perhaps
looking	the	other	way.	If	those	parts	were	the	last	of	their	kind	in	the	world,	what	else	could	be	done?
My	 guess	 is	 that	 the	 stocks	 of	 any	 distributor	 in	 the	 secondhand	 electronics	 business	 are	 already

flooded	with	undetected	counterfeits.	Remember,	only	the	bad	fakes	are	ever	caught,	and	chip	packaging
was	not	designed	with	anticounterfeiting	measures	in	mind.	While	all	gray-market	parts	are	suspect,	that’s
not	necessarily	a	bad	thing.
Gray	 markets	 play	 an	 essential	 role	 in	 the	 electronics	 ecosystem;	 using	 them	 is	 a	 calculated,	 but

sometimes	unavoidable,	risk.	In	fact,	many	traders	in	the	gray	market	are	very	upfront	about	their	goods
being	recycled.	Many	even	post	signs	on	their	stalls	advertising	this	fact.	However,	these	signs	are	written
in	Chinese.	In	that	case,	whose	fault	is	it—the	seller	for	selling	recycled	goods,	or	the	buyer	for	not	being
able	to	read	the	sign?

Anticounterfeit	Measures



The	counterfeit	chip	situation	is	a	mess,	but	some	simple	measures	could	fix	it.

PHYSICAL	IDENTIFIERS
Embedding	 anticounterfeit	measures	 in	 chips	 approved	 for	military	use	 is	 one	option.	For	 chips	 larger
than	1	cm	wide,	a	unique	2D	barcode	could	be	laser-engraved	by	equipment	relatively	common	in	chip
packaging	facilities.	Despite	a	tiny	footprint,	the	codes	would	be	backed	with	a	guarantee	of	100	percent
uniqueness.	 Such	 techniques	 are	 effective	 in	 biotech,	 where	 systems	 like	Matrix	 2D	 track	 disposable
sample	tubes	in	biology	labs.
Another	potential	 solution	 is	 to	mix	 a	UV	dye	 into	 the	 component’s	 epoxy	 that	 changes	 fluorescence

properties	upon	exposure	to	reflow	temperatures—a	consistent	set	of	well-defined	temperatures	at	which
solder	melts.	This	makes	 it	 impossible	 to	recondition	the	chip	 to	a	“new”	state	after	 it’s	been	soldered
down	 the	 first	 time.	 If	 the	 dye	 is	 distributed	 through	 the	 entire	 package	 body,	 it	will	 be	 impossible	 to
remove	with	surface	grinding	alone.

CHANGING	HOW	E-WASTE	IS	HANDLED
Managing	e-waste	more	effectively	would	also	alleviate	the	counterfeit	problem.	E-waste	is	harvested	in
bulk	 for	used	parts.	Crudely	desoldered	MSM-series	 chips—the	brains	of	many	Android	 smartphones,
made	by	Qualcomm	and	marketed	under	the	brand	name	of	Snapdragon—are	purchasable	by	the	pound,	at
around	10	cents	per	chip.	Counterfeiters	clean	up	the	chips,	reball	(that	is,	add	new	solder	balls,	for	ball-
grid	array	packages)	and	sometimes	remark	them,	put	them	into	tapes	and	reels,	and	sell	them	as	brand-
new,	commanding	a	markup	10	times	the	original	purchase	price.	A	single	batch	of	refurbished	chips	can
net	 thousands	 of	 dollars,	making	 the	 practice	 a	 compelling	 source	 of	 income	 for	 skilled	workers	who
would	otherwise	earn	$200	per	month	in	a	factory	doing	exactly	the	same	thing.*	(Factories	are	typically
authorized	to	recover	chips	off	of	defective	boards	or	consumer	returns	that	can’t	be	repaired.)
If	 the	United	States	 stopped	 shipping	 e-waste	 overseas	 for	 disposal,	 or	 at	 least	 ground	 up	 the	 parts

before	 shipping	 them,	 then	 the	 supply	 for	 refurbished	 chip	markets	would	 decrease.	Domestic	 e-waste
processing	would	also	create	more	jobs,	a	resource	as	valuable	as	gold.
On	the	other	hand,	I	think	component-level	recycling	is	quite	good	for	the	environment	and	the	human

ecosystem	in	the	long	term.	Most	electronic	parts	will	function	perfectly	for	years	beyond	a	consumer’s
trash	 bin,	 and	 emerging	 economies	 create	 technology-hungry	 markets	 that	 can’t	 afford	 new	 parts
purchased	on	the	primary	market.

KEEPING	A	RESERVE	OF	AUTHENTIC	PARTS
A	final	option	 to	 ensure	 trustworthiness	 for	 critical	military	hardware	could	be	 to	 establish	a	 strategic
reserve	 of	 parts.	 A	 production	 run	 of	military	 planes	 is	 limited	 to	 perhaps	 hundreds	 of	 units,	 a	 small
volume	 compared	 to	 consumer	 electronics	 production	 runs.	 I	 imagine	 the	 lifetime	 demand	 of	 a	 part,
including	 replacements,	 is	 limited	 to	 tens	 of	 thousands	 of	 units.	 Physically,	 then,	 a	 parts	 reserve	 isn’t
unmanageable:	10,000	chips	will	fit	inside	a	large	shoebox.
Financially,	 I	 estimate	 purchasing	 a	 reserve	 of	 raw	 replacement	 components	 for	 critical	 avionics

systems	would	add	only	a	fraction	of	a	percent	to	the	cost	of	an	airplane.	This	could	even	lead	to	long-
term	savings,	as	manufacturers	can	achieve	greater	scale	efficiency	if	they	run	one	large	batch	all	at	once.
Obviously,	 anticounterfeit	 measures	 would	 be	 incredibly	 useful	 in	 civilian	 projects,	 too.	 I	 have

sympathy	 for	 anyone	who	 has	 to	 deal	with	 counterfeit	 parts,	 as	 I	myself	 have	 been	 burned	 on	 several



occasions.	Here’s	a	tale	of	a	particularly	annoying	issue	I	ran	into	during	my	work	on	the	chumby	One.

FAKE	MICROSD	CARDS
In	December	2009,	in	the	middle	of	the	chumby	One’s	production	run,	I	set	out	on	a	forensic	investigation
to	 find	 the	 truth	behind	some	 irregular	Kingston	memory	cards.	The	 factory	called	 to	 tell	me	 that	SMT
yield	dropped	dramatically	on	one	lot	of	chumby	Ones,	so	I	drove	over	to	see	what	I	could	do	to	fix	the
problem.	After	poking	and	prodding	at	some	chumby	Ones,	I	realized	that	all	failing	units	had	Kingston
microSD	cards	from	a	particular	lot	code.	I	had	the	factory	pull	the	entire	lot	of	microSD	cards	from	the
line	and	rework	the	units	that	had	these	cards	loaded.	After	swapping	the	cards,	yield	returned	to	normal.
The	story	should	have	ended	there.	In	this	situation,	I’d	usually	get	a	return	merchandise	authorization

(RMA)	from	the	manufacturer	for	the	defective	parts,	exchange	the	lot	for	parts	that	work,	and	move	on.
But	I	had	a	couple	of	problems.
First,	Kingston	wouldn’t	take	the	cards	back,	because	we	programmed	them.	Second,	there	were	a	lot

of	defective	cards	 (about	1,000	altogether,	and	chumby	was	already	deeply	backordered),	and	memory
cards	aren’t	cheap.	This	 type	of	memory	card	cost	around	$4	or	$5	at	 the	time,	 leaving	a	few	thousand
dollars	in	scrap	if	we	couldn’t	get	them	exchanged.	Chumby	couldn’t	afford	to	sneeze	at	a	few	kilobucks,
so	I	kicked	into	forensics	mode.

Visible	Differences
Irregular	external	markings	were	the	first	suspicious	feature	I	noticed	about	the	defective	Kingston	cards.

An	irregular	microSD	card	(left)	and	a	normal	card	(right).
The	arrows	and	circles	show	suspicious	differences.

The	strangest	physical	difference	was	that	the	lot	code	on	the	irregular	card	was	silkscreened	with	the
same	stencil	as	the	main	logo.	Silkscreening	a	lot	code	isn’t	unusual,	but	typically,	the	manufacturer	won’t
use	the	same	stencil	for	the	lot	code	and	the	logo.	There	should	be	some	variance	in	the	coloration,	font,



or	alignment	of	the	lot	code	from	the	rest	of	the	text.	The	entire	batch	of	irregular	cards	also	had	the	same
lot	 code	 (N0214-001.A00LF).	 Typically,	 the	 lot	 code	 changes	 at	 least	 every	 couple	 hundred	 cards.
Contrast	 the	 irregular	 card	with	 the	 normal	 card,	which	 is	 laser-marked.	 The	 normal	 cards’	 lot	 codes
varied	with	every	tray	of	96	units.
The	second	strange	feature	was	subtler	and	perhaps	not	damning:	an	irregularity	in	the	microSD	logo.

Brand-name	vendors	like	Kingston	are	very	picky	about	the	accuracy	of	their	logos:	SanDisk	cards	have	a
broken	D,	but	Kingston	cards	sold	in	the	United	States	almost	universally	use	a	solid	D.

Investigating	the	Cards
Oddities	in	the	external	markings	were	just	the	start.	When	I	read	the	electronic	card	ID	data	on	the	two
cards	(by	checking	/sys	entries	in	Linux),	this	is	what	I	found	in	the	irregular	card:

cid:41343253443247422000000960400049
csd:002600325b5a83a9e6bbff8016800095
date:00/2000
fwrev:0x0
hwrev:0x2
manfid:0x000041
name:SD2GB
oemid:0x3432
scr:0225000000000000
serial:0x00000960

And	this	is	what	I	found	in	the	normal	card:

cid:02544d5341303247049c62cae60099dd
csd:002e00325b5aa3a9ffffff800a80003b
date:09/2009
fwrev:0x4
hwrev:0x0
manfid:0x000002
name:SA02G	
oemid:0x544d
scr:0225800001000000
serial:0x9c62cae6

First,	notice	the	date	code	on	the	irregular	card.	Dates	are	counted	as	the	offset	from	00/2000	in	the	CID
field,	 so	a	value	of	00/2000	means	 the	manufacturer	didn’t	bother	 to	assign	a	date.	Furthermore,	 in	 the
year	2000,	2GB	microSD	cards	didn’t	even	exist.	Also,	the	serial	number	on	the	defective	card	is	very
low:	in	decimal,	0x960	is	2,400.	Other	cards	in	the	irregular	batch	had	similarly	low	serial	numbers,	in
the	hundreds	or	thousands.
For	a	popular	product	like	a	microSD	card,	the	chance	of	getting	the	very	first	units	out	of	a	factory	is

pretty	 remote.	 For	 example,	 the	 serial	 number	 of	 the	 normal	 card	 is	 0x9C62CAE6	 in	 hexadecimal,	 or
2,623,720,166	in	decimal,	which	is	much	more	feasible.	Very	low	serial	numbers,	like	very	low	MAC	ID
addresses,	are	hallmarks	of	a	ghost	shift.
Finally,	 the	 manufacturer’s	 ID	 on	 the	 irregular	 card	 is	 0x41	 (capital	 A	 in	 ASCII),	 which	 I	 didn’t

recognize.*	The	original	equipment	manufacturer	identification	(OEMID)	number	was	0x3432—an	ASCII
42,	which	is	one	more	than	the	hex	value	for	the	manufacturer	ID.	Manufacturer	IDs	are	usually	the	ASCII
character	 given	 by	 the	 hexadecimal	 value,	 not	 the	 hexadecimal	 values	 themselves.	 Confusing	 hex	 and
ASCII	is	a	possible	sign	that	someone	who	didn’t	appreciate	the	meaning	of	the	fields	was	running	a	ghost
shift	making	these	cards.



Were	the	MicroSD	Cards	Authentic?
Armed	with	this	evidence,	Chumby	confronted	the	Kingston	distributor	in	China	and	Kingston’s	US	sales
representative.	We	asked	whether	 the	cards	were	authentic	and,	 if	so,	why	the	serialization	codes	were
irregular.	 After	 some	 time,	 Kingston	 swore	 the	 cards	 were	 authentic,	 not	 fakes,	 but	 it	 did	 reverse	 its
position	on	exchanging	the	cards.	The	company	took	back	the	programmed	cards	and	gave	us	new	ones,
no	further	questions	asked.
However,	Kingston	never	said	why	the	card	ID	numbers	were	irregular.	I	know	Chumby	was	small	fry

compared	 to	 the	Nokias	of	 the	world,	 but	 companies	 should	 still	 answer	basic	questions	 about	quality
control,	even	for	small	fry.	I	was	once	accidentally	shipped	an	old	version	of	a	Quintic	part,	and	once	I
could	prove	 the	 issue,	 I	 received	world-class	 customer	 service	 from	Quintic.	The	company	gave	me	a
thorough	explanation	and	immediately	paid	for	a	full	exchange	of	the	parts.	That	was	exemplary	service,
and	I	commend	and	strongly	recommend	Quintic	for	it.	Kingston,	on	the	other	hand,	did	not	set	an	example
to	follow.
I’d	normally	have	disqualified	Kingston	as	a	vendor,	but	I	was	persistent.	It	was	disconcerting	that	a

high-profile,	established	brand	would	stand	behind	such	irregular	components.	Who	could	say	SanDisk	or
Samsung	wouldn’t	do	the	same?	Price	erosion	at	the	time	hit	flash	vendors	hard,	and	as	small	fry,	I	could
have	been	taken	advantage	of	by	any	of	those	companies	as	a	sink	for	marginal	material	to	improve	their
bottom	line.	Given	the	relatively	high	cost	of	microSD	cards,	I	needed	 incoming	quality	control	 (IQC)
guidelines	 for	 inspections	 to	 follow	 to	 accept	 or	 reject	 shipments	 from	memory	 vendors	 based	 on	 set
quality	standards.	To	develop	those	guidelines,	I	continued	digging	for	the	truth	behind	those	cards.

Further	Forensic	Investigation
First,	I	collected	a	lot	of	sample	microSD	cards.	I	wanted	to	collect	both	regular	and	 irregular	cards	in
the	wild,	so	I	went	to	the	Hua	Qiang	Bei	district	and	wandered	around	the	gray	markets	there.	I	bought	10
memory	cards	from	small	vendors,	at	prices	from	30	to	50	RMB	($4.40	to	$7.30	USD).
Shopping	 for	 irregular	 cards	 was	 interesting.	 In	 talking	 to	 a	 couple	 dozen	 vendors,	 I	 learned	 that

Kingston,	 as	 a	 brand,	 was	 weak	 in	 China	 for	 microSD	 cards.	 SanDisk	 did	 a	 lot	 more	 marketing,	 so
SanDisk	cards	were	much	easier	to	find	on	the	open	market,	and	the	quality	of	gray-market	SanDisk	cards
was	fairly	consistent.
Small	vendors	were	also	entirely	brazen	about	selling	well-crafted	fakes.	They	had	bare	cards	sitting

loose	in	trays	in	the	display	case.	(Page	11	in	Chapter	1	has	photos	showing	what	an	SD	card	vendor’s
stall	looks	like.)	Once	I	agreed	on	a	price	and	committed	to	buying	a	card,	the	vendor	tossed	a	loose	card
into	 a	 “real”	Kingston	 retail	 package,	miraculously	 pulled	 out	 a	 certificate—complete	with	 hologram,
serial	numbers,	and	a	kingston.com	URL	to	visit	to	validate	the	purchase—and	slapped	the	certificate	on
the	back	of	the	retail	package	right	in	front	of	my	eyes.

http://kingston.com


A	freshly	purchased	Kingston	microSD	card.	It	was	just	like	new!

One	vendor	particularly	interested	me.	There	was	literally	a	mom,	a	pop,	and	one	young	child	sitting	in
a	small	stall	of	 the	mobile	phone	market.	They	were	busily	slapping	dozens	of	non-Kingston	cards	into
Kingston	retail	packaging.	They	had	no	desire	to	sell	to	me,	but	I	was	persistent.	This	card	interested	me
in	particular	because	it	also	had	the	broken	D	logo,	but	no	Kingston	marking.	The	preceding	photo	is	the
card	and	the	package	it	came	in;	the	card	is	Sample	4	in	the	next	section,	where	you	can	see	a	detailed
analysis	of	seven	different	microSD	cards	from	my	shopping	trip.

Gathering	Data
After	 collecting	my	 samples,	 I	 read	 out	 their	 card	 ID	 information	 by	 checking	 their	 /sys	 entries	 under
Linux	and	 then	decapsulated	 (that	 is,	 dissolved)	 their	 packages	with	nitric	 acid.	As	you	can	 see	 in	 the
photos	in	Table	2,	my	decapsulation	technique	was	pretty	crude.	Most	of	 the	damage	to	 the	cards	came
from	removing	dissolved	encapsulant	with	acetone	and	a	Q-tip.	I	had	to	get	a	little	rough,	which	didn’t	do
the	bond	wires	any	favors.	But	it	was	good	enough	for	my	purposes.

Here’s	all	the	basic	information	I	pulled	from	those	cards:

Sample	 1	 The	 irregular	 card	 that	 started	 this	 whole	 investigation.	 It	 was	 purchased	 through	 a
sanctioned	Kingston	 distributor	 in	 China,	 and	 to	 the	 best	 of	my	 knowledge,	 none	were	 shipped	 to
Chumby’s	end	customers.	MID	=	0x000041,	OEMID	=	0x3432,	serial	=	0x960,	name	=	SD2GB.

Sample	 2	 A	 normal	 card	 that	 I	 purchased	 from	 the	 same	 sanctioned	Kingston	 distributor	 in	 China
where	I	bought	Sample	1.	It	was	typical	of	microSD	cards	actually	shipped	in	the	first	lot	of	chumby
Ones.	MID	=	0x000002,	OEMID	=	0x544D,	serial	=	0x9C62CAE6,	name	=	SA02G.

Sample	3	A	Kingston	card	purchased	through	a	major	US	retail	chain.	MID	=	0x000002,	OEMID	=
0x544D,	serial	=	xA6EDFA97,	name	=	SD02G.	Note	how	the	MID	and	OEMID	are	identical	to	those



Sample	2,	but	not	Sample	1.

Sample	4	The	non-Kingston	card	I	saw	slapped	into	Kingston-marked	packaging,	bought	on	the	open
market	in	Shenzhen.	MID	=	0x000012,	OEMID	=	0x3456,	serial	=	0x253,	name	=	MS.	Note	the	low
serial	number.

Sample	5	A	device	from	a	more	established	retailer	in	the	Shenzhen	market.	I	bought	it	because	it	had
the	XXX.A00LF	marking,	like	my	original	irregular	card.	MID	=	0x000027,	OEMID	=	0x5048,	serial
=	0x7CA01E9C,	name	=	SD2GB.

Sample	 6	 A	 SanDisk	 card	 bought	 on	 the	 open	market	 from	 a	 sketchy	 shop	 run	 by	 a	 sassy	 chain-
smoking	girl	who	wouldn’t	stop	texting.	I	actually	acquired	three	total	SanDisk	cards	from	different
sketchy	sources,	but	all	of	 them	checked	out	with	 the	same	CID	info,	so	 I	opened	only	one.	MID	=
0x000003,	OEMID	=	0x5344,	serial	=	0x114E933D,	name	=	SU02G.

Sample	7	A	Samsung	card	that	I	bought	from	a	Samsung	wholesale	distributor.	I	didn’t	scan	this	one
before	decapsulating	it,	and	the	card	actually	had	no	markings	on	the	outside	(it	was	blank,	with	just	a
laser	mark	on	the	back),	so	I	didn’t	photograph	it.	From	appearances	alone,	it	was	the	sketchiest	of	the
bunch,	but	it	was	one	of	the	best	built.	You	can’t	judge	a	book	by	its	cover!	MID	=	0x00001B,	OEMID
=	0x534D,	serial	=	0xB1FE8A54,	name	=	00000.

That’s	a	lot	of	data,	and	I	had	my	work	cut	out	for	me	in	drawing	some	kind	of	useful	conclusion	from	it
all.

NOTE

Interestingly,	one	SanDisk	card	from	three	in	Sample	6	turned	out	to	be	used	and	only	quick-
formatted.	With	help	from	some	recovery	software,	I	found	DLLs,	WAVs,	maps,	and	VeriSign
certificates	belonging	to	Navione’s	Careland	GPS.	Someday,	I’ll	acquire	lots	of	refurb	microSD
cards	and	collect	interesting	data	from	them.

Table	2:	A	Breakdown	of	All	the	Cards	Collected	for	the	Investigation



Summarizing	My	Findings
Here	are	the	most	interesting	high-level	conclusions	I	drew	from	my	survey:

•	The	“normal”	Kingston	cards	(Samples	2	and	3)	were	fabricated	by	Toshiba,	as	indicated	by	the	flash
die	markings	and	their	OEMIDs.	In	ASCII,	0x544D	is	TM,	presumably	for	Toshiba	Memory.	These
cards	employ	Toshiba	controllers	and	Toshiba	memory	chips	and	seem	to	be	of	good	quality.	Thankfully,
they	were	only	ones	sent	to	Chumby	customers.

•	The	irregular	card	(Sample	1)	used	the	same	controller	chip	as	the	outright	fake	(Sample	4)	I	bought	in
the	market.	Both	the	irregular	Kingston	and	the	fake	Kingston	had	low	serial	numbers	and	wacky	ID
information.	Both	of	these	cards	exhibited	abnormal	operation	under	certain	circumstances.	I	still
hesitate	to	call	Kingston’s	irregular	card	a	fake,	as	that’s	a	very	strong	accusation,	but	its	construction
was	similar	to	another	card	of	clearly	questionable	quality,	which	leads	me	to	question	Kingston’s
choice	of	authorized	manufacturing	partners.

•	The	irregular	card	is	the	only	card	in	the	group	that	does	not	use	a	stacked	CSP	construction.	Instead,	it



uses	side-by-side	bonding—that	is,	the	microcontroller	and	the	memory	chip	are	simply	placed	next	to
each	other.	Stacked	CSPs	place	the	microcontroller	on	top	of	the	memory	chip.	This	is	significantly
more	complex	than	side-by-side	placement	because	the	chips	must	first	have	their	inert	back-side
material	ground	off	to	make	the	overall	height	of	the	stack	fit	inside	such	a	slim	package.	Despite	the
difficulty,	stacking	chips	is	popular	because	it	allows	vendors	to	cram	more	silicon	into	the	same
footprint.

•	The	only	two	memory	chip	foundries	in	this	sample	set	were	Toshiba/SanDisk	and	Samsung.	(SanDisk
and	Toshiba	coown	the	factory	that	makes	their	memory	chips.)

•	Samsung’s	NAND	die,	which	is	the	most	expensive	part	of	a	microSD	card,	is	about	17	percent	larger
than	dies	from	Toshiba/SanDisk.	This	means	that	Samsung	microSD	cards	should	naturally	carry	a
slightly	higher	price	than	Toshiba/SanDisk	cards.	However,	Samsung	can	offset	that	against	the	ability	to
place	the	same	bare	die	that	normally	gets	crammed	inside	a	microSD	package	into	thin	small	outline
package	(TSOP)	devices	suitable	for	board-level	machine	assembly	instead.	If	demand	for	microSD
cards	slumps,	Samsung	can	slap	excess	bare	dies	inside	TSOP	packages	and	sell	those	to	third	parties
that	do	conventional	machine	assembly	of	chips.	Plus,	Samsung	also	doesn’t	have	a	middleman	like
Kingston	to	eat	away	at	margins.

I	knew	(like	many	others	in	manufacturing)	that	Kingston	wasn’t	a	semiconductor	manufacturer,	in	that	it
owned	no	fabrication	facilities,	but	this	research	implied	that	Kingston	did	no	original	design	of	its	own.	I
hoped	to	at	least	find	a	Kingston-branded	controller	chip	inside	the	Kingston	cards,	even	if	the	chip	was
fabricated	by	a	foundry.	I	also	expected	to	see	Kingston	sourcing	memory	chips	from	a	broader	variety	of
companies.	Being	able	to	balance	the	supply	chain	and	be	less	dependent	on	a	single,	large	competitor	for
chips	would	be	a	significant	value-add	to	customers,	giving	Kingston	leverage	to	negotiate	a	better	price
that	few	others	can	achieve.	But	every	Kingston	card	I	bought	had	a	SanDisk/Toshiba	memory	chip	inside.
The	only	“value-add”	that	I	saw	was	in	the	selection	of	the	controller	chip.
Oddly	enough,	of	all	the	vendors,	Kingston	quoted	Chumby	with	the	best	lead	times	and	pricing,	despite

SanDisk	and	Samsung	making	all	their	own	silicon	and	thereby	having	lower	inherent	costs.	This	told	me
that	Kingston	must	 have	 a	 very	 low	margin	 on	 its	microSD	 cards,	which	 could	 explain	why	 irregular
cards	 found	 their	way	 into	 its	 supply	 chain.	Kingston	 is	 also	 probably	more	willing	 to	 talk	 to	 smaller
accounts	like	Chumby	because,	as	a	channel	brand,	Kingston	can’t	compete	against	OEMs	like	SanDisk	or
Samsung	for	the	biggest	contracts	from	the	likes	of	Nokia	and	Apple.
So,	 the	 irregular	 microSD	 card	 I	 pulled	 from	 the	 chumby	 One	 production	 line	 may	 not	 have	 been

counterfeit,	but	 it	was	still	a	child	of	 the	remarking	ecosystem	in	China.	Kingston	 is	more	of	a	channel
trader	 and	 less	 of	 a	 technology	 provider,	 and	 is	 probably	 seen	 by	 SanDisk	 and	 Toshiba	 as	 a	 demand
buffer	 for	 their	production	output.	 I	also	wouldn’t	be	surprised	 if	SanDisk/Toshiba	sold	Kingston	 less-
than-perfect	 parts,	 keeping	 the	 best	 of	 the	 lot	 for	 themselves.	 Thus	 I’d	 expect	 Kingston	 cards	 to	 have
slightly	more	defective	sectors,	but	thanks	to	the	magic	of	error	correction	and	spare	sectors,	this	fact	is
hidden	to	end	users.
As	 a	 result,	Kingston	plays	 an	 important	 role	 in	 stabilizing	microSD	card	prices	 and	 improving	 fab

margins.	But	the	potential	conflict	of	interest	seems	staggering,	and	I’m	still	very	curious	about	how	this
ecosystem	came	to	be.	Buying	a	significant	amount	of	a	competitor’s	technology	from	a	competitor’s	fab
yet	 still	 selling	 at	 a	 competitive	 price	 is	 counterintuitive	 to	 me,	 and	 perhaps	 my	 greatest	 folly	 in
investigating	that	irregular	microSD	card	was	expecting	something	different.



FAKE	FPGAS
Anyone	 who	 has	 done	 manufacturing	 in	 China	 for	 a	 while	 will	 have	 more	 than	 one	 story	 about
irregularities	in	the	supply	chain.	Here’s	another	one	of	my	favorite	stories,	which	highlights	some	of	the
core	incentives	that	drive	agents	to	cheat.

The	White	Screen	Issue
It	 was	 March	 2013,	 and	 I	 was	 wrapping	 up	 the	 first	 volume	 production	 run	 of	 a	 bespoke	 robotics
controller	board	codenamed	Kovan.*	At	the	conclusion	of	any	production	run,	I	always	review	the	list	of
issues	encountered	in	production,	to	identify	areas	of	improvement.	Manufacturing	is	a	Sisyphean	struggle
toward	perfection:	every	run	has	some	units	you	just	have	to	scrap,	and	the	difference	between	profit	and
loss	is	how	well	you	can	manage	the	scrap	rate.
On	this	run,	one	particular	problem,	dubbed	the	“white	screen	issue”	after	its	most	obvious	symptom,

was	the	dominant	problem.	About	4	percent	of	the	total	run	exhibited	this	problem,	accounting	for	almost
80	percent	of	unit	failures.	I	had	the	factory	send	me	a	few	samples	of	the	failed	units	to	analyze	in	more
detail.
As	I’ve	often	discovered	when	analyzing	failed	units,	 the	most	obvious	symptom	of	the	problem	was

only	 tangentially	 related	 to	 the	 root	 cause.	The	LCD	screen	 appeared	white	on	 these	units	 because	 the
FPGA	failed	to	configure.	An	FPGA,	short	for	Field	Programmable	Gate	Array,	is	essentially	a	blob	of
logic	and	memory	devices	embedded	 in	a	dense	network	of	wires	 that	 can	be	configured	at	 runtime	 to
behave	 a	 certain	way.	 The	 behavior	 of	 the	 FPGA	 is	 typically	 described	 in	 a	 high-level	 language	 that
resembles	 a	 programming	 language	 like	 C	 (for	 instance,	 Verilog)	 or	 Ada	 (like	VHDL),	 which	 is	 then
compiled	into	a	configuration	bitstream.
FPGAs	are	very	handy	for	implementing	time-sensitive	hardware	interfaces	that	software	would	have

trouble	emulating.	 In	 this	particular	application,	 the	FPGA	controlled	everything	from	the	motors	 to	 the
sensors	 and	even	 the	LCD.	When	 the	FPGA	 failed	 to	 configure,	 the	LCD	didn’t	 receive	 sync	 and	data
signals,	leading	it	to	show	a	blank,	white	screen	instead	of	the	expected	factory	test	patterns.
FPGA	failure	was	a	big	deal.	For	starters,	 the	FPGA	was	the	most	expensive	part	on	the	board	by	a

long	shot,	at	around	$11	per	chip.	I	was	also	worried	this	problem	could	point	to	a	deeper	design	issue.
Perhaps	the	FPGA’s	power	regulators	were	unstable,	or	maybe	there	was	an	issue	with	the	boot	sequence
that	aggravated	a	corner	case	in	configuration	timing	that	would	creep	into	the	“good”	production	units	as
they	aged.	The	situation	definitely	warranted	a	deeper	investigation.

Incorrect	ID	Codes
I	hooked	up	 the	debug	console,	dug	 into	 the	problem,	and	discovered	 that	 the	 failure	was	 linked	 to	 the
FPGA	not	responding	with	the	correct	ID	code.	The	ID	code	is	checked	via	queries	over	a	test	access	bus
known	as	JTAG.	Most	users	don’t	check	an	FPGA	ID	before	programming,	but	we	designed	an	ID	code
check	into	Kovan	because	we	allowed	customers	to	specify	what	capacity	FPGA	they	wanted	to	use	for	a
given	production	lot.	Some	applications	are	more	demanding,	while	others	are	more	cost-sensitive.	As	a
result,	 a	 customer	 could	 have	 a	mixed	 inventory	 of	 FPGAs,	 and	 we	 wanted	 to	 be	 able	 to	 detect	 and
protect	the	hardware	from	an	accidental	mismatch	between	the	bitstream	and	the	FPGA.
But	 this	was	a	 single	production	 lot,	 and	 in	 theory	all	 the	FPGAs	should	have	been	 the	 same.	How,

then,	could	the	FPGA	have	reported	a	mismatched	ID	code	at	all?	I	scratched	my	head	for	a	while	and
suspected	a	bug	in	our	JTAG	implementation,	until	I	looked	up	the	reported	ID	code.	It	was	a	known	code



—but	 for	 silicon	marked	 as	 “Engineering	 Samples”	 from	Xilinx,	 the	 vendor	 that	makes	 these	 FPGAs.
Engineering	 samples	 are	 preproduction	units	 sold	 by	Xilinx	 that	 have	 some	minor	 known	bugs	but	 are
sufficiently	functional	for	most	applications,	to	the	point	where	most	customers	wouldn’t	see	a	difference,
except	for	the	ID	code.
I	 looked	closer	 at	 the	PCB,	 and	 for	 the	 first	 time,	 I	 noticed	 that	 a	 small,	white	 rectangle	was	 laser-

etched	 into	 the	 FPGA’s	 surface.	 The	 rectangle	 was	 right	 below	 the	 part	 number,	 where	 the	 “ES”
designator	for	an	engineering	sample	would	normally	be	marked.	Someone	had	blasted	the	letters	off	and
sold	us	engineering	samples	as	full	production	units!

An	engineering	sample	FPGA	on	a	Kovan	board



For	contrast,	an	FPGA	of	the	same	type	that	hasn’t	been	tampered	with

The	problem	was	very	clearly	a	supply	chain	issue,	not	a	design	issue.	Someone	in	the	chain	was	taking
ES	silicon,	blasting	off	 the	 letters,	and	blending	them	in	with	 legitimate	units	at	a	rate	of	around	3	to	5
percent.	Typically,	Xilinx	would	require	that	all	ES	silicon	in	a	distributor’s	inventory	be	scrapped	once
production	units	become	available,	but	the	ES	units	were	almost	fully	functional,	to	the	point	where	most
applications	would	 be	 unaffected.	A	production	 bitstream	would	 seamlessly	 load	 into	 an	ES	part,	 and
nobody	would	know	the	difference.	The	only	way	to	tell	them	apart	would	be	by	doing	an	ID	code	check,
which	is,	as	I	noted	previously,	atypical.
Thus,	slipping	ES	silicon	into	production	lots	would	likely	go	unnoticed.	Mixing	ES	parts	in	at	a	rate	of

3	to	5	percent	was	also	very	clever:	a	low	mix	rate	makes	substitutions	very	hard	to	catch	without	100
percent	 prescreening	 of	 the	 parts.	 Even	 in	 production,	 if	 the	 ES	 silicon	 were	 marginal,	 it	 would	 be
maddeningly	difficult	to	nail	down	the	root	cause	of	an	issue	due	to	its	rarity.
In	 fact,	 there’s	a	correlation	between	manufacturing	difficulty	and	 the	use	of	FPGAs.	Usually	 if	your

design	calls	for	an	FPGA,	you’re	pushing	boundaries	on	multiple	fronts,	so	a	scrap	rate	of	a	few	percent
is	to	be	expected.	The	margin	on	FPGA-powered	hardware	is	also	often	fat	enough	that	a	4	percent	failure
rate	might	simply	be	accepted	by	the	end	customer.	Thus,	whoever	did	this	knew	exactly	what	they	were
doing;	it	was	virtually	risk-free	money.
Finally,	 it’s	 important	 to	note	that	most	vendors	 in	a	supply	chain	survive	on	single-digit	margins,	so

finding	an	extra	3	to	5	percent	of	“free	money”	on	the	most	expensive	part	on	a	board	virtually	doubles
profitability.	That	provides	a	very	strong	incentive	to	cheat,	especially	if	you	think	you	won’t	be	caught.

The	Solution



The	resolution	to	this	problem	was	quite	interesting.	I	met	with	the	managers	and	CEO	of	AQS,	the	CM
charged	with	 producing	Kovan,	 briefed	 them	 about	 the	 problem,	 and	 showed	 them	 the	 evidence	 I	 had
accumulated.	When	my	presentation	ended,	the	CEO	didn’t	point	a	finger	at	upstream	vendors	or	partners.
Instead,	he	immediately	looked	his	staff	in	the	eyes	and	asked,	“Did	any	of	you	do	this?”	He	understood
better	than	anyone	else	in	the	room	that	any	individual	buyer	or	manager	would	effectively	double	their
take-home	pay	that	month	if	they	could	pull	off	this	cheat	without	getting	caught.
In	 other	 words,	 the	 truly	 remarkable	 part	 of	 this	 situation	 is	 how	 rarely	 the	 problem	 I	 experienced

happens,	given	what’s	at	stake	and	how	hard	these	problems	are	to	catch.	And	while	I	do	have	a	few	good
bar	stories	to	tell	about	fakes	in	the	supply	chain,	remember	that	I’ve	also	shipped	hundreds	of	thousands
of	 units	 of	 good	 product.	 The	majority	 of	 people	 I’ve	worked	with	 in	 China	 are	 hardworking,	 honest
people	who	pass	on	easy	opportunities	to	cheat	me	and	turn	a	profit.	It’s	important	not	to	generalize	the
whole	based	on	the	bad	actions	of	a	few.
At	 the	 end	 of	 the	 day,	 the	 vendor	who	 sold	 us	 the	 chips	 didn’t	 admit	 fault,	 but	 they	 did	 replace	 all

remarked	units	at	their	own	cost.	(We	still	had	to	pay	for	the	labor	cost	to	replace	the	chips	and	recertify
the	boards.)	This	is	about	the	closest	you	can	get	to	an	amicable	resolution	in	China	when	you’re	not	a
giant	like	Apple	or	Foxconn.	I	did	send	a	note	to	Xilinx	HQ	about	potential	misbehavior	by	one	of	their
authorized	vendors,	but	in	the	end,	I’m	a	small	customer,	and	the	substitution	of	parts	could	have	happened
literally	 anywhere	 on	 the	 supply	 chain.	 Even	 the	 courier	 delivering	 the	 packages	 could	 have	 done	 the
swap.
It	wouldn’t	be	worth	the	cost	to	Xilinx	in	terms	of	manpower,	relationships,	and	focus	to	investigate	the

problem	and	rat	out	the	one	bad	actor	in	literally	hundreds	of	possible	suspects.	But	I’d	like	to	imagine
that	at	least	a	memo	was	sent	around,	and	whoever	was	swapping	in	the	ES	parts	got	scared	enough	that
they	stopped.

CLOSING	THOUGHTS
At	 the	 end	 of	 the	 day,	 a	 permissive	 IP	 ecosystem	 has	 benefits	 and	 drawbacks.	 As	 an	 engineer	 and	 a
designer,	I	prefer	to	be	in	an	ecosystem	where	ideas	are	accessible,	even	if	it	means	I	have	to	be	on	guard
for	occasional	problems	with	fake	goods.	Put	another	way,	a	fundamental	prerequisite	for	virality	is	the
ability	 to	 make	 copies.	 The	 explosion	 of	 interest	 in	 hardware	 startups	 is	 in	 part	 thanks	 to	 the	 highly
competitive	manufacturing	ecosystem	that	could	flourish	only	in	a	product-over-patent	culture.
Westerners	who	come	to	China	without	understanding	the	principles	of	gongkai	and	guanxi*	often	feel

like	 they’re	being	cheated.	But	once	you	understand	 the	 rules	 and	 learn	how	 to	use	 them	 to	drive	your
interests,	you	won’t	feel	like	the	game	is	rigged	against	you	anymore.
In	 the	 US	 IP	 system,	 honor	 has	 little	 economic	 value,	 and	 law	 trumps	 honor.	 For	 example,	 patent

trolling	is	a	perfectly	legal,	and	very	profitable,	way	to	make	a	living.	In	the	Chinese	system,	however,
reputation	can	trump	law.	This	opens	the	door	for	corruption	but	also	crowdsources	the	enforcement	of
social	and	moral	values,	driving	a	market	value	for	honor,	especially	in	local,	tightly	knit	communities.
Of	course,	the	approach	of	making	money	by	locking	up	ideas	and	selling	the	rights	to	them	is	patently

incompatible	with	a	permissive	 IP	ecosystem.	Thankfully,	 the	notion	 that	 ideas	are	community	property
dovetails	nicely	with	my	open	source	philosophies.	In	the	next	part	of	the	book,	I’ll	talk	more	about	my
experiences	creating	open	hardware	and	building	businesses	rooted	in	these	principles.



Part	3
what	open	hardware	means	to	me
Before	there	was	open	hardware,	hardware	was	open.
A	yellow,	tattered	sheet	of	paper	hanging	next	to	my	monitors—the	schematic	for	the	Apple	II	computer

—reminds	me	of	that	fact	every	day.	When	I	got	the	schematic	as	a	child,	it	became	a	blueprint	for	the	rest
of	 my	 life.	 I	 couldn’t	 understand	 the	 schematic,	 but	 that	 didn’t	 matter;	 it	 taught	 me	 that	 hardware	 is
knowable.	 It	 empowered	 me	 to	 understand	 my	 world	 and	 master	 the	 technology	 I	 relied	 on.	 That
empowerment	propels	me	to	this	day.
The	legal	doctrine	of	open	source	was	still	nascent	when	the	Apple	II	was	created,	so	while	anyone

can	 read	 the	 schematic,	 it	 bears	no	open	 source	 license.	 It	 simply	 shows	 the	patent	number	4,136,359.
Back	then,	people	just	shared	ideas—until	investors	with	lawyers	came	along	and	tragically	spoiled	the
commons.	 The	 software	 community	 defended	 itself	 with	 the	 same	 tools	 used	 against	 it:	 primarily,
copyright	law.
Copyright	law	originally	applied	to	literary	and	artistic	works.	Today	it	also	applies	to	computer	code

because,	 like	 literature	 and	 art,	 code	 is	 a	 form	 of	 expressive	 speech.	 In	 the	 same	 way	 that	 you	 can
copyright	 a	 painting	 of	 the	 Grand	 Canyon	 but	 not	 the	 Grand	 Canyon	 itself,	 you	 can	 copyright	 an
implementation	of	Quicksort	in	C	but	not	Quicksort	itself.	To	ensure	source	code	could	be	shared	freely,
the	 software	 community	 created	 open	 source	 licenses.	 Those	 licenses	 range	 from	 copyleft	 (that	 is,
openness	 begets	 openness)	 arrangements	 like	 the	 GNU	 Public	 License	 (GPL)	 to	 more	 permissive
agreements	 that	boil	down	to	“acknowledge	me,	don’t	sue	me,	and	otherwise	do	as	you	wish,”	 like	 the
Berkeley	Software	Distribution	(BSD)	licenses.
Hardware	 blueprints	 can	 be	 protected	 by	 copyright,	 too,	 but	 blueprints	 are	 functional,	 so	 defining

“open	hardware”	is	trickier.	Virtually	every	piece	of	hardware	used	to	ship	with	a	schematic.	Somewhere
along	the	way,	however,	it	became	impossible	for	users	to	service	hardware	themselves	without	breaking
its	warranty.	Devices	are	now	filled	with	trade	secrets.	This	shift	created	an	artificial	distinction	between
closed	and	open	hardware.	 I	 say	“artificial”	because	while	 software	can	be	encrypted	with	ciphers	 so
strong	you’d	have	 to	build	a	planetsized	computer	 to	break	 them,	you	can	reverse	any	hardware	design
into	a	schematic,	given	a	powerful	enough	microscope	and	the	software	to	stitch	and	process	the	resulting
images.
The	 internet	 is	 littered	with	well-intentioned	 but	misguided	 attempts	 to	 apply	 software-centric	 open

copyright	 licenses	 to	 hardware.	 But	 using	 a	 software	 license	 on	 a	 piece	 of	 hardware	 is	 like	 filing	 a
marriage	license	for	a	corporate	merger:	while	the	license	conveys	the	author’s	intent,	it	may	not	actually
do	anything.	For	example,	the	text	of	the	GPL	doesn’t	use	the	word	hardware	once,	meaning	a	court	could
rule	that	the	GPL	doesn’t	legally	apply	to	hardware.
Some	hardware-specific	open	licenses	have	been	created	to	help	rectify	the	situation	(the	CERN	OHL

is	a	decent	copyleft-style	hardware	license),	but	the	community	is	divided	over	how	much	of	the	creation
process	has	to	be	open	for	a	piece	of	hardware	to	be	considered	open.	For	instance,	if	I	share	schematics
for	a	board	I	designed	using	a	closed-source	tool,	many	would	argue	that	the	design	does	not	qualify	as
open	source.	But	even	if	I	designed	the	board	using	a	schematic	capture	and	layout	tool	that	was	free	and
open	source	software	(F/OSS)	compliant,	what	about	the	designs	of	the	silicon	chips	it	uses	or	the	bits	of
firmware	burned	into	the	silicon?	Do	we	need	to	see	blueprints	of	the	particle	accelerators	used	to	shoot



dopants	into	the	silicon?	What	about	the	machine	used	to	engrave	the	masks	used	for	silicon	production?
It’s	turtles	all	the	way	down.	Hardware	can’t	be	purely	open	source,	because	at	some	point,	ideas	must
translate	into	matter,	and	access	to	the	objects	required	to	transform	and	shape	matter	is	rarely	open	to	the
community.
There	 are,	 however,	 much	 more	 pragmatic	 approaches	 to	 open	 hardware	 than	 doing	 electron

microscopy	or	demanding	open	silicon	foundries.	Simply	sharing	blueprints	at	a	given	layer	of	abstraction
takes	much	less	effort,	is	more	intuitive,	and	still	has	a	positive	effect.	The	shanzhai’s	gray-market	style	of
open	 source,	which	 I	 referred	 to	 in	 earlier	 chapters	 as	gongkai,	 reaps	 the	 benefits	 of	 such	 sharing.	 In
China,	blueprints	are	shared	publicly,	but	under	dubious	terms.	Most	designs	still	bear	“confidential”	or
“proprietary”	copyright	notices,	and	the	shanzhai	use	pirated	copies	of	professional-grade,	closed	source
design	software	to	create	derivative	works.	But	at	the	end	of	the	day,	this	laissez-faire	openness	creates
an	 ecosystem	where	 hundreds	 of	 small	 companies	make	 a	 living	 repairing	 or	 building	mobile	 phones.
Walking	through	the	electronics	markets	of	Shenzhen	made	me	realize	that	building	a	phone	isn’t	difficult
or	 scary.	 Communities	 outside	 the	 shanzhai	 just	 don’t	 feel	 empowered	 to	 peer	 inside	 the	 box,	 due	 to
restrictive	IP	laws.
The	gongkai	ecosystem,	explored	 in	Part	2,	values	 intellectual	and	physical	property	almost	equally.

Schematics	without	a	supply	chain	are	useless:	you	can’t	make	a	phone	call	with	blueprints	for	a	phone.
Likewise,	chipmakers	have	no	business	if	no	products	use	their	chips.	As	a	result,	hardware	creators	have
a	natural	incentive	to	share	information,	particularly	the	information	necessary	to	design	a	given	module
or	chip	into	a	larger	system.	Getting	a	customer	to	adopt	chip-specific	design	IP	virtually	guarantees	that
customer	will	purchase	 the	same	chips	when	 they’re	 ready	 to	bring	a	product	 to	mass	production.	This
balance	between	 IP	 and	 the	 supply	 chain	 has	 been	difficult	 to	 strike	 in	 IP-centric	Western	 ecosystems,
where	 ideas	 are	 much	 more	 valuable	 than	 factories.	 This	 may	 partially	 explain	 why	 so	 many
manufacturing	jobs	have	migrated	to	China,	an	ecosystem	that	more	comparably	values	the	production	of
products	and	the	ideas	behind	them.
I’m	optimistic	that	with	consistent	effort,	growing	public	awareness,	and	the	right	economic	conditions,

the	world’s	hardware	ecosystem	will	eventually	yield	an	open	silicon	foundry.	However,	until	then,	“open
hardware”	 has	 to	 be	 a	 more	 pragmatic	 concept	 that	 is	 constrained	 to	 exist	 within	 certain	 layers	 of
abstraction.	 After	 all,	 just	 being	 able	 to	 share	 blueprints	 (even	 if	 the	 licenses	 aren’t	 perfect	 and	 the
formats	aren’t	easily	edited)	dramatically	affects	innovation.	The	shanzhai	are	living	proof.
Whether	 it’s	gongkai	or	open	source,	open	hardware	 is	about	empowering	users	 to	be	 the	masters	of

their	own	technology,	not	about	any	specific	legal	arrangement.	Damn	the	torpedoes—full	speed	ahead!
The	 freedom	to	 learn,	 tinker,	and	 improve	 technology	 is	 so	core	 to	my	person	 that	 I	view	 it	as	a	basic
human	right.	Freedom	atrophies	if	not	exercised,	which	is	why	I	actively	defend	this	freedom.	I	share	my
work	 openly,	 hoping	 to	 empower	 others	 and	 raise	 awareness	 that	 technology	 is	 knowable.	We’re	 not
slaves	to	our	computers	or	the	corporations	that	build	them.
I	also	challenge	legislative	and	legal	attempts	to	curtail	our	freedoms.	I	was	born	into	a	DMCA-free

world;	 I’d	 like	 to	 leave	 the	 world	 in	 a	 similar	 state	 by	 establishing	 that	 everyone	 has	 the	 right	 to
understand,	 repair,	 and	 modify	 the	 things	 they	 own.	 This	 is	 more	 important	 than	 ever	 as	 we	 become
increasingly	 dependent	 upon	 technology.	 If	 we	 allow	 technology	 to	 become	 a	 black	 box,	 we	 also
surrender	our	agency	to	the	companies	and	governments	that	produce	and	regulate	it.
This	 part	 of	 the	 book	 describes	 how	 I	 built	 three	 open	 hardware	 platforms:	 chumby,	 Novena,	 and

chibitronics.	 I	 hope	 that	 by	 reading	 my	 stories,	 you’ll	 also	 realize	 hardware	 is	 knowable	 and	 be
empowered	by	this	knowledge.



6.	the	story	of	chumby
One	of	my	earliest	open	hardware	projects	was	chumby,	the	Wi-Fi-enabled	content	delivery	device	that
took	me	to	China	to	set	up	my	first	supply	chain	in	2007.*	Working	on	chumby	was	personally	exciting	to
me	for	two	reasons.	First,	I	had	the	opportunity	to	build	a	product	that	could	improve	people’s	lives	in
some	small	way.	The	always-on,	always-connected	users	who	blog	and	rely	on	IM	to	keep	in	touch	could
use	chumby	 to	make	 those	connections	more	easily.	At	 the	 same	 time,	 chumby	was	a	 chance	 for	me	 to
create	a	truly	open	platform	that	enabled	hackers	to	tinker	and	modify	it	however	they	liked.

A	HACKER-FRIENDLY	PLATFORM
Hackers	have	an	insatiable	desire	to	extend,	modify,	customize,	and	abuse	consumer	products	to	discover
unintended	 functionality.	 At	 Chumby,	 we	 hoped	 hackers	 would	 learn	 how	 the	 device	 worked	 and
transform	it	to	do	things	we	never	imagined,	so	we	designed	chumby	to	be	as	open	as	possible	to	anybody
who	wanted	to	hack	it.	We	considered	not	only	open	source	software	hackers,	but	also	hardware	hackers,
artists,	 and	 crafters—that	 is,	 people	 skilled	 with	 and	 passionate	 about	 noncomputer	 things,	 like
metalworking,	sewing,	or	carpentry.	To	encourage	and	enable	chumby	hackers,	we	made	the	source	code,
schematics,	board	 layouts,	bill	 of	materials,	 flat	patterns,	 and	3D	CAD	databases	of	 the	plastic	pieces
freely	available.	You	can	still	find	them	all	on	the	chumby	wiki	(http://wiki.chumby.com/).

The	original	soft	chumby

http://wiki.chumby.com/


The	 idea	was	 to	 let	hackers	break	away	 from	point-solution	hacks	on	 inscrutable	hardware	and	 into
hacks	they	could	share	with	just	about	anyone.	For	instance,	imagine	you	add	a	blood	pressure	cuff	to	a
chumby	and	give	the	chumby	to	your	grandmother.	Now	you	can	check	on	Grandma’s	health,	and	she	can
watch	pictures	of	her	grandchildren	while	she	gets	her	blood	pressure	 taken.	But	 imagine	 this	scenario
with	a	WRT-54G	router	instead	of	a	chumby.	Sure,	you	can	add	a	blood	pressure	cuff	to	a	WRT-54G	as
well	(in	fact,	it’s	quite	similar	to	chumby	architecturally),	but	try	teaching	Grandma	how	to	set	it	up	and
use	it.	In	other	words,	we	felt	making	chumby	a	simple	product	would	allow	hackers	to	make	their	own
hacks	more	usable	and	more	understandable	to	the	less	technical	people	in	their	lives.
Making	chumby	open	had	other	benefits	for	hackers,	too.	This	time,	imagine	your	thermostat	is	a	little

too	far	from	the	place	where	you	actually	want	to	regulate	temperature.	You	could	solve	that	problem	in	a
weekend	by	adding	a	temperature	sensor	to	a	chumby.	The	chumby	platform	has	Wi-Fi	and	I	built	a	hacker
sensor	package	for	 the	device,	so	the	project	would	require	minimal	hardware	grunge	work:	you’d	just
mod	two	chumbys	(one	with	a	temperature	sensor	and	one	with	an	interface	to	the	thermostat)	and	enable
both	with	the	sensor	package.	Such	a	device	would	not	only	help	you	keep	your	living	room	at	the	right
temperature	but	also	tell	you	the	latest	news	and	help	you	track	your	favorite	TV	shows.
The	icing	on	the	cake	is	that	you’d	also	be	free	to	publish	your	modifications	and	even	resell	modified

chumbys	with	those	custom	capabilities.	Others	could	benefit	from	your	work,	and	you	could	make	some
money.	(On	a	lighter	note,	the	original	chumby	housing	was	made	of	fabric,	so	you	could	even	modify	it	to
match	your	décor!)
The	original	chumby	design,	now	called	the	chumby	classic,	premiered	at	FOO	Camp	in	2006,	and	it

went	on	sale	in	2008.	Unfortunately,	however,	the	chumby	classic	hit	full-stride	launch	in	the	middle	of
the	worst	economic	downturn	since	the	Great	Depression.	Its	cute,	cuddly	form	factor	had	a	price	tag	that
many	consumers	just	couldn’t	stomach,	so	I	did	what	any	entrepreneur	would	do	in	a	recession:	I	scaled
back.

