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Preface 

Abstract 

Biological vision is a rather fascinating domain of research. Scientists of 
various origins like biology, medicine, neurophysiology, engineering, math­
ematics, etc. aim to understand the processes leading to visual perception 
process and at reproducing such systems. Understanding the environment is 
most of the time done through visual perception which appears to be one of 
the most fundamental sensory abilities in humans and therefore a significant 
amount of research effort has been dedicated towards modelling and repro­
ducing human visual abilities. Mathematical methods play a central role in 
this endeavour. 

Introduction 

David Marr's theory v^as a pioneering step tov^ards understanding visual percep­
tion. In his view human vision was based on a complete surface reconstruction 
of the environment that was then used to address visual subtasks. This approach 
was proven to be insufficient by neuro-biologists and complementary ideas from 
statistical pattern recognition and artificial intelligence were introduced to bet­
ter address the visual perception problem. In this framework visual perception is 
represented by a set of actions and rules connecting these actions. The emerg­
ing concept of active vision consists of a selective visual perception paradigm 
that is basically equivalent to recovering from the environment the minimal piece 
information required to address a particular task of interest. 

Mathematical methods are an alternative to tackle visual perception. The cen­
tral idea behind these methods is to reformulate the visual perception components 
as optimization problems where the minima of a specifically designed objective 
function "solve" the task under consideration. The definition of such functions is 
often an ill-posed problem since the number of variables to be recovered is much 
larger than the number of constraints. Furthermore, often the optimization pro­
cess itself is ill-posed due the non-convexity of the designed function inducing the 
presence of local minima. Variational, statistical and combinatorial methods are 
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three distinct and important categories of mathematical methods in computational 
vision. 

Variational techniques are either based on the optimization of cost functions 
through the calculus of variations or on the design of partial differential equations 
v^hose steady state corresponds to the solution of the visual perception task. Such 
techniques have gained significant attention over the past decade and have been 
used to address image restoration and enhancement, image segmentation, track­
ing and stereo reconstruction among other problems. The possibility to use the 
calculus of variations in the optimization process is the most important strength 
of these methods combined with the fact that one can integrate many terms and 
build quite complicated objective functions at the expense of converging toward 
local minima. 

Statistical methods often consist of two stages, a learning and an execution one. 
Complex conditional, multi-dimensional distributions are used to describe visual 
perception tasks that are learnt through a training procedure. Visual perception is 
then formulated as an inference problem, conditional to the observations (images). 
One can claim that such methods are suitable to address constrained optimization 
problems, in particular when the subset of solutions can be well described through 
a conditional parametric density function. They suffer from the curse of dimen­
sionality, e.g. in the Bayesian case when very-high dimensional integrals have to 
be computed. 

Discrete optimization is an alternative to the continuous case often addressed 
through statistical and variational methods. To this end, visual perception is of­
ten redefined as a labelling procedure at the image element level according to a 
predefined set of plausible classes. Such a simplification often reduces the dimen­
sionality of the problem and makes possible the design of efficient optimization 
algorithms. On the other hand such methods can have limited performance be­
cause of the discretization of the solution space, in particular when the solution 
lives in a rather continuous in-homogeneous space. One can refer to graph-based 
methods for addressing such tasks. 

The choice of the most appropriate technique to address visual perception is 
rather task-driven and one cannot claim the existence of a universal solution to 
most of the visual perception problems. In this edited volume, our intention is to 
present the most promising and representative mathematical models to address 
visual perception through variational, statistical and combinatorial methods. In 
order to be faithful to the current state of the art in visual perception, a rather 
complete set of computational vision components has been considered starting 
from low level vision tasks like image enhancement and restoration and ending at 
complete reconstruction of scene's geometry from images. 

The volume is organized in six thematic areas and thirty-three chapters present­
ing an overview of existing mathematical methodologies to address an important 
number of visual perception tasks. 
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Contributions & Contributors 

Image reconstruction from either destroyed or incomplete data is a crucial low 
level task of visual perception. Local filter operators, diffusion methods as well as 
variational methods are among the most studied methods in the domain. The book 
starts with three tutorial chapters in this thematic area. The total variation method 
and diffusion filters as well as image decomposition in orthogonal bases, two of 
the most instrumental methods to address image reconstruction are presented in 
the first chapter. Image inpainting/completion is a more advanced problem con­
sisting of restoring missing information in images ; it belongs to the same family 
and is covered in chapter 2. In the third chapter of this thematic area, an intro­
duction to the problem as well as the most prominent techniques from the area of 
variational methods are presented. 

Image segmentation and object extraction are of particular interest with appli­
cations in numerous domains. In its simplest instantiation the problem consists 
of creating an image partition with respect to some feature space, the regions be­
ing assumed to have uniform visual structure in this space. Such a problem can 
be solved in many ways. Labelling is an example where the objective is to as­
sign to the local image element the most hkely hypothesis given the observation. 
Two chapters explore such a concept in this thematic area, the watershed trans­
formation is one of them and combinatorial optimization through the graph-cuts 
paradigm is another. Evolution of curves and surfaces is an alternative method to 
address the same problem. Classes are represented through moving interfaces that 
are deforming in order to capture image regions with consistent visual properties. 
The snake model - a pioneering framework - is the predecessor of the methods 
presented. First, an overview for finding multiple contours for contour comple­
tion from points or curves in 2D or 3D images is presented using the concept of 
minimal paths. Then in order a method that integrate region statistics is presented 
within deformable models leading to a new class of deformable shape and texture 
models. Use of prior knowledge is important within the segmentation process and 
therefore in the next chapter the design of shape priors for variational region-
based segmentation is presented. Segmentation through the propagation of curves 
through the level set method is an established technique to grouping and object 
extraction Therefore, methods to address model-free as well as model-based seg­
mentation are part of this thematic area. Last, but not least, a stochastic snake 
model based the theory of interacting particle systems and hydrodynamic limits 
is presented as a new way of evolving curves as a possible alternative to level set 
methods. 

Representing and understanding structures is an essential component of biolog­
ical vision, often used as a basis for high level vision tasks. Therefore, a thematic 
area dedicated to shape modelling and registration is present in this volume. 
Shape representations of various form are explored while at the same time the 
notions of establishing correspondences between different structures represent­
ing the same object are presented as well as methods recovering correspondences 
between shapes and images. 
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Motion analysis is a fundamental area of computational vision and mostly con­
sists of two problems, estimating correspondences between images and being able 
to track objects of interest in a sequence of images. Optical flow estimation can be 
addressed in different ways. In this thematic area we explore the use of parametric 
motion models as well as the estimation of dense correspondences between im­
ages. Furthermore, we present a compendium of existing methods to detect and 
track objects in a consistent fashion within several frames as well as variational 
formulations to segment images and track objects in several frames. Understand­
ing the real 3D motion is a far more complicated task of computational vision 
in particular when considering objects that do exhibit a number of articulations. 
Human motion capture is an example that is presented in this thematic area. We 
conclude with methods going beyond objects that are able to account, describe 
and reproduce the dynamics of structured scenes. 

Stereo reconstruction is one of the best studied tasks in high level vision. Under­
standing and reproducing the 3D geometry of a scene is a fundamental component 
of biological vision. In this thematic area the shape from shading problem i.e. that 
of recovering the structure of the scene from one single image is first addressed. 
Different methods exploring the use of multiple cameras to recover 3D from im­
ages are then presented, based on differential geometry, variational formulations 
and combinatorial optimization. The notion of time and dynamic behaviour of 
scenes is also addressed where the objective is to create 3D temporal models of 
the evolving geometry. 

Medical image analysis is one of the most prominent application domains 
of computer vision and in such a constrained solution space one can develop 
methods that can better capture the expected form of the structures of inter­
est. Regularization, segmentation, object extraction and registration are the tasks 
presented in this thematic area. Model-free combinatorial methods that aim to 
recover organs of particular interest, statistical methods that aim to capture the 
variation of anatomical structures, and variational methods that aim to recover and 
segment smooth vectorial images are presented. Last, but not least a comprehen­
sive review of statistical methods to image registration is presented, a problem that 
consists of recovering correspondences between different modalities measuring 
the same anatomical structure. 

In order to capture the spectrum of the different methods and present an 
overview of mathematical methodologies in computational vision a notable 
number of contributors was invited to complete such an effort. Eighty-three con­
tributors from the academic and the industrial world, from nine different countries 
and thirty-eight institutions have participated in this effort. The final outcome 
consists of 6 thematic areas, 33 chapters, 625 pages and 929 references. 
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Chapterl 

Diffusion Filters and Wavelets: What 
Can They Learn from Each Other? 

J. Weickert, G. SteidI, P. Mrazek, M. Welk, and T. 
Brox 

Abstract 
Nonlinear diffusion filtering and wavelet shrinkage are two methods that 
serve the same purpose, namely discontinuity-preserving denoising. In this 
chapter we give a survey on relations between both paradigms when space-
discrete or fully discrete versions of nonlinear diffusion filters are considered. 
For the case of space-discrete diffusion, we show equivalence between soft 
Haar wavelet shrinkage and total variation (TV) diffusion for 2-pixel signals. 
For the general case of iV-pixel signals, this leads us to a numerical scheme 
for TV diffusion with many favourable properties. Both considerations are 
then extended to 2-D images, where an analytical solution for 2 x 2 pixel 
images serves as building block for a wavelet-inspired numerical scheme 
for TV diffusion. When replacing space-discrete diffusion by fiiUy discrete 
one with an explicit time discretisation, we obtain a general relation between 
the shrinkage fiinction of a shift-invariant Haar wavelet shrinkage on a sin­
gle scale and the diffusivity of a nonlinear diffusion filter. This allows to 
study novel, diffusion-inspired shrinkage fiinctions with competitive perfor­
mance, to suggest new shrinkage rules for 2-D images with better rotation 
invariance, and to propose coupled shrinkage rules for colour images where 
a desynchronisation of the colour channels is avoided. Finally we present 
a new result which shows that one is not restricted to shrinkage with Haar 
wavelets: By using wavelets with a higher number of vanishing moments, 
equivalences to higher-order diffusion-like PDEs are discovered. 

1.1 Introduction 

Signal and image denoising is a field where one often is interested in removing 
noise without sacrificing important structures such as discontinuities. To this end, 
a large variety of nonlinear strategies has been proposed in the literature including 
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Figure 1.1. (a) Left: Original image with additive Gaussian noise, (b) Middle: Result after 
shift invariant soft wavelet shrinkage, (c) Right: Result after nonlinear diffusion filtering 
with total variation diffiisivity. 

wavelet shrinkage [275] and nonlinear diffusion filtering [642]; see Figure 1.1. 
The goal of this chapter is to survey a number of connections between these two 
techniques and to outline how they can benefit from each other. 

While many publications on the connections between wavelet shrinkage and 
PDE-based evolutions (as well as related variational methods) focus on the anal­
ysis in the continuous setting (see e.g. [49, 114,161, 163, 568]), significantly less 
investigations have been carried out in the discrete setting [214]. In this chapter 
we give a survey on our contributions that are based on discrete considerations. 
Due to the lack of space we can only present the main ideas and refer the reader 
to the original papers [584, 585, 586, 760, 882] for more details. 

This chapter is organised as follows: In Section 1.2 we start with briefly sketch­
ing the main ideas behind wavelet shrinkage and nonlinear diffusion filtering. 
Afterwards in Section 1.3 we focus on relations between both worlds, when we 
restrict ourselves to space-discrete nonlinear diffusion with a total variation (TV) 
diffiisivity and to soft Haar wavelet shrinkage. Section 1.4 presents additional re­
lations that arise from considering fully discrete nonlinear diffusion with arbitrary 
diffusivities, and Haar wavelet shrinkage with arbitrary shrinkage functions. In 
Section 1.5 we present a new result that generalises these considerations to higher-
order diffusion-like PDEs and shrinkage with wavelets having a higher number of 
vanishing moments. The chapter is concluded with a summary in Section 1.6. 

1.2 Basic Methods 

1.2.1 Wavelet Shrinkage 

Wavelet shrinkage has been made popular by a series of papers by Donoho and 
Johnstone (see e.g. [274, 275]). Assume we are given some discrete 1-D signal 
/ = {fi)iez that we may also interpret as a piecewise constant function. Then the 
discrete wavelet transform represents / in terms of shifted versions of a dilated 
scaling function ip, and shifted and dilated versions of a wavelet function X/J. In 
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case of orthonormal wavelets, this gives 

where ipl{s) := 2~-^/^'0(2~"^s - i) and where (•, •) denotes the inner product 
in L2(M). If the measurement / is corrupted by moderate white Gaussian noise, 
then this noise is contained to a small amount in all wavelet coefficients (/, V4\ 
while the original signal is in general determined by a few significant wavelet 
coefficients [540]. Therefore, wavelet shrinkage attempts to eliminate noise from 
the wavelet coefficients by the following three-step procedure: 

1. Analysis: Transform the noisy data / to the wavelet coefficients d'l = 
(/, ipl) and scaling function coefficients cf = (/, cpf) according to (1.1). 

2. Shrinkage: Apply a shrinkage function SQ with a threshold parameter 0 to 
the wavelet coefficients, i.e., S0{d{) = S0{{f, tpf)). 

3. Synthesis: Reconstruct the denoised version u of f from the shrunken 
wavelet coefficients: 

u:=J2{f,^7)^7+ E E^««/'^i))^''- ('-2) 
iez j=-oo iez 

In this paper we pay particular attention to Haar wavelets, well suited for piece-
wise constant signals with discontinuities. The Haar wavelet and Haar scaling 
functions are given respectively by 

H^) = l [ o , i ) - l [ i , i ) . (1-3) 

^{x) = l[o,i) (1.4) 

where l[a,b) denotes the characteristic function, equal to 1 on [a, 6) and zero ev­
erywhere else. In the case of the so-called soft wavelet shrinkage [274], one uses 
the shrinkage function 

1.2.2 Nonlinear Diffusion Filtering 

The basic idea behind nonlinear diffusion filtering [642, 870] in the 1-D case is 
to obtain a family u{x, t) of filtered versions of a continuous signal f{x) as the 
solution of a suitable diffusion process 

^t = (5'(|^a:|)Wx).x (1.6) 

with / as initial condition, 

^(x,0) = / (x ) 
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and reflecting boundary conditions. Here subscripts denote partial derivatives, and 
the diffusion time t is a simplification parameter: Larger values correspond to 
more pronounced filtering. 

The diffusivity g{\ux\) is a nonnegative function that controls the amount of 
diffusion. Usually, it is decreasing in \ux\. This ensures that strong edges are less 
blurred by the diffusion filter than low-contrast details. In this chapter, the total 
variation (TV) diffusivity 

9{\s\) = ^ (1.7) 

plays an important role, since the resulting TV diffusion [27,272] does not require 
to specify additional contrast parameters, leads to scale invariant filters, has finite 
extinction time, interesting shape-preserving qualities, and is equivalent to TV 
regularisation [695] in the 1-D setting; see the references in [882] for more details. 

Unfortunately, TV diffusion is not unproblematic in practice: In correspond­
ing numerical algorithms the unbounded diffusivity requires infinitesimally small 
time steps or creates very ill-conditioned linear systems. Therefore, TV diffusion 
is often approximated by a model with bounded diffusivity: 

This regularisation, however, may introduce undesirable blurring effects and 
destroy some of the favourable properties of unregularised TV diffusion. 

1.3 Relations for Space-Discrete Diffusion 

In this section we study connections between soft Haar wavelet shrinkage and 
nonlinear diffusion with TV diffusivity in the space-discrete case. This allows us 
to find analytical solutions for simple scenarios. They are used as building blocks 
for numerical schemes for TV diffusion. 

1.3.1 Equivalence for Two-Pixel Signals 

We start by considering wavelet shrinkage of a two-pixel signal ( /o , / i ) in 
the Haar basis [760]. Its coefficients with respect to the scaling function ip = 
(72 ' 75) ^^^ ^̂ ® wavelet V̂  = ( -^ , ^ ) are given by 

_ /o + / i , fo-fi 

x/2 ' V2 

Soft thresholding of the wavelet coefficient yields 

(1.9) 

So{d)-^ 0 if \d\<0, ^^'^^^ 
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leading to the filtered signal {UQ^UI) with 

I (/o + / i ) / 2 else, 

^^ I (/o + / i ) / 2 else. ^ ^ 

On the other hand, space discrete TV diffusion of a two-pixel signal with 
reflecting boundary conditions and grid size 1 creates the dynamical system 

UQ = sgn{ui-uo) (1-13) 

ill = -sgn{ui-uo) (1.14) 

with initial conditions UQ{Q) = /o and ui{0) = / i . The dot denotes differentia­
tion with respect to time. It is easy to verify that this system with discontinuous 
right hand side has the unique analytical solution 

„ tt) _ f fo + tsgn{fi-fo) if t<\h-fo\/2, 
" ° ^ ^ ~ 1 (/o + / i ) / 2 else, ^^•^^> 

"^^*^ - I (/o + / i ) / 2 else. ^^'^^^ 

Interestingly, this is equivalent to soft Haar wavelet shrinkage with threshold 6 = 
\/2t. Moreover, we observe that a finite extinction time is obvious in the two-pixel 
model and that no problems with degenerated diffusivities appear [760]. 

1.3.2 A Wavelet-Inspired Scheme for TV Diffusion of Signals 

Let us now investigate if we can also benefit from the 2-pixel equivalences in 
the case of general discrete 1-D signals with N pixels. To this end, we perform 
a wavelet decomposition on the finest scale only. Haar wavelets create natural 
two-pixel pairings, but unfortunately, their shrinkage is not shift invariant. As a 
remedy, Coifman and Donoho have proposed to apply cycle spinning [213]: On 
one hand, shrinkage is performed on the original signal. In parallel to this the 
signal is shifted by 1 pixel, shrinkage is performed, and then the result is shifted 
back. Averaging both filtered signals creates a process that is shift invariant by 
construction. 

Interestingly this procedure does also inspire a novel numerical scheme for TV 
diffusion. It uses the analytical solution of the two-pixel model as a building block. 
With the two-pixel model, TV diffusion with time step size 2r is performed on 
all pixel pairs (̂ X22,2x2*4-1 )• In parallel we perform TV diffusion on all pixel pairs 
{u2i-i,U2i). Averaging both results leads to the following numerical scheme for 
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Figure 1.2. (a) Top left: Original signal without noise, (b) Top right: With additive Gaus­
sian noise, SNR=8 dB. (c) Bottom left: Result with two-pixel scheme. SNR = 24.5 dB. (d) 
Bottom right: Result with classical regularised scheme. SNR = 24.6 dB. From [760]. 

TVdifaision[760]: 

,.fc+i sgn {u'. k - < ) min( 1, —\u: k 

i+1 

- ^ Sgn {u^ - uti) min h , —\u^ - ^ t i l j , (1-17) 

where the upper index k denotes the time level kr, and h is the spatial grid 
size. Although this scheme is explicit, it is even absolutely stably since it is 
based on a linear combination of analytical two-pixel interactions that satisfy a 
maximum-minimum principle. Moreover, it can be shown that the scheme is also 
conditionally consistent to the continuous TV diffusion [760]. It should be noted 
that it does not require any regularisation of the diffusivity such as (1.8), and 
hence does not suffer from corresponding dissipative artifacts at edges. In Figure 
1.2 it is shown that it is a competitive alternative to conventional schemes based 
that approximate regularised TV diffusion. 

1.3.3 Generalisations to Images 

Interestingly, the considerations in Subsections 1.3.1 and 1.3.2 can be generalised 
to the 2-D setting [882]. By considering an image with 2 x 2 pixels, one shows 
that soft Haar wavelet shrinkage and space-discrete TV diffusion are equivalent 
by deriving the same analytical solution for both processes. In order to use this 
4-pixel solution as a building block for a numerical scheme for 2-D TV diffusion, 
we consider the four 2 x 2 cells containing some pixel (?', j ) . By computing their 
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Figure 1.3. (a) Left: Original image, 93 x 93 pixels, (b) Middle: Standard explicit scheme 
for regularised TV diffusion (e = 0.01, r = 0.0025, 10000 iterations), (c) Right: Same 
with four-pixel scheme without regularisation (r — 0.1,250 iterations). Note that 40 times 
larger time steps are used. From [882]. 

analytical solutions and averaging the results, we obtain a v^avelet-inspired nu­
merical scheme for 2-D TV diffusion. In the same v^ay as its 1-D counterpart, it is 
explicit, absolutely stable, conditionally consistent, and does not require any reg­
ularisation of the singular TV diffusion equation. Compared to classical exphcit 
discretisations based on regularised TV diffusion, it creates sharper edges, even 
when significantly larger time step sizes are used; see Figure 1.3. 

1.4 Relations for Fully Discrete Diffusion 

The previous section focused on space-discrete TV diffusion and soft Haar 
wavelet shrinkage. This restriction allowed us to derive analytical solutions for 
both paradigms. In order to obtain additonal connections let us now investigate 
fully discrete nonlinear diffusion with arbitrary difflisivities and Haar wavelet 
shrinkage with general shrinkage functions. 

1.4.1 Diffusion-Inspired Shrinkage Functions 

Let us consider a discrete signal {fi)iez- It is easily seen that one cycle of shift-
invariant Haar wavelet shrinkage on a single level creates a filtered signal {ui)i^z 
with 

fi-l-^2fi-\- fi^l y/2 ffi-fi+i 

"• = 4 + x^^i-7r-
v/2^ ffi-i-fi (1.18) 

On the other hand, the first iteration of an explicit (Euler forward) scheme for a 
nonlinear diffusion filter with initial state / , time step size T and spatial step size 
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Figure 1.4. (a) Top: Four popular shrinkage functions: soft, garrote, firm, and hard 
shrinkage, (b) Bottom: Corresponding difiusivities. From [585]. 

1 leads to 

Ui - fi 
= P ( l / ^+ l - / i l ) ( / ^+ l - / ^ ) " P(l/f " / t 11) ( / ' " / ' - l ) , O'l^) 

which can be rewritten as 

+ ( / i - / i + i ) (•^-rg{\fi-fi^i\) 

Comparing (1.18) and (1.20) shows that both methods are equivalent if 

N/2 
Se {T^- r9{\s\) 

(1.20) 

(1.21) 

This formula states a general correspondence between a shrinkage function Se of 
a shift-invariant single scale Haar wavelet shrinkage and the diffusivity g of an 
explicit nonlinear diffusion scheme [585]. It does not only allow to reinterpret a 
number of shrinkage strategies as nonlinear diffusion filters (Figure 1.4), it also 
leads to novel, diffusion-inspired shrinkage functions (Figure 1.5). Interestingly, 
some of these diffusion-inspired shrinkage functions turn out to belong to the ones 
with the best denoising capabilities [585]. A detailed analysis of this connection 
in terms of extremum principles, monotonicity preservation and sign stability can 
be found in [586]. 

L4.2 Wavelet Shrinkage with Improved Rotation Invariance 

In order to extend our results from 1-D signals to 2-D greyscale images, we have 
to specify the 2-D Haar Wavelet transform first. It is based on a lowpass filter L 
with coefficients (755 :;^) ^^^ a highpass filter H with coefficients (:;^5 - 7 5 ) 
Applying the 1-D filters L and H altematingly in x and y direction gives a 2-D 
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Charbormier diHusivity WeickertdiHusivity 

Figure 1.5. (a) Top: Four popular diffusivities: linear, Charbonnier, Perona-Malik, and 
Weickert difflisivity. (b) Bottom: Corresponding shrinkage functions. From [585]. 

1 
1 
1 
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1 • 
Figure 1.6. (a) Left: Original image, (b) Right: The first three levels of a 2-D Haar wavelet 
decomposition. 

Haar wavelet decomposition with the following structure: 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

with v^ := f. Figure 1.6 illustrates this principle. 
The basic idea behind classical 2-D wavelet shrinkage is now to shrink all 

wavelet coefficients Wy, Wx and Wxy separately according to their magnitude. 
If shift invariance is required, one averages the results for the 4 shift possibili­
ties. However, even in this case, one usually observes a severe lack of rotation 
invariance. 

,'+1 = 

i-"' -
i^' -
i+i , 
xy 

= L{x)^L[y)^v\ 

= L{x)^H{y)^v\ 

^ H{x)^ L{y)^v\ 

= H{x) * H{y) * v^ 
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Figure 1.7. (a) Left: original images, (b) Middle: reconstruction after iterated shift in­
variant hard wavelet shrinkage, (c) Right: reconstruction by a diffusion-inspired wavelet 
shrinkage with much better rotation invariance. From [584]. 

In order to address this problem, let us investigate 2-D nonlinear diffusion fil­
tering. In its isotropic variant with a scalar-valued diffusivity [642], it is based on 
the rotationally invariant equation 

ut = diw{g{\Vu\)VTi) (1.26) 

In a similar way as in the 1-D situation, one can now consider explicit dis­
cretisations and relate the difiusivities to shrinkage functions for shift invariant 
Haar wavelet shrinkage. In contrast to classical shrinkage where the wavelet co­
efficients are shrunken separately, this leads to novel shrinkage rules where the 
wavelets are coupled [584], e.g. 

5K) - w,(^l-4Tg(^^wl+wl + 2wly)y (1.27) 

S{wy) = Wy{l-4Tg(^^wl+wl-^2wly)), (1.28) 

S{w,y) = w^y ( l - 4 r ^ (^yjwl + ̂ 2 4 . 2 ^ 2 J ^ ^ (129) 

Because of the rotation invariance of the nonlinear diffusion equation, one can ex­
pect that these shrinkage rules lead to a significantly better realisiation of rotation 
invariance than classical 2-D wavelet shrinkage. These expectations are confirmed 
by the experiments in Figure 1.7. 
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Figure 1.8. (a) Left: Zoom into an original image, (b) Middle: After classical wavelet 
shrinkage without coupling the RGB channels, (c) Right: Wavelet shrinkage with 
diffusion-inspired channel coupling. 

1.4.3 Diffusion-Inspired Wavelet Shrinkage of Colour Images 

While we have investigated diffusion-inspired shrinkage of greyscale images in 
the previous section, let us nov^ turn our attention to colour images. In this 
case wavelet shrinkage is frequently applied such that the different colour chan­
nels (e.g. RGB or YUV) are shrunken separately. This can result in a lack of 
synchronisation that creates artifacts at colour edges. 

For nonlinear diffusion filtering of colour images, one often uses a process 
with a joint diffiisivity that steers the evolution of all three channels [344]. In the 
continuous setting such an evolution has the structure 

l / 2 \ 
att/i = d i v ( ^ ( ( ^ | V n , f ) )v^^, ) (1.30) 

j = i 

where the index i specifies the colour channel. By considering an explicit dis­
cretisation and relating it to wavelet shrinkage, we end up with shrinkage rules 
where all channels are coupled. Figure 1.8 illustrates that this diffusion-inspired 
shrinkage of colour images leads to a more convincing behaviour at edges where 
all channels remain synchronised. 

1.5 Wavelets with Higher Vanishing Moments 

Up to now we have only considered relations between Haar wavelet shrinkage and 
nonlinear diffusion with diffusivities depending on first order derivatives. In this 
section, we will see that there exists also a relation between one step of translation 
invariant wavelet shrinkage with wavelets having m>\ vanishing moments and 
explicit difference schemes of diffusion-like equations whose diffiisivities include 
m-th order derivatives. To our knowledge these relations have not been considered 
in the literature before. 

For the sake of simplicity, we restrict our attention to the periodic setting, i.e., 
in the following all indices are taken modulo N. We are concerned with wavelet 
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filters /i* := (/IQ, .. •, ̂ M^-l)» ^ = 1? 2 having the perfect reconstruction property 

/ M o - l M i - 1 \ 

\ fc=0 A;=0 / 

Moreover, we assume that h^ has m > 1 vanishing moments: 

M i - i 

J2 k^'hl = 0, r - 0 , . . . , m - l , (1.32) 

M i - 1 

^ / . - h ^ = 7m ^ 0. (1.33) 

Examples of such filters are for m = 1 the Haar filter pair 

/.0:=-L(U), . - = i = ( l , - l ) (1.34) 

with 7i = —1/\/2, and for m = 2 the Daubechies filter pair 

h^ := ^ ( l + \ / 3 , 3 + v^ , 3 - \ / 3 , 1 - V ^ ) , (1.35) 

h^ := - ^ ( - 1 + A/3, 3 - \ / 3 , - 3 - \ / 3 , l + \ /3) (1.36) 

with 72 = y/^/y/2. Then the three steps of wavelet shrinkage applied to the signal 
/ '= ( /o, . . •, JN-I) read as follows: 

• Analysis step: For j = 0 , . . . , AT — 1, we compute 

M o - l i V - l 

c, := Yl ^y^+J = E ''Ufk' (1-37) 

M i - 1 N-1 

• Shrinkage step: For j = 0 , . . . , AT — 1 we shrink the highpass coefficients 
dj as 5^(6/^), J =: 0 , . . . , TV - 1. 

• Synthesis step: For jf = 0 , . . . , TV — 1, we compute 

. / M o - l M i - 1 \ 

\ k=0 k=0 I 

Assume now that the samples /^ := fikh) with h := \/N were taken from a 
sufficiently smooth periodic fiinction with period 1. Then we obtain by the Taylor 
expansion that 

r = 0 

fkM = E ^-^f^'Hlh) + 0{h"^+'). (1.40) 
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Since h^ has m vanishing moments, it follovv̂ s with (1.38) that 

m J J. Ml—I 

r = 0 • fc=0 

Thus, 

ml 

f^'^'Hlh) = - ^ d t + 0{h). 

Similarly, we conclude that 

x - ' * ^ ! 

(1.41) 

(1.42) 

Let us now consider a higher-order diffusion-like equation with periodic boundary 
conditions: 

ut = ( ( p ( | u ( - ) | ) u ( - ) ) ^ " \ (1.44) 

u{x,0) - / ( x ) , (1.45) 
Xr) (0) .(r) (1), r = 0 , . . . , 2 m - l . (1.46) 

We approximate the inner and outer m-th derivatives by (1.42) and (1.43), 
respectively. This results in 

utijh) 
k=0 

(-l)^(m!)^ 
E^l^ Imh^ ^j-k ^j-k- (1.47) 

Finally, the approximation of ii£ by a forward difference with time step r leads to 
an iterative scheme whose first step reads 

N2 A < f l - 1 

nf := h+r (-l)"'(m!)^ 

[imh^Y fc=0 ^ 7m/i^ 
d 'j-k Uj-k- (1.48) 

Since our filter pair has the perfect reconstruction property (1.31), we have with 

S0{s) = sin (1.39) that Uj = fj. Thus, u): ^ can be rewritten as 

M o - l M i - 1 

-f = HE'*^^-'^+ E/̂ K-fc-
fe=0 A;=0 

i+2r(:^)":L"!?% 
m\di-k 

(1.49) 

Comparing this equation with (1.39) we see that the signal obtained by wavelet 
shrinkage coincides with those of the first step of our iterative scheme if 

<, ,'ymh"' \ f^^h"^ ^ „ ( - i r m ! 
(1.50) 
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This fundamental relation generalises (1.21). It gives the connection between the 
shinkage function Se of single scale, shift-invariant wavelet shrinkage with m 
vanishing moments and the "diffusivity" g of the diffusion-like PDE (1.44) of or­
der 2m. For m = 1 it coincides with our result (1.21) for Haar wavelet shrinkage. 
For m = 2v/& obtain 

1.6 Summary 

The goal of this chapter was to give a survey on connections between two 
discontinuity-preserving paradigms for signal and image denoising: wavelet 
shrinkage and nonlinear diffusion filtering. Unlike most other researchers in this 
field we focused on discrete connections. It turned out that the wavelet and the 
diffusion community can indeed learn much from each other. 
Focusing on soft Haar wavelet shrinkage and space-discrete TV diffusion, we 
showed that diffusion filters can benefit from wavelet shrinkage: It was possible 
to derive wavelet-inspired schemes for TV diffusion that are explicit, absolutely 
stable, do not require regularisations in order to cope with singularities, and per­
form favourably. 
On the other hand, investigating fully discrete schemes for nonlinear diffusion 
filtering and its higher-order generalisations allowed us to find a general rela­
tion between its diffusivity and the shrinkage function of shift-invariant wavelet 
shrinkage on a single scale. This led to diffixsion-inspired shrinkage functions 
with competitive performance, to shrinkage rules with improved rotation invari-
ance, and to coupling strategies for wavelet shrinkage of colour images. Hence, 
also wavelet methods can benefit from diffusion methods. 
These connections give rise to the question whether it is also possible to design 
hybrid methods that benefit from both worlds by attempting to combine the ef­
ficiency of wavelet strategies with the quality of diffusion methods. They can 
be either regarded as iterated shift-invariant wavelet shrinkage methods, or as 
multiscale diffusion filters. First experiments confirm that this is indeed an inter­
esting class of methods [587]. Performing a theoretical analysis of the connections 
between single-step multiscale procedures and iterated single scale methods, how­
ever, still leads to a lot of challenging questions. They are a topic of our current 
research. 
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Chapter! 

Total Variation Image Restoration: 
Overview and Recent Developments 

T. Chan, S. Esedoglu, F. Park and A. Yip 

Abstract 
Since their introduction in a classic paper by Rudin, Osher and Fatemi 

[695], total variation minimizing models have become one of the most pop­
ular and successful methodology for image restoration. More recently, there 
has been a resurgence of interest and exciting nev̂  developments, some 
extending the applicabilities to inpainting, blind deconvolution and vector-
valued images, while others offer improvements in better preservation of 
contrast, geometry and textures, in ameliorating the staircasing effect, and 
in exploiting the multiscale nature of the models. In addition, new computa­
tional methods have been proposed with improved computational speed and 
robustness. We shall review some of these recent developments. 

2.1 Introduction 

Variational models have been extremely successful in a wide variety of restoration 
problems, and remain one of the most active areas of research in mathematical 
image processing and computer vision. By now, their scope encompasses not only 
the fundamental problem of image denoising, but also other restoration tasks such 
as deblurring, blind deconvolution, and inpainting. Variational models exhibit the 
solution of these problems as minimizers of appropriately chosen functionals. The 
minimization technique of choice for such models routinely involves the solution 
of nonlinear partial differential equations (PDEs) derived as necessary optimality 
conditions. 

Perhaps the most basic (fundamental) image restoration problem is denoising. 
It forms a significant preliminary step in many machine vision tasks, such as ob­
ject detection and recognition. It is also one of the mathematically most intriguing 
problems in vision. A major concern in designing image denoising models is to 
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preserve important image features, such as those most easily detected by the hu­
man visual system, while removing noise. One such important image feature are 
the edges; these are places in an image where there is a sharp change in image 
properties, which happens for instance at object boundaries. A great deal of re­
search has gone into designing models for removing noise while preserving edges; 
recently there has also been a lot of effort in preserving other fine scale image fea­
tures, such as texture. All successful denoising models take advantage of the fact 
that there is an inherent regularity found in natural images; this is how they at­
tempt to tell apart noise and actual image information. Variational and PDE based 
models make it particularly easy to impose geometric regularity on the solutions 
obtained as denoised images, such as smoothness of boundaries. This is one of 
the main reasons behind their success. 

Total variation based image restoration models were first introduced by Rudin, 
Osher, and Fatemi (ROF) in their pioneering work [695] on edge preserving image 
denoising. It is one of the earliest and best known examples of PDE based edge 
preserving denoising. It was designed with the explicit goal of preserving sharp 
discontinuities (edges) in images while removing noise and other unwanted fine 
scale detail. Being convex, the ROF model is one of the simplest variational mod­
els having this most desirable property. The revolutionary aspect of this model is 
its regularization term that allows for discontinuities but at the same time disfa­
vors oscillations. It was originally formulated in [695] for grayscale imagery in 
the following form: 

inf / \Vu\. (2.1) 

Here, ft denotes the image domain (for instance, the computer screen), and is 
usually a rectangle. The function f{x) : ft —> R represents the given observed 
image, which is assumed to be corrupted by Gaussian noise of variance cr .̂ The 
constraint of the optimization forces the minimization to take place over images 
that are consistent with this known noise level. The objective functional itself is 
called the total variation (TV) of the function u{x); for smooth images it is equiv­
alent to the L^ norm of the derivative, and hence is some measure of the amount 
of oscillation found in the function u{x). Optimization problem (2.1) is equiva­
lent to the following unconstrained optimization, which was also first introduced 
in [695]: 

inf j \Vu\+\l {u-ffdx. (2.2) 

Here, A > 0 is a Lagrange multiplier. The equivalence of problems (2.1) and (2.2) 
has been established in [162]. In the original ROF paper [695] there is an itera­
tive numerical procedure given for choosing A so that the solution u{x) obtained 
solves (2.1). 

We point out that total variation based energies appear, and have been pre­
viously studied in, many different areas of pure and applied mathematics. For 
instance, the notion of total variation of a function and functions of bounded 
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variation appear in the theory of minimal surfaces. In applied mathematics, to­
tal variation based models and analysis appear in more classical applications such 
as elasticity and fluid dynamics. Due to ROF, this notion has now become central 
also in image processing. 

Over the years, the ROF model has been extended to many other image restora­
tion tasks, and has been modified in a variety of ways to improve its performance. 
In this article, we will concentrate on some recent developments in total variation 
based image restoration research. Some of these developments have led to new 
algorithms, and others to new models and theory. While we try to be compre­
hensive, we are of course limited to those topics and works that are of interest to 
us, and that we are familiar with. In particular, we aim to provide highlights of a 
number of new ideas that include the use of different norms in measuring fidelity, 
applications to new image processing tasks such as inpainting, and so on. We also 
hope that this article can serve as a guide to recent literature on some of these 
developments. 

2.2 Properties and Extensions 

2.2.1 BV Space and Basic Properties 

The space of functions with bounded variation (BV) is an ideal choice for mini-
mizers to the ROF model since BV provides regularity of solutions but also allows 
sharp discontinuities (edges). Many other spaces like the Sobolev space W^'^ do 
not allow edges. Before defining the space BV, we formally state the definition of 
TV as: 

^ | V / | - s u p | ^ / V .gdx I g G C,i(n,]R-),|g(x)| < IVx G l^j (2.3) 

where / G L^ [Q) and H C M^ is a bounded open set. We can now define the 
space BV as {/ G L^(17) | / ^ | V / | < oo}. Thus, BV functions amount to L^ 
functions with bounded TV semi-norm. Moreover, through the TV semi-norm 
there is a natural link between BV and the ROF model. 

Given the choice oiBV{^) as the appropriate space for minimizers of the ROF 
model (2.2), there are the basic properties of existence and uniqueness to settle. 
The ROF model in unconstrained form (2.2) is a strictly convex functional, hence, 
admits a unique minimum. Moreover, it is shown in [162] that the equality con­
straint J^{u — f^dx = o^ in the non-convex ROF model (2.1) is equivalent 
to the convex inequaUty constraint ^^{u — f)^dx < a^. Hence, the non-convex 
minimization in (2.1) is equivalent to a convex minimization problem which un­
der some additional assumptions is further equivalent to the above unconstrained 
minimization (2.2). 

For BV functions there is a useful coarea formulation linking the total vari­
ation to the level sets giving some insight into the behavior of the TV norm. 
Given a function / G BVi^L) and 7 G M, denote by {/ == 7} the set: 



20 Chan, Esedoglu, Park & Yip 

{x G R^ I / ( x ) = 7 } . Then, if/ is regular, the TV of/ can be given by: 

/ |V/|= r [ dsdj. (2.4) 

Jn J-ooJ{f='y} 
Here, the term Jr. . ds represents the length of the set {/ — ^y}. The formula 
states that the TV norm of / can be obtained by integrating along all contours of 
{/ = 7} for all values of 7. Thus, one can view TV as controlling both the size 
of the jumps in an image and the geometry of the level sets. 

2.2.2 Multi-channel TV 

Total variation based models can be extended to vector valued images in various 
ways. 