EVOLVING	CHUMBY
Shortly	after	Lehman	Brothers	filed	for	Chapter	11	bankruptcy	protection	in	2008,	we	started	work	on	a
product	 that	could	address	a	new	economic	reality.	As	I	drew	my	first	napkin	sketches	for	 the	product,
which	we	 later	dubbed	 the	chumby	One,	 the	 stock	market	was	 in	 free	 fall	 and	 losing	 several	 hundred
points	a	day.	Given	that,	the	key	goal	was	cost	reduction.	I	took	a	good,	hard	look	at	the	whole	design	so	I
could	build	a	cheaper,	faster	product	that	would	be	better	for	the	market.	We	wanted	chumby	One	to	win
new	customers	yet	retain	the	loyalty	of	our	existing	consumer	base,	and	we	wanted	it	out	before	Christmas
2009.
Fortunately,	 an	applications	engineer	 from	Freescale	 (since	acquired	by	NXP)	contacted	me	about	 a

new,	remarkably	inexpensive	CPU	(the	i.MX233)	that	Freescale	planned	to	launch	in	2009.	It	looked	like
a	promising	fit	for	chumby,	so	I	drew	up	some	straw-man	renderings	and	ran	some	cost	scenarios.	At	CES
in	January	2009,	we	shared	the	new	design	with	a	few	potential	customers	to	get	feedback	on	the	features
and	 pricing.	 The	 idea	 slow-rolled	 through	 March,	 and	 after	 the	 Chinese	 New	 Year,	 I	 built	 the	 first
prototype	board.

NOTE

One	really	cool	thing	about	the	i.MX233	is	that	it	has	embedded	power	regulators,	and	they	aren’t
just	linear	regulators:	they’re	switching	regulators.	But	they’re	not	just	any	switching	regulators;
they	derive	three	voltages	using	just	a	single	inductor!	How	cool	is	that?	I	have	to	give	mad	props



to	the	guy	who	designed	that	system.

Around	May,	we	contracted	an	industrial	designer	 to	do	some	sketches,	and	by	June,	we	had	a	near-
final	 industrial	 design.	We	made	our	 first	 3D-printed	prototypes	 around	 then,	 but	we	 couldn’t	 afford	 a
mechanical	engineering	contractor.	I	had	to	learn	SolidWorks	and	do	the	mechanical	integration	for	the	3D
prototype	myself.	Since	I	enjoy	learning	new	things,	the	experience	was	quite	rewarding.
In	July,	we	inked	a	purchase	order	for	steel	tooling,	and	by	August,	we	had	first-shot	plastics.	I	spent

September	refining	and	debugging	the	design	and	October	on	more	testing,	refining,	and	ramping	up	mass
production.	By	November	2009,	 the	 first	 shipment	 of	 chumby	Ones	was	35,000	 feet	 above	 the	Pacific
Ocean	en	route	to	LAX.

The	finished	chumby	One

The	chumby	One	retailed	for	about	half	the	price	of	the	chumby	classic,	and	it	had	more	features,	like
an	FM	 radio	 and	 support	 for	 a	 rechargeable	 lithium	 ion	 battery,	 a	 feature	 users	 of	 the	 squishy,	 leather
chumby	classic	often	requested.	The	initial	reactions	to	the	battery	in	the	chumby	One	were	an	interesting
study	in	consumer	psychology.	For	some	reason,	even	though	the	chumby	One	was	smaller	and	lighter	than
the	 chumby	 classic	 and	 did	 exactly	 the	 same	 things,	 people	 didn’t	 feel	 it	 should	 have	 a	 rechargeable
battery.	They	had	no	intrinsic	desire	to	pick	up	the	chumby	One	and	carry	it	around.	That	just	goes	to	show
how	much	form	factor	influences	a	consumer’s	perception	of	function!
At	any	rate,	customers	certainly	liked	all	those	options,	but	to	me,	they	weren’t	the	most	significant	new

features.

A	More	Hackable	Device
What	 really	 excited	me	 about	 the	 chumby	 One	 was	 that	 it	 was	 much	more	 hackable	 than	 the	 chumby
classic.	On	the	chumby	classic,	we	used	a	soldered-down	SLC	NAND	chip,	which	was	cost-effective	but
made	development	quite	complicated.	Developers	were	exposed	directly	to	all	the	warts	of	NAND	flash
memory,	including	bad	blocks	and	error	correction,	and	if	the	system	failed	to	boot	correctly,	one	had	few
recovery	options.	We	addressed	these	problems	on	the	chumby	One	by	storing	the	firmware	on	a	microSD
card.
If	you	happen	to	get	your	hands	on	a	chumby	One,	you’ll	notice	that	you	can’t	replace	the	microSD	card

from	 the	 outside.	We	made	 that	 choice	 to	 prevent	 nonhackers	 from	 pulling	 the	microSD	 card	 out	 and



wondering	why	the	device	wouldn’t	boot.	But	if	you	unscrew	and	remove	the	back	panel	(no	glue	seals,
unlike	the	chumby	classic),	the	microSD	card	is	easy	to	access.	Thanks	to	this	key	change,	hackers	didn’t
have	to	worry	about	bricking	their	chumbys.	If	someone	screwed	up	the	firmware,	they	could	just	pull	the
microSD	card	out,	mount	it	on	their	dev	box,	and	write	a	new	image.
We	also	chose	to	make	the	chumby	One’s	microSD	card	a	managed	NAND	device	so	 that	we	could

directly	drop	ext3	(a	popular	default	Linux	filesystem	configuration)	onto	it.	The	root	partition	was	still
mounted	 as	 read-only	 at	 the	 factory	 to	prevent	 accidental	 damage,	 but	 a	managed	NAND	system	made
remounting	the	root	partition	as	read/write	and	modifying	the	Linux	system	trivial.	We	consciously	made
the	OS	image	use	only	a	small	portion	of	 the	 total	microSD	card	capacity,	 leaving	hackers	with	over	a
gigabyte	of	extra	space	to	load	custom	applications	and	libraries.	(Keep	in	mind	that	a	gig	was	a	big	deal
at	the	time.)
In	hardware,	what’s	good	for	hackers	is	also	good	for	developers.	The	flexibility	we	added	for	hackers

allowed	us	to	add	a	ton	of	great	features	to	the	OS.	For	example,	the	chumby	One	supported	certain	3G
modems	and	could	 serve	Wi-Fi	 as	 an	access	point	 through	 those	3G	modems.	That	basically	made	 the
device	a	3G-to-Wi-Fi	router,	which	I	found	enormously	useful	when	I	was	traveling	and	needed	to	create
a	Wi-Fi	hotspot	for	other	devices.	We	didn’t	expose	that	feature	at	the	mainstream	user	level	at	first,	but
we	knew	we	(or	anyone	else—it	was	an	open	project,	after	all)	could	wrap	a	GUI	around	it	and	make	it
more	user-friendly	if	people	liked	it.	And	if	you	plugged	a	USB	keyboard	into	a	chumby	One,	it	would
automatically	open	a	console	shell	that	you	could	type	into.	That’s	handy	for	times	when	you	can’t	SSH	in,
like	when	you’re	debugging	network	scripts.

Hardware	with	No	Secrets
As	 with	 the	 chumby	 classic,	 we	 also	 made	 the	 chumby	 One	 design	 as	 open	 as	 possible.	 We	 posted
schematics,	 gerber	 files,	 and	 the	 GPL	 source	 code	 online.	 In	 the	 following	 figure,	 you	 can	 see	 a
preproduction	pilot	chumby	One	board.	The	mass-production	board	was	basically	 identical,	with	some
minor	tweaks	to	enhance	compatibility	with	the	SMT	machines	we	used	in	China.
In	particular,	notice	the	pair	of	test	points	on	the	board	labeled	SETEC	ASTRONOMY	in	the	bottom-left

corner	 of	 the	 photo	 of	 the	 back	 of	 the	 mainboard.	 You	 could	 use	 those	 points	 to	 bypass	 the	 write
protection	 on	 the	 chumby	 One’s	 authentication	 ROM	 and	 wipe	 out	 the	 keys	 that	 Chumby	 used	 to
authenticate	 the	device.	 I	 can’t	 think	of	 a	 real	 reason	 to	do	 that,	but	 I	 added	 them	on	 the	principle	 that
hardware	you	own	shouldn’t	hold	secrets	from	you.	If	you	don’t	like	having	encrypted	access	codes	on	a
device,	you	should	be	able	to	nuke	them.	In	the	case	of	a	chumby	One,	that	meant	you’d	no	longer	have	the
codes	to	fetch	widgets	from	Chumby’s	servers,	but	hey,	it’s	your	hardware.	When	hardware	is	truly	yours,
you	can	void	the	warranty	and	do	what	you	want	with	it.	Of	course,	we	published	the	security	protocol
that	chumby	Ones	used	to	fetch	widgets,	too.
I	also	designed	the	chumby	One	motherboard	with	mounting	holes	and	features	so	it	could	be	retrofitted

back	 into	 a	 chumby	 classic.	 Although	 Chumby	 never	 planned	 to	 put	 chumby	One	 boards	 into	 chumby
classic	 enclosures—hand-stitched	 Italian	 leather	 was	 just	 too	 expensive,	 and	 there	 were	 a	 couple	 of
technical	 issues	 with	 integration—I	 thought	 intrepid	 hackers	 would	 appreciate	 the	 option	 to	 do	 it
themselves.



The	chumby	One	mainboard	(back)



The	chumby	One	mainboard	(front)

I	continued	to	work	on	improving	the	chumby	line	for	several	years,	but	eventually,	I	wanted	more	time
for	personal	projects	and	a	break	from	entrepreneurship.

THE	END	OF	CHUMBY,	NEW	ADVENTURES
In	April	2012,	Chumby	as	the	world	knew	it	came	to	an	end.	We	had	run	out	of	money,	and	the	investors
had	run	out	of	patience.	I’d	already	left	 the	company	discreetly	in	January;	I	had	a	good	run,	but	it	was
also	time	for	me	to	move	on.	Upon	hearing	the	news,	my	good	friend	Phil	Torrone	from	Make:	 reached
out	to	me	for	an	interview,	and	I	was	happy	to	oblige.	You	can	read	the	full	interview	online,*	but	 I’ve
excerpted	parts	of	it	here	that	you	might	find	useful	if	you’re	excited	to	get	into	the	hardware	business.

Phil:	How	did	you	get	involved	at	Chumby?	And	what	was	your	role	at	the	company?

bunnie:	I	was	originally	an	advisor	to	the	company,	a	consultant	brought	in	to	figure	out	some	bits	of	the
hardware	strategy.	We	had	weekly	dinners	where	we’d	talk	about	what	the	product	might	be.	Eventually,	I
got	excited	enough	about	the	product	that	I	just	hammered	out	an	initial	prototype	motherboard	in	my	spare
time.	Around	the	same	time,	my	boss	at	my	prior	company	was	really	irritating	me	(he	lectured	me	about



the	importance	of	being	in	my	chair	every	morning	by	9AM,	completely	ignoring	the	fact	that	I’d	worked
until	midnight	the	day	before),	so	I	resigned	on	the	spot	and	joined	the	founding	team	of	Chumby.
My	role	at	 the	company	was	 initially	VP	of	Hardware,	which	sounds	grand.	But	when	 the	hardware

organization	consists	of	exactly	one	person,	you’re	also	the	solder	jockey	and	the	janitor.	Now	that	I	think
back	on	it,	the	team	took	a	big	chance	on	me.	At	the	time	I	had	no	experience	in	supply	chain	management
and	had	never	been	to	China.	They	took	a	leap	of	faith	and	gave	me	the	opportunity	to	figure	it	all	out.	I
really	appreciate	that	they	gave	me	so	much	latitude	to	learn	on	the	job.

Phil:	What	was	the	best	part	of	making	the	chumby?

bunnie:	There	were	so	many	great	things	about	making	the	chumby.	I	think	overall,	one	of	the	best	parts
was	that	I	had	to	figure	everything	out	from	conception	to	distribution.	It	meant	that	I	got	to	see	every	part
of	 the	process	 firsthand:	 industrial	design,	electronics	design,	 tooling,	 supply	chain,	 retail,	 and	 reverse
logistics.	There	are	so	many	things	that	go	into	a	product,	and	satisfying	that	curiosity	about	how	things
are	made	was	great.
The	other	thing	I	really	treasure	from	making	the	chumby	was	all	the	wonderful	people	I	got	to	work

with	and	meet	along	the	way.	I	made	a	lot	of	friends,	and	I	had	so	many	excellent	mentors.
And	finally,	I	think	the	best	part	about	making	chumby	isn’t	really	the	making.	It’s	seeing	people	use	it,

and	seeing	people	enjoy	and	appreciate	the	device.	The	smile	on	a	user’s	face	is	the	ultimate	reward.

Phil:	Can	you	talk	about	making	a	device	from	start	to	finish,	from	idea	to	factory	to	retail	shelves?

bunnie:	 One	 of	 the	 best	 parts	 about	 making	 a	 device	 from	 start	 to	 finish	 is	 that	 you	 have	 a	 totally
unconstrained	 set	of	 tools	 to	 solve	 the	problems	at	hand.	You	can	 solve	business	problems	with	board
layout,	 and	 vice	 versa.	 For	 example,	 there	was	 a	 question	 about	 how	we	 could	 uniquely	 and	 flexibly
brand	units,	in	a	fashion	that	allowed	for	swappable	faceplates	(that	is,	snap	on	the	NFL	faceplate	and	get
your	football	scores,	snap	on	the	Bloomberg	faceplate	and	get	your	financial	news,	and	so	on).	This	is	a
topic	that	could	take	dozens	of	meetings	to	hash	out.	But	as	the	sole	hardware	guy,	I	knew	that	embedding
an	EEPROM	costs	only	$0.20	and	while	everyone	else	discussed	possible	solutions	in	the	staff	meeting,	I
fired	 up	 my	 board	 design	 tool,	 added	 the	 eight-pin	 EEPROM	 to	 the	 board,	 tossed	 on	 an	 appropriate
connector,	and	had	the	whole	solution	engineered	by	the	time	action	items	were	assigned.	It	actually	took
me	longer	to	convince	them	that	the	work	was	done	than	it	took	to	do	the	work.
I	think	I	ended	up	absorbing	many	of	the	skills	required	to	build	a	product	from	start	to	finish	because

it’s	very	difficult	to	communicate	requirements.	The	question	was	always	whether	it	would	be	faster	for
me	to	do	it	myself	or	to	explain	it	to	someone	else,	wait	for	them	to	do	it,	and	possibly	have	to	re-explain
it	 and	 have	 them	 change	 it.	 That’s	 one	 reason	 I	 learned	 mechanical	 design;	 the	 industrial	 design	 and
plastics	tooling	is	a	 long	pole	in	the	tent	for	many	consumer	products,	and	being	able	to	efficiently	and
effectively	communicate	with	a	mechanical	engineering	team	using	their	language	was	important	to	getting
the	job	done	right.

Phil:	What	were	the	challenges	with	retail	sales?

bunnie:	 Retail	 and	 distribution	 were	 the	 most	 difficult	 challenges.	 Here	 are	 a	 few	 difficulties	 I
encountered:

Dealing	 with	 the	 merchant	 buyers.	 Brick-and-mortar	 retailers	 hire	 teams	 of	 buyers	 assigned	 to
monetize	shelf	space.	They	think	about	products	 in	 terms	of	revenue	per	shelf	space,	and	they	don’t
really	see	anything	beyond	that.	This	puts	into	sharp	relief	any	improvements	you	want	to	add	to	the
product	that	also	drive	up	product	costs.	Merchants	tend	to	look	at	your	product	as	so	many	grams	of



plastic	and	so	many	wires.	They	multiply	those	numbers	by	the	commodity	price	of	the	raw	materials
to	set	expectations	for	how	much	they’ll	pay	to	have	it	on	the	shelf.	It’s	possible	to	cut	better	deals,	but
educating	a	merchant	about	the	value	of	your	product	takes	a	lot	of	effort.	Unfortunately,	the	turnover
in	merchant	staff	can	be	fairly	high,	so	you	may	spend	months	cutting	a	deal	only	to	find	that	the	person
you	were	working	with	has	left	the	organization.

Margin.	Everyone	 in	 the	supply	chain	has	a	hand	out:	 the	distributor,	 the	merchant,	and	 the	factory.
Beyond	that,	market	development	funds	and	other	slush	money	have	to	be	factored	in.	At	the	end	of	the
day,	the	shelf	cost	of	a	product	is	about	three	times	your	BOM	cost.	This	means	adding	a	$0.50	part
turns	into	a	$1.50	retail	price	impact.

This	is	aggravated	by	the	fact	that	prices	are	quantized	into	“magic”	numbers	(like	$19.99,	$49.99,
or	$99.99)	that	you	have	to	hit.	You	just	don’t	MSRP	a	product	for	$127.45.	If	a	product	retails	for
above	$99,	it’s	psychologically	binned	with	the	$149	or	$199	products.	When	your	product’s	BOM
cost	approaches	one	of	these	quantization	points,	you’ll	do	lots	of	soul	searching	about	whether	it’s
worth	$0.50	to	improve,	say,	the	speakers.	Either	that	small	cost	increase	will	come	out	of	your	own
margin,	or	you	risk	pushing	your	product	into	a	higher	price	tier.

Cash	flow.	Retailers	are	notoriously	bad	at	paying	on	time.	You	may	negotiate	60-day	terms,	but	often
you’re	not	paid	after	90	or	even	120	days.	If	your	product	doesn’t	sell	out	so	that	the	retailer	has	to
place	another	order	with	you	(at	which	point	you	have	some	leverage	to	collect	outstanding	payment),
you’ll	 get	 strung	 out.	 This	 can	 be	 partially	 mitigated	 with	 financial	 instruments	 such	 as	 factoring
insurance.	 Insurance	companies	will	sell	 insurance	on	anything,	 including	 insurance	hedging	against
retailers	not	paying	on	time	or	going	insolvent	before	they	can	pay	you.

Reverse	 logistics	 and	 returns.	 Many	 retailers	 offer	 no-questions-asked	 return	 guarantees.	 That’s
great	for	the	customer,	but	guess	who	services	those	returns?	The	retailer	passes	the	buck	back	to	the
entrepreneur!	This	is	part	of	why	payment	times	can	be	quite	bad:	retailers	are	retaining	cash	to	hand
back	to	customers	to	satisfy	returns.	Once	the	returns	are	processed,	you	get	to	figure	out	how	to	get
the	 returned	 material	 off	 their	 dock	 and	 back	 into	 a	 facility	 where	 you	 can	 refurbish	 the	 units.
Typically,	most	returned	units	aren’t	defective.	They	simply	didn’t	meet	customer	expectations,	or	the
customer	had	buyer’s	remorse	after	an	impulse	buy.	The	otherwise	working	units	are	usually	missing
accessories	or	are	cosmetically	marred,	thereby	requiring	extensive	rework	to	refurbish.

Contracts.	Retailers	will	hand	you	a	default	 contract	 full	of	 terms	 that	very	 strongly	 favor	 them	 in
almost	 every	 contingency.	 Sometimes,	 the	 contracts	 can	 expose	 you	 to	 liabilities	 that	 you	 can’t
possibly	hope	to	cover.	For	example,	I’ve	seen	language	such	that	if	an	affiliated	content	website	was
down	for	longer	than	a	specified	amount	of	time,	then	you	could	be	liable	for	nonspecific	damage	to
the	 brand	 reputation	 of	 the	 retailer	 selling	 your	 goods.	 Those	 sorts	 of	 open-ended	 liabilities	 are
unacceptable,	and	negotiating	them	out	can	take	months.	Other	onerous	terms	include	penalties	for	late
shipments	 or	 fines	 for	 defective	 units.	 The	 contract	 negotiation	 process	 is	 very	 distracting	 to	 top
management	and	can	put	a	real	drag	on	an	organization.

Phil:	Did	you	get	any	patents?	How	do	they	work	within	the	world	of	open	source?

bunnie:	Yes,	I	actually	was	granted	several	patents	during	my	tenure	at	Chumby.	Patents	are	a	very	natural
way	to	protect	hardware	ideas.	As	F/OSS	[free	and	open	source	software]	licenses	like	the	GPL	[GNU
general	 public	 license]	 and	 BSD	 [Berkeley	 software	 distribution]	 rely	 on	 copyright	 for	 power,	 open
hardware	licenses	can	likewise	draw	upon	patents	for	power.
When	we	started,	no	license	existed	that	addressed	the	patent	issue,	so	chumby	created	its	own	flavor



of	 open	 source	 license.	 It	was	 basically	 an	 automatic	 cross-license	with	 users	who	 created	 derivative
works.	Those	who	 utilized	 our	 source	would	 get	 a	 license	 to	 the	 patents,	 under	 the	 condition	 that	 any
patents	granted	for	the	derivative	work	also	had	to	be	automatically	licensed	back	to	us.
The	 license	 had	 a	 couple	 of	 other	 restrictions	 that	 were	 not	 “truly”	 open,	 like	 a	 condition	 that	 the

derivative	work	had	to	at	least	give	users	the	option	to	run	the	chumby	network	in	a	competing	product	(an
opt-in	checkpoint	during	the	boot	process).	There	was	also	an	“ask	us	if	you	want	to	manufacture”	clause,
which	stated	that	derivatives	going	to	mass	production	had	to	get	additional	authorization	from	Chumby.
We	 added	 that	 primarily	 to	 create	 a	 checkpoint	 to	 verify	 interoperability	with	 the	 servers,	 and	 also	 to
enforce	 proper	 trademark	 and	 branding	 rules.	Burying	 that	 clause	 in	 the	 license	meant	 that	 the	 license
couldn’t	 be	 called	open	 source	because	Chumby	could	 always	 say	no,	 though	 it	 never	 did	 in	 practice.
However,	 the	 situation	 does	 highlight	 an	 ongoing	 struggle	 in	 open	 source	 hardware:	 how	 to	 address
trademark	and	interoperability	issues	in	an	increasingly	complex	and	diverse	ecosystem.
Also,	the	rights	to	the	patents	I	created	at	Chumby	are	all	assigned	to	the	investors.	They	will	likely	be

sold	 to	 the	 highest	 bidder,	 which	 could	 very	 well	 be	 a	 patent	 troll.	 I	 would	 regard	 that	 outcome	 as
unfortunate,	but	it’s	a	reality	that	I	must	accept.	The	investors	have	the	right	to	explore	all	lawful	venues	to
recover	 their	 investment.	 In	 an	 ideal	 world,	 however,	 I’d	 buy	 back	 the	 rights	 at	 an	 affordable	 price,
license	 them	 to	 the	open	source	community,	and	 try	 to	establish	a	material	precedent	on	how	 to	handle
patents	in	the	open	source	community.

Phil:	Do	you	have	any	advice	for	a	maker	who	is	considering	taking	venture	capitalist	funding?	Anything
different	if	they’re	doing	open	source	hardware?

bunnie:	I	think	VC	funding	is	suitable	only	for	accelerating	certain	kinds	of	growth.	It’s	not	very	good	for
early-stage	research	and	development	or	businesses	that	have	slow,	but	steady,	growth	models.
The	hardware	model	is	radically	different	from	the	software	model.	Software	is	innately	scalable.	You

can	acquire	100,000	users	overnight.	Monetizing	the	user	base	in	software	is	trickier,	but	most	software
plays	start	with	scale	and	then	worry	about	money.
Because	hardware	requires	the	movement	of	atoms	to	acquire	a	user,	scalability	is	limited	by	the	rate	at

which	you	can	economically	and	reliably	assemble	your	atoms	and	ship	them	to	the	customer.	On	the	other
hand,	there	is	a	very	natural	point	for	monetization	in	hardware:	the	margin	you	charge	on	every	unit	sold.
Money	 comes	 earlier	 and	more	 often,	 but	 the	 growth	 rate	 is	 limited	 by	 pesky	 things	 like	 the	 laws	 of
physics	and	the	availability	of	raw	materials	and	skilled	labor	to	build	the	units.	Notable	exceptions	to
this	 rule	are	concepts	 like	 the	Square	reader.	Square’s	hardware	was	cleverly	designed	 to	be	so	cheap
that	 its	 cost	 was	 arguably	 lower	 than	 the	 cost	 to	 acquire	 a	 customer	 through	 other	 means	 (like	 print
advertising	and	mailing	campaigns),	making	the	dongle	cheap	enough	to	just	give	away.
Therefore,	in	hardware,	first	ask	this:	what	is	your	distribution	channel,	and	how	hard	is	getting	your

product	 to	 end	users?	Ultimately,	 the	 size	of	 that	pipe	and	 the	monetary	drag	on	 transactions	 limits	 the
growth	rate	of	your	idea.	You	also	have	to	factor	in	boomerang	costs	like	returns	and	customer	support
costs.	You’ll	be	shocked	at	how	many	support	calls	you	get	from	people	who	forgot	to	plug	your	product
in.
If	you	have	an	awesome	distribution	channel,	a	solid	marketing	campaign,	and	customers	lined	up	out

the	door,	maybe	VC	is	a	reasonable	match.	But	a	typical	maker	will	start	out	selling	stuff	online,	possibly
in	boutique	stores.	The	time	it	takes	to	turn	capital	into	revenue	will	be	on	the	order	of	months	initially,
and	 that’s	 a	 brutal	 cycle	 to	 finance	with	VC.	All	 the	money	you	have	 tied	up	 in	 the	 supply	 chain	 isn’t
adding	any	value	to	you,	but	you	traded	a	lot	of	your	ownership	in	the	company	to	get	that	money.
I	would	typically	recommend	that	a	maker	try	to	first	fund	research	and	development	out	of	pocket,	or



with	a	very	friendly	angel	loan.	Once	you	have	a	prototype	and	a	solid	plan	for	production,	it’s	smarter	to
go	into	debt	to	finance	small	batches	of	builds	so	you’re	never	overextended	and	build	your	market	one
step	at	a	time.	Every	time	you	turn	inventory,	you	should	come	back	with	more	cash,	which	you	can	plow
into	making	more	inventory.
Doing	 this	 forces	 good	 discipline.	 It	 will	 help	 you	 focus	 on	 leaning	 up	 the	 supply	 chain	 so	 that

inventory	turns	faster.	The	best	hardware	companies	turn	inventory	in	a	matter	of	days.	If	you’re	growing
your	capital	base	by	20	percent	with	every	inventory	turn,	it	only	takes	four	turns	to	double	your	money:
$100	 turns	 into	$120,	which	 turns	 into	$144,	which	 turns	 into	$172,	which	on	 the	 fourth	 turn	 results	 in
$207.	That’s	the	magic	of	compounded	percentages.
If	you	can	do	a	full	turn	of	inventory	once	every	eight	weeks	and	sustain	a	20	percent	growth	rate	with

each	turn,	you’ll	grow	your	business	by	over	300	percent	in	one	year.	Of	course,	the	markets	are	never	so
ideal	 and	predictable,	 but	 you	 can	play	with	 turn	 time	versus	margin	 available	 to	grow	your	business.
Higher-margin	businesses	can	take	longer	to	turn	inventories	and	still	sustain	a	palatable	growth	rate.
Bootstrapping	like	this	is	a	lot	of	hard	work,	but	at	the	end	of	the	day,	you	own	every	penny	you	make,

as	you	have	no	investors.	The	glory	stories	for	this	model	aren’t	as	big	as,	say,	Instagram	or	Google,	but	if
you’re	doing	it	right,	you’re	in	control,	and	your	work	is	more	likely	to	pay	off	in	the	end.	In	fact,	many
successful	Chinese	 hardware	manufacturing	 businesses	 grew	 primarily	 using	 bootstrapped	 funding	 just
like	this.

Phil:	What	are	your	thoughts	on	Kickstarter	for	funding?

bunnie:	 I	don’t	 think	it’s	a	good	idea	 to	fund	early	research	and	development	with	Kickstarter	or	other
crowdfunding	 platforms	 because	 of	 the	 hard	 commitments	 you	 have	 to	 make	 to	 customers	 early	 on.
Kickstarter	is	a	great	phenomenon,	but	you	also	need	to	be	careful	raising	money	there.	To	some	extent,
Kickstarter	is	the	ultimate	dumb	money.	Customers	are	sold	on	a	vision	and	buy	in	early	on,	and	you	have
to	 deliver	 on	 that	 vision.	 In	 crowdsourcing	 your	 money,	 you’ve	 also	 crowdsourced	 your	 board	 of
directors.	But	the	road	to	product	development	is	never	smooth.	As	a	result,	Kickstarter	money	can	lock
you	into	commitments	early	on	that	you	can’t	back	out	of.
I	think	Kickstarter	can	be	a	better	solution	than	VC,	but	you	should	only	use	it	after	the	idea	has	matured

sufficiently	and	you’re	primarily	looking	to	find	a	better	way	to	finance	production	than	VC	money	or	a
bank	 loan.	 In	 fact,	 after	you	consider	 the	 frictional	 losses	of	extracting	money	 from	Kickstarter,	 a	bank
loan	with	a	 few	percent	 interest	 could	be	 favorable.	But	of	course,	 a	bank	 loan	doesn’t	 come	with	 the
same	visibility,	marketing,	and	upside	potential	as	a	crowdfunding	platform.

Phil:	When	you	advise	companies,	what	do	you	most	often	suggest	to	the	founders?

bunnie:	Ship	or	die!	Particularly	if	you’ve	accepted	VC	funding.	The	moment	VC	money	hits	your	books,
you’re	on	a	fixed-length	fuse.	If	that	fuse	runs	out	and	you	haven’t	created	substantial	value,	a	bomb	goes
off	that	wipes	out	a	chunk	of	your	valuation.	If	you’ve	raised	a	million	dollars	and	you	plan	to	burn	it	in	a
year,	every	day	“costs”	you	$4,000.	I	use	that	as	a	value	barometer	to	guide	decision	making:	if	$30	in
expedite	fees	can	pull	in	the	schedule	on	a	long-pole	task	by	one	day,	the	money	is	well	spent.	This	is	also
part	 of	 the	 reason	 I	 lived	 on	 “China	 time”	 while	 chumby	 was	 in	 production	 even	 though	 I	 was	 in
California.	Staying	up	until	4	or	5AM	every	night	 to	flip	emails	with	the	factory	and	shorten	the	longest
pole	in	the	tent	shaved	days	off	the	schedule,	which	translated	to	tens	of	thousands	of	dollars	in	burn.
In	 the	 face	 of	 “ship	 or	 die,”	 don’t	 look	 to	 ship	 the	 perfect	 product.	 Shipping	 a	 product	 that’s	 good

enough	 is	more	 important	 than	 shipping	a	great	product	 late,	 especially	 in	consumer	electronics	or	 any
similarly	seasonal	business.	In	consumer	electronics,	up	to	90	percent	of	your	business	can	happen	in	the



fourth	quarter.	If	you	miss	Christmas,	you’ll	have	no	revenue	for	the	next	three	quarters;	missing	Christmas
is	 like	 dropping	 an	 extra	 year	 of	 burn	 on	 your	 capitalization	 table.	Worse	 yet,	 during	 that	 year,	 your
competitors	will	continue	to	improve.
Chumby	suffered	from	precisely	this.	We	premiered	an	alpha	version	of	the	device	in	August	2006,	but

we	 missed	 Christmas	 2007.	 We	 didn’t	 launch	 our	 squishy,	 connected	 alarm	 clock	 until	 just	 after
Christmas,	in	February	2008.
Consider	some	world	events	that	happened	around	these	dates:	the	iPhone	shipped	in	June	2007,	and

the	global	economy	crashed	in	October	2008.	It	was	bad	enough	that	we	had	to	weather	almost	a	full	year,
from	February	2008	until	Christmas	2008,	burning	venture	money	to	stay	warm.	But	when	the	economy
fell	out,	so	did	the	appetite	for	a	$200	stocking	stuffer.	We	had	too	much	inventory	and	had	to	fight	for
survival.
If	my	memory	is	correct,	we	could	have	shipped	a	product	for	Christmas	2007.	It	just	wouldn’t	have

been	quite	as	polished	and	would	have	lacked	some	features.	But	maybe	it	would	have	been	good	enough.
In	retrospect,	 the	 iPhone	had	by	far	 less	momentum	in	2007	than	 in	2008,	and	we	probably	could	have
cleared	 a	 lot	 of	 inventory.	On	 the	 other	 hand,	 perhaps	 knowing	 the	 iPhone,	 its	 apps,	 and	 its	 awesome
touchscreen	would	 obsolete	 a	 connected	 alarm	 clock	 drove	 us	 to	 second-guess	 our	 strategy	 and	 delay
launch	to	strengthen	features	like	streaming	music	integration.
At	any	rate,	the	lesson	is	clear	enough	to	me:	ship	or	die!
A	 second	 piece	 of	 advice	 I’d	 give	 to	 hardware	 companies	 is	 to	 aim	 high	 with	 price.	 It’s	 virtually

impossible	to	raise	your	pricing	if	you	start	too	low,	and	there’s	nothing	like	a	sale	to	get	people	to	buy.
Hardware	startups	that	principally	sell	online	are	tempted	to	set	the	price	as	low	as	possible	to	drive

buzz	and	improve	initial	sales.	The	temptation	to	sell	your	$35	device	for	$49	direct	online	is	huge.	After
all,	 that’s	about	a	28	percent	margin	 (unless	your	BOM	doesn’t	 factor	 in	soft	costs).	That’s	great,	until
you’ve	dropped	off	the	front	page	of	Engadget	and	your	sales	are	plummeting.
Engaging	a	retailer	may	help	bring	in	more,	and	more	consistent,	sales,	but	a	retailer	will	initially	try	to

buy	your	product	from	you	for	between	40	and	60	percent	of	your	MSRP.	This	means	they’d	want	to	buy	a
product	 for	 $49	 and	 sell	 it	 at	 $99.	 If	 you’ve	 already	 sold	 a	 bunch	 of	 units	 at	 $49,	 there’s	 no	way	 the
retailer	can	sell	it	for	$99.	To	access	retail,	you’d	have	to	sell	your	$35	product	to	a	retailer	for	$25	so
the	retailer	can	sell	it	at	your	established	price	of	$49.	Even	if	you’re	successful	with	such	a	drastic	cost-
down,	you’re	still	left	making	no	money!
Selling	your	$35	device	for	$99	might	garner	fewer	customers	at	first,	but	your	initial	margins	would

be	 spectacular,	 and	 you’d	 have	 the	 room	 to	 cut	 in	 a	 retailer	 or	 run	 sales	 of	 your	 own	 to	 get	 more
customers.	That’s	part	of	 the	reason	MSRPs	are	so	high.	Retailers	also	 love	 to	use	sales	 to	make	units
move,	and	a	$99	unit	priced	down	to	$69	feels	like	a	smart	buy.	But	at	$69,	the	retailer	is	only	making	29
percent	margin.
Aiming	 too	 low	 on	 pricing	 effectively	 robs	 you	 of	 the	 opportunity	 to	 use	 retail	 as	 a	 possible

distribution	channel,	and	you	simultaneously	lose	the	opportunity	to	have	sales	and	promotions	yourself.
Promotions	are	important	because	viral	marketing	can	only	get	you	in	front	of	a	customer	once	or	twice	at
best.	So	when	you	put	your	heart	and	soul	into	your	product,	price	it	like	you	mean	it.

Phil:	If	you	could	do	it	over,	how	would	you	change	the	hardware	of	the	chumby?	The	software?	The	way
chumby	was	made?

bunnie:	Well,	as	my	previous	answer	 indicates,	 I	would	have	focused	much	more	on	shipping	on	 time,
perhaps	at	the	expense	of	jettisoning	some	features.
A	more	counterintuitive	thing	I	learned	is	that	accessories	and	packaging	can	take	more	time	to	develop



than	a	product.	The	squishy	chumby	classic	came	with	a	wonderful	set	of	linen	and	microfiber	bags	and
rubber	 charms.	 (We	 developed	 over	 a	 dozen	 charms	 in	 all.)	 There	was	 also	 a	 custom	power	 adapter,
branded	ribbons,	gift	boxes,	branded	tissue	paper	...	I	even	had	to	iterate	the	hardware	design	and	spin	an
injection-mold	tool	 to	 improve	the	attachment	method	for	 the	charms	to	 the	device.	 I	spent	at	 least	four
months	intensely	focused	on	the	accessories	and	packaging	for	the	product.	Our	fan	base	went	wild	over
the	attention	to	detail,	and	that	helped	goose	sales.
But	 in	 retrospect,	 I	 wonder	 if	 we	 could	 have	 done	 better	 forgoing	 the	 details	 and	 shipping	 before

Christmas.	One	 of	 the	most	 gut-wrenching	 realizations	 that	 small	 companies	 have	 to	make	 is	 that	 they
aren’t	Apple.	Apple	spends	over	a	billion	dollars	a	year	on	tooling.	An	injection-molding	tool	may	cost
around	$40,000	and	take	two	to	three	months	to	make;	Apple	is	known	to	build	five	or	six	simultaneously
and	then	scrap	all	but	one	so	they	can	evaluate	multiple	design	approaches.	For	Apple,	tossing	$200,000
in	 tooling	 to	 save	 two	months’	 time	 to	market	 is	peanuts.	But	 for	 a	 startup	 that	 raised	a	million	bucks,
that’s	unthinkable.	Apple	also	has	hundreds	of	staff;	a	startup	has	 just	a	few	members	 to	do	everything.
The	 precision	 and	 refinement	 of	 Apple’s	 products	 come	 at	 an	 enormous	 cost	 that	 is	 out	 of	 reach	 for
startups.
I	don’t	mean	to	say	that	design	isn’t	important.	It’s	still	an	absolutely	critical	element	to	a	product,	and

good	 design	 and	 attention	 to	 detail	 allow	 a	 startup	 to	 charge	 more	 for	 a	 product	 and	 differentiate
themselves	 from	 competitors.	Apple	 has	 raised	 the	 bar	 very	 high	 for	 design	 and	 user	 experience,	 and
users	 will	 judge	 your	 product	 accordingly.	 But	 it’s	 important	 to	 keep	 in	 mind	 that	 your	 true	 bar	 for
comparison	 is	 other	 startups,	 not	 Apple.	 If	 your	 chief	 competitor	 is	 Apple,	 either	 you	 need	 a	 billion
dollars	in	cash	to	invest	in	product	design	or	you	need	to	rethink	your	strategy.
That	leads	to	another	thing	I’d	probably	change.	Pivoting	is	so	important	for	a	startup.	A	startup	has	to

be	 able	 to	 run	 circles	 around	 big	 companies.	 Culturally,	 Chumby	 just	 found	 it	 challenging	 to	 be	 agile
enough	to	adapt	to	a	rapidly	changing	technological	landscape.
Of	course,	hindsight	is	20/20.	There’s	a	lot	we	could	have	done	differently,	but	when	I	think	back	on	all

the	early	decisions	we	made	and	how	we	got	there	(the	resistive	touchscreen,	lack	of	integrated	battery,
using	Flash	as	our	core	platform),	I	don’t	see	how	we	could	have	made	any	different	fact-based	decisions
back	then.
But	 that	 does	 show	 a	 flaw	 of	 fact-based	 reasoning.	 Engineers	 love	 to	 make	 decisions	 based	 upon

available	data	and	high-confidence	models	of	the	future.	But	I	think	the	real	visionaries	either	don’t	know
enough,	or	have	the	sheer	conviction	and	courage	to	see	past	the	facts	and	cast	a	long	shot.	It’s	probably	a
bit	of	both.	Taking	risks	also	means	there’s	a	bit	of	luck	involved.
I	certainly	have	a	fact-induced	myopia.	My	recent	focus	on	operational	efficiency,	schedules,	and	risk

management	has	sapped	my	ability	to	have	creative	and	audacious	visions.	I’m	actually	taking	a	year	off
from	entrepreneurship	to	decompress	a	bit	and	to	try	to	rediscover	and	develop	the	creative	bits	of	myself
that	have	atrophied	over	the	past	couple	of	years.

Phil:	 Now	 that	 you’ve	 been	 part	 of	 a	 full	 cycle	 of	 a	 VC-funded	 company	 that	makes	 hardware,	 what
suggestions	 do	 you	 have	 for	 company	 structure,	 from	 the	 people	 to	 the	 location	 to	 the	 overall
organization?

bunnie:	The	structure	really	depends	on	the	 type	of	product	you’re	 trying	to	build.	Hardware	has	many
different	specialties	(like	consumer,	medical,	and	industrial)	and	markets	(like	high-end	boutique,	hobby
items,	and	mass	market	devices).	There’s	good	business	potential	in	all	of	them,	but	your	location,	focus,
and	team	composition	need	to	be	tuned	based	on	your	product	and	what	gives	you	a	competitive	edge.	At
Chumby,	hardware	was	just	a	barrier	to	entry	for	apps	to	run	in	your	home,	so	it	was	instantly	a	race	to	the



bottom.	 The	 hardware	 part	 of	 the	 company	 had	 to	 run	 lean	 (remember,	 Chumby	 had	 one	 hardware
engineer	and	one	operations	director),	and	it	needed	a	China-centric	strategy	from	day	one.
Generally,	if	you	can	suffer	doing	a	hardware	startup	through	bootstrapping,	it’s	worthwhile.	A	broad

range	 of	 hardware	 products	 can	 be	 bootstrapped	 at	 first—and	 then	Kickstarted,	 debt-financed,	 or	VC-
funded	to	scale.	For	instance,	MakerBot	developed	and	shipped	its	3D	printer	entirely	on	angel	money,
before	closing	a	round	of	VC	funding.	Bre	Pettis,	one	of	the	cofounders,	once	mentioned	that	they	lived	on
nothing	but	cup	ramen	noodles	for	a	month.
Any	hardware	company	that	has	passed	the	idea	phase	and	is	entering	the	scaling-up	phase	has	to	be

razor-focused	on	operations	and	cash	flow.	Maintaining	a	build-to-order	paradigm	is	critical	but	difficult:
a	key	metric	for	any	hardware	company,	small	or	large,	is	how	quickly	you	can	turn	inventory	into	cash.
There	are	two	halves	to	the	equation.	One	is	leaning	up	your	supply	chain	and	trimming	lead	times	so	you
don’t	need	to	sit	on	much	inventory,	yet	can	satisfy	new	orders	quickly.	The	other	is	leaning	up	your	cash
management	so	you	can	bill	customers	quickly	while	stretching	your	credit	lines	as	far	as	possible.	That’s
a	multidimensional	optimization	problem	that	can	make	your	head	explode	without	the	right	staff,	so	your
team	should	include	a	crack	operations	director	and	someone	adept	in	semi-exotic	financial	instruments
like	factoring	insurance,	collateralized	lines	of	credit,	and	trade	contracts.
Being	able	to	access	China	effectively	early	offers	a	disruptive	advantage	to	your	startup	(it’s	hard	to

ignore	the	order-of-magnitude	advantage	China	has	over	the	United	States	in	assembly	costs),	but	working
with	China	does	come	at	a	huge	cost	and	risk	to	the	organization.	It	may	not	be	for	everyone,	particularly
on	day	one.
I	outsourced	myself	to	Singapore	to	get	closer	to	China,	because	I	knew	I’d	never	be	able	to	get	away

from	the	China	ecosystem.	China	has	such	a	firm	grip	on	hardware	manufacturing,	and	I	think	it	will	take
decades	 for	 them	 to	 lose	 their	 edge.	This	 geographic	 diversity	 also	means	 that	 any	 effective	 hardware
startup	has	to	be	able	to	function	effectively	with	a	delocalized	team.

Phil:	What’s	next	for	bunnie?	What	are	you	most	excited	to	do	next?

bunnie:	That	is	the	question	for	me!	I	don’t	really	know	what’s	next.	As	I	noted	earlier	in	the	interview,
I’m	taking	a	year	off	to	do	things	that	aren’t	specifically	entrepreneurial.	My	current	priorities	are	to	first
have	 fun	 with	 my	 work,	 second	 to	 not	 lose	 too	much	money,	 and	 third	 to	 do	 something	 good	 for	 the
community	 through	 a	 combination	 of	 hacktivism,	 volunteer	 work,	 and	 open	 source	 methodology.	 I’m
hoping	in	this	year	I’ll	collect	the	bits	of	my	soul	that	I’ve	lost	along	the	way,	find	some	new	ones,	and
relearn	the	value	of	magic	in	my	life.	I’m	also	spending	a	fair	bit	of	my	focus	tuning	up	myself,	getting	fit,
changing	my	diet	habits,	and	losing	weight.	The	coolest	piece	of	hardware	you’ll	ever	own	is	your	body,
and	 if	 that’s	 not	 working	 well,	 there’s	 no	 hope	 for	 anything	 else.	 Once	 I’m	 done	 with	 my	 aimless
wanderings,	hopefully	I’ll	have	a	better	idea	of	what’s	next!

While	reviewing	that	interview	for	this	book,	I	chuckled	a	bit	to	myself.	By	that	point,	the	year	I	took
off	had	turned	into	four	years.	Several	concerned	associates	of	mine	asked,	“When	are	you	going	to	stop
your	midlife	crisis	and	get	a	real	career?”	But	in	retrospect,	not	going	back	to	the	corporate	world	was
the	best	decision	I	ever	made.
I	do	live	a	lot	leaner	than	I	did	when	I	had	VC/corporate	backing,	but	I	have	a	lot	more	independence.	It

was	a	choice	between	golden	handcuffs	and	an	Aeron	chair,	or	a	rucksack	and	an	interesting	spot	near	the
horizon.	I’m	still	working	on	collecting	the	bits	of	my	soul,	and	I’m	still	slowly	relearning	the	values	of
enchantment	and	wonder.	But	at	least	I	have	the	freedom	to	contemplate	values	other	than	the	wealth	of	my
invested	 shareholders.	 Thankfully,	 I	 had	 some	 success	 in	 revising	my	 dietary	 habits	 and	 fitness	 level;
tuning	up	my	own	body	was	an	excruciating	year	of	calorie	tracking,	sore	muscles,	and	blistered	hands,



but	it	paid	off	in	spades.	My	mother	used	to	tell	me	that	without	health,	you	have	nothing;	she’s	absolutely
right.	If	you	don’t	have	the	stamina	to	work,	it’s	hard	to	turn	opportunities	into	outcomes.	With	any	luck,
my	health	will	hold	out,	and	I’ll	have	many	more	stories	to	share	with	you	in	the	future.

WHY	THE	BEST	DAYS	OF	OPEN	HARDWARE	ARE	YET	TO
COME
One	of	the	most	critical	outcomes	from	my	year	of	soul	searching	was	the	realization	that	the	best	days	of
open	hardware	are	still	ahead.	As	I	contemplated	in	my	interview	with	Phil,	Chumby	didn’t	fail	because
of	 its	 open	 hardware	model.	 At	 worst,	 the	model	 had	 little	 bearing	 upon	 the	 consumer	 appeal	 of	 the
product;	at	best,	it	was	a	good	talking	point.	Nowhere	in	that	interview	did	I	gripe	about	plummeting	sales
in	response	to	cheap	clones	appearing	on	the	market	due	to	our	liberal	open	source	policies.
Rather,	one	of	our	biggest	challenges	was	an	 inability	 to	keep	up	with	Moore’s	 law.	Chumby	simply

didn’t	have	the	resources	as	a	startup	to	keep	pace.	It	 took	two	to	three	years	 to	push	a	major	platform
revision,	 at	 which	 point	 that	 revision	 was	 already	 obsolete.	 My	 PhD	 dissertation*	 was	 centered	 on
Moore’s	law	and	its	impact	on	computer	architecture.	The	most	powerful	computers	are	descendants	of	a
processor	designed	in	the	1970s	(the	Intel	8085)	with	derivatives	still	used	today	as	the	brains	of	toaster
oven.	Why?	Because	running	existing	code	on	backward-compatible	CPUs	has	almost	always	been	faster
than	 porting	 old	 code	 to	 a	 new	 microarchitecture.	 Given	 that	 fact,	 in	 my	 thesis,	 I	 designed	 a
microarchitecture	 that	 nobody	 could	 possibly	 implement	 at	 the	 time	 but	 that	 might	 be	 optimal	 for	 a
computer	that	could	be	built	10	to	15	years	out.	A	small	team	of	researchers	would	have	ample	time	to
develop	 the	 infrastructure	 necessary	 for	 a	 novel	 computer	 that	 would	 be	 relevant	 the	 day	 it’s	 finally
switched	on.	I	spent	several	months	in	the	late	’90s	studying	the	underpinnings	of	Moore’s	law,	trying	to
understand	where	it	runs	thin	and	where	it	holds	strong.	At	the	time,	the	strongest	limitation	was	the	speed
of	light,	so	my	thesis	revolved	around	architectural	tricks	to	reduce	communication	latencies.
In	2011,	about	a	decade	after	my	graduation	and	right	around	the	end	of	Chumby,	I	had	an	opportunity	to

give	a	“vision”	keynote	at	the	Open	Hardware	Summit.	I	decided	to	review	my	notes	from	college	and	see
if	there	might	be	another	decade	left	in	Moore’s	law.	There	isn’t,	and	that	has	profound	ramifications	on
the	future	of	open	source	hardware.	This	section	is	an	adaptation	of	a	blog	post	I	wrote	in	2011	sharing
my	thoughts;	thankfully,	here	in	2016,	I’ve	yet	to	retract	any	of	the	statements	I	made	back	then.

Where	We	Came	From:	Open	to	Closed
Open	hardware	is	a	niche	industry,	and	certain	trends	have	caused	the	hardware	industry	to	favor	large,
closed	businesses	at	the	expense	of	small	or	individual	innovators.	Looking	20	to	30	years	into	the	future,
however,	 I	see	a	 fundamental	shift	 in	 trends	 that	can	 tilt	 the	balance	of	power	 to	 favor	 innovation	over
scale.
As	 I	 said	 in	 this	 part’s	 preface:	 in	 the	 beginning,	 hardware	 was	 open.	 Early	 consumer	 electronic

products,	such	as	vacuum-tube	radios,	often	shipped	with	user	manuals	containing	full	schematics,	a	list
of	replacement	parts,	and	instructions	for	service.	In	the	’80s,	computers	often	shipped	with	schematics.
For	 example,	 the	 Apple	 II	 shipped	 with	 a	 reference	 manual	 that	 included	 a	 full	 schematic	 of	 the
mainboard,	an	artifact	I	credit	for	strongly	influencing	me	to	get	into	hardware.





A	vacuum-tube	radio	schematic

But	contemporary	user	manuals	lack	this	depth	of	information.	The	most	complex	diagram	I’ve	seen	in
a	Mac	 Pro	 user	 guide	 instructs	 you	 on	 how	 to	 sit	 at	 the	 computer:	 keep	 your	 “thighs	 tilted	 slightly,”
“shoulders	relaxed,”	and	so	on.
What	happened?	Did	electronics	just	get	too	hard	and	complex?	On	the	contrary,	improving	electronics

got	too	easy:	the	pace	of	Moore’s	law	has	been	too	much	for	small-scale	innovators	to	keep	up.

Where	We	Are:	“Sit	and	Wait”	vs.	“Innovate”
Consider	 this	 snapshot	 of	 Moore’s	 law,	 which	 states	 that	 “goodness”	 (pick	 virtually	 any	 metric:
performance,	transistor	density,	price	per	quanta,	etc.)	doubles	every	18	months.

Moore’s	law,	doubling	once	every	18	months	versus	linear	improvement	of	75	percent	per	year.	The	shaded	sliver	between	the	two
lines	at	t	<	2	years	represents	the	window	of	opportunity	where	linear	improvement	exceeds	Moore’s	law.

This	 chart	 is	 unusual	 in	 that	 the	 vertical	 axis	 is	 linear.	 Most	 charts	 depicting	 Moore’s	 law	 use	 a
logarithmic	vertical	 scale,	which	 flattens	 the	 curve’s	 sharp	upward	 trend	 into	 a	much	more	 innocuous-
looking	straight	line.	The	shaded	area,	on	the	other	hand,	represents	a	linear	improvement	over	time.	This
might	 represent	 a	 small	 innovator	 working	 at	 a	 constant,	 noncompounding,	 but	 respectable	 rate	 of	 75
percent	 per	 year	 to	 add	 or	 improve	 features	 on	 a	 given	 platform.	 The	 tiny	 (almost	 invisible)	 space
enclosed	by	the	curves	represents	the	market	opportunity	of	the	small	innovator	versus	Moore’s	law.
The	juxtaposition	of	these	two	curves	highlights	the	central	challenge	facing	small	 innovators.	Sitting

and	 waiting	 have	 long	 been	 more	 profitable	 than	 innovating.	 If	 it	 takes	 two	 years	 to	 double	 the
performance	of	 a	 system,	you’re	better	off	 simply	waiting	and	upgrading	 to	 the	 latest	 hardware	 in	 two



years.	Racing	against	Moore’s	law	is	a	Sisyphean	exercise.
This	 exponential	growth	mechanic	 favors	 large	businesses	with	 the	 resources	 to	 achieve	huge	 scale.

Instead	of	developing	one	product	at	a	time,	a	competitive	business	must	have	the	resources	and	vision	to
develop	 three	 or	 four	 generations	 of	 products	 simultaneously.	 Reaching	 the	 global	 market	 within	 the
timespan	of	a	single	 technology	generation	requires	a	supply	chain	and	distribution	channel	 that	can	do
millions	of	units	a	month:	selling	at	a	rate	of	10,000	units	per	month,	reaching	“only”	a	million	users,	or
about	1	percent	of	the	households	in	the	United	States	alone,	would	take	eight	years.	And	significantly,	the
small	barrier	 (a	 few	months’	 time)	created	by	closing	a	design	and	 forcing	 the	competition	 to	 reverse-
engineer	products	can	be	an	advantage,	especially	against	the	pace	of	Moore’s	law.
Thus,	technology	markets	have	become	inaccessible	to	small	innovators	as	individuals	struggle	to	keep

up	with	the	technology	treadmill	and	big	companies	continue	to	close	their	designs	to	gain	a	thin	edge	on
their	competition.	This	trend	is	changing,	however.

Where	We’re	Going:	Heirloom	Laptops
Gordon	Moore,	the	man	who	observed	Moore’s	law,	is	one	of	Intel’s	co-founders.	Moore’s	law	is	best
known	 for	describing	how	 transistor	density,	 and	by	extension	CPU	performance,	would	 increase	over
time.	For	instance,	consider	this	plot	of	Intel	CPU	clock	speed	at	introduction	versus	time.*

CPU	clock	speed	over	time.	The	plateau	has	held	steady	since	2014.

Notice	the	abrupt	plateau	where	clock	speed	stops	increasing.	At	that	point,	CPU	makers	started	using
multicore	technology	to	drive	performance,	but	this	wasn’t	by	choice.	CPUs	reached	physical	limits	that
prevented	practical	clock	scaling,	primarily	related	to	power	and	wire	delay	scaling.	Transistor	density,
and	hence	core	count,	continues	to	increase	over	time,	but	the	pace	is	decelerating.	Transistor	count	used



to	 double	 once	 every	 18	 months;	 then	 it	 slowed	 down	 to	 double	 less	 than	 once	 every	 24	 months.
Eventually,	transistor	density	scaling	will	effectively	end.	The	absolute	endpoint	for	transistor	scaling	is	a
topic	of	debate,	but	one	study†	 indicates	that	scaling	may	stop	at	an	effective	gate	length	of	about	5	nm.
That’s	 about	 the	 space	between	10	 silicon	atoms,	 so	 even	 if	 this	guess	 is	wrong,	 it	 can’t	be	wrong	by
much.
The	 implications	are	profound.	One	day,	you	won’t	be	able	 to	 rely	on	buying	a	 faster	computer	next

year.	Your	phone	won’t	get	any	smaller	or	more	powerful.	And	the	flash	drive	you	buy	next	year	will	cost
the	 same	and	 store	 the	 same	number	of	bits	 as	 the	one	you	bought	 this	year.	The	 idea	of	 an	 “heirloom
laptop”	may	sound	preposterous	 today,	but	 someday,	we	may	perceive	our	computers	as	cherished	and
useful	heirlooms	to	hand	down	to	our	children	as	part	of	our	legacy.

An	Opportunity	for	Open	Hardware
This	slowing	trend	is	good	for	small	businesses,	and	likewise	open	hardware	practices.	To	see	why,	let’s
revisit	 the	plot	of	Moore’s	 law	versus	 linear	 improvement.	This	 time,	 I’ll	 overlay	 two	new	scenarios:
technology	doubling	once	every	24	and	36	months.

Three	different	Moore’s	law	scenarios.	The	shaded	sliver	between	linear	improvement	and	the	t=18	months	scenario	turns	into	a	large
region	of	opportunity	under	the	t=36	months	scenario.	(Note	that	the	vertical	axis	is	log	scale.)

The	 area	 bounded	 by	 the	 curved	 line	 and	 the	 straight	 line	 at	 the	 bottom	 represents	 the	 market
opportunity	for	 linear	 improvement	versus	Moore’s	 law.	In	 the	36-month	scenario,	not	only	does	 linear
improvement	have	over	eight	years	to	go	before	it	is	lapped	by	Moore’s	law,	but	also	there	is	a	point	at
around	year	two	or	three	where	the	optimized	solution	is	clearly	superior	to	Moore’s	law.	In	other	words,
there	is	a	genuine	market	window	for	monetizing	innovative	solutions	at	a	pace	that	small	businesses	can



handle.
As	Moore’s	law	decelerates,	there’s	also	potential	for	greater	standardization	of	platforms.	Creating	a

standard	tablet	or	mobile	phone	chassis	with	interchangeable	components	may	seem	ridiculous	now,	but	it
becomes	a	reasonable	proposition	when	components	stop	shrinking	and	changing	so	much.	As	technology
decelerates,	there	will	be	a	convergence	between	hardware	found	in	mobile	phones	and	hardware	found
in	 embedded	CPU	modules	 like	 the	Arduino.	 Just	 look	 at	 the	 Raspberry	 Pi,	 which	was	 introduced	 in
2012.	Models	 released	 in	2016	offer	 a	quad-core,	1.2GHz	CPU	 for	performance	comparable	 to	 entry-
level	smartphones	at	the	time.
Creating	stable,	performance-competitive	open	platforms	will	empower	small	businesses.	Of	course,	a

small	business	can	still	choose	to	be	closed,	but	by	doing	so,	it	must	create	a	vertical	set	of	proprietary
infrastructure,	and	the	dilution	of	focus	to	implement	such	a	stack	could	be	disadvantageous.
In	 the	post–Moore’s	 law	 future,	FPGAs	may	perform	 respectably	 compared	 to	 their	 hardwired	CPU

kin,	 for	 at	 least	 two	 reasons.	 First,	 the	 flexible	 yet	 regular	 structure	 of	 an	FPGA	may	 lend	 it	 a	 longer
scaling	curve,	in	part	due	to	the	FPGA’s	ability	to	reconfigure	circuits	around	small-scale	fluctuations	in
fabrication	tolerances.	Second,	the	extra	effort	to	optimize	code	for	hardware	acceleration	will	amortize
more	 favorably	 as	 CPU	 performance	 scaling	 increasingly	 relies	 upon	 difficult	 techniques	 like	 using
parallel	cores	on	a	massive	scale.	Massively	multicore	CPU	architectures	look	a	lot	like	the	coarse-grain
FPGA	 architectures	 proposed	 in	 academic	 circles	 in	 the	 ’90s.	 An	 equalization	 of	 FPGA-to-CPU
performance	should	greatly	facilitate	the	penetration	of	open	hardware	at	a	deep	level.
There	will	 be	 a	 rise	 in	 repair	 culture	 as	 technology	 becomes	 less	 disposable	 and	more	 permanent.

Replacing	worn-out	 computer	 parts	 five	 years	 from	 their	 purchase	 date	won’t	 seem	 so	 silly	when	 the
replacement	part	has	virtually	the	same	specifications	and	price	as	the	old	part.	This	rise	in	repair	culture
will	create	a	demand	for	schematics	and	spare	parts	that	in	turn	facilitates	the	growth	of	open	ecosystems
and	small	businesses.
Personally,	I’m	looking	forward	to	the	return	of	artisan	engineering,	where	elegance,	optimization,	and

balance	are	valued	over	feature	creep,	and	where	I	can	use	the	same	tool	for	a	decade	and	not	be	viewed
as	 an	 anachronism.	 (Most	 people	 laugh	when	 they	hear	 I	 held	on	 to	Eudora	7	 as	my	email	 client	 until
2012,	when	I	switched	to	my	current	client,	Thunderbird.)
The	deceleration	of	Moore’s	law	has	already	impacted	markets	that	are	less	sensitive	to	performance.

Consider	the	rise	of	Arduino.	It	took	several	years	to	gain	popularity,	with	virtually	the	same	hardware	at
its	 core	 the	 whole	 time.	 Fortunately,	 the	 demands	 of	 Arduino’s	 primary	 market	 (physical	 computing,
education,	and	embedded	control	applications)	have	not	grown,	allowing	the	platform	to	remain	stable.
This	 stability	 has	 enabled	 Arduino	 to	 grow	 deep	 roots	 in	 a	 thriving	 user	 community	 with	 open	 and
interoperable	standards.
With	some	hard	work	and	a	bit	of	 luck,	I	believe	the	open	hardware	ecosystem	will	surely	blossom.

The	inevitable	slowdown	of	Moore’s	law	may	spell	trouble	for	technology	giants,	but	it	will	also	create
an	opportunity	for	the	open	hardware	movement	to	grow	roots	and	start	something	potentially	very	big.	To
seize	 this	 opportunity,	 open	 hardware	 pioneers	 will	 need	 to	 set	 the	 stage	 by	 creating	 a	 culture	 of
permissive	standards	and	customs	that	can	scale	over	time.
I	look	forward	to	being	a	part	of	open	hardware’s	bright	future.

CLOSING	THOUGHTS
Although	chumby,	conceived	in	2006,	was	a	bit	ahead	of	its	time	and	the	company	ultimately	fell	victim	to
Moore’s	 law,	 my	 reflections	 on	 the	 slowing	 pace	 of	 Moore’s	 law	 encouraged	 me	 to	 try	 yet	 another



experiment	 in	open	hardware.	The	next	chapter,	on	Novena,	 shares	 the	story	of	my	quixotic	adventures
building	a	bespoke	open	source	laptop.



7.	novena:	building	my	own	laptop
It	was	2012,	and	I	was	unemployed.	My	previous	startup	had	failed,	and	I	was	taking	a	year	off	to	figure
out	what	I	should	do	next.	My	friend	xobs	(introduced	in	Chapter	4)	and	I	had	a	tradition	that	we	maintain
to	this	day:	every	Friday,	we	sit	down	for	a	few	beers	at	lunch	and	shoot	the	breeze.	During	one	of	those
“Beer	Friday”	discussions,	we	decided	 to	build	our	own	 laptop.	 I	expressed	displeasure	with	how	I’d
never	been	employed	 to	build	 a	product	 that	 I’d	 actually	want	 to	use	every	day.	As	a	design	engineer,
you’re	 typically	 driven	 by	market	 requirements,	 not	 your	 own	 eclectic	 tastes.	We	 bantered	 a	 bit	 about
things	we’d	find	useful	and	realized	that,	thanks	to	the	gradual	slowing	of	Moore’s	law,	maybe	it	wasn’t
so	crazy	for	us	to	build	an	open	laptop	with	some	wacky	features	just	for	hackers.	From	there,	we	started
a	hobby	project	to	build	a	computer	just	for	ourselves,	something	we’d	use	every	day	that	would	be	easy
to	 extend	 and	 mod—our	 very	 own	 electronic	 Swiss	 Army	 knife.	We	 gave	 the	 project	 the	 code	 name
Novena,	the	name	of	a	Singaporean	metro	station	and	Latin	for	“nine.”



The	second-generation	Novena	design	that	went	up	on	Crowd	Supply

The	 finished	 Novena	 was	 a	 1.2GHz,	 Freescale	 (now	 NXP)	 i.MX6	 quad-core	 ARM	 architecture
computer	 closely	 coupled	with	 a	Xilinx	 FPGA.	 It	was	 designed	 for	 users	who	wanted	 to	modify	 and
extend	their	hardware:	all	 the	documentation	and	PCBs	were	and	still	are	open	and	free	to	download,*
and	we	gave	it	a	variety	of	features	that	facilitated	rapid	prototyping.

NOT	A	LAPTOP	FOR	THE	FAINT	OF	HEART
As	 I	 talked	 to	more	people	about	Novena,	however,	 I	 realized	 that	others	were	 interested	 in	owning	a
laptop	 like	 that	 but	 perhaps	 didn’t	 want	 (or	 didn’t	 know	 how)	 to	 make	 their	 own	 circuit	 boards.	 In
response	 to	 the	overwhelmingly	positive	 feedback	we	 received	 to	a	blog	post	on	 the	 topic,	xobs	and	 I
launched	a	campaign	on	Crowd	Supply	in	2014,	once	the	design	was	stable	and	tested.	Over	1,000	people
pledged	their	support;	I	am	happy	to	report	that	we	fulfilled	every	single	campaign	pledge,	most	of	them
within	a	few	months	of	the	promised	date.	After	the	campaign’s	close,	we	decided	it	would	spread	our
limited	resources	too	thin	to	maintain	the	supply	chain	for	the	full	laptop	configuration,	but	we	would	sell



and	support	the	Novena	motherboard	hardware	for	at	least	five	years	from	the	launch	of	the	campaign.
To	be	clear,	Novena	is	not	a	machine	for	the	faint	of	heart.	It’s	an	open	source	project,	which	means

part	of	 the	 joy	 (and	 frustration)	of	 the	device	 is	 that	 it	 is	 continuously	 improving.	 It’s	perhaps	 the	only
laptop	 that’s	 ever	 shipped	with	 a	 screwdriver.	Anyone	who	 bought	 one	 of	 the	 original	 designs	 had	 to
install	the	battery	and	screw	on	the	LCD	bezel	of	their	choice—green	or	blue.	The	speakers	came	as	a	kit
so	users	wouldn’t	have	to	use	our	speaker	box	design.	If	someone	had	access	to	a	3D	printer,	they	could
make	and	fine-tune	their	own	speaker	box.
Despite	all	of	those	DIY	options,	I	wasn’t	looking	to	break	any	low-price	records	with	Novena.	It	was

designed	as	a	low-volume,	handcrafted	laptop	made	with	uniquely	open	source	components,	and	the	cost
matched	the	design.	We	offered	three	tiers:

•	An	“all-in-one	desktop”	option	for	$1,195	that	was	ready	to	use	with	a	keyboard	and	mouse	out	of	the
gate,	but	needed	to	be	plugged	in

•	A	“laptop”	option	for	$1,995	that	included	a	battery	controller	board,	for	hackers	on	the	go

•	An	“heirloom	laptop”	tier	for	$5,000	that	came	in	a	gorgeous,	handcrafted	wood-and-aluminum	case

In	Chapter	6,	I	said	that	as	Moore’s	law	slows	down,	I	predict	parents	passing	down	computers	to	their
children.	The	Heirloom	Novena	is	meant	to	be	treated	that	way,	though	it	has	the	same	hardware	on	the
inside	as	the	other	two	options.
But	 those	 prices	 weren’t	 so	 different	 from	 the	 prices	 of	 high-end	 consumer	 laptops.	 The	 biggest

challenge	was	 figuring	 out	 how	 to	 offer	 something	 so	 custom	 and	 complex	 at	 that	 price	 point,	 in	 low
volumes.	We	weren’t	looking	to	recover	the	research	and	development	cost	in	the	campaign;	that’s	a	sunk
cost,	as	anyone	is	free	to	download	the	source	and	benefit	from	our	thoroughly	vetted	design	today.	Our
minimum	funding	goal	of	$250,000	was	a	tiny	fraction	of	what’s	typically	required	to	recover	the	million-
dollar-plus	investment	behind	the	development	and	manufacture	of	a	conventional	laptop;	xobs	and	I	met
this	challenge	with	a	combination	of	know-how,	unique	design,	and	strong	relationships	with	our	supply
chain.

DESIGNING	THE	EARLY	NOVENA
We	 optimized	 the	 Novena’s	 design	 to	 reduce	 the	 amount	 of	 expensive	 tooling	 required,	 while	 still
preserving	our	primary	goal	of	it	being	easy	to	hack	and	modify.	We	spent	a	year	and	a	half	poring	over
three	 revisions	of	 the	PCBA	until	we	were	 confident	 that	 the	 complex	design	would	be	 functional	 and
producible.	We	also	optimized	certain	tricky	components,	such	as	the	LCD	and	the	internal	display	port
adapter,	for	reliable	sourcing	at	low	volumes.	Finally,	I	spent	a	few	months	traveling	the	world,	lining	up
a	 supply	 chain	 that	 could	 deliver	 this	 design	 (even	 in	 low	 volume)	 at	 a	 price	 comparable	 to	 other
premium	laptops.
Of	course,	all	the	design	documentation	is	open,	so	with	sufficient	skill	and	resources,	you	could	build

a	 Novena	 from	 scratch	 yourself.	 I	 chose	 the	 hardware	 and	 its	 subcomponents	 to	 make	 this	 the	 most
practically	 open	 hardware	 laptop	 I	 could	with	 state-of-the-art	 technology.	You	 can	 download,	without
NDA,	 the	datasheets	 for	all	 the	components,	and	key	peripheral	options	were	chosen	such	 that	you	can
build	a	complete	firmware	from	source	with	no	opaque	blobs.

Under	the	Hood



This	board’s	dimensions	are	approximately	121	mm	×	150	mm;	it’s	sized	to	fit	comfortably	underneath	a
standard-sized	laptop	keyboard	(though	the	image	is	rotated	compared	to	the	installation	orientation).	As
you	can	see	in	the	full	laptop	photos	earlier	in	the	chapter,	the	port	farm	is	on	the	right	side	of	the	laptop,
not	the	bottom.	The	board	is	just	under	14	mm	thick,	a	height	set	by	the	thickness	of	an	Ethernet	connector.
The	base	portion	of	my	Lenovo	T520	 is	 just	under	24	mm	thick,	and	once	a	keyboard	and	plastics	are
stacked	on	this	board,	the	base	of	the	Novena	comes	to	just	about	the	same	thickness.

The	earliest	Novena	motherboard

Now	let’s	look	at	some	of	the	motherboard’s	features.

PRELIMINARY	FEATURES
The	 first	 iteration	 of	 the	 Novena	motherboard	 used	 a	 Freescale	 iMX6	 CPU,	 which	 has	 an	 NDA-free
datasheet	 and	 programming	manual.	 In	 the	 lists	 that	 follow,	 items	marked	with	 a	 double	 asterisk	 (**)
require	a	closed-source	firmware	blob,	but	the	system	is	bootable	and	usable	without	the	blob.
The	CPU	footprint	we	used	could	support	the	following	quad-	and	dual-lite	versions	of	the	iMX6:

•	Quad-core	Cortex	A9	CPU	with	NEON	FPU	@	1.2	GHz

•	Vivante	GC2000	OpenGL	ES2.0	GPU,	200Mtri/s,	1Gpix/s**



This	version	of	Novena	booted	from	microSD	firmware.	In	terms	of	other	internal	memory,	it	had	a	64-
bit,	DDR3-1066	SO-DIMM,	which	could	be	upgraded	to	4GB,	and	a	SATA-II	(3Gbps)	hard	drive.

Novena	was	full	of	internal	ports	and	sensors	from	the	start,	too.	These	are	the	highlights:

•	A	Mini	PCI-express	(mPCIe)	slot,	for	blob-free	Wi-Fi,	Bluetooth,	mobile	data,	and	so	on

•	A	UIM	slot,	for	mPCIe	mobile	data	cards

•	A	dual-channel	LVDS	LCD	connector	with	up	to	QXGA	resolution	(2,048	×	1,536	px)	at	60	Hz	and	a
USB	2.0	side	channel	for	a	display-side	camera

•	A	resistive	touchscreen	controller	(capacitive	touch	displays,	on	the	other	hand,	typically	come	with	an
integrated	controller)

•	1.1	W,	8-ohm	internal	speaker	connectors

•	Two	USB2.0	internal	connectors,	for	a	keyboard	and	mouse	or	trackpad

•	A	digital	microphone

•	A	three-axis	accelerometer

•	A	header	for	an	optional	AW-NU137	Wi-Fi	module**

We	made	the	following	ports	externally	accessible:

•	HDMI

•	The	SD	card	reader

•	The	headphone	and	microphone	jacks	(compatible	with	most	mobile	phone	headsets,	these	also
supported	sensing	inline	cable	buttons)

•	Two	USB	2.0	ports,	supporting	high-current	(1.5A)	device	charging

•	A	1Gb	Ethernet	port

And,	of	course,	since	xobs	and	I	were	making	the	Novena	for	ourselves,	we	included	a	bunch	of	other
“fun”	features	that	we	knew	would	be	great	for	hackers:

•	100Mb	Ethernet	(dual	Ethernet	capability	allows	Novena	to	be	used	as	an	inline	packet	filter	or	router)

•	USB	On-the-Go	(enables	the	Novena	to	spoof	or	fuzz	Ethernet,	serial,	and	other	connections	over	USB
via	a	gadget	interface	to	other	USB	hosts)

•	A	utility	serial	EEPROM,	for	storing	crash	logs	and	other	bits	of	handy	data

•	A	Spartan-6	CSG324-packaged	FPGA	with	several	interfaces	to	the	CPU,	including	a	2Gbps	(peak)
RAM-like	bus—for	bitcoin	mining,	or	whatever	else	you	might	want	to	toss	in	an	FPGA

•	Eight	FPGA-driven	12-bit,	200ksps	analog	inputs

•	Eight	FPGA-driven	digital	I/O	pins

•	Eight	FPGA-driven	PWM	headers,	compatible	with	hobby	ESC	and	PWM	pinouts	(enables	direct
interfacing	with	various	RC	motor/servo	configurations	and	quad-copter	controllers)

•	Raspberry	Pi–compatible	expansion	header



•	Thirteen	CPU-driven	supplemental	digital	I/Os

•	Three	internal	UART	ports

We	 tweaked	 those	 specs	 going	 into	 production,	 making	 the	 most	 drastic	 changes	 around	 the	 FPGA
expansion	connectors.	Instead	of	a	cluster	of	motion-control-focused	headers,	we	opted	to	install	a	header
capable	of	high	data	rates,	which	xobs	and	I	used	to	great	effect	in	future	projects	involving	the	Novena.

THE	BATTERY	BOARD

To	 give	 maximum	 power	 management	 flexibility,	 I	 implemented	 the	 battery	 interface	 functions	 on	 a
daughtercard.	I	co-opted	a	cheap	and	common	SATA-style	connector	to	route	power	and	control	signals
between	 the	mainboard	and	 the	daughtercard.	To	prevent	users	 from	accidentally	plugging	a	hard	drive
into	 the	battery	port,	 I	 inverted	 the	gender	of	 the	battery-SATA	connector	 from	 the	 actual	mass-storage
SATA-II	connector.
The	battery	card	in	the	first	Novena	board	was	meant	to	work	with	the	battery	packs	used	by	most	RC

enthusiasts:	LiPo	packs	 ranging	 from	2S1P	 to	4S1P	 (that	 is,	 two-cell	 to	 four-cell).	RC	packs	 are	great
because	 they’re	designed	for	super-fast	charging	and	 they’re	cheap	and	easy	 to	buy.	For	 the	board-side
battery	plug,	 I	 decided	 to	use	 the	Molex	 connector	 found	on	 classic	 disk	drives,	 since	 they	 are	 cheap,
common,	and	easy	to	assemble	with	simple	tools.	I	couldn’t	use	a	standard	RC	connector	because	the	vast
majority	of	 them	are	designed	for	 inline	use,	and	the	few	that	have	board	mounts	were	 too	 thick	or	 too
weird	for	this	application.

The	preliminary	Novena	battery	board

The	battery	board	could	charge	batteries	at	rates	in	excess	of	4A;	for	example,	charging	a	three-cell,	45
Wh	(4	Ah)	battery	took	about	one	hour.	If	typical	power	consumption	were	around	5	to	6	W	per	hour,	that



would	be	seven	or	eight	hours	of	runtime	with	a	one-hour	charge	time.	Of	course,	since	the	whole	laptop
was	 user-configurable,	 typical	 power	 consumption	was	 really	 hard	 to	 estimate.	 If	 a	 user	 dropped	 in	 a
monster	LCD	and	a	power-hungry	magnetic	hard	drive	with	loads	of	peripherals,	the	power	consumption
would	be	much	higher.
xobs	suggested	another	cute	power-related	feature	that	made	it	into	the	design.	He	thought	it	would	be

neat	to	embed	a	retro	analog	needle	meter	into	the	palm	rest	of	the	laptop	to	display	power	consumption
in	real	time.	I	thought	it	was	a	great	idea,	so	I	designed	that	into	the	circuit	board.	Of	course,	the	analog
meter	is	driven	by	a	DAC	on	the	battery	microcontroller,	so	it	could	be	configured	to	perform	a	multitude
of	useful	(or	not	so	useful)	analog	readouts,	such	as	remaining	runtime,	battery	voltage,	temperature,	the
time	(represented	as	an	analog	value),	and	so	on.
After	 spending	 a	 couple	 of	months	validating	 all	 the	 features	 (it	was	 a	 long	 list	 of	 features	 to	 grind

through),	we	ported	drivers	and	a	Linux	distro	to	the	board.	That	was	no	small	task	either,	but	thankfully,	I
had	xobs’s	skillful	help,	and	we	got	the	job	done.

The	Enclosure
From	there,	I	was	really	looking	forward	to	designing	the	enclosure.	For	the	first	revision,	I	thought	about
making	 something	 out	 of	 laser-cut	 acrylic	 that	 would	 be	 vaguely	 tablet-like,	 to	 avoid	 having	 to	 mess
around	with	a	friction	clutch	on	the	first	go	at	a	case.	I	ended	up	hand-building	our	first	prototype	cases
from	aluminum	and	leather,	to	validate	the	laptop	use	case	for	Novena.	That	design	was	rough;	as	Cory
Doctorow	put	it	on	Boing	Boing,	it	was	“gloriously	fuggly.”*





I	love	that	my	laptop	smells	of	leather	when	it	runs!

The	second-generation	Novena	case	I	showed	earlier	is	sleeker.	The	first	 thing	you	probably	noticed
about	the	design	is	that	it	opens	the	“wrong”	way.	This	feature	allows	the	Novena	to	be	used	as	a	wall-
hanging	unit	when	the	screen	is	closed.	It	also	solves	a	major	problem	I	had	with	the	original	clamshell
prototype:	 it	 was	 a	 real	 pain	 to	 access	 the	 hardware	 for	 hacking,	 as	 it	 was	 blocked	 by	 the	 keyboard
mounting	plate.
In	the	version	we	sold	on	Crowd	Supply,	the	screen	automatically	pops	open	with	the	slide	of	a	latch,

thanks	 to	 an	 internal	 gas	 spring.	 (Novena	 isn’t	 just	 an	 open	 laptop—it’s	 a	 self-opening	 laptop!)	 We
intentionally	left	the	internals	naked	in	this	mode	for	easy	access,	but	bare	internals	also	make	clear	that
Novena	isn’t	for	casual	home	users.
We	 included	 an	 array	 of	 mounting	 bosses—which	 we	 called	 a	 Peek	 array—as	 well,	 to	 facilitate

hackability.	Normally,	 laptops	have	mounting	points	only	 for	 the	handful	of	 features	designed	 into	 their
original	 blueprints.	 But	 a	 hackable	 laptop	 must	 accommodate	 a	 huge	 space	 of	 possible	 peripherals.
Instead	of	requiring	users	to	drill	holes	or	glue	things	down	in	their	laptop	cases,	we	provided	a	regular
array	of	 threaded	 inserts.	 It	was	a	bit	 like	a	breadboard,	but	 for	 rapid	mechanical	prototyping.	To	help
define	the	array,	I	consulted	with	Nadya	Peek,	a	graduate	student	at	MIT’s	Center	for	Bits	and	Atoms	and
an	expert	in	digital	fabrication—hence	the	name	Peek	array.
Another	 feature	 of	 the	 second-generation	 design	 is	 that	 the	 LCD	 bezel	 is	 made	 of	 a	 single,	 simple

aluminum	sheet.	This	allows	anyone	with	access	to	a	minimal	machine	shop	to	modify	or	craft	their	own
bezels;	no	custom	tooling	required.	My	hope	with	that	design	was	to	make	adding	knobs	and	connectors	or
changing	 the	 LCD	 relatively	 easy	 for	Novena	 hackers.	 To	 encourage	 users	 to	 experiment,	we	 shipped
desktop	 and	 laptop	Novenas	with	 two	 LCD	 bezels	 so	 no	 one	 had	 to	worry	 about	 having	 an	 unusable
machine	if	they	messed	one	up	while	experimenting.
Most	 laptops	 have	 a	 keyboard	 and	mouse	 attached	 to	 the	 enclosure,	 but	 the	Novena	 has	 a	 detached

keyboard	 and	 track-point	 because	 that	 feature	 was	 attractive	 to	 me	 personally.	 I’d	 always	 wanted	 a
display	I	could	“hang”	on	the	seat	in	front	of	mine	when	sitting	in	an	airplane	or	a	bus:	it’s	a	lot	easier	on
the	neck,	and	the	arrangement	actually	works	better	if	the	person	in	front	reclines	their	seat.
While	 I	was	 still	 considering	whether	 to	 do	 a	 clamshell	 design	 or	 some	 other	 funky	 design	 for	 the

exterior,	 I	also	 thought	about	 trying	an	enclosure	made	of	wood	and	brass.	After	all,	 the	whole	 idea	of
making	my	own	laptop	was	to	play	around	with	some	new	ideas!	As	mentioned	earlier,	we	actually	did
wind	up	doing	a	limited	run	of	a	wooden-cased	Novena	that	we	dubbed	the	heirloom	laptop.



The	Heirloom	Novena	laptop

THE	HEIRLOOM	LAPTOP’S	CUSTOM	WOOD	COMPOSITE
When	mainline	Novena	production	was	finally	humming	along	in	April	2015,	I	spent	a	week	in	Portland,
Oregon,	 working	 alongside	 Kurt	Mottweiler	 (a	 designer	 and	 woodworker	 who	 specializes	 in	 making
cameras	with	wooden	enclosures)	 to	hammer	out	all	of	 the	 final	open	 issues	on	 the	Heirloom	devices.
xobs	and	I	are	certainly	proud	of	how	the	Heirloom	Novenas	turned	out!

Working	with	Kurt	on	the	Heirloom	laptop

Growing	Novenas
In	a	 literal	 sense,	 the	Heirloom	Novenas	were	“grown.”	Wooden	enclosures	meant	 important	structural
elements	came	from	trees.	Making	every	laptop	identical	would	have	been	easy,	but	we	felt	it	would	be
much	more	apropos	of	a	bespoke	product	 to	make	each	 laptop	unique	by	picking	 the	 finest	woods	and



matching	their	finish	and	color	in	a	tasteful	fashion.	As	a	result,	no	two	Heirloom	laptops	look	the	same;
each	is	uniquely	beautiful.

Some	handpicked	wood,	waiting	to	become	a	Novena	case

A	 lot	 of	 science	 and	 engineering	 went	 into	 the	 Heirloom	 laptops,	 too.	 For	 starters,	 Kurt	 created	 a
unique	 composite	 material	 by	 layering	 cork,	 fiberglass,	 and	 wood.	 To	 help	 characterize	 the	 novel
composite,	we	took	some	material	samples	to	the	Center	for	Bits	and	Atoms,	where	Nadya	Peek	and	Will
Langford	 characterized	 the	 performance	 of	 the	material.	We	 took	 sections	 of	 the	wood	 composite	 and
performed	a	three-point	bend	test	using	an	Instron	4411	electromechanical	material	testing	machine.



Heirloom	composite	material	loaded	into	the	testing	machine

The	Mechanical	Engineering	Details
From	 the	 test	 data,	 we	 were	 able	 to	 extract	 the	 flexural	 modulus	 (also	 called	 Young’s	 modulus)	 and
flexural	 strength	of	 the	material.	 I’m	not	 a	mechanical	 engineer	by	 training,	 so	 terms	 like	modulus	 and
specific	strength	 kind	 of	 go	 over	my	 head.	But	Nadya	was	 kind	 enough	 to	 lend	me	 some	 insight.	 She
pointed	me	at	the	Ashby	chart,	which,	as	with	some	xkcd	comic	panels,	I	could	stare	at	for	an	hour	and
still	not	absorb	all	the	information	contained	within.



The	Ashby	chart	plots	Young’s	modulus	versus	density	for	many	materials.	The	annotated	area	shows	approximately	where	the
Heirloom	composite	material	lands.

The	bottom	left	of	 the	chart	shows	bendy,	 light	materials	 like	cork,	and	 the	 top	right	of	 the	chart	has
rigid,	heavy	materials,	like	tungsten	(W).	For	a	laptop	case,	we	wanted	a	material	with	the	density	of	cork
but	the	stiffness	of	plastic.	Wood	products	occupy	a	space	in	the	chart	to	the	left	of	plastics,	meaning	they
are	 less	 dense,	 but	 they	 have	 a	 problem:	 they	 are	weak	 perpendicular	 to	 the	 grain.	 Depending	 on	 the
direction	 of	 the	 strain,	 wood	 can	 be	 as	 yielding	 as	 polyethylene	 (the	 material	 used	 to	 make	 plastic
shopping	 bags)	 or	 stiffer	 than	 polycarbonate	 (the	 material	 layered	 with	 glass	 to	 make	 bulletproof
windows).	Composite	materials	are	great	because	they	allow	you	to	blend	the	characteristics	of	multiple
materials	to	hit	the	desired	characteristic.	In	the	Heirloom	laptop’s	case,	Kurt	blended	cork,	glass	fiber,
and	wood.
The	measurements	of	the	Heirloom	composite	show	a	flexural	strength	of	about	33	megapascals,	and	a

flexural	modulus	of	about	2.2	to	3.2	gigapascals.*	The	density	of	the	material	is	0.49	g/cm3,	meaning	it’s
about	half	 the	density	of	ABS	plastic,	 the	plastic	LEGO	bricks	are	made	from.	As	shown	on	the	Ashby
chart,	 plotting	 these	 numbers	 reveals	 that	 the	 Heirloom	 composite	 occupies	 a	 nice	 spot	 to	 the	 left	 of
plastics	and	provides	a	compromise	on	stiffness	based	on	grain	direction.	And	during	testing,	the	material



didn’t	fail	catastrophically.

Graphs	of	load	versus	extension	on	the	Heirloom	laptop	composite,	as	plotted	by	the	Instron	testing	machine

Even	after	being	bent	past	its	peak	load,	the	composite	was	still	mostly	intact	and	providing	resistance.
This	 result	was	 a	 bit	 surprising.	We	had	 expected	 the	material	 to	 break	 in	 two	on	 failure,	 like	 natural
wood.	Furthermore,	after	we	reset	the	test,	the	material	bounced	back	to	its	original	shape.	We	bent	the
composite	by	over	10	mm,	but	once	the	load	was	removed,	I	could	barely	tell	it	went	through	testing.	This
high	fracture	toughness	and	resilience	are	desirable	properties	for	a	laptop	case.
Of	 course,	 watching	 a	 machine	 go	 to	 work	 on	 the	 material	 was	 fun,	 but	 there’s	 nothing	 quite	 like

holding	 it	 yourself.	 I	 still	 remember	picking	up	 the	material,	 feeling	how	 light	 it	was,	giving	 it	 a	good
bend,	and	being	surprised	by	its	rigidity	and	ruggedness.

CHANGES	TO	THE	FINISHED	PRODUCT
From	the	moment	Novena	was	successfully	crowdfunded,	an	incredible	team	of	people	worked	to	make	it
a	reality.	With	help	from	the	engineers	and	product	managers	at	our	manufacturing	partner,	AQS,	Novena’s
case	moved	from	prototype	to	pilot	production	just	four	months	after	the	campaign.



The	conference	room	where	we	did	the	T1	plastics	review	in	Dongguan,	China

Sure,	xobs	and	I	did	plenty	of	work	on	our	own	before	we	even	started	the	crowdfunding,	but	it	takes
many	hands	 to	build	a	product	of	 this	 complexity.	We	couldn’t	have	done	 it	without	our	dedicated	and
hardworking	team	at	AQS.	I’ve	said	before	that	your	factory	is	your	partner,	and	thanks	to	a	great	partner,
we	were	able	to	get	this	done	in	a	short	amount	of	time.

Case	Construction	and	Injection-Molding	Problems
By	 the	 late	 summer	 of	 2014,	 the	 Novena	 cases	 we	 were	 carrying	 around	 were	 made	 of	 entirely
production-process	hardware—no	more	hand-built	prototypes.	To	get	 there,	we’d	opened	a	 total	of	10
injection-molding	 tools;	 for	comparison,	a	product	 like	NeTV	or	chumby	had	perhaps	3	or	4	 injection-
molding	tools.
As	I	briefly	described	in	Chapter	1,	injection	molding	is	a	process	where	plastic	is	molded	into	a	net

shape.	Hot,	high-pressure	liquid	plastic	is	forced	into	a	hardened	steel	cavity	called	a	tool.	The	steel	tool
is	a	masterpiece	of	engineering	in	itself:	it’s	a	water-cooled	block	weighing	about	a	ton	and	capable	of
handling	pressures	found	at	the	bottom	of	the	Mariana	Trench,	and	the	internal	surfaces	are	machined	to
tolerances	better	than	the	width	of	a	human	hair.	On	top	of	that,	the	tool	contains	a	clockwork	of	moving
pieces,	with	dozens	of	ejector	pins,	sliders,	lifters,	and	parting	surfaces	that	come	apart	and	back	together
again	smoothly	over	thousands	of	cycles.	It’s	amazing	that	tools	of	such	complexity	and	refinement	can	be
crafted	in	a	couple	of	months.
With	so	many	moving	parts,	 it’s	no	surprise	that	the	tools	required	several	iterations	of	refinement	to

get	absolutely	perfect.	 In	 tooling	 jargon,	 the	 iterations	are	referred	to	as	T0,	T1,	T2,	and	so	on.	You’re
doing	pretty	well	if	you	can	go	to	full	production	at	T2;	thankfully,	our	T1	plastics	were	99	percent	of	the
way	there,	meaning	we	had	an	easy	path	to	full	production.	T1	had	just	a	few	issues	relating	to	flow	and
knit	 lines,	 as	well	 as	 spots	where	 the	plastic	warped	during	 cooling	or	 bound	 itself	 to	 the	 tool	 during
ejection,	 causing	 deformation.	 This	manifested	 itself	 as	 spots	where	 the	 seams	weren’t	 as	 tight	 as	we
wanted	them	to	be	in	the	case,	and	with	just	a	little	bit	of	tuning,	we	were	production-ready.
Most	people	have	only	seen	products	of	finished	tooling,	so	I’ll	share	what	a	pretty	typical	T0	(first-

attempt)	shot	 looks	 like,	particularly	for	a	 large	and	complex	 tool	 like	 the	Novena	case	base	part.	Test
shots	 like	 this	 are	 typically	 done	with	 scrap	 resin	 in	 light	 colors	 that	 highlight	 defects.	We	 used	 gray



plastic	here	to	make	tuning	the	mold	easier,	but	the	final	units	had	black	bases.

Some	T0	shots	of	the	base	of	the	Novena	case.	The	regular	array	of	circles	on	the	left	in	the	top	photo	form	the	basis	of	the	Peek
array.	To	make	the	array,	threaded	brass	inserts	were	heat-staked	into	the	circular	bosses	after	injection	molding.

There’s	a	lot	going	on	with	this	piece	of	plastic.	Let’s	zoom	in	on	some	of	the	artifacts.



A	visual	guide	to	the	deformations	in	the	T0	case	base

The	circles	highlight	 a	 set	of	 sink	marks,	which	happen	when	 the	opposite	 side	of	 the	plastic	 has	 a
particularly	thin	or	 thick	feature.	These	areas	cool	faster	or	slower	than	the	bulk	of	 the	plastic,	causing
them	 to	pucker	 slightly	 and	 create	 a	 sort	 of	 shadow.	Sink	marks	 are	particularly	noticeable	on	mirror-
finish	parts.	 In	 this	 case,	 the	 sink	marks	happened	because	 the	plastic	underneath	 the	nut	bosses	of	 the
Peek	array	were	much	thinner	than	the	surrounding	plastic.	To	fix	this	problem,	we	thickened	that	region
slightly,	 reducing	 the	 overall	 internal	 clearance	 of	 the	 case	 by	 0.8	 mm.	 That	 was	 possible	 because
fortunately,	I’d	designed	the	case	with	a	little	extra	clearance	margin.
The	straight	arrow	points	to	a	knit	line.	This	is	a	region	where	plastic	flow	meets	within	the	tool.	As

plastic	is	injected	into	the	cavity,	it	tends	to	flow	from	one	or	more	gates,	and	where	the	molten	plastic
meets	 itself,	a	hairline	scar	forms.	Knit	 lines	are	often	 located	at	points	of	symmetry	between	the	gates
where	 the	plastic	 is	 injected.	On	 this	 tool,	 there	were	 four	gates	 located	underneath	 the	spot	where	 the
rubber	feet	go.	Gates	are	considered	cosmetically	unattractive,	and	thus	we	placed	them	strategically	to
hide	their	location.
The	white	 feathery	 artifacts	 indicated	 by	 the	 curved	 arrow	 are	 flow	marks.	 These	 streaks	 appeared

because	the	plastic	cooled	a	bit	too	quickly	within	the	tool.	You	can	often	fix	this	problem	by	adjusting	the
injection	 pressure,	 cycle	 length,	 and	 temperature.	 It’s	 best	 to	 use	 test	 shots	 on	 the	molding	machine	 to
make	 those	 tweaks.	You	 can	 tweak	one	parameter	 at	 a	 time,	 shot	 after	 shot,	 until	 you	 find	 an	optimum
cooling	speed.	This	process	can	sometimes	take	hundreds	of	shots,	creating	a	small	hill	of	scrap	plastic	as
a	by-product.
Most	 of	 these	 gross	 defects	 were	 fixed	 by	 T1,	 and	 at	 that	 point,	 the	 plastic	 looked	much	 closer	 to

production-grade.	We	were	also	able	to	start	using	black-colored	plastic,	which	tends	to	hide	defects.
There	were	still	a	few	issues	around	fit	and	finish,	of	course.	But	despite	them,	the	case	felt	much	more

solid	than	the	prototypes,	and	the	gas	piston	mechanism	was	finally	consistent	and	really	smooth.



The	T1	case	base,	in	initial	testing	after	the	live	hardware	was	transferred	into	the	plastics

Changes	to	the	Front	Bezel
The	front	bezel	of	Novena’s	case	(not	to	be	confused	with	the	aluminum	LCD	bezel)	went	through	some
changes	 after	 the	 campaign.	When	 we	 closed	 funding,	 it	 had	 two	 outward-facing	 USB	 ports	 and	 one
switch.	Novena	shipped	with	 two	switches,	one	outward-facing	USB	port,	and	one	 inward-facing	USB
port.
One	switch	is	for	power:	it	goes	directly	to	the	power	board	and	can	be	used	to	turn	the	system	on	and

off	even	when	 the	main	board	 is	 fully	powered	down.	The	other	switch	 is	wired	 to	a	user	keypress	 to
facilitate	Bluetooth	association	for	keyboards	that	are	being	stupid.	Some	keyboards	can	take	up	to	a	half-
minute	to	cycle	through	something	(presumably,	it’s	security-related)	before	they	connect.	There	are	hacks
for	bypassing	that,	but	you’d	have	to	run	a	script	on	the	host.	Our	idea	was	that	by	pressing	this	button,
users	could	trigger	a	convenience	script	to	get	past	the	utter	folly	of	Bluetooth.	This	switch	also	doubles
as	a	wake-up	button	for	when	the	system	is	suspended.
As	for	the	USB	ports,	the	design	still	had	four	in	total,	but	the	configuration	became	as	follows:

•	Two	higher-current-capable	ports	on	the	right

•	One	standard-current-capable	port	on	the	front

•	One	standard-current-capable	port	facing	toward	the	Peek	array

In	other	words,	we	faced	one	USB	port	toward	the	inside	of	the	machine.	Since	half	the	fun	of	Novena
is	modding	 the	hardware,	 I	 figured	a	USB	port	on	 the	 inside	would	be	at	 least	as	useful	as	one	on	 the
outside.



For	users	who	wouldn’t	do	hardware	mods,	 an	 inside	USB	port	would	also	be	a	 fine	place	 to	plug
small	 dongles	 that	 generally	 stay	 attached,	 like	 the	 radio	 transceiver	 for	 a	 keyboard.	 It’s	 a	 little
inconvenient	to	initially	plug	in	the	dongle,	but	keeping	the	radio	transceiver	dongle	facing	inside	helps
protect	it	from	damage	when	you	throw	your	laptop	into	your	travel	bag.

DIY	Speakers
We	toyed	with	several	speaker	options	for	Novena.	A	core	idea	behind	the	design	was	to	encourage	every
user	to	choose	their	own	speaker.	Some	people	really	listen	to	music	on	their	laptop	when	they	travel,	but
others	simply	rely	upon	the	speaker	for	notification	tones	and	would	prefer	to	use	headphones	for	media
capabilities.	 Physics	 dictates	 that	 high-quality	 sound	 requires	 a	 certain	 amount	 of	 space	 and	mass.	We
wanted	users	with	a	more	 relaxed	 fidelity	 requirement	 to	be	able	 to	 reclaim	 the	 space	and	weight	 that
nicer	speakers	would	require.
Kurt	 Mottweiler	 selected	 a	 nice	 but	 very	 compact	 off-the-shelf	 speaker,	 the	 PUI	 ASE06008MR-

LW150-R,	 for	 the	Heirloom.	When	we	found	 that	 the	same	speaker	 fit	well	 into	 the	standard	Novena’s
Peek	array	and	had	acceptable	fidelity,	particularly	for	its	size,	we	adopted	it	as	the	standard	offering	for
audio.	But	we	shipped	it	with	a	mounting	kit	for	easy	removal,	so	users	who	might	need	to	reclaim	the
space	(or	who	wanted	to	put	in	larger	speakers)	could	do	so	with	ease.

The	PVT2	Mainboard
The	Novena	mainboard	went	 through	 a	minor	 revision	 prior	 to	mass	 production.	 The	 fourth	 and	 final
revision	of	the	motherboard	was	known	as	the	“PVT2”	version.	The	majority	of	the	changes	focused	on
replacing	 or	 updating	 components	 that	 were	 at	 risk	 of	 reaching	 end-of-life.	 The	 two	 most	 significant
additions	from	a	design	standpoint	were	an	internal	flexible	printed	circuit	(FPC)	header	to	connect	to	the
front	bezel	cluster,	and	a	dedicated	hardware	real-time	clock	(RTC)	module.
We	 added	 the	 internal	 FPC	 header	 to	 improve	 signal	 routing	 from	 the	mainboard	 to	 the	 front	 bezel

cluster.	We	had	to	run	two	USB	ports	plus	a	smattering	of	GPIOs	and	power	to	the	front	bezel,	and	the
original	 connection	 scheme	 required	multiple	 cables.	 The	 updated	 design	 condensed	 that	 into	 a	 single
FPC	to	simplify	the	design	and	improve	reliability.
We	 included	 a	 dedicated	 hardware	 RTC	module	 because	 the	 i.MX6’s	 built-in	 RTC	 didn’t	 perform

well.	The	CPU	simply	had	a	higher	leakage	on	the	RTC	than	reported	in	the	datasheet,	and	the	lifetime	of
the	RTC	when	the	system	was	turned	off	was	measured	in,	at	best,	minutes.	We	decided	that	there	was	too
much	 risk	 in	 continuing	 to	 develop	with	 the	 on-board	RTC	 and	 opted	 for	 an	 external,	 dedicated	RTC
module	that	we	knew	worked.	To	increase	compatibility	with	other	i.MX6	platforms,	we	picked	the	same
module	used	by	the	Solid-Run	Hummingboard,	the	NXP	PCF8523T/1.
It’s	also	 important	 to	note	 that	we	completely	overhauled	 the	FPGA	expansion	header	on	our	second

revision	 of	 the	 motherboard.	 The	 version	 of	 the	 motherboard	 shown	 at	 the	 beginning	 of	 this	 chapter
contained	 a	 cluster	 of	 headers	 optimized	 for	 motion	 control	 applications.	 We	 decided	 that	 our
motherboard	was	 too	 large	for	anyone	to	put	 it	 inside	a	quad	copter,	and	perhaps	 the	FPGA	would	see
more	use	as	a	high-speed	data	acquisition	and	processing	device.	To	enable	this	functionality,	we	gave	the
FPGA	a	dedicated	256MB	of	DDR3	memory	and	broke	out	high-speed	differential	signals	to	a	connector
capable	of	passing	 signals	at	 rates	exceeding	a	gigabit	per	 second.	Users	could	 still	use	 the	FPGA	for
motion	control	applications,	but	they’d	need	to	plug	in	a	simple	breakout	board	(like	the	GPBB	I	discuss
next)	to	route	our	signals	to	the	connector	formats	commonly	used	by	motion	control	systems.



The	updated	Novena	motherboard

A	Breakout	Board	for	Beginners
One	of	the	rewards	every	backer	received	as	thanks	for	supporting	our	campaign	was	a	breakout	board
that	 we	 referred	 to	 as	 the	GPBB,	 or	 the	 General-Purpose	 Breakout	 Board.	 Redesigning	 our	 FPGA
expansion	header	on	Novena	to	target	high-speed	applications	also	made	getting	started	with	the	device
much	more	difficult	for	entry-level	hackers.	Due	to	the	constraints	of	physics,	high-speed	connectors	tend
to	 have	 very	 dense	 pin	 arrangements	 that	 are	 unfriendly	 to	 beginners.	We	 designed	 the	GPBB	 to	 help
entry-level	users	work	with	 the	FPGA.	The	GPBB	converts	 the	dense,	high-speed	signal	header	on	 the
FPGA	into	a	beginner-friendly	0.1-inch-pitch,	40-pin	header	and	 includes	a	 few	LEDs	and	analog	data
converters	to	boot.



The	final	production	GPBB

One	growing	challenge	for	beginners	is	the	fact	that	Moore’s	law	keeps	on	pushing	down	the	allowable
voltage	range	of	digital	 I/Os.	Newer	generations	of	 transistors	run	at	 lower	voltages,	which	make	 them
incompatible	with	 the	venerable	+5	V	standards	most	entry-level	projects	use.	For	 instance,	our	FPGA
could	only	handle	signals	up	to	+3.3	V.	As	a	result,	we	built	voltage	translators	into	the	GPBB	that	could
safely	handle	+5	V	and	bring	them	down	to	the	+3.3	V	levels	accepted	by	the	FPGA.
The	 final	version	of	 the	GPBB	 included	a	 tweak	enabling	users	 to	adjust	 the	 I/O	voltage,	 instead	of

fixing	it	at	+5	V.	We	provided	a	software	setting	to	allow	users	to	choose	whether	the	GPBB’s	external
I/Os	default	to	5	V	or	3.3	V,	and	we	designed	the	board	so	that	users	could	adjust	the	lower	voltage	to	2.5
V	or	1.8	V	by	changing	a	single	resistor	(R12).	I	labeled	that	resistor	“I/O	VOLTAGE	SET”	and	made	it	a
1206	part,	so	soldering	novices	could	make	the	change	themselves.

The	Desktop	Novena’s	Power	Pass-Through	Board
The	“all-in-one	desktop”	 tier	originally	 included	 just	 the	desktop	case,	 the	Novena	mainboard,	and	 the
front	panel	breakout.	But	that	configuration	made	power	management	awkward,	as	I	designed	the	overall
power	management	 system	 for	 the	 case	 assuming	 there	would	 be	 a	 helper	microcontroller	managing	 a
master	cutoff	switch.
Complexity	is	the	devil,	and	getting	the	software	going	for	even	a	single	configuration	was	hard	enough

on	 its	 own.	 Ultimately,	 we	 found	 it	 cheaper	 to	 introduce	 a	 new	 piece	 of	 hardware	 to	 the	 power



management	system	for	the	desktop,	rather	than	deal	with	multiple	code	configurations.
Therefore,	desktop	systems	shipped	with	a	power	pass-through	board.	It	was	a	simple	PCB	assembly

containing	just	the	STM32	controller	and	power	switch	of	the	full	battery	board.	This	allowed	us	to	use	a
consistent	gross	power	management	architecture	across	both	the	desktop	and	the	laptop	systems.

The	desktop’s	pass-through	board

This	approach	was	like	swatting	a	fly	with	a	sledgehammer—	but	the	sledgehammer	cost	as	much	as
the	flyswatter.	Plus	it’s	inconvenient	to	carry	both	a	flyswatter	and	a	sledgehammer	around.	So,	yes,	we
used	a	32-bit	ARM	CPU	to	read	the	state	of	a	pushbutton	and	flip	a	GPIO,	and	yes,	a	full	multithreaded
real-time	operating	system	(ChibiOS)	ran	underneath	it	all.
It	did	feel	a	little	silly,	though.	That’s	why	we	broke	out	some	of	the	unused	GPIO	pins,	making	Novena

even	more	hackable.	Hopefully,	some	clever	user	will	find	an	application	for	all	that	untapped	power!