An interesting generalization of TV denoising to vector valued images was 
proposed by Sapiro and Ringach [704]. The idea is to think of the image u : 
R^ —> W^ as a parametrized two dimensional surface in W^, and to use the 
difference between eigenvalues of the first fundamental form as a measure of 
edge strength. A variational model results from integrating the square root of the 
magnitude of this difference as the regularization term. 

Blomgren and Chan [98] generalized total variation regularization to vectorial 
data as the Euclidean norm of the vector of (scalar) total variations of the compo­
nents. This generalization has the benefit that vector valued images defined on the 
line whose components are monotone functions with identical boundary condi­
tions all have the same energy, regardless of their smoothness. This implies good 
edge preserving properties. 

Another interesting approach generalizing edge preserving variational denois­
ing models to vector valued images is due to Kimmel, Malladi, and Sochen [473]. 
They regard the given image u{x) : R^ —> R ^ as a surface in R^"^^, and 
propose an area minimizing flow (which they call Beltrami flow) as a means of 
denoising it. 

2.2.3 Scale 

The constant A that appears in the ROF model plays the role of a "scale pa­
rameter". By tweaking A, a user can select the level of detail desired in the 
reconstructed image. In this sense, A in (2.2) is analogous to the time variable in 
scale space theories for nonlinear diffusion based denoising models. The geomet­
ric interpretation of the regularization term in (2.2) given by the co-area formula 
suggests that A determines which image features are kept based on, roughly 
speaking, their "perimeter to area" ratio. 

The intuitive link between A and scale of image features can be exactly verified 
in the case of an image that consists of a white disk on a black background. Strong 
and Chan [770] determined the solution of the ROF functional for such a given 
image f{x). It turns out to be (1 — ^ ) / ( x ) for A > :̂ . In particular, there is 
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always a loss of contrast in the reconstruction, no matter how large the fidelity 
constant A is. And when A < ^, the solution is identically 0, meaning that the 
model prefers to remove disks of radius less than j . This simple but instructive 
example indicates how to relate the parameter A to the scale of objects we desire to 
preserve in reconstructions. Strong and Chan's observation has been generalized 
to other exact solutions of the ROF model in [69]. 

The parameter A can thus be used for performing multiscale decomposition of 
images: Image features at different scales are separated by minimizing the ROF 
energy using different values of A. Recent research along these lines is described 
in section 2.5.3. 

2.3 Caveats 

While using TV-norm as regularization can reduce oscillations and regularize 
the geometry of level sets without penaHzing discontinuities, it possesses some 
properties which may be undesirable under some circumstances. 

Loss of contrast. The total variation of a function, defined on a bounded do­
main, is decreased if we re-scale it around its mean value in such a way that the 
difference between the maximum and minimum value (contrast) is reduced. In 
[770, 567], the authors showed that for any non-trivial regularization parameter, 
the solution to the ROF model has a contrast loss. The example of a white disk 
with radius R over a black background discussed in 2.2.2 is a simple illustration. 
In this case, the contrast loss is inversely proportional to f{x)/r before the disk 
merges with the background. In general, reduction of the contrast of a feature by 
h > 0 would induce a decrease in the regularization term of the ROF model by 
0{h) and an increase in the fidelity term by 0(/i^) only. Such scalings of the 
regularization and fidelity terms favors the reduction of the contrast. 

Loss of geometry. The co-area formula (2.4) reveals that, in addition to loss of 
contrast, the TV of a function may be decreased by reducing the length of each 
level set. In some cases, such a property of the TV-norm may lead to distortion 
of the geometry of level sets when applying the ROF model. In [770], Strong and 
Chan show that, for circular image features, their shape is preserved at least for a 
small change in the regularization parameter and their location is also preserved 
even they are corrupted by noise of moderate level. In [69], Bellettini et al. extend 
Strong and Chan's results and show that the set of all bounded connected shapes 
C that are shape-invariant in the solution of the ROF model is precisely given by 

C CR^ :C convex, a C e C^'^ and ess sup K,dc{p) < \dC\/\C\ \ . 
p€dC J 

Here, \dC\ is the perimeter of C, \C\ is the area of C and Kdc{p) is the curvature 
of dC at p. The downside of the above characterization is that the ROF model 
distorts the geometry of shapes that do not belong to the shape-invariant set. For 
instance, it has been shown in [567], if the input image is a rectangle R over a 
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background with a different intensity, then cutting a comer (an isosceles triangle) 
with height h of the rectangle would induce a reduction in the TV-norm by 0{h) 
and an increment of the fitting term by 0(^^) , thus favoring cutting the comers. 

Staircasing. This refers to the phenomenon that the denoised image may look 
blocky (piecewise constant). In the 1-D discrete case, there is a simple explanation 
to this — the preservation of monotonicity of neighboring values. Such a property 
requires that, for each i, if the input / = {/^} satisfies fi < / i+i (resp. >), 
then the output must satisfy Ui < Ui^i (resp. >) for any A. In the case where / 
satisfies /i,j_i < /i^ > /i„+i < /io+2 for some ZQ, which often happens when 
the tme signal is monotonically increasing around io and is cormpted by noise but 
u satisfies Ujo-i < Ui^ = Ui^j^y < ^1^+2, then, visually, u looks like a staircase 
at zo but a monotonically increasing signal is more desirable. In the 2-D case, the 
monotonicity preserving property is no longer tme in general, for instance, near 
comers of image features. However, away from the comers where the curvature 
of the level sets is high, staircase is often observed. 

Loss of Texture. Although highly effective for denoising, the TV norm cannot 
preserve delicate small scale features like texture. This can be accounted for from 
a combination of the above mentioned geometry and contrast loss caveats of the 
ROF model which have the tendency to affect small scale features most severely. 

2.4 Variants 

Total variation based image reconstmction models have been extended in a variety 
of ways. Many of these are modifications of the original ROF functional (2.2), 
addressing the above mentioned caveats. 

2.4.1 Iterated Refinement 

A very interesting and innovative new perspective on the standard ROF model has 
been recently proposed by Osher et al. [615]. The new framework involved can be 
generalized to many convex reconstmction models (inverse problems) beyond TV 
based denoising. When applied to the ROF model in particular, this new approach 
fixes a number of its caveats, such as loss of contrast, and promises even further 
improvements in other significant aspects of reconstruction, such as preservation 
of textures. 

The key idea is to compensate for the loss of signal in reconstmcted images by 
minimizing the ROF model repeatedly, each time adding back the signal removed 
in the previous iteration. Thus, starting with a given fo{x) := f{x), repeat for 
i = l , 2 , 3 , . . . : 

1. Set Uj{x) = argmin-n of (2.2) using fj{x) as the given image. 

2. Set/,+i(x) = fj{x) + {f-uj{x)). 
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When applied to the characteristic function of a disk, this algorithm recovers it 
perfectly after a finite number of iterations without loss of contrast. 

The algorithm can be generalized to inverse problems of the form inf̂ ^ J{u) + 
H{u, / ) . Here, J is a convex regularization term, and H{u, f) a fidelity term that 
is required to be convex in u for every / . In this setting, the iterative procedure 
above becomes: Start with UQ = 0, repeat for j = 1 ,2 ,3 , . . . 

Uj^i = argmiii H{w,f) + J{w) — J{uj) — {DuJ{uj),w — Uj). (2.5) 

Here, DuJ{uj) denotes the derivative of the functional J at the j-th iterate Uj, 
and (•, •) represents the duality pairing. If J is non-differentiable (as in the ROF 
model), then DuJ{uj) needs to be understood as an element of the subgradient 
dJ{uj) of J at Uj. It is clear from formula (2.5) that the algorithm involves re­
moving from the regularization term J{u) its linearization at the current iterate 
Uj. 

Formula (2.5) suggests the following definition: For p e dJ{v), let 

DP{u, v) := J{u) - J{y) - (p, u - v) 

be the generalized Bregman distance associated with the functional J . It defines 
a notion of distance between two functions u and v because it satisfies the condi­
tions DP{u^ v) > 0 for all u, v, and D^[u, u) = 0. However, it is not a metric as 
it needs not be symmetric or satisfy a triangle inequality. 

A number of important general theorems have been established in [615], 
including: 

• As long as the distance of the reconstructed image Uj to the given noisy 
f{x) remains greater than a (the noise variance), the iteration decreases the 
Bregman distance of the iterates Uj to the true (i.e. noise-free) image. 

• H{ujjf) decreases monotonically and tends to 0 as j —> oo. 

In [615], further results can be found about the convergence rate of the iterates Uj 
to the given image / under certain regularity assumptions on / . 

2.4.2 L^ Fitting 

A simple way to modify the ROF model in order to compensate for the loss of 
contrast is to replace the squared L^ norm in the fidelity term in (2.2) by the L^ 
norm instead. The resulting energy is 

f\Vu\+x[\ f\ dx. (2.6) 

Discrete versions of this model were studied for one dimensional signals by 
Alliney [14], and in higher dimensions by Nikolova [602]. In particular, it has 
been shown to be more effective that the standard ROF model in the presence of 
certain types of noise, such as salt and pepper. Recently, it has been studied in the 
continuous setting by Chan and Esedoglu [165]. 
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Although the modification involved in (2.6) seems minor, it has certain desir­
able consequences. First and foremost, the scaling between the two terms of (2.6) 
is different from the one in the original ROF model (2.2), and leads to contrast in-
variance: lfu{x) is the solution of (2.6) with f{x) as the given image, then cu{x) 
is the solution of (2.6) with cf{x) as the given image. This property does not hold 
for (2.2). A related consequence is: If the given image f{x) is the characteristic 
function of a set ft with smooth boundary, then the image is perfectly recovered 
by model (2.6) for large enough choices of the parameter A. This is in contrast to 
the behavior of the ROF model, which always prefers to remove some of the orig­
inal signal from the reconstructed one, and preserves a very small class of shapes. 
This statement can be generalized beyond original images given by characteristic 
functions of sets to show that a wide class of regular images are left unmodified 
by model (2.6) for large enough choices of the parameter A. 

In addition to having better contrast preservation properties, model (2.6) also 
turns out to be useful for the denoising of shapes. A natural variational model 
for denoising a shape S, which we model as a subset of W^, is the following: 
minscR^ Per(S) + X\S A I] | , where the first term in the energy represents the 
perimeter of the set E, and the second represents the volume of the symmetric 
difference of the sets S and S weighted by the scale parameter A > 0. This model 
is exactly the one we would get if the minimization in the standard ROF model 
(2.2) is restricted to functions of the form u{x) = IY:{X) and f{x) = Is'(x). 
Unlike the standard ROF problem, however, this minimization is non-convex. In 
particular, standard approaches for solving it run the risk of getting stuck in local 
minima. The total variation model with L^ fidelity term (2.6) turns out to be a 
convex formulation of the shape denoising problem given above. Indeed, the fol­
lowing statement has been proved in [165]: Let u{x) be a minimizer of (2.6) for 
f{x) = ls{x). Then, for a.e. pi, e [0,1], the set E(//) = {j; G R ^ : u{x) > /i} 
is a minimizer of the shape denoising problem. Thus, in order to solve the non-
convex shape denoising problem, it suffices to solve instead the convex problem 
(2.6) and then take (essentially) any level set of that solution. 

2,4.3 Anisotropic TV 

In [299], Esedoglu and Osher introduced and studied anisotropic versions of the 
ROF model (2.2). The motivation is to privilege certain edge directions so that 
they are preferred in reconstructions. This can be useful in applications in which 
there may be prior geometric information available about the shapes expected in 
the recovered image. In particular, it can be used to restore characteristic functions 
of convex regions having desired shapes. 

The idea proposed in [299] is to replace the total variation penalty term in (2.2) 
with the following more general term: 

/ (j){Vu) := sup / u{x)dvvg{x) dx 
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where the function 0 : M^ —> R is a convex, positively one-homogeneous 
function that is 0 at the origin, and the set W^ is defined as follows: 

W^:={yeW:X'y< (j){x) \/x G R''} . 

For example, if (/)(a;) — \x\, then the set Wff, turns out to be simply the unit ball 
{y e R^ : \y\ < 1}, and the definition of/^ (l){Vu) given above reduces to the 
standard definition of total variation. Another simple example in two dimensions 
\S(j){x,y) = \x\ 4- |y|, in which case the set W^ is just the closed unit square. 

The set VK̂  defined above is the Wulff shape associated with the function (j). It 
determines the shapes that are compatible with the anisotropy 0. For example, it is 
proved in [299] that i f / (x) is the characteristic function of (a scaled or translated 
version of) the Wulff shape W^, then the solution ti is a constant multiple of 
f{x). This result generalizes that of Strong and Chan [770] and Meyer in [567] 
that concern the case of a disk for the standard ROF model. 

If W(f, is a convex polygon in two dimensions, then its sides act as preferred 
edge directions for the reconstructions obtained by the anisotropic ROF model. 
Indeed, it is proved in [299] that \iu{x) = I s (^) is a solution to the anisotropic 
model, and if S is known to be a set with piecewise smooth boundary dH, then 
dT, should include a line segment parallel to one of the sides of W^p wherever its 
tangent becomes parallel to one of those sides. On the other hand, one can show 
that dT, can include comers that are different than the ones in dW^. 

In addition to being of interest for applications, the results of [299] are also of 
theoretical interest. Indeed, these anisotropic variants of total variation constitute 
an infinitude of equivalent regularizations (in the sense that the semi-norms they 
define are equivalent), yet the properties of their minimizers have been shown to 
be extremely different. That suggests that in general one should not expect an 
image restoration model to perform quite as well as the original ROF model just 
because its regularization term is equivalent to total variation. 

2.4.4 H^'^ Regularization andInf Convolution 

As discussed in Section 2.3, staircasing is one of the potential caveats to watch for 
when using total variation based regularization. It occurs even more severely in 
reconstructions by functionals that have a non-convex dependence on image gra­
dients; one famous example is the Perona-Malik scheme, which can be thought 
of as gradient descent for such an energy functional whose dependence on image 
gradients grows sublinearly at infinity. The TV model is borderline convex: its 
dependence on image gradients is linear at infinity. This feature, which is respon­
sible for its abihty to reconstruct images with discontinuities, is also responsible 
for the staircasing effect. 

A natural approach to overcoming the staircasing effect is to make the recon­
struction model more convex in regions of moderate gradient (away from the 
edges). A functional designed to accomplish this was proposed by Blomgren, 
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Mulet, Chan, and Wong [99]. It has the form 

/ I Vi^l^('^^l) dx-i-X f {u- ff dx. (2.7) 

Here, the function P ( 0 • ^ ^ —^ [0? 2] is to be chosen so that it monotonically 
decreases from 2 to 0. A simple example is P{^) — T^-

The idea behind (2.7) is that the model automatically adapts the gradient expo­
nent to fit the data, so that near edges it behaves exactly like the ROF model, and 
away from the edges it may behave more like the Dirichlet energy. This leads to 
much smoother reconstructions in regions of moderate gradient and thus prevents 
staircasing. On the other hand, unlike the ROF model, (2.7) is non-convex and 
difficult to analyze. 

Another approach to preventing staircasing is to introduce higher order deriva­
tives into the energy; the cost of moderately high but constant gradient regions 
is zero for such terms. On the other hand, a functional that depends on higher 
order derivatives would not maintain edges in its reconstructions. It is therefore 
necessary to once again allow the model to decide for itself where to use the total 
variation norm and where to use higher order derivative norms. One of the earli­
est proposals of this kind was made by Chambolle and Lions in [162], where they 
introduced the notion of inf convolution between two convex functionals. In this 
approach, an image u is decomposed into two parts: u = ui-{-U2. The ui compo­
nent is measured using the total variation norm, while the second component U2 
is measured using a higher order norm. The precise decomposition ofu into these 
two components is part of the minimization problem. More precisely, one solves 
the following variational problem that now involves two unknowns: 

inf / \Vui\-ha\D^U2\-\-X{ui+U2-f)^dx. 
Ui,U2 

Minimizing this energy requires the discontinuous component of the image to be 
allocated to the ui component, while regions that are well approximated by mod­
erate but nearly constant slopes get allocated to the U2 component at very little 
cost. This prevents staircasing to a remarkable degree in the one dimensional ex­
amples presented in [162]. Another method that utilizes total variation and higher 
order derivatives to suppress staircasing is by Chan, Marquina, and Mulet in [168]. 

Despite the important contributions listed above, staircasing remains one of the 
challenges of total variation based image reconstructions. 

2.5 Further Applications to Image Reconstruction 

2.5.7 Deconvolution 

The TV norm can also be used to regularize image deblurring problems. The 
forward degradation model for a blurred and noisy image can be realized as: / = 
k ^ u -{- rj, where / is the observed (degraded) image, k a given point spread 
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function (PSF), u the clean image, rj an additive noise (often Gaussian), and * 
denoting the convolution operator. 

The task of restoring an image u under the above degradation is known as 
deconvolution if the PSF k is known or blind deconvolution if there is little or 
no known a priori information on the PSF. If we replace the u in the uncon­
strained ROF model (2.2) with the convolution k * u, then we arrive at the TV 
deconvolution model: 

mm\\k^u-f\\l^X^\\u\\Tv- (2.8) 
u£BV 

Here, as in the ROF model (2.2), the regularization parameter X^ is related to the 
statistical signal to noise ratio (SNR). 

Extending the work by You and Kaveh [911], Chan and Wong introduce in 
[176] the TV blind deconvolution model: 

min \\k^u- fWl + A^^II^IIITV + Afc||A;||Tv. (2.9) 
u,kEBV 

where the additional parameter Afc controls the spread of k. Moreover, solu­
tions {u{Xk)} of (2.9) form a one parameter family corresponding to A^. The 
authors also propose an alternating minimization algorithm for minimizing the 
above energy (2.9) which we denote by F{u,k). Here, given u'^ one solves 
for k^~^^ := Bigi[nmkF{u^,k), then given k'^'^^, one solves for u^'^^ := 
argminxi F{u, k'^'^^) altematingly. Such an alternating procedure is shown to be 
convergent when the TV-norm is replaced by the H^-nonn. 

A key advantage of using TV regularization for blind deconvolution is that the 
TV norm can recover sharp edges in the PSF (e.g. motion blur or out-of-focus 
blur) while not penalizing smooth transitions. 

2.5.2 Inpainting 

Image inpainting refers to the filling-in of missing or occluded regions in an image 
based on information available on the observed regions. A common principle for 
inpainting is to complete isophotes (level sets) in a natural way — such a philos­
ophy is also true for professional artists to restore damaged ancient paintings. To 
this end, several successful inpainting models have been proposed such as Mas-
nou and Morel [553] and Bertalmio et al. [79]. We refer the reader to [171] and the 
references therein for other more recent models. Among these models, Chan and 
Shen proposed in [171] a TV inpainting model which uses variational methods in 
inpainting. The basic ingredient is to solve the boundary value problem: 

m i n / \Vu\ subject to U = UQ 'mQ.\D. (2.10) 

Here, D is the missing region to be inpainted, UQ is the observed image whose 
value in D is missing. Thus, the TV inpainting method simply fills-in the missing 
region such that the TV in O is minimized. The use of TV-norm is desir-
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able because it has the effect of extending level sets into D without smearing 
discontinuities along the tangential direction of the boundary of D. 

With a slight modification of (2.10), simultaneous inpainting (in D) and 
denoising (in Q.\D) may be done as follows: 

min / \Vu\+\ / {^a-uofdx. (2.11) 
^ JQ, Jn\D 

Define a spatial varying parameter Ae(x) which is 0 in D and is A in H \ £). Then 
the Euler-Lagrange equation for (2.11) can be written as 

which has the same form as that for the ROF model, except the regularization 
is switching between 0 and A in different regions. Thus, it is easy to modify an 
implementation of the ROF model to the TV inpainting model. Finally, we remark 
that some variants of (2.11) such as curvature-driven dififiision [172] and Euler's 
Elastica [167] have been proposed which complete isophotes in a smoother way. 

2.5.3 Texture and Multiscale Decompositions 

Another way of looking at denoising problems is by separating a given noisy 
image / into two components to form the decomposition: f = u-\- v, where u is 
the denoised image and v = f — uthe noise. In [567], Meyer adopts this view for 
the purpose of texture extraction where v captures not only noise but also texture. 
To do this, he proposed a new decomposition model: 

in f | jE ; (^ )= f |V i / |+A| | i ; | | . , / = ^ - t - i ; | (2.12) 

where the * norm is given by: 

||«||. = inf ^{\\y/^^^T^U^\v = d^gi+dyg2} (2.13) 

and the v component lies in what is essentially the dual space of BV, the G space: 

G={v\v = d,gi^ dyg2 , 91,92 G L^{R^)} . (2.14) 

Here, v is an oscillatory function representing texture and the * norm is designed 
to give small value for these functions. Thus, the main idea in (2.12) is to try to 
pull out texture by controlling ||^||*. Experiments in [843, 619] (discussed below) 
visually show that the model (2.12) extracts texture better than the standard ROF 
model. 

In practice, the model (2.12) is difficult to implement due to the nature of the 
* norm. Vese and Osher [843] were the first to overcome this difficulty where 
they devise an L^ approximation to the norm || • ||*. In a later work [619], Osher 
et al. propose another L^ approximation based on the //~^ norm and introduce a 
resulting fourth order PDE. Both works numerically demonstrate the effectiveness 
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of the model (2.12) for texture extraction and also give some further applications 
to denoising and deblurring. 

In a related work, Aujol et al. [36] propose a decomposition algorithm based 
on Meyer's work [567] where they further decompose an image a s / = u-\-v-}-w 
where u, v, and w are cartoon, texture, and noise respectively. 

Given the scale properties of the ROF model seen in section 2.2.3, it is natu­
ral to consider a multiscale decomposition based on the ROF model. Multiscale 
decompositions are of particular interest since one may want to extract image 
features of many different scales (either coarse or fine). One such multiscale de­
composition is Tadmor et al. [784] and proceeds in a hierarchical manner. After 
choosing an initial AQ = A to remove the smallest oscillation in a given image / , 
the regularization parameters {A^}, \j = 2^X induce a sequence of dyadic scales 
for jf = 1,.. . ,/;:. If we denote by ux. the solution to the ROF model (2.2) for 
parameter \j, then / has the decomposition: 

/ = UXo + tiAi + tiA2 + • • • + ^Afc + Vx^ . 

with vxk denoting the k-th stage residual vx^ = f - {uxo + '̂ Ai + ux^ H H 
uxk). Furthermore, the authors show that Wvx^ ||* ^ 0 as A: ̂  oo. Hence | | / -
J2i=o ^Ai II* —̂  0 as /u —> oo and the decomposition converges to / in the * norm. 
A related work based on merging dynamics of a monotonicity constrained TV 
model can be found in [169]. 

2.6 Numerical Methods 

There have been numerous numerical algorithms proposed for minimizing the 
ROF objective. Most of them fall into the three main approaches, namely, di­
rect optimization, solving the associated Euler-Lagrange equations and using the 
dual variable explicitly in the solution process to overcome some computational 
difficulties encountered in the primal problem. We will focus on the latter two 
approaches. 

2.6.1 Artificial Time Marching and Fixed Point Iteration 

In their original paper [695], Rudin et al. proposed the use of artificial time march­
ing to solve the Euler-Lagrange equations which is equivalent to the steepest 
descent of the energy function. More precisely, consider the image as a function 
of space and time and seek the steady state of the equation 

S=V-fT^V2A(.-/). (2.15) 
dt '\\vu\p) 

Here, \Vu\(3 := >/|Vii| + f3'^ is a regularized version of \Vu\ to reduce degen­
eracies in flat regions where | Vw| ~ 0. In numerical implementation, an expUcit 
time marching scheme with time step At and space step size Ax is used. Under 
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this method, the objective value of the ROF model is guaranteed to be decreasing 
and the solution will tend to the unique minimizer as time increases. However, 
the convergence is usually slow due to the Courant-Friedrichs-Lewy (CFL) con­
dition, At < cAx-^|Vn| for some constant c > 0 (see [546]), imposed on the size 
of the time step, especially in flat regions where \Vu\ ^ 0. To relax the CFL con­
dition, Marquina and Osher use, in [546], a "preconditioning" technique to cancel 
singularities due to the degenerate diffusion coefficient l/ |Vw|: 

( ^ ) - ' " - « 
(2.16) 

which can also be viewed as mean curvature motion with a forcing term — 2A(ii — 
/ ) . Explicit schemes suggested in [546] for solving the above equation improve 
the CFL to At < cAx^ which is independent of \Vu\. 

To completely get rid of CFL conditions, Vogel and Oman proposed in [849] 
a fixed point iteration scheme (FP) which solves the stationary Euler-Lagrange 
directly. The Euler-Lagrange equation is linearized by lagging the diffusion co­
efficient and thus the {i + l)-th iterate is obtained by solving the sparse linear 
equation: 

While this method converges only linearly, empirically, only a few iterations are 
needed to achieve visual accuracy. In practice, one typically employs specifically 
designed fast solvers to solve (2.17) in each iteration. 

2.6.2 Duality-based Methods 

The methods described in Section 2.5.1 are based on solving the primal Euler-
Lagrange equation which is degenerate in regions where Vu = 0. Although 
regularization by l/\Wu\f3 avoids the coefficient of the parabolic term becom­
ing arbitrarily large, the use of a large enough /3 for effective regularization will 
reduce the ability of the ROF model to preserve edges. 

Chan et al. in [166], Carter in [151] and Chambolle in [160] exploit the dual 
formulation of the ROF model By using the identity ||x|| = supn ||<i x • g for 
vectors in Euclidean spaces and treating g as the dual variable, one arrives at the 
dual formulation: 

sup / / V • gdx - ; ^ / (V . g)^dx (2.18) 
g€Ci(n,s2)7n ^^ Jn 

where B^ is the unit disk in M .̂ Once g is obtained, the primal variable can 
be recovered by u = / — A~^V-g. A promise of the dual formulation is that 
the objective function is differentiable in g, unlike the primal problem which is 
badly behaved when Vu = 0. However, the optimization problem becomes a 
constrained one which requires additional complexity to solve. 
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The approach used in [166] solves for u and g simultaneously. Its derivation 
starts by treating the term Vu/\Vu\ in the primal Euler-Lagrange equation as an 
independent variable g, leading to the system: 

- V . g + A(tz - / ) = 0, g\Vu\(3 -Vu = 0. 

The above system of nonlinear equations is solved by Newton's method and 
quadratic convergence rate is almost always achieved. In the Newton updates, 
one may combine the two equations to eliminate the need to update g, thus the 
cost per iteration is as cheap as the fixed point iteration (2.17). Empirically, this 
primal-dual method is much more robust than applying Newton's method directly 
to the primal problem in u only. 

In [160], Chambolle devised an efficient algorithm solely based on the dual 
formulation (2.18). By carefully looking at the Euler-Lagrange equation for 
(2.18) and eliminating the associated Lagrange multipliers, one arrives at solv­
ing / / (g) - | / / (g ) | = 0 where H{g) = - V ( / - A~^V • g) is the negative of 
the gradient of the primal variable u. The update formula for g used in [160] is a 
simple relaxation g'̂ "̂ ^ = f-ft|///g^^)| ^^^^e r > 0 is chosen to be small enough 
so that the iteration converges. 



Chapters 

PDE-Based Image and Surface 
Inpainting 
M. Bertalmio, V. Caselles, G. Haro, and G. Sapiro 

Abstract 
Inpainting, the technique of modifying an image in an undetectable form, 

is as ancient as art itself The goals and applications of inpainting are nu­
merous, from the restoration of damaged paintings, photographs and films, 
to the removal of selected undesirable objects. This chapter is intended to 
present an overview of PDE based image inpainting algorithms, with em­
phasis in models developed by the authors. These models are based on the 
propagation of information along the image isophotes and on the minimiza­
tion of an energy functional which follows a relaxation of the Elastica model. 
This last variational formulation can be easily extended to 3D to fill holes in 
surfaces, a problem closely related to image inpainting. Basic PDE-based ap­
proaches to inpainting share the shortcoming that they cannot restore texture, 
so combinations of these algorithms with texture synthesis techniques are 
also discussed. Some results are shown for applications such as removal of 
text, restoration of scratched photographs, removal of selected objects and re­
construction of 3D surfaces with holes. Other recent approaches to the image 
inpainting problem are also briefly reviewed. 

3.1 Introduction 

The modification of images in a way that is non-detectable for an observer who 
does not know the original image is a practice as old as artistic creation itself. 
Medieval artwork started to be restored as early as the Renaissance, the motives 
being often as much to bring medieval pictures "up to date" as to fill in any gaps 
[298, 852]. This practice is called retouching or inpainting. The object of inpaint­
ing is to reconstitute the missing or damaged portions of the work, in order to 
make it more legible and to restore its unity [298]. 

The need to retouch the image in an unobtrusive way extended naturally from 
paintings to photography and film. The purposes remain the same: to revert dete-
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rioration (e.g., cracks in photographs or scratches and dust spots in film), or to add 
or remove elements (e.g., removal of stamped date and red-eye from photographs, 
the infamous "airbrushing" of political enemies [475]). 

Digital techniques are starting to be a widespread way of performing inpainting, 
ranging from attempts to fully automatic detection and removal of scratches in 
film [484, 485, 486], all the way to software tools that allow a sophisticated but 
mostly manual process. 

This article is intended to be an overview of PDE based image inpainting al­
gorithms, with emphasis in those models which were developed by the authors 
and that motivated a significant amount of effort in the area (some of the major 
contributions by other groups in image inpainting are briefly reviewed as well). 

We should first note that classical image denoising algorithms do not apply to 
image inpainting. In common image enhancement applications, the pixels contain 
both information about the real data and the noise (e.g., image plus noise for 
additive noise), while in image inpainting, there is no significant information in 
the region to be inpainted. The information is mainly in the regions surrounding 
the areas to be inpainted. There is then a need to develop specific techniques to 
address these problems. 

Mainly three groups of works can be found in the literature related to digital 
inpainting. The first one deals with the restoration of films, the second one is 
related to texture synthesis, and the third one is related to what we would call 
geometric inpainting. 

Kokaram et al. [484,485, 486] use motion estimation and autoregressive mod­
els to interpolate losses in films from adjacent frames. The basic idea is to copy 
into the gap the right pixels from neighboring frames. The technique can not be 
applied to still images or to films where the regions to be inpainted span many 
frames. 

There are many works on texture synthesis, of which the most notable are based 
on Markov Random Fields after the pioneering work of Efros and Leung [297]. 
These techniques synthesize texture which is both stationary and local [869]. In 
[297] a new texture is incrementally synthesized by considering similar neighbor­
hoods in the sample texture. Igehy and Pereira [416] replace image regions with 
synthesized texture [392, 745] according to a given mask. Ashikhmin [32] adds 
the constraint that the synthesized texture match a sample image. This yields the 
effect of rendering a given image with the texture appearance of a training tex­
ture. Efros and Freeman [296] introduce a simple and effective texture synthesis 
technique that synthesizes a new texture by stitching together blocks of existing 
sample texture. The results depend on the size of a block which is a parame­
ter tuned by the user that varies according to the texture properties. Hirani and 
Totsuka [400] combine frequency and spatial domain information in order to fill a 
given region with a user-selected texture. We will later show how texture synthesis 
can be combined with PDE-based inpainting techniques to obtain state-of-the-art 
algorithms. 

Finally, let us mention the geometric approaches used for filling-in the missing 
information in a region of the image. A pioneering contribution in the recovery 
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of plane image geometry is due to D. Mumford, M. Nitzberg and T. Shiota [604]. 
They were not directly concerned with the problem of recovering the missing 
parts of the image, instead, they addressed the problem of segmenting the image 
into objects which should be ordered according to their depth in the scene. The 
segmentation functional should be able to find which are the occluding and the 
occluded objects while finding the occluded boundaries. For that they relied on 
a basic principle of Gestalt's psychology: our visual system is able to complete 
partially occluded boundaries and the completion tends to respect the principle 
of good continuation [453]. When an object occludes another the occluding and 
occluded boundaries form a particular configuration, called T-junction, which is 
the point where the visible part of the boundary of the occluded object terminates. 
Then our visual system smoothly continues the occluded boundary between T-
junctions. In [604], the authors proposed an energy functional to segment a scene 
which took into account the depth of the objects in the scene and the energy of 
the occluded boundaries between T-junctions. They assumed that the completion 
curves should be as short as possible and should respect the principle of good 
(smooth) continuation. Thus, to define the energy of the missing curve they had 
to give a mathematical formulation of the above principles. Given two T-junction 
points p and q and the tangents Tp and Tq to the respective terminating edges, they 
proposed as smooth continuation curve Euler's elastica, i.e., the curve minimizing 
the energy 

f {a-{-pK^)ds (3.1) 
Jc 

where the minimum is taken among all curves C joining p and q with tangents Tp 
and Tq, respectively, K denotes the curvature of C, ds its arc length, and a, /? are 
positive constants. Let us mention that Euler's elastica has been frequently used 
in computer vision ([406, 511, 735,795,796, 821, 892, 893, 891]) and a beautiful 
account on it can be found in [589]. 

Inspired by the elastica, Masnou and Morel [551, 553, 552] proposed a 
variational formulation for the recovery of the missing parts of a grey level two-
dimensional image and they referred to this interpolation process as disocclusion, 
since the missing parts can be considered as occlusions hiding the part of the 
image we want to recover. Their algorithm performs filling-in by joining with 
geodesic curves the points of the isophotes arriving at the boundary of the region 
to be inpainted. 

Mumford's work on the Elastica Model and Masnou and Morel's contribu­
tion inspired Bertalmio, Sapiro, Caselles and Ballester [79] to propose an edge 
propagation PDE for the Image Inpainting formulation. Replicating basic art con­
servators techniques, a third order PDE propagates the level lines arriving at the 
missing region, and the completion tends to respect the principle of good con­
tinuation. Bertalmio , Bertozzi and Sapiro [77] showed the connection of this 
equation with Navier-Stokes equations, as well as a parallel among Image Pro­
cessing and Fluid Dynamics quantities. On the other hand, Ballester, Bertalmio, 
Caselles, Sapiro and Verdera [46] introduce a relaxation of the Elastica functional 
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which then can be minimized with a system of coupled PDE's: this is the first 
variational approach to the inpainting problem that complies with thQ principle of 
good continuation and is topologically independent. 

The elastica has inspired most variational approaches to geometric image in-
painting [46, 48, 47, 167, 544] and we shall discuss in detail some of them in 
Section 3.3. In particular, the approach in [47, 840] can be used for inpainting 
3D images and surface hole reconstruction. Some other PDE methods for surface 
hole reconstruction will be discussed in Section 3.4. 

This article is organized as follows. Section 3.2 discusses inpainting by prop­
agation of information: PDE methods that propagate image quantities and do not 
expUcitly minimize any functional. Section 3.3 discusses variational methods for 
inpainting: the inpainting problem is solved as the minimization of an energy 
functional. In Section 3.4 we show how can we use the Laplace and AMLE 
(Absolutely Minimizing Lipschitz Extension) interpolators in surface hole re­
construction. None of these purely-PDE-based methods can restore texture, so in 
Section 3.5 we discuss how to adapt those algorithms to deal with texture. Finally, 
in Section 3.6 we briefly mention some other recent works on the inpainting prob­
lem. We finish with Appendix 3.8 where we collect some notation and definitions 
used in the text. 

3.2 Inpainting by Propagation of Information 

3.2.1 Image Inpainting 

In [79], Bertalmio, Sapiro, Caselles and Ballester propose to translate into math­
ematical form the most basic techniques used by art conservators and restorators 
to inpaint, introducing also the art term 'inpainting' to the Image Processing and 
Graphics community. 

Conservators at the Minneapolis Institute of Arts were consulted for this work 
and made it clear that inpainting is a very subjective procedure, different for each 
work of art and for each professional. There is no such thing as "the" way to 
solve the problem, but the underlying methodology is as follows: (1.) The global 
picture determines how to fill in the gap, the purpose of inpainting being to restore 
the unity of the work; (2.) The structure of the area surrounding the gap Q, is 
continued into it, contour lines are drawn via the prolongation of those arriving 
at the gap boundary dVl; (3.) The different regions inside H, as defined by the 
contour lines, are filled with color, matching those of dVt\ and (4.). The small 
details are painted (e.g. little white spots on an otherwise uniformly blue sky): in 
other words, "texture" is added. 

The algorithm in [79] simultaneously, and iteratively, performs the steps (2.) 
and (3.) above. The gap H shrinks progressively by prolonging inward, in a 
smooth way, the lines arriving at the gap boundary dVt. The image beyond dO. is 
not taken into account, and texture is not dealt with (yet) with this first technique. 
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The following exposition considers the grayscale case; for color images, the 
authors apply their method to each of the three channels separately, but using a 
color model like CIE - Lab instead of RGB, to avoid color artifacts. 

The digital inpainting procedure will construct a family of images u{i,j, n) : 
[0, M] X [0, Â ] X W -^ iR such that u{i, j , 0) = ^0(7:, j) and limn-^00 u{i, j , n) == 
UR{hJ)i where uo(i,j) is the image to inpaint and UR{i,j) is the output of the 
algorithm (inpainted image). 

Any general algorithm of that form can be written as: 

^"-"'(i , j ) - u^iij) + A t < ( ^ j ) , V(z, j ) G n (3.2) 

where the superindex n denotes the inpainting "time" n, {i,j) are the pixel coor­
dinates, A^ is the rate of improvement and u^{i,j) stands for the update of the 
image u^(i,j). Note that the evolution equation runs only inside ft, the region to 
be inpainted. 

To design the update u'i{i,j), the authors call L^{i,j) the information that 

needs to be propagated into the gap, and N'^{i,j) the propagation direction: 

u^(i,j)=VL»{i,j)-N"{i,j), (3.3) 

With equation (3.3), they estimate the information L^{i,j) of the image and 
compute its change along the N'^ direction. Note that when the algorithm con­
verges, u^'^^{i,j) = u^{i,3) and from (3.2) and (3.3) we have that VL'^{i,j) • 

N'^{i, j) = 0, meaning exactly that the information L has been propagated in the 
—> 

direction N. 
Bearing in mind that the goal is to propagate contours and that the Laplacian has 

been frequently used as an edge detector, the authors choose for L^{i, j) a mono­
tone increasing function of the Laplacian, the most simple one being the Laplacian 
itself. Thus, the proposed choice is L'^{i,j) = Au^(z, j ) . Other edge detectors 
like Canny's edge detector which leads to the choice L^ = {V'^u'^^Vu'^), Vu'^) 
could be used. 

For the field N, the natural choice is the isophotes directions. This is a boot­
strapping problem: having the isophotes directions inside Q is equivalent to 
having the inpainted image itself, since we can easily recover the gray level image 
from its isophote direction field (see [460],[639]). They use then a time varying 
estimation of the isophotes direction field: N{i,j, n) = V-^u'^{i,j) 

In terms of a continuous process, the inpainting procedure can be expressed as 
a third-order PDE: 

du{x,y,t) _^f^^^f^ .̂ ^̂ ^ _̂L 
dt 

V{Au{x,y,t)) 'V^u{x,y,t))y{x,y) G n (3.4) 

To ensure a correct evolution of the direction field, a diffusion process is 
interleaved with the image inpainting process described above. This diffusion cor-
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Figure 3.1. Restoration of an old photograph. 
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XI y XI I , e l 

Figure 3.2. Removal of superimposed text. 

responds to the periodical curving of lines to avoid them from crossing each other, 
as art conservators do. The authors use anisotropic diffusion, [15, 642], in order 
to achieve this goal without losing sharpness in the reconstruction: 

— {x,y,i) = K{x,y,t)\Vu(x,y,t)\y{x,y) G 17 (3.5) 

where K is the Euclidean curvature of the isophotes ofu. 
For the numerical implementation, a forward-time upwind scheme is used for 

(3.4) and a forward-time centered-space scheme for (3.5); see [618, 695] for de­
tails . To speed up the process, a non-linear scaHng is applied to ut in (3.4): 
Ut = sign(itt) \ut\^. With a time step Ait of 0.1, one step of anisotropic diffu­
sion is run every fifteen steps of inpainting. Convergence is typically achieved 
after a few thousands iterations, depending on the size of U and the initial condi­
tion inside it. The process may be sped-up by the use of multi-resolution for wide 
gaps, and by pre-processing by running a few steps of the Heat Equation inside Vt 
to get a good initial condition: 

•^(•'̂ ,2/,0 = ^u[x,y,t)y{x,y) e ft (3.6) 

See examples in figures 3.1 and 3.2. In both cases, the algorithm is supplied 
only with the image to restore and a binary mask that specifies the region to re­
store. In figure 3.1, a deteriorated photograph is restored, the mask having been 
manually selected with a simple paintbrush-like program by a non-specialist. 
Observe that details in the nose and right eye of the middle girl could not be 
completely restored. This is in part due to the fact that the mask covers most of 
the relevant information, and there is not much to be done without the use of high 
level prior information (e.g., the fact that it is an eye). These minor errors can be 
corrected by the manual procedures mentioned in the introduction, and still the 
overall inpainting time would be reduced by orders of magnitude. 