Custom	Battery	Pack	Problems
The	battery	pack	for	Novena	was	definitely	a	wildcard	in	the	project	stack.	Building	Novena	was	the	first
time	xobs	or	I	had	made	a	system	with	such	a	high-capacity	battery,	and	working	through	all	the	shipping
regulations	to	get	them	delivered	to	customers	was	a	challenge.
Some	 countries	 have	 particularly	 strict	 regulations	 around	 importing	 lithium	 batteries.	 In	 the	 worst

case,	we	had	 to	 send	 some	customers	a	 laptop	with	no	battery	 inside,	 and	we	 shipped	an	off-the-shelf
battery	pack	 from	a	vendor	 that	 specializes	 in	RC	battery	packs	 (like	Hobby	King)	 separately	 to	 those
customers	at	our	own	cost.	They	got	the	same	battery	featured	in	the	crowdfunding	campaign,	but	they	had
to	 plug	 it	 in	 themselves.	 That	 was	 our	 safest	 fallback	 solution,	 since	 Hobby	 King	 ships	 thousands	 of
battery	packs	a	day	all	around	the	world.
Shipping	woes	didn’t	stop	us	 from	developing	a	custom	battery	pack,	 though.	Maintaining	a	standing

stock	of	battery	packs	is	difficult	because	batteries	need	to	be	periodically	conditioned,	so	only	campaign
backers	got	that	battery	pack—provided	their	country	of	residence	allowed	its	import.	We	couldn’t	know
for	 sure	until	we	 tried,	but	we	did	get	UN38.3	certification	 for	 the	custom	battery	pack.	 In	 theory,	 that
certification	would	allow	us	to	ship	the	batteries	by	air	freight,	but	regulations	around	battery	shipment
are	 always	 in	 flux.	 It	 seems	 countries	 and	 carriers	 keep	 inventing	 new	 rules,	 particularly	with	 all	 the
paranoia	 about	 the	 potential	 use	 of	 lithium	 batteries	 as	 incendiary	 devices,	 and	 we	 didn’t	 have	 the



resources	to	keep	up	with	the	zeitgeist.
The	custom	pack’s	capacity	was	rated	at	5,000	mAh,	which	is	about	twice	the	capacity	of	the	pack	we

featured	 in	 the	 crowdfunding	campaign.	 (That	one	had	3,000	mAh	printed	on	 the	outside	but	delivered
about	2,500	mAh	in	practice.)	In	real-life	testing,	the	custom	pack	provided	about	six	or	seven	hours	of
runtime	with	minimal	power	management	enabled.	Also,	since	I	got	to	specify	the	battery,	I	knew	it	had
the	correct	protection	circuitry	built	into	it	and	the	provenance	of	its	cells,	so	I	was	confident	in	its	long-
term	performance	and	stability.

Choosing	a	Hard	Drive
The	 crowdfunding	 campaign	 referenced	 providing	 240GiB	 Intel	 530	 (or	 equivalent)	 and	 480GiB	 Intel
720	drives	for	the	laptop	and	heirloom	models,	respectively.	We	left	the	spec	slightly	ambiguous	because
the	SSD	market	moves	quickly.	We	knew	the	best	drive	when	we	drew	up	the	spec	would	probably	be
different	from	the	best	drive	we	could	get	when	we	actually	did	the	purchasing.
After	 doing	 some	 research,	 we	 felt	 the	 best	 equivalent	 drives	 at	 purchase	 time	 were	 the	 240GiB

Samsung	840	EVO	(for	the	laptop	model)	and	the	512GiB	Samsung	850	Pro	(for	the	Heirloom).	xobs	and
I	personally	used	the	840	EVO	in	our	own	units	for	several	months,	and	it	performed	admirably.
An	important	metric	for	us	was	how	well	the	drives	held	up	under	unexpected	power	outages.	Outages

happen	 fairly	 often,	 for	 example,	 when	 you’re	 doing	 development	 work	 on	 a	 power	 management
subsystem.	Some	hard	drives	failed	quite	reliably	(how’s	that	for	an	oxymoron?)	after	a	few	unexpected
power-down	cycles.
For	the	Heirloom,	we	used	Samsung’s	850	PRO	series.	This	drive	came	with	a	serious	warranty	fit	for

an	 heirloom:	 10	 years.	 Samsung	 could	 offer	 such	 a	 high	 claim	 of	 reliability	 because	 the	 drive	 used	 a
technology	 the	 company	 calls	 V-NAND,	 which	 I	 consider	 the	 first	 bona	 fide	 production-grade	 3D
transistor	technology.

NOTE

Intel	claims	it	makes	3D	transistors,	but	that’s	just	marketing	hype.	Yes,	the	gate	region	has	a
raised	surface	topology,	but	you	still	only	get	a	single	layer	of	devices.	From	a	design	standpoint,
you’re	still	working	with	a	2D	graph	of	devices.	Intel	should	have	stuck	with	what	I	consider	the
“original”	(and	more	descriptive/less	misleading)	name,	FinFET,	because	by	calling	these	3D
transistors,	I	don’t	know	what	it	will	call	actual	3D	arrays	of	transistors,	if	it	ever	gets	around	to
making	them.

Chipworks,	a	patent	support	company,	did	an	excellent	initial	analysis	of	V-NAND,*	showing	that	the
technology	 isn’t	 about	 stacking	 just	 a	 couple	 of	 transistors.	 A	 V-NAND	 stack	 is	 a	 38-layer	 active
transistor	sandwich,	all	 in	a	single	spot.	This	is	process	technology	badassery	at	 its	finest.	This	is	Neo
decoding	 the	Matrix.	This	 is	Mal	 shooting	 first.	 It’s	a	game	changer,	and	 it’s	not	vaporware.	Heirloom
backers	received	laptops	with	over	4	trillion	of	those	transistors	packed	inside.

Finalizing	Firmware
From	 the	 software	 side,	 the	 next	 step	 at	 this	 point	 was	 finalizing	 the	 kernel,	 bootloader,	 and	 distro
selection,	as	well	as	deciding	what	to	show	when	Novena	booted	for	the	first	time.



Marek	 Vasut	 got	 Novena	 supported	 in	 mainline	 U-Boot	 (Universal	 Bootloader),	 one	 of	 the	 most
popular	 open	 source	 bootloaders.	 (Marek	 is	 one	 of	 U-Boot’s	 maintainers.)	 The	 process	 involved	 a
surprising	number	of	patches,	in	part	because	few	ARM	boards	support	as	much	RAM	as	Novena.	With
those	patches	in	place,	Novena	had	full	U-Boot	support,	including	USB	and	video.
We	decided	to	make	Debian	the	factory-default	distribution	for	Novena,	and	we	used	the	stock	Linux

kernel	 with	 those	 patches	 added.	 Any	 patches	 that	 we	 thought	might	 be	 useful	 to	 other	 projects	 were
submitted	upstream	and	will	continue	to	be	submitted.	Upstreaming	just	means	that	a	package	that	is	part
of	a	derivative	operating	system	becomes	part	of	the	distro	it’s	derived	from.
We	did	keep	a	few	local	patches,	ranging	from	specialized	hacks	to	experimental	features,	features	that

weren’t	ready	to	push	upstream,	or	features	that	relied	on	features	that	weren’t	upstream	at	the	time.	For
example,	the	display	system	on	a	laptop	is	very	different	from	what	you’d	usually	see	on	an	ARM	device.
In	 most	 ARM	 devices,	 the	 screen	 is	 fixed	 during	 boot	 and	 it	 isn’t	 possible	 to	 hot-swap	 displays	 at
runtime.	Like	a	typical	laptop,	Novena	supports	two	different	displays	at	once	and	allows	you	to	plug	in
an	HDMI	monitor	without	requiring	a	reboot.	Support	for	this	feature	required	a	local-only	patch	to	the
kernel,	as	it	relied	on	features	that	weren’t	yet	upstreamed	for	the	ARM	platform	at	that	time.
Finally,	we	just	had	to	decide	what	to	show	when	Novena	powered	up.	In	Linux,	it’s	not	at	all	common

to	 have	 a	 first-boot	 setup	 screen	where	 you	 create	 your	 user,	 set	 the	 time,	 and	 configure	 the	 network.
That’s	common	in	Windows	and	OS	X,	which	come	preinstalled,	but	under	Linux,	the	installer	generally
takes	care	of	that.
We	were	 torn	 between	 creating	 a	 good	 desktop-style	 experience	 and	making	 a	 practical	 embedded

developer’s	experience.	A	desktop-style	experience	would	ship	as	a	blank	slate	and	prompt	the	user	 to
create	an	account	via	a	locally	attached	keyboard	and	monitor.	But	embedded	developers	may	never	plug
in	a	monitor,	and	instead	prefer	to	connect	via	console	or	SSH;	for	them,	a	default	username,	password,
and	 hostname	would	 have	 been	more	 helpful.	 Either	way,	we	wanted	 to	 create	 just	 a	 single	 firmware
common	across	all	platforms	and	avoid	special-casing	releases	to	a	particular	target.
In	the	end,	we	decided	to	create	a	desktop-style	experience,	with	escapes	for	power	users	to	bypass	the

formalities	 of	 user	 enrollment.	 This	 gave	 us	 the	 best	 of	 both	worlds.	 It	 improved	 the	 accessibility	 of
Novena	to	entry-level	users,	yet	power	users	could	still	cut	to	the	chase	and	get	down	to	work.

BUILDING	A	COMMUNITY
From	the	start,	xobs	and	I	built	Novena	to	empower	hackers,	so	I	was	pleased	that	even	before	shipping,
Novena	had	active	alpha	developers.	Jon	Nettleton	and	Russell	King	worked	on	graphics,	Marek	Vasut
from	U-Boot	lent	a	hand,	and	a	couple	of	other	alpha	user	groups	actually	made	hardware	for	the	system.
MyriadRF,	an	open	source	hardware	and	software	community	focused	on	wireless	technology,	created

a	software-defined	radio	board	for	Novena.	We	bought	and	integrated	those	boards	with	the	first	desktop
and	laptop	units	we	shipped.
The	 CrypTech	 group	 also	 started	 applying	 Novena	 to	 its	 projects	 before	 the	 laptop	 shipped.	 The

CrypTech	 project	 developed	 a	 hardware	 security	 module,	 with	 a	 BSD	 and	 CC	 BY-SA	 3.0	 licensed
reference	design.	The	group	wanted	to	create	a	widely	reviewed,	designed-for-crypto	device	that	anyone
could	compose	for	their	application	and	easily	build	with	their	own	trusted	supply	chain.	CrypTech	used
Novena	to	prototype	elements	of	its	design.



A	prototype	CrypTech	expansion	board,	plugged	into	the	Novena	motherboard

The	 expansion	 board	 shown	 here	 is	 a	 prototype	 noise	 source	 based	 on	 avalanche	 noise	 from	 a
transistor	 in	 the	middle	of	 the	board.	CrypTech	uses	 that	noise	 to	generate	entropy	 in	Novena’s	FPGA.
The	entropy	 is	 then	combined	with	entropy	generated	by	ring	oscillators	 in	 the	FPGA	and	mixed	using,
say,	 SHA-512	 to	 generate	 seeds.	 The	 seeds	 are	 then	 used	 to	 initialize	 the	 ChaCha	 stream	 cipher,
ultimately	 resulting	 in	 a	 stream	 of	 cryptographically	 sound	 random	 values.	 The	 result	 is	 a	 high-
performance,	state-of-the	art,	random-number-generator	coprocessor.

CLOSING	THOUGHTS
As	a	final	note,	if	there’s	one	thing	xobs	and	I	have	learned	in	the	hardware	business,	it’s	that	you	can’t
count	your	chickens	before	they	hatch.	Making	good	progress	to	a	certain	point	didn’t	mean	we’d	have	an
easy	path	to	finished	units.	Even	though	we	had	fully	functional	prototypes	at	the	close	of	fundraising,	it
still	took	months	of	intense	effort	to	deliver	hundreds	of	units	to	end	users.
Now	that	Novena	has	finished	shipping,	we’re	continuing	to	support	our	enthusiastic	yet	very	patient

user	 base.	 It’s	 a	 lot	 of	 work,	 which	 falls	 primarily	 on	 xobs’s	 shoulders,	 but	 we’ve	 been	 answering
questions	from	users,	pushing	patches,	and	keeping	the	Novena	kernel	up	to	date.
We	 do	 this	 even	 though	 we	 garner	 no	 new	 revenue	 from	 Novena	 sales.	 Upon	 reviewing	 our	 post-

campaign	 sales	 data,	 it	was	 fairly	 clear	 there	was	 no	 viable	 path	 forward	 to	 run	 a	 hardware	 business
selling	Novena;	we’d	 sell	on	average	a	 couple	of	units	per	month.	Although	we	cleared	 the	minimum-
order	requirements	of	our	vendors	through	the	initial	crowdfunding	campaign,	it	would	be	very	difficult	to
engage	any	of	our	suppliers	at	volumes	less	than	a	couple	hundred	units.	Selling	a	couple	units	per	month
at	that	minimum	buy	would	leave	us	saddled	with	inventory	debt	for	about	a	hundred	months.	We’d	be	in
debt	 to	our	 suppliers	 for	 several	years.	Being	unable	 to	 repay	your	 suppliers	 for	 several	years	 is	 also
known	as	bankruptcy.
We	are,	of	course,	keeping	our	original	promise	 to	support	 the	Novena	motherboard	for	at	 least	 five



years	from	the	initial	funding	campaign.	We’ve	set	aside	a	hefty	chunk	of	cash	to	ensure	a	steady	supply	of
the	mainboards.	Our	original	crowd	funding	and	now	online	sales	partner,	Crowd	Supply,	has	taken	over
the	remaining	inventory	of	cases	and	accessories.	Thanks	to	our	open	hardware	model,	Crowd	Supply	has
the	option	to	manufacture	and	sell	accessories	for	Novena,	should	end	user	demand	materialize.
In	the	end,	I’m	very	happy	to	see	the	tender	green	shoots	of	new	projects	aiming	to	offer	better	open

source	 laptop	 solutions	 to	 end	 users.	 Rather	 than	 compete	with	 them,	 I	 think	 it’s	most	 appropriate	 for
Novena	to	give	way	and	enable	enthusiastic	new	developers	to	find	opportunity	and	fortune	selling	their
solutions.	After	all,	we	started	on	this	adventure	mostly	to	see	if	it	could	be	done.	We	wanted	to	build	a
cool	tool,	customized	for	our	everyday	use	case;	we	didn’t	want	to	start	a	business	selling	laptops	with	a
sustainable	mass-market	appeal.	If	the	ultimate	impact	of	the	Novena	project	is	raising	the	bar	for	open
hardware,	 and	 perhaps	 even	 encouraging	 a	 new	generation	 of	 laptop-themed	projects,	 that	would	 be	 a
huge	reward	in	and	of	itself.



8.	chibitronics:	creating	circuit	stickers
In	today’s	world	of	contract	manufacturing	and	turnkey	service	providers,	designers	tend	to	pick	from	a
palette	of	existing	processes	to	develop	products.	Most	consumer	electronic	devices	are	an	amalgamation
of	 rigid	PCBs	with	SMT	reflow	or	 through-hole	wave	soldering,	ABS	or	PC	 injection	molding,	 sheet-
metal	forming,	and	some	finishing	processes	like	painting	or	electroplating.	These	options	cover	the	full
range	of	utility	most	products	require.	Really	outstanding	products,	however,	also	tend	to	introduce	new
materials	or	novel	manufacturing	processes.
Developing	those	new	processes	doesn’t	have	to	be	expensive—as	long	as	you’re	willing	to	go	onto

the	 factory	 floor	 and	 direct	 the	 improvements	 yourself.	 In	 other	 words,	 the	 expensive	 bit	 of	 process
development	 is	 typically	 paying	 the	 experts	 developing	 and	 qualifying	 the	 process,	 not	 so	 much	 the
equipment	or	materials.
To	prove	that	point	to	myself,	I	started	exploring	flex	circuits	as	a	design	medium.	Instead	of	using	a	1-

or	2-millimeter-thick	rigid	substrate	composed	of	woven	glass	fiber	impregnated	with	a	stiff	epoxy,	flex
circuits	 typically	 use	 a	 pliable	 polymer	 substrate	 just	 fractions	 of	 a	 millimeter	 thick.	 Polyimide	 is	 a
popular	substrate	in	flex	circuits	because	of	its	ability	to	withstand	soldering	temperatures.	Although	flex-
circuit	technology	is	common	inside	consumer	products	(a	mobile	phone	probably	contains	at	least	a	half-
dozen	 flex	 PCBs,	 connecting	 peripherals	 like	 buttons,	 cameras,	 and	 displays	 to	 the	 mainboard),	 this
technology	is	underrepresented	in	hobby	and	DIY	products.	But	I	don’t	think	it	has	to	be.
I	had	a	hunch	that	the	right	kind	of	product	designed	in	flex	could	enable	new	and	creative	applications,

but	 I	 wasn’t	 quite	 sure	 how,	 so	 I	 decided	 to	 learn	 more	 about	 the	 unique	 benefits	 and	 challenges	 of
designing	for	flexible	circuits.	As	part	of	a	project	where	I	explored	the	guts	of	SD	cards,	which	I’ll	talk
more	about	in	Chapter	9,	I	needed	to	create	an	adapter	for	my	Novena	that	would	allow	me	to	snoop	and
emulate	 the	 NAND	 flash	 memory	 found	 inside	 certain	 styles	 of	 older	 SD	 cards.	 The	 thinness	 and
pliability	of	flexible	circuits	were	a	great	match	for	the	job.
The	resulting	adapter	was	very	thin;	it	fit	perfectly	under	the	TSOP	package	of	the	NAND.	The	bendy

nature	of	the	board	meant	I	could	also	accommodate	a	broad	variety	of	target	board	shapes,	even	boards
much	larger	than	a	typical	SD	card.	Although	a	useful	application	of	flexible	circuits,	it	still	felt	like	I	was
just	scratching	the	surface	of	possibility.



My	custom	flex	adapter

Then	came	the	moment	of	serendipity.	While	working	on	the	SD	card	project,	I	met	Jie	Qi,	then	a	PhD
candidate	at	the	MIT	Media	Lab,	who	was	combining	papercraft	and	electronics	as	part	of	her	research.
She	was	part	of	the	group	of	MIT	Media	Lab	students	I	took	on	a	tour	of	Shenzhen	in	January	2012,	and
seeing	examples	of	her	paper	circuits	set	the	gears	turning	in	my	head.

The	final	artwork	for	Jie	Qi’s	paper	circuit	art	piece,	Pu	Gong	Ying	Tu



A	close-up	of	the	flowers

Peeling	back	the	painting	to	reveal	circuitry



The	flower	circuits	inside	Pu	Gong	Ying	Tu

Using	nothing	more	than	copper	tape,	paper,	and	dollops	of	solder	or	tape	to	hold	components	in	place,
Jie	was	 able	 to	 craft	 sublime	works	 of	 art	 that	 glowed	 and	 interacted	with	 viewers.	These	 enchanting
masterpieces	 showed	 how	 electronics	 could	 be	 used	 not	 just	 as	 a	 functional	 medium,	 but	 also	 as	 an
expressive	medium,	 inspiring	wonder	and	awe.	The	photo	here	shows	the	 insides	of	one	of	her	famous
early	works,	Pu	Gong	Ying	Tu	(Dandelion	Painting),	where	the	circuitry	itself	is	as	much	a	work	of	art
as	the	painting	overlaying	it.
Jie	is	also	very	passionate	about	education,	and	she	saw	great	potential	in	paper	electronics	to	make

technology	 more	 relevant	 and	 accessible	 to	 non-engineering	 audiences.	 On	 our	 trip	 to	 Shenzhen,	 we
discussed	 the	possibility	of	building	circuits	on	flex	and	 then	soldering	a	flex	circuit	onto	paper.	 In	 the
end,	she	 felt	 that	would	be	at	best	a	marginal	 improvement.	Although	soldering	 isn’t	a	difficult	 skill	 to
master,	 the	 high	 temperatures,	 chemicals,	 and	 specialized	 equipment	 involved	 are	 a	major	 deterrent	 to
beginners.	 What	 would	 really	 be	 magical	 is	 if	 circuits	 could	 be	 assembled	 like	 stickers	 on	 a	 page.
Wouldn’t	 it	 be	 great	 if	we	 could	use	 flex-circuit	 technology	with	 traditional	SMT	 reflow	processes	 to
create	modules	that	users	could	then	stick	onto	wires	made	of	copper	tape?
And	that’s	how	we	came	to	collaborate	on	Chibitronics,	a	project	in	which	we	designed	a	set	of	peel-

and-stick	electronic	circuits	for	crafting	and	education.	Chibitronics	has	been	an	open	hardware	project
from	the	start,	and	you	can	still	find	all	the	activities	from	the	Circuit	Sticker	Sketchbook,	the	source	code
for	 all	 microcontrollers	 used,	 and	 other	 technical	 details	 through	 the	 project’s	 wiki	 at
http://chibitronics.com/wiki/.

http://chibitronics.com/wiki/


The	Chibitronics	STEM	Starter	Kit	includes	the	Circuit	Sticker	Sketchbook,	LED	stickers,	copper	tape,	batteries,	and	binder	clips	for
the	batteries.

An	explanation	of	how	to	create	a	DIY	pressure	sensor



The	crafted	DIY	pressure	sensor

The	DIY	pressure	sensor	with	paper	overlay

CRAFTING	WITH	CIRCUITS
The	solution	we	arrived	at	in	early	2012	built	on	a	body	of	work	from	Professor	Leah	Buechley’s	High-
Low	Tech	 research	group	 at	MIT.	We	decided	 to	 build	 circuits	 on	 a	 flexible	 polyimide	 substrate	with
anisotropic	 tape	 (also	 called	 Z-tape,	 because	 electricity	 only	 flows	 vertically	 through	 the	 tape,	 not
laterally)	laminated	on	the	back.



A	piece	of	Z-tape	under	a	microscope

Using	Z-tape	allows	end	users	to	assemble	circuits	without	high-temperature	processes	like	soldering
or	 reflow.	The	 ability	 to	 simply	 stick	 components	 in	 place	 is	 incredibly	 useful	 for	 art	 projects,	which
often	 involve	 heat-sensitive	 and/or	 pliable	 material	 substrates	 like	 paper,	 fabric,	 and	 plastic.	 Circuit
stickers	and	copper	 tape	are	 flexible,	 too,	 further	enabling	anyone	 to	 integrate	electronics	 into	projects
using	 nontraditional	 materials.	 Such	 friendly	 and	 expressive	 materials	 encourage	 creators	 to	 turn	 the
circuits	themselves	into	beautiful	works	of	art.

Circuit	stickers	on	paper



Circuit	stickers	on	fabric

Creating	these	circuit	stickers	revolved	around	the	limitations	of	the	Z-tape.	In	the	magnified	section	of
Z-tape	 laminated	 onto	 a	 polyimide	 substrate	 shown	 here,	 the	 silvery-white	 stipples	 are	 tiny	 metal
particles	that	span	from	one	side	of	the	adhesive	layer	to	the	other	according	to	a	statistical	distribution.
Given	the	nature	of	the	metal	distribution,	to	ensure	good	electrical	contact,	each	pad	on	a	circuit	sticker
needed	 to	 be	 fairly	 large.	 Furthermore,	 traces	 very	 close	 to	 each	 other	 could	 be	 shorted	 out	 by	 the
embedded	metal	particles,	so	as	I	designed	the	circuits,	I	had	to	be	careful	to	leave	enough	space	between
exposed	pads.	The	datasheet	for	the	Z-tape	material	contains	rules	for	the	minimum	pad	size	and	spacing,
so	I	used	those	as	a	guide.

Developing	a	New	Process
It’s	one	thing	to	design	stickers	containing	working	electronic	circuits,	but	it’s	a	whole	different	thing	to
actually	build	 them.	No	standard	manufacturing	processes	existed	 that	could	produce	circuit	stickers	as
we	 envisioned	 them.	 At	 last,	 I	 had	 a	 meaningful	 opportunity	 to	 test	 my	 theory	 that	 new	 process
development	can	be	done	cheaply	if	you’re	willing	to	do	it	yourself.	So	I	started	my	own	little	research
program	to	explore	flex-circuit	media	and	the	challenges	of	making	circuit	stickers	out	of	them,	all	on	a
shoestring	R&D	budget.

Visiting	the	Factory
As	a	first	step,	I	visited	the	facility	where	flex	PCBs	are	manufactured.	The	visit	was	eye-opening.



A	worker	manually	aligning	coverlay	onto	flex-circuit	material

Instead	 of	 soldermask,	 flex-circuit	 traces	 are	 protected	 by	 a	 polyimide	 sheet	 called	 coverlay.
Soldermask	 is	 too	 brittle	 and	 will	 crack	 if	 bent,	 but	 coverlay	 reliably	 stays	 intact	 over	 thousands	 of
flexing	cycles.	Sometimes,	however,	you	want	to	make	portions	of	a	flex	circuit	stiff;	for	instance,	a	part
of	the	circuit	might	need	to	stay	stiff	for	mechanical	mounting,	and	a	stiff	circuit	is	also	helpful	for	SMT
processing.

Steel	plates	being	laminated	to	the	back	of	flex-circuit	material

I	knew	that	polyimide	stiffeners	could	be	laminated	to	flex,	but	as	it	turns	out,	steel	lamination	is	also
possible.	 I	 wouldn’t	 have	 known	 that	 if	 I	 hadn’t	 taken	 the	 factory	 tour	 myself.	 Visiting	 the	 factory	 in
person	also	gave	me	an	 invaluable	opportunity	 to	 see	 the	wide	 range	of	 complex	 shapes	 that	 could	be
produced	thanks	to	die	cutting.	Having	a	variety	of	possible	shapes	was	key,	because	we	wanted	to	make
the	circuit	stickers	 look	cool,	 too.	Questions	 like	how	narrow	we	could	cut	 the	material	or	how	tight	a



radius	is	allowable	in	a	die	cut	are	difficult	to	answer	by	email,	but	the	answers	were	intuitively	obvious
after	I	saw	the	process	in	person.

The	intricate	flex-circuit	shapes	achievable	with	die	cutting

Performing	a	Process	Capability	Test
After	 the	 factory	 visit,	 the	 next	 step	 was	 to	 do	 a	 process	 capability	 test	 to	 push	 the	 limits	 of	 the
manufacturing	process.	We	designed	a	non-homogenous	sheet	of	sticker	variants	that	exercised	all	kinds
of	capabilities:	long	via	chains,	3-mil	line	widths,	0201	components	(a	small	SMT	package	size),	0.5	mm
pitch	QFN	parts	(surface-mount	components	that	have	all	their	contacts	on	the	bottom),	bulky	components,
the	use	of	soldermask	instead	of	coverlay,	fine	detail	in	silkscreening,	captive	tabs,	curved	cutouts,	hybrid
SMT	 and	 through-hole	 soldering	 techniques,	 Z-tape	 lamination,	 and	more.	 Our	 process	 capability	 test
intentionally	 broke	 parts	 of	 the	 manufacturing	 process	 to	 discover	 weak	 links	 that	 could	 prevent	 our
design	from	working	out.



The	circuit	sticker	design	we	manufactured	for	the	process	capability	test

When	 I	 first	 presented	 the	 design,	 the	 factory	 rejected	 it	 outright,	 saying	 it	 was	 impossible	 to
manufacture.	After	I	explained	my	goals,	however,	the	factory	agreed	to	produce	it,	with	the	understanding
that	I’d	accept	and	pay	for	all	units	made,	naturally	including	the	defective	ones.	Through	analyzing	the
failure	modes	 of	 the	 defective	 units,	 I	 developed	 a	 set	 of	 design	 rules	 for	maintaining	 high	 yield	 (and
therefore	lowering	cost)	on	the	circuit	stickers.
Based	on	 these	design	 rules,	 Jie	 and	 I	 created	our	 first	 set	of	 “production	candidate”	 stickers.	They

included	 LEDs	 of	 four	 different	 colors	 (white,	 red,	 blue,	 and	 yellow),	 as	 well	 as	 two	 sets	 of	 smart
stickers.	The	 first	 set	of	 smart	 stickers	contained	a	preprogrammed	microcontroller	 that	 could	generate
patterns	of	light,	such	as	fading,	heartbeats,	twinkling,	and	blinking.	We	called	these	the	“effects”	stickers;
they	 are	 a	 form	 of	 physical	 programming	 that	 enables	 noncoders	 to	 customize	 the	 behavior	 of	 their
projects.	The	second	set	contained	a	user-programmable	microcontroller	with	a	fun	record-and-playback
capability	 loaded	 into	 it	 as	 a	 demo,	 along	 with	 three	 sensors.	 We	 called	 these	 the	 “sensor	 &
microcontroller”	stickers.
We	 ran	 small	 batches	 of	 our	 production	 candidates	 to	 find	 problems	we	might	 encounter	 should	we



need	 to	 scale	 up,	 and	 we	 thoroughly	 investigated	 any	 issues	 that	 would	 affect	 reliability,	 yield,	 or
usability.	 In	 particular,	 we	 had	 to	 develop	 a	 novel	method	 for	 laminating	 Z-tape	 onto	 the	 back	 of	 the
stickers	that	would	be	process-compatible	with	the	type	of	die	cutting	necessary	to	create	stickers.
After	two	iterations	of	production	candidates,	we	felt	we	were	ready	to	see	what	other	people	could	do

with	 circuit	 stickers.	 As	 this	 was	 part	 of	 Jie’s	 doctoral	 research,	 we	 had	 two	 options	 for	 doing	 user
testing.	 The	 traditional	 academic	 approach	 would	 have	 been	 to	 apply	 for	 a	 budget	 from	 her	 advisor,
produce	a	limited	number	of	stickers,	and	conduct	a	series	of	closed	workshops	to	study	how	young	and
creative	 minds	 interacted	 with	 this	 new	 media.	 But	 this	 happened	 in	 2013,	 so	 viable	 crowdfunding
platforms	unlocked	the	possibility	of	offering	our	research	directly	to	interested	users,	thus	allowing	us	to
conduct	 research	 at	 scale.	 The	 MIT	 Media	 Lab	 where	 Jie	 researched	 is	 also	 very	 keyed	 in	 to	 the
possibilities	enabled	by	research	at	scale,	as	embodied	by	their	“deploy”	initiative.	In	2011,	when	Joi	Ito
became	 the	Media	Lab’s	new	director,	he	 started	 transforming	 the	Media	Lab’s	 culture	 from	“demo	or
die”	to	“deploy	or	die,”	which	was	eventually	shortened	to	the	less	menacing	“deploy”	directive.	Under
the	 old	 “demo	 or	 die”	 regime,	 research	 groups	 were	 encouraged	 to	 create	 whizzy	 demonstrations	 of
technology	that	could	help	raise	money.	Under	Ito’s	directive,	the	idea	is	to	get	technology	out	of	the	lab
and	into	the	wild	by	conducting	research	at	scale	through	tools	like	crowdfunding	and	lean	hardware.
In	November	2013,	we	launched	a	crowdfunding	campaign	with	Crowd	Supply.	It	was	very	important

to	us	to	remain	pure	to	the	academic	mission	behind	the	circuit	stickers,	so	we	set	our	funding	goal	at	just
$1.	If	even	one	person	thought	circuit	stickers	might	be	interesting,	we’d	produce	the	stickers	and	work
with	that	person	to	gather	feedback.	And,	of	course,	we	would	make	that	research	available	to	the	world,
in	case	someone	wanted	to	fork	the	project	or	otherwise	hack	their	circuit	stickers.
We	beat	our	modest	goal	by	several	orders	of	magnitude,	closing	just	shy	of	$60,000	after	a	little	over

one	month	of	funding	and	a	very	low-key	campaign.

DELIVERING	ON	A	PROMISE
As	part	of	our	campaign,	we	stated	that	we	would	ship	orders	for	fulfillment	by	May	2014.	Thankfully,
we	were	able	to	meet	our	goal,	right	on	time.



Sixty-two	cartons	containing	over	a	thousand	Chibitronics	starter	kits,	waiting	for	pickup

Delivering	on	 time	 is	 no	 simple	 task	 for	 any	 crowdfunded	project,	 however.	 I	made	 the	 contentious
choice	to	use	Crowd	Supply	in	part	because	they	show	more	savvy	around	vetting	hardware	products,	and
the	 services	 they	 offer	 to	 campaigns	 (fulfillment,	 tier-one	 customer	 support,	 post-campaign	 preorder
support,	and	rolling	delivery	dates	based	on	demand	versus	capacity)	are	a	boon	for	hardware	upstarts.
Getting	fulfillment,	customer	support,	and	an	ongoing	e-commerce	site	as	part	of	 the	package	meant	we
didn’t	have	to	hire	someone	to	deal	with	all	of	that.	Whether	your	“company”	consists	of	just	two	people
trialing	an	academic	project	or	a	couple	of	people	working	out	of	a	garage,	that’s	a	big	deal.
Crowd	Supply	doesn’t	have	the	same	media	footprint	or	brand	power	that	Kickstarter	has,	which	can

make	it	harder	to	raise	as	much	money.	But	at	the	end	of	the	day,	I	feel	it’s	very	important	to	establish	an
example	of	sustainable	crowdfunding	practices	 that’s	better	for	both	the	entrepreneur	and	the	consumer.
It’s	not	 just	about	a	money	grab	today;	 it’s	about	building	a	brand	and	reputation	that	can	be	trusted	for
years	to	come.

WHY	ON-TIME	DELIVERY	IS	IMPORTANT
I	set	a	personal	challenge	for	Chibitronics	to	take	our	delivery	commitment	to	backers	very	seriously.	I’ve
seen	 too	many	underperforming	crowdfunding	campaigns,	 and	 I’m	deeply	concerned	 that	 crowdfunding
for	hardware	is	becoming	synonymous	with	scams	and	spams.
Kickstarter	 and	 Indiegogo	 have	 been	 plagued	 by	 non-delivery	 and	 scams,	 and	 their	 blithe,	 caveat

emptor	attitude	around	campaigns	highlights	the	conflict	of	interest	between	consumers	and	crowdfunding
websites.	The	crowdfunding	sites	are	basically	saying	to	backers,	“Hey,	 thanks	for	 the	nickel,	but	what
happened	 to	your	dollar	 is	your	problem.”	I’m	honestly	worried	 that	crowdfunding	will	get	such	a	bad
reputation	that	it	eventually	won’t	be	a	viable	platform	for	well-intentioned	entrepreneurs	and	innovators.
The	bottom	line	is	this:	if	I	can’t	prove	to	current	and	future	backers	that	I	can	deliver	a	project	on	time,

I	 stand	 to	 lose	a	valuable	platform	 for	 launching	my	 future	products.	Fortunately,	we	definitely	proved
ourselves	with	Chibitronics,	 and	 I’ve	 continued	 to	 use	Crowd	Supply	 for	 other	 crowdfunding	 projects



since.

LESSONS	LEARNED
We	 didn’t	 deliver	 Chibitronics	 on	 time	 because	we	 had	 it	 easy,	 though.	When	 I	 drew	 up	 the	 original
campaign	timeline,	my	minimum	and	maximum	bounds	on	delivery	time	spanned	from	just	after	Chinese
New	Year	2014	(February)	to	around	April.	I	padded	that	schedule	by	one	month	beyond	the	max,	just	to
be	safe,	and	we	used	every	last	bit	of	this	padding.
I	made	a	 lot	of	mistakes	along	 the	way,	but	 through	a	combination	of	hard	work,	 luck,	planning,	and

strong	factory	relationships,	we	successfully	overcame	many	hardships.	Here	are	a	few	lessons	I	learned
during	the	process.

Not	All	Simple	Requests	Are	Simple	for	Everyone
Every	Chibitronics	starter	kit	 included	a	physical	copy	of	a	 fantastic	book	Jie	wrote	as	a	step-by-step,
self-instruction	guide	to	designing	with	circuit	stickers,	the	Circuit	Sticker	Sketchbook	(shown	on	pages
256–257).	The	book	 is	 unusual	 because	you’re	meant	 to	 paste	 electronic	 circuits	 into	 it,	 so	we	had	 to
customize	 several	 aspects	 of	 the	 printing.	 The	 paper	 had	 to	 be	 the	 right	 thickness	 to	 get	 good	 light
diffusion	when	LEDs	were	placed	underneath	a	sheet.	The	binding	needed	special	attention	for	a	better
circuit-crafting	experience,	and	there’s	even	a	little	pocket	in	the	back	to	hold	swatches	of	craft	material
used	as	part	of	the	projects	in	the	book.
The	printer	found	most	of	 these	requests	relatively	easy	to	accommodate,	but	one	in	particular	 threw

them	for	a	loop.	The	book’s	metal	spiral	binding	had	to	be	nonconductive	so	that	placing	copper	tape	on
the	binding	wouldn’t	accidentally	cause	a	short	circuit.
Checking	a	wire	for	conductivity	seems	like	a	simple	enough	request	for	someone	who	designs	circuits

for	a	living,	but	for	a	book	printer,	it’s	weird.	No	part	of	traditional	book	printing	or	binding	requires	such
knowledge.	 The	 printer	 originally	 said	 they	 couldn’t	 guarantee	 anything	 about	 the	 conductivity	 of	 the
binding	wire.	Sure	enough,	while	the	first	sample	wire	was	nonconductive,	the	second	was	conductive,
and	the	printer	couldn’t	explain	why.
Face-to-face	meetings	were	invaluable	here.	Instead	of	yelling	at	the	printer	over	email,	we	arranged	a

meeting	with	them	during	one	of	my	monthly	trips	to	Shenzhen.	We	had	a	productive	discussion	about	their
concerns,	 and	 at	 the	 conclusion	 of	 the	 meeting,	 we	 ordered	 them	 a	 $5	 multimeter	 in	 exchange	 for	 a
guarantee	 of	 a	 nonconductive	 book	 spine.	 In	 the	 end,	 the	 printer	 was	 simply	 unwilling	 to	 guarantee
something	for	which	they	had	no	quality	control	procedure,	which	is	completely	reasonable.	We	just	had
to	teach	them	how	to	use	a	multimeter.
This	unusual	nonconductivity	requirement	did	extend	our	 lead	 time	by	several	days	and	added	a	few

cents	to	the	cost	of	the	book,	but	overall,	I	was	willing	to	accept	that	compromise.

Never	Skip	a	Check	Plot
The	pad	shapes	for	the	circuit	stickers	are	complex	polyline	geometries,	which	Altium,	the	PCB	design
software	 I	 was	 using,	 didn’t	 handle	 very	 gracefully.	 I	 discovered	 the	 hard	 way	 that	 in	 Altium,	 the
soldermask	layer	occasionally	disappears	for	pads	with	complex	geometry.	Older	versions	of	my	design
would	contain	a	soldermask	layer,	but	then	upon	saving	the	design	file,	the	layer	would	silently	disappear.
This	sort	of	bug	is	rare,	but	it	does	happen.	Normally,	I’d	import	the	gerber	file	into	a	third-party	tool	as	a



check	plot	before	making	an	order,	but	I	was	in	a	rush	and	reordering	an	existing	design	that	had	worked
before,	so	I	skipped	the	check	plot	procedure.
The	result?	Thousands	of	dollars’	worth	of	PCBs	had	to	be	scrapped,	and	we	lost	four	weeks	from	the

schedule.	Ouch.
It	was	good	that	I	padded	my	delivery	dates—and	that	I	keep	a	bottle	of	fine	Scotch	on	hand,	to	help

bitter	reminders	of	what	happens	when	I	get	complacent	go	down	a	little	easier.

If	a	Component	Can	Be	Placed	Incorrectly,	It	Will	Be
I’m	 paranoid	 about	 parts	 being	 placed	 incorrectly,	 as	 this	 problem	 has	 burned	 me	 many	 times.	 The
Chibitronics	effects	sticker	sheet	was	a	prime	example	of	the	issue	waiting	to	happen.

The	Chibitronics	effects	stickers

The	sheet	is	an	array	of	four	stickers	that	flash	different	patterns	on	an	LED	but	are	otherwise	identical.
The	flashing	pattern	is	controlled	by	software.	Trying	to	manage	four	separate	firmware	files	and	get	them
all	 loaded	 into	 the	 right	 spot	 in	 a	 tester	 is	 a	 nightmare	 waiting	 to	 happen.	 To	 solve	 that	 problem,	 I
designed	the	stickers	to	use	the	exact	same	firmware.	Their	behaviors	were	instead	set	by	the	value	of	a
single	external	resistor,	which	was	measured	on	boot	by	the	microcontroller’s	integrated	ADC.
My	logic	went	something	like	this:	if	all	the	stickers	have	the	same	firmware,	there’s	no	“wrong	way”

to	program	the	stickers.	Right?
Unfortunately,	 I	 also	designed	 the	master	PCB	panels	 to	be	perfectly	 symmetric.	You	could	 load	 the

panels	into	the	assembly	robot	rotated	by	pi	radians,	and	the	assembly	program	would	run	flawlessly—
except	that	the	resistors	setting	the	firmware	behavior	would	be	populated	in	reverse	order	compared	to
the	silkscreen	labels.	Despite	having	fiducial	holes	to	provide	a	frame	of	reference	and	text	on	the	PCBs
in	both	Chinese	and	English	that	is	uniquely	orienting,	this	problem	actually	happened.	On	the	first	effect
sticker	 samples,	 the	 “heartbeat”	 sticker	 was	 “blinking,”	 the	 “twinkle”	 sticker	 was	 “fading,”	 and	 vice
versa.
Fortunately,	the	factory	very	consistently	loaded	the	boards	in	backward,	which	is	the	best	case	for	a

problem	like	this.	I	rushed	a	firmware	patch	(also	a	risky	thing	to	do)	that	reversed	the	interpretation	of
the	 resistor	 values,	 and	 had	 a	 new	 set	 of	 samples	 shipped	 to	me	 in	 Singapore	 via	 FedEx	 for	 a	 sanity
check.	We	also	built	a	secondary	test	jig	to	add	a	manual	double-check	for	correct	flashing	behavior	on
the	line	in	China.
The	 effects	 sheet	 problem	 was	 solved,	 but	 in	 making	 that	 additional	 test,	 we	 discovered	 another

common	problem.

Some	Concepts	Don’t	Translate	into	Chinese	Well



I	wrote	 instructions	 in	Chinese	 to	describe	 the	difference	between	fading	(a	slow	blinking	pattern)	and
twinkling	(a	flickering	pattern)	 to	 the	factory,	but	 it	 turns	out	 that	 the	Chinese	 translations	for	blink	and
twinkle	are	similar.	Twinkle	 translates	 to	闪烁	 (“flickering,	 twinkling”)	or	闪耀	 (“to	glint,	 to	glitter,	 to
sparkle”),	and	blink	 translates	 to	闪闪	 (“flickering,	 sparkling,	glittering”)	or	闪亮	 (“brilliant,	 shiny,	 to
glisten,	to	twinkle”).
I	always	dread	writing	subjective	descriptions	for	test	operators	in	Chinese,	which	is	part	of	the	reason

I	try	to	automate	as	many	tests	as	possible.	As	one	of	my	Chinese	friends	once	remarked,	Mandarin	is	a
wonderful	language	for	poetry	and	arts	but	difficult	for	precise	technical	communications.
The	 challenge,	 then,	was	 to	 come	up	with	 a	 bulletproof,	 cross-cultural	 explanation	of	 the	difference

between	fading	and	 twinkling,	using	only	simple	 terms	anyone	could	understand;	 that	 is,	 I	had	 to	avoid
technical	terms	like	random,	frequency,	hertz,	and	periodic.
I	 sent	 the	 factory	 a	 video	of	 the	 different	LED	patterns,	 and	our	 factory	 recommended	we	use	渐变

(“gradual	change”)	 for	 fade	 and	闪烁	 (“flickering,	 twinkling”)	 for	 twinkle.	 I’m	still	not	convinced	 that
was	a	bulletproof	description,	but	it	was	superior	to	any	translation	I	came	up	with.	And,	to	this	day,	we
are	dogged	by	problems	trying	to	explain	to	quality	control	staff	the	difference	between	these	effects.	It
turns	out	that	a	malfunctioning	sticker	also	makes	a	pretty	good	twinkling	effect—for	a	while.
Funnily	enough,	 it	was	also	a	challenge	for	Jie	and	me	to	agree	upon	what	a	“twinkle”	effect	should

look	like.	She	described	our	first	iteration	of	the	effect	as	“closer	to	a	lightning	storm	than	twinkling.”	We
had	several	 long	conversations	on	the	 topic,	 followed	by	demo	videos	 to	clarify	 the	desired	effect.	We
basically	tweaked	code	until	it	looked	about	right	to	both	of	us.	Given	the	difficulty	we	had	describing	the
effect	to	each	other,	it’s	no	surprise	I	had	trouble	accurately	describing	the	effect	in	Chinese.

Eliminate	Single	Points	of	Failure
When	we	built	test	jigs,	we	built	two	copies	of	each,	even	though	throughput	requirements	demanded	just
one.	Why?	Because	one	might	fail.
And	guess	what:	 one	 test	 jig	 did	 fail.	 I	 still	 don’t	 know	why.	Thank	goodness	we	built	 two	 copies,

though,	or	I’d	have	had	to	rush	to	China	on	short	notice	to	diagnose	why	our	sole	test	jig	didn’t	work.

Some	Last-Minute	Changes	Are	Worth	It
About	six	weeks	before	we	finalized	our	order	for	the	Chibitronics	kits	with	the	factory,	Jie	suggested	that
we	include	a	stencil	of	the	sticker	patterns	with	the	sensor	and	microcontroller	kits.	She	reasoned	that	it
can	be	difficult	to	lay	out	the	copper	tape	patterns	for	complex	stickers	like	the	microcontroller,	which	has
seven	pads,	without	a	drawing	of	the	contact	patterns.	I	originally	resisted	the	idea;	I	didn’t	want	to	delay
shipment	 on	 account	 of	 something	 we	 didn’t	 originally	 promise.	 As	 Jie	 discovered,	 I	 can	 be	 very
temperamental,	especially	when	it	comes	to	schedule	slips.	(Sorry,	Jie!	Thanks	for	bearing	with	me.)
But	 her	 arguments	were	 sound,	 so	 I	 instructed	 our	 factory	 to	 search	 for	 a	 stencil	 vendor.	After	 two

weeks,	we	hadn’t	found	anyone	willing	to	take	the	job,	but	our	factory’s	sourcing	department	didn’t	give
up.	Eventually,	they	found	one	vendor	who	had	enough	material	in	stock	to	tool	up	a	die	cutter	and	turn
around	a	couple	thousand	stencils	within	two	weeks—just	barely	in	time	to	meet	the	schedule.



The	sensor	and	microcontroller	sheet	and	stencil

When	I	got	samples	of	the	sensor	and	microcontroller	kit	with	the	stencils,	I	gave	them	a	whirl.	Jie	was
absolutely	right	about	their	utility.	I	found	my	experience	vastly	improved	when	I	had	a	template	to	work
from,	particularly	for	the	microcontroller	sticker	with	seven	closely	spaced	pads,	and	I	felt	users	would
agree.	That’s	how	even	though	the	stencil	wasn’t	promised	as	part	of	the	original	campaign,	all	backers
who	ordered	the	sensor	and	microcontroller	kit	received	a	free	stencil	to	help	them	lay	out	designs.

Chinese	New	Year	Impacts	the	Supply	Chain
Even	though	the	Chinese	New	Year	is	a	two-week	holiday,	our	initial	schedule	essentially	wrote	off	the
month	of	February.	Reality	matched	 this	expectation,	but	 I	want	 to	share	with	you	exactly	how	Chinese
New	Year	impacted	this	project,	in	case	you’re	considering	manufacturing	a	product	in	China.
We	had	 a	 draft	manuscript	 of	 our	 book	 ready	 in	 January,	 but	 I	 couldn’t	 get	 a	 complete	 sample	 until

March.	That	wasn’t	because	the	printer	was	closed	for	a	month	straight;	like	everyone	else,	their	holiday
was	about	 two	weeks	 long.	The	paper	vendor,	however,	 started	 their	holiday	about	10	days	before	 the
printer,	 and	 the	 binding	 vendor	 ended	 their	 holiday	 about	 10	 days	 after	 the	 printer.	 Even	 though	 each
vendor	took	only	two	weeks	off,	the	net	supply	chain	for	printing	a	custom	book	was	out	for	around	24
days,	 or	 effectively	 the	 entire	 month	 of	 February.	 The	 staggered	 observance	 of	 Chinese	 New	Year	 is
necessary	because	of	the	sheer	magnitude	of	human	migration	that	accompanies	the	holiday.

Shipping	Is	Expensive	and	Difficult
When	I	ran	the	initial	numbers	on	shipping,	I	realized	that	we	weren’t	exactly	selling	circuit	stickers—



taking	the	book	into	account,	by	volume	and	weight,	our	principal	product	was	printed	paper.	To	optimize
logistics	 cost,	 I	 pushed	 to	 ship	 starter	 kits	 (which	 contained	 a	 book)	 and	 additional	 stand-alone	 book
orders	by	ocean,	rather	than	air.
We	actually	had	starter	kits	and	books	ready	to	go	almost	four	weeks	before	the	first	kits	shipped,	but

we	just	couldn’t	get	a	reasonable	quotation	for	the	cost	of	shipping	them	by	ocean.	We	spent	almost	three
weeks	haggling	and	quoting	with	ocean	freight	companies.	In	the	end,	their	price	was	basically	the	same
as	going	by	air	but	would	 take	 three	weeks	 longer	and	 incurred	more	 risk.	Freight	cost	 is	apparently	a
minor	component	of	shipping	by	ocean,	and	you	get	killed	by	a	multitude	of	surcharges,	from	paying	the
longshoremen	to	paying	all	the	intermediate	brokers	and	warehouses	that	handle	your	goods	at	the	dock.
Those	 fixed	 costs	 added	 up	 such	 that	 even	 though	 we	 were	 shipping	 over	 60	 cartons	 of	 goods,	 air
shipping	was	still	more	cost-effective.

NOTE

For	reference,	a	Maersk	40-foot	sea	container	would	fit	over	1,250	cartons,	each	containing	40
starter	kits.	We	were	an	order	of	magnitude	away	from	being	able	to	efficiently	utilize	ocean
freight.

You’re	Not	Out	of	the	Woods	Until	You	Ship
At	each	milestone	 in	 this	project,	 I	had	 to	remind	myself	not	 to	count	my	chickens	before	 they	hatched.
Problems	 ranging	 from	 a	 routine	UPS	 screwup	 to	 a	 tragic	 aviation	 accident	 to	 a	 logistics	 problem	 at
Crowd	Supply’s	fulfillment	depot	to	a	customs	problem	could	stymie	an	on-time	delivery.	But,	at	the	very
least,	we	did	everything	within	our	power	to	deliver	on	time.
Thankfully,	when	all	was	said	and	done,	our	backers	received	 their	orders	right	on	 time.	Since	 then,

Chibitronics	 has	 continued	 to	 surpass	my	wildest	 expectations.	Although	we	 started	 this	 project	 as	 an
academic	experiment,	 grassroots	user	 adoption	prompted	us	 to	grow	 the	 experiment	 into	 a	 full-fledged
company.	As	the	circuit	stickers	are	an	open	hardware	project,	the	specs	are	available	for	savvy	hackers
to	play	with,	but	most	users	are	nontechnical	folks	who	would	benefit	more	directly	from	support	on	basic
usage.	To	that	end,	the	company	strives	to	provide	users	with	assistance,	activities,	and	more	stickers	to
help	them	keep	learning	and	making	beautiful	electronic	crafts.

CLOSING	THOUGHTS
Chibitronics	has	been	an	ongoing	learning	experience	for	me,	as	I’ve	never	had	a	company	successfully
mature	 like	 this.	 I’m	 excited	 to	 see	 where	 the	 company	 goes,	 but	 as	 an	 engineer,	 I	 also	 know	 my
limitations:	I’m	not	cut	out	to	be	a	business-person.	Once	the	company	is	big	enough	to	support	its	own
staff	in	a	sustainable	fashion,	I’m	looking	forward	to	handing	over	the	reins,	returning	to	my	workbench,
and	dreaming	up	new	open	hardware	inventions.



Part	4
a	hacker’s	perspective
Engineering	and	reverse	engineering	are	two	sides	of	the	same	coin.	The	best	makers	know	how	to	hack
their	 tools,	 and	 the	best	hackers	 routinely	make	new	 tools.	 I	might	 set	out	 to	design	a	 circuit,	 and	 find
myself	 reverse	 engineering	 a	 chip	 because	 the	 datasheet	 is	 vague,	 incomplete,	 or	 simply	 incorrect.
Engineering	is	a	creative	exercise;	reverse	engineering	is	a	learning	exercise.	When	you	combine	them,
even	the	toughest	problems	can	be	solved	as	a	creative	learning	exercise.
I	 spent	 over	 a	 quarter-century	 in	 school,	 but	 I’ve	 learned	 more	 about	 electronics	 from	 reverse

engineering.	I	love	trying	to	figure	out	why	the	engineer	behind	a	piece	of	random	hardware	made	certain
design	choices.	Highly	skilled	engineers	develop	clever	tricks	without	realizing	how	innovative	they	are.
Those	tricks	often	go	undocumented	or	unpatented,	and	the	only	way	to	tap	that	knowledge	is	to	decipher
it	from	finished	designs.
After	 seeing	 enough	 boards,	 I	 started	 recognizing	 patterns	 and	 personal	 styles	 that	 almost	 have	 a

cultural	nature	about	them.	For	example,	Apple	circuit	boards	are	austere	and	black,	with	a	look	almost	as
iconic	as	Steve	Jobs’s	black	mock	 turtlenecks.	There	are	so	many	decisions	 to	make	when	designing	a
circuit	board	that	most	engineers	can	only	draw	from	their	cultural	influences	and	toolchains	to	constrain
stylistic	things	like	fonts	and	part	choices.
This	kind	of	learning	is	so	important	to	me	that,	for	over	a	decade	now,	every	month	I’ve	presented	a

circuit	 board	 on	 my	 blog	 and	 challenged	 readers	 to	 divine	 its	 function	 from	 its	 design.	 Part	 of	 my
motivation	 for	 holding	 these	 regular	 competitions	 is	 to	 make	 reverse	 engineering	 feel	 culturally
acceptable	 to	 readers.	People	often	ask	me	 if	 reading	other	people’s	designs	or	modifying	and	hacking
hardware	is	legal.	But	anyone	who	has	raised	a	child	knows	that	learning	through	emulation	is	a	part	of
human	nature.	I	disagree	with	interpretations	of	the	law	that	put	the	terms	of	a	software	license	above	your
right	to	own	your	hardware.	If	you	can’t	hack	it,	you	don’t	own	it.
The	importance	of	democratic	access	to	technology	only	grows	as	we	become	increasingly	dependent

on	smartphones	and	computers.	Technology	is	fundamentally	neutral	toward	human	ethics;	the	people	who
control	 technology	 are	 responsible	 for	 applying	 it	 ethically.	 One	 school	 of	 thought	 believes	 that
technology	should	be	controlled	by	a	select	group	of	trusted	masters;	the	other	believes	that	control	over
technology	should	belong	to	anyone	with	the	motivation	and	will	to	learn	it.	Increasingly,	our	technology
infrastructure	is	becoming	a	monoculture	managed	by	a	cartel	of	technology	providers.	Everyone	carries
identical	 phones	 running	 operating	 systems	 based	 on	 the	 same	 libraries	 and	 uses	 one	 or	 two	 cloud
services	 to	store	 their	data.	But	history	has	proven	that	a	monoculture	with	no	immunity	 is	a	recipe	for
disaster.	 One	 virus	 can	 wipe	 out	 a	 whole	 population.	 Universal	 access	 to	 technology	 may	 allow	 the
occasional	 bad	 actor	 to	 develop	 a	 harmful	 exploit,	 but	 this	 bitter	 pill	 ultimately	 inoculates	 our
technological	immune	system,	forcing	us	to	grow	stronger	and	more	resilient.	Wherever	that	threat	comes
from,	a	robust	and	vibrant	culture	of	free-thinking	technologists	will	be	our	ultimate	defense	against	any
attack.
Speaking	of	 viruses	 and	 immune	 systems,	 there	 are	 remarkable	 parallels	 between	hardware	 systems

and	 biological	 systems.	 Just	 as	 hacking	 is	 all	 about	 rethinking	APIs	 to	 do	 unexpected	 things,	 a	 central
tenant	 of	 biology—evolution—is	 all	 about	 superior	 implementations	 of	 “APIs”	 superseding	 weaker
interpretations.



I	routinely	read	journals	about	the	life	sciences	not	just	because	I	find	the	subject	fascinating,	but	also
because	it’s	good	for	me.	Looking	outside	your	primary	field	for	fresh	ideas	is	very	helpful	for	problem
solving.	 Figuring	 out	 how	 an	 organism	 works	 is	 an	 incredibly	 difficult	 reverse	 engineering	 problem:
there’s	no	documentation,	there’s	no	designer	to	consult,	and	your	diagnostic	tools	are	roughly	equivalent
to	throwing	crate	after	crate	of	smartphones	into	a	blender	and	running	the	mixture	through	various	sieves.
Biologists	 have	 developed	 a	 bag	 of	 extremely	 clever	 tricks	 to	 map	 out	 complex	 systems	 without	 the
benefit	 of	 an	 oscilloscope,	 and	 at	 a	 high	 level,	 some	 of	 the	 principles	 are	 applicable	 to	 electronic
systems.
As	 our	 understanding	 of	 biology	 becomes	 more	 complete,	 there’s	 ample	 opportunity	 for	 computer

engineering	principles	to	advance	the	field.	We’re	already	at	the	point	of	custom-engineering	organisms;
the	 technology	 to	 hack	 humans—or	 engineer	 our	 successor—is	 likely	 to	 arrive	 within	 decades.	 Such
powerful	tools	deserve	a	closer	look	so	that	we	can	make	independent	judgments	about	what	is	fact	and
what	is	fiction.
While	engineering	is	a	creative	activity,	hacking	is	an	important	and	often	underrated	learning	exercise.

The	ability	to	effortlessly	switch	modes	from	forward	to	reverse	engineering	is	a	powerful	tool,	and	the
right	to	hack	is	the	foundation	of	a	healthy	technological	culture.	The	first	chapter	in	this	section	reviews
some	of	my	own	hacking	methods	 and	 efforts	 and	discusses	 some	of	 the	 legal	 frameworks	 that	 protect
these	activities.	The	second	chapter	attempts	to	unpack	some	key	concepts	from	biology	and	frame	them
from	the	perspective	of	an	electronics	person.	The	final	chapter	in	this	book	is	a	collection	of	interviews
where	 I	 discuss	 what	 being	 a	 hacker	 means	 to	 me,	 as	 well	 as	 recap	 some	 of	 my	 experiences	 in
manufacturing	and	hardware	startups.	The	collection	isn’t	exhaustive,	but	I	hope	you	enjoy	reading	some
of	my	more	off-the-cuff	thoughts.



9.	hardware	hacking
The	biggest	barrier	to	hacking	is	often	the	fear	that	you’ll	break	something	while	poking	around.	But	you
have	 to	break	eggs	 to	make	an	omelet;	 likewise,	you	have	 to	be	willing	 to	 sacrifice	devices	 to	hack	a
system.	Fortunately,	acquiring	multiple	copies	of	a	mass-produced	piece	of	hardware	is	easy.	I	often	do	a
bit	 of	 dumpster	 diving	 or	 check	 classified	 advertisements	 to	 get	 sample	 units	 for	 research	 purposes.	 I
generally	try	to	start	with	three	copies:	one	to	tear	apart	and	never	put	back	together,	one	to	probe,	and
one	to	keep	relatively	pristine.	I	use	the	pristine	copy	to	sanity-check	whether	a	certain	behavior	is	due	to
my	probing	or	just	how	the	hardware	behaves.
My	typical	approach	to	any	hardware	hack	is	first	getting	the	device	open	and	then	getting	a	probe	in

just	the	right	spot	without	affecting	the	device’s	functionality.	When	you’re	looking	inside	computer	chips,
that’s	virtually	 the	entire	challenge.	The	first	hack	 in	 this	chapter	 is	an	example	of	silicon	hacking,	and
you’ll	 see	 that	 once	 the	 package	 is	 off	 and	 you’re	 staring	 at	 naked	 silicon,	 an	 attacker	 has	 a	 profound
advantage.
Some	hardware	hacks	require	more	system	engineering,	particularly	when	you	want	to	reverse	engineer

and	repur-pose	a	device.	In	these	situations,	I	tend	to	develop	additional	bespoke	tools	that	allow	me	to
tweak	and	observe	a	system	in	close	to	real	time,	or	at	least	as	fast	as	I	can	type	commands,	to	minimize
the	time	spent	validating	hypotheses.	The	goal	is	to	make	the	primary	limitation	how	fast	you	can	think	of
ideas	to	test,	not	how	long	it	takes	to	upload	a	change	to	test	those	ideas.	The	second	hack	in	this	chapter
talks	about	reverse	engineering	a	relatively	simple	System-on-Chip	(SoC)	device	found	inside	common
SD	memory	cards	and	some	tools	I	developed	to	aid	that	process.
Finally,	some	hacks	inevitably	push	the	boundaries	of	the	law.	The	third	hack	in	this	chapter	talks	about

NeTV,	 a	 system	 I	 developed	 that	 takes	 a	 new	 look	 at	 the	High-Definition	 Content	 Protection	 (HDCP)
encryption	standard,	which	secures	most	HDMI	video	links.	NeTV	is	a	hack	on	both	a	legal	issue	and	a
hardware	 system.	 It	 works	 around	 the	 thorny	 problems	 presented	 by	 the	 DMCA	 by	 reinterpreting	 the
HDCP	standard	to	enable	a	man-in-the-middle	(MITM)	attack	to	change	video	data	without	circumventing
encryption.	No	 circumvention,	 no	DMCA	problem.	Hacks	often	push	 the	boundary	of	what’s	 legal	 and
what’s	been	tested	in	the	courts.	Just	like	any	other	system,	the	legal	system	can	also	be	hacked,	and	one
key	takeaway	from	this	chapter	is	how	to	think	of	laws	as	just	another	constraint	to	work	with	on	the	way
to	achieving	a	particular	goal.
The	final	hack	in	this	chapter	combines	hardware	penetration,	tool	creation,	and	legal	considerations	to

reverse	engineer	a	complex	mobile	phone	SoC.	That’s	another	project	I	worked	on	with	xobs,	and	once
again,	building	bespoke	hacking	tools	was	invaluable	because	it	allowed	us	to	experiment	with	the	system
as	it	ran.

HACKING	THE	PIC18F1320
Keeping	a	secret	is	a	common	challenge	for	any	security	system.	To	solve	this	challenge,	security	system
designers	frequently	hide	secrets	inside	silicon	chips	because	the	chips’	rugged	epoxy	packages	and	tiny
geometries	are	difficult	to	penetrate	and	inspect.
This	sounds	good	in	theory	but	is	problematic	in	practice.	Chip	designers	make	mistakes,	and	when	a

chip	has	a	problem,	the	designers	need	a	way	to	open	it	up	and	investigate.	This	situation	is	so	common
that	there	are	commercial	services	that	specialize	in	opening	up	chips	expressly	for	that	purpose.	Called



failure	analysis	services,	they’ve	mastered	several	techniques	for	removing	tough	epoxy	from	chips.
A	couple	of	years	before	my	crash	course	in	setting	up	a	Chinese	supply	chain	with	Chumby,	I	decided

it	would	 be	 fun	 to	 demonstrate	 how	 simple	 hacking	 a	 chip	 can	 be	 if	 you’re	 aware	 of	 failure	 analysis
services.	At	 the	time,	Microchip’s	PIC	series	of	microcontrollers	was	quite	ubiquitous,	so	I	decided	to
have	a	go	at	a	popular	PIC	model.	PICs	 typically	have	configuration	 fuses,	which	you	can	 activate	 to
prevent	certain	 regions	of	memory	from	being	read	or	written	 to.	But	 there’s	often	a	 legitimate	need	 to
read	 the	 contents	 of	 a	 secured,	 programmed	 PIC.	 For	 instance,	 a	 company	 that	 loses	 either	 the
documentation	for	a	product	or	the	personnel	that	originally	created	the	codes	for	a	secured	PIC	would	be
stuck	without	a	way	 to	 read	 the	chip.	This	 is	a	problem	when	a	company	needs	 to	 revise	or	upgrade	a
legacy	line	of	products.
I	wanted	to	figure	out	how	to	dump	the	memory	from	a	secured	PIC.	Knowing	I’d	have	to	break	a	few

eggs	 to	make	 this	 omelet,	 I	 scored	 four	 PIC18F1320s	 from	 a	 friend	 and	 started	 stripping	 them	 down.
Here’s	what	I	found.

A	PIC18F1320	in	its	native	state

Decapping	the	IC
First,	I	had	to	take	the	top	off	so	I	could	see	the	silicon	under	the	hood.	Many	homebrew	techniques	for
decapping	 a	 chip	 typically	 involve	 applying	 fuming	nitric	 or	 sulfuric	 acid,	 but	 those	 aren’t	 compounds
you’d	 want	 to	 keep	 at	 home,	 nor	 are	 they	 easy	 to	 obtain.	 Nitric	 acid,	 in	 particular,	 is	 an	 important
compound	for	explosives	fabrication.	So,	I’ve	found	the	easiest	and	most	reliable	way	to	decap	a	chip	is
to	just	send	it	to	a	failure	analysis	lab.	For	about	$50,	you	can	have	a	decapped	part	in	two	days.
I	 decapped	 three	parts	 for	 this	 project.	Two	were	 functionally	decapped	 (silicon	 revealed	with	 the

device	still	 in	 its	 lead	frame,	fully	functional),	and	the	 last	was	 fully	decapped	 (just	a	bare	silicon	die
with	 no	 package).	 I	 had	 one	 die	 fully	 decapped	 because	 my	 inspection	 microscope	 had	 a	 very	 short
working	 distance	 at	 the	 highest	magnifications,	 and	 the	 remaining	 epoxy	 from	 the	 package	would	 have
interfered	with	the	lens.



A	functionally	decapped	PIC18F1320.
The	little	raised	square	in	the	middle	(it’s	goldish	in	real	life)	is	the	silicon	chip.

Taking	a	Closer	Look
With	my	decapped	ICs	 in	hand,	 I	did	a	sweep	around	one	of	 the	dies	with	 the	microscope	and	noticed
several	prominent	features.	Because	physics	is	the	same	everywhere,	most	of	the	fine-grained	structure	in
a	 silicon	 chip	 looks	pretty	much	 the	 same,	no	matter	who	makes	 the	 chip.	These	 constraints	 propagate
their	way	up	to	the	system	level,	and	with	a	bit	of	training,	you	can	read	a	silicon	chip	like	a	book.



My	best	guess	at	what	various	structures	in	this	chip	do.	I	could	be	wrong.

One	set	of	structures	grabbed	my	attention	immediately:	there	were	metal	shields	over	some	transistors,
following	a	regular	pattern	that	had	about	the	right	number	of	devices	to	account	for	all	the	security	bits.
Full-metal	 shields	covering	a	device	are	very	 rare	 in	 silicon,	 so	 they’re	 like	a	big	X	marking	 the	 spot
where	something	very	important	is	kept.



Zooming	in	on	the	metal	shields

Erasing	the	Flash	Memory
The	shields	were	significant	because	of	some	interesting	facts	about	flash	memory	technology,	which	this
PIC	 device	 used	 to	 store	 the	 security	 fuse	 information,	 as	 well	 as	 the	 internal	 program	 code.	 Flash
technology	uses	a	floating-gate	transistor	structure	very	similar	to	old	UV-erasable	programmable	read-
only	memory	(UV-EPROM)	 technologies	 like	 the	ceramic-packaged	2716	chips	 from	 the	1970s,	which
had	quartz	windows	so	they	could	be	erased.
In	both	flash	and	UV-EPROM	devices,	data	is	written	when	electrons	tunnel	into	a	floating	gate,	where

the	electrons	remain	for	decades.	The	extra	electrons	in	the	floating	gate	create	a	measurable	offset	in	the
characteristics	 of	 the	 storage	 transistor.	 The	 difference	 is	 that	 flash	 memory	 can	 withdraw	 the	 stored
electrons	(erase	the	device)	using	only	electrical	pulses,	while	a	UV-EPROM	requires	energetic	photons
to	knock	the	electrons	out	of	the	floating	gate.	The	UV	light	required	to	accomplish	this	is	typically	on	a
wavelength	 of	 around	250	nm.	You	need	 expensive	 quartz	 optics	 to	manipulate	 this	wavelength	 of	UV
without	excessive	loss,	making	it	a	bit	difficult	to	harness.
Here’s	the	important	conclusion	I	drew	from	these	facts:	flash	devices	can	usually	also	be	erased	using

UV	light	since	they	have	a	similar	transistor	structure	to	UV-EPROM	devices.	The	encapsulation	around	a
flash	device	normally	prevents	any	UV	light	from	effectively	reaching	the	die,	but	since	the	PIC	devices
had	the	plastic	around	them	removed,	I	could	attempt	to	apply	UV	light	and	see	what	happened.
I	 performed	 a	 simple	 experiment	 by	 programming	 the	 PIC	 device	 with	 a	 ramping	 pattern,	 where	 I

stored	the	hexadecimal	numbers	from	0x00	to	0xFF	over	and	over	again.	Then,	I	tossed	the	PIC	into	my



UV-EPROM	eraser	to	bake	for	...	oh,	about	the	length	of	a	good	long	shower	and	some	email	checking.
When	I	took	the	device	out	of	the	eraser,	the	flash	memory	was	indeed	blanked	to	its	normal	all	1s	state,
and	the	security	fuses	were	unaffected.	After	baking	a	few	more	PIC	devices	in	the	eraser,	I	found	that	if	I
didn’t	bake	a	PIC	long	enough,	I	got	odd	readings	out	of	the	array	I	wrote	to,	such	as	all	0s,	a	phenomenon
that	I	still	don’t	understand.

Erasing	the	Security	Bits
Clearly,	 the	metal	 shields	over	 the	 security	 fuses	were	 there	 to	 thwart	attempts	 to	 selectively	erase	 the
security	fuses	while	leaving	the	flash	memory	array	unaffected.

A	diagram	showing	how	the	shields	got	in	the	way	of	the	fuse	bits,	and	how	to	work	around	them

My	problem	was	 that	 for	 the	 flash	memory	 transistor	 to	be	erased,	high-intensity	UV	light	needed	 to
strike	the	floating	gate.	The	metal	shield	effectively	reflected	all	incident	light,	so	the	light	never	reached
the	 gate.	 But	 I	 knew	 there	 was	 a	 refraction	 index	 mismatch	 between	 the	 optically	 clear	 protective
dielectric	layer	of	silicon	dioxide	covering	the	chip	and	the	silicon	proper,	meaning	light	at	certain	angles
would	 reflect	 off	 of	 the	 smooth	 silicon	 surface.	 For	 an	 example	 of	 this	 reflective	 effect,	 jump	 in	 a
swimming	pool,	 go	under	water,	 and	 look	up	 at	where	 the	water	 and	 air	meet.	The	water	 should	 look
highly	reflective	at	an	oblique	angle	because	the	refractive	index	mismatch	between	water	and	air	causes
total	internal	reflection	of	light.
I	planned	to	use	this	reflection	to	bounce	the	UV	light	off	the	oxide	to	hit	the	metal	shield	and	bounce

back	onto	the	floating	gate.	By	angling	the	PIC	inside	the	ROM	eraser,	I	thought	I	could	get	enough	light	to
bounce	into	the	flash	memory	transistor	region	and	erase	the	security	bits.	After	a	couple	of	attempts	using
bits	 and	 bobs	 of	 material	 to	 fix	 the	 angle	 of	 the	 chip,	 I	 developed	 a	 simple	 technique	 that	 worked
surprisingly	well:	shoving	the	chip	into	the	antistatic	foam	liner	of	the	UV	eraser	at	an	angle.



The	chip	in	the	UV	eraser’s	antistatic	foam

Protecting	the	Other	Data
That	technique	didn’t	protect	the	flash	data	I	wanted	to	keep,	though.	To	avoid	erasing	this	data,	I	made	a
hard	mask	out	of	a	very	carefully	cut	piece	of	electrical	tape	and	stuck	that	mask	to	the	surface	of	the	die
using	 a	 steady	 hand,	 two	 tweezers,	 and	 a	 microscope.	 The	 electrical	 tape	 blocked	 the	 UV	 light	 from
directly	 hitting	 the	 flash	 code	 memory	 regions	 and	 somewhat	 absorbed	 light	 bounced	 back	 from	 the
silicon	substrate.



The	die	in	its	package,	with	electrical	tape	over	the	flash	ROM	array

This	mask	allowed	me	to	reset	only	the	security	fuses	without	impacting	the	flash	code	array	too	much.
The	following	screenshots	show	the	array	memory	status	according	to	the	programming	and	readback	tool
I	was	using.



My	PIC	programmer	workspace,	showing	the	device	settings	before	erasure	The	device	settings	after	erasure

The	device	settings	after	erasure



In	 the	 before	 shot,	 note	 the	 settings	 of	 the	 security	 fuses	 in	 the	 Configuration	 Bits	 window	 and	 the
values	 programmed	 in	 the	 flash	 ROM,	 shown	 in	 the	 Program	Memory	 window.	 In	 the	 after	 shot,	 the
security	fuses	switch	to	being	disabled,	while	the	flash	ROM	contents	in	the	Program	Memory	window
read	identically	to	what	was	programmed	in	previously.	A	different	part	of	the	code	array	was	actually
still	erased,	but	I	could	probably	have	fixed	that	by	cutting	a	bigger	piece	of	electrical	tape.
I’ve	heard	reports	that	since	this	hack	was	published,	Microchip	started	putting	metal	shields	over	the

code	memory	array	as	well	as	the	fuses,	making	it	a	bit	more	difficult	to	pull	off	this	trick.	Still,	this	hack
underscores	the	fact	that	quite	often,	the	hardest	part	of	silicon	hacking	is	removing	the	outer	package,	and
fortunately,	there	are	cheap,	if	obscure,	services	available	to	assist	with	that	problem.

HACKING	SD	CARDS
Years	later,	I	found	myself	hacking	into	yet	another	interesting	device	with	flash	memory:	an	SD	card.	I’d
already	torn	down	SD	cards	when	investigating	a	batch	of	potentially	fake	cards	that	found	their	way	into
Chumby	production	units,	which	I	discuss	 in	“Fake	MicroSD	Cards”	on	page	156.	This	 time,	my	 intent
was	to	figure	out	how	to	get	an	SD	card	to	do	something	it	wasn’t	made	to	do.	This	particular	hack	was
another	 team	 effort	 with	 my	 friend	 xobs,	 and	 it	 was	 funded	 by	 DARPA’s	 Cyber	 Fast	 Track	 (CFT)
initiative.	The	brainchild	of	uberhacker	.mudge	(one	of	the	original	crew	of	L0pht),	CFT	was	a	hack	on
the	US	government	to	make	it	smarter	about	innovation,	particularly	on	matters	related	to	internet	security.
We	pulled	it	off	around	the	same	time	we	were	working	on	Novena	and	I	was	collaborating	with	Jie	Qi	on
Chibitronics.
xobs	and	I	discovered	that	some	SD	cards	contain	vulnerabilities	that	allow	arbitrary	code	execution

on	 the	memory	 cards	 themselves.	We	 also	 found	 that	 similar	 classes	 of	 vulnerabilities	 exist	 in	 related
devices	like	USB	flash	drives	and	solid-state	drives.	On	the	dark	side,	code	execution	on	a	memory	card
enables	MITM	attacks	where	 the	card	 seems	 to	behave	one	way	but	 in	 fact	does	 something	else	 as	 an
attacker	intercepts	and	manipulates	communications	between	the	card	and	the	device	using	it.	On	the	light
side,	however,	 this	vulnerability	also	gives	hardware	enthusiasts	access	to	a	very	cheap	and	ubiquitous
source	of	microcontrollers.



Some	of	the	eggs—or	rather,	SD	cards—we	cracked	open	to	find	the	vulnerability

How	SD	Cards	Work
To	understand	 the	hack,	 you	need	 to	know	how	SD	cards	 are	 structured.	The	 information	 I’m	about	 to
explain	applies	 to	all	managed	 flash	devices,	which	 includes	microSD,	SD,	and	MMC,	as	well	as	 the
eMMC	and	iNAND	devices	typically	soldered	onto	the	mainboards	of	smartphones	to	store	the	operating
system	and	other	private	user	data.
Flash	memory	is	billed	as	a	contiguous,	reliable	storage	medium,	and	it’s	really	cheap—so	cheap	that

the	premise	is	literally	too	good	to	be	true.	In	reality,	all	flash	memory	is	riddled	with	defects,	without
exception.	 It	 crafts	 the	 illusion	 of	 reliability	 through	 sophisticated	 error	 correction	 and	 badblock
management	functions.	This	system	is	the	result	of	a	constant	arms	race	between	the	engineers	and	mother
nature:	 every	 time	 the	 fabrication	 process	 shrinks	 transistors,	 memory	 becomes	 cheaper	 but	 more
unreliable.	 Likewise,	 with	 every	 generation	 of	 chips,	 engineers	 create	 more	 sophisticated	 and
complicated	algorithms	to	compensate	for	nature’s	propensity	for	entropy	and	randomness	at	 the	atomic
scale.
These	algorithms	are	too	complicated	and	too	device-specific	to	be	run	at	the	application	or	operating

system	 level,	 so	 every	 flash	 memory	 disk	 ships	 with	 a	 reasonably	 powerful	 microcontroller	 to	 run	 a
custom	 set	 of	 disk	 abstraction	 algorithms.	Even	 tiny	microSD	 cards	 contain	 not	 one,	 but	at	 least	 two,
chips:	a	controller	and	at	least	one	flash	chip.	(High-density	cards	stack	multiple	flash	dies.)



Inside	a	microSD	card.	The	small	square	in	the	upper-right	corner	is	a	microcontroller	SoC	mounted	on	top	of	the	larger	flash
memory	chip	that	it	manages.

In	my	experience,	the	quality	of	the	flash	chip(s)	integrated	into	memory	cards	varies	widely.	The	chip
could	be	anything	from	high-grade,	factory-new	silicon	to	material	with	more	than	80	percent	bad	sectors.
If	you’re	concerned	about	e-waste,	you	may	(or	may	not)	be	pleased	to	know	that	memory	card	vendors
commonly	 use	 recycled	 flash	 chips	 salvaged	 from	 discarded	 parts.	 Larger	 vendors	 tend	 to	 offer	more
consistent	quality,	but	even	the	largest	players	staunchly	reserve	the	right	to	mix	and	match	flash	memory
chips	with	different	controllers	yet	sell	the	assembly	as	the	same	part	number.	That’s	a	nightmare	if	you’re
dealing	with	implementation-specific	bugs.
A	memory	card’s	embedded	microcontroller	is	often	a	heavily	modified	Intel	8051	or	ARM	CPU	that

approaches	 100	 MHz	 performance	 levels	 and	 has	 several	 hardware	 accelerators	 on-die.	 Amazingly,
adding	these	controllers	to	a	memory	card	only	costs	about	$0.15	to	$0.30,	particularly	for	companies	that
can	fab	both	the	flash	memory	and	the	controllers	in	the	same	business	unit.	Even	more	interestingly,	due
to	the	high	cost	of	testing	chips	at	the	wafer	level,	it’s	probably	net	cheaper	to	add	a	microcontroller	that
manages	bad	blocks,	rather	than	thoroughly	test	and	characterize	each	raw	flash	memory	chip.	And	in	fact,
managed	flash	devices	tend	to	be	cheaper	per	bit	than	raw	flash	chips,	despite	the	extra	functionality.
Every	flash	implementation	has	unique	algorithmic	requirements,	multiplying	the	number	of	hardware

abstraction	 layers	 a	 microcontroller	 must	 handle.	 This	 complexity	 inevitably	 leads	 to	 bugs,	 meaning
indelibly	burning	a	static	body	of	code	into	on-chip	ROM	just	isn’t	feasible,	particularly	for	third-party
controllers.
Thus,	a	firmware	loading	and	update	mechanism	is	virtually	mandatory.	End	users	are	rarely	exposed

to	 this	 process	 since	 it	 all	 happens	 in	 the	 factory,	 but	 the	 mechanism	 exists.	 While	 exploring	 the
electronics	markets	in	China,	I’ve	seen	shopkeepers	burn	firmware	onto	a	card	that	“expands”	the	card’s
capacity.	In	other	words,	 they	load	firmware	that	reports	 the	capacity	of	a	card	as	much	larger	 than	the
actual	available	storage.	The	fact	that	this	is	possible	at	the	point	of	sale	indicates	the	update	mechanism
is	likely	not	well	secured.

Reverse	Engineering	the	Card’s	Microcontroller
xobs	and	I	discovered	an	example	of	this	vulnerability	while	exploring	memory	cards	using	AppoTech’s
AX211	 and	 AX215	 microcontrollers.	 We	 discovered	 a	 simple	 “knock”	 sequence	 transmitted	 over
manufacturer-reserved	 commands	 (a	 command	 named	 CMD63	 followed	 by	 the	 bytes	 A,	 P,	 P,	 O)	 that
dropped	 the	 controller	 into	 a	 firmware	 loading	 mode.	 After	 receiving	 the	 knock	 sequence,	 the	 card



accepted	the	next	512	bytes	and	ran	the	data	as	code.

NOTE

The	AppoTech	chips	I	describe	here	technically	integrate	sufficient	functionality	that	in	an
academic	sense,	they’re	not	mere	microcontrollers;	they’re	full	SoCs.	But	it’s	just	weird	to	me	to
refer	to	the	AppoTech	as	an	SoC,	so	I	won’t.	It	will	always	be	a	microcontroller	to	me!

The	AppoTech	 system	 on	 this	 particular	memory	 card	 also	 used	 an	 8051	microcontroller.	 From	 the
knock	 sequence	 beachhead,	 we	 used	 a	 combination	 of	 analyzing	 code	 with	 IDA,	 the	 interactive
disassembler,	 and	 fuzzing	 (that	 is,	 giving	 the	 microcontroller	 invalid	 or	 random	 input	 to	 see	 how	 it
responds)	to	reverse	engineer	most	of	the	8051’s	function-specific	registers.	That	allowed	us	to	develop
novel	applications	for	the	controller	without	the	manufacturer’s	proprietary	documentation.	We	did	most
of	this	work	with	the	Novena	laptop	hardware	I	described	in	Chapter	7.
As	I	alluded	at	 the	beginning	of	 this	chapter,	we	developed	several	bespoke	tools	 to	help	us	reverse

engineer	the	SD	card.	One	of	the	more	interesting	tools	we	(and	by	we,	I	mean	primarily	xobs)	made	is	an
interactive	 REPL	 (read-evaluate-print-loop)	 shell	 for	 executing	 arbitrary	 code	 on	 the	 SD	 card.	 The
following	listing	shows	what	that	environment	looks	like.

root@bunnie-novena:~/ax211-code#	./ax211	-d	debug.bin
FPGA	hardware	v1.26
Debug	mode	APPO	response	[6]:	{0x3f	0x00	0xc1	0x04	0x17	0xab}
Result	of	factory	mode:	0
00000000	0f	41	1f	0f	0f	0f	ff	ff	|.A......|
Expected	0x00	0x00,	got	0x0f	0x41
Loaded	debugger
Locating	fixup	hooks...	Done
AX211>	help
List	of	available	commands:
hello	Make	sure	the	card	is	there
peek	Read	an	area	of	memory
poke	Write	to	an	area	of	memory
jump	Jump	to	an	area	of	memory
dumprom	Dump	all	of	ROM	to	a	file
memset	Set	a	range	of	memory	to	a	single	value
null	Do	nothing	and	return	all	zeroes
disasm	Disassemble	an	area	of	memory
ram	Manipulate	internal	RAM
sfr	Manipulate	special	function	registers
nand	Operate	on	the	NAND	in	some	fashion
extop	Execute	an	extended	opcode	on	the	chip
reset	Reset	the	AX211	card
help	Print	this	help
For	more	information	on	a	specific	command,	type	'help	[command]'
AX211>	help	disasm
Help	for	disasm:
Disassemble	a	number	of	bytes	at	the	given	offset.
Usage:	disasm	[address]	[bytes]
AX211>	disasm	0x200	16
.org	0x0200
nop
nop
reti

nop
mov	R7,	A



reti

mov	R7,	A
nop
mov	R7,	A
nop
mov	R7,	A
nop

From	inside	this	environment,	we	could	run	programs	in	a	debugger,	get	a	list	of	available	commands
and	what	they	did	by	entering	help,	and	disassemble	sections	of	code	by	entering	disasm.	Although	it	took	a
lot	of	time	to	develop	an	interactive	tool	with	such	a	rich	feature	set,	the	effort	quickly	paid	off	because
we	could	test	complex	hypotheses	using	automated	fuzzing	frameworks.
The	code	upload	size	was	limited	to	512	bytes,	which	meant	we	had	to	partition	the	REPL	environment

between	the	host	Novena	computer	and	the	target	device.*	For	example,	disassembling	a	particular	region
of	memory	breaks	down	to	a	script	executed	on	the	host	side	that	drives	issue	requests	to	the	AX211	to
dump	the	requested	portion	of	memory,	followed	by	the	disassembly	algorithm	running	on	the	host	ARM
CPU.

Partitioning	the	SD	debugger	functions	between	the	host	and	the	target

The	tool	we	built	started	with	an	SD	physical	emulation	layer,	which	I’ll	refer	to	as	PHY.	We	used	the
FPGA	built	 into	 the	Novena	 to	present	 a	GPIO-like	 register	API	 for	 the	SD	host	PHY.	There	was	one
register	for	data	output,	one	register	for	data	input,	and	one	register	to	bitwise	set	the	data	direction.	The
AX211	card	was	attached	to	the	FPGA	via	a	custom	flex-circuit	adapter.*



A	flex-circuit	adapter	plugged	into	a	Novena

The	SD	commands	were	received	on	the	AX211	and	processed	by	a	hardware	state	machine	attached
to	the	embedded	8051	CPU.	The	state	machine	handled	receiving	the	data,	plus	it	computed	and	checked
the	 cyclic	 redundancy	 code	 for	 error	 detection.	 Once	 a	 complete	 packet	 was	 received	 by	 the	 state
machine,	an	interrupt	notified	the	8051	of	the	packet’s	arrival.
We	hijacked	the	interrupt	processing	mechanism	and	remapped	the	default	handler	to	our	own	512-byte

code	stub.	That	allowed	us	to	define	a	novel	set	of	SD	commands	that	we	used	to	implement	the	callback
functions	 our	 REPL	 environment	 needed,	 like	 peek,	 poke,	 jump,	 NAND	 register	manipulation,	 and	 so	 on.
These	callbacks	were	also	an	ideal	hook	for	implementing	an	MITM	attack.



The	callback	functions	for	the	REPL,	displayed	in	IDA

I	 don’t	 know	 how	 many	 other	 manufacturers	 leave	 their	 firmware	 updating	 sequences	 unsecured.
AppoTech	 is	 a	 relatively	minor	player	 in	 the	SD	controller	world;	 a	handful	of	companies	 that	you’ve
probably	never	heard	of	also	produce	SD	controllers,	including	Alcor	Micro,	Skymedi,	Phison,	and	SMI.
Of	course,	there	are	also	SanDisk	and	Samsung.	Each	has	different	mechanisms	and	methods	for	loading
and	 updating	 firmware.	 But	 I	 know	 of	 at	 least	 one	 Samsung	 eMMC	 implementation	 using	 an	 ARM
instruction	set	that	had	a	bug	requiring	a	firmware	updater	to	be	pushed	to	Android	devices,	indicating	yet
another	potentially	promising	venue	for	further	discovery.

Potential	Security	Issues
From	a	security	perspective,	our	findings	indicated	that	while	memory	cards	look	inert,	they	run	code	that
could	be	modified	to	perform	MITM	attacks	that	are	difficult	to	detect.	There’s	no	standard	protocol	or
method	to	inspect	and	attest	to	the	contents	of	the	code	running	on	the	memory	card’s	microcontroller.	If
you’re	using	an	SD	card	in	a	high-risk,	high-sensitivity	situation,	don’t	assume	that	running	a	security-erase
command	 (or	 some	other	 secure	erase	 tool)	on	a	card	will	guarantee	 the	complete	erasure	of	 sensitive
data.	 If	 you	 really	 need	 data	 to	 disappear,	 I	 recommend	 disposing	 of	 your	memory	 card	 through	 total
physical	destruction.	Grind	it	up	with	a	mortar	and	pestle	if	you	have	to.

A	Resource	for	Hobbyists
From	a	DIY	and	hacker	perspective,	our	findings	suggested	a	potentially	interesting	source	of	cheap	and
powerful	 microcontrollers	 for	 use	 in	 simple	 projects.	 An	 Arduino	 clone—with	 an	 8-bit,	 16	 MHz
microcontroller—will	set	you	back	around	$20.	A	microSD	card	with	several	gigabytes	of	memory	and	a



microcontroller	with	 several	 times	 the	 performance	 costs	 a	 fraction	 of	 the	 price.	While	 SD	 cards	 are
admittedly	I/O-limited,	some	clever	hacking	of	the	microcontroller	in	an	SD	card	could	make	for	a	very
economical	and	compact	data	logging	solution	for	I2C	or	SPI-based	sensors.

HACKING	HDCP-SECURED	LINKS	TO	ALLOW	CUSTOM
OVERLAYS
“That’s	neat,	but	is	it	legal?”	is	a	frequently	asked	question	I	get	when	hacking.	Just	as	engineered	systems
have	hacks,	legal	systems	have	loopholes.	Some	legal	loopholes	exist	by	design;	others	are	unintentional.
Either	way,	they	can	provide	vital	breathing	room	for	innovation.	When	contemplating	a	hack,	I	consider
legal	issues	as	I	do	engineering	constraints,	similar	to	having	to	fit	something	within	a	case	of	a	certain
height	or	run	for	a	certain	length	of	time	on	a	given	battery.
Around	2011,	when	I	was	still	at	Chumby,	we	were	puzzling	about	how	to	drive	adoption	in	the	face	of

the	 iPhone	 and	Android	 phones	 consuming	 the	market	 niche	we	 hoped	 to	 occupy.	Cost	was	 an	 eternal
barrier	for	user	adoption,	and	the	integral	LCD	in	a	chumby	was	by	far	the	highest-cost	item.	Our	then-
CEO,	Steve	Tomlin,	 observed	 that	 the	 biggest	 screen	 in	 the	 house	 had	 yet	 to	 become	 connected	 to	 the
internet	in	any	meaningful	way.	And	so	this	question	was	posed	to	me:	could	we	find	a	way	to	kill	two
birds	with	one	stone,	removing	the	screen	from	our	bill	of	materials	while	bringing	TVs	into	the	internet
age?	This	was	before	products	like	the	Google	Chromecast	or	the	Logitech	Revue	were	introduced	on	the
market.
It	occurred	to	us	that	we	could	pack	a	cheap	computer	into	a	stick	that	plugs	into	an	HDMI	port.	This

solves	the	problem	of	getting	chumby	onto	a	TV	screen,	but	then	you’re	not	watching	your	favorite	movies
or	TV	shows	when	the	chumby	is	selected.	We	figured	what	people	really	wanted	was	some	way	to	watch
TV	and	have,	say,	Twitter	or	Facebook	notifications	pop	up	onscreen,	too.
The	 concept	 is	 simple	 enough.	 Take	 the	 existing	 output	 from	 a	 cable	 box,	 Blu-ray	 player,	 or	 AV

receiver;	feed	it	into	a	box	that	blends	in	chumby	content;	and	pass	the	resulting	video	on	to	a	TV.	But	due
to	the	ubiquitous	application	of	HDCP	encryption	over	digital	video	feeds,	it	is	legally	perilous	to	remix
content	if	you	do	it	the	wrong	way.	Figuring	out	the	right	way	to	do	it	is	how	NeTV	was	born.

A	NeTV	sporting	the	Chumby	logo



Inside	the	NeTV

Background	and	Context
NeTV	was	my	 response	 to	 the	challenge	of	 remixing	existing	video	with	 internet	 content	while	 staying
within	legal	boundaries,	aided	by	the	public	release	of	the	master	key	to	HDCP	in	September	2010.	To
help	you	understand	this	hack,	let’s	start	with	a	little	background	on	HDCP.
High-bandwidth	Digital	Content	 Protection	 is	 a	 pixel-level	 encryption	 system	used	 to	 encrypt	 video

transmissions	 over	HDMI.	HDCP	puts	 broadcasters	 and	 studios	 in	 control	 of	 the	 screens	 their	 content
plays	 on,	 as	 those	 companies	 use	 the	 encryption	 as	 a	 copyright	 control	 mechanism.	 HDCP	 restricts
legitimate	content	manipulation	like	picture-in-picture	displays,	content	overlays,	and	third-party	filtering
and	 image	 modification.	 Combine	 HDCP	 with	 the	 DMCA,	 which	 criminalizes	 the	 circumvention	 of
copyright	control,	and	you’ll	realize	that	when	watching	certain	videos,	it’s	illegal	to	modify	content	on
your	 own	 screen.	 That’s	 why	 there	 are	 few	 HDMI	 video	 mixing	 solutions	 that	 actually	 operate	 on
broadcast	or	movie	content.
To	recap,	I	had	four	goals	for	NeTV:	enable	consumer-side	content	remixing,	allow	users	to	eliminate

ads	 or	 replace	 them	 with	 ads	 relevant	 to	 themselves,	 create	 an	 interactive	 TV	 experience,	 and	 make
something	compatible	with	any	TV.	To	accomplish	those	goals,	I	designed	NeTV	as	a	man	in	the	middle	to
take	data	from,	say,	a	Blu-ray	player,	and	apply	the	master	key	to	give	users	a	custom	overlay.	There	are
many	 applications	 for	 video	 overlays,	 but	 the	 basic	 scenario	 is	 that	while	 you’re	 enjoying	 content	X,
you’d	also	 like	 to	be	aware	of	content	Y.	Combining	 the	 two	content	 sources	 requires	a	video	overlay
mechanism.
With	my	MITM	attack,	NeTV	overlaid	a	WebKit	browser	(the	engine	Safari	and	Chrome	use)	over	any

video	feed.	A	concrete	use	case	for	this	technology	is	overlaying	Twitter	feeds	as	news	crawlers	across	a
TV	show	to	watch	community	commentary	in	real	time	on	the	same	screen	you’re	watching	the	show	on.
Some	TV	programs	attempt	to	incorporate	Twitter	feeds	already,	but	they’ve	only	done	so	on	the	source
side;	 users	 can	 only	 watch	 hashtags	 the	 show	 displays.	With	 this	 hack,	 however,	 the	 same	 broadcast
program	(say,	a	political	debate)	could	have	a	very	different	viewing	experience	based	on	which	hashtag
is	keyed	into	the	viewer’s	Twitter	crawler.
The	simple	fact	that	a	trivial	video	overlay	is	an	interesting	topic	illustrates	the	distortion	of	traditional

rights	and	 freedoms	brought	about	by	 the	DMCA.	Unlike	 the	HDCP	strippers	people	speculated	would



come	 out	 of	 the	 master	 key’s	 release,	 however,	 my	 hack	 never	 decrypted	 the	 original	 video	 data	 it
operated	on.	Thus,	it	didn’t	circumvent	copyright,	and	the	DMCA	couldn’t	apply	to	it.	Loophole	found!

How	NeTV	Worked
Of	 course,	 I	 released	 the	 exploit	 as	 an	 entirely	 open	 source	 project,*	 including	 the	 hardware	 and	 the
Verilog	 implementation	of	 the	Spartan-6	FPGA	I	used	 to	create	 the	TMDS-compatible	source	and	sink.
TMDS	is	the	signaling	standard	used	by	HDMI	and	DVI.	The	basic	pipeline	within	the	FPGA	deserializes
incoming	video	and	reserializes	it	to	the	output.	In	this	trivial	mode,	NeTV	is	simply	a	signal	amplifier	for
the	video:	encrypted	pixels	in,	encrypted	pixels	out—no	decryption	and	no	video	manipulation.
NeTV	could	mix	a	user-generated	content	stream	over	an	encrypted	video	feed	because	HDCP	encrypts

without	validation.	In	other	words,	if	a	man	in	the	middle	tampers	with	the	encrypted	feed,	the	receiver
simply	accepts	the	tampered	pixels	as	valid	data,	decrypts	them,	and	presents	them	to	the	user.	The	lack	of
link	verification	is	intentional	and	necessary.	The	natural	bit	error	rate	of	HD	video	links	is	atrocious,	but
the	human	eye	won’t	detect	bit	errors	even	on	 the	 level	of	1	 in	every	10,000	bits.	 (At	high	error	 rates,
users	see	a	“sparkle”	or	“snow”	on	the	screen,	but	the	image	is	largely	intact.)	Allowing	some	pixel-level
corruption	 keeps	 consumer	 costs	 low.	Otherwise,	much	higher-quality	 cables	would	 be	 required	 along
with	 FEC	 techniques	 to	 achieve	 a	 bit	 error	 rate	 compatible	 with	 strict	 cryptographic	 verification
techniques	like	full-frame	hashing.
Thus,	NeTV’s	prime	challenge	is	to	derive	a	keystream	identical	and	synchronized	to	the	transmitter’s

keystream,	encrypt	the	user-generated	content	with	this	keystream,	and	selectively	swap	the	transmitter’s
pixels	on	the	fly	for	user-encrypted	pixels.	If	everything	lines	up,	the	receiver	will	decrypt	an	image	that
appears	to	be	a	perfect	overlay	of	user-generated	content	on	top	of	the	original	video	feed.

A	high-level	conceptual	diagram	of	how	NeTV	worked

CREATING	THE	OVERLAY
To	generate	the	user	overlay	content,	we	connected	a	tiny	embedded	Linux	computer	to	an	FPGA.	From
the	Linux	computer’s	standpoint,	the	FPGA	emulates	a	parallel	RGB	LCD	that	you	can	access	by	using	the
frame	 buffer	 at	 /dev/fb0	 (the	 filepath	 for	 the	 first	 frame	 buffer	 in	 Linux).	 The	 Linux	 computer	 would



automatically	launch	a	WebKit	browser	full-screen	at	boot,	thus	filling	/dev/fb0	with	the	user’s	content.
The	system	selected	which	pixel	to	swap	by	observing	the	color	of	the	WebKit	overlay’s	video,	a	trick

known	as	chroma	keying.	The	overlay	video	wasn’t	encrypted	and	was	generated	by	the	user,	so	looking
at	the	color	of	the	overlay	video	was	perfectly	legal.	Other	more	expressive	and	aesthetically	appealing
pixel-combining	 methods	 like	 alpha	 blending,	 however,	 would	 have	 required	 decrypting	 the	 original
video,	which	would	have	been	illegal.
If	the	overlay	video	matched	a	certain	chroma	key	color	(in	this	case,	a	specific	shade	of	bright	pink),

the	 incoming	video	was	displayed;	otherwise,	 the	overlay	video	was	displayed.	Following	this	system,
users	could	create	transparent	“holes”	in	the	custom	UI	to	show	the	original	video	underneath.	Since	the
UI	 was	 rendered	 by	 a	 WebKit	 browser,	 users	 could	 implement	 chroma	 keying	 by	 simply	 setting	 the
background	color	in	the	CSS	of	the	UI	pages	to	that	magic	shade	of	pink.	With	those	settings,	the	default
state	of	a	web	page	would	be	transparent,	and	all	items	rendered	on	top	of	it	were	opaque,	so	long	as	the
UI	elements	avoided	the	chroma	key	color	and	turned	off	enhancements	like	anti-aliasing.

CRAFTING	A	KEYSTREAM
Of	course,	 the	 chroma	keying	happened	 in	 the	 encrypted	domain.	Thus,	 the	FPGA’s	 second	 job	was	 to
snoop	the	HDMI	link	and	craft	a	keystream	identical	to	the	transmitter’s.	First,	the	FPGA	observed	an	I2C
link	 found	on	HDMI	known	as	 the	data	display	channel	 (DDC).	The	DDC	enables	monitors	 to	 report
their	 capability	 records	 (called	extended	display	 identification	data,	 or	EDID)	 and	 is	 also	where	 the
encryption	keys	are	exchanged.
By	 observing	 the	 key	 exchange	 handshake	 between	 the	 transmitter	 and	 the	 receiver,	 NeTV	 could

mathematically	extract	the	transmitter’s	and	receiver’s	private	keys	with	the	help	of	the	HDCP	master	key.
Once	the	private-key	vectors	were	derived,	they	could	be	multiplied	exactly	as	they’d	be	in	the	source	or
sink	to	derive	the	shared	secret,	called	Km.	When	that	shared	secret	was	written	into	the	FPGA’s	HDCP
engine,	 the	 cipher	 state	was	 ready	 to	 go,	 allowing	NeTV	 to	 encrypt	 overlays	 on	 the	 video	 transmitted
between	the	video	source	and	the	video	display	device.
By	 considering	 legal	 constraints	 as	 just	 another	 engineering	 constraint,	 I	 was	 able	 to	 create	 a

completely	new	device	that	proves	a	point:	it’s	incorrect	to	automatically	equate	hacks	that	work	around	a
DRM	system	with	attempts	to	circumvent	copyright.	NeTV	never	decrypts	previously	encrypted	video	and
can’t	operate	without	an	existing,	valid	HDCP	link,	making	it	a	bona	fide,	non-infringing,	commercially
useful	application	of	the	HDCP	master	key.



A	more	detailed	block	diagram	showing	how	NeTV’s	FPGA	worked

So	far	in	this	chapter,	we’ve	seen	examples	of	different	hardware	hacking	approaches	and	techniques,
from	 physical	 penetration	 to	 system-level	 tool	 building	 and	 analysis	 to	 treating	 legal	 constraints	 as
engineering	 problems.	 In	 “Who	Are	 the	 Shanzhai?”	 on	 page	 122,	 I	 discussed	 the	 legal	 approach	 of	 a
project,	codenamed	Fernvale,	 to	 reverse	engineer	a	mobile	phone	chipset.	 In	addition	 to	 thinking	about
law	as	engineers,	xobs	and	I	had	to	pull	out	all	the	stops	and	apply	every	technical	skill	at	our	disposal	to
reverse	engineer	such	a	complex	system.	The	rest	of	this	chapter	dives	into	some	of	these	techniques.



HACKING	A	SHANZHAI	PHONE
When	xobs	and	I	worked	on	Fernvale,	our	goal	was	to	make	a	new	platform	derived	from	the	hardware	in
my	$12	gongkai	 phone	 and	 repatriate	 technical	 information	 into	 the	open	 source	 IP	 system.	We	had	no
documentation	whatsoever	for	some	parts	of	the	chip	we	wanted	to	reverse,	but	that	didn’t	deter	us.	We
navigated	 complex	 legal	waters	 and	 created	 our	 own	 custom	 scripting	 language	 to	 program	 the	 chip’s
firmware	to	avoid	subconscious	plagiarism.
Compared	to	the	firmware,	 though,	the	hardware	reverse-engineering	task	was	fairly	straightforward.

The	 documents	 we	 scavenged	 gave	 us	 a	 notion	 of	 the	 chip’s	 pinout,	 and	 the	 pin	 naming	 scheme	 was
sufficiently	descriptive	that	I	could	apply	common	sense	and	experience	to	guess	how	to	connect	the	chip.
For	ambiguous	areas,	I	buzzed	out	some	stripped-down	phones	with	a	multimeter	or	stared	at	them	under
a	microscope	to	determine	connectivity.	In	the	worst	cases,	I’d	probe	a	live	phone	with	an	oscilloscope	to
make	sure	 I	understood	 the	connections	correctly.	The	more	difficult	question	was	how	 to	architect	 the
hardware.

The	System	Architecture
We	weren’t	gunning	to	build	a	phone,	but	rather	something	closer	to	Particle’s	Spark	Core	(since	reborn
as	 the	Photon),	 a	generic	System-on-Module	 type	of	 single-board	 computer	built	 for	 Internet	 of	Things
applications.	In	fact,	our	original	renderings	and	pinouts	were	designed	to	be	compatible	with	the	Spark
ecosystem	of	hardware	extensions,	until	we	 realized	 the	gongkai	phone’s	MT6260	microcontroller	 just
had	too	many	interesting	peripherals	to	fit	into	such	a	small	footprint.



Early	sketches	of	the	Fernvale	PCB

We	settled	eventually	on	a	single-sided	core	PCB	that	we	called	the	Fernvale	Frond,	which	embedded
the	microUSB,	microSD,	battery,	camera,	speaker,	and	Bluetooth	functionality	(as	well	as	the	obligatory



buttons	and	LED)	on	one	board.	The	Frond	turned	out	slim	and	small,	at	3.5	mm	thick,	57	mm	long,	and	35
mm	wide.	We	 included	 holes	 to	mount	 a	 partial	 set	 of	 pin	 headers,	 spaced	 for	Arduino	 compatibility,
although	the	board	could	only	be	plugged	into	3.3	V–compatible	Arduino	devices.

The	actual	implementation	of	the	Fernvale	Frond,	pictured	with	an	Arduino	Uno	for	size	reference

We	broke	the	remaining	peripherals	out	to	a	pair	of	connectors:	one	dedicated	to	GSM-related	signals
(GSM	is	the	protocol	for	2G	cell	phone	networks)	and	the	other	to	UI-related	peripherals.	We	called	the
GSM	board	the	Fernvale	Spore	and	the	UI	board	the	Fernvale	Blade.	We	split	GSM	into	a	module	with
many	 choices	 for	 the	 RF	 frontend	 to	 make	 GSM	 a	 bona	 fide	 user-installed	 feature,	 thus	 pushing	 the
regulatory	 and	 emissions	 issue	 down	 to	 the	 user	 level.	 Splitting	 the	UI-related	 features	 out	 to	 another
board	also	reduced	the	cost	of	the	core	module	and	let	users	try	the	Frond	in	numerous	scenarios	without
being	locked	into	a	particular	LCD	or	button	arrangement.



A	Fernvale	system	diagram,	showing	the	features	of	each	of	the	three	boards

Inside	the	MT6260
I	had	some	X-rays	taken	of	the	MT6260	to	help	us	identify	fake	components.	We	had	to	source	our
MT6260s	 on	 the	 gray	market,	 and	we	wanted	 to	 guard	 against	 being	 sold	 empty	 epoxy	 blocks	 or



remarked	versions	of	other	chips.	The	MT6260	has	-DA	and	-A	variants,	where	the	difference	is	how
much	on-chip	flash	memory	is	included.

An	X-ray	of	the	MT6260	chip.
Look	carefully	to	spot	outlines	of	multiple	ICs	among	the	wire	bonds.