Figure 3.2 shows a color example: results are sharp and without color artifacts. 
This image is very ill-suited for texture synthesis algorithms, since the image gap 
n covers most of the image, which also has a very diverse background. 

The technique presented above does not require any user intervention, once the 
region to be inpainted has been selected. The algorithm is able to simultaneously 
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fill regions surrounded by different backgrounds, without the user specifying 
"what to put where." No assumptions on the topology of the region to be in-
painted, or on the simplicity of the image, are made. The algorithm is devised 
for inpainting in structured regions (e.g., regions crossing through boundaries), 
though it is not devised to reproduce textured areas. 

3.2.2 Navier-Stokes Inpainting 

In [77], the authors propose an approach that uses ideas from classical fluid dy­
namics to propagate isophote lines continuously from the exterior into the region 
to be inpainted. The main idea is to think of the image intensity as a 'stream 
function' for a two-dimensional incompressible flow. The Laplacian of the im­
age intensity plays the role of the vorticity of the fluid; it is transported into the 
region to be inpainted by a vector field defined by the stream function. The result­
ing algorithm is designed to continue isophotes while matching gradient vectors 
at the boundary of the inpainting region. The method is directly based on the 
Navier-Stokes equations for fluid dynamics, which has the immediate advantage 
of well-developed theoretical and numerical results. Existence and stability of 
the solution to the proposed algorithm follow from the Navier-Stokes theory, and 
the implementation is based on numerical methods used by the fluid dynamics 
community. 

In [77], the authors start by re-introducing the inpainting method of [79]: 

ut = V^u • VAiA (3.7) 

and noting that its dynamics are those of a transport equation that convects the 
image intensity u along level curves of the smoothness, Au. This can be seen 
by noting that (3.7) is equivalent to Du/Dt = 0 where D/Dt is the material 
derivative d/dt -f t; • V for the velocity field v = V-^Au. In particular u is 
convected by the velocity field v which is in the direction of level curves of the 
smoothness Au. 

Next, the authors introduce an analogy to transport of vorticity in incompress­
ible fluids. Incompressible Newtonian fluids are governed by the Navier-Stokes 
equations, which couple the velocity vector field t; to a scalar pressure p [195]: 

Vt-^V'Vv = -Vp-\-iyV^v, V-v = 0. (3.8) 

In two space dimensions, the divergence free velocity field v possesses a stream 
function ^ satisfying V"*-^ = v. In addition, in 2D the vorticity, LJ = V x v, 
satisfies a very simple advection diffusion equation, which can be computed by 
taking the curl of the first equation in (3.8) and using some basic facts about the 
geometry in 2D: 

uJt-{-V'Vuj = lyV^uj. (3.9) 
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Note here that in 2D the vorticity is a scalar quantity that is related to the stream 
function through the smoothness or Laplacian operator, A ^ = a;. In the absence 
of viscosity «/ = 0, we obtain the Euler equations for inviscid flow. 

Both the inviscid and viscous problems, with appropriate boundary conditions, 
are globally well-posed in two space dimensions. Solutions exist for any smooth 
initial condition and they depend continuously on the initial and boundary data 
[500]. 

In terms of the stream function, equation (3.9) implies that steady state inviscid 
flows must satisfy 

V - ^ ^ V A ^ = 0 (3.10) 

which says that the Laplacian of the stream function, and hence the vorticity, 
must have the same level curves as the stream function. The analogy to image 
inpainting in the previous section is now clear: the stream function for inviscid 
fluids in 2D satisfies the same equation as the steady state image intensity equation 
(3.7). 

The authors then procceed to present a 'Navier-Stokes' based method for image 
inpainting. In this method the fluid dynamic quantities have the following parallel 
to quantities in the inpainting method: 

Navier-Stokes 
stream function ^ 
fluid velocity v = V-^^ 
vorticity a; = — A^ 

Image inpainting 
Image intensity u 
isophote direction V-^u 
smoothness w = Au 

where they denote by w the smoothness Au of the image intensity. Instead of solv­
ing a transport equation for u as in (3.7), they solve a vorticity transport equation 
forw: 

dw/dt -]-V'S/w = uV ' {g{\Vw\)\/w), (3.11) 

where the function g allows for anisotropic diffusion of the smoothness w. 
The image intensity u which defines the velocity field v = V-^n in (3.11) is 

recovered by solving simultaneously the Poisson problem 

Au = w, u\dQ=uo> (3-12) 

For g — 1, the direct numerical solution of of (3.11-3.12) is a classical way 
to solve both the dynamic fluid equations and to evolve the dynamics towards a 
steady state solution [644]. 

When using any PDE-based method to do inpainting, the issue of boundary 
conditions becomes very important. In order to produce a result which, to the 
eye, does not distiguish where the inpainting has taken place, we must at the 
very least propagate both the image intensity and direction of the isophote lines 
continuously into the inpainting region. 

This means that any PDE-based method involving the image intensity u must 
enforce Dirichlet (fixed a) boundary conditions as well as a condition on the di-
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rection of Vu on the boundary. Immediately we see that this poses a problem 
for lower-order PDE-based methods. Indeed, any first or second order PDE (in­
cluding anisotropic diffusion) for the scalar u could typically only enforce one of 
these boundary conditions, the result being an inpainting with discontinuities in 
the slope of the isophote lines, or a method with a jump in u itself on the bound­
ary [172]. From a mathematical point of view, to fix this, one can either go to a 
higher order equation for u, as in [79], that requires more boundary conditions, or 
consider a vector evolution for Vu, which is the idea of the Navier-Stokes method. 

The Navier-Stokes analogy guarantees, in a very natural way, continuiuty of the 
image intensity function u and its isophote directions across the boundary of the 
inpainting region. First, consider a solution of the Navier-Stokes equation (3.8) 
in primitive variables form satisfying the classical no-slip condition ?; = 0 on the 
boundary dCt. This condition guarantees two features: (a) that the stream function 
^ must be constant on the boundary, since the boundary is trivially a streamline 
of the flow; (b) that the direction of the fluid velocity v is always tangent to the 
boundary. 

A general form of the no-slip boundary condition, for which well-posedness is 
known, is to prescribe the velocity vector t* == VQ on the boundary. This would be 
the natural choice for a moving boundary. Specifying the velocity on the boundary 
is equivalent to specifying both the normal and tangential derivatives of the stream 
function ^ on the boundary, since v = V ^ ^ . However, specifying the tangential 
derivative of ^ determines ^ on the boundary up to a constant of integration, by 
simply integrating around the boundary with respect to its arc length. Similarly 
this information determines the direction of flow on the boundary. The result is 
that if we solve the Navier-Stokes equations with v fixed on the boundary, we 
obtain a solution with a stream function ^ and velocity field v both of which 
are continuous up to the boundary. For the Navier-Stokes inpainting method, we 
inherit the continuity across the boundary. For example, suppose we fix V^u 
on the boundary. Then solving the Navier-Stokes inpainting equation with these 
boundary conditions will not only result in continuous isophotes, but also will 
produce an image intensity function that is continuous across dO.. 

As for well-posedness and uniqueness of solutions, the authors note that with­
out the presence of viscosity in the method there is not a unique steady-state 
solution. They expect that Navier-Stokes based inpainting may inherit some of 
the stability and uniqueness issues known for incompressible fluids, although the 
effect of anisotropic diffusion is not clear. 

3.3 Variational Models for Filling-In 

This section is a review of variational models for filling-in. We start with the 
elastica-based disocclusion model introduced by Masnou and Morel [551, 553]. 
Then we present the filling-in approach by joint interpolation of vector fields and 
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gray levels proposed by Ballester et al. in [46, 48, 47]. The connections of this 
model with T. Chan and J. Shen approach [167] are then considered. 

3.3.1 Elastica-based Reconstruction of Level Lines 

We review the main assumptions of Masnou's approach to disocclusion [551, 
553]. An image is usually modeled as a function defined in a bounded domain 
D C IZ^ (typically A/" = 2 for usual snapshots. A/" == 3 for medical images or 
movies) with values in 7& (/c = 1 for grey level images, or A: — 3 for color 
images). For simpHcity, we shall consider only the case of grey level images. 
Any real image is determined in a unique way by its upper (or lower) level sets 
Xxu := {x e D : u{x) > A} (X'^u := {x e D : u{x) < A}). Indeed we have 
the reconstruction formula 

u{x) = sup{A e R:x e Xxu}. (3.13) 

The basic postulate of Mathematical Morphology prescribes that the geometric 
information of the image u is contained in the family of its level sets [371, 723], 
or in a more local formulation, in the family of connected components of the level 
sets ofu [154, 723, 726]. We shall refer to the family of connected components 
of the upper level sets of u as the topographic map of u. 

In the case that it is a function of bounded variation in D C 7^^, i.e., 
u e BV{D) (see Appendix and [19, 301, 926]), its topographic map has a de­
scription in terms of Jordan curves [18]. With an adequate definition of connected 
components, the essential boundary of a connected component of a rectifiable 
subset of 7^^ consists, modulo an H^ null set, of an exterior Jordan curve and an 
at most countable family of interior Jordan curves which may touch in a set of 
7^^-null Hausdorff measure [18]. Since almost all level sets Xxu of a. function u 
of bounded variation are rectifiable sets, its essential boundary, d*Xxu, consists 
of a family of Jordan curves called the level lines oiu. Thus, the topographic map 
of li can be described in terms of Jordan curves. In this case, the monotone family 
of upper level sets Xxu suffices to have the reconstruction formula (3.13) which 
holds almost everywhere [371]. 

Let D be a square in R? and O be an open bounded subset of D with Lipschitz 
continuous boundary. Suppose that we are given an image UQ : D\Vt —> [a, 6], 
0 < a < 6. Using the information of ?xo on Z) \n we want to reconstruct the image 
UQ inside fi. We shall call Vt the hole or gap. We shall assume that the function 
1̂0 is a function of bounded variation in £> \ H. Then the topographic structure 
of the image UQ outside (l is given by a family of Jordan curves. Generically, by 
slightly increasing the hole, we may assume that, for almost all levels A, the level 
lines of XXUQ transversally intersect the boundary of the hole in a finite number 
of points [551]. Let us call A C 7?, the family of such levels. As formulated by 
Masnou [551, 553, 552], the djsocclusion problem consists in reconstructing the 
topographic map of lio inside 17. Given A G A and two points p,q G Xxu^f} d(l 
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whose tangent vector at the level line XXUQ is Tp and Tq, respectively, the optimal 
completion curve proposed in [551, 553] is a curve F contained in H minimizing 
the criterion 

J{a + P\K\ndn' + (rp,rr(p)) + ( r „ r r ( ^ ) ) (3.14) 

where K, denotes the curvature of F, rr(p) and rr{q)) denote the tangents to F 
at the points p and q, respectively, and (rp,rr(p)), (Tg,rr(g)) denote the angle 
formed by the vectors Tp and rr{p), and, respectively, for q. Here a, p are positive 
constants, and p > I. The optimal disocclusion is obtained by minimizing the 
energy functional 

/ " y2([i^ + Mndn'^{TpMp))^{rq,Tr{q)))dX (3.15) 

where F \ denotes the family of completion curves associated to the level set 
XXUQ. AS we noted above, the family FA is generically finite, thus the sum in 
(3.15) is generically finite. In [551, 553] the authors proved that for each p > I 
there is an optimal disocclusion in O and proposed an algorithm based on dynamic 
programming to find optimal pairings between compatible points in dXxuo n dfl 
forp = 1, curves which are straight lines, thus finding in this case the minimum of 
(3.15) [551, 552]. In [20] the authors proposed a slight variation of the disocclu­
sion energy fiinctional (3.15). First, they observed that by computing the criterion 
/p (a -f P\K,\P)d7i^ not only on the completion curve but also in a small piece of 
the associated level line outside 0 , the criterion (3.15) can be written as 

/ y " if {oc^-p\K\^)dn^)d\ (3.16) 
7-00 r t ^ . V r ^ 

where now the curves in Fx are union of a completion curve and a piece of level 
line of lio in n \ n for a domain H D O. This requires that the level lines of UQ 
are essentially in ly^'^ in H \ il. Then, at least for C^ functions u, (3.16) can be 
written as 

/ \Vu\[a^f3 
JQ 

div 
|V«| 

p 

)dx (3.17) 

with the convention that the integrand is 0 when \Vu\ = 0. In [20], the authors 
considered this functional when the image domain D and the hole n are subsets in 
7^^ whit N >2 and they studied the relaxed functional, proving that it coincides 
with 

/ / {a + P\Hiu>t]\ndn''-Ut (3.18) 
JR Jd[u>t] 

for functions u G C'^{fl), N > 2, p > N - 1, and ^[u>t] denotes the mean 
curvature of fn > t\. 
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Figure 3.3. The hole and the band 

3.3.2 Joint Interpolation of Vector Fields and Gray Levels 

In [46, 48, 47], Ballester et al. proposed to fill-in the hole H using both the gray 
level and the vector field of tangents (or normals) to the level lines of the image 
outside the hole. Let D be_a hyperrectangle in IZ^, N > 2, which represents the 
image domain, and let H J l be two open bounded domains in IZ^ with Lipschitz 

boundary. Suppose that Q. m ft <& D (for simplicity, we assume that ft does not 
touch the boundary of the image domain D). Suppose that the image UQ is given 

in £> \ n . Let B := ft\ft. The set B will be called the band around fl (see Figure 
3.3). 

To fill-in the hole ft we shall use the information ofuo contained in B, mainly 
the gray level and the vector field of normals (or tangents) to^the level lines of-UQ 
in 5 . We attempt to continue the level sets ofuo in B inside ft taking into account 
the principle of good continuation. Let ^o be the vector field of directions of the 
gradient of UQ on D \ Q, i.e., ^o is a vector field with values in 7^^ satisfying 
9o{x) • Duo{x) = \Duo{x)\ and |^o(^)| < 1. We shall assume that ^o(^) has a 
trace on dft. 

We pose the image disocclusion problem in the following form: Can we extend 
(in a reasonable way) the pair of functions {UQ, OQ) from the band O \ (7 to a pair 
of functions (u, 6) defined inside ft ? Of course, we will have to precise what we 
mean by a reasonable way. 

The data UQ is given on the band B and we should constrain the solution u to 
be near the data on B, The vector field 0 should satisfy 6 • v^ z=z Q^ . if^^\0\ < l 
on ft and should be related to u by the constraint 0 • Du = \Du\, i.e., we should 
impose that 9 is related to the vector field of directions of the gradient ofu. The 
condition \0{x)\ < 1 should be interpreted as a relaxation of this. Indeed, it may 
happen that 0{x) =0 (flat regions) and then we cannot normalize the vector field 
to a unit vector (the ideal case would be that 6 = m^\^ ^ being a smooth function 
with Du{x) ^ 0 for all x e ft). Finally, we should impose that the vector field 
9o in D \ ft is smoothly continued by 9 inside ft. Note that if 9 represents the 
directions of the normals to the level lines ofu, i.e., of the hypersurfaces u{x) = 
X,Xe1Z, then div(^) represents its mean curvature. We shall impose the smooth 
continuation of the levels lines of uo inside ft by requiring that div (9) e L^ift), 
p> 1. 
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Interpreting the elastica functional in this framework, we propose to minimize 
the functional 

Minimize / \dw{0)\P{-f -\- p\VK ^ u\)dx 
JQ 

\e\ < 1, \Du\-o Du^oinn (̂ -̂ ^̂  
\u\ <M 

where p > 1,7 > 0, /? > 0, po = Oo'i/^,K denotes a regularizing kernel of class 
C^ such that K{x) > 0 a.e., M = sup^,^^ |uo(x)|, u^ and denotes the outer unit 
normal to H. The convolution of Du with the kernel A' in (3.19) is necessary to 
be able to prove the existence of a minimum of (3.19). 

The functional can be interpreted as a formulation of the principle of good 
continuation and amodal completion as formulated in the Gestalt's theory of 
vision. 

Comments on model (3.19). 
A) Could we fill-in the hole without the band? To discuss this suppose that we 
are given the image of Figure 3.4.a, which is a gray band on a black background 
partially occluded by a square ft. We suppose that the sides of the square hole 
0 are orthogonal to the level lines of the original injage. In these conditions, the 
normal component of the vector field ^0 outside H is null at dCl. Thus if the 
boundary data is just ^0 * ^ ^ I ^ Q , we would have that <̂o • ^ ^ I ^ Q = 0. In particular, 
the vector field ^ = 0 satisfies this condition. If we are not able to propagate 9 
inside Q. this may become an unpleasant situation, since this would mean that we 
do no propagate the values ofu at the boundary. If we write the fiinctional (3.23) 
with ^ = 0, a = 1, it turns out to be the Total Variation [695]. The decision of 
extending the gray band or filling-in the hole with the black gray level would be 
taken as a function of the perimeter of the discontinuities of the function in the 
hole. Then the result of interpolating Figure 3.4.a, using Total Variation would 
be that of Figure 3.4.b, and not the one in Figure 3.4.c, because the interpolating 
lines in Figure 3.4.b, are shorter than the ones in Figure 3.4.c. To overcome this 
situation we introduce the band around the hole. The introduction of the band 
permits us to effectively incorporate in the functional the information given by 
the data UQ and the vector field 0 outside O. In Figure 3.4.b, we display the result 
of the interpolation with ^ = 0 on H. In Figure 3.4.c, we display the result of the 
interpolation using (3.23), which takes into account the band B and computes the 
vector field OinQ. 

In practice, we suppose that only a narrow band around the hole influences 
what happens inside the hole, even if, in principle, it could be extended to all the 
known part of the image. 
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Figure 3.4. a) Left: a strip with a hole, b) Middle: image disocclusion obtained using Total 
Variation, c) Right: Image disocclusion obtained using functional (3.23). 

B) If Â  = 2 and u is the characteristic function of the region enclosed by a 
smooth (C^) curve C then the terms 

p f \dW{e)\P\Du\-{-a f \Du\ 
Jn Jn 

(3.20) 

can be written as JQ{OC H- P\K\P)ds, where K is the Euclidean curvature (of the 
level-sets). If p = 2, this coincides with Euler's elastica (3.1). Euler's elastica 
(3.1) was proposed in [604] as a technique for removing occlusions with the goal 
of image segmentation, since this criterion yields smooth, short, and not too curvy 
curves. In terms of characteristic functions, Euler's elastica can be written as 

/ |V.|(a + /. | . . .(i |^) (3.21) 

In [70], it was shown that the elastica functional is not lower semicontinuous. As 
shown in [20], the functional proposed by Masnou and Morel [551, 552, 553] can 
be interpreted as a relaxation of it, since it integrates functionals like the elastica 
along the level lines of the function u. Our functional can be also considered as 
a relaxed formulation of the energy of the elastica. For that, we introduced 0 as 
a independent variable, and we tried to couple it to u by imposing that 0 • Du = 
\Du\. Finally, let us say that to be able to prove the existence of a minimum for 
(3.23) we have convolved the Du term of (3.20). This permits to avoid some of 
the mathematical difficulties involved in the study of (3.21). 

C) Both coefficients 7 and 0 are required to be > 0. The positivity of 7 gives us an 
LP bound on div(^) which implies the regularity of the level lines ofu ([554,47]). 
If we do not take P > 0,0 = 0 a.e. on B (or on ft) in the image of Figure 3.4.a 
(since ^ = 0 except on some curves) and the term J^ \diY{9)\Pdx would produce 
a null value since div(^) = 0. If/^ > 0 we take into account the contribution of 
a power of the curvature on the level line corresponding to the boundary of the 
object. 

D) In practice, functional (3.23) is used to interpolate shapes, i.e., to interpolate 
level sets. The image is decomposed into upper level sets [UQ > A], which are 
interpolated using (3.23) to produce the level sets Xxu of a function u, which is 
reconstructed inside Q. by using the reconstruction formula (3.13). To guarantee 
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I I I I 
i 

Figure 3.5. a) Left: a double cross with holes, b) Right: reconstructed image using func­
tional (3.23). Observe that due to our choice of upper level sets to decompose and 
reconstruct the image, the white bar goes above the black ones. 

that the reconstructed level sets correspond to the level sets of a function u, they 
should satisfy that Xx^iu C Xxu. In practice, we force our solution to satisfy 
this property. 

Functional (3.23) could be used to interpolate functions. But, discontinuities of 
the image have a contribution to the energy which is proportional to the jump. This 
gives different weights to discontinuities of different sizes and, as a consequence, 
they are not treated in the same manner. When taking level sets, we treat all shapes 
equally, and the parameters of the functional weight geometric quantities (like 
length, total curvature) and decide which interpolation is taken as a function of 
them. This approach is less diffusive than directly interpolating the gray levels. A 
numerical implementation of (3.19) is possible using the scheme in [46]. 

E) The choice of decomposing the image UQ into upper level sets, interpolating 
them and reconstructing the function u, introduces a lack of symmetry (of upper 
level sets versus lower level sets). This can be seen in Figure 3.5. Figure 3.5.a 
displays the image to be interpolated. The choice we made gives Figure 3.5.b as 
solution, favoring that the object whose level is 210 goes above the object whose 
level is 0. But, in that case, the "true" information is lacking and we selected one 
of the possible reasonable solutions. 

3.3 J A Variant and Mathematical Results 

For the purposes of mathematical analysis and comparison with the implemen­
tation in [167], we write the boundary conditions in (3.19) in a relaxed way. 
In particular, the condition u = U() m B will add the term j^\u - UQ\^ dx in 
(3.19). To be able to handle noisy data in B and to include the boundary condition 
0 ' i^^\dn = ^0 in a variational framework, we add the term / ^ \Du\ - J^^ gou, 

Before continuing, let us make precise the functional analytic model for u and 
0. We assume that ft is a domain of class C^. We assume that UQ e BV{D \ Q,), 
and OQ : D\Q. —> 1Z^ is the vector field of directions of the gradient of î o, i.e., 
a vector field OQ eL'^iDX 0 , IZ^), such that |l9o| < 1 and 

dWOo e LP{B), Oo ' Duo = \Duol (3.22) 
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where the last identity is understood in the sense of measures in B (therefore, 
a.e.). 

Let us denote by ^p(n, B, OQ) the space of couples {u, 6) where u G BV{Q), 
<9 is a bounded measurable vector field from ^ to i?^ , |(9| < 1, div ((9) G LP{n), 
e'Du= \Dul U\B e L^{B), O'U^ =goon dQ. 

If {u, 0) e Sp{n, J5,6>o) we define 

Ep{u,e) - / \diY{0)\P{-f-h(3\\/K^u\)dx 
Jn 

-V a I \Du\ — a I g^u + A / \u — UQ\^ dx 
JQ Jan JB 

(3.23) 

where 7, a, A > 0, /̂  > 0, p > 1, g > 1. 

We propose to interpolate the pair (0, u) in H by solving the minimization 
problem 

Minimize £'p(u,6>), {u, 9) e Spin, B, OQ) (3.24) 

Theorem, Assume that sup^^QQ \9{^)\ < 1- ffp > 1> Q' > 1> 7,0:, A > 0, and 
(3 >0, then there is a minimum (n, 6) G Sp[Vl^ B, Oo)for the problem (3.24). 

The case p = 1 is is particularly interesting, in that case we should consider 
div ^ to be a Radon measure and we do not know if an existence theorem holds in 
this case. 

The assumption || 5̂ 0! 100 < 1 does not permit the level lines of the topographic 
map of the image to be tangent to the boundary of the hole Ct. To ensure it, we may 
slightly change the topographic map by replacing the level lines which are near to 
the tangent one by a constant gray level, and this gives us more freedom to choose 
the vector field ^o- On the other hand, the assumption ||po || 00 < 1 permits to prove 
the convergence (after subsequence extraction) of the minima of the fixnctionals 

Minimize / Idiv f ^ ) | {j-^ p\VK ^u\)dx+ 

+ a / \Du\ -a gou + X \u- uol'^dx (3.25) 
JQ JdQ JB 

That is, the minimizers of (3.25) converge (modulo a subsequence) to a minimum 
of (3.24) as e —> 0+. For that, we proved in [47] the existence of minimizers for 
both problems and we studied the two operators div (j^^ 1 and div ( > ^^^ ^ J 

which appear in (3.23) and (3.25), respectively. Notice that the convergence of 
minima of (3.25) to minima of (3.24) establishes a connection between the nu­
merical approach of T. Chan and J Shen [167] which is based on the direct 
minimization of (3.25) and ours. Let us also mention that the authors of [167] 
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Figure 3.6. Left: Four circles. Right: Reconstructed image. 

compared model (3.25) with previous curvature driven diffusion and Total Varia­
tion based inpaintings [172, 171]. Their analysis in [172] showed that a curvature 
term was necessary to have a connectivity principle. 

Let us finally mention that a regularity result for the level lines of minimizers 
of (3.19) or (3.23) has been proved in [47]. 

3,3.4 Experimental Results 

Examples in 2D. In the following experiments we show the results of the joint in­
terpolation of gray level and the vector field of directions using functional (3.19). 
The experiments have been done with p = \ and/or p = 2. The results are quite 
similar and, unless explicitly stated, we display the results obtained with p =1. 

Figure 3.6 displays an image made of four circles covered by a square (left im­
age) and the result of the interpolation (right image) obtained with p — 2. Figure 
3.7.a is a detail of the mouth of Lena with a hole. Figures 3.7.b displays the result 
of the interpolation using (3.19). Figure 3.7.c shows the result of interpolating the 
hole of Figure 3.7.a by using a simple algorithm: the value of pixels at distance 
k from the boundary is the average of its neighboring pixels at distance A; - 1 
from the boundary. In Figure 3.7.b we see the effect of continuing the level lines 
along the mouth, which is not the case in Figure 3.7.C. Figure 3.8.a is an image of 
a woman with a flower. In Figure 3.8.b we have represented a hole covering the 
region of the flower. In Figure 3.8.C we display the result of interpolating the hole 
of Figure 3.8.b using (3.19). 

Figure 3.9.a displays an image with text to be removed. Figure 3.9.b displays 
the corresponding reconstructed result. 

Examples in 3D. Let us describe how to use functional (3.19) to inpaint (fill-in) 
holes (or gaps) on surfaces S, which we assume to be embedded in 71^. To avoid 
any confusion with our previous use of the word hole, let us use the word gap of 
the surface. Assume, to fix ideas, that 5 is a smooth compact connected surface, 
and A^ is a part of iS which is unknown or could not be obtained during scanning. 
Let us identify S with its known part. Let us choose a bounding box Q in IZ^ 
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Figure 3.7. a) Left: Detail of the mouth of Lena, b) Middle: Reconstructed mouth us­
ing (3.19). c) Right: Result of interpolating the hole in a) by means of a propagation of 
neighbouring values. 

^^^^^^^ r̂ ^ l̂l̂ ^^H 

Figure 3.8. a) Left: woman with flower, b) Middle: woman with a mask on the flower 
representing the hole, c) Right: Resuh of interpolation using (3.19) 

Figure 3.9. Removing the text on an image, a) Left: original image, b) Right: reconstructed 
image. 
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strictly containing the gap M and part of <S (see Figs. 3.10.a, 3.10.b). Let dM be 
the boundary of the gap (a curve or a set of curves in IZ^). Even ifM is unknown, 
its relative boundary in S is known. Let ^ be a neighborhood of 5 n Q defined 
by 

r ={xeQ: d{x, SnQ) < ad{x, dM)], a > 0. 

where d denotes the distance. We assume that ^ \ {SnQ) consists of two con­
nected components, which can be identified as the two sides of the surface S. 
With this information, we are able to complete an initial surface closing the gap 
and determining a set A in the interior part of 5 . We take UQ — XA and OQ as the 
outer unit normal vector field to the known part of 5 in Q [840]. 

With the purpose of adapting them to our algorithm, the data, originally given 
as a triangulated surface, were converted to an implicit representation in a regu­
larly spaced 3D grid. The result was visualized again as a triangulated surface. 
Figures 3.10.a, 3.10.b display some particular holes with a bounding box isolat­
ing them (taken from a scanned version of Michelangelo's David [516]). Figures 
3.10.C, 3.10.e display the triangulated surface (the data) around the hole. The re­
constructed surface is displayed in Figures 3.10.d, 3.10.f These images have been 
rendered using the AMIRA Visualization and Modeling System [24]. 

The pioneering work [249] addressed the problem of hole filling via isotropic 
diffusion of volumetric data (that is, iterative Gaussian convolution of some dis­
tance function to the known data). The approach proposed by these authors 
addresses holes with complicated topology, a task very difficult with mesh rep­
resentations. Most algorithms on reconstructing surfaces from range data are 
point-cloud reconstruction based and treat holes as regions with low sampling 
density, thereby interpolating across them [21,42, 76, 294,404]. Of course, these 
algorithms do not distinguish between a real hole in the data and one due to the 
lack of sampling, and equally fill or fail to fill both cases in the same fashion. 
Other point-cloud methods evolve a surface over time until it approximates the 
data [186, 888,918], or fit a set of 3D radial basis functions to the data, compute a 
weighted sum of them and use a level set of this last function as reconstructed sur­
face [270, 150]. Mesh based methods for surface reconstruction [819, 240, 886] 
can perform hole filling as a post-process or integrate hole filling into surface 
reconstruction [240]. 

3.4 Surface Reconstruction: The Laplace and the 
Absolute Minimizing Lipschitz Extension 
Interpolation 

In [158] we studied and classified the interpolation algorithms which satisfy a 
reasonable set of axioms in terms of the solution of a partial differential equation. 
Two particular examples are: the Absolutely Minimizing Lipschitz Extension, 
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Figure 3.10. From top to bottom and left to right: a) David's left hand, b) A detail of 
its hair, c) A zoomed detail of a) showing the triangulated surface with the hole, d) The 
reconstruction of the hole in c) displayed as a triangulated surface, e) A zoomed detail of 
b) showing the triangulated surface with the hole, f) The reconstruction of the hole in e) 
displayed as a triangulated surface. 

denoted as AMLE in the sequel, and the Laplacian interpolation. We study the 
applicability of both of them to the problem of surface reconstruction. 

We use the notation introduced in section 3.3.4. As we said there, we assume 
that T\{S OQ) consists of two connected components, which can be identified 
as the two sides of the surface S. By changing the sign of the distance function 
in one of them, we may define the signed distance function to S OQ which we 
denote by ds(x). Let us denote Qjr = Q\J^. 
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The Laplacian interpolation is based on solving the PDE 

-Au - 0 in Qjr, (3.26) 

with specified boundary data on dQ:^. Indeed, boundary data is only known in 
d!F n Q where we should impose that u = dg. Thus, a reasonable assumption 
would be to assume that 

du 
— - 0 mdQjr\ dT (3.27) 

where u denotes the outer unit normal to dQj: \ dT. Even if this boundary con­
dition is not the most reasonable one to reconstruct the surface «S n Q (which is 
defined as d\(a > 0]), we have used it in our experiments (see the result). 

The AMLE interpolation ([31]) is based on solving the PDE 

D^u {Du, Du) = 0 in Qjr. (3.28) 

with boundary data on dQjr (here Du and D'^u denote the gradient and the 
Hessian matrix of u, respectively, so that in coordinates, D'^u {Du, Du) = 
J2ij=\. dxidx WIW^"^- ̂ ^^^ equation can be solved with general domains and 
boundary data, in particular the data can be given in a finite number of surfaces, 
curves and/or points. Indeed, existence and uniqueness of viscosity solutions of 
(3.28) were proved in [434] for boundary data (p G C{dQjr). Moreover, as it 
is proved in [434], the viscosity solution of (3.28) is an absolutely minimizing 
Lipschitz extension of (/?, i.e., u G M^^'°°(Q:r) H C{Qjr) and satisfies 

P^| |L-(Q';7^^) < ||^^IU-(Q';7^^) (3-29) 

for all Q' C Qjr and w such that u-w e WQ''^{Q'). Finally, the AMLE is lo­
cally Lipschitz continuous in Qjr [434]. Let us mention that the AMLE model was 
introduced by Aronsson in [31] as the Euler-Lagrange equation of the variational 
problem (3.29). 

As in the case of Laplace equation (3.26), the boundary data is only known in 
dJ^ n Q where we impose that u = ds (by the results in [445] there exist ab­
solutely minimizing Lipschitz extensions ofds\dj^nQ and satisfy (3.28) but there 
is no uniqueness result for them). In practice we impose the Neumann boundary 
condition (3.27) in dQjr \ dJ^. We observe again that even if this boundary con­
dition is not the most reasonable one to reconstruct the surface <S fi Q (which is 
defined 2isd[u > 0]), we have used it in our experiments (see the result). 

3.4.1 Experimental Results 

We display the results obtained using the 3D Laplace and AMLE interpolators 
on some holes of Michelangelo's David [516]. The result are visualized again 
as a triangulated surface (using the AMIRA Visualization and Modeling Sys­
tem [24]). Figures 3.11.a, 3.1 l.b display the original images with holes. Figures 
3.11.C, 3.1 l.d display the result obtained using the Laplace interpolator. Figures 
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Figure 3.11. From top to bottom and left to right: a) David's left hand with a hole, b) A 
detail of its hair with a hole, c) and d) The results obtained with Laplace interpolator, e) 
and f) Results obtained using AMLE interpolator. 

3.1 l.e, 3.1 l.f display the result obtained with the AMLE. Observe that the result 
obtained with AMLE interpolation is less regular. 

3.5 Dealing with texture 

All the PDE-based approaches to inpainting share the shortcoming that they can­
not restore texture. The notion of texture implies a repetitive pattern, a missing 
portion of which may usually not be restored just by propagating the level lines 
into the gap in any clever way. On the other hand, there are a number of very 
good texture synthesis algorithms, which in turn do not give as good results when 
applied to gaps in 'structured' (as opposed to 'textured') regions. In this section 
we will comment on two methods to perform inpainting on images with textured 
and/or structured regions. Both methods use the remarkable algorithm introduced 
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by Efros and Leung for texture synthesis [297], which gives excellent results for 
the inpainting problem as well, so we will start by discussing this algorithm. 

3.5.1 Texture Synthesis by Non-Parametric Sampling 

This algorithm [297] is fully automatic and produces very good texture synthe­
sis results. It is also very well suited to natural images when the regions to be 
inpainted cover a large variety of textures. 

Let the region to be filled be denoted by O. H will be filled, pixel by pixel, 
proceeding from the border dVt inwards, in an 'onion-peel' fashion. Let p(?', j) be 
the pixel to fill-in next. We consider a n x n neighborhood of this pixel, call it 
Nij. This neighborhood will typically contain several empty pixels. With only the 
filled pixels of N^j, we build the template Tij. Next we compare Tij with all the 
posible templates Txy, centered at (x, y) and shaped like T^j, that are completely 
outside n . This comparison is done by computing a distance d(x, y) between both 
templates, which uses the normalized sum of squared differences (SSD) metric. 
We keep the set of coordinates (x, y) for which d{x, y) is below a given threshold. 
From this set, we randomly pick a pixel coordinate (XQ, yo), and copy the image 
value /(xo,yo) to /(?', j ) . Then, pixel (i, j ) is filled and we procceed to the next 
empty pixel at the boundary. 

3.5,2 Inpainting with Image Decomposition 

The basic idea of this algorithm [80] is presented in Figure 3.12, which shows 
a real result from this approach. The original image (first row, left) is first de­
composed into the sum of two images, one capturing the basic image structure 
and one capturing the texture (and random noise), second row. This follows the 
work by Vese and Osher reported in [842]. The first image is inpainted follow­
ing any of the PDE-based approaches described before, while the second one is 
filled-in with a texture synthesis algorithm, third row. The two reconstructed im­
ages are then added back together to obtain the reconstruction of the original data, 
first row, right. In other words, the general idea is to perform structure inpainting 
and texture synthesis not on the original image, but on a set of images with very 
different characteristics that are obtained from decomposing the given data. The 
decomposition is such that it produces images suited for these two reconstruction 
algorithms. This approach outperforms both image inpainting and texture synthe­
sis when applied separately. Indeed, a separate reconstruction of missing blocks 
in wireless JPEG transmission was proposed in [669]. 

As for the decomposition step, the authors in [842], inspired by [567], pro­
pose a model to express any given image / as the sum of two images u and v, 
where u will be a sketchy or cartoon image of / (with sharp edges) and v will 
be the the remainder (a term with noise, oscillations, texture.)Expressing then 
7(x,y) = u{x, y) + v{x, y) and v(x^2/) = V • {;v\,V2), the authors in [842] pro­
pose a minimization problem to find u,v\,V2, whose Euler-Lagrange equations 
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Figure 3.12. Structure and Texture inpainting using image decomposition (see text.) 
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are 

u = / - a . 3 i - 5 , ^ 3 + i - d i v ( ^ ) , (3.30) 

M ^ = = = 2 A [ — ( M - / ) + 9 ^ 5 1 + 5 ^ J , (3.31) 
\/9\+92 ^"^ -• 

Jl = 2A[— A* ; r . , = 2 A | ^ ( « - / ) + 52^5i+5,V2 . (3.32) 

For some theoretical results and the detailed semi-implicit numerical imple­
mentation of the above Euler-Lagrange equations, see [842]. 

5.5.3 Exemplar-based Inpainting 

In this work [238], Criminisi et al. propose a variation on [297], where they 
modify the fill order of the algorithm. 

Instead of the 'onion-peel' of [297], patches along the fill front are given a 
priority value P{i,j), which determines the order in which they are filled. This 
priority P{i, j) is the product of a confidence term C(i, j) and a data term D{i, j). 

The confidence term C(i,j) is an average of the values of C for the neighbors 
of {i,j); initially, C is 0 for pixels inside Q and 1 for pixels outside. So C gives 
higher priority to pixels that have more of their neighbors already filled, and to 
pixels that are closer to dQ. 

The data term D{i,j) is proportional to the absolute value of the scalar product 
of V-^/(i, j) , the isophote direction at (?', j ) , and NdQ^{i,j), the normal to the 
boundary of the fill front. So D gives higher priorities to patches where there is 
an isophote 'flowing into' the gap. 

Finally, ft is filled not one pixel at a time as in [297], but patch by patch, where 
a patch is the intersection of a n x n window (typically n = 9) with the gap. This 
speeds up the process considerably. 

3.6 Other Approaches 

3.6.1 Other PDE-based Models 

Other PDE based models have been proposed by Chan and Shen [171, 172, 167]. 
In [172] the authors proposed an anisotropic diffusion model (called (CCD)) with 
curvature dependent diffusion coefficient. In [171] they compared several mod­
els, namely, TV based inpainting, segmentation-based inpaintings, and the (CCD) 
model. Finally, in [167], the authors proposed to minimize the Elastica model 
written as in (3.21) leading to a fourth order PDE gradient descent equation. 
The connection of this model with model (3.23) has been mentioned in Section 
3.3.3. Esedoglu and Shen proposed in [300] an inpainting functional based on 
Mumford-Sha's functional plus some terms which approximate the Elastica. 
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Inspired by the real Ginzburg-Landau equation which develops homogeneous 
areas separated by phase transition regions (that are interfaces of minimal area), 
H. Grossauer and O. Scherzer proposed to use the complex Ginzburg-Landau 
equation for inpainting [369]. As we did above, we denote by ft the hole to 
be inpainted and we suppose that the given image UQ : D —> R has been 
extended in rough way to Ct. Normalizing UQ to take values in [—1,1], the au­
thors defined VQ = y^l - |IAOP, and UQ = (UQ^VQ). Then the authors solve 
the equation (which corresponds to the gradient descent method applied to the 
Ginzburg-Landau functional) 

^ = Au-^^{l-\u\^)u i n n , (3.33) 

with initial condition tx(0) = UQ and boundary condition 

As an interesting feature of (3.33) let us mention that the solution corresponding 
to the image in Figure 3.5 would be the symmetric one: half gray and half black 
forming an X in the hole. 