To	our	surprise,	this	$3	chip	didn’t	contain	a	single	IC,	but	rather	a	set	of	at	least	four	(possibly
five)	chips	 integrated	 into	a	 single	multichip	module	 (MCM)	containing	hundreds	of	wire	bonds.	 I
remember	 back	 when	 the	 Pentium	 Pro’s	 dual-die	 package	 came	 out	 in	 the	 late	 1990s.	 It	 sparked
arguments	 over	 yield	 costs	 of	 MCMs	 versus	 using	 a	 single	 big	 die;	 generally,	 MCMs	 were
considered	exotic	and	expensive.
I	 also	 remember	 at	 the	 same	 time	 Krste	 Asanović,	 then	 a	 professor	 at	 the	 MIT	 Artificial

Intelligence	Lab	and	later	at	UC	Berkeley,	told	me	that	the	future	of	electronics	wasn’t	system-on-a-
chip	 devices,	 but	 rather	 “system-mostly-on-a-chip”	 devices.	 The	 root	 of	 his	 claim	 was	 that	 the
economics	 of	 adding	 in	mask	 layers	 to	merge	DRAM,	 flash,	 analog,	RF,	 and	 digital	 into	 a	 single
process	 wasn’t	 favorable;	 bonding	multiple	 dies	 together	 into	 a	 single	 package	 was	 cheaper	 and
easier.
It’s	 still	 a	 race	 between	 the	 cost	 impact	 (in	 terms	 of	 both	 the	 per-unit	 cost	 and	 nonrecurring

engineering	 costs)	 of	 adding	 more	 process	 steps	 in	 the	 semiconductor	 fab,	 and	 the	 yield	 impact,
relative	reworkability,	and	lower	nonrecurring	engineering	cost	of	assembling	modules.	Single-chip,
System-on-Chip	devices	were	the	zeitgeist	when	Krste	made	that	observation	and	they	still	kind	of
are,	so	it	was	interesting	to	see	a	significant	data	point	validating	his	insight.
Understanding	the	internal	structure	of	the	chip	was	also	helpful	in	reverse	engineering	the	system.

Knowing	that	MediaTek	was	simply	combining	several	chips	together	in	a	single	package	shed	much-
needed	light	on	the	purpose	and	organization	of	their	APIs.	It	also	tipped	us	off	that	certain	elements
of	 the	system	would	be	 reused	across	several	product	categories	and	generations,	 so	we	knew	we
could	 draw	 meaningful	 conclusions	 from	 documentation	 on	 older	 or	 related	 chips.	 When	 you’re
piecing	together	a	puzzle	this	complex,	every	clue	helps,	including	those	gained	by	just	looking	at	the



physical	structure	of	the	chip.

Reverse	Engineering	the	Boot	Structure
Shanzhai	engineers	in	China	seem	to	have	access	to	just	enough	documentation	to	assemble	a	phone	and
customize	its	UI,	but	not	enough	to	do	a	full	OS	port.	After	looking	at	enough	phones,	I	eventually	realized
that	all	phones	based	on	a	particular	chipset	will	have	the	same	backdoor	codes,	and	their	GUIs	are	often
inconsistent	 with	 the	 implemented	 hardware.	 For	 example,	 the	 $12	 phone	 I	 tore	 down	 in	 Chapter	 4
prompted	 me	 to	 plug	 headphones	 into	 the	 headphone	 jack	 for	 the	 FM	 radio	 to	 work,	 yet	 it	 has	 no
headphone	jack.
To	 make	 Fernvale	 accessible	 to	 engineers	 in	 the	 West	 through	 open	 source	 licensing,	 we	 had	 to

reconstruct	everything	from	scratch,	 including	 the	 toolchain,	 the	firmware	flashing	 tool,	 the	OS,	and	 the
applications.	 But	 all	 the	 Chinese	 phone	 implementations	 simply	 relied	 on	 MediaTek’s	 proprietary
toolchain,	meaning	we	had	to	do	some	reverse	engineering	to	figure	out	 the	boot	process	and	firmware
upload	protocol.
My	first	step	in	reversing	a	chip	is	always	to	dump	the	ROM,	if	possible.	We	found	exactly	one	phone

model	with	an	external	ROM	that	we	could	desolder	(it	used	the	-D	ROMless	variant	of	the	chip),	and	we
read	its	data	using	a	conventional	ROM	reader.	We	saw	very	little	ciphertext	in	the	ROM,	but	there	was	a
lot	of	compressed	data.	Here	is	a	page	from	our	notes	after	we	did	a	static	analysis	on	the	ROM	image:

0x0000_0000	media	signature	"SF_BOOT"
0x0000_0200	bootloader	signature	"BRLYT",	"BBBB"
0x0000_0800	sector	header	1	("MMM.8")
0x0000_09BC	reset	vector	table
0x0000_0A10	start	of	ARM32	instructions
–	stage	1	bootloader?
0x0000_3400	sector	header	2	("MMM.8")
–	stage	2	bootloader?
0x0000_A518	thunk	table	of	some	type
0x0000_B704	end	of	code	(padding	until	next	sector)
0x0001_0000	sector	header	3(	"MMM.8")	–	kernel?
0x0001_0368	jump	table	+	runtime	setup	(stack,	etc.)
0x0001_0828	ARM	thumb	code	start	–	possibly	also
baseband	code
0x0007_2F04	code	end
0x0007_2F05	begin	padding	"DFFF"
0x0009_F005	end	padding	"DFFF"
0x0009_F006	code	section	begin	"Accelerated
Technology	/	ATI	/	Nucleus	PLUS"
0x000A_2C1A	code	section	end;	pad	with	zeros
0x000A_328C	region	of	compressed/unknown	data	begin
0x007E_E200	modified	FAT	partition	#1
0x007E_F400	modified	FAT	partition	#2

The	hexadecimal	numbers	on	 the	 left	are	memory	addresses,	and	 the	 text	on	 the	right	describes	what
xobs	and	I	thought	was	stored	at	each	address.	One	concern	about	reverse	engineering	an	SoC	is	it	has	an
internal	boot	ROM	that	always	runs	before	code	is	 loaded	from	an	external	device.	That	internal	ROM
can	also	have	signature	and	security	checks	that	prevent	tampering	with	the	external	code.
To	determine	how	hard	reverse	engineering	this	system	would	be,	we	wanted	to	quickly	figure	out	how

much	 code	 was	 running	 inside	 the	 CPU	 before	 jumping	 to	 external	 boot	 code.	 A	 Tek	 MDO4104B-6
oscilloscope	let	us	accomplish	that	task	in	just	a	couple	of	hours.



Screenshot	from	the	Tek	MDO4104B-6.
The	top	quarter	shows	a	zoomed-out	view	of	the	entire	capture.

Notice	how	the	SPI	ROM	accesses	are	punctuated	with	console	output.

This	 particular	 oscilloscope	has	 the	 uncanny	 ability	 to	 perform	post-capture	 analysis	 on	deep,	 high-
resolution	analog	traces	and	output	the	result	as	digital	data.	For	example,	we	could	simply	probe	around
the	 chip	 with	 a	 multimeter	 while	 cycling	 power	 until	 we	 saw	 something	 that	 looked	 like	 an	 RS-232
encoded	signal,	and	then	run	a	post-capture	analysis	to	extract	any	ASCII	text	that	was	coded	in	the	analog
traces.	Likewise,	if	we	captured	SPI	traces,	the	oscilloscope	could	extract	ROM	access	patterns	through	a
similar	method.	By	looking	at	the	timing	of	text	emissions	versus	SPI	ROM	address	patterns,	we	quickly
determined	that	if	the	internal	boot	ROM	did	any	verification,	it	was	minimal	and	nothing	approaching	the
computational	complexity	of	RSA	encryption.
From	there,	we	needed	to	speed	up	our	measure-modify-test	loop.	Desoldering	the	ROM,	sticking	it	in

a	burner,	and	resoldering	it	to	the	board	were	going	to	get	old	really	fast.	Fortunately,	we’d	implemented
a	 NAND	 flash	 ROM	 emulator	 (we	 lovingly	 shortened	 that	 to	 ROMulator)	 on	 Novena,	 which	 we
previously	 used	 to	 reverse	 engineer	 the	 AX211	 contained	 in	 certain	 SD	 cards.	 We	 just	 reused	 that
codebase	and	made	an	SPI	ROMulator.	We	hacked	up	a	GPBB	and	its	corresponding	FPGA	code	to	add
the	ability	to	swap	between	the	original	boot	SPI	ROM	and	a	dual-ported	64kiB	emulator	region	that	was
also	memory-mapped	into	 the	Novena	Linux	host’s	address	space.	Then,	we	plugged	the	phone	into	 the



laptop	and	put	the	ROMulator	to	work.

A	block	diagram	of	the	SPI	ROMulator	FPGA



There’s	a	phone	in	my	Novena!	What’s	that	doing	there?

With	 the	 address	 stream	 determined	 by	 the	 Tek	 oscilloscope,	 some	 rapid	 ROM	 patching	 by	 the
ROMulator,	and	hints	of	a	SHA-1	function	existing	in	the	ROM	via	a	static	code	analysis	using	IDA,	we
determined	 that	 the	 initial	 bootloader	 (which	 we	 called	 the	 1bl),	 was	 hash-checked	 using	 a	 SHA-1
appendix.

NOTE

The	assembly	for	a	hash	function	tends	to	have	a	very	distinctive	shape,	or	set	of	instructions,	and
a	given	hash	also	has	some	amount	of	magic	numbers	unique	to	it.	Given	those	facts,	when	trying
to	reverse	an	authentication	method,	one	of	the	first	things	a	hacker	does	is	use	IDA	to	search	for
such	constants	near	a	function	with	the	shape	of	the	hash	function	in	question.

Building	a	Beachhead
The	next	step	was	to	create	a	small	interactive	shell	we	could	use	as	a	beachhead	for	running	experiments
on	the	target	hardware.	Just	as	he	did	for	the	SD	card	reverse	engineering	project,	xobs	created	a	compact
REPL	 environment,	 called	Fernly,	 that	 supported	 commands	 like	 peeking	 at	memory,	writing	 data,	 and
dumping	CPU	registers.
Designing	the	ROMulator	to	make	the	emulated	ROM	appear	as	a	64kiB	memory-mapped	window	on	a

Linux	host	enabled	useful	POSIX	abstractions	like	the	mmap()	function,	the	open()	function	(via	/dev/mem),
the	 read()	 function,	 and	 the	write()	 function	 to	 access	 the	 emulated	ROM.	 xobs	 used	 these	 abstractions	 to
create	an	I/O	target	for	radare2,	a	portable	reverse	engineering	framework.	The	I/O	target	automatically
updated	the	SHA-1	hash	every	time	we	made	changes	in	the	1bl	code	space.	With	that	system	in	place,	we
could	do	cute	things	like	interactively	patch	and	disassemble	code	within	the	emulated	ROM	space.



Patching	some	code	in	the	ROM

We	also	wired	up	the	power	switch	of	the	phone	to	an	FPGA	I/O.	That	allowed	us	to	write	automated
scripts	that	toggled	the	power	on	the	phone	while	updating	the	ROM	contents	so	we	could	automatically
fuzz	unknown	hardware	blocks.

Attaching	a	Debugger
We	had	to	take	an	unconventional	approach	to	attach	a	debugger	to	the	code	in	the	ROM,	because	locating
critical	blocks	was	difficult,	and	JTAG	was	multiplexed	with	critical	functions	on	the	target	device.	xobs
emulated	the	ARM	core	and	used	his	Fernly	shell	to	reflect	virtual	loads	and	stores	to	the	live	target.	We
were	 able	 to	 attach	 a	 remote	 debugger	 to	 the	 emulated	 core	 that	 way,	 bypassing	 the	 need	 for	 JTAG
entirely.	That	also	let	us	use	cross-platform	tools	like	IDA	on	x86	for	the	reversing	UI.
At	the	heart	of	this	debugging	technique	was	QEMU,	a	multiplatform	system	emulator.	QEMU	supports

emulating	ARM	 targets,	 specifically	 the	ARMv5	 chip	 our	 target	 device	 used.	We	made	 a	 new	 virtual
machine	type,	called	Fernvale,	that	implemented	part	of	the	observed	hardware	on	the	target	and	simply
passed	unknown	memory	accesses	directly	to	the	device.
The	Fernly	shell	was	stripped	down	to	support	only	 three	commands:	write,	 read,	and	zero-memory.

The	write	command	pokes	a	byte,	word,	or	dword	of	data	into	RAM	on	the	live	target.	A	read	command
reads	a	byte,	word,	or	dword	from	the	live	target.	The	zero-memory	command	is	an	optimization,	as	the
operating	system	writes	large	quantities	of	zeros	across	a	large	memory	area.



We	also	hooked	and	emulated	the	serial	port	registers,	allowing	a	host	system	to	display	serial	data	as
if	it	were	printed	on	the	target	device.	Finally,	we	emulated	SPI,	IRAM,	and	PSRAM	as	they’d	appear	on
the	 real	 device.	 Other	 areas	 of	memory	were	 either	 trapped	 and	 funneled	 to	 the	 actual	 device	 or	 left
unmapped	and	reported	as	errors	by	QEMU.

The	architecture	of	the	debugger

Invoking	the	debugger	was	a	multistage	process.	First,	we	primed	the	actual	MT6260	target	with	 the
Fernly	shell	environment.	Then,	we	booted	the	QEMU	virtual	ARM	CPU	with	a	version	of	the	original
vendor	image	primed	with	a	known	register	state	at	a	convenient	point	in	the	boot	process.	At	this	point,
code	 execution	 proceeded	 on	 the	 virtual	machine	 until	 a	 load	 or	 store	was	 performed	 to	 an	 unknown
address.	 On	 that	 load	 or	 store,	 virtual	 machine	 execution	 paused	 while	 a	 query	 was	 sent	 to	 the	 real
MT6260	via	the	Fernly	shell	interface.	The	load	or	store	was	then	executed	on	the	real	machine,	which
would	relay	the	results	of	the	load	or	store	to	the	virtual	machine	so	execution	could	resume.
We	couldn’t	 run	Fernly	directly	from	the	SPI	ROM	because	 the	vendor	binary’s	 initialization	routine

modified	 SPI	 ROM	 timings.	 But	 of	 course	 Fernly	 would	 have	 crashed	 if	 a	 store	 happened	 to	 land
somewhere	inside	its	memory	footprint.	To	avoid	the	possibility	of	a	load	or	store	overwriting	the	Fernly



shell	code,	we	hid	the	code	in	a	region	of	IRAM	that	was	trapped	and	emulated.	Emulating	the	target	CPU
let	us	attach	a	remote	debugger	like	IDA	via	GDB	over	TCP.	The	debugger	had	complete	control	over	the
emulated	 CPU	 and	 could	 access	 its	 emulated	 RAM.	 Here	 is	 an	 example	 of	 the	 output	 of	 the	 hybrid
QEMU/live-target	debug	harness.