Inpainting models based on probability diffusion of orientations are proposed 
in [844]. Indeed, the authors define the function P{x,0) as the probabiHty that 
there is a level line passing through x with direction 0 and propose to compute 
P(x, 0) as the asymptotic state of the PDE 

Pt + P(cos 6>, sin 0) • V ^ F = aPee + /^A^P in ft, 

where P{x,0){cos ^,sin 9) represents a probabiHty distribution for the tangent 
direction. This equation also includes an spatial diffusion of the probability 
P{x,6). Knowing P{x,6), the authors define the orthogonal orientation of the 
level line through x as the expectation of P{x,0), i.e., as the vector z{x) := 
/Q ^ ( - sin 0, cos 9)P{x, 6) dO. Then the authors reconstruct the image inside ft 
using z{x) and the value of the image on dft [844]. 

A related model has been used in [892, 893] for the completion of illusory 
contours. The connection between both models is given by the completion of 
level lines as if they were illusory contours. The model in [892, 893] was inspired 
by the work of [589] who interpreted the elastica as the mode of the probability 
distribution underlying the stochastic process given by the differential equations 
X = (cos ^,sin 0), 0 being a normally distributed random variable with zero 
mean and given variance. 

Let us finally mention that a finite element implementation of the Willmore 
functional / ^ H^ dS has been used in [202] for surface restoration. As explained 
in Section 3.3.2, this functional (in a relaxed form) is a term in functional (3.19). 

3,6.2 Miscellaneous 

Finally, let us briefly mention some other approaches to the inpainting problem. 
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Jia and Tang [437] perform a texture-based segmentation of the image. Then 
they find the curves in H that connect texture boundaries arriving at dft: these 
curves, boundaries between different texture regions, are found with a robust ten­
sor voting algorithm that extrapolates curve shape. Then texture is synthesised 
inside each region, also with a tensor voting algorithm, where texture at pixel 
(?', j ) is encoded as a vector of length N = n x n-\-1 whose components are the 
image intensity values at the n x n neighborhood of (i, j ) . 

Levin et al. [515] use global information to guide the inpainting process. 
They choose features like the norm of the gradient, compute the histogram of 
these features over the whole image, define a probability taking these histograms 
into account, and find an integrable gradient field inside ft that maximizes that 
probability and satisfies the boundary conditions at d^. 

Kim and Kim [466] use genetic algorithms to approximate the solution to the 
problem of minimizing the elastica inside 0 , given the image and curvature values 

at^a 
Tan et al. [786] perform highlight removal with a proposed variant of inpainting 

where the region to fill-in ft is not empty but has some useful information, from 
which the highlights must be substracted. 

Patwardhan and Sapiro [634] use wavelets in a Projection Onto Convex Sets 
(POCS) setting similar to Hirani and Totsuka's [400], but without the need for 
user-selection of similar neighborhoods. It is an iterative process where in each 
step the image is wavelet-transformed, its coefficients constrained, then wavelet-
inverse-transformed, the resulting image values also constrained. 

3.7 Concluding Remarks 

In this chapter we have reviewed the area of image inpainting, which has received 
a significant amount of attention from the image processing, computer vision, 
computer graphics, and applied mathematics communities; following the early 
works of Masnou-Morel [553] and Bertalmio-Sapiro-Caselles-Ballester [79, 46]. 
We can not forget of course also one of the first works in the area, [605], where 
the famous Laplacian Pyramid is used to fill-in holes. 

Although image inpainting still has many open problems, the main challenges 
are in the extension of this work to other visual sources, such as video [438, 885] 
and sensor arrays [905]. Preliminary and very promising results are starting to 
appear in this subject, and many important advances are expected in forthcoming 
years. 

3.8 Appendix 

Let Q be an open subset of R^. By Cg°{Q) (resp. C^{Q\ R^)) we denote the 
space of functions (resp., vector fields with values in R^) with are C^ and have 
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compact support in Q. By L^(Q), 1 <p< oo, we denote the space of measurable 
functions / : Q —> R whose p-power is integrable (in the sense of Lebesgue). 
L^[Q) denotes the space of measurable functions in Q which are essentially 
bounded. By W^''P{Q), 1 < p < oo, we denote the space of functions u £ 
LP{Q) such that S/u e L'P{Q). By VKQ'^(Q) we denote the closure ofC^{Q) in 
W^^'P[Q), Saying that u e W^{Q) is a way of saying that W^'P{Q) mdu^O 
on the boundary of Q. By C{Q) we denote the space of continuous functions in 

Q-
A function u E L^{Q) whose gradient Du in the sense of distributions is a 

(vector valued) Radon measure with finite total variation in Q is called a function 
of bounded variation. The class of such functions will be denoted by BV{Q). The 
total variation of Du on Q turns out to be 

supi / udivzdx : z e C^{Q]R^),snp\z{x)\ < l l , (3.34) 

(where for a vector v = {v\,..., VN) E R^ we set \v\'^ := Yli^i '^h ^^^ will ^^ 
denoted by \Du\{Q) or by / g \Du\. The total variation ofu on a Borel set 5 C Q 
is defined as inf{|Dti|(v4) : A open ,B C AC Q}. 

A measurable set E C R^ is said to be of finite perimeter in Q if (3.34) is 
finite when u is substituted with the characteristic function XE ^^^- ^^^ perime­
ter of £• in Q is defined as P{E,Q) := \DXE\{Q)' We shall use the notation 
P{E) := P{E, R^). For sets of finite perimeter E one can define the essential 
boundary d*E, which is countably {N — 1) rectifiable with finite ?{^~^ measure, 
and compute the outer unit normal iy^{x) at 7{^~^ almost all points x of d*E, 
where H^~^ is the [N — \) dimensional Hausdorff measure. Moreover, I^^XEI 
coincides with the restriction ofH^"^ to d*E. 

Ifue BV{Q) almost all its level sets [u > X] = {x e Q : u{x) > A} 
are sets of finite perimeter. Thus at almost all points of almost all level sets of 
u G BV{Q) we may define a normal vector 0{x) which coincides \Du\'a.Q. with 
the Radon-Nikodym derivative of the measure Du with respect to \Du\, hence it 
formally satisfies 9 • Du = \Du\, and also |^| < 1 a.e. (see [19], 3.9). For further 
information concerning fiinctions of bounded variation we refer to [19, 301, 926]. 
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Levelings: Theory and Practice 

F. Meyer 

Abstract 
Connected operators enlarge the flat zones of an image and never create 

a contour where no contour was present. This definition is too vague to be 
useful in practice, except for binary images. For grey-tone images a more 
precise characterization has to be given in order to be operational. This leads 
to the introduction of floodings, razings, flattenings and levelings. Extending 
the notion of a flat zone and of a contour leads to extended connected oper­
ators. The chapter concludes by showing the versatility and power of these 
operators in practice. 

4.1 Introduction 

Filtering is ubiquitous in image processing before compression or segmentation, 
for suppressing noise or simplifying images. An ideal filter should suppress noise 
and unwanted details without degrading in any other respect the image. For in­
stance it should not blur or displace the contours if one wishes to segment the 
filtered image. It should not create spurious structures such as minima or maxima 
if the aim is to describe the topography of a relief or to construct its watershed 
line. Each element in the filtered image should be traceable in the initial image. 

It seems difficult to design a filter complying with all these constraints. Linear 
filters produce a blurring of the image. The problem is to find a good trade-off 
between smoothing and localization of the contours: a large smoothing simplifies 
the detection but creates poorly localized contours whereas a reduced smoothing 
does not suppress enough noise. Non linear smoothing techniques [642] avoid 
smoothing across object boundaries. However, depending on a number of param­
eters, they are difficult to tune. Alternate sequential filters based on openings and 
closings also displace the contours [724]. 

Connected operators do not suffer from this drawback, they enlarge the ex­
isting flat zones and produce new ones [726]. They are specially designed for 
simplifying images without blurring or displacing contours. The simplest ones 
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suppress particles or holes in binary images [725]. Clipping peaks and filling val­
leys until a plateau of a given size is produced constitutes the area openings and 
closings introduced by Luc Vincent [845]. Particle reconstruction allows to sup­
press all connected particles not containing a marker. Applied on each threshold of 
a grey tone image, one obtains reconstruction openings and closings. [367, 846]. 
They are both members of a larger family, operating symmetrically on peaks and 
valleys, which comprises flattenings and razings [564],[555]. Their scale space 
properties and PDE formulation are studied in [566]. 

The present paper gives an insight in the nature and construction of these op­
erators and illustrates their use. As we are concerned with practical applications 
we will restrict ourselves to a digital framework. Let T be some complete totally 
ordered lattice, and let V,S be arbitrary sets in the discrete space. We call O the 
smallest element and O the largest element of T. Fun(X>,T) represents the image 
defined on the support V with value in T. The value of function / at pixel p will 
be written fp. A presentation of levelings and flattenings in the continuous space 
may be found in [555], [565]. 

4.2 Binary connected operators 

The functions f,g,h met in this section are binary and are the indicator functions 
of binary sets, being equal to 1 in the particles and to 0 in the holes. A binary 
connected operator suppresses particles and/or fills holes: 

Definition 1. A connected operator transforms an image f into an image g in 
such a way that the following relation is verified for all pairs of neighboring pixels 
: V (p, q) neighbors: fp = fq=^gp = g^ or equivalently gp^g^^ fp^ fq (1). 

The relation (1) expresses that any contour between the pixels p and q in the 
destination image g corresponds to a contour in the initial image / at the same 
place. There is however no coupHng between the directions of the transitions: 
between p and q, the function g may for instance be increasing and / decreasing. 
Relation (1) may be rewritten as gp > gq => fp > fq or fp < /^(Ibis). As an 
example, the complementation of a binary image is a connected operator. This 
shows that a connected operator may turn a regional minimum into a maximum 
and vice-versa. If a function g and a function / verify relation (1) for all pairs of 
pixels, we say that by definition gisa. planing of / . 

Planings may be specialized in 3 ways : 

• A planing verifying g > f only suppresses holes and is called flooding. It 
is characterized by g > f and V (p, q) neighbors: gp > g^ =^ fp = gp[= 1) 
(2) 

• Planings which only suppress particles are called razings and verify g < 
f. They are characterized by: ^̂  < / and V (p, q) neighbors: gp > gq =^ 
/ ,=ff<, (=0)(3) 
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dyyu 
Figure 4.1. g^ < gp =-> gp = fp 

• Monotone planings are called levelings. They may suppress both particles 
and holes but if a hole and a particle are adjacent, the hole cannot be­
come a particle and simultaneously the particle a hole. Levelings introduce 
a coupling between the directions of the transitions: between p and q : 
9v>9q^ fp> fq (4). 

When applied to each threshold of a grey-tone function, these binary operators 
generate interesting grey-tone operators. 

4.3 Flat grey-tone connected operators 

4.3.1 Level by level construction 

The definitions of planings and monotone planings given in the preceding section 
still make sense if g and h are grey-tone functions. Relations (2) and (3) fully 
specify floodings and razings for grey-tone functions. Relation (2) has an obvious 
physical meaning. Fig.4.1 A and Fig.4.1B represent respectively a possible and an 
impossible flooding p of a relief / : if for two comparable pixels a lake verifies 
9q < 9v> then the highest pixel is necessarily at ground level {g^ = /p), otherwise 
the lake presents an unconstrained wall of water as in fig.4.1B. 

On the contrary the relations (1) and (4) indicate that to any contour of g 
corresponds a contour of / at the same location, but do not establish a relation 
between the values of the functions themselves. However, applying the corre­
sponding binary operators on each threshold of a grey-tone function produces a 
well constrained operator: a function gisdi flattening (resp. leveling) of a function 
/ if and only if for each t, X^ (g) is a planing (resp. monotone planing) of X* (/) 
(where X^ (/) = {x \ f{x) < t}). We derive the following criteria: 

- An image p is a flattening of the image / iffV (p, q) neighbors: 
[ fp>9p and gq > fq 1 

9p> 9q=^ \ or (5) 
[ fq>9p and 9q > fp \ 

* An image ^̂  is a leveling of the image / iff V (p, q) neighbors: 
9p> 9q^ fp> 9p and gq > fq (6). 

Basically relation (5) means that any transition in the destination image g is 
bracketed by a larger variation in the source image. If furthermore the direction of 
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the transitions is always the same as in relation (6), flattenings become levelings. 
Flattenings are floodings if they verify g> f and razings ifg<f. 

4.3.2 A morphological characterization 

Interesting characterizations may be derived from the relations (6) and (7). As an 
example consider the implication [g-p > gq => gq > fq] which is part of relation 
(6). Recalling that the logical meaning of [A ̂  B] is [notA or B] it may inter­
preted as [gp < gq or gq > fq] 4^ [gq > fq A gp]. As p may be any element of the 
neighborhood Nq of the central point g, we obtain gq > fq A V g^ equivalent 

xeNg 

^o gq > fq A i gq\/ \J gx ] = fq A Sgq, where S represents the elementary 
\ xeN^ J 

morphological dilation with a flat structuring element containing the central point 
and all its neighbors. Taking into account the complete relation (6) yields the 
following criterion for levelings: f ASg < g < f y eg. 

Since g < Sg and eg < g, the preceding criterion is equivalent with 
{fASg)\/eg<g<{fy eg) A Sg. But (/ A Sg) W eg = {f y eg) A Sg, giving 
another criterion for leveHngs: g = {f A Sg) ̂  eg = {f V eg) A Sg, known as the 
morphological centre [724] between Sg and eg. 

The criterion characterizing flattenings, floodings and razings may be estab­
lished in a similar way: 

* A function ^̂  is a flattening of / if and only if : f A S {f A g) < g < 
fye{fyg)(9) 

* A function g is SL flooding of / if and only if: g — f W eg 
* A function f̂ is a razing of / if and only if: g = f A Sg 
In the next stage of generalization, the operators no longer commute with 

anamorphosis, as it is the case for operators constructed threshold by threshold. 

4.4 Extended connected operators 

Replacing {S,e) by a more general adjunction (a,/?), where P is an arbitrary 
erosion verifying P < Id and a > Id its adjunct dilation, we get a generalized 
leveling g = (f y Pg) Aag = {f A ag) V Pg. For which type of flat zones is it a 
connected operator ? 

We have the equivalence g = {f y Pg) A ag <^ f A ag < g < f V pg. 
A pixel p verifying gp < (/ V pg)^^ also verifies the following equivalent 

expressions: ^gp < {pg)^ or gp < /p j <^ |^p > {Pg)^^ =^ gp < fpj (10) 
The relation gp > {Pg)p means that eroding the function g with the erosion p 

decreases the value of g at pixel p, indicating that p has a lower neighbor for 
the function g. In order to find this neighbor, we have to introduce the pulse 

>./ f tifx=^h 1 1 ,/ / \ f tifx = h 1 ^ 
fonctions Tk= [oifx^hj ^"'̂  ^^ ^̂ ^ = | fi if ̂  ^ /. / ' ^^""^ """ 



Levelings: Theory and Practice 69 

age g of Fun(2),T) can be written g ^ \l T?"=- A i?" and [pg)^ = 

(A 
\xev 

p xev 
A /̂  fix'' ) . The minimal value in this expression is \9s. 

attained at a pixel x = q. This pixel q is the lower "neighbor" of p we are look­
ing for, and we write gq ^ gp ^ gp > Pqp(gq), where Pqp{gq) = [(3 (1?")]^ 
is an erosion. Since gp < ft, the relation gp > Pqp{gq) also indicates that 
Pqpigq) < ^- When this is the case, we consider that p and q are a/?—neighbors 
for the adjunction (a, P). pqp has an adjunct dilation ap^q (gp) = [a {'\p')] , ver­
ifying : gp > Pq^p (gq) <^ ap^q (gp) > gq. Finally relation (10) may be rewritten 
for any a/^—neighbors p and q'. gq U. gp ^ gp < fp-

The inequality f A ag < g may be treated in the same manner and putting 
everything together, we obtain the characterization of levelings: ^ is a leveling of 
/ if \/{p,q) a/3-neighbors gq [Z gp => fp > gp and gq > fq, quite similar to 
relation (6). 

As a summary we have found a general mechanism for defining transitions 
between pixels for a given function, based on an adjunction {a,P). Definitions 
and characterizations of extended flattenings, fioodings, razings and levelings are 
obtained by simply replacing {6, s) by (a, /?) and the relation < by the relation c 
in all relations and definitions of the previous sections. 

Negating the relation C yields the relation Zl: for (p, q) a/?-neighbors, gq 3 9p 
if only if ^p < Pq^p {gq) <^ ap^q {gp) < gq. When the relations {fy ^ f^} and 
{fx 3 fy} are simultaneously true, we obtain a symmetrical relation written fx o 
fy, expressing that there is a smooth transition between fy and fx or that fx and fy 
are at the same a/^-level: {fx - fy} <=> {O < ax,y {fx) < fy < Px,y{fx) < ^} 
<^ {O < ay^x {fy) <fx< PyAfy) < ^}-

We are now able to define smooth zones based on arcwise connectivity. 

Definition 2. We say that two values fx and fy are smoothly linked and we write 
fx txi fy if there exists a series of pixels [XQ = x, xi,X2, ...x'n = y} such that 

JXi ^ JXi + l-

Definition 3. A set X is a smooth zone of an image f if and only if fx ix fyfor 
any two pixels x and y in X. 

The relation txi is an equivalence relation. The associated equivalence classes 
are the maximal smooth zones. It is easy to verify that the smooth zones of / 
form a connection of V [725]. For the pair of elementary dilation and erosion 
{6, e), one obtains ordinary flat zones. 

Definition 4. A set X is uniformly smooth if fx o fyfor any couple {x,y) of 
ap-neighbors in X. 

3 2 
For the slope dilation 6i {g) = g y {6g - I), X = . . is a smooth zone 

since there exists a path with a slope smaller or equal to 1 between any couple of 
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pixels. However, there exists within X a. sharp transition between values 1 and 4, 
hence X is not a uniformly smooth zone. 

Levelings enlarge smooth zones: g^ IZ gp => fq n fp is equivalent with 
fq^fp=^gq^ gp from which we derive fq>^fp ^ gq ^ gp] this last relation 
shows that any smooth (resp. uniformly smooth) zone for / is also a smooth zone 
(resp. uniformly smooth) for g. Levelings are indeed connected operators [700]. 

Levelings create smooth zones: Any zone where {g > / } (resp. {g < / } ) is 
uniformly smooth. 

Regional minima 
If (a, p) are flat operators, then the leveling based on (a, (3) does not create re­

gional minima or maxima. More precisely if f̂ is a leveling of/, and X a regional 
minimum of g, then there exists a set Z C X, which is a regional minimum for 
/ . However, this is not true if (a, /3) are not flat operators. 

4.4.1 Construction offloodings, razings, flattenings and levelings 

We call Inter [g, f) the class of functions h e T^ , verifying g A f < h < 
gy f. We say that g is farther away from / than h, or that g is bigger than h in the 
order f and we write g >/ h if and only ifh G Inter {g, / ) [555]. 

Proposition 1, >f is an order relation on T^. For a, / C T^, Inter (a, / ) is a 
complete lattice for the order f. The function a is then the highest element. For 
any family hi o/Inter (a, / ) ; 

Nfhi 
yhi on {a < / } 
Ahi on {a > / } 

;\/fhi 
Ahi on {a < / } 
Vhi on {a > / } 

Considering a pair of functions / and h we will now study the family of 
floodings, razings and levelings of/ within Inter (/, h). 

4.4.1.1 Construction of floodings, razings, flattenings and levelings 

Each flooding of / verifies g > f. For this reason the order relations > / and > 
are identical. If {gi) is a family of floodings of / , then \J gi also is a flooding 
of / . The family of floodings of / belonging to Inter (/, h) is not empty and its 
maximal element is written Fl ( / , h). It is obtained by finite iteration until stability 
of /in = / V 0hn-i, with ho = f y h. We recognize the usual reconstruction 
closing if/? = £[846]. 

Similarly the largest razing of/ for the order relation > / in Inter (/, h), which 

is also the smallest razing for the order relation > is equal to / \ / in , where hn = 

f A a / in- i , with ho = f Ah ]WQ write Rz(/ , h). It is obtained by finite iteration 

until hn-\-i = hn. 
The supremum for Vy of a family of flattenings belonging to Inter (/, h) is 

still a flattening. The largest flattening of Inter (/, h) is also the supremum be­
tween the largest flooding and the largest razing within Inter (/, h): H(/ , h) = 
Fl ( / , / i )V ;Rz( / , / i ) . 
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Figure 4.2. Levelings with increasing slopes of the same reference and marker functions. 

The supremum V/ of two levelings is not necessarily a leveling but a flattening. 
However if we replace h by k = ah A f Ph, then all flattenings in Inter (/, A;) 
are levelings. Hence we will define the leveling of / constrained by h and write 
A(/ , h) as the largest flattening contained in Inter (/, k): A(/ , h) = S ( / , k) = 
Fl(/,A:)V;Rz(/,A;). 

Fast algorithms, based for instance on hierarchical queues [563] exist for re­
construction closings and openings, producing respectively floodings and razings. 
Since flattenings and levelings rely on floodings and razings, their construction is 
fast also. 

4.5 Levelings for image simplification 

Floodings Fl( / , / i ) , razings Rz(/ , / i ) , flattenings S( / , / i ) and levelings A(/,/i) 
are all functions of two arguments and depend on these two arguments. Their 
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Figure 4.3. Non connected structuring element 

flat zones are larger than the flat zones of / , their contours correspond to con­
tours of / ; at the same time they are as close to h as possible in the lattice 
Inter (/, h). Furthermore, for each choice of an adjunction (a, p) a new operator 
can be constructed, to which is associated a particular type of contours and flat 

4.5.1 Varying {a, P) 

We will first explore the effect of various couples {a,P) on the same reference 
and marker images. Starting with the ordinary flat dilation S (maximum value in 
a neighborhood of size 1), we define the slope dilation Sx = IdV {S — A), where 
Id is the identity) . The adjunct slope erosion is defined by £x = Id A (e + 
A). Two neighboring pixels p and q are at level if |/p - /q| < A. Fig.4.2 presents 
a picture by Seurat which is extremely grainy. The marker function is an alternate 
sequential filter of size 4, giving a very crude approximation of the image. We 
compare the results of 3 levelings ; the first being flat, the next being obtained for 
slopes 1 and 2. Increasing the slope produces much larger flat zones and a much 
smoother image. Nevertheless the contours remain sharp. 

Figure 4.4. Left: / =original image. The marker image h is completely black with a white 
dot on the left hand of the girl. 
Center: leveling associated to the dilation 5'^'^ and erosion £~~; 
Right : leveling associated to the dilation S and erosion e ; without jumps, the 
reconstruction is much less complete (see for instance the books) 

In our second example we compare two levelings based respectively on a non 
connected and a connected structuring element. The first leveling is associated 
to the dilation J"*"*" and its adjunct erosion e and is based on a non connected 
structuring element consisting of a hexagon and two pixels at a distance of 4 pixels 
apart on each side (see fig. 4.3). The central part cares for the normal connectivity 
reconstructions whereas the couple of added pixels permits jumps from one zone 
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Figure 4.5. Levelings obtained after Gaussian blurring 

to another. The second leveling is the basic flat leveling based on {6,e). Both 
levelings are applied on the same reference image / (see fig.4.41eft) and marker 
image h (not illustrated here: it is completely black with a white dot on the hand 
holding the telephone). Indeed the ordinary leveling based on (e, S) illustrated by 
fig.4.4right is unable to reconstruct some parts of the image, although it uses the 
same marker ; it is unable to jump from one book to the next on the shelf in the 
background as is the case in fig.4.4center, where a leveling based on ((5++, £~~) 
has been used. As expected, since S'^'^ > 6, the {e, S) leveling has larger flat 
zones than the {£~~ ,6'^'^) leveling. 

4.5.2 Varying the marker function h 

Gaussian blurring has a manifold of good properties from a theoretical point of 
view. It remarkably simplifies images. It has however one drawback: it blurs the 
contours. The greater the simplification, the larger the blurring. For this reason, 
levelings nicely finish off the work of Gaussian blurring by restoring all con­
tours, while keeping the simplification. This effect is illustrated in fig.4.5 where 
blurrings with kernels of size 2 and 5 are restored by a slope leveling (slope 1). 

In the two previous examples we have used a coarse simplification of the image 
as marker, either after an alternate sequential filter, or after a Gaussian blurring. 
We will now present ways to stress interesting features of the image. The first 
example stresses the contrast of the peaks. As marker we take a vertically shifted 
copy of the image / itself, by subtracting a constant value ; a razing constructed 
with this marker function clips all peaks (fig.4.61eft). 

Some of them touch the marker fimctions, others do not. Let X be the set 
where the razing and the marker function take the same value. In order to restore 
these peaks to their original height we construct a second razing of the initial 
image, but with a new marker function, equal to / on X and equal to 0 elsewhere 
(fig.4.6right). This process has been applied to the Seurat picture and illustrated in 
the first row of fig.4.7. First a razing has been applied clipping the peaks with the 
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Figure 4.6. Two successive levelings permit to stress all peaks with the highest contrast. 

lowest contrast (central image) but leaving the valleys unchanged. The resulting 
image is then submitted to the dual operator, filling the valleys. 

The next example also stresses the contrast of the picture, from the point of 
view of the gradient. The gradient modulus is approximated as 6f — ef and 
thresholded, yielding a binary set X containing the sharp transitions in the im­
age. The marker is equal to the original image within X and black outside as 
illustrated in the bottom row of fig.4.7. A first razing produces the "black contour 
leveling" image. A second marker is the image constructed with again the original 
image within X, but with white outside. Applied on the result of the first razing, 
this flooding produces the final image, where the salient contours are completely 
restored and the rest of the image is smoothed out. 

A last example shows the potential of levelings in the domain of selective im­
age compression. When a video sequence has to be compressed and transmitted, 
it is worthwhile to compress the background more than the foreground, the face of 
a person for instance. Leveled images can be compressed economically, as they 
offer large smooth zones ; on the other hand, as the contours of the objects are 
precisely restored, they remain perceptually attractive even for high degrees of 
compression. In fig.4.8 we have constructed a composite marker image, made of 
an alternate sequential filter of varying size: a large size for the background, a 
low size for the foreground. The background is severely distorted. After level­
ing, contours of the background are restored and the face of the person appears 
undistorted. 

4.5.3 Multiscale filtering 

Order relation between levelings, floodings and razings 
The relation {being a leveling of} is a preorder relation. The relations {being a 

flooding of} and {being a razing of} are order relations. Increasing floodings and 
increasing levelings are ideal tools for hierarchical segmentation, where for the 
same picture a series of segmentations with increasing coarseness is produced, 
each contour present at a coarse scale being also present in each finer scale. 

4.5.3.1 Construction of a hierarchy based on increasing floodings 

The watershed transform is the tool of choice for detecting contours ; generally it 
is used on a gradient image, associated to a set of markers. We flood the gradient 
image and as the flooding increases, adjacent basins progressively merge, pro-
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Figure 4.7. First row: successive levelings according to the contrast of peaks and valleys. 
Second row: the marker are the most contrasted contour zones. 

ducing coarser and coarser segmentations. Depending on the law governing the 
progression of the flooding, one obtains different results. Size oriented flooding 
[368, 826] is produced by placing sources at each minimum and flooding the sur­
face in such a way that all lakes share some common measure (height, volume or 
area of the surface). As the flooding proceeds, the level of some lakes cannot grow 
any further, as the level of the lowest path point has been reached. In the fig.4.9, a 
flooding starts from all minima in such a way that all lakes always have uniform 
depth. Size oriented flooding allows to produce hierarchical segmentation with 
good psychovisual properties. The depth criterion ranks the regions according to 
their contrast, the area according to their size and the volume offers a nice balance 
between size and contrast. The topographical surface to be flooded is a color gra­
dient of the initial image (maximum of the morphological gradients computed in 
each of the R, G and B color channels). Synchronous volumic flooding has been 
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Figure 4.8. Marker image and leveling for a high simplification of the background and a 
faithful reproduction of the face. 
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Figure 4.9. Example of a height synchronous flooding. Four levels of flooding are 
illustrated ; each of them is topped by a figuration of the corresponding catchment basins. 

Figure 4.10. Initial image and 3 levels of a multiscale segmentation 

used, and 3 levels effusions have been represented, corresponding respectively to 
15, 35 and 60 regions. 

4.5.3.2 Construction of a hierarchy based on quasi-flat zones 

Since levelings enlarge quasi flat zones, the quasi-flat zones of a family of in­
creasing levelings itself form a hierarchy. Fig.4.5.3.2 presents the construction. A 
slope leveling is produced associated to an alternated sequential filter. The quasi-
flat zones are detected. However, as fig.4.5.3.2 shows, the quasi-flat zones have 
two different natures: on one hand large homogeneous zones, and in the transition 
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zones of high gradient tiny quasi-flat zones. For this reason, a more useful hierar­
chy is obtained if one gets rid of these transition zones. Only the largest of them 
are retained as markers of a watershed segmentation, yielding the final result. 

The process may then be repeated for a cascade of levelings based on coarser 
and coarser alternate sequential filters. Fig.4.11 presents in the first row 3 increas­
ing slope levelings associated to alternate sequential filters of sizes 3, 6 and 9 and 
in the second row the associated segmentations. 

4.6 Conclusion 

Floodings, razings and levelings have very interesting properties for image seg­
mentation. They do not blur nor displace the contours, do not create spurious 
minima or maxima, may be cascaded in order to create a multiscale simplification 
of the image. The family is extremely large, since a leveling can be associated to 
each adjunction (a,/3). Furthermore, a leveling also depends on the choice of a 
marker function, offering a unique possibility in the family of filters to inject in 
the filtering process a selection of the features one desires to stress. 
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Figure 4.11. Hierarchy associated to increasing levelings. Linel : 3 increasing levelings 
Line2 : Associated increasing partitions 



Chapters 

Graph Cuts in Vision and Graphics: 
Theories and Applications 

Y. Boykov and O. Veksler 

Abstract 
Combinatorial min-cut algorithms on graphs have emerged as an increas­

ingly useful tool for problems in vision. Typically, the use of graph-cuts is 
motivated by one of the following two reasons. Firstly, graph-cuts allow ge­
ometric interpretation; under certain conditions a cut on a graph can be seen 
as a hypersurface in N-D space embedding the corresponding graph. Thus, 
many applications in vision and graphics use min-cut algorithms as a tool 
for computing optimal hypersurfaces. Secondly, graph-cuts also work as a 
powerful energy minimization tool for a fairly wide class of binary and non-
binary energies that frequently occur in early vision. In some cases graph 
cuts produce globally optimal solutions. More generally, there are iterative 
techniques based on graph-cuts that produce provably good approximations 
which (were empirically shown to) correspond to high-quality solutions in 
practice. Thus, another large group of applications use graph-cuts as an op­
timization technique for low-level vision problems based on global energy 
formulations. 

This chapter is intended as a tutorial illustrating these two aspects of 
graph-cuts in the context of problems in computer vision and graphics. We 
explain general theoretical properties that motivate the use of graph cuts, as 
well as show their limitations. 

5.1 Introduction 

Graph cuts remain an area of active research in the vision and graphics com­
munities. Besides finding new applications, in the last years researchers have 
discovered and rediscovered interesting links connecting graph cuts with other 
combinatorial algorithms (dynamic programming, shortest paths [107, 477]), 
Markov random fields, statistical physics, simulated annealing and other regular-
ization techniques [362, 113, 424], sub-modular functions [491], random walks 
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and electric circuit theory [356, 357], Bayesian networks and belief propagation 
[790], integral/differential geometry, anisotropic diffusion, level sets and other 
variational methods [767, 109, 28,477]. 

Graph cuts have proven to be a useful multidimensional optimization tool 
which can enforce piecewise smoothness while preserving relevant sharp discon­
tinuities. This paper is mainly intended as a survey of existing literature and a 
tutorial on graph cuts in the context of vision and graphics. We present some ba­
sic background information on graph cuts and discuss major theoretical results, 
some fairly new and some quite old, that helped to reveal both strengths and limi­
tations of these surprisingly versatile combinatorial algorithms. This chapter does 
not provide any new research results, however, some applications are presented 
from a point of view that may differ from the previous literature. 

The organization of this chapter is as follows. Chapter 5.2 provides necessary 
background information and terminology. In their core, combinatorial min-
cut/max-flow algorithms are binary optimization methods. Chapter 5.3 presents 
a simple binary problem that can help to build basic intuition on using graph cuts 
in computer vision. Then, graph cuts are discussed as a general tool for exact 
minimization of certain binary energies. 

Most publications on graph cuts in vision and graphics show that, despite their 
binary nature, graph-cuts offer significantly more than "binary energy minimiza­
tion". Chapter 5.4 shows that graph cuts provide a viable geometric framework 
for approximating continuous hypersurfaces on N-dimensional manifolds. This 
geometric interpretation of graph cuts is widely used in applications for com­
puting globally optimal separating hypersurfaces. Finally, Chapter 5.5 presents 
generalized (non-binary) graph cuts techniques applicable to exact or approxi­
mate minimization of multi-label energies. In the last decade, such non-binary 
graph cut methods helped to significantly raise the bar for what is considered a 
good quality solution in many early vision problems. 

5.2 Graph Cuts Basics 

First, we introduce some basic terminology. Let Q = (V, £̂ ) be a graph which 
consists of a set of nodes V and a set of directed edges S that connect them. The 
nodes set V = {s,t)\JV contains two special terminal nodes, which are called 
the source, s, and the sink, t, and a set of non-terminal nodes V. In Figure 5.1(a) 
we show a simple example of a graph with the terminals s and t. Such N-D grids 
are typical for applications in vision and graphics. 

Each graph edge is assigned some nonnegative weight or cost w{p, q). A cost 
of a directed edge (p, q) may differ from the cost of the reverse edge [q,p). An 
edge is called a t-link if it connects a non-terminal node in V with a terminal. An 
edge is called a n-link if it connects two non-terminal nodes. A set of all (directed) 
n-links will be denoted by M. The set of all graph edges E consists of n-links in 
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(a) A graph Q (b) A cut on Q 

Figure 5.1. Graph construction in Greig et. al. [362]. Edge costs are reflected by thickness. 

M and t-links {(5,p), (p, t)) for non-terminal nodes p eV.ln Figure 5.1 t-links 
are shown in red and blue, while n-links are shown in yellow. 

5.2.1 The Min-Cut and Max-Flow Problem 

An s/t cut C (sometimes we just call it a cut) is a partitioning of the nodes in the 
graph into two disjoint subsets S and T such that the source s is in S and the sink 
t is in T. Figure 5.1(b) shows one example of a cut. The cost of a cut C — {S, T] 
is the sum of costs/weights of "boundary" edges (p, q) such thatp G S and q eT. 
If (p, q) is a boundary edge, then we sometimes say that cut C severs edge (p, q). 
The minimum cut problem is to fiind a cut that has the minimum cost among all 
cuts. 

One of the fundamental results in combinatorial optimization is that the mini­
mum s/t cut problem can be solved by finding a maximum flow from the source 
s to the sink t. Speaking informally, maximum flow is the maximum "amount of 
water" that can be sent from the source to the sink by interpreting graph edges as 
directed "pipes" with capacities equal to edge weights. The theorem of Ford and 
Fulkerson [324] states that a maximum flow from s to t saturates a set of edges 
in the graph dividing the nodes into two disjoint parts {«S, T) corresponding to a 
minimum cut. Thus, min-cut and max-flow problems are equivalent. In fact, the 
maximum flow value is equal to the cost of the minimum cut. 

5.2.2 Algorithms for the Min-Cut and Max-Flow Problem 

There are many standard polynomial time algorithms for min-cut/max-flow[217]. 
These algorithms can be divided into two main groups: "push-relabel" style meth­
ods [350] and algorithms based on augmenting paths. In practice the push-relabel 
algorithms perform better for general graphs. In vision applications, however, 
the most common type of a graph is a two or a higher dimensional grid. For 
the grid graphs, Boykov and Kolmogorov [110] developed a fast augmenting 
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path algorithm which often significantly outperforms the push relabel algorithm. 
Furthermore, its observed running time is linear. 

While the (sequential) algorithm in [110] is very efficient, with the execution 
time of only a few seconds for a typical problem, it is still far from real time. A 
possible real time solution may come from a GPU acceleration that has become 
popular for improving the efficiency of algorithms allowing parallel implementa­
tions on pixel level. Note that push-relabel algorithm can be run in parallel over 
graph nodes [350]. In the context of image analysis problems, graph nodes typ­
ically correspond to pixels. Thus, pixel based GPU architecture is a seemingly 
perfect match for accelerating push-relabel algorithm for computing graph cuts in 
vision and graphics. This is a very promising direction for getting applications of 
graph cuts up to real time. 

5.3 Graph Cuts for Binary Optimization 

In this section we concentrate on graph cuts as a binary optimization tool. In 
fact, min-cut/max-flow algorithms are inherently binary techniques, and so bi­
nary problems constitute the most basic case for graph cuts. In Section 5.3.1 we 
discuss the earliest known example where graph cuts were used in vision, which 
also happens to be a particularly clear binary problem. The example illustrates 
that graph cuts can effectively enforce spatial coherence on images. Section 5.3.2 
presents the general case of binary energy minimization with graph cuts. 

5.3.1 Example: Binary Image Restoration 

The earliest use of graph cuts for energy minimization in vision is due to Greig 
et.al. [362]. They consider the problem of binary image restoration. Given a binary 
image corrupted by noise, the task is to restore the original image. This problem 
can be formulated as a simple optimization over binary variables corresponding 
to image pixels. In particular, [362] builds a graph shown in Figure 5.1(a) where 
non-terminal nodes p e V represent pixels while terminals 5 and t represent two 
possible intensity values. To be specific, source s will represent intensity 0 and 
sink t will represent intensity 1. Assume that I{p) is the observed intensity at pixel 
p. Let Dp{l) be a fixed penalty for assigning to pixel p some "restored intensity" 
label / G {0,1}. Naturally, if I{p) = 0 then Dp{0) should be smaller than Dp{l), 
and vice versa. To encode these "observed data" constraints, we create two t-
links for each pixel node in Figure 5.1. The weight of t-link {s,p) is set to jDp(l) 
and the weight of (p, t) is set to Dp{0). Even though t-link weights should be 
non-negative, the restriction Dp >0 for data penalties is not essential. 

Now we should add regularizing constraints that help to remove image noise. 
Such constraints enforce spatial coherence between neighboring pixels by min­
imizing discontinuities between them. In particular, we create n-links between 
neighboring pixels using any (e.g. 4- or 8-) neighborhood system. The weight of 
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these n-links is set to a smoothing parameter A > 0 that encourages a minimum 
cut to sever as few n-links as possible. 

Remember that a cut C (Figure 5.1(b)) is a binary partitioning of the nodes 
into subsets S and T. A cut can be interpreted as a binary labeling / that assigns 
labels /p G {0,1} to image pixels: if j ; G 5 then fp = 0 and if p e T then 
fp = 1. Obviously, there is a one-to-one correspondence between cuts and binary 
labelings of pixels. Each labeling / gives a possible image restoration result. 

Consider the cost of an arbitrary cut C = {S, T } . This cost includes weights 
of two types of edges: severed t-links and severed n-links. Note that a cut severs 
exactly one t-link per pixel; it must sever t-link (p, t) if pixel p is in the source 
component p e S or t-link (s,p) if pixel p is in the sink component p £ T. 
Therefore, each pixel p contributes either Dp{0) or Dp{l) towards the t-link part 
of the cut cost, depending on the label fp assigned to this pixel by the cut. The cut 
cost also includes weights of severed n-links (p, q) G AT. Therefore, 

The cost of each C defines the "energy" of the corresponding labeling / : 

E{f):=\C\=Y^Dp{fp) + A. ^ J ( / , = 0,/, = l), (5.1) 

where X(-) is the identity function giving 1 if its argument is true and 0 otherwise. 
Stated simply, the first term says that pixel labels fp should agree with the ob­
served data while the second term penalises discontinuities between neighboring 
pixels. Obviously, a minimum cut gives labeling / that minimizes energy (5.1). 

Note that parameter A controls the relative importance of the data constraints 
versus the regularizing constraints. Note that if A is very small, an optimal labeling 
assigns each pixel p a label fp that minimizes its own data cost Dp{fp). In this 
case, each pixel chooses its own label independently from the other pixels. If A is 
big, then all pixels must choose one label that has a smaller average data cost. For 
intermediate values of A, an optimal labeling / should correspond to a balanced 
solution with compact spatially coherent clusters of pixels who generally like the 
same label. Noise pixels, or outliers, should conform to their neighbors. 

Before [362], exact minimization of energies like (5.1) was not possible. Re­
searches still used them, but had to approach them with iterative algorithms like 
simulated annealing [341]. In fact, Greig et.al. published their result mainly to 
show that in practice simulated annealing reaches solutions very far from the 
global minimum even in simple binary cases. Unfortunately, the result of Greig 
et.al. remained unnoticed in the vision community for almost 10 years probably 
because the binary image restoration looked too restrictive as an application. 
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(a) a cut on a 2D grid (b) a cut and a separating hypersurface in 3D 

Figure 5.2. s-t cut on a grid corresponds to binary partitioning of N-D space where the grid 
is embedded. Such space partitioning may be visualized via a separating hypersurface. 
As shown in (a), multiple hypersurfaces may correspond to the same cut. However, such 
hypersurfaces become indistinguishable as the grid gets finer. 

5.3.2 General Case of Binary Energy Minimization 

In general, graph construction as in Figure 5.1 can be used for other binary "la­
beling" problems. Suppose v ê are given a penalty Dp{l) that pixel p incurs when 
assigned label / G C — {0,1} and we need to find a spatially coherent binary 
labeling of the whole image. We may wish to enforce spatial regularization via 
some global energy function that generalizes (5.1) 

p e p (p,«)6Ar 

(5.2) 

The question is: can we find a globally optimal labeling / using some graph cut 
construction? There is a definitive answer to this question for the case of binary 
labelings. According to [491], a globally optimal binary labeling for (5.2) can be 
found via graph cuts if and only if the pairwise interaction potential V^̂  satisfies 

^p,(o, 0) + v ; , ( i , 1) < Fp,(o, 1) + Fp,(i, 0) 

which is called the regularity condition. The theoretical result in [491] is construc­
tive and they show the corresponding graph. It has the same form as the graph of 
Greig et.al. in Figure 5.1, however, edge weights are derived differently. 

5.4 Graph Cuts as Hypersurfaces 

Solution of many problems in vision, image processing and graphics can be rep­
resented in terms of optimal hypersurfaces. This section describes a geometric 
interpretation of graph-cuts as hypersurfaces in N-D manifolds that makes them 
an attractive framework for problems like image segmentation, restoration, stereo, 
photo/video editing, texture synthesis, and others. 
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We show a basic idea allowing s-t cuts to be viewed as hypersurfaces, discuss 
interesting theories that make various connections between discrete graph cuts 
and hypersurfaces in continuous spaces, and we also provide a number of recently 
published examples where a hypersurface view of graph cuts has led to interesting 
applications in computer vision, medical imaging, or graphics. 

5.4.1 Basic idea 

Consider two simple examples in Figure 5.2. Throughout Section 5.4 we assume 
that a graph has no "soft" t-links, that is the source and the sink terminals are 
directly connected only to some of the graph nodes via infinity cost t-links. In 
fact, all nodes hardwired to two terminals can be effectively treated as multiple 
sources and multiple sinks that have to be separated by a cut. Figure 5.2 shows 
these sources and sinks in dark red and dark blue colors. Such sources and sinks 
provide hard constraints or boundary conditions for graph cuts; any feasible cut 
must separate sources from sinks. Other nodes are connected to the sources and 
sinks via n-links. 

Without loss of generality (see Section 5.4.2), we can concentrate on feasible 
cuts that partition the simple 4- and 6- nearest neighbor grid-graphs in Figure 5.2 
into two connected subsets of nodes: source component and sink component. Con­
tinuous 2D and 3D manifolds where the grid nodes are embedded can be split into 
two disjoint contiguous regions, one containing the sinks, and the other containing 
the sources. A boundary between two such regions are separating hypersurfaces 
shown in green color. As illustrated in Figure 5.2(a), there are many separating 
hypersurfaces that correspond to the same cut. They should all correctly separate 
the grid nodes of the source and the sink components, but they can "freely move" 
in the space between the grid nodes. Without getting into mathematical details, 
we will identify a class of all hypersurfaces corresponding to a given cut with 
a single hypersurface. In particular, we can choose a hypersurface that follows 
boundaries of "grid cells", or we can choose "the smoothest" hypersurface. Note 
that the finer the grid, the harder it is to distinguish two separating hypersurfaces 
corresponding to the same cut. 

Thus, any feasible cut on a grid in Figure 5.2 corresponds to a separating hy­
persurface in the embedding continuous manifold. Obviously, the opposite is also 
true; any separating hypersurface corresponds to a unique feasible cut. General­
ization of examples in Figure 5.2 would establish correspondence between s — t 
graph-cuts and separating hypersurfaces in case of "fine" locally connected grids 
embedded in N-D spaces. Following ideas in [109], one can set a cost (or area) 
of each continuous hypersurface based on the cost of the corresponding cut. This 
defines a cut metric introduced in [109] for continuous N-D manifold embedding 
a graph. By changing weights of n-links at graph nodes located in any particular 
point in space, one can tune local costs of all separating hypersurfaces that pass 
through such locations. In practical applications a cut metric can be easily tuned 
to attract (repel) hypersurfaces to (from) certain locations on N-D manifolds. A 
cut metric is a simple, yet sufficiently general tool. In particular, according to 
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(a) connected source segment (b) disjoint source segments 

Figure 5.3. Separating hypersurfaces can have different topological properties for the same 
set of hard constraints. Separating hypersurfaces in (a) and (b) correspond to two distinct 
feasible s — t cuts. Min-cut/max-flow algorithms compute a globally optimal hypersur-
face/cut without any restrictions on its topological properties as long as the sources and the 
sinks are separated. 

[109] a cut metric on 2D and 3D manifolds can approximate any given continu­
ous Riemannian metric. Finally, standard combinatorial algorithms for computing 
minimum cost s-t cuts (see Section 5.2.2) become numerical tools for extracting 
globally optimal separating hypersurfaces. 

5.4.2 Topological properties of graph cuts 

The adjective "separating" implies that a hypersurface should satisfy certain hard 
constraints or boundary conditions; it should separate source and sink grid cells 
(seeds). Note that there are many freedoms in setting boundary conditions for 
graph cuts. Depending on hard constraints, topological properties of separating 
hypersurfaces corresponding to s — t cuts may vary. 

For example, we can show that the boundary conditions in Figure 5.2 guarantee 
that any feasible cut corresponds to topologically connected separating hypersur­
face. For simplicity, we assume that our graphs are connected, that is, there are 
no "islands" of disconnected nodes. In Figure 5.2 all source and all sink nodes 
form two connected components. In such cases a minimum cost cut must par­
tition the graph into exactly two connected subsets of nodes; one containing all 
sources and the other containing all sinks. Assuming that the minimum cost cut 
creates three or more connected components implies that some of these compo­
nents contain neither sources, nor sinks. This contradicts minimality of the cut; 
linking any "no-source/no-sink" subset back to the graph corresponds to a smaller 
cost feasible cut. 

Examples in Figure 5.3 illustrate different topological properties for separat­
ing hypersurfaces in more general cases where multiple disjoint components of 
sources and sinks (seeds) are present. Note that feasible s — t cuts may pro­
duce topologically different separating hypersurfaces for the same set of boundary 
conditions. 
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In fact, controlling topological properties of separating hypersurfaces by setting 
up appropriate hard constraints is frequently a key technical aspect of applications 
using graph cuts. As discussed in Section 5.4.3, appropriate positioning of sources 
and sinks is not the only tool to achieve desired topology. As shown in Figure 5.4, 
certain topological properties of separating hypersurfaces can be enforced via 
infinity cost n-links. 

5.4.3 Applications of graph cuts as hypersurfaces 

Below we consider several examples from recent publications where graph cuts 
are used as a method for extracting optimal hypersurfaces with desired topological 
properties. 

Methods for object extraction [107, 96, 683, 903] take full advantage of topo­
logical freedom of graph-cut based hypersurfaces. In particular, they allow to 
segment objects of arbitrary topology. The basic idea is to set as sources (red 
seeds) some image pixels that are known (a priori) to belong to an object of in­
terest and to set as sinks (blue seeds) some pixels that are known to be in the 
background. A separating hypersurface should coincide with a desirable object 
boundary separating object (red) seeds from background (blue) seeds, as demon­
strated in Figure 5.3. A cut metric can be set to reflect image gradient. Pixels 
with a high image gradient would imply a low cost of local n-links and vice 
versa. Then, minimal separating hypersurfaces tend to adhere to object bound­
aries with high image gradients. Another practical strength of object extraction 
methods based on graph cuts is that they provide practical solutions for organ 
extraction problems in N-D medical image analysis [107]. One Hmitation of this 
approach to object extraction is that it may suffer from a bias to "small cuts", but 
this can often be resolved with proper constraining of the solution space. 

Stereo was one of the first applications in computer vision where graph cuts 
were successfully applied as a method for optimal hypersurface extraction. Two 
teams, Roy&Cox [693, 692] and Ishikawa&Geiger [425], almost simultaneously 
proposed two different formulations of the stereo problem where disparity maps 
are interpreted as separating hypersurfaces on certain 3D manifolds. Their key 
technical contribution was to show that disparity maps (as optimal hypersurfaces) 
can be efficiently computed via graph cuts. 

For example, Roy&Cox [693, 692] proposed a framework for stereo where 
disparity maps are separating hypersurfaces on 3D manifolds similar to one in 
Figure 5.2(b). Points of this bounded rectangular manifold are interpreted as 
points in 3D "disparity space" corresponding to a pair of rectified stereo images. 
This disparity space is normally chosen with respect to one of the images, so 
that each 3D point with coordinates {x, y, d) represents correspondence between 
pixel (x, y) in the first stereo image and pixel {x H- d, y) in the second image. 
Then, solution of stereo problem is a hypersurface d = f{x,y) on 3D manifold 
in Figure 5.2(b) that represents a disparity map assigning certain disparity d to 
each pixel (x, y) in the first image. Note that hypersurface d = f{x, y) separates 
the bottom and the top (facets) of 3D manifold in Figure 5.2(b). Then, an optimal 
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S 
(a) Infeasible folding in [693, 692] (b) Infeasible folding in [425] 

Figure 5.4. Graph-cuts approach allows to impose certain additional topological constraints 
on separating hypersurfaces, if necessary. For example, [426, 111] proposed infinity cost 
directed n-links, shown in brown color in (a), that forbid folds on separating hypersurfaces 
in Figure 5.2. In particular, a hypersurface in Figure 5.2(b) without such folds corresponds 
to a disparity map d = f{x, y) according to [693, 692]. Also, [425] impose monotonic-
ity/ordering constraint on their disparity maps by adding infinity cost directed n-links (in 
brown color) that make illegal topological folds shown in (b). For clarity, examples in (a) 
and (b) correspond to single slices of 3D manifolds in Figure 5.2(b) and 5.5(a). 

disparity map can be computed using graph cuts as an efficient discrete model for 
extracting minimal separating hypersurfaces. 

According to [693], cut metric on 3D "disparity space" manifold in Fig­
ure 5.2(b) is set based on color consistency constraint between two stereo 
cameras. Weights of n-links at node (x, y, d) are set as follows: if intensities of 
pixels (x, y) and (x + d, y) in two cameras are similar then the likelihood that two 
pixels see the same 3D object point is high and the cost of n-links should be small. 
Later, [426, 692, 111] suggested anisotropic cut metric where vertical n-links are 
based on the same likelihoods as above but horizontal n-links are fixed to a con­
stant encouraging smoother disparity maps that avoid unnecessary disparity level 
jumps. 

In general, separating hypersurfaces in Figure 5.2(b) can have folds that would 
make them inappropriate as disparity maps d — f{x,y). If a minimum hypersur­
face computed via graph cuts has a fold then we did not find a feasible disparity 
map. Therefore, [426, 111] propose a set of hard constraints that make topologi­
cal folds (see Figure 5.4(a)) prohibitively expensive. Note that additional infinity 
cost vertical n-links (directed down) make folds infeasible. This topological hard 
constraint takes advantage of the "directed" nature of graph cuts; a cost of a cut 
includes only severed directed edges that go from the (red) nodes in the source 
component to the (blue) nodes in the sink component. A cut with an illegal fold 
in Figure 5.4(a) includes one infinity cost n-link. 

Ishikawa&Geiger [425] also solve stereo by computing optimal separating hy­
persurfaces on a rectangular 3D manifold. However, their interpretation of the 
manifold and boundary conditions are diflferent. As shown in Figure 5.5(a), they 
interpret a separating hypersurface 2; = /(x,;//) as a "correspondence mapping" 
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left image ;̂  c'ip 1 -V clip 2 

(a) Hypersurface as correspondence (b) Hypersurface separates two video clips 

Figure 5.5. Two more examples of graph cuts as separating hypersurfaces. Formulation 
of stereo problem in [425] computes pixel correspondences represented by a separating 
hypersurface on a 3D manifold in (a). A smooth transition between two video clips is 
performed in [499] via graph cuts computing globally optimal separating hypersurface in 
a 3D region of overlap between two clips in (b). 

between pixels p — {x,y) in the left image and pixels q — {f{x,y),y) in 
the right image (of a rectified stereo pair). Assignment of correspondences may 
be ambiguous if a hypersurface has folds like one in Figure 5.4(b). In order to 
avoid ambiguity, [425] introduce monotonicity (or ordering) constraint that is en­
forced by directed infinity cost n-links shown in brown color. Note that a cut in 
Figure 5.4(b) severs two brown n-links that go from a (red) node in a source com­
ponent to a (blue) node in a sink component. Thus, the cost of the cut is infinity 
and the corresponding separating hypersurface with a fold becomes infeasible. 

Similar to [693, 692], the cut metric on manifold in Figure 5.5(a) is based on 
color consistency constraint: a 3D points {x,y,z) on the manifold has low n-link 
costs if intensity of pixel (x, y) in the left image is close to intensity of pixel (z, y) 
in the right image. Note that hyperplanes parallel to diagonal crossection (from 
bottom-left to top-right comers) of manifold in Figure 5.5(a) give correspondence 
mappings with constant stereo disparity/depth levels. Thus, spatial consistency of 
disparity/depth map can be enforced with anisotropic cut metric where diagonal n-
links (from left-bottom to right-top comer) are set to a fixed constant representing 
penalty for jumps between disparity levels. 

Another interesting example of graph-cuts/hypersurface framework is a method 
for video texture synthesis in [499]. The technique is based on computing a seam­
less transition between two video clips as illustrated in Figure 5.5(b). Two clips 
are overlapped in 3D (pixel-time) space creating a bounded rectangular manifold 
where transition takes place. A point in this manifold can be described by 3D co­
ordinates [x,y,t) where p = (x, t/) is a pixel and t is time or video frame number. 
The transition is represented by a separating hypersurface t = f{x,y) that speci­
fies for each pixel when to switch from clip I to clip 2. During transition a frame 
may have a mix of pixels from each clip. The method in [499] suggest a specific 
cut metric that for each point {x,y,i) in the overlap region depends on intensity 
difference between two clips. Small difference indicates a good moment (in space 
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and time) for seamless transition between the clips and n-links at such {x.y^t) 
points are assigned a low cost. Note that "seamless transition" is a purely visual 
effect and it may be achieved with any separating hypersurface in Figure 5.5(b). 
In this case there is no real need to avoid hypersurfaces with "folds" which would 
simply allow pixels to switch between clip 1 and clip 2 a few times. 

5.4.4 Theories connecting graph-cuts and hypersurfaces in R^ 

In this section we discuss a number of known results that established theoretically 
solid connections between cuts on discrete graphs and hypersurfaces in contin­
uous spaces. It has been long argued in computer vision hterature that discrete 
algorithms on graphs, including graph cuts, may suffer from metrication artifacts. 
Indeed, 4- and 6- nearest neighbor connections on 2D and 3D grids may produce 
"blocky" segments. Such geometric artifacts are due to "Manhattan distance" met­
rication errors. It turns out that such errors can be easily corrected, resolving 
the long-standing criticism of graph cuts methods. Boykov&Kolmogorov [109] 
showed that regular grids with local neighborhood systems of higher order can 
produce a cut metric that approximates any continuous Riemannian metric with 
arbitrarily small error. Using powerful results from integral geometry, [109] shows 
that weights of n-links from a graph node embedded at point p of continuous N-D 
manifold are solely determined by a given N x N positive-definite matrix D{p) 
that defines local metric/distance properties at point p according to principles of 
Riemannian geometry. This result is quite intuitive as weights of n-links at this 
graph node define local measure for area/distance for hypersurfaces according to 
the corresponding cut metric. It is also interesting that results in [109] apply to ar­
bitrary Riemannian metrics including anisotropic cases where local metric could 
be direction-sensitive. 

So far in Section 5.4 we followed the general approach of [109] where hy­
persurfaces on N-D manifolds have implicit representation via cuts on embedded 
graphs. As illustrated in Figure 5.2, a cut only "impHes" a separating hypersur­
face. A specific hypersurface can be obtained through additional conventions, as 
discussed in Section 5.4.1. More recently, [477] proposed an explicit approach 
to hypersurface representation by graph cuts that, in a way, is dual to [109]. The 
basic idea in [477] is to bisect a bounded N-D manifold with a large number 
of (random) hyperplanes. These hyperplanes divide the manifold into small cells 
(polyhedra) which can be thought of as irregular voxels. Then, [477] build an ir­
regular "random-grid" graph where each cell is represented by a node. Two cells 
are connected by an n-link if and only if they touch through a common facet. 
Clearly, there is a one-to-one correspondence between a set of all n-links on the 
graph and a set of all facets between cells. A cut on this graph explicitly represents 
a unique hypersurface formed by facets corresponding to severed n-links. Obvi­
ously, a cost of any cut will be equal to the area of the corresponding hypersurface 
(in any metric) if weights of each n-link is equal to the area of the correspond­
ing facet (in that metric). Thus, the model for representing hypersurfaces via 
graph-cuts in [477] can be applied to any metric. In their case, min-cut/max-flow 



Graph Cuts in Vision and Graphics: Theories and Applications 91 

algorithms will compute a minimum separating hypersurface among all explicitly 
represented hypersurfaces satisfying given boundary conditions. 

Cuts on a graph in [477] represent only a subset of all possible hypersurfaces on 
an embedding manifold. If one keeps bisecting this bounded manifold into finer 
cells then the number of representable hypersurfaces increases. [477] proves that 
bisecting the manifold with a countably infinite number of random hyperplanes 
would generate small enough cells so that their facets can represent any contin­
uous* hypersurface with an arbitrarily small error. This demonstrates that their 
approach to graph-cut/hypersurface representation is also theoretically solid. 

Intuitively speaking, theoretical results in [109] and [477] imply that both ap­
proaches to representing continuous hypersurfaces via discrete graph cuts models 
have reasonable convergence properties and that minimum cost cuts on finer 
graphs "in the limit" produce a minimum separating hypersurfaces for any given 
metric. Results such as [109] and [477] also establish a link between graph cuts 
and variational methods such as level-sets [729, 616, 702, 617] that are also 
widely used for image segmentation. 

There is (at least) one more interesting theoretical result linking graph cuts 
and hypersurfaces in continuous spaces that is due to G. Strang [767]. This result 
was established more than 20 years ago and it gives a view somewhat different 
from [109,477]. Strang describes a continuous analogue of the min-cut/max-flow 
paradigm. He shows that maximum flow problem can be redefined on a bounded 
continuous domain n in the context of a vector field f{p) representing the speed 
of a continuous stream/flow. A constraint on discrete graph flow that comes from 
edge capacities is replaced by a "speed limit" constraint \f{p)\ < c{p) where 
c is a given non-negative scalar function .̂ Discrete flow conservation constraint 
for nodes on a graph has a clear continuous interpretation as well: a continu­
ous stream/flow is "preserved" at points inside the domain if vector field / is 
divergence-free divf — 0. Strang also gives appropriate definition for sources 
and sinks on the boundary of the domain-'. Then, the continuous analogue of 
the maximum flow problem is straightforward: find a maximum amount of water 
that continuous stream / can take from sources to sinks across the domain while 
satisfying all the constraints. 

The main topic of this sections connects to [767] as follows. Strang defines a 
"real" cut on H as a hypersurface 7 that divides the domain into two subsets. The 
minimum cut should separate sources and sinks and have the smallest possible 
cost J c which can be interpreted as a length of hypersurface 7 in isotropic metric 
defined by a scalar function c. Strang also establishes duality between continuous 
versions of minimum cut and maximum flow problems that is analogous to the 
discrete version established by Ford and Fulkerson [324]. On a practical note, 

Apiece-wise twice differentiable, see [477] for more details. 
^More generally, it is possible to set an anisotropic "speed limit" constraint J{p) G c(p) where c 

is some convex set defined at every point p G ri. 
^Sources and sinks can also be placed inside the domain. They would correspond to points in U 

where divf is non-null, t.e. where stream / has an in-flow or out-flow. 
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a recent work by Appleton&Talbot [28] proposed a finite differences approach 
that, in the limit, converges to a globally optimal solution of continuous min-
cut/max-flow problem defined by Strang. Note, however, that they use graph cuts 
algorithms to "greatly increase the speed of convergence". 

5.5 Generalizing Graph Cuts for Multi-Label Problems 

In this section, we show that even though graph cuts provide an inherently bi­
nary optimization, they can be used for multi-label energy minimization. In some 
cases, minimization is exact, but in more interesting cases only approximate min­
imization is possible. There is a direct connection between the exact multi-label 
optimization and a graph cut as a hypersurface interpretation of Section 5.4. 
We begin by stating the general labeling problem, then in Section 5.5.1 we de­
scribe the case when optimization can be performed exactly. Finally, Section 5.5.2 
describes the approximate minimization approaches and their quality guarantees. 

Many problems in vision and graphics can be naturally formulated in terms 
of multi-label energy optimization. Given a set of sites V which represent pix­
els/voxels, and a set of labels C which may represent intensity, stereo disparity, a 
motion vector, etc., the task is to find a labeling / which is a mapping from sites 
V to labels £. Let fp be the label assigned to site p and / be the collection of such 
assignments for all sites in V. 

We can use the same general form of energy (5.2) that was earlier introduced 
in the context of binary labeling problems. The terms Dp{l) are derived from the 
observed data and it expresses the label preferences for each site p. The smaller 
the value of Dp{l), the more likely is the label / for site p. Since adding a con­
stant to Dp{l) does not change the energy formulation, we assume, without loss 
of generality, that Dp{iys are nonnegative. The pairwise potential Vpq{lpy Iq) ex­
presses prior knowledge about the optimal labeling / . In general, prior knowledge 
can be arbitrarily complex, but in graph cuts based optimization, we are essen­
tially limited to different types of spatial smoothness priors. Typically Vpq{lp, Iq) 
is a nondecreasing function of ||/p — lq\\^. Different choices of Vpq{lp, Iq) imply 
different types of smoothness, see Sections 5.5.1 and 5.5.2 . 

5.5.1 Exact Multi-Label Optimization 

In this section, we describe the only known case of exact multi-label minimiza­
tion of energy (5.2) via graph cuts. The corresponding graph construction is not 
covered by the general theoretical result in [491], which applies to binary label­
ing cases only. We have to make the assumption that labels are linearly ordered. 
This assumption limits the applicability of the method. For example, it cannot be 
directly used for motion estimation, since motion labels are 2 dimensional and 

"̂ Here we used the norm 11 • 11 notation because, in general, Ip may be a vector 
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t^ 

Figure 5.6. Part of the graph construction for energy minimization in 5.3 , |£| = 4 

cannot be linearly ordered^. Without loss of generality, assume that labels are in­
tegers in the range C = {1,...,A;}. Let Vpq = \pq\fp - fq\. Then the energy 
is: 

E{f) = J2^pifp)+ E Vl/P-Z.l. (5.3) 
per {p,q)eM 

In vision, [425, 111] were the first to minimize energy (5.3) with a minimum 
cut on a certain graph Q. In fact, this graph is topologically similar to a graph 
of Roy&Cox [693] where separating hypersurface on 3D manifold gives a stereo 
disparity map, see Section 5.4.3. 

The graph is constructed as follows. As usual, vertices V contain terminals 5 
and t. For each site p, create a set of nodes pi, ...,pfc_i. Connect them with edges 
{tf, . . . ,^^}, where t? = {s,pi), f^ = {pj-i,pj), and tl = {pk-i,t). Each edge 
t^ has weight Kp + Dp{j), where Kp = 1 -\- {k - 1) YjqeM^ \q- Here Np is 
the set of neighbors of p . For each pair of neighboring sites p, q and for each 
j G { l , . . . , A ; - l } , create an edge (p^, QJ) with weight \pq. Figure 5.6 illustrates 
the part of G which corresponds to two neighbors p and q. For each site p, a cut 
on Q severs at least one edge t^^. The weights for ti^ are defined sufficiently large 
so that the minimum cut severs exactly one of them for each p. This establishes a 
natural correspondence between the minimum cut and an assignment of a label to 
p. If the minimum cut severs edge t\, assign label i to p. It is straightforward to 
show that the minimum cut corresponds to the optimum /[111]. 

Ishikawa [424] generalized the above construction to minimize any energy 
function with convex V^g's. His construction is similar to the one in this section, 
except even more edges between p^'s and g '̂s have to be added. Unfortunately, 
a convex Vpq is not suitable for the majority of vision applications, especially if 
the number of labels is large. Typically, object properties tend to be smooth every­
where except the object boundaries, where discontinuities may be present. Thus in 
vision, a piecewise smooth model is more appropriate than the everĵ where smooth 
model. However using a convex Vpq essentially corresponds to the everywhere 
smooth model. The penalty that a convex Vpq imposes on a sharp jumps in labels 
is so large, that in the optimal / discontinuities are smoothed out with a "ramp". 
It is much cheaper to create a few small jumps in / rather than one large jump. 

^Iterative application of the algorithm described here was used for motion in [694] 
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Figure 5.7. From left to right: a labeling / , a labeling within one standard move of / (the 
changed site is highlighted by a black circle), labeling within one green-yellow swap of / , 
labeling within one green expansion of / . 

Of all the convex Vpq, the one in (5.3) works best for preserving discontinuities. 
Nevertheless in practice, it oversmooths disparity boundaries [837]. 

5.5.2 Approximate Optimization 

The potential Vpq in the previous section is not discontinuity preserving because 
Vpq is allowed to grow arbitrarily large. One way to construct a discontinuity pre­
serving Vpq is to cap its maximum value. Perhaps the simplest example is the 
Potts model Vpq = Xpq • I{fp ^ fq) [113]. We have already seen Potts Vpq in 
Section 5.3.1^, and it corresponds to the piecewise constant prior on / . Unfortu­
nately, energy minimization with Potts Vpq is NP-hard [113], however graph cuts 
can be used to find an answer within a factor of 2 from the optimum [113]. 

In this section, we describe two approximation methods, the expansion and 
the swap algorithms [113]. According to the results in [491], the swap algorithm 
may be used whenever Vpq{a, a) + Vpq{l3, (3) < Vpq{a, P) + Vpq{P, a) for all 
a, ^ G C, which we call the swap inequality. The expansion algorithm may be 
used whenever ^^^(a, a)+V^g(/?, 7) < Vpq{a,y)-\-Vpq{P,a) for alia,/S^'y G C, 
which we call the expansion inequality. Any Vpq which satisfies the expansion 
inequality also satisfies the swap inequality, hence the expansion inequality is 
more restrictive. 

Both swap and expansion inequalities admit discontinuity preserving Vpq's. 
The truncated linear Vpq{ajP) — mm(T, | |a - P\\) satisfies the expansion in­
equality. The truncated quadratic Vpq{a^l3) = min{T,\\a - PW^) satisfies the 
swap inequality. Here T is a positive constant, which is the maximum penalty 
for a discontinuity. The truncated linear and truncated quadratic Vpq correspond 
to a piecewise smooth model. Small deviations in labels incur only a small 
penalty, thus the smoothness is encouraged. However sharp jumps in labels are 
occasionally permitted because the penalty T is not too severe to prohibit them. 

În the binary case, it is typically called the Ising model. 
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5.5.2.1 Local Minimum with Respect to Expansion and Swap Moves 

Both the expansion and the swap algorithms find a local minimum of the energy 
function. However, in discrete optimization, the meaning of "a local minimum" 
has to be defined. For each / , we define a set of moves M/ . Intuitively, these are 
the moves to other labelings that are allowed from / . Then we say that / is a local 
minimum with respect to the set of moves, if for any / ' E M/ , E{f) > E{f). 
Most discrete optimization methods (e.g. [341, 81]) use standard movQS, defined 
as follows. Let / / ( / , / ' ) be the number of sites for which / and / ' differ. Then 
for each / , standard moves are M/ — {f\H{f,f) < 1}. Thus a standard move 
allows to change a label of only one site in / , and hence \Mf\ is linear in the 
number of sites, making it is easy to find a local minimum with respect to the 
standard moves. The result, however is very dependent on the initial point since a 
high dimensional energy has a huge number of such local minima. In particular, 
the solution can be arbitrarily far from the global minimum. 

We now define the swap moves. Given a labeling / and a pair of labels a and 
P, a move / " ^ is called an a-/? swap if the only difference between / and / " ^ 
is that some sites that were labeled a in / are now labeled P in / " ^ , and some 
sites that were labeled Pin f are now labeled a in / " ^ . Mf is then defined as the 
collection of a-P swaps for all pairs of labels a,P e C 

We now define the expansion moves. Given a labeling / and a label a, a move 
/ ^ is called an a-expansion if the only difference between / and f^ is that some 
sites that were not labeled a in / are now labeled a in Z"'. Mf is then defined 
as the collection of a-expansions swaps for all labels a e C. Figure 5.7 shows 
an example of standard move versus a-expansion and a-P swap. Notice that a 
standard move is a special case of an a-expansion and a a-P swap. However 
there are a-expansion moves which are not a-P swaps and vice versa. 

The expansion (swap) move algorithm finds a local minimum with respect to 
expansion (swap) moves. The number of expansion (swap) moves from each la­
beling is exponential in the number of sites. Thus direct search for an optimal 
expansion (swap) move is not feasible. This is where graph cuts are essential. It 
is possible to compute the optimal a-expansion or the optimal a-p swap with 
the minimum cut on a certain graph. This is because computing an optimal a-
expansion (optimal a-P swap) is a binary minimization problem which happens 
to be regular [491] when the expansion (swap) inequality holds. 

The expansion (swap) algorithms are iterative. We start with an initial labeling 
/ . We then cycle in random order until convergence over all labels a e C (pairs 
ofa.pe C\ find the optimal / " (/"^) out of all a-expansions (a-y5-swaps), and 
change current labeling to / " ( /"^) . Obviously this cannot lead to an increase in 
energy, and at convergence we found the local minimum with respect to expansion 
(swap) moves. Thus the key step is how to find the optimal a-expansion (a-p 
swap), which is performed by finding a minimum cut on a certain graph Q = 
(V, S). The actual graph constructions can be found in [113]. 

The criteria for a local minimum with respect to the expansions (swaps) are 
so strong that there are significantly fewer of such minima in high dimensional 
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spaces compared to the standard moves. Thus the energy function at a local min­
imum is likely to be much lower. In fact, it can be shown that the local minimum 
with respect to expansion moves is within a constant factor of optimum. The best 
approximation is in case of the Potts model, where this factor is 2. It is not surpris­
ing then that most applications based on graph cuts use the expansion algorithm 
with the Potts model [111, 88, 489,490, 895,499, 521, 403, 10, 900]. 



Chapter6 

Minimal Paths and Fast Marching 
Methods for Image Analysis 
L. Cohen 

Abstract 
We present an overview of part of our work on minimal paths. Introduced 
first in order to find the global minimum of active contours' energy using 
Fast Marching [210], we have then used minimal paths for finding multiple 
contours for contour completion from points or curves in 2D or 3D images. 
Some variations allow to decrease computation time, make easier initializa­
tion and centering a path in a tubular structure. Fast Marching is also an 
efiicient way to solve balloon model evolution using level sets. We show 
applications like for road and vessel segmentation and for virtual endoscopy. 

6.1 Introduction 

Deformable models have been the object of considerable studies and variations 
since their introduction in [456]. Most of the approaches that were introduced 
since then tried to overcome the main drawbacks of this model: initialization, min­
imization and topology changes. The model requires the user to input an initial 
curve close to the goal. Using the balloon model [204] allows a less demanding 
initialization. Level sets approaches have the same property [152, 538, 157]. A 
region-based approach (for example [207,205]) also makes the solution less sen­
sitive to local minima and initialization. Also, a priori knowledge included in a 
parametric deformable model (for example [51,203]) allows to be more robust. 

However, for images like the one in figure 6.4, a very precise initialization is 
needed to avoid the active contour being trapped by an insignificant local mini­
mum of the energy [205, 204]. In order to find a global minimum fior the energy, 
authors of [210] have introduced a minimal path approach. This is based on previ­
ous work by [472, 469] in a different framework. Curve initialization is replaced 
by just giving two endpoints. The numerical method has the advantages of be-
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ing consistent (see [210]), fast and efficient, using the Fast-Marching algorithm 
introduced in [730]. 

This chapter contains various improvements of the original method, relevant 
in 2D or 3D. Some of the problems we dealt with for segmentation and contour 
extraction, finding trajectories and perceptual grouping are presented in this paper 
as follows: 

• Minimal path between two points: The solution proposed in [209,210] with 
Fast Marching is reviewed in Section 6.2. 

• Minimal paths between an ordered list of points or a given set of pairs of 
points is a simple application of the previous case. 

• Minimal paths for a given unstructured set of points: we propose a way to 
find pairs of linked neighbors and paths between them [206] (Section 6.3). 

• Minimal paths between an unknown set of key points to be determined from 
a larger set of admissible points [206]. 

• Minimal paths for an unstructured set of connected components, by extend­
ing the previous approaches to determine pairs of regions to be linked. [266] 
(Section 6.4). 

• Segmentation of 2D and 3D tubular and tree structures [264, 265] (sections 
6.4 et 6.5). 

• Finding a centered path inside a tubular structure and application to virtual 
endoscopy [264] (section 6,6). 

6.2 Minimal Paths 

6.2.1 Geometrical optics 

In order to understand Fermat Principle which is the physical interpretation of 
minimal paths described afterwards, we illustrate light propagation in two simple 
cases. 

According to Fermat Principle, the path followed by monochromatic light to 
go from a point po to a point pi is the path which takes least time. In the case of 
an homogeneous medium, light speed is constant, and thus light follows a straight 
line, since shortest time is proportional to distance, as seen on figure 6.1-left. Sets 
of points that are reached at a given time are circles. 

Let us now consider a non homogeneous medium composed of two ho­
mogeneous regions separated by a horizontal line in the middle, like in 
Figure 6.1-middle. Assuming that light speed is larger in the bottom rectangle, 
the trajectory will "prefer" to remain in this rectangle as much as possible. As 
a consequence, trajectories are submitted to a refraction effect, as seen on a few 
trajectories shown in the figure. Angles between the two lines and the normal to 
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Figure 6.1. Cost function by front propagation and minimal paths for a potential with one 
or two values. See text. 

the interface between the two media satisfy Snell-Descartes'law (ratio of their 
sines is equal to the ratio of refraction indices). The refraction index n > 1 is the 
ratio between light speed in emptiness c and its speed in the considered medium 
V. From this definition, travel time T between two points is the integral along the 
followed path of the inverse of the speed ^ = 7. The followed path is a minimum 
for T = ^ P^ nds. The Eikonal equation (see section 6.2.4) was obtained for this 
minimization by Hamilton, as a special case of Hamilton-Jacobi equations. 

One of the trajectories shown again on figure 6.1-right illustrates the well 
known mirage effect. Light source S is visible from points Ri et R2. But the 
path followed between S and R2 is not a straight line, since light "prefers" going 
through the smaller refraction index area to go faster. This is a common phe­
nomenon when temperature variations are large enough between the ground and 
atmosphere, making believe an observer at R2 there is an oasis in the desert. Sim­
ilarity will be obvious in the following sections where active contours potential P 
takes the same place as refraction index n. 

6.2.2 Global Minimum for active contours 

We present in this section the basic ideas of the method introduced in [210] to 
find the global minimum of the active contour energy using minimal paths. The 
energy to minimize is similar to classical deformable models (see [456]) where it 
combines smoothing terms and image features attraction term: 

E{C)=jjw,\\C'{s)t+W2\\C"{s)t+P{C{s))}ds (6.1) 

where C{s) represents a curve drawn on a 2D image and H is its domain of def­
inition. The method of [210] improves energy minimization since the problem is 
transformed in a way allowing to find the global minimum. 

6.23 Problem formulation 

As explained in [210], skipping second order term, we are lead to minimize 

E{C) = / 
jn=(o,L] 

{w + P{C{s))}ds, (6.2) 
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Figure 6.2. On the left, the potential is defined to be minimal on the ellipse. In the middle, 
the minimal action or weighted distance to the marked point. On the right, minimal path 
using backpropagation from the second point. 

where s is the arclength parameter ( | |C(s) | | = 1). The regularization of this 
model is now achieved by the constant w > 0 (see [210] for details). Given 
a potential P > 0, the energy is like a distance weighted by P = P -i- w. The 
minimal action U is defined as the minimal energy integrated along a path between 
starting point po and any point p: 

U{p) = inf E{C) = inf | ^ P ( C ( s ) ) d s | (6.3) 

where Ap^^^p is the set of all paths between po and p. The minimal path between 
Po and any point pi in the image can be easily deduced from this action map by 
a simple back-propagation (gradient descent on U) starting from pi until po is 
reached. This backpropagation step is made possible due to the fact that U has no 
local minimum except point po, therefore the descent converges to po for any pi . 
More accurate gradient descent methods like Runge-Kutta midpoint algorithm or 
Heun's method can be used. 

6.2.4 Fast Marching Resolution 

In order to compute U, a front-propagation equation related to Eqn. (6.3) is solved: 

dt = -̂  n . It evolves a front C starting from an infinitesimal circle shape around 
Po until each point inside the image domain is assigned a value for ZY. The value of 
l({p) is the time t at which the front passes over p. The Fast Marching technique, 
introduced in [730], was used in [209, 210] noticing that the map U satisfies the 
Eikonal equation || V^ | | = P and U{po) = 0. The relation with this equation 
will be explained in section 6.5. Since classic finite difference schemes for this 
equation are unstable, an up-wind scheme was proposed by [730]: 

(max{tfc - Ui-ij,u - ZYi+i,j,0})^+ 

{mdix{u -Uij-i.u -Uij^i.O})'^ = Pfy 
(6.4) 

The improvement made by the Fast Marching is to introduce order in the selection 
of the grid points. This order is based on the fact that information is propagat­
ing outward, because the action can only grow due to the quadratic Eqn. (6.4). 
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Figure 6.3. Global minimum of active contour model. After giving two points on the left, 
the minimal path between them is found in the middle image. On the right we show the 
cost function from the start point. Notice faster propagation along the roads. Potential is 
defined as a decreasing fiinction of the gray level. 