bunnie@bunnie-novena-laptop:~/code/fernvale-qemu$	./run.sh

~~~	Welcome	to	MTK	Bootloader	V005	(since	2005)	~~~
**===================================================**

READ	WORD	Fernvale	Live	0xa0010328	=	0x0000...	ok
WRITE	WORD	Fernvale	Live	0xa0010328	=	0x0800...	ok
READ	WORD	Fernvale	Live	0xa0010230	=	0x0001...	ok
WRITE	WORD	Fernvale	Live	0xa0010230	=	0x0001...	ok
READ	DWORD	Fernvale	Live	0xa0020c80	=	0x11111011...	ok
WRITE	DWORD	Fernvale	Live	0xa0020c80	=	0x11111011...	ok
READ	DWORD	Fernvale	Live	0xa0020c90	=	0x11111111...	ok
WRITE	DWORD	Fernvale	Live	0xa0020c90	=	0x11111111...	ok
READ	WORD	Fernvale	Live	0xa0020b10	=	0x3f34...	ok
WRITE	WORD	Fernvale	Live	0xa0020b10	=	0x3f34...	ok

This	output	shows	the	trapped	serial	writes	appearing	on	the	console,	plus	a	log	of	the	writes	and	reads
executed	by	the	emulated	ARM	CPU	as	 they	were	relayed	to	 the	 live	 target	running	the	reduced	Fernly
shell.	This	was	our	beachhead.
From	there,	xobs	and	I	discovered	the	offsets	of	a	few	IP	blocks	that	were	reused	from	previous	known

MediaTek	 chips	 by	 searching	 for	 their	 “signature”	 in	memory.	 A	 signature	 could	 be	 as	 simple	 as	 the
power-on	default	register	values,	or	something	more	complex,	like	changes	in	bit	patterns	due	to	the	side
effects	of	bit	set	or	clear	registers	located	at	offsets	within	the	IP	block’s	address	space.	Following	the
signatures	helped	us	find	the	register	offsets	of	several	peripherals	and	generate	a	memory	map.

Starting	AddressEnding	AddressSize	of	RegionDescription
0x00000000 0x0fffffff 0x0fffffff PSRAM	map,	repeated	and	mirrored	at	0x00800000	offsets

0x10000000 0x1fffffff 0x0fffffff Memory-mapped	SPI	chip

?????????? ?????????? ?????????? ????????????????????????????????

0x70000000 0x7000cfff 0xcfff On-chip	SRAM	(maybe	cache?)

?????????? ?????????? ?????????? ????????????????????????????????

0x80000000 0x80000008 0x08 Config	block	(chip	version,	etc.)

0x82200000 ?????????? ?????????? 	
0x83000000 ?????????? ?????????? 	
0xa0000000 0xa0000008 0x08 Config	block	(mirror?)

0x10010000 ?????????? ?????????? (?SPI	mode?)	????????????????????

0x10020000 0xa0020e10 0x0e10 GPIO	control	block

0xa0030000 0xa0030040 0x40 WDT	block

	 	 	 +	0x08	->	WDT	register	(?)
+	0x18	->	Boot	src	(?)

0xa0030800 ?????????? ?????????? ????????????????????????????????

0xa0040000 ?????????? ?????????? ????????????????????????????????

0xa0050000 ?????????? ?????????? ????????????????????????????????



0xa0060000 ?????????? ?????????? ??	Possible	IRQs	at	0xa0060200	??

0xa0070000 ========== ========== ==	Empty	(all	zeroes)	===========

0xa0080000 0xa008005c 0x5c UART1	block

0xa0090000 0xa009005c 0x5c UART2	block

0xa00a0000 ?????????? ?????????? ?????????????????????????????????

This	memory	map	shows	what	content	is	stored	at	different	address	ranges	on	the	chip.	For	instance,
the	 second	 address	 range	 in	 the	 map	 (0x10000000	 to	 0x1FFFFFFF)	 consisted	 of	 0x0FFFFFFF	 bytes
corresponding	to	a	memory-mapped	SPI	chip.

Booting	an	OS
After	 finding	 the	 register	offsets,	we	progressed	 rapidly	on	many	 fronts,	but	our	goal	 (to	port	NuttX,	a
BSD-based	real-time	operating	system,	to	the	device)	remained	elusive.	There	was	no	documentation	on
the	 interrupt	controller	within	 the	canon	of	shanzhai	datasheets.	We	found	 the	 routines	 that	 installed	 the
interrupt	handlers	through	static	analysis	of	the	binaries,	but	we	couldn’t	determine	the	address	offsets	of
the	interrupt	controller	itself.
All	 we	 could	 do	 was	 open	 the	MediaTek	 codebase	 and	 refer	 to	 the	 header	 file	 that	 contained	 the

register	offsets	and	bit	definitions	of	the	interrupt	controller.	This	fit	within	our	self-imposed	limitations
to	not	breach	copyright,	because	 facts	 are	not	 copyrightable.	 I	describe	 the	 legal	 reasoning	behind	 this
idea	in	Chapter	4,	under	“Dealing	with	Copyrights”	on	page	138.	After	looking	up	those	facts,	we	created
our	own	custom	scripting	language,	called	Scriptic,	to	avoid	unconsciously	plagiarizing	anything	from	the
existing	codebase.

Building	a	New	Toolchain
Requiring	users	to	own	a	Novena	ROMulator	to	hack	on	Fernvale	wasn’t	a	scalable	solution,	however.
To	 round	 out	 the	 story,	we	 created	 a	 complete	 developer	 toolchain.	 The	 compiler	was	 fairly	 cut-and-
dried;	many	 standard	 compilers	 support	ARM	as	 a	 target,	 including	 clang	 and	GCC.	But	making	 open
tools	for	flashing	the	MT6260	was	much	trickier.	All	the	existing	tools	we	knew	supported	the	protocol
version	 required	 by	 the	MT6260	were	 proprietary	Windows	 programs.	 That	meant	we	 had	 to	 reverse
engineer	the	MediaTek	flashing	protocol	and	write	our	own	open	source	tool.
Fortunately,	a	blank,	unfused	MT6260	shows	up	as	/dev/ttyUSB0	when	you	plug	it	into	a	Linux	host.	In

other	words,	it	shows	up	as	an	emulated	serial	device	over	USB.	That	took	care	of	the	lower-level	details
of	sending	and	receiving	bytes	to	the	device,	leaving	us	to	reverse	engineer	the	protocol	layer.
xobs	located	the	internal	boot	ROM	of	the	MT6260	and	performed	static	code	analysis	to	learn	more

about	the	protocol.	He	also	did	some	static	analysis	on	MediaTek’s	flashing	tool	and	captured	live	traces
using	a	USB	protocol	analyzer	 to	clarify	 the	remaining	details.	Here	 is	a	summary	of	 the	commands	he
extracted,	as	we	used	in	our	open	version	of	the	USB	flashing	tool.

enum	mtk_commands	{
mtk_cmd_old_write16	=	0xa1,
mtk_cmd_old_read16	=	0xa2,
mtk_checksum16	=	0xa4,
mtk_remap_before_jump_to_da	=	0xa7,
mtk_jump_to_da	=	0xa8,
mtk_send_da	=	0xad,
mtk_jump_to_maui	=	0xb7,



mtk_get_version	=	0xb8,
mtk_close_usb_and_reset	=	0xb9,
mtk_cmd_new_read16	=	0xd0,
mtk_cmd_new_read32	=	0xd1,
mtk_cmd_new_write16	=	0xd2,
mtk_cmd_new_write32	=	0xd4,
//	mtk_jump_to_da	=	0xd5,
mtk_jump_to_bl	=	0xd6,
mtk_get_sec_conf	=	0xd8,
mtk_send_cert	=	0xe0,
mtk_get_me	=	0xe1,	/*	Responds	with	22	bytes	*/
mtk_send_auth	=	0xe2,
mtk_sla_flow	=	0xe3,
mtk_send_root_cert	=	0xe5,
mtk_do_security	=	0xfe,
mtk_firmware_version	=	0xff,
};

This	 is	 just	 a	 C	 enum	 structure,	making	 it	 a	 very	 geeky	way	 of	 specifying	 a	mapping	 of	 numbers	 to
command	meanings.	For	example,	mtk_cmd_old_write16	is	command	0xA1,	mtk_command_old_read16	 is	command
0xA2,	and	so	on.

Fernvale	Results
After	 about	 a	 year	 of	 on-and-off	 effort	 between	work	 on	 the	Novena	 and	Chibitronics	 campaigns,	we
were	able	to	boot	a	port	of	NuttX	on	the	MT6260,	supporting	a	minimal	set	of	hardware	peripherals.	It
was	enough	for	us	to	roughly	reproduce	the	functionality	of	an	AVR	used	in	an	Arduino-like	context,	but
not	much	more.
xobs	and	I	presented	our	results	at	the	31st	Chaos	Communication	Congress	(CCC),	and	events	actually

took	 an	 unexpected	 twist	 as	 we	 wrote	 our	 proposal.	 The	 week	 before	 submission,	 we	 learned	 that
MediaTek	released	the	LinkIT	ONE	development	platform,	based	on	the	MT2502A,	in	conjunction	with
Seeed	Studios.	The	LinkIT	ONE	is	an	Internet	of	Things	platform	made	for	entrepreneurs	and	hobbyists.
It’s	integrated	into	the	Arduino	framework	and	features	an	open	API	that	enables	the	full	functionality	of
the	chip,	including	GSM	functions.	But	the	core	OS	that	boots	on	the	MT2502A	in	the	LinkIT	ONE	is	still
proprietary,	 and	 you	 can’t	 access	 the	 hardware	 without	 going	 through	 the	 API	 calls	 provided	 by	 the
Arduino	shim.
Realistically,	it’s	still	going	to	be	a	while	before	we	can	port	a	reasonable	fraction	of	the	MT6260’s

features	 into	 the	 open	 source	 domain.	 It’s	 quite	 possible	 we’ll	 never	 be	 able	 to	 do	 a	 blob-free
implementation	of	the	GSM	call	functions,	as	those	are	controlled	by	a	DSP	unit	that’s	even	more	obscure
and	 undocumented	 than	 the	 MT6260.	 Given	 the	 robust	 functionality	 of	 the	 LinkIT	 ONE	 compared	 to
Fernvale,	we	decided	to	leave	the	question	of	whether	there	was	value	in	continuing	the	effort	to	reverse
engineer	 the	MT6260	 to	 the	 open	 source	 community.	 In	 the	 end,	 there	was	 a	 lot	 of	 enthusiasm	 for	 the
project,	but	not	a	lot	of	action.	The	LinkIT	ONE’s	introduction	took	a	lot	of	wind	out	of	the	sails	of	the
Fernvale	project,	which	has	since	been	effectively	retired.
This	is,	in	fact,	the	fate	of	most	open	source	projects.	There	are	dozens,	if	not	hundreds,	of	open	source

operating	systems	but	only	one	Linux.	The	truth	is	 that	 there	are	far	more	interesting	ideas	than	capable
developers	to	execute	them.	For	an	open	source	project	to	catch	fire	and	become	self-sustaining,	it	has	to
not	only	pass	 the	minimum	viable	product	 (MVP)	stage	but	also	meet	a	 receptive	audience	with	a	 real
need	for	 the	project.	Sometimes	your	project	strikes	a	chord,	and	a	huge	community	pushes	 it	 forward.
Other	times,	you	get	a	lot	of	nice,	helpful	onlookers	who	nod	appreciatively	but	are	unwilling	or	too	busy
with	day	jobs	to	jump	in.	And	still	other	times,	you	yell	into	a	void	or,	worse,	get	torn	to	shreds	on	some



internet	forum	about	how	flawed	and	pointless	your	project	is.

CLOSING	THOUGHTS
Given	the	nature	of	open	source	projects,	I	 tend	to	take	a	page	from	my	startup	days	and	follow	a	“fail
forward	fast”	philosophy.	Try	a	bunch	of	different	things,	see	what	sticks,	learn	from	your	mistakes,	and
try	again.	It’s	 important	not	 to	get	 too	wedded	to	any	one	idea,	especially	 if	 the	 idea	isn’t	working	out.
Finally,	you’ll	find	it	helps	to	be	more	about	the	journey	than	the	destination.	Fernvale	was	most	certainly
an	epic	journey;	xobs	and	I	learned	a	lot,	honed	a	set	of	tools	and	skills	that	we	continue	to	use	to	this	day
for	other	projects,	and	most	importantly,	had	a	lot	of	fun.
In	the	next	chapter,	we’ll	take	a	look	at	another	kind	of	hacking	that	will	become	increasingly	relevant

to	all	of	us	over	the	coming	decades—that	of	biological	systems.



10.	biology	and	bioinformatics
I	 once	 came	 across	 a	 beautiful	 diagram	 in	 Science*	 showing	 the	 metabolic	 pathways	 of	 one	 of	 the
smallest	bacteria,	Mycoplasma	pneumoniae.	 It	reminded	me	of	staring	at	an	Apple	II	schematic	when	I
was	less	than	a	decade	old.	Back	then,	I	knew	that	the	Apple	II	schematic’s	fascinatingly	complex	mass	of
lines	was	a	map	to	the	computer	in	front	of	me,	though	I	didn’t	know	quite	enough	to	do	anything	with	that
map.	But	 the	point	was	 that	 a	map	existed,	 so	despite	 its	 imposing	 appearance,	 it	 gave	me	hope	 that	 I
could	unravel	such	complexities.	Biological	“schematics”	like	the	one	on	the	next	page	give	me	the	same
hope.

Mycoplasma	pneumoniae’s	metabolic	pathway



The	Apple	II	schematic	from	my	wall

The	M.	pneumoniae	diagram	isn’t	quite	as	precise	as	the	Apple	II	schematic,	but	from	10,000	feet,	they
feel	 similar	 in	complexity	and	detail.	The	metabolic	diagram	 is	detailed	enough	 for	me	 to	 trace	a	path
from	glucose	to	ethanol,	and	the	Apple	II	schematic	is	detailed	enough	for	me	to	trace	a	path	from	the	CPU
to	 the	 speaker.	 And	 just	 as	 a	 biologist	 wouldn’t	 make	much	 of	 a	 box	 with	 74LS74	 attached	 to	 it,	 an
electrical	engineer	wouldn’t	make	much	of	a	box	with	ADH	inside	it.	(A	74LS74	contains	two	instances
of	a	synchronous	electronic	storage	device,	and	ADH	is	alcohol	dehydrogenase,	an	enzyme	coded	by	gene
MPN564	that	can	turn	acetaldehyde	into	ethanol.)
Furthering	the	computer	analogy,	though,	the	Science	article’s	authors	also	included	a	list	that	read	like

a	 BOM	 for	M.	 pneumoniae	 in	 their	 supplemental	 material.	 The	 pentagonal	 boxes	 in	 the	 diagram	 are
enzymes,	 proteins	 that	 catalyze	 specific	 chemical	 reactions.	 Each	 enzyme	 is	 listed	 with	 a	 functional
description	along	with	its	gene	sequence,	which	is	equivalent	to	source	code.
At	 the	 very	 end	 of	 that	 list,	 I	 saw	 a	 table	 of	 uncharacterized	 genes.	 If	 you’ve	 done	 a	 bit	 of	 reverse

engineering,	 you’ve	 probably	 made	 similar	 tables	 for	 parts	 or	 function	 calls	 in	 an	 electronic	 system.
They’re	 the	 first	 place	 I	 go	 for	 fresh	 clues	when	 I	 get	 stuck.	 I	 find	 it	 heartening	 to	 see	 biologists	 and
hackers	applying	similar	techniques	to	reverse	engineering	complex	systems.

COMPARING	H1N1	TO	A	COMPUTER	VIRUS



The	 comparison	of	 biological	 systems	 to	 computer	 systems	doesn’t	 stop	 at	 the	metabolic	 level.	 I	 once
read	a	fascinating	article	in	Nature*	that	compared	the	pathogenic	components	of	the	novel	H1N1	virus
(better	known	as	swine	flu)	to	those	of	other	flu	strains,	and	that	article	got	me	thinking	about	how	digital
and	organic	viruses	compare.	For	example,	how	big	is	an	organic	virus	relative	to	a	digital	one?	To	put
the	question	another	way,	how	many	bits	does	it	take	to	kill	a	human,	or	at	least	make	one	quite	sick?	In
exploring	this	idea,	I	found	it	helpful	to	draw	a	few	analogies	between	the	digital	and	organic	worlds.

DNA	and	RNA	as	Bits
When	the	H1N1	pandemic	broke	out	in	2009,	the	virus	was	comprehensively	sequenced	and	logged	in	the
National	Center	for	Biotechnology	Information’s	(NCBI)	Influenza	Virus	Resource	database,	and	the	data
collected	there	 is	amazing.	I	 love	the	specificity	of	 the	records.	For	example,	 the	entire	sequence	of	an
instance	of	 influenza	known	as	A/Italy/49/2009(H1N1)	 isolated	 from	 the	nose	of	 a	26-year-old	 female
Homo	sapiens	returning	from	the	United	States	to	Italy	is	on	the	NCBI	website.	Here	are	the	first	120	bits
of	the	DNA	sequence:

atgaaggcaa	tactagtagt	tctgctatat	acatttgcaa	ccgcaaatgc	agacacatta

With	120	bits	total,	each	symbol	(A,	T,	G,	or	C)	represents	2	bits	of	information.	In	genes,	this	can	be
alternatively	 represented	 as	 an	 amino	 acid	 sequence,	 where	 every	 three	 DNA	 symbols	 are	 a	 codon
corresponding	to	one	amino	acid.	Long	chains	of	amino	acids	fold	into	complex	structures	called	proteins
that	give	structure	and	function	to	a	cell,	and	chains	of	amino	acids	too	short	to	be	a	complete	protein	are
often	 called	peptides.	Using	 a	 translation	 lookup	 table	 that	 biologists	 call	 the	 standard	 genetic	 code,	 I
converted	the	previous	sequence	into	the	following	peptide:	MKAILVVLLYTFATANADTL.
In	 this	 sequence,	 each	 symbol	 represents	 an	 amino	acid,	which	 is	 the	 equivalent	of	 six	bits	 or	 three

DNA	 bases	 per	 amino	 acid.	 There	 are	 20	 amino	 acids	 in	 the	 canonical	 codon	 table,	 and	 each	 letter
corresponds	to	a	different	amino	acid.	M	is	methionine,	K	is	lysine,	A	is	alanine,	and	so	on.
Now,	consider	RNA,	which	passes	information	from	DNA	on	how	to	synthesize	proteins	to	the	rest	of

the	cell.	As	with	DNA,	each	base	in	RNA	specifies	one	of	four	possible	symbols	(in	this	case,	A,	U,	G,	or
C),	so	a	single	base	corresponds	to	two	bits	of	information.	DNA	and	RNA	are	information-equivalent	on
a	one-to-one	mapping.	Think	of	DNA	as	a	program	stored	on	disk	and	RNA	as	the	same	program	loaded
into	RAM.	When	DNA	is	loaded,	protein	synthesis	instructions	are	transcribed	into	RNA,	but	all	T	bases
are	replaced	with	U	bases.
Proteins,	 then,	 are	 the	 output	 of	 running	 an	RNA	program.	Proteins	 are	 synthesized	 according	 to	 the

instructions	in	RNA	on	a	three-to-one	mapping.	You	can	think	of	proteins	like	pixels	in	a	frame	buffer,	as
follows:

•	A	complete	protein	is	like	an	image	on	the	screen.

•	Each	amino	acid	on	a	protein	is	like	a	pixel.

•	Each	pixel	has	a	depth	of	six	bits,	due	to	the	three-to-one	mapping	of	a	medium	that	stores	two	bits	per
base.

•	Finally,	each	pixel	goes	through	a	color	palette	(the	codon	translation	table)	to	transform	the	raw	data
into	a	final	rendered	color.	Unlike	a	computer	frame	buffer,	however,	different	biological	proteins	vary
in	amino	acid	count	(analogous	to	a	pixel	count).

To	ground	this	in	a	specific	example,	imagine	that	six	bits	stored	as	ATG	on	your	hard	drive	(DNA)	are



loaded	into	RAM	(RNA)	as	AUG	because	T	is	transcribed	as	U	when	going	from	DNA	to	RNA.	When	the
RNA	program	in	RAM	is	executed,	AUG	is	translated	to	a	pixel	(amino	acid)	of	color	M,	or	methionine,
which	is	the	biological	“start”	codon—that	is,	the	first	instruction	in	every	valid	RNA	program.
As	 a	 shorthand,	 since	 DNA	 and	 RNA	 are	 one-to-one	 equivalent,	 bioinformaticists	 represent	 gene

sequences	in	DNA	format,	even	if	the	biological	mechanism	is	in	RNA	format.	The	influenza	virus	has	an
RNA	architecture,	 rather	 than	DNA,	and	 the	120	bits	of	DNA	I	 showed	earlier	correspond	 to	an	RNA
subroutine	 in	 influenza.	 That	 subroutine	 codes	 for	 the	HA	 gene,	 which	 produces	 an	H1	 variety	 of	 the
hemagglutinin	protein.	This	is	the	H1	in	the	H1N1	designation	of	swine	flu.

Organisms	Have	Unique	Access	Ports
Given	 that	 background	 information,	 if	 you	 think	 of	 organisms	 as	 computers	 with	 IP	 addresses,	 each
functional	group	of	cells	in	the	organism	listens	to	the	environment	through	its	own	active	port.	As	port	25
maps	specifically	to	SMTP	services	on	a	computer,	port	H1	maps	specifically	to	the	windpipe	region	on	a
human.	Interestingly,	the	same	port	H1	maps	to	the	intestinal	tract	on	a	bird.	Thus,	the	same	H1N1	virus
will	 attack	 the	 respiratory	 system	 of	 a	 human	 and	 the	 gut	 of	 a	 bird.	 In	 contrast,	 H5—the	 variety	 of
hemagglutinin	protein	found	in	H5N1,	the	deadly	avian	flu—specifies	the	port	for	your	inner	lungs.	As	a
result,	 H5N1	 is	 much	 deadlier	 than	 H1N1	 because	 it	 attacks	 your	 inner	 lung	 tissue,	 causing	 severe
pneumonia.	H1N1	is	less	deadly	because	it	attacks	a	more	benign	port	that	just	makes	you	blow	your	nose
a	lot	and	cough	up	loogies.

NOTE

Researchers	are	still	discovering	more	about	the	H5	port.	The	Nature	article	I	read	indicated	that
perhaps	certain	human	mutants	have	lungs	that	don’t	listen	on	the	H5	port.	People	whose	lungs
ignore	the	H5	port	would	have	a	better	chance	of	surviving	an	avian	flu	infection,	while	those	that
open	port	H5	on	the	lungs	have	no	chance	to	survive	(make	your	time	...	all	your	base	pairs	are
belong	to	H5N1).*

Knowing	a	virus	is	deadly,	you	can	figure	out	how	many	bits	it	takes	to	kill	a	human	(or	at	least	make
one	quite	sick)	by	calculating	the	number	of	bits	in	the	viral	genome.	The	question,	then,	is	how	many	bits
are	in	this	instance	of	H1N1?	The	raw	number	of	bits,	by	my	count,	is	26,022;	the	number	of	actual	coding
bits	is	approximately	25,054.	I	say	“approximately”	because	in	some	places,	the	virus	does	the	equivalent
of	self-modifying	code	to	create	two	proteins	out	of	a	single	gene.	It’s	hard	to	say	what	counts	as	code	and
what	counts	as	an	incidental,	nonexecuting	NOP	sled	required	for	the	self-modified	code.
That	means	 it	 takes	about	25Kb	or	3.2KB	of	data	 to	code	for	a	virus	 that	has	a	nontrivial	chance	of

killing	a	human.	This	is	more	efficient	than	a	computer	virus	like	MyDoom,	which	comes	in	around	22KB.
Knowing	that	I	could	be	killed	by	3.2KB	of	genetic	data	is	humbling.	Then	again,	with	roughly	800MB	of
data	in	my	genome,	there’s	bound	to	be	an	exploit	or	two.

Hacking	Swine	Flu
One	interesting	consequence	of	reading	this	Nature	article	and	having	access	to	the	virus	sequence	is	that
in	 theory,	 I	 now	know	how	 to	modify	 the	virus	 sequence	 to	make	 it	 deadlier.	For	 instance,	 the	Nature
article	notes	 that	variants	of	 the	PB2	influenza	gene	with	glutamic	acid	at	position	627	 in	 the	sequence



have	 a	 low	pathogenicity,	meaning	 they	 aren’t	 very	 deadly.	However,	 PB2	 variants	with	 lysine	 at	 the
same	position	increase	the	likelihood	of	mortality.
Let’s	 see	 the	 sequence	 of	 PB2	 for	H1N1.	Going	 back	 to	 the	NCBI	 database,	 I	 found	 the	 following

amino	acid	sequences	around	position	627:

601	QQMRDVLGTFDTVQIIKLLP
621	FAAAPPEQSRMQFSSLTVNV
641	RGSGLRILVRGNSPVFNYNK

The	numbers	to	the	left	indicate	the	position	of	the	first	symbol	in	each	line	of	the	sequence;	I’ll	follow
that	convention	for	the	rest	of	this	discussion.	Check	the	line	labeled	621,	and	note	the	E	in	position	627.
E	 is	 the	 symbol	 for	 glutamic	 acid.	 Thankfully,	 H1N1	 seems	 to	 be	 a	 less-deadly	 version	 of	 influenza;
perhaps	 this	 is	 why	 fewer	 people	 died	 from	 contracting	 H1N1	 than	 the	media	might	 have	 led	 you	 to
believe.
Now,	let’s	reverse	this	back	to	the	DNA	code:

621	F	A	A	A	P	P	E	Q	S	R
1861	ttt	gct	gct	gct	cca	cca	gaa	cag	agt	agg

Notice	the	GAA	codes	for	E.	To	modify	this	genome	to	be	deadlier,	you’d	simply	need	to	replace	GAA
with	one	of	 the	codes	for	 lysine	(K).	Lysine	can	have	a	code	of	either	AAA	or	AAG.	Thus,	a	deadlier
variant	of	H1N1	would	have	a	coding	sequence	like	this:

621	F	A	A	A	P	P	K	Q	S	R
1861	ttt	gct	gct	gct	cca	cca	aaa	cag	agt	agg
	̂changed

So,	a	single	base-pair	change—simply	flipping	two	bits—	might	be	all	you’d	need	to	 turn	 the	H1N1
swine	 flu	virus	 into	 a	deadlier	variant.	Theoretically,	 I	 could	 apply	 a	 series	of	well-known	biological
procedures	to	synthesize	this	strain	and	actually	implement	the	hack.	As	a	first	step,	I	could	go	to	a	DNA
synthesis	website	 and	 order	 the	modified	 sequence	 to	 get	my	 deadly	 little	 project	 going	 for	 just	 over
$1,000.	Some	of	those	companies	have	screening	procedures	to	protect	against	DNA	sequences	that	could
be	used	to	implement	biohazardous	products,	but	even	if	they	happened	to	screen	for	HA	variants,	there
are	well-known	protocols	 for	 site-directed	mutagenesis	 that	 could	possibly	be	used	 to	modify	 a	 single
base	of	RNA	from	material	extracted	from	normal	H1N1.

Adaptable	Influenza
Of	course,	I	have	to	give	influenza	some	credit.	It	packs	a	deadly	punch	in	3.2KB,	and	despite	scientists’
best	efforts,	we	haven’t	eradicated	it.	Could	influenza	do	hacks	like	the	one	I	just	described	on	its	own
already?
The	short	answer	is	yes.
In	fact,	the	influenza	virus	evolved	to	allow	for	these	adaptations.	Normally,	when	DNA	is	copied,	an

error-checking	protein	runs	over	the	copied	genome	to	verify	that	no	mistakes	were	made.	This	keeps	the
error	 rate	 quite	 low.	But	 remember,	 the	 influenza	 virus	 uses	 an	RNA	architecture.	 It	 therefore	 needs	 a
different	mechanism	from	DNA	for	copying.
Inside	its	protein	capsule,	the	influenza	virus	packs	code	for	a	protein	complex	called	RNA-dependent

RNA	polymerase,	which	is	a	tiny	machine	for	copying	RNA	off	of	RNA	templates.	Normally,	RNA	is	only
generated	by	transcribing	DNA,	not	by	copying	an	existing	piece	of	RNA,	so	this	mechanism	is	essential



for	 the	 replication	 of	 RNA-based	 influenza.	 Significantly,	 RNA-dependent	 RNA	 polymerase	 omits	 an
error-checking	protein	 that	would	prevent	mutations.	The	 result	 is	 that	 influenza	makes	about	one	error
per	 10,000	 base	 pairs	 that	 get	 copied.	 The	 influenza	 genome	 is	 about	 13,000	 base	 pairs	 long,	 so	 on
average,	every	copy	of	an	influenza	virus	has	one	random	mutation.
Some	of	these	mutations	make	no	difference;	others	render	the	virus	harmless;	and	quite	possibly,	some

render	 the	 virus	 much	 more	 dangerous.	 Since	 viruses	 are	 replicated	 and	 distributed	 in	 astronomical
quantities,	the	chance	that	this	little	hack	could	end	up	occurring	naturally	is	in	fact	quite	high.	I	think	this
is	part	of	 the	 reason	health	officials	were	so	worried	about	H1N1:	people	had	no	 resistance	 to	 it,	 and
even	though	it	wasn’t	as	deadly	as	it	could	have	been,	the	strain	was	probably	just	a	couple	of	mutations
away	from	being	a	much	bigger	health	problem.
There	is	one	other	important	subtlety	to	the	RNA	architecture	of	the	influenza	virus,	aside	from	its	high

mutation	 rate:	 the	 virus’s	 genetic	 information	 is	 stored	 as	 eight	 separate,	 relatively	 short,	 snippets	 of
RNA.	 In	 many	 other	 viruses	 and	 simple	 organisms,	 genetic	 information	 is	 instead	 stored	 as	 a	 single
unbroken	strand.
To	understand	why	that’s	important,	consider	what	happens	when	a	host	is	infected	by	two	types	of	the

influenza	virus	at	the	same	time.	If	the	genes	were	stored	as	a	single	piece	of	DNA	or	RNA,	there	would
be	little	opportunity	for	the	genes	between	the	two	types	to	shuffle.	But	because	influenza	stores	its	genes
as	eight	separate	snippets,	those	genes	mix	freely	inside	the	infected	cell	and	are	randomly	shuffled	into
virus	 packets	 as	 they	 emerge.	 If	 you’re	 unlucky	 enough	 to	 get	 two	 types	 of	 flu	 at	 once,	 the	 result	 is	 a
potentially	novel	strain	of	flu,	as	RNA	strands	are	copied,	mixed,	picked	out	of	the	metaphorical	hat,	and
then	packed	into	virus	particles.	This	process	is	elegant	in	that	the	same	mechanism	allows	for	mixing	of
an	arbitrary	number	of	strains	in	a	single	host.	If	you	can	infect	a	cell	with	three	or	four	types	of	influenza
at	once,	the	result	is	an	even	wilder	variation	of	flu	particles.
This	mechanism	is	part	of	the	reason	novel	H1N1	is	called	a	triple-reassortant	virus.	Through	a	series

of	dual	infections	or	perhaps	a	single	calamitous	infection	of	multiple	flu	varieties,	novel	H1N1	acquired
a	mix	of	RNA	snippets	that	gave	it	high	transmission	rates	and	made	it	something	humans	weren’t	innately
immune	to.	That’s	the	perfect	storm	for	a	pandemic.
If	there	were	a	computer	analogy	to	this	RNA-shuffling	model,	it	would	be	a	virus	that	distributes	itself

in	the	form	of	unlinked	object	code	files	plus	a	small	helper	program	that,	upon	infecting	a	host,	relinks	its
files	in	a	random	order	before	copying	and	redistributing	itself.	It	would	also	search	for	similar	viruses
that	may	already	be	 infecting	 that	computer	and	on	occasion	 link	 in	object	code	with	matching	function
templates	 from	 the	 other	 viruses.	This	 rearrangement	 and	 novel	 relinking	 of	 the	 code	 itself	would	 foil
classes	of	antivirus	software	that	search	for	virus	signatures	based	on	fixed	code	patterns.	It	would	also
proliferate	a	diverse	set	of	viruses	in	the	wild,	with	less	predictable	properties.
The	 influenza	 virus’s	 multilevel	 adaptation	 mechanism	 is	 remarkable.	 The	 virus	 has	 both	 a	 slowly

evolving	 point	mutation	mechanism	 and	 a	mechanism	 for	 drastically	 altering	 its	 properties	 in	 a	 single
generation	through	gene-level	mixing	with	other	viruses.	It	doesn’t	work	quite	like	sex,	but	the	result	 is
probably	just	as	good,	if	not	better.	It’s	also	remarkable	that	these	two	important	properties	of	the	virus
arise	as	a	consequence	of	using	RNA	instead	of	DNA	as	the	genetic	storage	medium.

A	Silver	Lining
Since	there	are	so	many	variants	of	flu,	no	vaccine	can	target	all	types	of	the	virus,	but	the	H1N1	story
does	have	a	silver	lining.	Apparently,	a	patient	who	contracted	swine	flu	during	the	pandemic	created	a
novel	antibody	with	the	remarkable	ability	to	confer	immunity	to	all	16	subtypes	of	influenza	A.	A	group



of	 researchers	 sifted	 through	 the	 patient’s	 white	 blood	 cells	 and	managed	 to	 isolate	 four	 B	 cells	 that
contained	the	code	to	produce	this	antibody.	They	cloned	the	cells	and	produced	antibodies,	facilitating
further	research	into	a	potential	vaccine	that	could	confer	broad	protection	against	the	flu.
I	found	this	really	interesting	at	a	gut	level	because	it	gives	me	hope	that	if	a	killer	virus	did	wipe	out

most	of	humanity,	maybe	a	small	group	of	people	would	survive	it.

REVERSE	ENGINEERING	SUPERBUGS
In	2011,	a	“superbug”	strain	of	E.	coli	(a	species	of	bacteria	with	subtypes	that	can	cause	food	poisoning)
called	EHEC	O104:H4	broke	out	in	Europe.	When	I	found	out	that	scientists	at	BGI,	located	in	Shenzhen,
had	released	the	entire	sequence	of	O104:H4	freely	online	for	anyone	to	examine,	I	got	very	curious	about
the	 situation.	 I	 couldn’t	 help	 but	 wonder	 exactly	 what	 tools	 bioinformaticists	 use	 to	 analyze	 DNA
sequences.	Manually	 inspecting	 the	 relatively	 simple	 sequences	 of	 the	 influenza	 virus	 is	 one	 thing,	 but
there	must	be	computational	tools	to	help	make	sense	of	more	complicated	organisms	like	E.	coli.
Fortunately,	my	perlfriend	(s/perl/girl/)	is	also	a	noted	bioinformaticist.	She	took	some	time	out	of	her	busy

schedule	to	show	me	some	tools	of	the	trade.	It	turns	out	most	of	the	tools	for	analyzing	DNA	are	freely
available	online.	Since	DNA	 is	 just	 sequences	of	A’s,	T’s,	G’s,	 and	C’s,	 the	 standard	data	 interchange
format	is	plain	old	ASCII	text,	which	means	you	can	do	a	lot	of	analysis	using	command-line	tools	like
grep,	sed,	and	awk.

The	O104:H4	DNA	Sequence
The	raw	sequence	data	BGI	provided	was	a	set	of	oversampled	subsequences	that	we	needed	to	assemble
by	 matching	 up	 overlapping	 regions.	 Stitching	 subsequences	 together	 is	 a	 bit	 like	 composing	 a	 large
picture	 from	 small	 photos	 taken	 at	 random.	 With	 enough	 sampling,	 you’ll	 eventually	 create	 a	 mostly
complete	picture,	but	the	image	will	still	have	ambiguities,	particularly	in	areas	with	regular	patterns.
The	genome	of	O104:H4	was	provided	as	a	 list	of	over	500,000	short	DNA	samples.	The	assembly

process	 stitched	 the	 short	 DNA	 samples	 together	 into	 513	 contiguous	 fragments	 of	 DNA	 (known	 as
contigs),	with	a	total	genome	length	of	5.3	million	base	pairs.	An	organism	like	E.	coli	has	just	one	big
loop	of	DNA,	so	there	were	513	spots	where	limitations	in	the	sequencing	technology	(or	just	bad	luck)
missed	 an	 unknown	 number	 of	 base	 pairs,	 preventing	 us	 from	 knowing	 the	 entire,	 unbroken	 sequence.
Notably,	 a	 typical,	 non-superbug	 strain	 of	E.	 coli	 has	 around	 4.6	 million	 base	 pairs,	 so	 O104:H4	 is
probably	at	 least	15	percent	longer.	Likewise,	 this	strain	would	take	more	time	to	replicate	than	a	non-
drug-resistant	strain.	Take	a	look	at	contig	34	of	the	assembly:

AAATGGTATTCCTGTTCACGATACTATTGCCAGAGTTGTATCCTGTATCAGTCCTGC
AAAATTTCATGAGTGCTTTATTAACTGGATGCGTGACTGCCATTCTTCAGATGATAA
AGACGTCATTGCAATTGATGGAAAAACGCTCCGGCACTCTTATGACAAGAGTCGCCG
CAGGGGAGCGATTCATGTCATTAGTGCGTTCTCAACAATGCACAGTCTGGTCATCGG
ACAGATCAAGACGGATGAGAAATCTAATGAGATTACAGCTATCCCAGAACTTCTTAA
CATGCTGGATATTAAAGGAAAAATCATCACAACTGATGCGATGGGTTGCCAGAAAGA
TATTGCAGAGAAGATACAAAAACAGGGAGGTGATTATTTATTCGCGGTAAAAGGAAA
CCAGGGGCGGCTAAATAAAGCCTTTGAGGAAAAATTTCCGCTGAAAGAATTAAATAA
TCCAGAGCATGACAGTTACGCAATTAGTGAAAAGAGTCACGGCAGAGAAGAAA

I	could	have	picked	any	contig,	and	it	probably	would	have	made	about	as	much	sense	to	you	as	this
block	of	 letters.	Aside	 from	making	gratuitous	pop	 culture	 references	 (the	word	GATTACA	 occurs	 252
times	 in	 the	genome	of	O104:H4),	 the	 raw	DNA	sequence	 isn’t	very	 insightful.	 It’s	a	bit	 like	staring	at



binary	machine	code.	To	analyze	the	data,	you	need	to	“decompile”	the	“methods”	contained	within	the
code.
In	 this	 case,	we	were	 searching	 for	DNA	 sequences	 that	 code	 for	proteins.	As	 I	mentioned	 earlier,

proteins	are	complex,	often	interwoven	chains	of	molecules	consisting	of	small	building	blocks	known	as
amino	acids.	Cells	get	 things	done	using	proteins:	 some	proteins	 turn	 sugar	 into	energy,	others	use	 that
energy	 to	 move	 around	 or	 change	 the	 cell’s	 shape,	 and	 still	 others	 are	 responsible	 for	 copying	 and
repairing	the	cell.
Fortunately,	protein	sequences	are	highly	conserved	in	DNA.	Nature	tends	to	reuse	protein	structures,

with	 few	 modifications,	 between	 organisms.	 Thus,	 a	 function	 that	 has	 been	 determined	 through	 a
biological	 experiment,	 even	on	 another	 species,	 can	often	be	 correlated	with	 a	 sequence	of	DNA.	For
instance,	one	common	experiment	for	determining	the	function	of	a	sequence	is	to	cut	a	piece	of	DNA	out
of	a	cell	 and	observe	what	happens	 to	 the	cell;	 the	 loss	of	 function	 resulting	 from	 the	missing	DNA	 is
often	indicative	of	the	protein’s	role	in	the	cell.
Biologists	have	amassed	decades	of	research	on	what	certain	proteins	do	into	huge	databases.	Thus,	to

figure	out	what	a	chunk	of	DNA	means,	you	can	do	a	fuzzy	pattern	match	between	your	DNA	of	interest
and	the	database	of	known	proteins.

Reversing	Tools	for	Biology
I	needed	two	tools	to	reverse	engineer	DNA:	a	protein	database	and	a	piece	of	software	called	BLASTX.
Both	are	free	to	download	online.

THE	UNIPROT	DATABASE
I	 downloaded	 a	 list	 of	 known	 proteins	 from	 the	 Universal	 Protein	 Resource,	 or	 UniProt
(http://www.uniprot.org/).	 In	 2011,	 a	 search	of	 the	 database	 for	 “drug	 resistance”	 restricted	 to	E.	 coli
organisms	yielded	a	list	of	1,378	proteins	that	scientists	have	identified	over	the	years	as	parts	of	the	E.
coli	bacteria’s	drug-resistance	machinery.	Every	year,	new	discoveries	are	added	to	the	database.
Here’s	a	snippet	from	the	database	that	describes	a	protein	that	gives	O104:H4	resistance	to	a	drug	you

may	recognize:

>sp|P0AD65|PBP2_ECOLI	Penicillin-binding	protein	2
OS=Escherichia	coli	(strain	K12)	GN=mrdA	PE=3	SV=1

MKLQNSFRDYTAESALFVRRALVAFLGILLLTGVLIANLYNLQIVRFTDYQTRSNENRIK
LVPIAPSRGIIYDRNGIPLALNRTIYQIEMMPEKVDNVQQTLDALRSVVDLTDDDIAAFR
KERARSHRFTSIPVKTNLTEVQVARFAVNQYRFPGVEVKGYKRRYYPYGSALTHVIGYVS
KINDKDVERLNNDGKLANYAATHDIGKLGIERYYEDVLHGQTGYEEVEVNNRGRVIRQLK
EVPPQAGHDIYLTLDLKLQQYIETLLAGSRAAVVVTDPRTGGVLALVSTPSYDPNLFVDG
ISSKDYSALLNDPNTPLVNRATQGVYPPASTVKPYVAVSALSAGVITRNTTLFDPGWWQL
PGSEKRYRDWKKWGHGRLNVTRSLEESADTFFYQVAYDMGIDRLSEWMGKFGYGHYTGID
LAEERSGNMPTREWKQKRFKKPWYQGDTIPVGIGQGYWTATPIQMSKALMILINDGIVKV
PHLLMSTAEDGKQVPWVQPHEPPVGDIHSGYWELAKDGMYGVANRPNGTAHKYFASAPYK
IAAKSGTAQVFGLKANETYNAHKIAERLRDHKLMTAFAPYNNPQVAVAMILENGGAGPAV
GTLMRQILDHIMLGDNNTDLPAENPAVAAAEDH

PBP2_ECOLI*	is	linked	to	penicillin	resistance	and	is	a	mutated	gene	that	determines	the	shape	of	the
bacteria.	It	seems	this	resistant	variant	adapted	to	operate	despite	the	presence	of	penicillin;	bacteria	with
nonresistant	forms	of	the	gene	are	unable	to	form	properly	shaped	cell	walls	in	the	presence	of	penicillin,
and	 are	 killed	 by	 the	 drug.	 Other	 genes	 might	 cause	 more	 active	 countermeasures,	 like	 pumping	 an

http://www.uniprot.org/


antibiotic	 out	 of	 the	 cell	 or	modifying	 the	 antibiotic	 to	 be	 less	 toxic	 to	 the	 cell.	Browsing	 the	UniProt
database	gives	you	a	feel	for	the	huge	variety	of	genes	available	in	nature	that	can	make	bacteria	resistant
to	drugs.

THE	DECOMPILER
Next,	I	needed	the	actual	decompiler.	That’s	where	BLASTX	(eventually	updated	to	BLAST+)	came	in.
BLASTX	is	a	variant	of	BLAST,	which	stands	for	Basic	Local	Alignment	Search	Tool.	First,	I	had	this
analysis	program	compute	all	possible	translations	of	the	E.	coli	DNA	to	protein	sequences.	Translating
DNA	results	in	six	possible	protein	sequences:	DNA	can	be	read	forward	and	backward	(known	as	5′→3′
and	 3′→5′),	 and	 each	 direction	 has	 three	 possible	 frame	 positions.	 Then,	 I	 had	 the	 program	 check	 for
patterns	 among	 the	 resulting	 amino	 acid	 sequences	 that	 matched	 the	 database	 of	 sequences	 known	 to
provide	 drug	 resistance.	 (I	 could	 have	 also	 checked	 for	 other	 types	 of	 patterns,	 by	 typing	 something
different	 into	 the	 database	 query.)	 The	 result	was	 a	 sorted	 list	 of	 each	 known	 drug	 resistance	 protein,
along	with	the	region	of	the	E.	coli	genome	that	best	matches	the	protein.
The	following	is	the	BLASTX	output	for	the	penicillin	example.

#	BLASTX	2.2.24	[Aug-08-2010]

#	Query:	43	87880
#	Database:	uniprot-drug-resistance-AND-organism-coli.fasta
#	Fields:	Query	id,	Subject	id,	%	identity,	alignment	length,
mismatches,	gap	openings,	q.	start,	q.	end,	s.	start,	s.	end,
e-value,	bit	score
43	sp|P0AD65|PBP2_ECOLI	100.00	632	0	0	29076	30971	1	632	0.0	1281
43	sp|P0AD68|FTSI_ECOLI	25.08	650	458	21	29064	30926	6	574	2e-33	142
43	sp|P60752|MSBA_ECOLI	32.80	186	120	6	12144	12686	378	558	6e-17	87.0
43	sp|P60752|MSBA_ECOLI	27.78	216	148	5	77054	77677	361	566	8e-14	76.6
43	sp|P77265|MDLA_ECOLI	27.98	193	133	6	12141	12701	370	555	2e-10	65.5

--snip--

The	Fields	line	describes	what	each	column	in	the	table	shows.	In	the	%	identity	column,	you	can	see
that	the	gene	for	PBP2_ECOLI	has	a	100	percent	match	inside	the	genome	of	O104:H4.

Answering	Biological	Questions	with	UNIX	Shell	Scripts

With	this	list,	I	could	answer	some	interesting	questions,	 like	“How	many	of	the	known	drug	resistance
genes	 are	 inside	 O104:H4?”	 Here’s	 the	 one-liner	 program	 that	 my	 perlfriend	 wrote	 to	 answer	 that
particular	question:

cat	uniprot_search_m9	|	awk	'{if	($3	==	100)	{	print;}}'	|	\
cut	-f2	|grep	-v	^#	|	cut	-f1	-d"_"	|	cut	-f3	-d"|"	|	\
sort	|	uniq	|	wc	-l

The	output	from	that	script	told	us	that	1,138	genes	in	O104:H4	were	a	100	percent	match	against	the
database	of	1,378	genes	 that	 can	confer	drug	 resistance.	When	we	 loosened	 the	criteria	 to	also	 list	99
percent	matches,	allowing	for	one	or	two	mutations	per	gene,	the	list	expanded	to	1,224	out	of	1,378.	The
“superbug”	O104:H4	earned	its	title,	having	acquired	roughly	90	percent	of	the	known	resistance	genes!
I	also	wanted	 to	answer	 the	 inverse	question:	which	drug-resistance	genes	are	most	definitely	not	 in

O104:H4?	By	looking	at	the	resistance	genes	missing	from	a	superbug,	we	might	be	able	to	gather	clues



as	to	which	treatments	could	be	effective	against	the	bug.
To	rule	out	a	drug-resistance	gene,	we	crafted	another	search	that	would	reveal	which	resistance	genes

in	 the	 database	 had	 less	 than	 a	 70	 percent	 match	 against	 the	 sequence	 of	 O104:H4.	 The	 70	 percent
threshold	was	just	an	arbitrary	number	I	picked;	there’s	probably	a	rigorous	standard	that	scientists	and
clinicians	use.
Here	is	the	list,	as	it	appeared	in	my	terminal:

A0SKI3	A2I604	A3RLX9	A3RLY0	A3RLY1	A5H8A5	B0FMU1	B1A3K9	B1LGD9
B3HN85	B3HN86	B3HP88B5AG18	B6ECG5	B7MM15	B7MUI1	B7NQ58	B7NQ59
B7TR24	BLR	CML	D2I9F6	D5D1U9	D5D1Z3	D5KLY6	D6JAN9	D7XST0	D7Z7R4
D7Z7W9	D7ZDQ3	D7ZDQ4	D8BAY2	D8BEX8	D8BEX9	DYR21	DYR22	DYR23
E0QC79	E0QC80	E0QE33	E0QF09	E0QF10	E0QYN4	E1J2I1	E1S2P1	E1S2P2
E1S382	E3PYR0	E3UI84	E3XPK9	E3XPQ2	E4P490	E5ZP70	E6A4R5	E6A4R6
E6ASX0	E6AT17	E6B2K3	E6BS59	E7JQV0	E7JQZ4	E7U5T3	E9U1P2	E9UGM7
E9VGQ2	E9VX03	E9Y7L7	O85667	Q05172	Q08JA7	Q0PH37	Q0T948	Q0T949
Q0TI28	Q1R2Q2	Q1R2Q3	Q3HNE8	Q4HG53	Q4HG54	Q4HGV8	Q4HGV9	Q4HH67
Q4U1X2	Q4U1X5	Q50JE7	Q51348	Q56QZ5	Q56QZ8	Q5DUC3	Q5UNL3	Q6PMN4
Q6RGG1	Q6RGG2	Q75WM3	Q79CI3	Q79D79	Q79DQ2	Q79DX9	Q79IE6	Q79JG0
Q7BNC7	Q83TT7	Q83ZP7	Q8G9W6	Q8G9W7	Q8GJ08	Q8VNN1	Q93MZ2	Q99399
Q9F0D9	Q9F0S4	Q9F7C0	Q9F8W2	Q9L798

You	can	plug	any	of	these	protein	codes	into	the	UniProt	database	and	find	out	more	about	them.	For
example,	 BLR	 is	 beta-lactamase,	 an	 enzyme	 that	 causes	 resistance	 to	 beta-lactam	 antibiotics.	 UniProt
describes	it	like	this:

Has	an	effect	on	the	susceptibility	to	a	number	of	antibiotics	involved	in	peptidoglycan	biosynthesis.
Acts	 with	 beta	 lactams,	 D-cycloserine	 and	 bacitracin.	 Has	 no	 effect	 on	 the	 susceptibility	 to
tetracycline,	 chloramphenicol,	 gentamicin,	 fosfomycin,	 vacomycin	 or	 quinolones.	 Might	 enhance
drug	exit	by	being	part	of	multisubunit	efflux	pump.	Might	also	be	involved	in	cell	wall	biosynthesis.

Unfortunately,	a	cursory	inspection	revealed	that	most	functions	that	O104:H4	lacked	were	just	small,
poorly	 understood	 fragments	 of	machines	 involved	 in	 drug	 resistance.	As	 a	 result,	 there	was	 no	 clear
candidate	for	a	superbug	killer	in	its	genome.

More	Questions	Than	Answers
The	good	news	is	that	anyone	can	access	the	tools	to	analyze	genomes,	and	some	tools,	such	as	grep,	awk,
and	sed,	are	already	 familiar	 to	computer	engineers.	The	bad	news	 is	 that	while	we	can	ask	questions
about	 the	 genome	 with	 these	 tools,	 we’re	 still	 left	 with	 more	 questions	 than	 answers.	 For	 example,
antibiotic	resistance	sounds	like	a	good	thing	for	the	survival	of	bacteria,	so	why	don’t	all	bacteria	have
it?	And	how	do	bacteria	go	about	acquiring	(or	losing)	such	genes?
The	 rise	of	antibiotic-resistant	 superbugs	 is	a	product	of	our	 love	of	antibiotics.	As	DNA	in	E.	 coli

copies	at	a	rate	of	about	a	dozen	base	pairs	per	second,	shedding	even	a	single	unused	gene	can	lend	a
meaningful	advantage	in	an	exponential	growth	race;	after	all,	an	E.	coli	population	can	double	every	20
minutes	in	optimal	conditions.	As	a	result,	there	is	selective	pressure	to	shed	genes	that	aren’t	necessary
for	 survival.	The	 genome	of	O104:H4	 is	 15	 percent	 longer	 than	 that	 of	 a	 typical	E.	coli	 strain,	which
means	that	after	seven	generations,	a	typical	E.	coli	strain	would	have	twice	the	population	of	O104:H4.
Within	half	 a	day	under	optimal,	 antibiotic-free	growth	conditions,	 a	 strain	of	E.	coli	 unburdened	with
antibiotic	resistance	genes	would	have	over	20	times	the	population	of	O104:H4.	Thus,	a	bacterium	that
hangs	on	to	its	antibiotic	resistance	genes	is	like	a	sprinter	wearing	a	bulletproof	vest	to	a	race.	Likewise,
one	of	the	greatest	natural	threats	to	superbugs	is	a	lean,	fast-replicating	common	bug	that	can	edge	out	the



superbug	by	sheer	numbers	alone.
However,	bacteriocidal	and	bacteriostatic	antibiotics	kill	off	or	prohibit	growth	of	nonresistant	bugs,

respectively,	leaving	only	the	resistant	bugs	to	grow	unhindered.	Over	time	and	with	exposure	to	several
types	 of	 antibiotics,	 it	 stands	 to	 reason	 that	 the	 resistant	 bug	 population	would	 continue	 to	 selectively
breed	for	multiple	resistance	genes,	creating	a	superbug.
Still,	I	find	it	astonishing	that	resistant	bugs	seem	to	develop	resistance	genes	so	quickly.	We’re	taught

that	evolution	is	a	slow	process,	so	it	seems	remarkable	that	bacteria	can	serendipitously	evolve	a	suite
of	antibiotic	resistance	genes	totaling	hundreds	of	thousands	of	base	pairs.	New	genes	do	in	fact	 take	a
very	long	time	to	spontaneously	arise	(there	are	very	few	clearly	documented	cases	of	 this,	such	as	 the
Long-Term	Evolution	Experiment	by	Richard	Lenski).	 Instead,	most	 resistance	genes	are	acquired	from
the	environment	through	horizontal	gene	transfer.
Our	environment	is	teeming	with	DNA	fragments.	The	GitHub	of	biology	is	all	around	us,	from	the	dirt

to	the	sea	to	the	air	we	breathe.	Some	DNA	fragments	code	for	useful	traits;	some	are	just	junk.	When	a
bacterium	 is	under	 stress	 (like	 it	 is	when	exposed	 to	 antibiotics),	 it	may	 start	 to	 take	up	 random	DNA
fragments	from	the	environment	and	manufacture	proteins	based	off	the	code.	If	it’s	going	to	die	anyway,	it
might	as	well,	right?	Most	of	the	time,	the	incorporated	DNA	fragments	are	not	helpful,	but	if	one	lucky
bacterium	picks	up	the	necessary	resistance	gene	from	the	environment,	it	can	rapidly	outcompete	others
in	an	antibiotic-laden	environment.
Thus,	while	 nonresistant	 strains	 of	 a	 bug	will	 rapidly	 outnumber	 antibiotic-resistant	 strains,	 the	 tiny

remaining	 population	 of	 resistant	 bugs	 (or	 perhaps	 even	 their	 lifeless	 bodies	 floating	 about	 in	 the
environment)	 form	a	 reservoir	 of	genetic	material	 that	 can	be	drafted	 in	 times	of	 stress.	And	 since	 the
genetic	code	 is	 interoperable	across	all	 species,	 resistance	genes	can	even	be	acquired	 from	unrelated
organisms.
Discovering	 that	 the	 functions	O104:H4	 lacked	were	poorly	understood	was	an	 interesting	 lesson	 in

itself.	Fiction	popularizes	the	notion	that	knowing	a	DNA	sequence	is	the	same	as	knowing	what	diseases
or	traits	an	organism	may	have.	But	even	though	we	know	the	sequences	and	general	properties	of	many
proteins,	it’s	much	harder	to	link	proteins	to	a	specific	disease	or	trait.	At	some	point,	someone	has	to	get
their	 hands	 dirty	 and	 do	 biological	 experiments	 involving	 actual	 organisms	 to	 assign	 biological
significance	to	a	given	protein	family.
Pop	culture	references	to	DNA	analysis	are	glibly	unaware	of	this	missing	link	in	the	process,	which

leads	to	overinflated	expectations	for	genetic	analysis,	particularly	in	its	utility	for	diagnosing	and	curing
human	disease	and	applications	in	eugenics.	Let’s	take	a	closer	look	at	some	of	those	myths.

MYTHBUSTING	PERSONALIZED	GENOMICS
We’re	definitely	living	in	The	Future	in	a	lot	of	ways.	For	instance,	we	have	electric	cars!	But	Hollywood
reels	from	the	’60s	and	’70s	also	predicted	that	I’d	be	using	a	flying	car	to	get	around	town	by	now,	not
just	an	electric	car	on	the	ground.	Of	course,	automotive	technology	isn’t	the	only	victim	of	Hollywood
hype.
The	potential	 impact	of	personalized	genomics	is	greatly	overstated	in	movies	like	GATTACA,	which

create	 a	 myth	 that	 your	 genome	 is	 like	 a	 crystal	 ball,	 and	 somehow	 your	 fate	 is	 predestined	 by	 your
genetic	 programming.	 The	 perlfriend	 I	 mentioned	 earlier	 coauthored	 a	 paper	 in	 Nature*	 examining
23andMe’s	direct-to-consumer	(DTC)	personal	genomics	offerings.	Let’s	have	a	look	at	her	paper,	and	let
the	mythbusting	begin!



Myth:	Having	Your	Genome	Read	Is	Like	Hex-Dumping	the	ROM	of
Your	Computer
An	inexpensive	 technique	 to	 look	at	parts	of	 the	genome	is	called	genotyping.	Here,	a	selective	diff	 is
done	 between	 your	 genome	 and	 a	 reference	 human	 genome;	 in	 other	 words,	 your	 genome	 is	 simply
sampled	 in	 potentially	 interesting	 spots	 for	 single-point	 mutations	 called	 single	 nucleotide
polymorphisms	(SNPs,	pronounced	“snips”).	The	concept	of	genotyping	naturally	leads	to	two	questions.
First,	how	do	you	decide	which	SNPs	are	interesting	enough	to	sample?	And	second,	how	do	you	know
the	reference	genome	is	an	accurate	comparison	point?	This	sets	up	two	more	busted	myths.

Myth:	We	Know	Which	Mutations	Predict	Disease
Some	mutations	in	the	human	genome	simply	correlate	with	disease;	they	are	not	proven	to	be	predictive
or	causal.	In	truth,	we	really	don’t	understand	why	many	genetic	diseases	happen.	For	poorly	understood
diseases,	all	we	can	say	 is	 that	people	who	have	a	particular	disease	 tend	 to	have	a	certain	pattern	of
SNPs.	It’s	important	not	to	confuse	causality	with	correlation.
Thus,	while	scientists	can	make	predictions	about	diseases	based	on	SNPs,	most	of	those	predictions

are	 correlative,	 not	 causative	 (and	weakly	 correlative,	 at	 that).	 As	 a	 result,	 a	 genotype	 should	 not	 be
considered	a	crystal	ball	for	predicting	your	disease	future.	Rather,	it’s	closer	to	a	Rorschach	blot	that	you
have	to	squint	and	stare	at	for	a	while	before	you	can	say	what	it	means.	For	instance,	 in	the	paper	my
perlfriend	wrote,	 she	 found	 that	 companies	 often	 didn’t	match	 up	 on	 their	 predictions	 for	 disease	 risk
because	they	interpreted	mutation	meanings	differently.

Myth:	The	Reference	Genome	Is	an	Accurate	Reference
The	word	reference	in	reference	genome	should	tip	you	off	on	a	problem:	it	implies	there	are	“reference
people.”	Ultimately,	just	a	handful	of	individuals	were	sequenced	to	create	today’s	reference	genome,	and
most	of	them	are	of	European	ancestry.	As	time	goes	on	and	more	full-sequence	genetic	data	is	collected,
the	 reference	 genome	will	 be	merged	 and	massaged	 to	 present	 a	more	 accurate	 picture	 of	 the	 overall
human	 race,	 but	 for	 now,	 it’s	 important	 to	 remember	 that	 a	 genotype	 study	 is	 a	 diff	 against	 a	 source
repository	of	questionable	universal	validity.
For	 example,	 some	 SNPs	 have	 different	 frequencies	 in	 different	 populations.	 The	 base	 A	 might

dominate	in	a	European	population,	but	at	that	same	position	in	an	African	population,	the	base	G	could
dominate.	It’s	also	important	to	remember	that	the	reference	genome	has	an	aggregate	error	rate	of	about	1
error	in	10,000	base	pairs,	although	to	be	fair,	the	process	of	discovering	a	disease	variant	usually	cleans
up	any	errors	in	the	reference	genome	for	the	relevant	sequence	regions.
It	will	be	decades	before	we	have	a	full	understanding	of	what	all	the	sequences	in	the	human	genome

mean,	and	even	then,	 they	may	not	be	 truly	predictive	of	disease	risk	or	anything	else	about	our	health.
Here	 lies	 perhaps	 the	 most	 important	 message,	 and	 a	 point	 I	 can’t	 stress	 enough:	 in	 most	 situations,
environment	has	more	to	do	with	who	you	are,	what	you	will	become,	and	what	diseases	you	will	have
than	your	genes	do.	Any	upside	to	personal	genomics	won’t	be	due	to	crystal-ball	predictions,	but	rather
to	 the	 fact	 that	 knowing	 about	 their	 own	 genetic	 predispositions	may	 encourage	more	 people	 to	make
lifestyle	 changes	 that	 will	 help	 them	 stay	 healthy.	 If	 there’s	 one	 thing	 I’ve	 learned	 from	 dating	 a
preeminent	 bioinformaticist,	 it’s	 that	 no	 matter	 your	 genetic	 makeup,	 most	 common	 diseases	 can	 be
prevented	or	delayed	with	proper	diet	and	exercise.



PATCHING	A	GENOME
So	far	in	this	chapter,	I’ve	given	examples	of	sequencing	and	analyzing	genomes.	That’s	more	or	less	the
equivalent	 of	 being	 able	 to	 dump	 a	 program	 executable	 and	 analyze	 it	 in	 IDA.	 Oftentimes,	 after	 you
analyze	 an	 executable,	 you’ll	 want	 to	 patch	 it	 to	 do	 something	 new.	 Patching	 software	 is	 relatively
straightforward	and	 reliable:	 just	 fire	up	a	hex	editor	and	change	 the	 file.	 In	 the	worst	case,	you	might
have	to	use	a	focused	ion	beam	(FIB)	to	modify	the	individual	wires	of	a	mask	ROM	inside	a	chip.
But	historically,	the	ability	to	patch	a	genome	has	been	severely	limited.	Information	in	cells	is	stored

at	 the	molecular	 level,	 and	changing	a	 specific	portion	of	 a	gene	can	be	a	painstaking	process.	 Just	 as
vacuum	 tubes	 and	 transistors	 came	 before	 the	 integrated	 circuit,	 zinc	 finger	 nucleases	 (ZFNs)	 and
transcription	 activator-like	 effector	 nucleases	 (TALENs)	 enabled	 gene	 editing,	 but	 with	 significant
caveats	in	efficiency,	performance,	and	ultimately,	cost.	In	2012,	the	integrated	circuit	of	gene	editing	was
introduced:	the	CRISPR/Cas*	system.

CRISPRs	in	Bacteria
CRISPR,	short	for	clustered	regularly	interspaced	short	palindromic	repeat,	describes	a	particular	RNA
structure,	while	Cas	are	proteins	that	associate	with	CRISPRs.	CRISPRs	are,	as	far	as	biologists	know,
common	only	in	bacteria	and	archaea	(for	example,	fungi),	and	they’re	part	of	a	devilishly	clever	system
for	immunity	in	simple	organisms.	Like	humans,	bacteria	have	immune	systems	that	can	be	programmed
through	exposure	to	pathogens.	When	bacteria	encounter	a	viral	invader,	they	have	proteins	that	can	snip
out	short	sequences	of	the	viral	DNA	and	archive	the	sequences	as	spacers	in	a	CRISPR.
Labs	that	failed	for	months	to	edit	a	gene	using	TALENs	switched	to	CRISPR/Cas	and	succeeded	on	the

first	try.	They	succeeded	so	quickly	because	the	process	just	involves	designing	a	short	snippet	of	RNA
that’s	inserted	into	a	CRISPR,	a	simple	exercise	that	can	be	done	entirely	on	a	computer	or,	I	daresay,	by
hand.	The	RNA	snippet	 itself	can	be	fabricated	 in	about	a	week	for	 less	 than	$50	using	one	of	several
service	providers,	replacing	a	significant	amount	of	wet	lab	complexity	with	an	informatics	exercise.
Each	CRISPR	region	is	tagged	by	a	leader	sequence,	immediately	followed	by	the	CRISPR	proper.	A

CRISPR	itself	consists	of	a	guide	RNA	(gRNA)	or	“spacer”	sequence	delimited	by	a	well-defined	DNA
direct	repeat	sequence	that	is	palindromic.

NOTE

The	term	spacer	is	used	when	discussing	an	immune	system,	while	guide	RNA	is	used	when
discussing	genome	editing.	Calling	a	region	of	interest	a	spacer	is	confusing,	but	misnomers	can
happen	with	reverse	engineering.	I	can’t	blame	scientists	for	first	noticing	a	pattern	of	repeating
delimiters	and	calling	the	stuff	between	the	delimiters	“spacers.”	After	all,	physicists	got	the
current	flow	convention	backward	and	stuck	with	it.	Who	are	we	to	judge?

Palindromic	typically	means	that	a	string	is	equivalent	when	simply	reversed,	like	the	word	racecar.
When	 biologists	 say	 a	 sequence	 is	 “palindromic,”	 they	 mean	 the	 sequence	 is	 equivalent	 when	 first
complemented	 (A→T,	 T→A,	G→C,	 C→G)	 and	 then	 reversed.	 For	 instance,	 GAATTC	 is	 considered
biologically	palindromic,	even	though	it	is	not	lexically	palindromic.
The	CRISPR/Cas	 system	was	 described	 shortly	 after	 the	 demise	 of	Chumby,	 and	 at	 the	 time,	 I	was

interning	 at	 Dr.	 Swaine	 Chen’s	 infectious	 diseases	 laboratory	 at	 the	 Genome	 Institute	 of	 Singapore.



Among	 other	 things,	 I	 studied	 various	 strains	 of	E.	 coli	 that	 induce	 urinary	 tract	 infection,	 under	 the
guidance	of	Lu	Ting	Liow.	While	assisting	an	investigation	into	portions	of	phage	virus	DNA	that	found	its
way	into	E.	coli,	I	was	asked	to	write	a	script	to	identify	palindromic	and	repeating	sequences	of	DNA	in
the	E.	coli	genome.	My	script	showed	that	the	genome	was	littered	with	the	sequences;	I	figured	the	code
had	a	bug	and	didn’t	think	much	of	the	result.	But	perhaps	some	of	the	direct	repeats	I	saw	were	portions
of	a	CRISPR.
Let’s	look	at	a	CRISPR	from	a	strain	of	E.	coli	now.	This	is	the	CRISPR	direct	repeat	sequence	for	E.

coli	O104:H4:

GAGTTCCCCGCGCCAGCGGGGATAAACCG

The	bolded	base	pairs	are	the	palindromic	regions.	When	this	DNA	sequence	is	translated	into	RNA
(so	that	T→U),	the	palindromic	region	can	pair	with	itself,	forming	a	hairpin	or	stem	loop,	as	shown	here.

A	stem	loop

This	 shape	 hints	 at	 the	 significance	 of	 the	 repeated	 palindromic	 structures	 in	 a	 CRISPR:	 when
translated	 into	RNA,	 the	sequence	can	fold	onto	 itself,	 forming	a	secondary	structure.	 It’s	 important	 to
remember	 that	 genes	 are	 not	 just	 lines	 of	 code;	 they	 are	 physical	 molecules	 whose	 overall	 shape
significantly	impacts	their	function.	Biologists	use	a	four-tier	system	for	describing	the	physical	structure
that	molecules	 like	DNA,	RNA,	and	proteins	can	 take	based	on	 their	 source	code.	Primary	structure	 is
simply	the	sequence	of	monomers	(bases	or	amino	acids).	Secondary	structure	refers	to	physical	shapes
that	arise	from	the	localized	interactions	of	monomers,	due	to	physical	properties	such	as	the	spacing	and
number	of	hydrogen	bonds	between	molecules,	or	the	affinity	of	certain	monomers	for	water.	In	RNA	and
DNA,	 that	means	 structures	 like	 hairpin	 loops;	 in	 proteins,	 it	means	 structures	 like	 spirals	 and	 sheets.
Tertiary	structure	refers	to	the	complex	3D	shape	of	a	molecule	that	arises	from	long-distance	interactions
between	potentially	remote	portions	of	the	primary	sequence.	Tertiary	structure	is	particularly	applicable
to	proteins,	as	some	amino	acids,	such	as	cysteine,	can	cross-link	with	each	other	over	longer	distances.
Quaternary	structure	refers	to	structures	formed	from	the	interaction	of	multiple	molecules.	A	Cas9/RNA



complex	is	an	example	of	a	quaternary	structure.	The	final,	chemically	active	and	targeted	molecule	arises
only	when	a	Cas9	protein	is	merged	with	a	gRNA,	and	the	stem	loop	secondary	structure	of	the	gRNA	is
necessary	for	Cas9	to	recognize	it.

Determining	Where	to	Cut	a	Gene
RNA	derived	 from	a	CRISPR	 region	 through	 transcription	 is	 incorporated	 into	a	protein	complex	with
other	Cas	proteins.	Specific	Cas	proteins	(such	as	Cas9)	use	the	RNA	as	a	search-and-destroy	template:
the	Cas9/RNA	complexes	float	around	the	cell,	and	when	they	find	a	DNA	sequence	that	matches	the	RNA
template,	they	selectively	cut	the	DNA	at	the	template	site,	effectively	neutralizing	the	intruding	virus.	But
you	may	have	noticed	a	recursion	problem:	the	Cas9/RNA	complex	should	also	cut	up	the	CRISPR	region
in	the	host	organism’s	genome,	as	that	region	also	has	the	target	pattern.	This	would	effectively	destroy	the
CRISPR	region	for	future	use.
To	avoid	destroying	the	CRISPR	region,	the	Cas9/RNA	complex	targets	the	template	DNA	plus	a	short,

defined	 three-to-five	base	pair	sequence	called	a	proto-space	adjacent	motif	 (PAM).	For	example,	 the
PAM	 for	 a	 popular	Cas9	 protein	 from	S.	pyogenes	 is	 [AGTC]GG	when	written	 in	 regular	 expression
format;	biologists	use	a	different	convention,	NGG,	to	say	the	same	thing.	As	long	as	the	CRISPR	archive
doesn’t	include	the	PAM	sequence,	it	won’t	be	cut	up	by	the	complex.
The	PAM	requirement	means	 there	 are	 some	 limitations	on	where	you	can	cut	 a	gene.	 It’s	 a	bit	 like

targeting	only	hex	strings	that	end	in	0xC3	or	searching	for	return-oriented	programming	(ROP)	gadgets.
Just	 as	 hackers	 searching	 for	ROP	 gadgets	 look	 for	 short	 sequences	 of	 instructions	 that	 end	 in	 a	RET
opcode,	bioinformaticists	have	to	search	for	short	sequences	of	DNA	to	edit	that	end	in	a	PAM.
Despite	 these	 limitations,	CRISPR/Cas	has	proven	to	be	a	versatile	and	reliable	gene-editing	tool.	 It

has	 been	 adapted	 to	 both	 cut	 genes	 and	 paste	 in	 new	 sequences.	Making	 a	 precise	 cut	 at	 an	 arbitrary
location	 in	 DNA	 is	 the	 hardest	 step	 of	 inserting	 new	 DNA.	 But	 in	 conjunction	 with	 well-studied
techniques	 like	non-homologous	end	 joining	 (NHEJ)	or	homology-directed	 repair	 (HDR),	CRISPR/Cas
can	be	used	to	insert	modifications	into	a	gene.

Implications	for	Engineering	Humans
Even	though	CRISPR/Cas	is	a	naturally	occurring	system	found	in	bacteria	and	fungi,	the	universal	genetic
code	means	the	system	is	binary-compatible	with	all	species,	including	humans.	Before	this	system	was
discovered,	genes	were	largely	read-only,	especially	in	living	organisms.	CRISPR/Cas	gives	us	a	much
more	reliable	and	efficient	tool	to	patch	and	repair	genes,	without	necessarily	disrupting	the	viability	of
the	host	organism.	Biologists	have	managed	 to	pack	 the	necessary	DNA	for	a	CRISPR/Cas	exploit	 into
viruses,	enabling	them	to	sneak	these	gene-editing	tools	through	the	cell	walls	of	live,	complex	organisms
like	mice,	plants,	and	humans.	The	structure	of	a	CRISPR	also	allows	scientists	to	perform	multiple	edits
in	a	single	experiment,	expanding	the	experimental	and	therapeutic	versatility	of	the	technique.
This	technology	has	already	been	validated	on	human	cells,	even	human	embryos,	and	the	implications

are	simply	mind-boggling.	Regardless	of	ethical	standards	set	by	the	scientific	and	legal	communities	in
your	country	of	residence,	I	think	the	promise	of	custom-designed	children,	free	of	genetic	diseases	that
once	plagued	parents,	is	too	strong	a	temptation.	Even	if	most	countries	banned	such	a	practice,	I	feel	it’s
inevitable	 that	 someone,	 somewhere,	 perhaps	 funded	 by	 a	 wealthy	 billionaire	 unable	 to	 have	 viable
children	of	 their	own,	will	 start	 tinkering	with	custom-engineered	humans.	 If	 the	 results	are	positive,	 it
will	likely	change	the	course	of	humanity	more	profoundly	than	Moore’s	law.	And	that’s	if	a	mechanism
called	gene	drive	doesn’t	get	there	first.



Hacking	Evolution	with	Gene	Drive
Gene	drive	 rewrites	 the	 rules	of	 sexual	 reproduction	 and,	 consequently,	 evolution	 in	 a	way	previously
unseen	in	nature.	You	might	know	that	you	have	two	copies	of	every	gene:	one	from	your	mother	and	one
from	your	father.	Each	copy	is	an	allele.	If	the	alleles	match,	you’re	said	to	be	homozygous	for	that	gene.
If	 the	 alleles	 are	 different,	 you’re	heterozygous	 for	 it.	 Normally,	 which	 allele	 a	 child	 gets	 from	 each
parent	is	a	coin	toss,	and	the	fitness	of	a	child	in	a	given	environment	is	the	primary	deciding	factor	for
passing	a	set	of	alleles	on	to	a	new	generation.
Gene	drive	eliminates	 this	coin	 toss.	Environmental	selection	 is	short-circuited,	allowing	genes	with

potentially	negative	side	effects	 to	propagate	 rapidly	 in	a	population.	This	exploit	 is	made	possible	by
outfitting	the	desired	allele	with	a	CRISPR/Cas-assisted	gene-editing	mechanism	that	targets	and	converts
a	 heterozygous	 allele	 into	 a	 homozygous	 allele.	 For	 example,	 if	 a	 mother	 has	 a	 gene	 outfitted	 with	 a
CRISPR/Cas-assisted	 gene	 drive	 mechanism,	 it	 doesn’t	 matter	 what	 the	 father’s	 genes	 are.	 Inside	 the
child,	the	mother’s	copy	will	express	the	CRISPR/Cas	editing	mechanisms,	seeking	out	the	father’s	copy
and	editing	it	to	be	the	same	as	the	mother’s.
In	terms	of	disruptive	power,	if	CRISPR/Cas	is	the	rm	command,	then	gene	drive	is	like	calling	rm	 -r	*

instead.
This	has	a	profound	effect	on	natural	selection.	Forget	survival	of	the	fittest;	changes	no	longer	have	to