The main idea is similar to the construction of minimum length paths in a graph 
between two given nodes introduced in [269] (see discussion in [210]). 

Complexity of Fast Marching on a grid with N nodes is bounded by 
0{N log2 N) for the Fast Marching on a grid with N nodes. The algorithm is 

Algorithm for 2D Fast Marching for minimal action U 
Definitions: 

• Ahve set: grid points at which values of U have been reached and will not be 
changed; 

• Trial set: next grid points (4-connexity neighbors) to be examined. An estimate U 
ofU is computed using Eqn. (6.4) from alive neighbors only; 

• Far set: all other grid points, there is not yet an estimate for U; 

Initialization: 

• Alive set: start point po, f/(po) —U(PQ) = 0; 

• Trial set: four neighbors p of po with initial value U{p) = P{p) {U{p) = oo); 

• Far set: all other grid points, Vi = U = oo; 

Loop: 

• Let p = (imindmin) bc the Trial point with the smallest action U; 

• Move it from the Trial to the Alive set; 

• For each neighbor (i, j ) of {imin, jminY 

- If (i, j ) is Far, add it to the Trial set; 
- If (i, j ) is Trial update Ui,j with Eqn. (6.4). 

Table 6.1. Fast Marching algorithm 

detailed in Table 6.1. Examples are shown in Fig. 6.2 to 6.4. Solving Eqn. (6.4) is 
detailed next. 
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Figure 6.4. Many minimal paths are obtained from a same start point and many end points. 
This allows extracting the set of roads in the aerial image on the left and vessels in the eye 
fundus image on the right. 

6,2.5 2D Up- Wind Scheme 

Notice that for solving Eqn. (6.4), only values of alive neighbor points are con­
sidered (Table 6.1). Considering the neighbors of grid point (i, j ) in 4-connexity, 
we note {Ai, ^42} and {Bi, B2} the two couples of opposite neighbors such that 
we get the ordering U{Ai) < U(A2), U{Bi) < U{B2), and U{Ai) < U{Bi). 
Considering that we have u>U{Bi) > ZY(i4i), the equation derived is 

{u-U{A,)f + {u-U{B^)f = Pl^ (6.5) 

Based on testing the discriminant A of Eqn. (6.5), one or two neighbors are used 
to solve it: 

1. liPi,j > U{Bi) - ZY(^i), solution of Eqn. (6.5) is 
W(Bi)+W(Ai) + J 2 p 2 -(i^(Bi)-W(yii))2 

U= ^L^ . 

2. Q\SQU=^U{AI)-\- Pi^j. 

6.2.6 Minimal Paths in 3D 

A 3D extension of the Fast Marching algorithm was presented in [264]. 
Similarly to previous section, the minimal action U is defined as U{p) = 

inf^p^ p < / ^ P{C{s))ds > where Ap^^p is now the set of all 3D paths between 
Po and p. Given a start point po, in order to compute U we start from an initial in­
finitesimal spherical front around po- The 2D scheme of equation (6.4) is extended 
to 3D, leading to: 

(max{u - Ui-ij^k,u -ZYi+i,j,A;,0})^(max{ix - Ui^j-i^k,u -^i,j+i,fc,0})^ 

+(max{^x -ZYi,̂ -,A:_i,w -iY^j,fc+i,0})^ = Pf^^^^ (6.6) 

giving the correct viscosity-solution u for Ui^j^k- An example is given in figure 
6.13 of section 6.6. 
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Figure 6.5. (a) Simultaneous propagation: The left image is the data set, used as potential 
to extract a path in a vessel. In the middle, the action map is obtained from the first point 
till second point is reached. The right image shows the action map resulting from a simul­
taneous propagation from both extremities points, and the two paths from the intersection 
point, (b) Simultaneous estimate of the path length. On the left, potential; In the middle, 
minimal action map; on the right, length of the minimal path. These maps are computed 
only until a given length is reached. 

6.2.7 Simultaneous Front Propagation 

The idea is to propagate simultaneously a front from each end point po and pi 
[264]. Let us consider the first grid point p where those fronts meet. This point 
has to be on the minimal path between po and pi. Since during propagation the 
action can only grow, propagation can be stopped at this step in order to make 
backpropagation. Adjoining the two paths, respectively between po and p, and pi 
and p, gives an approximation of the exact minimal action path between po and 
pi. Since p is a grid point, the exact minimal path might not go through it, but in 
its neighborhood. Precise location can be obtained through interpolation between 
grid points like in [643]. This algorithm is described in table 6.2. This approach 

Algorithm 

• Compute the minimal action maps Uo and Ui to respectively po and pi until the 
two fronts have an Alive point p2 in common; 

• Compute the minimal path between po and p2 by back-propagation on Uo from p2; 

• Compute the minimal path between pi and p2 by back-propagation on Ui from p2; 

• Join the two paths found. 

Table 6.2. Minimal Path from two action maps 
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allows a parallel implementation of the two propagations. Also, the region covered 
by Fast Marching is greatly reduced (see Figure 6.5.a). 

6.2.8 Simultaneous estimate of the path length 

Notations 

• a start point po is manually set; 

• the minimal energy map C/, a min-heap Hu and a potential image P; 

• a distance map D to compute the Euclidean length of the minimal path ; 

• a min-heap HD, where the ordering key for any point p is the value of D(j)) (the 
first element of this heap will be the Trial point with smallest D); 

Initialization 

• initialize the front propagation method, by setting U{po) = D{po) = ^ and storing 
po in both min-heaps Hu and HD\ 

Loop: at each iteration, consider pmin the Trial point with smallest U 

• Move it to Alive set, and remove it from both Hu and Ho 

• for each neighbor p oipmin -

- proceed according to the classical Fast Marching algorithm: update U{p) and 
re-balance 7-̂  c/; 

- update D{p) according to ||VD|| = 1 using the same neighbors of p that 
were involved in updating U{p) and re-balance HD 

Table 6.3. Computing the Euclidean Distance traveled by the front. 

In some cases, like for giving extremities in a 3D image, it is easier for the user 
to give only one start point and the second should be found automatically. We now 
describe an approach which builds a path given a starting point and a given path 
length to reach [264]. We are able to compute simultaneously at each point of the 
front energy U of the minimal path and its length. The end point is then chosen 
as the first point that reach the expected length. Propagation is stopped when this 
point is reached and minimal path is computed from it. Since the front propagates 
faster along small values of the potential, the interesting paths are longer among 
all paths which have same minimal action U. When the front propagates in a 
tubular structure, all points who reach first the given length are in a same region 
of the image, far from the starting point and inside the tubular shape. This gives a 
justification for this choice of end point (see Figure 6.5.b). 

Once the path is extracted by gradient descent, we can easily compute its length. 
But this is a very time consuming process to systematically do this at each point 
visited. Therefore we proposed to compute on-the-fly an approximation of the 
distance traveled by the front. We use the property that when propagating a front 
with a constant speed equal to one, the minimal energy obtained at each point 
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Figure 6.6. Ellipse. From left to right: potential is an incomplete ellipse and points -pk are 
given; level sets of minimal action U from p/c's; zoom on a saddle poinV, backpropagation 
from selected saddle points to their two source points give the set of paths and voronoi 
diagram. 

represents the Euclidean distance D to the starting point. The Euclidean length of 
the path is found solving || VZ)|| = 1 using v^ith the same neighbors involved for 
P in Eqn. (6.5). The corresponding algorithm is described in table 6.3. This algo­
rithm v^as used for reducing user-intervention in the Virtual Endoscopy process 
presented in section 6.6 by giving only one point [264]. 

6.3 Minimal paths from a set of endpoints pk 

Minimal paths between points pk, minimal action V = 2Y{p̂  o<fc<iv} 

• Initialization: 

- pfc's are given; \fk,V{pk) = 0]l{pk) = kis the front index, pk alive. 
- Vp ^ {pk}^y{p) = 00; KP) — ~li p is far except 4-connexity neighbors 

of pfc's that are trial with estimate U using Eqn. (6.4). 

• Loop for computing V = U{p^ ,o<k<N} -

- Let p = {imin,jmin) bc the Trial point with the smallest action U; 
- Move it from the Trial set to the Alive set with V(p) = U(p); 
- Update l{p) with the same index as point Ai in formula (6.5). If l{Ai) ^ 

l{Bi) and we are in case 1 of section 6.2.5 where both points are used 
and if this is the first time regions of labels l{Ai) and l{Bi) meet, 
^{Pi{Ai),Pi(Bi)) = pis set as the saddle point between pf(yij) andpK^Bi)- If 
these points have not yet two linked neighbors, they are put as linked neigh­
bors and S{pi(Ai)yPi(Bi)) = P is selected, 
For each neighbor (i, j) of (iminjmin): 

* If (i, j ) is Far, add it to the Trial set; 
* If (i, j) is Trial, update action Ui^j. 

• Obtain all paths between selected linked neighbors by backpropagation each way 
from their saddle point. 

Table 6.4. Algorithm for unstructured set of points. 
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Figure 6.7. Two circles: from left to right: incomplete noisy data set; the set of found pk's; 
multiple minimal paths between pk 's. 

Multiple minimal paths 

We propose to use the minimal path approach to extract a set of contours from 
an unstructured set of points given on an image. In order to find the set of most 
representative contours on the image, we are looking for minimal paths between 
pairs of points. We describe briefly the method when points pk are already known. 
An approach to automatically find points pk that are most representative among 
a larger set of admissible points was introduced in [206], based on an iterative 
farthest point strategy relative to the weighted distance. Such a strategy was used 
later on to find adaptive or uniform remeshing of a surface using fast marching 
[643]. 

We assume here that points pk are known. If we knew as well which pairs of 
points have to be linked among pk 's, finding all contours is a trivial application of 
section 6.2. The problem we are interested in here is also to find out which pairs of 
points have to be connected by a contour. Since the set of points pk's is assumed 
to be given unstructured, we do not know in advance how the points connect. This 
is the key problem that is solved here using a minimal action map. 

The main goal of our method is to obtain all significant paths joining the given 
points. However, each point should not be connected to all other points, but only 
to those that are closer to them in the energy sense. There are many possibilities 
to decide which pairs of points have to be linked. It depends on data and on the 
application in view. In some cases, it is necessary to detect closed curves and 
avoid bifiircation, or T-junctions. The criterion is then to constrain a point pk to 
be linked to at most two other points among pj^5, in order to generate a closed 
curve. In case we are looking for tree structures, the criterion is different, as in 
section 6.4. 

For perceptual grouping, potential P to be minimized along the paths is often a 
binary image of edge points, that form incomplete contours, as on figure 6.6-left. 
Attraction potential to the set of edge points can be defined (see [208]) in order to 
have lower values along edge points and higher values in the background. 

Main ideas of the approach 

Our approach is similar to computing the distance map to a set of points and their 
Voronoi diagram. However, we use here a weighted distance defined through the 
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Figure 6.8. From left to right: examples of regions to link; level sets of the minimal action 
from the 4 regions; minimal paths obtained from the 3 selected saddle points. 

potential P. This distance is obtained as the minimal action with respect to P with 
zero value at all points pk. Instead of computing a minimal action map for each 
pair of points, as in Section 6.2.3, we only need to compute one minimal action 
map in order to find all paths. At the same time the action map is computed we 
determine the pairs of points that have to be linked together by finding meeting 
points of the propagation fronts. These are saddle points of the minimal action U. 

Although the minimal action is computed using fast marching, the level sets 
of U give the evolution of the firont. During the fast marching algorithm, the 
boundary of the set of alive points also gives the position of the firont. 

Figure 6.6 illustrates the steps of the algorithm. Figure 6.7 shows the result with 
points pk found automatically. More details can be found in [206]. 

6.4 Multiple minimal paths between regions Rk 

We consider perceptual grouping and contour completion from an unstructured 
set of regions in a 2D or 3D image. As an extension of previous section 6.3, 
complete curves are obtained as minimal paths between pairs of regions [266]. 
This approach is extended to finding a set of minimal paths that connect a set of 
3D regions in 3D images. This makes use of Fast-Marching in a 3D image, as in 
section 6.2.6 [264, 263]. 

Minimal path between 2 regions 

Defining a minimal path between two regions is an easy extension of [210]. Con­
sider two connected regions, the start region RQ and the set of end points Ri. The 
problem is finding a minimal path among all paths starting from a point in RQ and 
ending on Ri. Minimal action is then defined as: 

U{p) = inf E{C) = inf inf E{C) (6.7) 

where An^^p is the set of paths starting from a point in RQ and ending at p. This 
is computed using Fast Marching as in table 6.1, with initial set of Aiive points 
being RQ, with U = O.ln order to find a minimal path between Ri and RQ, we 
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Figure 6.9. Perceptual grouping in the 3D aorta image: MIP view of vascularity potential; 
detection of regions in the aorta; vascular tree completion by minimal paths relatively to 
vascularity potential. 

determine a point pi G Ri such that U{pi) = minp^R^ ^(p)- We then make 
backpropagation frompi to RQ. 

Tubular structures 

Linking regions can be useful when these regions are for example connected com­
ponents obtained after edge detection. In the example of Fig. 6.8, v^hich represent 
a tree structure, regions are selected in a v^ay that they do not form together a 
closed curve. In medical imaging, finding vessels is a very important problem. 
Regions can then be defined from thresholding a vascularity criterion of [326] to 
detect tubular regions in a vessel image. In Figure 6.9, v ê show^ a MIP viev^ of 
the vascularity potential [326] obtained from 3D MRI of the aorta v^ith contrast 
product. We obtain a set of regions by thresholding the multiscale criterion. Our 
method helps completing these region and finding the structure of the vascular 
tree. 

6.5 Segmentation by Fast Marching 

Several approaches are possible to segment the boundary surface of an object 
starting from points inside. We can use for example a balloon model [204] or its 
level-sets implementation, as in [538]. In fact, this kind of region growing method 
can also be solved fast using the Fast Marching algorithm [535]. This allov^s 
to make a segmentation step in the same framework as minimal path finding. 
Having searched for the minimal action from one point, the algorithm provides 
the following regions: 

• Inside : the points whose action is set, labeled Alive; 

• Outside : the points not yet examined, labeled Far; 

• the points at the interface between Alive and Far points, whose actions are 
not set, labeled Trial 
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Figure 6.10. Propagation inside colon using Fast Marching. 

This last region, on the boundary of the visited points, is a contour in 2D and 
a surface in 3D. If the potential is a lot higher along edges than it is inside the 
shape, the edges will act as an obstacle to the front propagation. In this case the 
Trial points define a surface which segments the object. 

In order to see the precise relation between fast marching propagation and ac­
tive contours, consider the usual evolution equation of an interface (2D curve or 
3D surface) that appears in level sets methods ^{p) — F{K)n and C{p,0) = 
Co{p). Assume the speed F = -̂  > 0, and thus the front moves always outwards 
in the normal direction n, like an inflating balloon [204], but with a speed which is 
not necessarily constant. A way to characterize the interface is to compute at each 
point X of the image the arrival time T(x) of the interface C{t) when it sweeps 
the domain. Using the classical properties of a level set of T that its normal is 
in the direction of VT, the following equation is obtained from the evolution of 
interface C{t): 

T{C{x, t)) = t ^ VT • Ci = 1 ̂  VT • ^W^) = ̂ "^-ii'^''" = ^ 

where we recognize the Eikonal equation seen above in section 6.2.4. This equa­
tion was thus solved by fast marching in [535] for surface segmentation since 
it has the same advantages as the level set formulation, but is much faster. This 
equation is solved using 3D Fast Marching (see section 6.2.6) in the example for 
segmentation of the colon shown in figure 6.10, [264]. 

When the front propagates in a long and thin structure for which the potential 
contrast between inside and outside is not sufficient, the front will likely flood out 
of the object during propagation. Indeed, when the front propagates in the tubular 
structure, there is only a small part of the front, which we could call the "head" 
of the front, that really moves. Most of the front is located close to the boundary 
of the structure and moves very slowly. For example voxels that are close to the 
starting point, the "tail" of the front, are moving very slowly. However, since the 
structure may be very long, in order for the "head" voxels to reach the end of 
the structure, the "tail" voxels may flow out of the boundary since their speed is 
always positive, and integrated over a long time. This is illustrated in the example 
of Figure 6.11. 

We introduced in [265] an approach where points of the front are "frozen" when 
a distance criterion is satisfied. This makes use of the length of the minimal paths 
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Figure 6.11. Front Propagation in a 3D MR image of the aorta. On the left it floods, in the 
middle, freezing prevents flooding. On the right, virtual endoscopy in the tree structure, 
with visible paths. 

computed as in section 6.2.8. Figure 6.11 shows the result with freezing which 
gives a correct segmentation. 

6.6 Centered Minimal Paths and virtual endoscopy 

A minimal path minimizes the integral of the potential in equation (6.2). If the 
potential is constant in some areas, like inside a tubular object, it will lead to a 
shortest geodesic path. The same thing happens when the potential does not vary 
much inside a tubular shape. The minimal path extracted is often tangential to the 
edges, as shown on the left of figure 6.12, and this is a problem when looking 
for a trajectory for virtual endoscopy [264]. A centered path is more relevant. The 
method we proposed to obtain a centered path in a tubular shape first segments the 
tubular region and then looks for a path inside as far as possible from the walls, 
using a distance map. The complete method is detailed in [264], here are the main 
steps: 

1. Segmentation: compute the weighted distance map by front propagation 
from the given start point till reaching the end point, which can be found 
automatically using a length criterion of section 6.2.8. 

2. Segmentation: set of trial points, as described in section 6.5. 

3. Centering Potential: compute inside the tubular object the distance map V 
to the surface previously obtained (fast marching with P = 1). 

4. Centered path : this is the minimal path between start and end points rel­
atively to a decreasing function of the distance V. The path locates as far 
as possible from the walls, which means in the center where distance to the 
boundary is larger. The final step is to make back-propagation from the end 
point using the last action map. 

Figure 6.12 compares the resulting path with classical potential and center­
ing potential on brain vessels. Figure 6.13 shows an example of the centered 
minimal path obtained in a 3D colon image. This path is used as a trajectory 
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Figure 6.12. Centered path in a vessel: Two images on the left show both paths on a 
sketch and original image. Two images on the right show propagation and path for classical 
potential and centering distance potential obtained. 

w 
Figure 6.13. On the left, example of a minimal path on a 3D image of colon. On the right, 
virtual endoscopy through the colon (colonoscopy). 

for a virtual camera by image rendering at each point of the path from the 
3D image data giving a virtual endoscopy. Movies are available on the website 
http://www.ceremade.dauphine.fr/'"cohen/MPEG This approach can be extended 
[265] to extraction of a set of paths in a tree structure and the possibility of virtual 
endoscopy where the user can choose at each bifurcation the path he wishes to 
follow (figure 6.11). 
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6.7 Conclusion 

We have presented various aspects of minimal paths methods and their appli­
cations, in particular for medical imaging. These approaches allow to extract a 
contour or a set of contours in a 2D image, as well as tubular structures, or tree 
structures in 2D and 3D images. The Fast marching algorithm makes the task 
much easier and also allows to segment curves or surfaces in an image very fast. 
Let us quote some of our more recent related work : surface segmentation defined 
as a set of minimal paths, [30], image segmentation from a set of source points 
using an extension of the definition of minimal action [29] and fast marching on 
a triangulated surface used for adaptive remeshing [643]. 
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Integrating Shape and Texture in 
Deformable Models: from Hybrid 
Methods to Metamorphs 

D. Metaxas, X. Huang and T. Chen 

Abstract 
In traditional shape-based deformable models, the external image forces 

come primarily from edge or gradient information. Such reliance on edge 
information, however, makes the models prone to get stuck in local min­
ima due to image noise and various other image artifacts. Integrating region 
statistics constraints has been a centerpiece of the efforts tow ârd more robust, 
well-behaved deformable models in boundary extraction and segmentation. 
In this chapter, we review previous work on the loose coupling of boundary 
and region information in two major classes of deformable models: the para­
metric models and the geometric models. Then, we propose a new class of 
deformable shape and texture models, which we term "Metamorphs". The 
novel formulation of the Metamorph models tightly couples shape and inte­
rior texture and the dynamics of the models are derived in a unified manner 
from both boundary and region information in a variational framework. 

7.1 Introduction 

Automated image segmentation is a fundamental problem in computer vision 
and medical image analysis applications. Object texture, image noise, intensity 
inhomogeneity and variations in lighting, to name a few, add to the problem 
complexity. To address these difficulties, deformable model-based segmentation 
methods have been extensively studied and widely used, with promising results. 

Deformable models are curves or surfaces that move under the influence of in­
ternal smoothness and external image forces. In the literature, there are two major 
classes of deformable models. The first is the parametric (explicit) deformable 
models that explicitly represent deformable curves and surfaces in their paramet­
ric form during the segmentation process. Examples are Active Contour Models 
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[455] and their extensions in both 2D and 3D [562, 756, 208, 558, 255, 631, 
887]. The evolution of these parametric models is derived either in a energy-
minimization process [455, 897] or through a dynamic-force formulation [208]. 
The energy-minimization formulation has the advantage that its solution satisfies 
a minimum principle; while the dynamic force formulation provides the flexibil­
ity of applying different types of external forces onto the deformable model. The 
external forces can be potential forces such as image forces, non-potential forces 
such as balloon forces, and the combination of both. The other class of deformable 
models is the geometric (impHcit) deformable models [155, 538, 908, 902, 174]. 
These models represent curves and surfaces implicitly as the level set of a higher-
dimensional scalar function [728, 617], and the model evolution is based on 
the theory of curve evolution, with speed function specifically designed to in­
corporate image information. Comparing the two classes of deformable models, 
the parametric deformable models have a compact representation, and allow fast 
implementation, while the geometric deformable models can handle topological 
changes naturally. 

Although the parametric and geometric deformable models differ both in their 
formulations and in their implementations, both classes use primarily edge (im­
age gradient) information to derive external image forces to drive a shape-based 
model. Such reliance on edge information, however, makes the models sensitive 
to image noise and various other image artifacts. For instance, a model may leak 
through small or large gaps on the object boundary, or it may get stuck in local 
minima due to spurious edges inside the object or clutter around the true boundary. 

To address these limitations, there have been significant efforts in the literature 
to integrate region information into both parametric [680, 922] and geometric de­
formable models [626, 841, 807]. The integration frameworks however, are still 
imperfect. In the case of parametric models, region information and boundary in­
formation are often treated separately in different energy minimization processes, 
thus parameters of region intensity statistics can not be updated simultaneously 
with the boundary shape parameters. In the case of geometric models, the integra­
tions are mostly based on solving reduced cases of the minimal partition problem 
in the Mumford and Shah model for segmentation [591]. Variational frameworks 
are proposed to unifying boundary and region-based information sources, and 
level set approaches are used to implement the resulting PDE systems. However, 
these frameworks assume piecewise constant, or Gaussian intensity distributions 
within each partitioned region. This limits their applicability and robustness in 
finding objects whose interiors have high noise level, intensity inhomogeneity, 
and/or complex multi-modal intensity distributions. 

In this chapter, we focus on presenting the work from our group on the integra­
tion of region statistics constraints into shape-based deformable models, which 
includes: (1) a hybrid framework that loosely couples a region-based module 
and a boundary deformable model-based module, and (2) Metamorphs, a recently 
developed new class of deformable models that possess both shape and interior 
texture and integrate boundary and region information in a unified manner within 
a variational framework. 
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In [181], we proposed a hybrid segmentation framework which integrates a 
region-based segmentation module driven by Gibbs prior models, a boundary-
based module using deformable models and the marching cubes method which 
connects these two modules. The region-based and boundary based modules work 
recursively: The region segmentation results are used to initialize the deformable 
model and the deformable fitting results are used to update the parameters of the 
region segmentation. This way, the two modules can help each other out of local 
minima. The quality of the segmentation output also improves when we update 
the Gibbs model's parameters using more accurate region and boundary informa­
tion at the end of each iteration. To accommodate 3D segmentation applications, 
we integrate the marching cubes method into our method, which can construct 
deformable meshes based on 3D binary masks. 

One limitation in the hybrid framework, however, is that the region information 
and the boundary/shape information are still treated separately instead of being in­
tegrated in driving model deformations. To utilize information from both sources 
in a unified manner, we have developed, recently, a new class of deformable 
models called "Metamorphs" [412]. 

Metamorphs integrate dynamically shape and interior texture. The resulting la-
grangian formulation is derived from both boundary and region information based 
on a novel variational framework. These new models bridge the gap between para­
metric and geometric deformable models by borrowing the best features of both 
worlds. The model shapes are embedded in a higher dimensional space of dis­
tance transforms, thus represented by distance map "images". (This is similar to 
the implicit shape representation in geometric level-set based models). The model 
deformations are efficiently parameterized using a space warping technique, the 
cubic B-spline based Free Form Deformations (FFD) [22, 51,413]. ' The interior 
intensity statistics of the models are captured using nonparametric kernel-based 
approximations, which can represent complex multi-modal distributions. When 
finding object boundaries in images, the dynamics of the Metamorph models are 
derived from an energy functional consisting of both edge (which encodes gra­
dient information) and region intensity energy terms. In our formulation, both 
types of energy terms are differentiable with respect to the model deformation pa­
rameters. This allows for a unified gradient-descent based deformation parameter 
updating paradigm using both boundary and region information. Furthermore, 
our Metamorph model deformations are constrained in such way that the interior 
statistics of the model after deformation is consistent with the statistics learned 
from the past history of the model interiors. A Metamorph model can be initial­
ized far-away from the object boundary and efficiently converge to an optimal 
solution. The proposed energy functional enables the model to pass small spuri­
ous edges and prevents it from leaking through large boundary gaps, hence makes 
the boundary finding robust to image noise and inhomogeneity. 

'Note that we separate the shape representation, which is implicit in a higher dimension, and model 
deformation, which is explicitly parameterized by FFD. 
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In the remainder of the chapter, we will first present our hybrid segmenta­
tion framework and then the new form of deformable shape and texture models -
Metamorphs. 

7.2 Hybrid Segmentation Method 

In the framework we proposed in [181], we segment an object as follows. First 
we use the Gibbs model to get a rough binary mask of the object. Then we use the 
marching cubes method to construct the deformable mesh and make the mesh de­
form to fit the object surface using the gradient information. The Gibbs parameters 
need to be updated from iteration to iteration to improve the segmentation re­
sults. By doing so, we integrated the region information into deformable models. 
In the following, we present the modules that comprise the hybrid segmentation 
approach. 

7.2.1 Gibbs Models 

Most medical images are Markov Random Field images, that is, the statistics of 
a pixel in the medical image are related to the statistics of pixels in its neighbor­
hood. According to the Equivalence Theorem proved by Hammersley and Clifford 
[379], a Markov Random Field is equivalent to a Gibbs field under certain restric­
tions. Therefore the joint distribution of a medical image with MRF property can 
be written in the Gibbsian form as follows. 

n ( X ) = Z-^ exp{-H{X)) (7.1) 

where X is the set of all possible configurations of the image X, z is an image in 
the set of X, Z — X^^GX ^^P{~^{^)) is a normalizing factor, and H{X) is the 
energy function of image X. The local and global properties of MRF images are 
incorporated into the model by designing an appropriate energy function H{X) 
and minimizing it. The lower the value of the energy function, the better the image 
fits to the prior distribution. Therefore the segmentation procedure corresponds to 
the minimization of the energy function. 

Hj^rioriX) = H,{X) + H2{X) (7.2) 

where Hi{X) models the piecewise pixel homogeneity statistics and H2{X) 
models the object boundary continuity. In general, the homogeneity term Hi{X) 
has a smoothing effect on pixels inside the object and will leave boundary features 
beyond the threshold unchanged. The boundary continuity term in the energy 
function H2{X) has the following form: 

N 

sex i=i 
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Figure 7.1. Clique definitions: cliques can be classified into clique types of a) smooth 
boundary, b) smooth boundary with angle, c) smooth boundary in diagonal direction, d) 
object interior, e) outside the object, f) irregular boundaries or noisy regions. Pixels labelled 
1 are in the object, while pixels labelled 0 are out of the object. 

where s is a pixel, ^2 is the weight term for the boundary continuity, Â  is the 
number of local configurations, and Wi{s) are weight functions (also called the 
potential functions) of local configurations. In our model, the potential functions 
are defined on a neighborhood system based on cliques with the size of 3 by 3 
pixels. There are altogether 2^ possible local configurations in a clique including 
3 by 3 pixels. We can classify them into 6 clique types. Among these 6 types, three 
of them contain configurations at smooth boundaries (Fig.7.1.a, .b, .c), one type 
for the homogeneous region inside (Fig.T.l.d) and one for such region outside 
(Fig.T.l.e) the object respectively, and one clique type includes all local configu­
rations that lead to noisy regions or irregular boundaries (Fig.T.l.f). Cliques that 
belong to the same clique type share the same potential value. We assign lower 
potential values to clique configurations that are located at smooth and continuous 
boundaries. Therefore, when we minimize H2{X), pixels in the image (especially 
those near the boundary) will alter their intensities to form clique configurations 
of lower potentials. These alternations make the currently estimated boundaries 
smoother, the weak boundaries stronger, and extend boundaries into image re­
gions without strong gradient information. Hence the minimization of the energy 
function will lead to continuous and smooth object boundaries. 

We use the Bayesian framework to get a MAP estimation of the object region. 
In a Bayesian framework, the segmentation problem can be formulated as the 
maximization of the posterior probability P{X\Y), which can also be written as 
an energy functional: 

J^posterior [^ ? ^ j — tiprior\^ ) r ^observation\^ > ^ j (7.4) 

where Hobservation{X, Y) is the constraint from the observation of the original 
image. Using Hposterior{X, Y) instead of Hprior(X) in the energy minimization, 
we get a MAP estimation of the object region. The constraint of the observation 
will compete with the prior distribution during the minimization process. Hence 
the result of the minimization process will still be close enough to the original 
observation, while important image features, such as irregular edges, will be kept 
regardless of the prior distribution. 

The output of the Gibbs prior model includes region information so that when 
its output is used to initialized the geometric form of the deformable, the region 
information will be passed to the deformable. 
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7.2.2 Deformable models in the Hybrid Framework 

We use Gibbs models and the marching cubes method to construct the geometry of 
the deformable model, i.e, a deformable surface close to the object surface. Then 
we write the deformable model dynamics in the form of the first order Lagrangian 
equation: 

d + Kd=:fe^t (7.5) 

where d = ^ . K is the stiffness matrix, f^^t is the external force. 
According to equation (5), the deformable model deforms under the effect of 

the internal force Kd and the external force. The internal force keeps the de­
formable model surface smooth and continuous during its deformation. If the 
object boundary in the image to be segmented is weak, the internal force will 
act as a surface constraint that prevents the model from being trapped into lo­
cal minima or overflowing beyond the boundary. The external force will lead the 
model to the object surface using image information such as the gradient. 

In our framework, we use the second order derivative gradient as the external 
force. It is defined as: 

/G(x,y,z) - -VP{x,y,z) = -V{we\V[G,{x,y,z) ^ I{x,y,z)]\f (7.6) 

where I{x,y,z) is the original image, We is a positive weighting parameter, 
G(j{x,y^z) is a three dimensional Gaussian function with standard deviation a, 
V is the gradient operator, and * is the convolution operator. We use the Gaussian 
filter to blur the original image in order to remove small noisy regions and expand 
the effective range of the gradient-derived force. In a second order gradient flow 
field, all gradient vectors point to the location of edge features so that they can 
lead the model to the object surface directly. During the fitting process, we calcu­
late the dot product of the second order gradient vector and the normal vector at 
every node on the deformable surface. It yields a positive value if the model node 
locates inside the edge feature and a negative value if the model node locates out­
side. We can define the magnitude of the external force as the magnitude of the 
dot product and the direction of the force vector as the direction of the normal 
vector at the node. 

We now can calculate the derivative of displacements of every node on the de­
formable model surface using Eqn. (7.5). The displacements will then be updated 
using the Euler equation: 

^new = d • A^ + dold (7.7) 

where At is the time step. The deformation stops when the forces equilibrate or 
vanish. 
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Figure 7.2. Flow-Chart for 3D-segmentation hybrid framework. 

7.2.3 Integration of Deformable Models and Gibbs Models 

Fig. 7.2 shows internal modules and the data flow of our 3D hybrid segmentation 
framework. In the first iteration of the recursive hybrid framework, the parameters 
of the Gibbs prior models are set to default values. Using the segmentation result 
of the deformable model in the current iteration, we update the Gibbs prior pa­
rameters before restarting the Gibbs models in the following iterations to improve 
their segmentation performance. Besides updating regional parameters such as 
the mean intensity and the standard deviation of the object, we also update po­
tentials of local configurations in Eqn. (7.3). The clique potentials of the Gibbs 
Prior model are set to be proportional to the number of appearances of each type 
of cliques in the deformable model segmented binary image. 

We illustrate our hybrid segmentation framework by applying it to segment the 
tumor region in a 3D MR image volume of human brain (See Fig. 7.3). Fig. 7.3(a) 
shows one slice of the volume. The image volume size is 256 by 256 by 32 pixels 
(preprocessing has been applied to remove slices that do not contain the structure 
of interest). We use 32 2D Gibbs Prior models to create a 3D binary mask for 
the tumor region. The initial edge threshold is set to 6, the potential weight for 
smooth boundaries are set to 0.0, and the potential for other local configurations 
are set to 5.0. We then use the marching cube method to create a surface mesh 
for the deformable model to begin with. During the deformable model fitting, the 
time step is set to 0.07, and the gradient magnitude We is 1.0. The hybrid segmen­
tation process stops after two iterations. Fig. 7.3(d) shows the final segmentation 
result of the hybrid framework. For quality evaluation purposes, we overlay the 
segmentation result onto the original image 7.3(a) as in Fig. 7.3(e). We show the 
initial deformable mesh surface constructed by the marching cube method in Fig. 
7.3(f), and the 3D reconstruction of the tumor region based on final segmentation 
result in Fig. 7.3(g), (h). Notice that the segmentation result of the Gibbs model 
is improved by using updated parameters. The fact that in Fig. 7.3(g) and (h) the 
deformable model fits well at concavities and convexities proves that our hybrid 
framework has a good performance in segmenting complex object surfaces. The 
total segmentation time is about 6 minutes for 2 iterations, which is much shorter 
than the method described in [901]. 
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Figure 7.3. Segmentation of a tumor in the brain from MR image, (a) the original image; 
(b & c) the Gibbs model segmentation result in the first and second iterations; (d) the final 
segmentation result of the hybrid framework; (e) the segmentation result overlaid upon the 
original image; (f) the initial deformable surface; (g, h) 2 views of the final segmentation 
result in 3D. Data courtesy of Prof Kikinis's group at Harvard University. 

7.3 Metamorphs: Deformable Shape and Texture 
Models 

A limitation in the hybrid segmentation framework introduced in section 7.2 is 
that, the region-based module and the boundary-based module are used separately, 
thus the information from both sources are not integrated during the evolution of 
a deformable model. Furthermore, the region-based module produces an initial­
ization mesh to start a deformable model, which makes the final segmentation 
result highly dependent on this initialization. To address these limitations, we 
present our recent work [412] on a new class of deformable shape and texture 
models, which we call "Metamorphs". The formulation of Metamorphs naturally 
integrates both shape and interior texture, and the model dynamics are derived 
coherently from both boundary and region information during the whole course 
of model evolution in a common variational framework. 

7.3.1 The Metamorphs Model representations 

7.3.1.1 The Model's Shape Representation 

The model's shape is embedded implicitly in a higher dimensional space of dis­
tance transforms. The Euclidean distance transform is used to embed an evolving 
model as the zero level set of a higher dimensional distance fijnction. In order 
to facilitate notation, we consider the 2D case. Let $ : fi —> R^ be a Lipschitz 
function that refers to the distance transform for the model shape M. The shape 
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defines a partition of the domain: the region that is enclosed by M, [R-M], the 
background [Q. — I^M]^ and on the model, [SIZM] (In practice, we consider a 
narrow band around the model M in the image domain as OIZM)- Given these 
definitions the following implicit shape representation is considered: 

^Al(x) 

0, X G DUM 

+ £ ; D ( X , ; W ) >o , xeUM 

-ED{x, M)<0, X G [n - IZM] 

where ED{x,M) refers to the min EucHdean distance between the image pixel 
location x = (x, y) and the model M. 

Such treatment makes the model shape representation a distance map "image", 
which greatly facilitates the integration of boundary and region information. This 
shape representation in 3D is similarly defined in a volumetric embedding space. 

7.3.1.2 The Model's Deformations 

The deformations that Metamorph models can undergo are defined using a space 
warping technique, the Free Form Deformations (FFD) [719]. The essence of FFD 
is to deform an object by manipulating a regular control lattice F overlaid on its 
volumetric embedding space. In Metamorphs, we consider an Incremental Free 
Form Deformations (IFFD) formulation using the cubic B-spline basis [413]. 

Let us consider a regular lattice of control points 

Frn,n = {F^,n^Fl^^);m = l,...,M, n - l , . . . , i V 

overlaid to a region Tc — {x} = {{x,y)\l < x < X,l < y < y} in the em­
bedding space that encloses the model in its object-centered coordinate system. 
Let us denote the initial configuration of the control lattice as F^, and the deform­
ing control lattice as F = F^ + SF. Under these assumptions, the incremental 
FFD parameters, which are also the deformation parameters for the model, are the 
deformations of the control points in both directions (x, y): 

<i = {{SF^,„,SFl^n)h im,n) e [1,M] x [l,iV] 

The deformed position of a pixel x = (x, y) given the deformation of the control 
lattice from F^ to F, is defined in terms of a tensor product of Cubic B-spline 
polynomials: 

3 3 

D(q; x) = X -f (5D(q; ^) = J2Y1 Bk{u)Bi{v)F^^kj+i + ^^,+^,,+0 (7-8) 
A:=0 1=0 

wherei = [ f •(M-1)J+1, j = [f-(AT-1)J+L The terms of the deformation 
component refer to: 

• SFi+ij^i, {k, I) G [0,3] X [0,3] are the deformations of pixel x's (sixteen) 
adjacent control points, 
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(1) 

(2) 

(3) 
(a) (b) (c) 

Figure 7.4. The Left Ventricle Endocardium segmentation. (1) Initial model. (2) Intermedi­
ate result. (3) Final converged result, (a) The evolving model drawn in colored lines (blue 
or red) on original image, (b) Interior of the evolving model, (c) The intensity p.d.f of the 
model interior. The X axis is the intensity value in the range of [0,255] and the Y axis is 
the probability value in the range of [0,1]. (d) The image probability map based on the 
p.d.f of the model interior. 

• Bk{u) is the k^^ basis function of a Cubic B-spine, defined by: 

Bo{u) = {1- w)V6, Bi{u) = {3u^ - 6u^ + 4)/6 

B2{u) = {-Su^ + 3u^ + 3t̂  + l ) /6 , Bs{u) - u^/6 

with u = f • (M - 1) - Lf • (M - 1)J. Bi{v) is similarly defined. 

• SD{q;x) = Yll=oYlf^o^k(u)Bi{v)SFi^k,j-\-i is the incremental defor­
mation for pixel x. 

The extension of the models to account for deformations in 3D is straightfor­
ward, by using control lattices in the 3D space and a 3D tensor product of B-spline 
polynomials. 

7.3.1.3 The Model's Texture 

Rather than using traditional statistical parameters (such as mean and vari­
ance) to approximate the intensity distribution of the model interior, we model 
the distribution using a nonparametric kernel-based method. The nonparamet-
ric approximation is differentiable, more generic and can represent complex 
multi-modal intensity distributions. 

Suppose the model is placed on an image / , the image region bounded by 
current model ^M is ^M, then the probability of a pixel's intensity value i being 
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Figure 7.5. The effect of small spurious edges inside the object of interest (endocardium 
of the Left Ventricle) on the "shape image", (a) The original MR image, (b) The edge map 
of the image, (c) The derived "shape image", with edges points drawn in yellow. Note the 
effect of the small spurious edges on the "shape image" inside the object. 

consistent with the model interior intensity can be derived using a Gaussian kernel 
as: 

(7.9) 

v^here V{71M) denotes the volume OUZM^ and cr is a constant specifying the 
v^idth of the gaussian kernel. 

Using this nonparametric approximation, the intensity distribution of the model 
interior gets updated automatically v^hile the model deforms. The initialization of 
the model texture is flexible. We can either start with a small model inside the 
texture region to be segmented, or use supervised learning to specify the desired 
texture a Priori. One example of the model interior texture representation can be 
seen in [Fig. (7.4)]. In the figure, we show the zero level set of the current model 
^M iî  colored lines [Fig. (7.4).a], the model interior region IZM [Fig- C7.4).b], 
the probability density function (p.d.f.) for the intensity of current model interior 
P(^I^Ai) for ^ = 0, ...255 [Fig. (7.4).c], and the probability map of every pixel's 
intensity in the image according to the model interior distribution [Fig. (7.4).d]. 

7.3.2 The Metamorph Dynamics 

The motion of the model is driven by both boundary (edge) and region (intensity) 
energy terms derived from the image. The overall energy functional E consists of 
two parts - the shape data terms Es, and the intensity data terms Ej: 

E = Es + kEi (7.10) 

where kisa, constant balancing the contribution of the two parts. Next, we derive 
the shape and intensity data terms respectively. 

7.3.2.1 The Shape Data Terms 

We encode the gradient information of an image using a "shape image" ^ , which 
is derived from the un-signed distance transform of the edge map of the image. In 
[Fig. (7.5).c], we can see the "shape image" of an example MR heart image. 
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(a) (b) (c) (d) 

Figure 7.6. The boundary shape data term constraints at small gaps in the edge map. (a) 
Original Image, (b) The edge map, note the small gap inside the red square region, (c) The 
"shape image", (d) Zoom-in view of the region inside the red square. The numbers are the 
"shape image" values at each pixel location. The red dots are edge points, the blue squares 
indicate a path favored by the boundary term for a Metamorph model. 

To evolve a Metamorph model toward image edges, we define two shape data 
terms - an interior term Es^ and a boundary term Esf,: 

Es = Esi + <̂ 5̂b (7.11) 

In the interior shape data term of the model, we aim to minimize the 
Sum-of-Squared-Differences between the implicit shape representation values in 
the model interior and the underlying "shape image" values at corresponding 
deformed positions. This can be written as: 

^Si = 
Vi^M) 

JJ(^^(x)-^(D(q;x)))'dx (7.12) 

During optimization, this term will deform the model along the gradient direction 
of the underlying "shape image". Thus it will expand or shrink the model ac­
cordingly, serving as a two-way balloon force without explicitly introducing such 
forces, and making the attraction range of the model large. 

To make the model deformation more robust to small spurious edges detected 
within an object due to texture, we consider a separated boundary shape data 
term, which allows higher weights for pixels in a narrow band around the model 
boundary ^T^yw-

^Sb = 
1 

vmM) 
jj (^(Z)(q;x)))'cix (7.13) 

dT^M. 

Intuitively, this term will encourage the deformation that maps the model bound­
ary to the image edge locations where the underlying "shape image" distance 
values are as small (or as close to zero) as possible. One additional advantage of 
this term is that, at an edge with small gaps, this term will constrain the model to 
go along the "geodesic" path, which coincides with the smooth shortest path con­
necting the two open ends of a gap. This behavior can be seen from [Fig. (7.6)]. 
Note that at a small gap of the edge map, the boundary term will favor a path with 
the smallest accumulative distance values to the edge points. 
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Figure 7.7. Deriving the "region of interest" intensity data term, (a) The model shown 
(in yellow) on the original image, (b) The intensity probability map based on the model 
interior statistics, (c) The region of interest (ROI) derived from the thresholded probability 
map. The threshold is the mean probability over the entire image, (d) The "shape image" 
encoding boundary information of the ROI. 

7.3.2.2 The Intensity Data Terms 

In our current framework, the intensity energy function Ej consists of two in­
tensity data terms - a "Region Of Interest" (ROI) term Ej^, and a Maximum 
Likelihood term Ej : 

Ei = Ej^^ + hEj^ (7.14) 

In the "Region Of Interest" (ROI) term EJ,^,WQ aim to evolve the model toward 
the boundary of current region of interest, which is determined based on current 
model interior intensity distribution. Given a model M on image / [Fig. (7.7).a], 
we first compute the image intensity probability map P/ [Fig. (7.7).b], based on 
the model interior intensity statistics (see section 7.3.1.3). Then a small threshold 
(typically the mean probability over the entire image domain) is applied on Pj to 
produce a binary image BPj, in which pixels with probabilities higher than the 
threshold have value 1. Morphological operations are used to fill in small holes 
in BPj. We then take the connected component on this binary image overlapping 
the model as current region of interest (ROI). Suppose the binary mask of this 
ROI is BIr [Fig. (7.7).c], we encode its boundary information by computing the 
"shape image" of BIr, which is the un-signed distance transform of the region 
boundary [Fig. (7.7).d]. Denote this "shape image" as ^r, the ROI intensity data 
term is defined as follows: 

Eir = 777^ I f {^M{^) - ^ r ( / ^ (q ;x ) ) ) ' dx (7.15) 
v{nM) 

71M 

This ROI intensity data term is the most effective in countering the effect of small 
spurious edges inside the object of interest (e.g. in Figs. (7.5,7.9). It also provides 
implicit balloon forces to quickly deform the model toward object boundary. 

To achieve better convergence when the model gets close to the object bound­
ary, we design another Maximum Likelihood (ML) intensity data term that 
constrains the model to deform toward areas where the pixel probabilities of 
belonging to the model interior intensity distribution are high. This ML term is 
formalized by maximizing the log-likelihood of pixel intensities in a narrow band 
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(1) 

(2) 

Figure 7.8. Segmentation of the Endocardium of the Left Ventricle in a MR image with 
a large portion of the object boundary edge missing, (l.a) The original image, (l.b) The 
"shape image" derived from edge map. (l.c) The intensity probability map based on the 
initial model. (2.a) Initial model (zero level set shown in blue). (2.b) Intermediate model 
(zero level set shown in red). (2.c) converged model. 

around the model after deformation: 

•If. 

Elm = - VidUM 

1 

/o^P(/(D(q;x))|$^)dx 

v(c>7^^) JJa7^^ I^^^v(7?.^) ^ '^ '^^v^a 

+%j;; UM 

- (^(^(q;x) ) - / (y) )^ 
dy] dx (7.16) 

During model evolution, when the model is still far away from object bound­
ary, this ML term generates very little forces to influence the model deformation. 
When the model gets close to object boundary, however, the ML term generates 
significant forces to prevent the model from leaking through large gaps (e.g. in 
Fig. 7.8), and help the model to converge to the true object boundary. 

7.3.3 Model Evolution 

In our formulations above, both shape data terms and intensity data terms are 
differentiable with respect to the model deformation parameters q, thus a uni­
fied gradient-descent based parameter updating scheme can be derived using both 
boundary and region information. Based on the definitions of the energy func­
tions, one can derive the following evolution equation for each element q̂  in the 
model deformation parameters q: 

£ = (^-^).M?"'-+ 6 
dEi„ 

dqi ^ dc{i dqi ^ ' '"^ ^q^ ' " ^q^ 

The detailed derivations for each term can be found in [412]. 

) (7.17) 
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(1) 

(2) 

(3) 

(4) 

Figure 7.9. The tagged MR heart image, (l.a) The original image, (l.b) The edge map. 
(l.c) The edge points overlaid on original image, (l.d) The "shape image". (2) Initial 
model. (3) Intermediate result. (4) Final model (after 50 iterations). (2-4)(a) The evolv­
ing model. (2-4)(b) The model interior. (2-4)(c) The model interior intensity probability 
density. (2-4)(d) The intensity probability map of the image based on the p.d.f in (c). 

7.3.4 The Model Fitting Algorithm and Experimental Results 

The overall model fitting algorithm consists of the following steps: 

1. Initialize the deformation parameters q to be q^, which indicates no 
deformation. 

2. Compute ^ for each element q̂  in the deformation parameters q. 

3. Update the parameters q̂  = q̂  — A • ^ . 

4. Using the new parameters, compute the new model M' — D{q^] M). 

5. Update the model. Let M = M', re-compute the implicit representation 
of the model ^ ^ , and the new partitions of the image domain by the new 
model: [IZM], [̂  — ^M]J ^^^ [^'^M]- Also re-initialize a regular FFD 
control lattice to cover the new model, and update the "region of interest" 
shape image (/)r based on the new model interior. 

6. Repeat steps 1-5 until convergence. 

In the algorithm, after each iteration, both shape and interior intensity statistics 
of the model get updated based on the model dynamics, and deformation parame­
ters get re-initialized for the new model. This allows continuous, both large-scale 
and small-scale deformations for the model to converge to the energy minimum. 
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Figure 7.10. Segmenting lesion in ultrasound breast image, (a) The original ultrasound 
image, with the initial model drawn on top, (b) The shape image based on edge map of the 
image, (c) The texture likelihood map, (d) The final segmentation result. 

Some examples of using our Metamorph models for boundary finding in im­
ages have been shown in [Fig. (7.4)] and [Fig. (7.8)]. In [Fig. (7.9)], we show 
another example in which we segment the Endocardium of the left ventricle in 
a noisy tagged MR heart image. Note that, due to the tagging lines and inten­
sity inhomogeneity, the detected edges of the object are fragmented, and there are 
spurious small edges inside the region. In this case, the integration of both shape 
and texture information is critical in helping the model out of local minima. In 
[Fig. (7.10)], a metamorph model is used to extract the boundary of a lesion in an 
ultrasound image of the breast. On natural images, we show an example using the 
pepper image in [Fig. (7.11)]. Starting from a small model initialized inside the 
object, the model quickly deforms to the object boundary. 

The Metamorph model evolution is computationally efficient, due to our use of 
the nonparametric texture representation and FFD parameterization of the model 
deformations. For all the examples shown, the segmentation process takes less 
than 200?ri.s to converge on a 2Ghz PC station. 

7.4 Conclusions 

In this chapter, we have reviewed traditional shape-based deformable models, 
and introduced new frameworks that integrate region texture information into 
deformable models. 

The new class of deformable models we proposed, Metamorphs, possess both 
boundary shape and interior intensity statistics. In Metamorphs the boundary and 
region information are intergated within a common variational framework to com­
pute the deformations of the model towards the correct object boundaries. There is 
no need to learn statistical shape and appearance models a priori. In our formula­
tion, the model deformations are constrained so that the interior model statistics as 
it deforms remain consistent with the statistics learned from the past evolution of 
the model's interior. This framework represents a generalization of previous/?^ra-
metric and geometric deformable models, by exploiting the best features of both 
worlds. Segmentation using Metamorph models can be straightforwardly applied 
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Figure 7.11. Boundary finding in the pepper image, (a) Original image, with initial model 
drawn in blue, (b) The shape image derived from edge map, with edges drawn in yellow. 
(c) The intensity probability map derived based on model interior statistics, (d) Region of 
Interest (ROI) extracted, (e) Final segmentation result. 

in 3D, and can handle efficiently the merging of multiple models that are evolving 
simultaneously. 
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Chapters 

Variational Segmentation with Shape 
Priors 
M. Bergtholdt, D. Cremers and C. Schnorr 

Abstract 

We discuss the design of shape priors for variational region-based 
segmentation. By means of two different approaches, we elucidate the 
critical design issues involved: representation of shape, use of percep­
tually plausible dissimilarity measures, Euclidean embedding of shapes, 
learning of shape appearance from examples, combining shape priors and 
variational approaches to segmentation. The overall approach enables the 
appearance-based segmentation of views of 3D objects, without the use of 
3D models. 

8.1 Introduction 

Variational models [456, 591] are the basis of established approaches to image 
segmentation in computer vision. The key idea is to generate a segmentation by 
locally optimizing appropriate cost functional defined on the space of contours. 
The respective functionals are designed to maximize certain criteria regarding the 
low-level information such as edge consistency or (piecewise) homogeneity of 
intensity, color, texture, motion, or combinations thereof. 

Yet, in practice the imposed models only roughly approximate the true inten­
sity, texture or motion of specific objects in the image. Intensity measurements 
may be modulated by varying and complex lighting conditions. Moreover, the 
observed images may be noisy and objects may be partially occluded. In such 
cases, algorithms which are purely based on low-level properties will invariably 
fail to generate the desired segmentation. 

An interpretation of these variational approaches in the framework of Bayesian 
inference shows that the above methods all impose a prior on the space of contours 
which favors boundaries of minimal length. While the resulting length constraint 
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in the respective cost functionals has a strongly regularizing effect on the gen­
erated contour evolutions, this purely geometric prior lacks any experimental 
evidence. In practical applications, an algorithm which favors shorter boundaries 
may lead to the cutting of comers and the suppression of small-scale structures. 

Given one or more silhouettes of an object of interest, one can construct shape 
priors which favor objects that are in some sensQ familiar. In recent years, it was 
suggested to enhance variational segmentation schemes by imposing such object-
specific shape priors. This can be done either by adding appropriate shape terms 
to the contour evolution [513, 808] or in a probabihstic formulation which leads 
to an additional shape term in the resulting cost functional [237, 688, 573]. By 
extending segmentation functionals with a shape prior, knowledge about the ap­
pearance of objects can be directly combined with clues given by the image data 
in order to cope with typical difficulties of purely data-driven image processing 
caused by noise, occlusion, etc. 

The design of shape priors strongly depends on ongoing work on statistical 
shape models [223, 284, 459]. In particular, advanced models of shape spaces, 
shape distances, and corresponding shape transformations have been proposed 
recently [912, 336, 785, 177, 478, 736]. Concerning variational segmentation, 
besides attempting to devise "intrinsic" mathematical representations of shape, 
further objectives which have to be taken into account include the gap between 
mathematically convenient representations and representations conforming to 
properties of human perception [820, 588, 61], the applicability of statistical 
learning of shape appearance from examples, and the overall variational approach 
from the viewpoint of optimization. 

The objective of this paper is to discuss these issues involved in designing 
shape priors for region-based variational segmentation by means of two repre­
sentative examples: (i) non-parametric statistics applied to the standard Euclidean 
embedding of curves in terms of shape vectors, and (ii) perceptually plausible 
matching functionals defined on the shape manifold of closed planar curves. Both 
approaches are powerful, yet quite different with respect to the representation 
of shape, and of shape appearance. Their properties will be explained in the 
following sections, in view of the overall goal - variational segmentation. 

Section 8.2 discusses both the common representation of shapes by shape vec­
tors, and the more general representation by dissimilarity structures. The latter 
is mathematically less convenient, but allows for using distance measures which 
conform to findings of psychophysics. Learning of shape appearance is described 
in Section 8.3. The first approach encodes shape manifolds globally, whereas 
the second approach employs structure-preserving Euclidean embedding and 
shape clustering, leading to a collection of locally-linear representations of shape 
manifolds. The incorporation of corresponding shape priors into region-based 
variational approaches to segmentation is discussed in Section 8.4. 

We confine ourselves to parametric planar curves and do not consider the 
more involved topic of shape priors for implicitly defined and muhiply connected 
curves - we refer the reader to [513, 808, 187, 688, 177, 236] for promising 
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advances in this field. Nevertheless, the range of models addressed are highly 
relevant from both the scientific and the industrial viewpoint of computer vision. 

8.2 Shape Representation 

One generally distinguishes between explicit (parametric) and implicit contour 
representations. In the context of image segmentation, implicit boundary repre­
sentations have gained popularity due to the introduction of the level set method, 
which allows to propagate implicitly represented interfaces by appropriate partial 
differential equations acting on the corresponding embedding surfaces. The main 
advantages of representing and propagating contours implicitly are that one does 
not need to deal with control/marker point regridding and can elegantly (without 
heuristics) handle topological changes of the evolving boundary. 

On the other hand, explicit representations also have several advantages. In par­
ticular, they provide a compact (low-dimensional) representation of contours and 
concepts such as intrinsic alignment, group invariance and statistical learning are 
more easily defined. Moreover, as we shall see in this work, the notion of corre­
sponding contour points (and contour parts) arises more naturally in an explicit 
representation. In this work, we will only consider explicit simply-connected 
closed contours. 

8.2.1 Parametric Contour Representations, Geometric Distances, 
and Invariance 

Let 

c : [0,1] -^OcTe^ (8.1) 

denote a parametric closed contour in the image domain H. Throughout this paper, 
we use the finite-dimensional representation of 2D-shapes in terms of uniform 
periodic cubic B-splines [304]: 

M 

C{s) = Y, PmBm{s) = Pv(5) , (8.2) 

with control points {pi} and basis functions {Bi{s)}: 

P = [ p i P2 . . . PM] , Y{S) = {BI{S) B2{S) . . . BM{s)y 

Well-known advantages of this representation include the compact support of the 
basis fimctions and continuous differentiability up to second order. Yet, most of 
our results also hold for alternative explicit contour representations. 

Using the natural uniform sampling {si , . . . , SM } of the parameter interval, we 
stack together the corresponding collection of curve points, to form shape vectors 
representing the contour. For simplicity, and with slight abuse of notation, we 
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Figure 8.1. Stretching and bending of contours does not affect perceptually plausible 
matchings. 

denote them again with^: 

(8.3) 

Note, that there is a one-to-one correspondence between shape vectors c and 
corresponding control points {pi}i=i,...,M through the symmetric and sparse 
positive-definite matrix: B = (v(5i) . . . ^^{SM)) • 

We consider a simple geometric distance measure between contours which is 
invariant under similarity transformations: 

c^^(ci,C2) = min|ci - SR0C2 - t\' (8.4) 

Here, the planar rotation He and translation t are defined according to the 
definition (8.3) of shape vectors: 

R^ IM ' 
COS^ 

sin6> 
— sin^ 
cos^ 

t = [h^h,- • • ,^1,^2) 

and s is the scaling parameter. The solution to (8.4) can be computed in closed-
form [284, 459]. Extensions of this alignment to larger transformation groups 
such as affine transformations are straight-forward. Furthermore, since the loca­
tions of the starting points ci (0), €2(0) are unknown, we minimize (8.4) over all 
cyclic permutations of the contour points defining C2. 

8.2.2 Matching Functionals and Psychophysical Distance 
Measures 

It is well-known that there is a gap between distance measures with mathemati­
cally convenient properties like (8.4), for example, and distance measures which 
conform with findings of psychophysics [820]. In particular, this observation is 
relevant in connection with shapes [588]. 

Given two arc-length parametrized curves ci {t)^ C2 (5), along with a dififeomor-
phism t = g{s) smoothly mapping the curves onto each other, then corresponding 
studies [61] argued that matching functionals for evaluating the quality of the 

'in the following, it will be clear from the context whether c denotes a contour (8.1) or a shape 
vector (8.3). 
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Figure 8.2. Local matching cost. The local cost for bending of the matching functional 
(8.5) as a function of the ACI, for two values of «;2. Note how in the case 1^2 = 2, relatively 
lower costs for Â I ^2 allow for significant bending, without affecting matching too much. 

mapping g based on low-order derivatives, should involve stretching ^''(5) and 
bending (change of curvature) of the curves (cf. Figure 8.1). 

As a representative, we consider the matching functional [61]: 

E{g\ ci ,c2) 
/ 

'W2{S)-KMS))9'{S)Y 
\K2{s)\ + \KM^))g'{s)\ 

ds + \ L kwl + 1 
(is (8.5) 

where /^i(i), ^^2(5) denote the curvature functions of the contours ci,C2. The 
two terms in (8.5) take into account the bending and stretching of contours, 
respectively (see Figure 8.2). 

Functional (8.5) favors perceptually plausible matchings because it accounts 
that often objects are structured into nearly convex-shaped parts separated by con­
cave extrema. In particular, for non-rigid objects, parts are likely to articulate, and 
the matching functional produces articulation costs only at part boundaries. 

From the mathematical viewpoint, functional (8.5) is invariant to rotation and 
translation of contours, and also to scaling provided both contours are normalized 
to length one. This is always assumed in what follows below. Furthermore, by 
taking the g-th root of the integral of local costs, where q > 2.4, (8.5) defines a 
metric between contours [61]: 

c?£;(ci,C2) \=mmE{g\ ci,C2)^/^ 
9 

(8.6) 

Clearly, this distance measure is mathematically less convenient than (8.4). This 
seems to be the price for considering findings of psychophysics. However, regard­
ing variational segmentation, we wish to work in this more general setting as well. 
For a discussion of fixrther mathematical properties of matching fUnctionals, we 
refer to [806]. 

The minimization in (8.6) is carried out by dynamic programming over all 
piecewise-linear and strictly monotonously increasing functions g. Figure 8.3 
illustrates the result for two human shapes. 
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Figure 8.3. Matching by minimizing (8.5) leads to an accurate correspondence of parts of 
non-rigid objects, here illustrated for two human shapes. 

8.3 Learning Shape Statistics 

Based on the shape representations described in Section 8.2, we consider in this 
section two approaches to the statistical learning of shape appearance from ex­
amples. The common basis for both approaches are Euclidean embeddings of 
shapes. 

The first approach uses the embedding of shape vectors into Reproducing Ker­
nel Hilbert Spaces by means of kernel functions, leading to a non-parametric 
global representation of shape manifolds. The second approach uses embeddings 
of dissimilarity structures by multidimensional scaling, along with a cluster-
preserving modification of the dissimilarity matrix. Subsequent clustering results 
in a collection of local encodings of shape manifolds, and in corresponding aspect 
graphs of 3D objects in terms of prototypical object views. 

8.3.1 Shape Distances in Kernel Feature Space 

Let {cn}n=i,...,Ar ^ 7^^^ denote the shape vectors associated with a set of 
training shapes. In order to model statistical shape dissimilarity measures, it is 
commonly suggested to approximate the distribution of training shapes by a Gaus­
sian distribution, either in a subspace formed by the first few eigenvectors [223], 
or in the full 2M-dimensional space [237]. Yet, for more complex classes of 
shapes - such as the various silhouettes corresponding to different 2D views of a 
3D object - the assumption of a Gaussian distribution fails to accurately represent 
the distribution underlying the training shapes. 

In order to model more complex (non-Gaussian and multi-modal) statistical 
distributions, we propose to embed the training shapes into an appropriate Re­
producing Kernel Hilbert Space (RKHS) [851], and estimate Gaussian densities 
there - see Figure 8.4 for a schematic illustration. 

A key assumption in this context is that only scalar products of embedded shape 
vectors (/)(c) have to be evaluated in the RKHS, which is done in terms of a kernel 



Variational Segmentation with Shape Priors 137 

Figure 8.4. Gaussian density estimate upon nonlinear transformation to features space. 

function: 

i^(cl,C2) = ((^(Ci),0(c2)) (8.7) 

Knowledge of the embedding map 0(c) itself is not required. Admissible kernel 
functions, including the Gaussian kernel, guarantee that the Gramian matrix 

K={K{c„Cj)}..^ 
:i,...,Ar 

(8.8) 

is positive definite [851]. This "non-linearization strategy" has been successfully 
applied in machine learning and pattern recognition during the last decade, where 
the RKHS is called feature space. 

Based on this embedding of given training shapes, we use the following 
Mahalanobis distance: 

Js{c) = (He) - 4>oV S7i (^(c) - ^o) (8.9) 

where (/)o is the empirical mean, and S<̂  is the corresponding covariance matrix. 
Note that all evaluations necessary to compute Js{c) in (8.9) can be traced back 
to evaluations of the kernel function according to (8.7). Furthermore, by exploit­
ing the spectral decomposition of the kernel matrix K in (8.8), we regularize the 
covariance matrix I]<̂  with respect to its small and vanishing eigenvalues, thus 
defining two orthogonal subspaces as illustrated in Figure 8.4 on the right. For 
further details, we refer to [233]. 

8.3.2 Structure-Preserving Embedding and Clustering 

Based on the matching functional (8.5) and the corresponding distance measure 
c^£;(ci,C2) defined in (8.6), we consider an arbitrary sample set {cn}n=i,...,iv. 
To perform statistical analysis, we wish to compute an Euclidean embedding 
{'^n}n=i,...,N such that ||x^ —Xj II = dE{ci, Cj), Vi, jf. Such an embedding exists 
iff the matrix K = — | Q D Q , with the dissimilarity matrix D = (d^(ci,Cj)^) 
and the centering matrix Q = I - ]gee^ , is positive semidefinite [231]. The 
vectors Xn representing the objects (contours) c^ of our data structure can then 
be computed by a Cholesky factorization of K. 
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Rabbit Head 

200 400 600 
Eigenvalues 

Figure 8.5. Eigenvalues of the matrices K corresponding to the shapes of four different 
objects. 

Figure 8.5 shows the eigenvalues of K for four different objects. The graphs 
illustrate that the contours are "almost embeddable" since only few and small 
eigenvalues are negative. This fact is caused by the powerful matching which 
tightly groups given curves, and is performed by evaluating the distance measure 
(IE. The standard way then is to take the positive eigenvalues only, and to compute 
a distorted embedding. 

In view of subsequent clustering, however, a better alternative is to regularize 
the data structure by shifting the off-diagonal elements of the dissimilarity ma­
trix: D = D — 2A7v(ee^ — I). For the resulting embedding, it has been shown 
[682] that the group structure with respect to subsequent k-means clustering is 
preserved. 

Figure 8.6 shows a low-dimensional - and thus a heavily distorted - projec­
tion of the embedded shapes of the rabbit. For the purpose of illustration, only 
shapes corresponding to a single (hand-held) walk around the view-sphere are 
shown on the left, along with cluster centers as prototypical views of the object. 
In this way, we compute high-quality aspect graphs for general objects, without 
any restrictions discussed in the literature [106, 674]. 

On the right, Figure 8.6 also shows a clustering of 750 human shapes. In 
general, when using simple geometric distance measures, the many degrees of 
freedom of articulated shapes would require many templates for an accurate rep­
resentation. The matching distance (8.6), however, accounts for part structure and, 
therefore, the principal components of the measure seem to be closer related to 
topological shape properties. For example, the clusters on the left are all "single-
leg" prototypes, whereas on the right we find only clusters with two legs. The 
second principal component seems to account for the viewing direction of the 
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Figure 8.6. Clustering of the views of the rabbit sequence and the human shapes, projected 
to the first two principal components. The clusters are indicated by prototypical shapes 
(cluster centers) dominating a range of corresponding views. 

human, which changes from left to right along a vertical direction through the 
plot. 

8.4 Variational Segmentation and Shape Priors 

8.4.1 Variational Approach 

We consider partitions O — n ( F ) U Vt{B) of the image domain into foreground 
and background, respectively. Our objective is to compute an optimal partition 
in terms of a planar closed curve c(.s) — dft{F) based on the corresponding 
restrictions of the image function F — 7|f2(^), JB = I\fi(B),0 — /|c(s), and by 
using models H = {HF.^B^ ' ^G? ^S) for these components, including a shape 
prior 7is for the separating curve c{s). 

The variational approach is to compute the Maximum A-Posteriori (MAP) 
estimate of the contour c, given the image data 7, and using the models H: 

c(s) = a rgmaxP(c(5) | / , ' ^ ) (8.10) 
c{s) 

We use Bayes' rule to obtain: 

P{<s)\I^H) = .^^^ 

a P{F\c{slnF)P{B\c{s),HB)P{G\c{slnG)P{c{s)\Hs) , 

where we have also split up the image likelihood P(/|c(5),7^) into three parts, 
assuming independence of these parts, given the contour c{s). Moreover, we as­
sume independence of the various models. This assumption is appropriate in the 
single object - single object class scenario considered here. 
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The common form of the foreground model is: 

P{F\c{s),nF) oc expi-Jp) , J F ( C ) = / dF{F{x))d^ , 
JQ{F) 

where the functional Jp depends on the contour c through the domain of integra­
tion n ( F ) , and dp is any measure of homogeneity of the foreground image data 
F , i.e. object appearance. Typically, dp is a parametric model, a semi-parametric 
(mixture) model, or even a non-parametric model of the local spatial statistics of 
the image data, or some filter outputs. Note that dp depends on c through the 
domain of integration, too. Similarly, we have: 

P{B\c{s),nB) oc exp( -JB) , JB{C) = [ dB{B{^))dK , 
JQ(B) 

P ( G | C ( 5 ) , ? Y G ) OC e x p ( - J a ) , J G ( C ) = j> dG{G{i^))ds 

In the following, we do not consider boundary models P{G\C[S),1-LG), but focus 
in the following two sections on shape models P{c{s)\l-Ls), the main topic of this 
paper. 

In order to solve (8.10), we minimize — logP(c(s)|/,7Y), which entails to 
compute the derivatives of the above functionals with respect to c, that is changes 
of the shape of the domain Vt{F). Let v(x) be a small and smooth vector field 
such that ( /+v) (x) is a diffeomorphism of the underlying domain. Then standard 
calculus [741, 256] yields: 

( j ; , (c ) ,v>= / d'j,{F{x))dx-^ (f dp{F{x))(n'v)ds , (8.11) 
Jn{F) Jc 

where n is the outer unit normal vector of n ( F ) . Analogously, we compute the 
derivative of the background functional JB-

If dp depends on parameters which are estimated within fl{F), then computing 
d'jp amounts to apply the chain rule until we have to differentiate (functions of) 
image data which do not depend on the domain (see, e.g., [432] for examples). As 
a result, the right hand side of (8.11) involves boundary integrals only. If, however, 
dp more generally depends on functions which, in turn, depend on the shape of 
n ( F ) , e.g. through some PDE, then the domain integral in (8.11) involving the 
unknown domain derivative d'p can be evaluated in terms of a boundary integral 
by using an "adjoint state". See [715] for details and a representative application. 

Finally, we set the normal vector field Vn := n-v equal to the negative integrand 
of the overall boundary integral resulting from the computation of JP,JB, and 
evolve the contour: 

c = Vnn ondn{F) (8.12) 

Inserting (8.2) yields a system of ODEs which are solved numerically. 
Evolution (8.12) constitutes the data-driven part of the variational segmenta­

tion approach (8.10), conditioned on appearance models of both the foreground 
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object and the background. In the following two sections, we describe how this ap­
proach is complemented in order to take into account statistical shape knowledge 
of object appearance. 

8,4.2 Kernel-based Invariant Shape Priors 

Based on the shape-energy (8.9), the shape-prior takes the form: 

P{c\ns) (X e x p ( - J ^ ) 

Invariance with respect to similarity transforms is achieved by restricting the 
shape energy functional Js to aligned shapes c = c(c) with respect to the mean 
shape, which result from given shapes c by applying to them the translation, 
rotation and scaling parameters defining the invariant distance measure (8.4): 

Js{c) = Js[c{c)] 

To incorporate the statistical shape-knowledge into the variational segmentation 
approach, we perturb the evolution (8.12) by adding a small vector field directed 
towards the negative gradient of J5 : 

dJs dc 
-£-

dc dc 
For further details, we refer to [233]. 

8.4.3 Shape Priors based on the Matching Distance 

Related to the KPCA approach (Sections 8.3.1, 8.4.2), we use a non-parametric 
density estimate for the posterior of c given the training samples c i , . . . , c^v: 

P{<^[Hs) -=p(c|ci , . . . ,Civ) 

Given the Euclidean embedding x i , . . . , x^v of the training samples (cf. Section 
8.3.2), the kernel-estimate of the probability density evaluated at x reads: 

n=l ^ ^ 

where K{') is a normalized non-negative smoothing kernel. A kernel with 
compact support, favored in practice, is the Epanechnikov kernel in c?-dimensions: 

; ^ ( x ) = / 5 ^ < r ' ( ' ^ + 2 ) ( l - x T x ) i f x T x < l 

10 otherwise 

where Vd is the volume of the d-dimensional unit sphere. To increase the posterior 
probability of c, we have to move in the gradient direction of the density estimate: 

_ , . k d-\-2 (1 
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Figure 8.7. Top row: prior from Section 8.4.2, segmentation without the prior (a), with the 
prior (b), two more views with the prior (c), (d). Bottom row: prior from Section 8.4.3, 
segmentation without the prior (e), (g) and, with the prior (f), (h) 

where ^/^(x) is the ball with radius h centered at x, and k is the number of samples 
Xfc in Bfii'x.). This leads to the well-known mean-shift x —> ^ YIBHM -̂ ^ [^^^^ 
191]. 

By virtue of the embedding ||xi - Xj\\ = dE{ci,Cj) (see Section 8.3.2), we 
may interpret this as computing the Frechet mean [504]: 

c — arg mm j dE[i 'dp(c) 

of the empirical probability measure JJL on the space of contours c, which is 
equipped with the metric (8.6). As a result, we perturb the evolution (8.12) by 
adding a small vector field v = £ : ( c - c ) , 0 < e e IZ, and thus incorporate 
statistical shape-knowledge into the variational segmentation approach. 

8.4.4 Experimental Results 

Both approaches to the design of shape priors allow to encode the appearance 
of objects. Applying the variational framework for segmentation, the models are 
automatically invoked by the observed data and, in turn, provide missing infor­
mation due to noise, clutter, or occlusion. This bottom-up top-down behavior was 
verified in our segmentation experiments. 

In Figure 8.7 we see segmentation results for two image sequences showing a 
rabbit and a head, computed with and without a shape prior. We can see that both 
shape priors can handle the varying point of view and stabilize the segmentation. 
Where data evidence is compromised by occlusion (a)-(d), shadows (e)-(f), or 
difficult illumination (g)-(h), the shape prior can provide the missing information. 
For the segmentation in Figure 8.8, we learned the shape prior model 8.4.3 using 
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Figure 8.8. Sample screen shots of a human walking sequence. First image is without 
a shape prior, second image is result obtained with a shape prior, for each image pair 
respectively. 

750 human shapes. The shapes in the sequence are not part of the training set. 
The obtained results encourage the use of shape-priors for the segmentation and 
tracking of articulated body motion as well. 

8.5 Conclusion and Further Work 

We investigated the design of shape priors as a central topic of variational seg­
mentation. Two different approaches based on traditional shape-vectors, and on 
contours as elements of a metric space defined through a matching functional, 
respectively, illustrated the broad range of research issues involved. The use 
of shape priors allows for the variational segmentation of scenes where pure 
data-driven approaches fail. 

Future work has mainly to address the categorization of shapes according to 
classes of objects, and the application of this knowledge for the interpretation of 
scenes with multiple different objects. 

Acknowledgment. We thank Dr. Dariu Gavrila, DaimlerChrysler Research, for 
making available the database with human shapes to the CVGPR group. 



Chapter9 

Curve Propagation^ Level Set 
Methods and Grouping 
N. Paragios 

Abstract 

Image segmentation and object extraction are among the most well 
addressed topics in computational vision. In this chapter we present a com­
prehensive tutorial of level sets towards a flexible frame partition paradigm 
that could integrate edge-drive, regional-based and prior knowledge to object 
extraction. The central idea behind such an approach is to perform image 
partition through the propagation planar curves/surfaces. To this end, an ob­
jective function that aims to account for the expected visual properties of the 
object, impose certain smoothness constraints and encode prior knowledge 
on the geometric form of the object to be recovered is presented. Promising 
experimental results demonstrate the potential of such a method. 

9.1 Introduction 

Image segmentation has been a long term research initiative in computational 
vision. Extraction of prominent edges [381] and discontinuities between in-
homogeneous image regions was the first attempt to address segmentation. 
Statistical methods that aim to separate regions according to their visual charac­
teristics was an attempt to better address the problem [341], while the snake/active 
contour model [455] was a breakthrough in the the domain. 

Objects are represented using parametric curves and segmentation is obtained 
through the deformation of such a curve towards the lowest potential of an 
objective function. Data-driven as well as internal smoothness terms were the 
components of such a function. Such a model refers to certain limitations like, 
the initial conditions, the parameterisation of the curve, the ability to cope with 
structures with multiple components, and the estimation of curve geometric 
properties. 
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Balloon models [204] where a first attempt to make the snake independent with 
respect to the initial conditions, while the use of regional terms forcing visual 
homogeneity [922] was a step further towards this direction. Prior knowledge 
was also introduced at some later point [756] through a learning stage of the 
snake coefficients. Geometric alternatives to snakes [152] like the geodesic active 
contour model [155] were an attempt to eliminate the parameterisation issue. 

Curves are represented in an implicit manner through the level set method 
[618]. Such an approach can handle changes of topology and provide sufficient 
support to the estimation of the interface geometric properties. Furthermore, the 
use of such a space as an optimisation framework [917], and the integration of 
visual cues of different nature [622] made these approaches quite attractive to nu­
merous domains [617]. One can also point recent successful attempts to introduce 
prior knowledge [513, 688] within the level set framework leading to efficient 
object extraction and tracking methods [689]. 

To conclude, curve propagation is an established technique to perform object 
extraction and image segmentation. Level set methods refer to a geometric alter­
native of curve propagation and have proven to be a quite efficient optimisation 
space to address numerous problems of computational vision. In this chapter, first 
we present the notion of curve optimisation in computer vision, then establishes 
a connection with the level set method and conclude with the introduction of 
ways to perform segmentation using edge-driven, statistical clustering and prior 
knowledge terms. 

9.2 On the Propagation of Curves 

Let us consider a planar curve F : [0,1] —> 7^ x 7^ defined at a plane Q. The most 
general form of the snake model consists of: 

[aEintinp)) + PEimgmri'p))) + 7^ext(r(p))) dp (9.1) 

where I is the input image, Eint[= t^iir'l + tf^2|r''|] imposes smoothness con­
straints (smooth derivatives), Eimg[= - | V J | ] makes the curve to be attracted 
from the image features (strong edges), E^xt encodes either user interaction or 
prior knowledge and a, /?, 7 are coefficients that balance the importance of these 
terms. 

The calculus of variations can be used to optimise such a cost function. To 
this end, a certain number of control points are selected along the curve, and the 
their positions are updated according to the partial differential equation that is 
recovered through the derivation of E{r) at a given control point of F. In the 
most general case a flow of the following nature is recovered: 

F(p; r ) = {aFgmir) + pFimg{I) + T^̂ pr (F)) Af (9.2) 
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where M is the inward normal and Fgm depends on the spatial derivatives of the 
curve, the curvature, etc. On the other hand, Fimg is the force that connects the 
propagation with the image domain and i^pr(r) is a speed term that compares 
the evolving curve with a prior and enforces similarity with such a prior. The 
tangential component of this flow has been omitted since it affects the internal 
position of the control points and doesn't change the form of the curve itself. 

Such an approach refers to numerous limitations. The number and the sampling 
rule used to determined the position of the control points can affect the final seg­
mentation result. The estimation of the internal geometric properties of the curve 
is also problematic and depends on the sampling rule. Control points move ac­
cording to different speed functions and therefore a frequent re-parameterisation 
of the contour is required. Last, but no least the evolving contour cannot change 
the topology and one cannot have objects that consist of multiple components that 
are not connected. 

9.2.1 Level Set Method 
The level set method was first introduced in [261] and re-invented in [618] to 
track moving interfaces in the community of fluid dynamics and then emerged in 
computer vision [152, 537]. The central idea behind these methods is to represent 
the (closed) evolving curve V with an implicit function </> that has been constructed 
as follows: 

4>{s) = { 
0,5 G r 

-e,5 e Tin 

+ €, S e Tout 

where epsilon is a positive constant, Tin the area inside the curve and Tout the 
area outside the curve as shown in [Figure (9.1)]. Given the partial differential 
equation that dictates the deformation of T one now can derive the one for </> 
using the chain rule according to the following manner: 

|^(r(p; .)) = ^(Ife)) ^Egll)HH|^ = ir(V,.AA) + ̂ .=0 (9.3) 

Let us consider the arc-length parameterisation of the curve T{c). The values 
of (/) along the curve are 0 and therefore taking the derivative of <̂  along the curve 
r will lead to the following conditions: 

where T{c) is the tangential vector to the contour. Therefore one can conclude 
that V(/) is orthogonal to the contour and can be used (upon normalisation) to 
replace the inward normal \j\f = - |^ |T leading to the following condition on 
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doBnes V(i), 

Figure 9.1. Level set method and tracking moving interfaces; the construction of the 
(implicit) (j) function [figure is courtesy of S. Osher]. 

the deformation of (/>: 

-FW^cj>r = 0 -^ ct>r=F 101 (9.5) 

Such a flow establishes a connection between the family of curves F that have 
been propagated according to the original flow and the ones recovered through 
the propagation of the implicit function 0. The resulting flow is parameter free, 
intrinsic, implicit and can change the topology of the evolving curve under certain 
smoothness assumptions on the speed function F. Last, but not least, the geomet­
ric properties of the curve like its normal and the curvature can also be determined 
from the level set function [618]. One can see a demonstration of such a flow in 
[Figure (9.2)]. 