strictly	benefit	an	organism’s	fitness	to	spread	through	the	population.	Furthermore,	gene-driven	changes
can	sweep	through	a	natural	population	at	an	exponential	rate	(much	faster	than	typical	mutations)	because
they	don’t	rely	on	coin	tosses	and	natural	selection	to	amplify	a	mutation.
On	 the	 upside,	 gene	 drive	 could	 be	 used	 to	 force	 good	 changes	 into	 the	 world,	 like	 malaria-free

mosquitoes.	On	the	downside,	 this	new	mechanism,	previously	unseen	 in	nature,	could	wreck	havoc	on
evolution	and	the	ecosystem.	Although	our	changes	could	be	well	engineered	and	well	intentioned,	nature
likes	to	shake	things	up	through	mutations,	spontaneous	rearrangements,	and	horizontal	gene	transfer.	If	a
gene-driven	 organism	 were	 to	 pick	 up	 extra	 genes	 in	 the	 payload	 region,	 the	 outcome	 could	 be
unpredictable.
For	instance,	malaria-free	mosquitoes	would	benefit	humans,	but	mosquitoes	also	play	a	large	role	in

the	Earth’s	 ecosystem	as	 a	 food	 source	 for	 fish	 and	 birds.	 If	modified	mosquitoes	 failed	 to	 thrive	 and
occupy	 their	 ecological	 niche,	 there	 could	 be	 a	 domino	 effect	 that	 hurts	 other	 species.	 This	 could	 all
happen	on	a	timescale	so	short	that	we	may	not	be	able	to	reverse	it	if	we	tried.	Furthermore,	organisms
like	mosquitoes	don’t	recognize	geopolitical	boundaries.	Thus,	banning	gene	drive	in	most	of	the	world
doesn’t	make	anyone	safe	from	its	potential	consequences.	If	just	one	well-engineered	organism	makes	it
into	the	wild,	everyone	has	to	deal	with	it.
Perhaps	it’s	no	mistake	that	CRISPR/Cas	has	been	found	only	in	bacteria	and	archaea—organisms	that

are	known	 to	 reproduce	 asexually.	Perhaps	 the	 ability	 to	 short-circuit	 the	 fitness	 requirement	 in	 sexual
reproduction	 rapidly	degrades	 the	overall	 fitness	of	 any	germ	 line	carrying	a	CRISPR/Cas	mutation	 so
that	 the	 line	 goes	 extinct	 before	 it	 can	 take	 over	 a	 population.	 After	 all,	 any	 accidental	 genes	 or
spontaneous	 mutation	 that	 finds	 its	 way	 into	 a	 CRISPR/Cas	 payload	 would	 also	 sweep	 through	 the
population	as	quickly	as	the	initial	drive.
The	question,	then,	is	how	long	does	it	take	for	this	degradation	and	extinction	to	happen?	The	example

of	 eradicating	malaria	 vectors	 would	 have	 a	 very	 different	 outcome	 if	 the	 modified	mosquitoes	 went
extinct	within	a	few	years	versus	several	millennia.

CLOSING	THOUGHTS



Clearly,	 there	 are	 a	 lot	 of	 unanswered	 questions	 on	 the	 frontier	 of	 biological	 engineering,	 and	 it’s	 all
happening	 right	 now.	Whether	 good	 or	 bad,	 the	 outcome	 of	 today’s	 experiments	 will	 probably	 affect
humanity	as	profoundly	as	Moore’s	law	and	the	internet.	Electronic	technology	reshaped	the	way	we	think
and	communicate,	and	biotech	will	reshape	our	bodies	and	our	environment.	The	big	difference	is	that	in
biotech,	 we	 haven’t	 developed	 the	 ability	 to	 do	 backups,	 but	 we	 are	 developing	 technology	 with	 the
potential	power	of	the	rm	-r	*	command.
Personally,	I’m	optimistic;	I	think	these	technologies	can	and	will	be	used	to	improve	our	lives.	But	for

that	 to	happen,	we	need	society	 to	understand	the	 issues	at	stake	and	have	a	vigorous	and	open	debate.
Even	if	these	biological	techniques	have	scary	implications	for	our	health	and	safety,	failing	to	disclose
and	discuss	vulnerabilities	just	invites	zero-days.	And	who	wants	to	wake	up	one	morning	infected	with
crippling	malware	and	no	viable	patch?
Hardware	breakthroughs	have	changed	our	lives	as	we	know	it,	but	Moore’s	law	is	slowing	down,	and

DNA	 sequencing	 has	 outpaced	 it.	 Who	 knows	 what	 new	 world	 will	 be	 created	 by	 advancements	 in
biotech?	And	just	as	society	benefits	from	the	responsible	disclosure	and	sharing	of	vulnerabilities	and
exploits,	 engaging	 in	 scientific	discourse	 is	more	constructive	 than	attempting	 to	 censor	 it.	Perhaps	 the
experience	and	perspectives	gained	in	maturing	the	hardware	industry	over	the	past	50	years	from	pocket
calculators	into	pocket	supercomputers	can	help	guide	biotech	to	a	similarly	positive	outcome.



11.	selected	interviews
I’ve	done	several	interviews	over	the	years,	and	this	chapter	compiles	a	couple	that	I	thought	you	might
enjoy.	The	first	interview	was	originally	published	by	the	China	Software	Developer	Network	(CSDN),
which	describes	itself	as	a	“programmer	magazine.”	At	the	end,	you’ll	find	a	story	from	the	Blueprint,	a
collection	of	interviews	with	founders	and	innovators	in	hardware.

ANDREW	“BUNNIE”	HUANG:	HARDWARE	HACKER	(CSDN)
This	interview	originally	appeared	in	CSDN	in	Chinese	in	2013,	and	the	magazine	kindly	allowed	me	to
publish	 an	 English	 translation	 on	 my	 blog.	 In	 the	 first	 section,	 I	 discussed	 my	 thoughts	 on	 the	 maker
movement,	which	was	relatively	new	at	the	time,	and	my	experience	with	making	hardware	products.	The
second	section	was	more	about	hardware	hacking	and	what	I	feel	it	means	to	have	a	hacker	spirit.	You	can
find	the	original	Chinese-language	version	at	http://www.csdn.net/article/2013-07-03/2816095.

About	Open	Hardware	and	the	Maker	Movement

The	maker	and	open	hardware	movements	have	attracted	a	lot	of	attention.	Chris	Anderson	wrote	a
book	called	Makers,	and	Paul	Graham	called	this	time	the	“Hardware	Renaissance.”	How	do	you
think	this	movement	will	affect	ordinary	people,	developers,	and	our	IT	industry?
This	movement,	as	it	may	be,	is	more	a	symptom	than	a	cause,	in	my	opinion.	First,	let’s	review	how

we	got	to	this	point.
In	1960,	 there	was	only	hardware,	and	 it	was	all	open.	When	you	bought	a	 transistor	 radio,	 it	had	a

schematic	printed	in	the	back.	If	the	radio	broke,	you	had	to	fix	it	yourself.	It	was	popular	to	buy	kits	to
make	your	own	radios.
Between	 1980	 and	 1990,	 the	 personal	 computer	 revolution	 began.	 Computers	 started	 to	 become

powerful	enough	to	run	software	that	was	interesting	and	enabling.
From	1990	to	2005,	Moore’s	law	drove	computers	to	be	twice	as	fast	and	have	twice	as	much	memory

every	1.5	to	2	years.	Only	software	mattered,	because	unless	you	could	afford	to	fab	a	chip	in	the	latest
technology,	making	hardware	wasn’t	worth	 it.	By	 the	 time	you	got	 the	components	 together,	a	new	chip
would	make	your	design	 look	slow.	Optimizing	software	also	mattered	 less	 than	features,	convenience,
and	creativity.	Users	could	 just	buy	a	faster	computer	and	run	old	software	faster.	“Making”	fell	out	of
fashion	because	there	was	no	time	for	it:	you	had	to	ship	code	or	die.
From	2005	 to	2010,	 computers	 didn’t	 get	much	 faster	 in	 terms	of	 clock	 speed,	 but	 they	got	 smaller.

Smartphones	were	born.	Everything	became	an	app,	and	everything	is	still	becoming	more	connected.
From	about	2010	to	now,	Moore’s	law	has	been	slowing	down.	This	slowdown	is	rippling	through	the

innovation	chain.	PCs	aren’t	getting	faster,	better,	or	cheaper	in	a	meaningful	way.	We	buy	new	PCs	just	to
replace	broken	ones,	not	because	the	latest	model	is	so	much	better.	It’s	too	early	to	tell,	but	smartphones
may	also	be	solidifying	as	a	platform:	the	iPhone	5	is	quite	similar	to	the	iPhone	4,	and	Samsung	phones
also	look	pretty	similar	across	revisions.
The	question,	then,	is	how	to	innovate?	How	can	you	create	market	differentiation?	With	Moore’s	law

http://www.csdn.net/article/2013-07-03/2816095


slowing	down,	it’s	possible	to	innovate	in	hardware	and	not	have	your	innovation	look	slow	because	a
new	 chip	 came	 out.	 You	 have	 steady	 platforms	 (PCs,	 smartphones,	 tablets)	 that	 you	 can	 target	 your
hardware	ideas	toward.	You	don’t	have	to	fab	chips	just	to	have	an	advantage.	Everyone	is	now	sifting
through	 technology’s	 past,	 looking	 for	 niches	 that	 were	 overlooked.	 Even	 an	 outdated	 smartphone
motherboard	looks	amazing	when	you	put	it	in	a	quadcopter,	satellite,	HVAC	system,	automobile,	energy
monitoring	system,	health	monitoring	system,	and	so	on.
Furthermore,	 as	humans,	we	 fundamentally	 feel	 differently	 toward	physical	 things	 and	virtual	 things.

Apps	are	wonderful,	but	human	homes	are	more	than	a	smartphone,	a	food	tray,	a	bed,	and	a	toilet.	People
still	surround	themselves	with	knickknacks,	photos	of	friends,	and	physical	gifts	from	special	occasions.	I
don’t	think	there	will	ever	be	a	time	when	a	virtual	teddy	bear	app	will	displace	a	physical	teddy	bear	for
cuddling	at	night.
As	a	result,	there	will	always	be	a	place	for	people	to	make	hardware	that	fills	this	need	for	tangible

goods.	This	hardware	will	merge	more	technology	and	run	more	software,	but	in	the	end,	there	is	a	space
for	makers	and	hardware	startups,	and	that	space	is	just	getting	bigger	now	that	hardware	technology	is
stabilizing.

Arduino	and	Raspberry	Pi	seem	to	reduce	the	threshold	for	designing	hardware.	How	do	you	think
this	will	affect	 the	hardware	 industry?	Do	you	 think	 these	platforms	will	progress	 the	 industry	by
leaps	and	bounds?	If	not,	what	does	it	take	to	make	a	really	innovative	hardware	product?

Arduino	and	Raspberry	Pi	serve	specific	market	niches.
Arduino’s	key	contribution	is	reducing	computation	to	an	easy-to-use	physical	form.	It	was	made	first

and	foremost	by	designers	and	artists,	and	less	so	by	technologists.	This	unique	perspective	on	technology
is	 very	 powerful	 because	 people	 who	 aren’t	 programmers	 or	 hardware	 designers	 want	 to	 access
hardware	 technology,	 too.	 Some	 very	 moving,	 deep	 interactive	 art	 pieces	 have	 been	 made	 using	 the
Arduino,	 allowing	 hardware	 to	 transform	 menial	 control	 applications	 into	 artwork	 that	 changes	 your
mood	 or	makes	 you	 think	 about	 life	 differently.	 I	 think	Arduino	 is	 just	 the	 first	 step	 toward	 taking	 the
“tech”	out	of	technology	and	letting	everyday	people	not	just	use	technology	but	create	with	it.	There	will
be	other	platforms,	for	sure.
Raspberry	Pi	is	a	very	inexpensive	embedded	hardware	reference	module,	and	I	think	other	platforms

will	follow	in	its	footsteps.	It’s	cheap	enough	that	for	many	applications,	you	can	use	the	Raspberry	Pi	as
is	 and	 gain	 no	 net	 cost	 advantage	 by	 designing	 and	 building	 your	 own	 hardware.	 For	 hardware
professionals,	 the	 nice	 thing	 about	 this	 platform	 is	 that	 instead	 of	 buying	 a	 reference	 design	 and	 then
having	to	spin	your	own	board,	you	can	just	buy	the	Raspberry	Pi	and	ship	it	in	your	product.	For	people
who	have	relatively	low-volume	products,	this	makes	sense.
I	see	an	ongoing	trend	toward	product	design	becoming	more	feasible	at	low	volumes.	There’s	still	a

market	for	million-unit	blockbuster	devices	like	smartphones	and	coffeemakers,	but	eventually,	there	will
also	be	a	market	for	devices	 that	only	have	a	production	run	of	1,000	to	10,000	units,	but	with	a	much
higher	margin.	These	small-run	products	will	be	developed	and	sold	by	teams	of	just	one	or	two	people
so	that	the	profit	will	still	be	a	good	living	for	the	individuals.	The	key	to	the	success	for	these	products	is
that	 they	 are	 highly	 customized	 and	help	 solve	 a	 specific	 problem	 for	 a	 small	 group	of	 users	who	 are
willing	to	pay	more	for	the	solution.

When	 new	 concepts	 or	 technologies	 first	 appear,	 they	 always	 generate	 optimistic	 discussion,	 but
most	of	them	will	really	affect	our	lives	only	after	a	long	period	of	development.	When	discussing
the	maker	 and	 open	 hardware	movements,	 are	 we	 too	 optimistic?	Does	 the	 average	 person	 have



common	misunderstandings	about	this	field?

Yes,	it	does	take	a	long	time	for	technology	to	really	change	our	lives.
The	maker	movement,	I	think,	is	less	about	developing	products	and	more	about	developing	people.	It’s

about	helping	people	realize	that	because	technology	is	man-made,	every	person	has	the	power	to	control
it	with	 a	 little	 knowledge.	 There	 is	 no	magic	 in	 technology.	You	 could	 also	 say	 that	 anyone	 can	 be	 a
magician	with	a	little	training.
Open	hardware	 is	more	of	a	philosophy.	The	success	or	 failure	of	a	product	 is	 largely	disconnected

from	whether	 the	 hardware	 is	 open	 or	 closed.	 Closing	 hardware	 doesn’t	 stop	 people	 from	 cloning	 or
copying,	and	opening	hardware	doesn’t	mean	that	bad	ideas	will	be	copied	simply	because	they	are	open.
Unlike	software,	hardware	requires	a	supply	chain,	distribution,	and	a	network	of	relationships	to	build	it
at	 a	 low	cost.	That	overhead	means	being	open	or	closed	 is	only	a	 small	part	of	 the	equation,	 and	 the
question	of	whether	to	open	or	close	a	project	revolves	around	how	much	you	want	to	involve	end	users
or	third	parties	to	modify	or	interoperate	with	your	product.

Looking	at	the	future	of	open	source	hardware,	do	you	think	it	will	be	analogous	to	the	open	source
software	industry,	where	many	commercial	companies	also	support	open	source	software?	What	are
the	differences	between	them?

I	don’t	think	they’re	quite	analogous.	In	software,	the	cost	to	copy,	modify,	and	distribute	is	basically	zero.
I	can	clone	a	copy	of	the	Linux	source	repository,	run	the	make	command,	and	have	the	same	high-quality
kernel	running	on	my	desktop	that	runs	on	top-end	servers	and	supercomputers.
But	copying	hardware	has	a	 real	cost:	 the	parts,	 the	 factories,	 and	 the	skilled	workers	used	 to	build

them;	the	quality	control	procedures;	and	the	manufacturing	process	are	all	important	factors	in	the	final
product’s	 cost,	 look,	 feel,	 and	 performance.	 Simply	 giving	 someone	 a	 copy	 of	 my	 schematics	 and
drawings	doesn’t	mean	they	can	make	my	exact	product.	Even	injection	molding	has	art	to	it.	If	I	give	the
same	CAD	drawing	to	two	tooling	makers,	the	outcome	could	be	very	different	depending	on	where	the
mold	maker	decides	 to	place	 the	gates,	 the	ejector	pins,	 the	cooling	 for	 the	mold,	 the	mold	cycle	 time,
temperature,	and	so	on.
And	then	you	have	to	think	about	the	distribution	channel,	reverse	logistics,	financing,	and	so	on.	Even

as	the	world	becomes	more	efficient	at	logistics,	you’ll	never	be	able	to	buy	a	TV	as	easily	as	you	can
download	the	movies	that	you’d	watch	on	that	TV.

What	kind	of	business	model	do	you	 think	 is	 ideal	 for	an	open	source	hardware	company?	Could
you	give	an	example?

One	 of	 my	 key	 theories	 behind	 open	 source	 hardware	 is	 that	 regardless	 of	 the	 license,	 hardware	 is
essentially	 open,	 at	 least	 at	 the	 level	 of	 schematics	 and	 PCB	 layout.	 For	 a	 relatively	 small	 amount	 of
money,	you	can	pay	a	service	 to	extract	 the	details	 required	 to	copy	a	PCB	design.	Therefore,	you	can
assume	that	once	you	ship	hardware,	it	can	be	copied.	If	you	accept	this	assumption,	then	it	follows	that
not	releasing	schematics	and	PCB	layouts	won’t	stop	people	from	copying	your	goods.	If	someone	wants
to	copy	a	piece	of	hardware,	they	will,	whether	you	share	your	design	files	or	not.
But	sharing	design	files	does	make	a	difference	to	a	separate	and	important	group	of	people.	There	are

other	 businesses	 and	 individual	 innovators	 who	 could	 use	 your	 design	 files	 to	 design	 accessories,
upgrades,	or	third-party	enhancements	that	rely	upon	your	product.	In	that	case,	sharing	your	design	files
improves	your	opportunity	 for	new	business	 relationships,	which	makes	doing	so	(with	an	open	source
hardware	license	to	reserve	a	few	basic	rights	and	protections)	a	practical	suggestion.



Clearly,	 some	 hardware	 strategies	 aren’t	 compatible	 with	 open	 source.	 If	 your	 sole	 value	 to	 the
consumer	is	your	ability	to	make	stand-alone	hardware,	and	you	have	no	strategic	advantage	in	terms	of
cost,	then	you’d	want	to	keep	your	plans	secret	to	delay	low-cost	copies	for	as	long	as	possible.
But	the	most	innovative	products	today	aren’t	just	pieces	of	hardware.	They	also	involve	software	and

services.	Open	hardware	business	models	work	better	in	such	hybrid	products.	In	many	cases,	consumers
are	willing	to	pay	annually	(think	in	terms	of	subscriptions,	advertising,	upsells,	accessories,	royalties,	or
upgrades)	for	many	products.	In	fact,	it’s	most	profitable	to	just	collect	these	fees	and	not	involve	yourself
in	the	hardware	manufacturing	portion.	Controlling	access	to	an	ongoing	service	is	also	much	easier	than
controlling	the	plans	for	a	piece	of	hardware.
Thus,	 if	 you	 couple	 a	 profitable	 online	 service	with	 your	 hardware,	 open	 hardware	makes	 a	 lot	 of

sense.	Letting	other	people	copy	the	hardware,	sell	it,	and	add	more	users	to	your	online	service	simply
means	you	get	more	revenue	without	more	risk.

You	 come	 to	 China	 often	 and	 know	 a	 lot	 about	 this	 country.	 China’s	 software	 technology	 is	 not
advanced.	Do	you	think	that	being	the	world	factory	center	will	help	China	improve	its	overall	level
of	technology?	How	can	this	country	change	from	just	a	manufacturing	center	to	a	place	focused	on
design,	research,	and	development?	What	is	China	missing?

I	wouldn’t	say	I	know	much	about	China.	I	know	a	little	about	one	small	corner	of	China	in	one	specific
area—hardware	manufacturing.	 If	 there’s	 one	 thing	 I	 do	 know,	 however,	 it’s	 that	 China	 is	 a	 very	 big
country	with	many	different	kinds	of	people	 and	a	 long	history	 that	 I	 am	only	beginning	 to	understand.
However,	 I’ve	 lived	 through	 almost	 the	 entire	 history	 of	 high	 technology,	 so	 I	 can	 comment	 on	 the
relationship	between	high	technology	and	people,	from	which	I	can	derive	some	perspective	about	China.
First,	 every	 country	 that	 is	 a	 technology	 powerhouse	 today	 started	 with	 manufacturing.	 The	 United

States	 started	 as	 colonies	 of	Britain,	mining	ores,	 trapping	 furs,	 and	 farming	 cotton	 and	 tobacco.	Over
time,	 the	 United	 States	 had	 steel	 mills	 and	 linen	 production.	 The	 United	 States	 didn’t	 really	 start	 to
develop	original	technology	until	the	early	1900s,	and	that	process	didn’t	take	off	until	the	mid	1900s.
Japan	developed	 similarly.	 It	 started	 in	manufacturing,	 copying	many	US-made	goods.	 In	 fact,	 if	you

believe	the	historical	accounts,	the	first	cars	and	radios	made	in	Japan	were	not	great.	It	took	the	United
States	and	Japan	decades	to	go	from	manufacturing-based	economies	to	service-based	economies.
Compare	 that	 to	China,	where	 the	 electronics	manufacturing	 industry	 started	maybe	20	years	 ago,	 at

most,	and	China	is	just	turning	the	corner	from	being	a	manufacturing-oriented	economy	to	one	that	can	do
more	design	and	software	technology.	I	believe	this	is	a	natural	series	of	events.	Some	portion	of	entry-
level	 workers	 will	 eventually	 become	 technicians,	 then	 some	 technicians	 will	 become	 designers,	 and
finally,	some	designers	will	become	successful	entrepreneurs.
In	concrete	numbers,	 if	you	have	10	million	 factory	workers,	maybe	1	percent,	or	100,000	workers,

will	learn	enough	to	become	technicians	after	a	few	years.	After	a	few	years	of	technician	work,	maybe	1
percent	will	gain	enough	skill	to	become	original	designers,	giving	1,000	designers.	These	experienced,
grassroots	designers	would	become	the	core	of	an	entrepreneurial	economy,	and	from	there,	the	economy
could	begin	to	transform.
Over	 the	 course	 of	 a	 decade	 or	 two,	 a	 thousand	 companies	would	 eventually	 be	 distilled	 to	 just	 a

handful	of	global	brand	companies.	 I	believe	China	 is	currently	going	 through	this	 final	phase.	A	lot	of
people	 in	 Shenzhen	 have	 the	 experience	 of	manufacturing,	 the	wisdom	 to	 do	 design,	 and	 the	 ability	 to
apply	their	talent	to	innovation	and	original	product	design.	The	next	decade	will	be	an	exciting	one	for
China’s	technology	industry,	if	the	current	policies	on	economic	and	intellectual	development	stay	roughly
on	course.



This	pattern	applies	primarily	to	hardware	or	hardwaredominated	products.	Software	products	have	a
similar	pattern,	but	I	believe	there	are	unique	cultural	aspects	that	give	the	West	an	advantage	in	software
design.	In	hardware,	if	a	process	is	not	efficient	or	is	producing	low	yield,	you	can	easily	identify	the	root
cause	 and	 produce	 direct	 physical	 evidence	 of	 the	 problem.	 Hardware	 problems,	 in	 essence,	 are
indisputable.
In	software,	if	code	is	not	efficient	or	it’s	poorly	written,	it’s	very	hard	to	identify	the	exact	problem

that	causes	it.	You	can	see	evidence	of	programs	crashing	or	running	slowly,	but	there’s	no	broken	wire	or
missing	screw	you	can	hold	up	to	show	everyone	why	the	software	is	broken.	Instead,	developers	have	to
review	complex	designs,	consider	many	opinions,	and	ultimately,	identify	a	problem	that	comes	down	to
nothing	 more	 than	 one	 individual’s	 bad	 decision.	 All	 software	 APIs	 are	 simply	 constructs	 of	 human
opinions.
Asian	cultures	have	a	strong	focus	on	guanxi,	reputation,	and	respect	for	the	elders.	The	West	tends	to

be	 more	 rebellious	 and	 willing	 to	 accept	 outsiders	 as	 champions,	 and	 they	 have	 less	 respect	 for	 the
advice	 of	 elders.	 As	 a	 result,	 I	 think	 it’s	 very	 culturally	 difficult	 in	 an	Asian	 context	 to	 discuss	 code
quality	 and	 architectural	 decisions.	 The	 field	 of	 software	 itself	 is	 only	 30	 years	 old,	 and	 older,	more
experienced	engineers	are	also	the	most	out	of	date	in	terms	of	methodology	and	knowledge.	In	fact,	the
young	engineers	often	have	the	best	ideas.	But	if	it’s	culturally	difficult	for	young	engineers	to	challenge
the	decisions	of	elder	engineers,	you	end	up	with	poorly	architected	code	and	no	hope	to	be	competitive.
Overcoming	these	obstacles	is	possible,	but	enforcing	the	correct	incentives	and	culture	would	require

a	 very	 strong	 management	 philosophy.	 The	 workers	 should	 be	 rewarded	 fairly	 for	 making	 correct
decisions,	 and	 there	 can	 be	 no	 favorites	 based	 upon	 friendship,	 relationship,	 or	 seniority.	 Senior
engineers	and	managers	must	see	a	real	financial	reward	for	accepting	their	mistakes,	 instead	of	saving
face	by	forcing	junior	engineers	to	code	patches	around	bad	high-level	decisions.	US	companies	usually
achieve	 this	 alignment	by	 sharing	equity	 in	a	 company	among	 the	engineers	 so	 that	 the	big	payout	only
comes	if	the	company	as	a	whole	survives,	regardless	of	an	individual’s	ego.

What	do	you	think	the	relationship	between	individual	makers	and	commercial	companies	will	be	in
the	 future?	And	as	 individual	makers	may	compete	not	only	with	commercial	companies	but	also
with	other	makers	in	the	future,	what	factors	are	critical	to	a	product’s	success?

As	 minimum	 order	 quantities	 decrease	 and	 innovation	 gets	 closer	 to	 the	 edge,	 I	 think	 commercial
companies	will	see	more	competition	from	makers,	especially	as	the	logistics	industry	transforms	itself
into	an	API	that	can	plug	directly	into	websites.	At	the	end	of	the	day,	the	most	critical	factor	to	success
will	still	be	how	much	value	consumers	perceive	from	a	product.	This	is	related	to	superior	features	and
good	product	quality,	but	the	presentation	to	the	consumer	and	how	clearly	the	benefits	are	explained	are
important,	too.
As	a	result,	any	product	will	need	to	be	visually	appealing,	be	easy	to	use,	and	come	with	marketing

material	that	clearly	explains	the	benefits	of	using	it.	Those	elements	are	often	challenging	for	individual
makers	who	are	good	at	making	products	that	are	valuable	technically	but	have	less	talent	for	sales	and
marketing.	Makers	who	can	master	both	facets	will	have	an	edge.

About	Hardware	Hackers

You’ve	participated	in	the	development	process	of	many	products,	but	what	is	your	personal	goal?



I	would	like	to	make	people	happy	by	building	things	that	 improve	their	 life	in	some	way.	The	greatest
pleasure	is	to	see	someone	enjoying	something	I	made,	and	knowing	I’ve	improved	that	person’s	life	in
some	small	way.	Sometimes,	the	product	is	solving	a	big	problem	for	its	users;	other	times,	the	product	is
more	whimsical,	and	the	user’s	happiness	comes	from	fun	or	beauty.	But	either	way,	knowing	I’m	helping
another	person	by	making	something	is	 important	 to	me.	I’ve	learned	that	money	beyond	a	certain	level
doesn’t	make	me	any	happier.	This	makes	me	difficult	to	work	with,	because	it’s	hard	for	people	to	just
hire	me	by	offering	a	lot	of	money.	Instead,	they	need	to	convince	me	that	the	activity	will	somehow	also
make	people	happy.
Another	important	goal	for	me	is	to	just	understand	how	the	world	works.	I	have	a	natural	curiosity,	and

I	want	to	learn	and	understand	all	kinds	of	things.	The	universe	has	a	lot	of	patterns	to	it,	and	sometimes,
you’ll	find	seemingly	unrelated	pieces	fitting	together	like	magic.	Discovering	these	links	and	seeing	the
world	fit	together	like	a	big	jigsaw	puzzle	is	profound	and	satisfying.

Failure	 tends	 to	give	people	more	experience.	Could	you	 talk	about	 the	not-so-successful	projects
you	have	participated	in,	or	if	you’ve	ever	seen	other	failed	projects	that	inspired	you?

My	life	is	a	story	of	failures.	The	only	thing	I	have	done	repeatedly	and	reliably	is	fail.	But	I	have	two
rules	when	handling	failure:

1.	 Don’t	give	up.

2.	 Don’t	make	the	same	mistake	twice.

If	you	follow	 these	 rules,	eventually,	you’ll	 find	success	after	many	failures.	That	said,	 I	do	have	an
interview	 that	 focuses	 on	 one	 of	 my	 recent	 failures.	 You	 can	 read	 it	 at
http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-
chumby-new-adventures/.*

Your	 book,	Hacking	 the	 Xbox,	 has	 been	 published	 for	 10	 years.	 For	 people	 who	 want	 to	 learn
reverse	engineering	or	become	a	hardware	hacker	 today,	how	do	 these	experiences	and	skills	still
apply?

I’d	like	to	think	the	core	principles	covered	in	the	book	are	still	relevant	today.	The	Xbox	was	simply	an
example	 I	 used	 to	 show	how	 to	do	 things.	The	 approach	 and	 the	 techniques	 are	 applicable	 to	 a	 broad
range	of	problems.
For	 the	Chinese	audience,	 I	have	 found	mobile	phone	 repair	manuals	 to	be	quite	 interesting	 to	 read,

even	 though	 I	 can’t	 read	Chinese	well.	 Their	 descriptions	 on	 the	 theory	 of	 electronics	 are	 not	 always
completely	accurate,	but	practically	speaking,	they’re	good	enough,	and	they	provide	a	quick	way	to	get
started	while	learning	immediately	useful	skills	in	repairing	phones.
There’s	also	a	Chinese	magazine,	called	无线电	(something	like	Radio	Electronics	in	English),	which

I	have	found	to	be	quite	good.	If	you	get	started	building	the	projects	in	there,	I	think	you	will	learn	very
quickly.

The	Xbox	One	 has	more	 stringent	 restrictions	 for	 users.	What	 do	 you	 think	 about	 this?	Are	 you
interested	in	exploring	this	black	box	and	upgrading	your	book?

I	haven’t	done	much	work	on	video	game	consoles	in	a	while;	there’s	a	whole	new	generation	of	console

http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/


hackers	who	are	excited	to	explore	them,	and	I’m	happy	for	that.	As	for	the	Xbox	One’s	security,	I’m	sure
it	is	one	of	the	most	secure	systems	built.	Microsoft	did	a	very	good	job	on	the	Xbox	360,	and	the	Xbox
One	security	team	members	I	know	personally	have	a	very	solid	understanding	of	the	principles	needed	to
build	secure	hardware.	It	should	be	very	hard	to	crack.
That	said,	I’m	glad	I	have	no	desire	to	buy	or	use	one.	I	think	I	would	become	very	frustrated	with	their

use	policies	and	restrictions	very	quickly.

There’s	 a	 lot	 of	 controversy	 over	 whether	 electronic	 devices	 should	 have	 a	 lock	 to	 prevent	 user
rooting.	What	do	you	 think	about	 this?	Is	 there	a	contradiction	between	ensuring	user	safety	and
giving	users	complete	control	of	their	devices?

I	believe	users	should	own	their	hardware,	and	owning	something	means	having	the	right	to	modify	it	and
having	 root	access	 rights.	 If	a	company	 is	concerned	about	users	being	unsafe,	 then	 it’s	easy	enough	 to
allow	users	 to	 opt	 out	 by	 signing	 an	 electronic	waiver	 to	 give	 up	 their	 support	 and	warranty	 rights	 in
order	 to	 gain	 complete	 access	 to	 their	 own	 machines.	 Most	 people	 who	 can	 root	 their	 machines	 are
already	smarter	than	the	phone	support	they	would	be	calling	inside	the	company,	so	they	shouldn’t	have
problems.
The	laws	have	changed	to	make	some	rooting	activities	illegal,	even	on	hardware	that	you	bought	and

own.	I	think	this	reduction	in	our	natural	rights	of	ownership	is	dangerous	and	can	put	consumers	in	unfair
situations.	 This	 also	 discourages	 consumers	 from	 exploring	 and	 learning	 more	 about	 the	 technologies
they’ve	become	so	dependent	upon.

As	hardware	systems	become	more	integrated,	do	you	think	hardware	hacking	is	getting	more	and
more	 difficult,	 or	 do	 you	 worry	 about	 hardware	 hackers	 becoming	 extinct?	 If	 so,	 how	 could	 we
change	this	situation?

Hardware	 system	 integration	 has	 been	 increasing	 for	 a	 long	 time.	 The	 TX-0	 just	 used	 transistors,	 the
Apple	 II	 used	TTL	 ICs,	PCs	use	 controller	 chipsets,	 and	mobile	 phones	have	 just	 a	 single	System-on-
Chip.	Increasing	integration	does	make	some	parts	harder	to	hack,	but	there	are	always	opportunities	at
the	system	integration	level.
In	other	words,	I	still	 think	there	is	art	in	hardware,	but	the	level	at	which	hardware	hackers	have	to

work	gets	higher	every	day,	and	that’s	a	good	thing.	It	means	hacks	are	getting	more	powerful	with	time	as
well.

Hacking	 the	Xbox	 is	 dedicated	 to	 Aaron	 Swartz.	 Could	 you	 talk	 about	 why	 you	 think	 the	 hacker
spirit	is	important	today?

The	hacker	spirit	is	the	ultimate	expression	of	human	problem-solving	ability.	It’s	about	the	ability	to	see
the	world	for	what	it	is,	and	not	the	constructs	and	conventions	that	society	puts	in	place.	For	instance,	a
brick	is	not	just	used	to	make	buildings;	it	can	be	a	doorstop,	a	weapon,	a	paperweight,	a	heating	ballast,
or	 it	can	be	ground	up	and	used	for	soil.	Hackers	question	convention	 through	 the	 lens	of	doing	what’s
most	practical	and	correct	for	the	situation	at	hand.	Sometimes	their	methods	aren’t	always	harmonious,
as	hackers	often	prioritize	doing	the	right	thing	over	being	nice	or	playing	by	the	rules.
I	find	the	more	difficult	situations	become,	the	more	pervasive	and	stronger	the	hacker	spirit	becomes

among	common	people.	I	see	evidence	of	this	around	the	world.	This	spirit	is	linked	to	the	human	will	to
survive	and	 to	 thrive.	 I	 think	 it’s	 important	 for	a	 society	 to	cultivate	and	 tolerate	 the	hacker	 spirit.	Not
everyone	has	it,	but	the	few	who	do	help	make	society	more	resilient	and	survivable	in	hard	times.



Do	you	have	other	words	you	would	like	to	share	with	Chinese	readers?

I	was	reading	some	comments	on	a	Chinese	web	forum	and	was	surprised	that	many	Chinese	regard	the
term	 shanzhai	 as	 a	 negative	 term.	 As	 an	 outsider,	 I	 feel	 that	 the	 shanzhai	 have	 done	 a	 lot	 of	 very
interesting	and	useful	innovation.
In	English,	we	have	a	similar	problem.	The	term	hacker	in	English	started	as	a	good	term	but	over	time

became	associated	with	many	kinds	of	negative	acts.	The	term	maker	was	coined	to	distinguish	between
the	positive	and	negative	aspects	of	hackers,	but	I	still	call	myself	a	hacker	because	I	still	adhere	to	the
traditional	definition	of	the	word.
It	may	be	easier	to	explain	the	innovation	happening	in	China	if	a	similar	linguistic	bifurcation	could

happen	in	Chinese.	I	recently	proposed	referring	to	the	innovative,	open	aspects	of	what	the	shanzhai	do,
like	their	method	of	sharing	design	files,	as	gongkai	(公开).	Significantly,	I	feel	the	term	开放	(kai	fang,
which	means	to	lay	open	or	to	open	to	the	public)	as	used	in	开放源代码	(kai	fang	yuan	dai	ma,	which
means	open	source	software)	doesn’t	quite	apply.	It	 refers	 to	a	specific	Western-centric	 legal	aspect	of
being	open,	which	is	not	applicable	to	the	methods	engaged	in	the	Chinese	ecosystem.

NOTE

Incidentally,	kai	fang	also	means	to	bloom,	so	it	sounds	poetic	in	Chinese.	Gongkai,	on	the	other
hand,	just	means	public	or	overt—whether	you	like	it	or	not.	Its	meaning	is	not	as	poetic	or
optimistic	as	kai	fang.

The	fact	that	China	has	found	its	own	way	to	share	IP,	unique	from	the	Western	system,	doesn’t	mean
that	the	Chinese	system	is	bad.	It’s	actually	quite	interesting,	and	I’m	very	curious	to	see	where	it	goes.
Since	 I	 see	 positive	 value	 in	 some	 of	 the	 methods	 that	 the	 shanzhai	 use,	 I’d	 propose	 using	 the	 more
positive,	generic	term	gongkai	 to	describe	the	style	of	IP	sharing	commonly	used	in	China,	but	I	would
stop	short	of	formally	associating	it	with	the	strict	definition	of	open	source.
But	then	again,	who	am	I	to	say?	I’m	not	a	native	Chinese	speaker,	and	maybe	there	is	a	much	better

way	to	address	the	situation.

THE	BLUEPRINT	TALKS	TO	ANDREW	HUANG
The	Blueprint	publishes	stories	about	founders	in	the	hardware	space,	and	this	interview	focuses	on,	as
the	writer	put	it,	my	“personal	journey.”	I	discuss	what	got	me	into	hardware	as	a	kid,	what	projects	I	was
working	on	when	I	gave	the	interview,	and	pitfalls	that	hardware	startups	should	keep	an	eye	out	for.	The
original	 interview,	which	 includes	 some	 photos	 of	my	 projects	 and	 answers	 to	 a	 few	other	 interesting
questions	 that	 didn’t	 appear	 in	 the	 interview	 proper,	 is	 at	 https://theblueprint.com/stories/andrew-
huang/.

How	would	you	describe	your	first	encounters	with	hardware?

My	dad	bought	an	Apple	II	clone	when	I	was	eight	years	old,	and	that	sparked	my	interest	in	hardware.
The	clone	came	without	a	case,	leaving	all	of	the	electronics	exposed.	I	could	see	the	electronics,	and	I
wanted	to	fiddle	with	them.	My	dad	didn’t	want	me	to	touch	the	computer	because	I	might	break	it,	but
when	he	wasn’t	home,	I’d	still	fiddle	with	the	electronics.	I	broke	it	several	times	because	the	chips	were
in	sockets.	Even	though	my	dad	told	me	not	to,	I	just	wanted	to	see	what	happened	when	you	put	the	chips

https://theblueprint.com/stories/andrew-huang/


in	backward.	I	learned	very	early	on	that	putting	chips	in	backward	is	a	bad	thing!
The	great	thing	is	that	the	Apple	II	came	with	a	cool	set	of	schematics	and	source	code.	I	was	the	weird

kid	in	elementary	school	who	carried	around	an	Apple	II	reference	manual.	On	the	playground,	I’d	just
pull	up	the	schematic	and	stare	at	it	because	it	was	so	fascinating.	I	didn’t	understand	what	I	was	looking
at,	but	I	had	some	inkling	about	 the	connection	between	lines	on	the	schematic	and	wires	on	the	board.
Over	time,	I	learned	to	map	the	schematic’s	symbols	to	the	computer	functions	bit-by-bit,	and	it	all	started
coming	together.
By	junior	high	or	high	school,	I	was	able	to	build	my	own	plug-in	cards	for	the	computer,	and	I	built	a

little	speech	synthesizer.	That’s	what	you	do	when	you	grow	up	among	cornfields	in	Michigan	and	kids
don’t	want	to	play	with	you	because	you	look	strange	and	you	are	the	only	Chinese	kid.

How	did	your	early	experiences	affect	your	decision	to	go	into	the	hardware	industry?

I	 just	 kept	 learning	more	 from	 there.	When	 I	went	 to	MIT,	 I	 flipped	 a	 coin,	 and	 instead	 of	 going	 into
biology,	 I	went	 into	electronics.	 I	got	a	degree,	eventually	went	 into	 industry,	hated	 that,	and	 then	went
back	for	my	PhD	because	I	wanted	to	hide	in	my	shell	a	little	more.	After	getting	my	PhD,	I	participated	in
a	bunch	of	startups	that	all	failed.	I	never	had	a	successful	startup,	but	I	learned	a	lot	from	failure.
I	did	some	silicon	chip	design	and	reverse	engineering	before	I	did	manufacturing.	For	many	years,	I

wanted	to	do	the	biggest,	baddest,	hardest	project	I	could	do,	which	meant	working	for	a	pure	tech	startup.
With	something	like	that,	you’re	way	in	the	future	and	basically	by	the	time	the	technology	works	and	goes
onto	the	market,	the	patents	have	expired.	There	is	no	capital	monetization,	you	work	really	hard,	and	the
product	is	really	obscure.	As	a	result,	I	never	had	anything	ship	in	volume.	That	was	the	most	frustrating
part:	to	put	my	life	into	something	and	never	have	it	see	the	light	of	day.

What	lessons	did	you	learn	while	working	on	chumby?

I	 got	 tired	 of	working	 for	 a	 pure	 tech	 company	 and	 decided	 it	was	 time	 to	 join	 a	 company	 that	 could
monetize	 a	 business	 idea	 quickly.	 When	 I	 joined	 Chumby,	 I	 wanted	 to	 do	 open	 hardware	 and
manufacturing,	and	I	started	 logging	experience	 in	both.	 I	worked	on	 the	first	chumby	and	 then	multiple
generations	after	that	from	2005	to	2010.
When	I	started,	I	had	never	mass-produced	a	product	or	done	mechanical	design.	I	didn’t	even	know

what	injection	molding	was.	But	I	had	the	privilege	of	sitting	with	other	engineers	at	PCH,	and	I	would
just	get	on	the	factory	floor,	see	what	they	were	doing,	and	learn	about	it.	By	the	time	I	was	through	with
Chumby,	 I	was	able	 to	use	SolidWorks	 to	design	my	own	cases	and	make	 injection-molded	cases	 from
scratch.
It	was	 a	 very	 educational	 experience.	 I	 learned	 to	 do	 test	 plans,	manufacturing,	 sourcing,	 and	 other

skills	you	just	have	to	pick	up	along	the	way.	When	Chumby	went	under,	I	was	living	in	Singapore,	where
I	had	attempted	to	open	a	field	office.	I	stayed	behind	to	wind	down	the	office,	give	it	a	clean	shutdown,
and	 make	 sure	 everyone	 got	 jobs	 elsewhere.	 After	 everything	 was	 taken	 care	 of,	 I	 decided	 to	 be
unemployed	for	one	year;	 the	first	 thing	I	did	was	design	a	 radiation	sensor	 for	Japan	after	 the	 terrible
earthquake	and	tsunami	on	March	11,	2011.
Then	 I	 started	 thinking	about	what	my	next	project	would	be.	 I	 did	 a	 series	of	projects	 like	 reverse

engineering	SD	cards,	and	I	met	Jie	Qi,	who	I	helped	to	produce	circuit	stickers	under	the	Chibitronics
brand.
One	of	 the	guys	working	with	me	 in	Singapore	was	Sean	Cross,	 and	we	were	 sitting	 around	 asking

what	we	should	build.	We	decided	 to	build	something	we	could	use	because	when	 I	was	at	Chumby,	 I



built	things	for	other	people	rather	than	myself.	I	use	a	laptop	every	day,	and	we	needed	a	development
platform,	so	we	built	a	 laptop	 that	we	would	actually	use.	We’re	now	doing	a	crowdfunding	campaign
around	that	product.

How	would	you	describe	your	process	of	going	from	a	prototype	to	manufacturing	it?

There’s	actually	a	lot	of	art	in	designing	things	to	be	easy	to	make.	One	great	approach	to	this	is	to	be	fully
responsible	for	your	own	supply	chain.	I	don’t	like	to	have	a	supply	chain	manager	and	a	manufacturing
manager.	I	want	to	make	something	myself.	I	insist	on	doing	all	of	the	testing	myself.	I	insist	on	handling
the	manufacturing	issues	myself	because,	from	a	design	standpoint,	doing	so	forces	you	to	think,	“Can	I
build	that?	If	I	gloss	over	this	bit	of	detail,	I	might	pay	dearly	for	that	later.”
From	the	very	beginning	when	you	start	designing,	I	think	about	how	to	make	something	manufacturable.

What	manufacturing	process	 should	 I	 use?	How	do	 I	make	 sure	 I	 can	 source	 all	 of	 these	 components?
When	I	actually	get	to	the	manufacturing	time,	I’ve	made	all	the	decisions	because	I’m	the	one	who	has	to
pay	the	price	at	the	end	of	the	day.

What	do	people	most	overlook	when	they	are	designing?

There	are	a	lot	of	aspects	you	could	forget.	The	two	that	come	to	mind	first	are	the	ability	to	source	the
materials	and	the	yield.	For	example,	the	instructions	for	a	cool	project	in	Make:	magazine	often	tell	you
to	go	find	an	obscure	or	out-of-date	object,	like	a	motor	from	a	1980s	VHS	player.	In	theory,	that	would
be	great	because	many	people	have	this	cheap	item	in	their	garage.	But	all	of	a	sudden,	everyone	is	going
to	eBay	trying	to	find	the	same	part,	and	it’s	not	sourceable.
On	the	yield	side,	a	lot	of	people	won’t	run	the	numbers	in	terms	of	what	it	means	to	be	yielding.	Every

step	of	the	manufacturing	process	has	some	fallout.	If	every	step	is	about	99	percent	yield	and	you	take	10
steps	like	that,	your	yield	will	be	about	90	percent.	People	essentially	build	the	Leaning	Tower	of	Pisa
into	 their	project,	and	at	 the	end	of	 the	day	 the	problems	compound,	preventing	delivery.	 It’s	crucial	 to
build	 a	 system	 that	 is	 robust	 and	 reworkable	 so	 that	 every	 step	 can	 be	 coupled	 with	 another	 step	 to
minimize	yield	fallouts.	Otherwise,	you’ll	throw	away	a	lot	of	money.

How	 would	 you	 describe	 how	 things	 have	 changed	 in	 the	 perception	 of	 hardware	 since	 you	 got
involved	in	manufacturing?

It’s	weird.	Right	around	the	time	I	was	working	on	the	Xbox	in	2001,	hardware	was	probably	at	the	rock
bottom.	During	 the	dot-com	boom,	working	on	Web	2.0	was	really	super-hot,	and	 if	you	did	something
with	Amazon	or	XML,	it	was	cool.	Soldering	was	a	low-value	thing	that	happened	somewhere	else.
But	I	was	that	weird	guy	who	knew	how	to	solder	in	a	lab,	so	people	would	come	to	me	with	broken

things	and	I’d	fix	them.	I	just	stuck	with	it	because	that’s	what	I	do,	and	I	love	doing	it.	One	reason	the
Xbox’s	security	was	relatively	easy	to	break	was	because	of	the	assumption	that	hardware	was	hard	and
soldering	was	difficult.	But	 if	you	know	how	to	solder,	breaking	the	security	 is	very	easy.	I	did	 it	on	a
grad	 school	budget	 for	 about	$150.	 I	 gave	 some	 talks	 at	 conferences	 after	 the	Xbox	hacking,	basically
telling	people	that	hardware	is	not	hard,	that	there’s	no	magic	behind	it.	I	showed	people	that	the	“magic”
was	actually	pretty	simple	manufacturing	techniques.
Then	 Kickstarter	 came.	 Money	 started	 going	 into	 a	 system	 where	 it	 hadn’t	 before	 because	 VCs

wouldn’t	touch	hardware.	They	thought	hardware	was	a	retail	chasm	where	all	this	money	had	to	be	paid
up	front,	then	basically	the	startups	all	die,	and	investors	don’t	get	returns.



All	of	a	 sudden,	 these	cool	companies	began	 raking	 in	a	million	dollars	 in	Kickstarter	as	 their	 seed
round	and	eventually	delivering	on	their	products	enough	of	the	time.	There’s	nothing	like	money	to	get	the
interest	of	the	guys	in	Silicon	Valley.	Since	then,	hardware	perception	has	changed	radically.	People	are
starting	to	get	into	hardware	more	and	more.	The	problem	is	that	a	lot	of	people	think	they	have	to	add
hardware	to	products	now,	yet	have	no	idea	how.
Another	problem	is	an	increasing	number	of	scams	on	Kickstarter,	where	there	are	all	these	hardware

bits	and	pieces,	and	backers	can’t	tell	what’s	real	or	what’s	fake.	I	know	the	industry	definitely	feels	like
a	bubble	already;	I	can	sense	the	bubble	growing	now.
I	 think	maybe	 I	 liked	 it	 better	when	 nobody	 knew	 about	 hardware	 because	 at	 least	 I	 didn’t	 have	 to

worry	about	competing	with	fraudsters.

How	have	you	approached	finding	your	own	factories?

If	you’re	a	startup	and	the	only	value	you	can	bring	to	a	factory	is	money,	then	you’re	basically	worthless.
Startups	don’t	have	any	money,	and	if	you	have	money,	it’s	finite.	All	factories	know	this.
A	lot	of	startups	want	to	go	to	somewhere	like	Foxconn,	but	Foxconn	has	a	ton	of	people	and	capability.

They	don’t	 need	 your	 help.	But	 they	 do	 need	 your	money,	 and	you	don’t	 have	 a	 lot	 of	 it.	 If	 you	 try	 to
engage	with	the	really	hip	factories,	you’ll	deplete	your	cash	very	quickly	and	won’t	be	able	to	launch.
I	 look	 for	 factories	 that	 are	missing	 certain	 capabilities,	 so	 I	 can	give	 them	more	value	 than	money.

When	I	come	in	with	my	product,	I	help	train	the	staff	to	build	my	product.	The	factories	see	value	in	that
training,	and	I	get	to	that	point	where	I’m	building	a	relationship	by	trading	more	than	money.

What’s	the	challenge	for	online	hardware	startups	when	they	get	to	the	retail	phase?

In	 the	world	of	 the	 internet,	where	everything	 is	automated,	 it	 seems	 like	you	could	solve	any	problem
with	technology.	But	retail	is	all	about	the	salesperson	meeting	buyers	face-to-face,	doing	demonstrations,
and	going	to	the	Walmart	or	Target	headquarters	to	actually	develop	relationships	and	cut	deals.	It	feels
like	 an	 older	 system,	 and	 a	 lot	 of	 people	 don’t	 expect	 that	 because	 they’re	 doing	 business	 with
Kickstarter.
The	problem	 is	 that	people	want	 to	physically	 see	and	 touch	and	 feel	a	product	before	 they	spend	a

couple	hundred	dollars	on	it.	Best	Buy	is	becoming	a	showroom	for	Amazon,	but	offering	the	product	in-
store	is	really	valuable.	There	is	probably	room	for	some	disruption	(perhaps	you	can	convince	credible
reviewers	to	try	your	hardware	and	describe	it	to	other	people),	but	at	the	end	of	the	day,	retail	presence
is	needed	to	sell	hardware	effectively.
Margins	are	much	 fatter	online,	 so	companies	 that	 start	 a	business	online	 from	 the	beginning	 tend	 to

underprice	their	products.	Then,	when	they	get	to	retail,	they	can’t	survive.

What	are	some	of	the	most	common	questions	that	hardware	entrepreneurs	ask	you?

The	questions	teams	tend	to	ask	usually	center	on	weaknesses	in	their	team	composition.	Some	teams	have
super-hotshot	 electrical	 engineers,	 but	 they	 have	 no	 mechanical	 engineering	 background.	 These	 teams
have	a	bunch	of	“mech-y”	questions.	Some	teams	have	no	electrical	engineers,	and	then	the	big	question	is
how	to	create	a	hardware	startup	with	no	one	who	can	design	electronics.
Hardware	 startup	 teams	 generally	 tend	 to	 be	 technical,	 so	 they’re	 often	 weak	 on	 marketing	 and

business.	 Some	 do	 have	 business	 guys	 involved	 early	 on	who	 can	map	 it	 all	 out	 and	 get	 a	 strategy	 in
place,	but	a	 lot	of	 teams	have	great	 tech	ideas	without	realizing	they’re	missing	crucial	aspects	 to	 their



strategy.
At	that	point,	I	get	them	to	tell	me	what	they’re	doing,	and	I	give	feedback.	It’s	almost	not	what	teams

ask,	but	rather	what	they	forget	to	ask,	that	they	need	the	most	help	with.

What	do	you	 think	 is	missing	 from	startups	 that	will	be	necessary	 for	 the	ongoing	support	of	 the
hardware	ecosystem?

There	is	a	huge	mismatch	between	the	way	manufacturing	has	been	done	and	the	way	it	needs	to	be	done
to	 match	 these	 more	 agile,	 lean,	 and	 honestly,	 less	 experienced	 companies.	 But	 I	 don’t	 think	 it’s	 an
impassable	chasm.
The	original	design	manufacturers	(ODMs)	who	have	factories	and	resources	need	to	raise	their	level

of	 service.	 People	 expect	 ODMs	 to	 be	 able	 to	 answer	 a	 lot	 of	 questions.	 There	 are	 unreasonable
expectations	between	 startups	 and	ODMs	because	ODMs	can	offer	 absolutely	 zero	 insight	 into	 costing
down	your	product.	People	get	upset	because	they	just	don’t	see	that	conflict	of	interest.
A	lot	of	people	think	that	building	a	product	in	China	means	the	cost	of	parts	gets	magically	cheaper.

They	don’t	understand.	A	factory	is	not	a	designer;	its	job	is	to	ensure	that	your	design	works	and	is	built
to	specification.	If	you	specify	an	expensive	part,	and	the	factory	substitutes	a	cheaper	version,	who	gets
the	 blame	 when	 the	 product	 doesn’t	 work	 as	 well?	 Furthermore,	 the	 factory	 makes	 its	 money	 as	 a
percentage	margin	over	the	bill	of	materials.	Thus,	recommending	cheaper	parts	to	use	exposes	them	to
greater	 risk,	 while	making	 them	 less	money.	 A	 lot	 of	 people	 get	 mad	 at	 factories	 for	 not	 being	more
aggressive	on	keeping	the	cost	down,	but	if	you	think	about	it,	you	really	have	to	get	engaged.	You	need	to
get	an	engineer	working	with	these	guys	to	cost	things	down	because	ultimately,	it’s	your	bottom	line.	It’s
your	net	profit.	You	don’t	just	go	to	China	and	expect	them	to	do	it	right.
An	ODM	can	possibly	solve	that	problem	by	hiring	staff	dedicated	to	reducing	costs,	but	then	the	ODM

would	either	need	to	charge	the	customer	extra	to	make	the	service	sustainable,	or	require	a	significantly
larger	order	volume	over	which	to	amortize	the	extra	cost	of	providing	such	services.
More	 interoperability	 in	 the	 industry	would	be	good,	 too.	One	 startup	 I	work	with	 is	Spark,*	which

really	tries	to	enable	people	to	use	its	hardware	platform	by	being	open.	I	feel	like	one	piece	missing	for
Spark	 is	 getting	 ODMs	 to	 be	 “Spark	 certified”	 to	 make	 products	 that	 use	 Spark’s	 platform.	 Often,
someone	 wants	 to	 design	 one	 product	 into	 another	 product,	 and	 suggestions	 about	 how	 to	 do	 that
effectively	are	all	over	the	place.	Even	if	you	have	all	 the	necessary	information,	 it’s	not	a	streamlined
process	for	most	people.
When	 someone	 is	 given	 all	 the	 design	 answers,	 a	 lot	 of	 decoding	 still	 has	 to	 happen.	 Even	 bigger

companies	 are	 afraid	 of	 that	 because	 they	 don’t	 have	 the	 competency	 to	 hire	 the	 people	 to	 get	 that
decoding	done.

What	is	your	current	focus	in	the	hardware	industry?

Right	now,	I’m	working	with	Jie	Qi	on	circuit	stickers.	We’re	getting	to	the	point	of	shipping	the	units	out,
and	I’m	hellbent	on	making	sure	that	I	meet	the	deadlines	I	set	for	my	campaign.	I	actually	want	to	ship	on
time	 and	 get	 things	 to	 people	 when	 I	 said	 I	 would	 because	 there	 has	 been	 way	 too	much	 lateness	 in
crowdfunded	campaigns.	It	doesn’t	have	to	be	that	way.	You	just	have	to	set	expectations,	have	your	stuff
together	before	you	announce	the	date,	and	know	when	the	inventory	is	pretty	much	ready	to	go.	We	have	a
number	of	product	lines	that	are	selling;	about	half	are	done	with	manufacturing	and	are	just	waiting	in	the
factory	to	ship.	A	couple	of	new	lines	are	behind,	but	we	still	have	until	May	to	solve	these	issues.	I	think
it	will	be	no	problem,	and	I’m	looking	forward	to	seeing	our	lines	grow	and	develop	and	work	with	more



people.
The	 other	 thing	 I	 am	working	 on	 is	 this	Novena	 laptop	 project	with	Sean	Cross,	which	we	weren’t

really	planning	on	doing	last	year.	I	built	this	handmade	prototype	last	December;	it	was	a	little,	kind	of
crummy,	 leather-and-paper	 thing.	 We	 used	 it	 to	 give	 a	 presentation	 at	 CCC,	 and	 the	 response	 was
overwhelming.	 That	 was	 great,	 and	 I	 refactored	 the	 design	 to	make	 it	 more	manufacturable	 and	more
sourceable.	The	campaign	seems	to	be	going	well	so	far.	I	think	it	will	fund,	and	I’m	looking	forward	to
getting	Novena	manufactured	and	out	in	the	world.

What	have	you	learned	from	your	two	crowdfunding	campaigns?

Completing	almost	two	crowdfunding	campaigns	has	given	me	a	lot	of	insight.	Earlier,	I	mentioned	that
people	selling	online	price	their	product	too	low	to	later	move	into	retail.	But	it’s	been	really	painful	to
maintain	 the	high	price	 that	 I	say	 that	everyone	else	should	maintain.	 It’s	so	 tempting	 to	go	 lower	 to	an
unsustainable	point.
The	reason	a	lot	of	crowdfunding	campaigns	fail	to	deliver	is	because	they	price	too	low.	They	can’t

actually	build	the	product	for	the	price	they	set.	Even	knowing	this,	I	still	had	to	grit	my	teeth	on	the	laptop
because	I	had	to	price	it	higher	than	I	would	have	liked.	Despite	the	high	price,	if	we	were	to	close	the
campaign	at	exactly	the	amount	I	hope	to	raise,	I	would	probably	just	barely	not	lose	money	on	it,	but	a	lot
of	people	don’t	see	that.	Look	at	something	like	the	Ubuntu	Edge,	which	raised	$12	million	but	needed
$25	million	to	succeed.	That’s	because	in	order	to	set	a	price	of	$700–800	per	phone,	they	had	to	build
40,000	phones.	So	even	though	people	thought	the	Ubuntu	Edge	was	cool	and	it	raised	a	lot	of	money,	it
didn’t	reach	its	funding	goal,	which	is	a	sad	conclusion	for	everyone.
I	knew	I	could	either	price	my	laptop	much	lower	and	need	thousands	of	people	to	buy	it	to	reach	my

goal,	or	I	could	service	a	really	focused	market	of	a	few	hundred	open	source	enthusiasts	who	are	totally
on	 the	 same	 page	 as	me.	At	 the	 end	 of	 the	 day,	 especially	 in	 the	 early	 phases,	 you	 really	want	 those
enthusiasts.	They’re	going	 to	be	your	best	users.	You	want	 to	 take	care	of	 them	and	give	 them	 the	best
service	possible.	You’re	going	to	charge	a	little	more,	but	you’re	going	to	build	a	really	good	product	for
them	and	they’re	going	to	be	happy.	That’s	a	much	happier	conclusion	in	my	mind	than	trying	to	shoot	the
moon	and	failing.



epilogue
When	I	start	hacking	or	making,	it’s	driven	by	curiosity.	Only	a	small	portion	of	my	work	ends	up	being
relevant	or	interesting,	but	I	journal	my	successes	and	my	failures	at	my	blog,	http://bunniestudios.com/,
and	I	occasionally	tweet	observations	at	@bunniestudios.	It’s	hard	to	know	what	will	be	a	hit	or	a	miss;
but	 as	 long	 as	 I’m	 learning,	 the	 journey	 is	 worthwhile.	 And	 so	 I	 will	 keep	 wandering	 the	 electronic
frontier	...

http://bunniestudios.com/
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battery	board,	Novena,	223–224
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trim	and	finish,	101–104

connector	placement,	25–26
contracts,	193–205
counterfeit	microSD	cards

authenticity,	159–160
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QC	(quality	control)	room,	36–39
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mistakes,	41–42
remote	testing,	39–40
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Raspberry	Pi,	360
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real-time	clock	(RTC)	module,	238–239
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red	ring	of	death,	42
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remote	testing,	39–40
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security	issues,	SD	cards,	298
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Footnotes

Chapter	1.	made	in	china
*	Colloquial	word	for	yuan,	the	base	counting	unit	for	the	renminbi	(RMB),	the	currency	in	China.
†	This	bookstore	has	closed	since	the	visit	I	describe	here.
*	Due	to	high	wage	inflation	since	this	particular	visit,	this	is	probably	no	longer	true.

Chapter	2.	inside	three	very	different	factories
*	I	honestly	don’t	what	they’re	called,	so	yes,	I’m	going	to	keep	calling	them	that.

Part	2:	thinking	differently:	intellectual	property	in	china
*	Baijiu	is	a	type	of	strong	Chinese	alcohol.

Chapter	4.	gongkai	innovation
*	No,	I	will	not	broker	these	chips	for	you.
*	I’ve	often	wondered	why	the	“I	am	not	a	lawyer”	disclaimer	is	necessary.	It	was	explained	to	me	that	even	the	appearance	of	dispensing
legal	advice	without	the	disclaimer	can	make	me	guilty	of	practicing	law	without	a	proper	license.	I	could	also	be	held	accountable	for	bad
decisions	made	by	people	who	construe	the	opinions	as	legal	advice.

*	Specifically,	Apache	2.0,	section	3	reads,	“Grant	of	Patent	License.	...	If	You	institute	patent	litigation	against	any	entity	(including	a	cross-
claim	or	counterclaim	in	a	lawsuit)	alleging	that	the	Work	or	a	Contribution	incorporated	within	the	Work	constitutes	direct	or	contributory
patent	infringement,	then	any	patent	licenses	granted	to	You	under	this	License	for	that	Work	shall	terminate	as	of	the	date	such	litigation	is
filed.”

†	https://www.eff.org/issues/coders/reverse-engineering-faq/
*	See	also	Sony	Computer	Entertainment,	Inc.	v.	Connectix	Corp.,	203	F.	3d	596,	606	(9th	Cir.	2000)	and	Sega	Enterprises	Ltd.	v.	Accolade,
Inc.,	977	F.2d	1510,	1522-23	(9th	Cir.	1992).

Chapter	5.	fake	goods
*	See	Sec	2320	(b)	at	https://www.govtrack.us/congress/bills/112/hr1540/text.
*	Remember	that	one?	The	NeXTcube	was	a	computer	released	in	1990	by	Steve	Jobs’s	company,	NeXT.
*	This	was	the	salary	rate	in	the	mid-2000s;	due	to	wage	inflation	since	then,	it’s	risen	to	around	$1,000	per	month,	but	refurbishing	chips	is	still
more	lucrative.

*	Kovan	is	open	hardware;	you	can	read	more	about	it	and	download	the	source	on	the	Kosagi	wiki	at	http://www.kosagi.com/w/index.php?
title=Kovan_Main_Page.

*	JEDEC	Publication	N.	106AA	lists	all	SD	card	manufacturer	ID	codes,	and	0x41	wasn’t	on	there.
*	Guanxi	(关系)	is	a	traditional	social	networking	platform	deeply	embedded	in	the	Chinese	culture.	Like	modern	social	networks,	it	has
notions	of	followers,	likes/dislikes,	karma,	and	moderators.	Guanxi	predates	the	modern	legal	system	and	can	be	more	effective	than	the	civil
code	for	resolving	or	avoiding	all	manners	of	disputes.	Guanxi	is	also	essential	in	facilitating	new	deals	and	relationships.

Chapter	6.	the	story	of	chumby
*	Of	course,	I	want	to	make	clear	that	I	wasn’t	the	only	guy	behind	chumby;	I	worked	with	a	whole	team	of	fun,	talented	people.	As	I
mentioned	in	Chapter	1,	I	was	just	the	lead	hardware	designer,	though	I	did	the	Linux	kernel	stuff	too.	(That	was	new	for	me	at	the	time,	but

https://www.eff.org/issues/coders/reverse-engineering-faq/
https://www.govtrack.us/congress/bills/112/hr1540/text
http://www.kosagi.com/w/index.php?title=Kovan_Main_Page


it	was	a	lot	of	fun	learning	the	insides	of	Linux	from	boot	to	halt!)
*	See	http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/	for
the	full	interview.

*	http://bunniestudios.com/bunnie/phdthesis.pdf
*	Data	primarily	from	https://en.wikipedia.org/wiki/List_of_Intel_microprocessors	and
https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors.	I	track	Intel	CPUs	because	historically	they	have	led	the	MHz
curve	and	thus	provide	the	most	rigorous	interpretation	of	Moore’s	law.

†	H.	Iwai,	“Roadmap	for	22nm	and	Veyond,”	Microelectronic	Engineering	86,	no.	7–9	(2009),	doi:	10.1016/j.mee.2009.03.129.
*	You	can	find	the	documentation	online	via	the	Kosagi	wiki	at	http://www.kosagi.com/.
*	http://boingboing.net/2014/01/17/building-a-fully-open-transpa.html

*	One	megapascal	is	1	newton	(unit	of	force)	per	mm2;	1	gigapascal	is	1	kilonewton	per	mm2.

Chapter	7.	novena:	building	my	own	laptop
*	If	you’re	curious,	you	can	find	that	analysis	at	https://www.chipworks.com/about-chipworks/overview/blog/second-shoe-drops-
%E2%80%93-samsung-v-nand-flash/.

Chapter	9.	hardware	hacking
*	You	can	find	a	copy	of	the	code	at	https://github.com/xobs/ax211-code/.
*	You	can	read	the	documentation	on	the	Sutajio	Ko-Usagi	wiki,	although	by	the	time	of	publication,	the	original	NeTV	product	sold	on
Adafruit	will	probably	have	been	phased	out	in	favor	of	a	newer,	better	implementation.

*	Tangentially,	we	used	the	same	flex	adapter	I	mentioned	in	Chapter	8,	which	led	in	part	to	the	development	of	Chibitronics.

Chapter	10.	biology	and	bioinformatics
*	Eva	Yus	et	al.,	“Impact	of	Genome	Reduction	on	Bacterial	Metabolism	and	Its	Regulation,”	Science	326,	no.	5957	(2009):	1263–1268,
http://science.sciencemag.org/content/326/5957/1263/.

*	Gabriele	Neumann,	Takeshi	Noda,	and	Yoshihiro	Kawaoka,	“Emergence	and	Pandemic	Potential	of	Swine-Origin	H1N1	Influenza	Virus,”
Nature	459,	no.	7249	(2009):	931–939,	http://www.nature.com/nature/journal/v459/n7249/full/nature08157.html.

*	If	you’re	not	familiar	with	this	turn	of	phrase,	see	https://en.wikipedia.org/wiki/All_your_base_are_belong_to_us.
*	Incidentally,	I	find	it	amusing	that	the	sequence	for	PBP2	is	shorter	than,	for	example,	my	PGP	public	key	block.
*	P.C.	Ng	et	al.,	“An	Agenda	for	Personalized	Medicine,”	Nature	461,	no.	7265	(2009):	724–726,
http://www.nature.com/nature/journal/v461/n7265/full/461724a.html.

*	Addgene	has	an	excellent	white	paper	describing	the	system	in	great	detail.	I	recommend	checking	it	out	if	my	cursory	treatment	here	whets
your	appetite:	https://www.addgene.org/CRISPR/guide/.

Chapter	11.	selected	interviews
*	This	interview	is	excerpted	in	Chapter	6.
*	Eventually,	Spark	changed	its	name	to	Particle.

http://makezine.com/2012/04/30/makes-exclusive-interview-with-andrew-bunnie-huang-the-end-of-chumby-new-adventures/
http://bunniestudios.com/bunnie/phdthesis.pdf
https://en.wikipedia.org/wiki/List_of_Intel_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors
http://www.kosagi.com/
http://boingboing.net/2014/01/17/building-a-fully-open-transpa.html
https://www.chipworks.com/about-chipworks/overview/blog/second-shoe-drops-%E2%80%93-samsung-v-nand-flash/
https://github.com/xobs/ax211-code/
http://science.sciencemag.org/content/326/5957/1263/
http://www.nature.com/nature/journal/v459/n7249/full/nature08157.html
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