In practice, given a flow and an initial curve the level set function is constructed 
and updated according to the corresponding motion equation in all pixels of the 
image domain. In order to recover the actual position of the curve, the march­
ing cubes algorithm [526] can be used that is seeking for zero-crossings. One 
should pay attention on the numerical implementation of such a method, in par­
ticular on the estimation of the first and second order derivatives of (j), where 
the ENO schema [618] is the one to be considered. One can refer to [728] for a 
comprehensive survey of the numerical approximation techniques. 

In order to decrease computational complexity that is inherited through the 
deformation of the level set function in the image domain, the narrow band algo­
rithm [194] was proposed. The central idea is update the level set function only 
within the evolving vicinity of the actual position of the curve. The fast marching 
algorithm [727, 815] is an alternative technique that can be used to evolve curves 
in one direction with known speed function. One can refer to earlier contribution 
in this book [Chapter 7] for a comprehensive presentation of this algorithm and its 
applications. Last, but not least semi-implicit formulations of the flow that guides 
the evolution of <̂  were proposed [351, 873] namely the additive operator split­
ting. Such an approach refers to a stable and fast evolution using a notable time 
step under certain conditions. 
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Figure 9.2. Demonstration of curve propagation with the level set method; handling 
of topological changes is clearly illustrated through various initialization configurations 
(a,b,c). 

9.2.2 Optimisation and Level Set Methods 

The implementation of curve propagation flows was the first attempt to use the 
level set method in computer vision. Geometric flows or flows recovered through 
the optimisation of snake-driven objective functions were considered in their im­
plicit nature. Despite the numerous advantages of the level set variant of these 
flows, their added value can be seen as a better numerical implementation tool 
since the definition of the cost function or the original geometric flow is the 
core part of the solution. If such a flow or function does not address the desired 
properties of the problem to be solved, its level set variant will fail. Therefore, a 
natural step forward for these methods was their consideration in the form of an 
optimisation space. 
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Such a framework was derived through the definition of simple indicator 
functions as proposed in [917] with the following behaviour 

m = \ 1 : i o ' n<t>) = { 0 , 0 = 0 (9.6) 
•̂  ^ ' ^ " ^ [ 0 , 0 < O 

Once such indicator functions have been defined, an evolving interface F can be 
considered directly on the level set space as 

r - {,s G n : S{^) = 1} (9.7) 

while one can define a dual image partition using the H indicator fiinctions as: 

r s . o r/f I nV ^in^^out=n (9.8) 
^out =^ {s eil: H{-(p) = 0} 

Towards continuous behaviour of the indicator function [H] , as well as well-
defined derivatives [S] in the entire domain a more appropriate selection was 
proposed in [917], namely the DiRAC and the HEAVISIDE distribution: 

[ 0 . \(l>\>a 
'^^^^ = 1 ^ ( l + c o s ( ^ ) ) , H < a 

1 , 0 > a (9.9) 
0 , 6 <-a Ha(0) 

i(l + « + ^^K^)) ' l̂ l<^ 
Such an indicator function has smooth, continuous derivatives and the following 
nice property: 

Last, but not least one consider the implicit function 0 to be a signed distance 
transform/) (5, r ) , 

(t>{s) = \ z>(.s,r) , seFin (9.10) 
[ -D{s,T) , s eft-Tin = Tout 

Such a selection is continuous and supports gradient descent minimisation tech­
niques. On the other hand it has to be maintained, and therefore frequent 
re-initialisations using either the fast marching method [727] or PDE-based ap­
proaches [774] were considered. In [353] the problem was studied from a different 
perspective. The central idea was to derive the same speed function for all level 
lines - the one of the zero level set - an approach that will preserve the distance 
function constraint. 
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9.3 Data-driven Segmentation 

The first attempt to address such task was made in [537] where a geometric flow 
was proposed to image segmentation. Such a flow was implemented in the level 
set space and aimed to evolve an initial curve towards strong edges constrained by 
the curvature effect. Within the last decade numerous advanced techniques have 
taken advantage of the level set method for object extraction. 

P. 3.1 Boundary-based Segmentation 

The geodesic active contour model [155, 462] - a notable scientific contribution 
in the domain - consists of 

E{T)=^ 9{\S/X,{V{v))\)\T'{p)\dp (9.11) 

where Jo- is the output of a convolution between the input image and a Gaussian 
kernel and p is a decreasing function of monotonic nature. Such a cost func­
tion seeks a minimal length geodesic curve that is attracted to the desired image 
features, and is equivalent with the original snake model once the second order 
smoothness component was removed. In [155] a gradient descent method was 
used to evolve an initial curve towards the lowest potential of this cost function 
and then was implemented using the level set method. 

A more elegant approach is to consider the level set variant objective function 
of the geodesic active contour; 

^i^) = J J Sa{<l>{uj))g{\VMoj)\)\Vcl>{uj)\ckj (9.12) 

where F is now represented in an implicit fashion with the zero-level set ofc/). One 
can take take the derivative of such a cost function according to 0: 

<l>r=Sa{<f>)diy(^9i;)^^ (9.13) 

where u and | VZa (^) I were omitted from the notation. Such a flow aims to shrink 
an initial curve towards strong edges. While the strength of image gradient is 
a solid indicator of object boundaries, initial conditions on the position of the 
curve can be issue. Knowing the direction of the propagation is a first drawback 
(the curve has either to shrink or expand), while having the initial curve either 
interior to the objects or exterior is the second limitation. Numerous provisions 
were proposed to address these limitations, some of them aimed to modify the 
boundary attraction term [627], while most of them on introducing global regional 
terms [922]. 
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P. 5.2 Region-based Segmentation 

In [623] the first attempt to integrate edge-driven and region-based partition com­
ponents in a level set approach was reported, namely the geodesic active region 
model. Within such an approach, the assumption of knowing the expected inten­
sity properties (supervised segmentation) of the image classes was considered. 
Without loss of generality, let us assume an image partition in two classes, and let 
rin{I), Vouti^) be regional descriptors that measure the fit between an observed 
intensity T and the class interior [rin{jl^)] and exterior to [rout{^)] the curve. Un­
der such an assumption one can derive a cost function that separates the image 
domain into two regions: 

• according to a minimal length geodesic curve attracted by the regions 
boundaries, 

• according to an optimal fit between the observed image and the expected 
properties of each class, 

E{(t>) =w f f 5a{cl>{u;))g ( |VJ,(a;)|) \V (l>{u)\duj 
J JQ 

+ / [ na{-(t>{uj))rin{I)cLj + f [{l-na{-(t>{^)))rout{T)duj 
J JQ J Jn 

(9.14) 

where it; is a constant balancing the contributions of the two terms. One can 
see this framework as an integration of the geodesic active contour model [155] 
and the region-based growing segmentation approach proposed in [922]. The ob­
jective is to recover a minimal length geodesic curve positioned at the object 
boundaries that creates an image partition that is optimal according to some im­
age descriptors. Taking the partial derivatives with respect to (/>, one can recover 
the flow that is to be used towards such an optimal partition: 

where the term Sa{—^) was replaced with Sa{(l>) since it has a symmetric be­
haviour. In [623] such descriptor function was considered to be the -log of the 
intensity conditional density Ipini'^),Pin{^)] for each class 

rin{I) = - l o g (Pini^)) , VoutC^) = " l ^ g {Pout{^)) 

In [701] the case of supervised image segmentation for more than two classes 
was considered using the frame partition concept introduced in [917]. One can 
also refer to other similar techniques [16]. Promising results were reported from 
such an approach for the case of image in [624] [Figure (9.3)] and for supervised 
texture segmentation in [625]. 

However, segmentation often refers to unconstrained domains of computational 
vision and therefore the assumption of known appearance properties for the ob­
jects to be recovered can be unrealistic. Several attempts were made to address 
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Figure 9.3. Multi-class image segmentation [624] through integration of edge-driven and 
region-based image metrics; The propagation with respect to the four different image 
classes as well as the final presentation result is presented. 

this limitation. To this end, in [173, 909] an un-supervised region based segmen­
tation approach based on the Mumford-Shah [590] was proposed. The central idea 
behind these approaches of bi-modal [173] and tri-modal [909] segmentation was 
that image regions are piece-wise constant intensity-wise. 

The level set variant of the Mumford-Shah [590] framework consists of 
minimising 

w J J 6^{cj>{uj))\\/<t>(:^)\dw + j j na{-cl>{u;)){I{uj) - fjiin)^dw ^^^^^ 

+ y y* (1 - 7^«(-0(a;)))(J(a;) - fiout)^dw 

where both the image partition [(f)] and the region descriptors [fXin,/jiout] for the 
inner and the outer region are to be recovered. The calculus of variations with re­
spect to the curve position and the piece-wise constants can be consider to recover 
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the lowest potential of such a function, 

(9.17) 

4>T = <5a(</>) ((X(a;) - Mi„))2 - (X(a;) - /.„„,)')) + "'div ( ^ ) ] 

Such a framework was the basis to numerous image segmentation level set 
approaches, while certain provisions were made to improve its performance. 
In [465] the simplistic Gaussian assumption of the image reconstruction term 
(piece-wise constant) was replaced with a non-parametric approximation den­
sity function while in [685] a vectorial un-supervised image/texture segmentation 
approach was proposed. 

Last, but not least in [841] the same framework was extended to deal with 
multi-class segmentation. The most notable contribution of this approach is the 
significant reduction of the computational cost and the natural handling (op­
posite to [917]) of not forming neither vacuums nor overlapping regions. Such 
an approach can address the AT-class partition problem, using Iog2(A )̂ level set 
functions. 

9.4 Prior Knowledge 

Computational vision tasks including image segmentation often refer to con­
strained environments. Medical imaging is an example where prior knowledge 
exists on the structure and the form of the objects to be recovered. One can claim 
that the level set method is among the most promising framework to model-
free segmentation. Introducing prior knowledge within such a framework is a 
natural extension that could make such level sets an adequate selection to numer­
ous applications like object extraction, recognition, medical image segmentation, 
tracking, etc. In [513] a first attempt to perform knowledge-based segmentation 
was reported, while later numerous authors have proposed various alternatives 
[188,808,688,236]. 

P. 4.1 Average Models 

Statistical representation of shapes is the first step of such an approach. Given a 
set of training examples, one would like to recover a representation of minimal 
length that can be used to reproduce the training set. To this end, all shapes of 
the training set should be registered to the same pose. Numerous methods can be 
found in the literature for shape registration, an adequate selection for building 
shape models in the space of implicit functions is the approach proposed in [413] 
where registration is addressed on this space. Without loss of generality we can 
assume that registration problem has been solved. 
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Let SA = {01,02) •••, 0n} be the implicit representations of n training samples 
according to a signed Euclidean distance transform. Simple averaging of the shape 
belonging to the training set can be used to determine a mean model 

0^ = -E0i (9.18) 
i=l 

that was considered in [513, 808, 236]. Such a model is a not an signed Eu­
clidean implicit function, an important limitation. Hov êver, one can recover a 
mean model in the form of a planar curve TM through the marching cubes al­
gorithm [526]. Once such a model has been determined, one can impose shape 
prior knov̂ l̂edge through the constraint that the object to be recovered at the image 
plane F that is a clone of the average shape TM according to some transformation: 

r = A{rM) (9.19) 

vŝ here A can be a linear or non-linear transformation. In [188] prior knowledge 
has been considered in the form of a mean represented with a signed distance 
function. Once such a model was recovered, it was used [188] within the geodesic 
active contour model [155] to impose prior knowledge in the level set space: 

E{ct>,A) = j J SaW (^(|VJ|)|V0| + \(t>liiA{iv))) dw (9.20) 

where A = (s, 0, (Tx^Ty)) is a similarity transformation that consists of a scale 
factor [s], a rotation component [0] and a translation vector {%,Ty). ^M is an 
implicit representation of the mean model according to a distance function and A 
is a constant that determines the importance of the prior term. Such an objective 
function aims at finding a minimal length geodesic curve that is attracted to the 
object boundaries and is not far from being a similarity transformation of the prior 
model: 

0>t(^(r^))->o 
Such an approach can be very efficient when modelling shapes of limited varia­
tion. On the other hand, one can claim that for shapes with important deviation 
from the mean model the method could fail. Furthermore, given the small number 
of constraints when determining the transformation between the image and the 
model space the estimation [A] could become a quite unstable task. 

Towards a more stable approach to determine the optimal transformation be­
tween the evolving contour and the average model, in [688] a direct comparison 
between the contour implicit function and the model distance transform was used 
to enforce prior knowledge: 

0(cj) = (l)M {A{uj)) 

Despite the fact that distance transforms are robust to local deformations, invari­
ant to translation and rotation, they are not invariant to scale variations. Slight 
modification of the above condition [629] could also lead to scale invariant term: 

s0(a;) = (l)M {A{uj)) 
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Figure 9.4. Level set methods, prior knowledge, average models and similarity invariant 
object extraction [688] in various pose conditions (i,ii, iii). 

The minimisation of the SSD between the implicit representations of the evolving 
contour and the distance transform of the average prior model can be considered 
to impose prior knowledge, or 

E{<I>,A) = J J SaW (s^(a;) - (I>M {A{u;))fdw (9.21) 

a term that is evaluated within the vicinity of the zero level-set contour (modulo 
the selection of a). The calculus of variations within a gradient descent method 
can provide the lowest potential of the cost function. Two unknown variables are 
to be recovered, the object position (form of function 0), 

dr 0 = - d(l> SaW ((s0 - (l>M{Af -2Sa{(l>)s(s(l> - (1>M{A)) (9.22) 

area force 
shape consistency force 

This flow consists of two terms: (i) a shape consistency force that updates the 
interface towards a better local much with the prior and (ii) a force that aims at 
updating the level set values such that the region on which the objective functions 
is evaluated (—a, a) becomes smaller and smaller in the image plane. In order to 
better understand the influence of this force, one can consider a negative (/) value, 
within the range of ( - a , a ) ; Such a term does not change the position of the 
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interface and therefore it could be omitted: 

^(/> = -2(5a((/>)s(s0 - ^M{A)) (9.23) 

Towards recovering the transformation parameters [A] betv^een the evolving con­
tour and the average model, a gradient descent approach could be considered in 
parallel: A 

j^0 = 2J 6,{ct>){sct> - CI>M{A)){V^M{A) • ^A)dn 

jjx = 2j (5e(0)(s0 - (t>M{A)){Vct>M(A) • ^^A)dn 

jjy = 2 l ^eWis^ - CI>M{A)){V<I>M{A) ' ^A)dQ 

^ s = 2 1 (5.(0)(s0 - (I>M{A)){-(I> + V(I>M{A) • ^A)dn 

One can refer to very promising results - as shov̂ n in [Figure (9.4)] - on objects 
that refer to limited shape variability using such a method [688]. However, often 
the object under consideration presents important shape variations that cannot be 
accounted for with simple average models. Decomposition and representation of 
the training set through linear shape spaces is the most common method to address 
such a limitation. 

9.4.2 Prior Knowledge through Linear Shape Spaces 

In [513] a principal component analysis on the registered set of the space of 
distance functions (training examples) was considered to recover a model that 
can account for important shape variations. Similar approach was consider in 
[808, 116, 689]. Principal component analysis refers to a linear transformation 
of variables that retains - for a given number n of operators - the largest amount 
of variation within the training data. 

Let 0i=i...n be a column vector representation of the training set of n implicit 
function elements registered to the same pose. We assume that the dimensionality 
of this vector is d. Using the technique introduced in [688] one can estimate a 
mean vector (I)M that is part of the space of implicit functions and subtract it from 
the input to obtain zero mean vectors {^^ = (j)^ - (J)M}' 

Given the set of training examples and the mean vector, one can define the c( x (i 
covariance matrix: 

E^ = E{^i~^l} (9.25) 

It is well known that the principal orthogonal directions of maximum variation 
are the eigenvectors of ET. 

One can approximate E^ with the sample covariance matrix that is given by 
[^N^'N]^ where ^N is the matrix formed by concatenating the set of implicit 
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Figure 9.5. Level set methods, prior knowledge, linear shape spaces and Object Extraction 
[689]; segmentation of lateral brain ventricles (Top Left) surface evolution, (Top Right) 
projected surface in the learning space and ground-truth surface (from the training set), 
(Bottom) surface cut and its projection in the learning space during surface evolution. 

functions {^i}i=i.,.n- Then, the eigenvectors of D T can be computed through 

the singular value decomposition (SVD) of 0iv : 

4>N = U D U ^ (9.26) 

The eigenvectors of the covariance matrix S i are the columns of the matrix U 
(referred to as the basis vectors henceforth) while the elements of the diagonal 
matrix D are the square root of the corresponding eigenvalues and refer to the 
variance of the data in the direction of the basis vectors. Such information can 
be used to determine the number of basis vectors (m) required to retain a certain 
percentage of the variance in the data. 

Then, one can consider a linear shape space that consists of the (m) basis 
vectors required to retain a certain percentage of the training set: 

0 = 0M + 2^ A-̂- Û - (9.27) 
j=i 

Such linear space can nov^ be used as prior model that refers to a global transfor­
mation A of the average model (I)M and its local deformation A = (Ai , . . . , A^i) 
through a linear combination of the the basis vectors U^. Then, object extraction 
is equivalent with finding a shape for which there exists such a transformation that 
will map each value of current representation to the "best" level set representation 
belonging to the class of the training shapes: 

E{(I>,A,X) = j 6M){^<t>- UM{A) + Y.^j\Jj[A)y\ d^ (9.28) 
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where the rotation factor Uj{A) has to be accounted for when applying the 
principal modes of variations to deform the average shape. 

In order to minimise the above functional with respect to the evolving level set 
representation, the global linear transformation A and the modes weights A ,̂ we 
use the calculus of variations. The deformation of 0 is guided by a flow similar 
to (9.22) that is also the case with respect to the pose parameters A as shown 
in (). Last, but not least he differentiation with respect to the coefficients A = 
(Ai,..., Xm) leads to a linear system that has a closed form solution VX = b 
with: 

{v{i,j)= f S,{cl>)Vi(A)Vj{A) 
I Jn 

I b{{)= f S,{cl>){sct>-cl>M{A))Vi{A) 
(9.29) 

where y is a m x m positive definite matrix. Such an approach as shown in [Figure 
(9.5)] - can cope with important shape variations under the assumption that the 
distribution of the training set is Gaussian and therefore its PCA is valid. 

9.5 Discussion 

In this chapter, we have presented an approach to object extraction through the 
level set method that is implicit, intrinsic, parameter free and can account for 
topological changes. First, we have introduced a connection between the active 
contours, propagation of curves and their level set implementation. Then, we 
have considered the notion of implicit functions to represent shapes and define 
objective functions in such spaces to perform object extraction and segmentation. 
Edge-driven as well as global statistical-based region-defined segmentation crite­
ria were presented. In the last part of the chapter we have presented prominent 
techniques to account for prior knowledge on the object to be recovered. To this 
end, we have introduced constraints of increasing complexity proportional to the 
spectrum of expected shape deformations that constraints the evolving interface 
according to the prior knowledge. Therefore one can conclude that the level set 
method is an efficient technique to address object extraction, is able to deal with 
important shape deformations, topological changes, can integrate visual cues of 
different nature and can account for corrupted, incomplete and occluded data. 
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On a Stochastic Model of Geometric 
Snakes 
A. Yezzi, D. Nain, G. Unal, O. Zeitouni and A. 
Tannenbaum 

Abstract 
It this note, we give a formulation of a stochastic snake model based the 

theory of interacting particle systems and hydrodynamic limits. Curvature 
flows have been extensively considered from a deterministic point of view. 
They have been shown to be useful for a number of applications including 
crystal growth, flame propagation, and computer vision. In some previous 
work [71], we have described a random particle system, evolving on the dis-
cretized unit circle, whose profile converges toward the Gauss-Minkowsky 
transformation of solutions of curve shortening flows initiated by convex 
curves. The present note shows that this theory may be implemented as a 
new way of evolving curves as a possible alternative to level set methods. 

10.1 Introduction 

In this paper, we describe a model of stochastic snakes based on the theory of 
interacting particle systems. In some previous work Ben-Arous, Tannenbaum, and 
Zeitouni [71], described a stochastic interpretation of curve shortening flows. This 
brought together the theories of curve evolution and hydrodynamical limits, and 
as such impacted on the growing use of joint methods from probability and pde's 
in the image processing and computer vision. In this present note we will indicate 
how this theory may be implemented to forge a novel stochastic curve evolution 
algorithm. 

We should note that there have been other models of stochastic active contours 
and geometric flows; see [443] and the references therein. These approaches are 
very different than ours. In [443], the authors consider stochastic perturbations of 
mean curvature flows and applications to computer vision. Their model is con-



162 Yezzi, Nain, Unal, Zeitouni & Tannenbaum 

tinuous (macroscopic). Our model is inherently microscopic as we will elucidate 
below. 

Following [71], we will now set the background for our results, to which we 
refer the reader for all the technical details. Let C(p, t) : S^ x [0, T) ^ E^ be 
a family of embedded curves where t parameterizes the family and /; parameter­
izes each curve. We consider stochastic interpretations of certain curvature driven 
flows, i.e., starting from an initial embedded curve Co{p) we consider the solution 
(when it exists) of an equation of the form 

^ ^ ^ = v{K{p,t)W, c(.,/) = c,(.), (10.1) 

where ^{p, t) denotes the curvature and M denotes the inner unit normal of the 
curve C(-, t) at p. Of particular interest is the case in which V{x) = ±x'^. Note 
that the case V{x) = x corresponds to the Euclidean curve shortening flow [334] 
while V{x) = x^/^ corresponds to the affine curve shortening, which is of strong 
relevance in computer vision and image processing [706]. Since in both cases we 
get gradient flows and resulting heat equations, a stochastic interpretation seems 
quite natural. 

We will be dealing with convex curves here and so we employ the standard 
parameterization via the Gauss map, that is fixing p — 0, the angle between the 
exterior normal to the curve and a fixed axis. It is well known that the Gauss map 
can be used to map smooth convex curves C(-) into positive functions m(') on S^ 
such that Ĵ -i e^'^'^^m{0)dO — 0, and that this map can be extended to the Gauss-
Minkowsky bijection between convex curves with C(0) = 0 and positive measures 
on S^ with zero barycenter; see [140, Section 8] for details. We denote by M\ 
the latter set of measures. Under this parameterization, a convex curve C{0) can 
be reconstructed from a // G M\ by the formula C(0) = J^ e^^*®^(ciB), using 
linear interpolation overjumps of the function C{6). Further, whenever /i pos­
sesses a strictly positive density p{0)d6 then the curvature of the curve at 9 is 
K{e) = i/p{0). 

Our interest is in constructing stochastic approximations to the solutions of 
curvature driven flows and from this to derive a new stochastic snake model. 
Approximations corresponding to polygonal curves have been discussed in the lit­
erature under the name "crystalline motion"; see [824] for a description of recent 
results and references. The approach in [71] is different and can be thought of as a 
stochastic crystalline algorithm: we construct a stochastic particle system whose 
profile defines an atomic measure on 5^, such that the corresponding curve is a 
convex polygon. Applying standard tools from hydrodynamic limits, it is proven 
in [71] that the (random) evolution of this polygonal curve converges, in the limit 
of a large number of particles, to curve evolution under the curve shortening flow. 
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10.2 Overview of Geodesic Snake Models 

The snake model we develop here is based on so-called geodesic or conformal 
snakes developed by [157, 463, 733]. The underlying flow for these models is 
given by 

where (/> is a stopping term, K is curvature and M is the unit normal. (See more 
details about this below.) The curvature based term is used as regularization term 
as well as directing the flow inward to capture the object of interest. The term 
involving V0 • M acts to pull the contour into the potential well defined by the 
object via the flow and to push it out when it passes the object of interest. 

Our stochastic snake model will be based completely on an outward flow whose 
underlying density evolution p is a linear heat equation (see equation (10.3) 
below). The corresponding curve evolution equation is certainly nonlinear and 
expanding, and would be difiicult to implement in a stable manner using a de­
terministic scheme. The linear heat equation of course is very easy to model 
stochastically, and so leads to a straightforward implementation of our expanding 
flow. All this will be explained in Section 10.7 below. 

10.3 Birth and Death Zero Range Particle Systems 

We first set-up some notation. As above let 

C(p,t) :S^ X [ 0 , T ] - ^ M 2 

be a family of embedded curves where p parametrizes the curve and t the family. 
Then as above we consider curvature-driven flows of the form 

dC 
— = V{K{p,t))J\f, (10.2) 

where K denotes the curvature and J\f the inward unit normal. 
Since we are interested in a stochastic interpretation, we consider the evo­

lution of a "density" corresponding to Equation (10.2). Accordingly, using the 
standard angle parametrization 9, we interpret p{9, t) := 1/K,{0, t) as a density, 
and compute its evolution to be: 

dp{e,t) _ d^v{p{e,t)) 
dt df^ 
V{x) := V{l/x). 

-v{p{e,t)i (10.3) 

In Equation (10.3), the first term on the right hand side is called the diffusion 
term and the second term the reaction term. 

The approximations we use are based on so-called birth and death zero range 
particle systems. To get a flavor of the simplicity of the algorithm, we write down 
this system down in some detail. Full details may be found in [71]. 
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Let TK = Z/KZ denote the discrete circle. Let g : N —> R^ (the jump 
rate, with ^(0) = 0), 6 : N —> R+ (the birth rate), d: N —> M+ (the death 
rate, with d{0) = 0) be given, and define the Markov generator on the particle 
configuration EK = N'̂ ^̂  by 

{C'<f){rj) = K\Cof){v) + {C,f){rj), / E C,{EK) , 

where 

i€TK 

i^iDiv) = 

and 

f r/(i) + l, j - i ± 1,77(0 7^0, 

[ r){j), else, 

^ ^ ^ ^ " l r;(j),else, 

^ ^^^" I r7(j),else. 

Note that the zero-range part CQ approximates diffusion term of equation (10.3) 
while the birth-death part Ci approximates the reaction term of (10.3). 

10.4 Poisson System Simulation 

We assume that we have a system in state rj e N'^^ at time to. We will 
suppress the dependence on rj (unless absolutely necessary). We are given 4 
rates at site i: 6^=birth, di=dea.th, gi^ =}ump to right, ^^~=jump to left. We let 
Ei := {bi, di.gi^ ,gi~] be the set of possible transition rates for system in state 
7/ at site i. We let ê  G Ei. 

A bit more notation: 

E := Ui^TK^i^ 

X{r},ei) :=ei{'n{i)), 

eieEi 
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Then there are three standard ways of getting the Poisson system for simulating 
the Markov process described above. 

Algorithm 1: Per Site Transition 

L Get values for Ti ~ exponential(C/(r/, i)). (By this of course we mean that 
the TiS are exponential random variables with parameter U{r),i).) 

2. Set 

T:= mm{Ti}=:Ti.. 
ieTK 

i* is the site where the transition occurs at time to + T. 

3. To find the event in Ei, we then take ê  G Ei with probability 

the (conditional) transition probability. 

Algorithm 2: Per Event Transition 

1. Get T{ei) ~ exponential A (r/, e^)) for all i, e .̂ 

2. Set 

T := min{T(e,))}. 

3. Then the next event time is to -f T and the next event is 

argmin{T(ei)}. 

Algorithm 3: Summing all the Rates 
This is the method we use, so we only briefly describe it here. See our discussion 
below in Section 10.5. The basic idea is as follows: 

1. We sum all the rates 

i 

2. Choose an event e e E with probability X{r]^e)IU{rj), The time for this 
event would be T exp{U{rj)). Note that this way you need only one expo­
nential random variable per transition, while the choice of e only requires 
one uniform random variable. 
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10.5 Choosing a Random Event 

We now outline in detail an 0(log K) implementation of Algorithm 3 (summing 
all the rates) in the previous section to choose which random event Ek to carry 
out at each step in the simulation of the stochastic particle system. Note that an 
event Ek denotes a particular event type (birth, death, jump left, jump right) at a 
particular site location. 

10.5.1 Using a List of Event Tokens 

A conceptually simple method to simulate a random event utilizes a list of "event 
tokens" together with a uniform random number generator such as rand() in the 
standard C library. The method proceeds as follows. We first generate a list of 
tokens corresponding to events Ek. Given that there are four different event types, 
a particle system with K sites will admit a total of 4i^ distinct event tokens. Note 
however that to ensure the proper likelihood ratios between different events, the 
list will in general not contain exactly one occurrence of each event token. Instead, 
Uk tokens will be included in the list for each event Ek, where Uk is chosen to 
be proportional to the event's transition rate. Next a random element of the list 
is selected with uniform probability, and the event corresponding to the selected 
token is performed. 

While conceptually simple, there are some practical difficulties in implement­
ing this token list method. First, it is only possible to choose token counts Uk 
which are all exactly proportional to the transition rates of their respective events 
Ek if the the total set of ^K transition rates has a common divisor. Calculating 
a common divisor, assuming one even exists, can be expensive. Second, once an 
event occurs, the transition rates change for events at the corresponding lattice site 
(as well as a neighboring site in the case of a jump event). Thus, a new common 
divisor must be computed and the number of tokens Uk must be redetermined for 
every event Ek. 

If we opt to use a constant small c > 0 as an approximate common divisor, 
then we may calculate token counts Uk which are approximately proportional 
to the transition rates of their associated events Ek by integer truncation of the 
quotients between each transition rate and this constant divisor. In this way, we 
avoid having to change the number of tokens in the list for events whose rates 
have not changed. Updating the list for events whose rates have increased is easy 
and efficient since this amounts to adding new tokens (note that we do not have to 
keep the list sorted, so new tokens may simply be appended to the end of the list). 
However, updating the list for events whose rates have decreased is much more 
expensive since this amounts to removing tokens and therefore requires searching 
the list for the tokens we want to remove. 

A final difficulty in the implementation difficulty stems from the fact that the 
size of the list changes dynamically as the particle system evolves. However, if 
we can estimate a reasonable upper-bound in advance, then we may avoid having 
to perform multiple memory allocations to maintain the event token list. 
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Figure 10.1. Sorted virtual list of "event tokens" used when simulating a random event. 

10.5.2 Virtual Token List Method 

We now outline a more efficient algorithm, closely modelled after the token list 
method described above, which avoids the need to physically instantiate and 
maintain the token Hst. The method will be based upon a "virtual token list" which 
has the additional property that its event tokens are sorted in increasing order ac­
cording to the index k of the associated events Ek. The fact that the list is sorted 
means that tokens belonging to the same event must occur consecutively within 
the list (see Fig. 10.1). 

The algorithm will utilize an array (of size AK) of nondecreasing accumulator 
variables Sk defined by 

Sk = Y.^i 

recalling that Uk denotes the number of tokens stored in the list for event Ek. 
Notice that the size of the virtual token list is equal to value of S/^K (recalling 
that K denotes that number of lattice sites) and that the first token for event Ek, 
assuming Uk ^ 0, occurs at site Sk-i + 1. We may now choose a random token 
from this list by generating a random integer n between 1 and S4,K and selecting 
the n'th list element. It is possible to determine the event Ek associated with the 
n'th token in the Hst using only the set of accumulator variables ^ i , iS'2,..., S^K 
by noting that 

k = min{z \n < Si}. (10.4) 

We may easily locate this event index k by traversing the array of accumulator 
variables until the first Sk is encountered such that Sk > n. We may fijrther capi­
talize on the monotonicity of the Sk values and use a bisection technique to locate 
the index k. 

We therefore see that the only data structure we need to maintain is the array 
of accumulators. Furthermore, since we don't actually instantiate the list of event 
tokens, we are free to use non-integer values of Uk (thereby circumventing the 
problem of finding a common divisor) and can directly equate each Uk to the 
transition rate for event Ek and accordingly set each Sk to the cumulative sum 
of the first k transition rates, n is then chosen as a random positive floating point 
number between 0 and S^K which is the sum of all the event rates, and the event 
Ek is still chosen according to the criterion (10.4). 
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Once the randomly selected event Ek is performed, the transition rates for the 
corresponding lattice site (and its neighboring site if a jump occurred) are updated 
if necessary and the cumulative rate sums .^i, 52 , . . . , S4K are updated. Thus, 
cost of choosing an event consists at most of log2 (4/^) array lookups (assuming 
a bisection search is used) to locate the event index k and log2(4X) floating point 
additions (assuming a binary tree is used) to update the cumulative rate sums 

10.6 Similarity Invariant Flows 

For the stochastic snake model, we will use a flow which is scale-invariant. Ac­
cordingly, in this section, we describe a flow which are invariant relative to the 
scale-invariant versions of the Euclidean group, namely the similarity flow. 

We begin with the heat flow for the similarity group (rotations, translations, and 
isotropic scalings). This flow was first presented and analyzed in [705]. We as­
sume for the remainder of this section that our curves are strictly convex (K > 0). 
Accordingly, let C be a smooth strictly convex plane curve, p the curve parameter, 
and as above, let A/', T, and ds denote the Euclidean unit normal, unit tangent, 
and Euclidean arc-length, respectively. Let 

_ ^5 

dp 
be the speed of parametrization, so that 

Cp = (JT, Cpp = GpT + G^KM. 

Then clearly, 

rtomaketheEuch 
hthat 

For the similarity group (in order to make the Euclidean evolution scale-invariant), 
we take a parametrization p such that 

which implies that 

Therefore the similarity group invariant arc-length is the standard angle parameter 
^, since 

d^ _ 
ds 

where ds is the EucHdean arc-length. (Note that T = [cos ̂ , sin^]^.) Thus the 
similarity normal is Cee, and the similarity invariant flow is 

Ct = Cee> (10.6) 
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Projecting the similarity normal into the Euclidean normal direction, the follow­
ing flow is obtained 

Ct = -AT, (10.7) 

and both (10.6) and (10.7) are geometrically equivalent flows. 
Instead of looking at the flow given by (10.7) (which may develop singulari­

ties), we reverse the direction of the flow, and look at the expanding flow given 

We should also note that —MJK is the normal to the curve C where the derivatives 
are computed with respect to Q. 

For completeness, we state the following results for the flow (10.8) (the proofs 
are given in [705]): 

Theorem 10.6.1. 1. A simple convex curve remains simple and convex when 
evolving according to the similarity invariant flow (10.8). 

2. The solution to (10.8) exists (and is smooth) for all 0 < t < oo. 

Lemma 1. Changing the curve parameter from p to 9, we obtain that the radius 
of curvature p, p := 1/K, evolves according to 

Pt=Pee+P' (10.9) 

Theorem 10.6.2. A simple (smooth) convex curve converges to a circle when 
evolving according to (10.8). 

Sketch of Proof: 
So this resuh is so important to our construction of stochastic snakes, we briefly 
sketch the proof. The idea is that since the equation (10.9) is a linear heat equation, 
we can separate variables and see that in the standard manner p(0^ t) converges to 
a constant as t —> oo. This means that the curvature converges to a constant, i.e., 
we get convergence to a circle. D 

10.6.1 Heat Equation and Similarity Flows 

The equation (10.9) will be the basis for our stochastic model of snakes. In the 
equation p will be interpreted as a density. It is important to note that it is a linear 
heat equation (even though the underlying curvature flow (10.8) is nonlinear. 

The stochastic model of (10.9) also gives a simple way of implementing the 
flow (10.8). Indeed, one can easily show that the stochastic rates for (10.9) are 
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g{n) = b{n) = n and that d{n) = 0. This means that the interacting particle 
system is based on a classical random walk with a birth rate equal to the number 
of particles at a given site. 

10.6.2 Gradient Flow 

We now state the fundamental flow underpinning the segmentation method. We 
state it in general even though we will only apply it to planar curves. See [740] 
for another derivation. 

Let R be an open connected bounded subset of R"̂  with smooth boundary dR. 
Let ip^ : i? —> R" be a family of embeddings, such that ip^ is the identity. Let 
A : R^ -^ E be a C^ function. We set R{t) := ijj\R) and S{t) := ip^dR). We 
consider the family of ^-weighted volumes 

IRU) Ky)dy-

Set X = ^ | t = o then using the area formula [742] and then by the divergence 
theorem, the first variation is 

where M is the inward unit normal to dR. 
We now specialize the discussion to planar curves. In this case we have that if 

we define the functional 
Mt) 

Ax{t):=- / {C,M)\dv, 
Jo 

the first variation is 

Then notice if we take 

^x{t)= / [CtXe]Xde. 
Jo 

Ct — -XCoo 

and using the relation (10.5), we get that 

^IW = J[CeXee]\'dO = J ||C,f A d̂̂ , 

which implies that the flow 

Ct = -\N/K, (10.10) 

is a gradient flow for increasing A-weighted area. 
Following the discussion about geodesic snakes in Section 10.7, we will choose 

\ — (j) + V(t>'N. (10.11) 
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Figure 10.2. Envelope representation of a convex polygon 

Here (j) is the conformal stopping term. Notice that for a A evaluated inside a 
object (expanding snakes), it vŝ ill be positive. 

This will be used in the formulation of stochastic snakes. 

10.7 Stochastic Snakes 

In this section, we describe our formulation of a stochastic geometric active con­
tour model. For the geometric active contour model case which we considered in 
this study, the density function evolves according to 

Pt = {Xp)eo + K (10.12) 

where A is as in (10.11), and subscripts indicate partial derivatives. This 
corresponds to the curvature driven flow (10.11). 

The rates of the interacting particle system corresponding to the equa­
tion (10.12) are given by XnK^ x (mass of particle) for the diffusion, and by Xnx 
mass of particle for the birth/death, where n is the number of particles at the given 
site. With these rates, we use the method outlined in section 10.5 to choosing an 
event (site and type) to simulate in each single iteration of the Markov process 
(i.e. one evolution step for the stochastic snake). We now turn our attention to the 
remaining implementation details. In particular, how do we construct an evolving 
snake from the evolving particle system? 

10.7.1 Polygon representation and construction 

Here we describe a representation of polygons that connects in a particularly con­
venient way with our particle system model. They key point is that each site in the 
particle system corresponds to a polygonal edge with a fixed angle. As the particle 
system evolves, only the lengths of the polygonal edges change. Since the angle 
is always a fixed property associated with each site, we wish to exploit this in our 
mathematical representation of the evolving polygon. 

Envelope Representation 
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One way to represent a /(T-sided convex polygon is as the inner envelope of a set 
of K oriented lines /o,••• ^K-i in the plane, where the orientation of each line 
Ik is given by a choice of outward unit normal Nk. We assume that the lines 
are ordered according to the angle made between their unit normals and the x 
axis and that the changes in angle between consecutive unit normals are all pos­
itive with a total sum of 27r. The resulting polygon will consist of K vertices 
XQ,. .. ,XK-I where each vertex is given by the point of intersection Xk between 
the Hnes lk-\ and Ik- Each edge of the polygon will in turn correspond to the seg­
ment of the line Ik between the points Xk and Xk^i. A minimal set of parameters 
to describe a particular polygon in this representation would be the unit normals 
NQ,... ,NK-i of each line (or equivalently their angles with the x-axis) and the 
distances ro,.. . ,rK-i, between each Hne IQ,. .. ,IK-I and the origin O. Note that 
these distances are signed to indicate whether the origin lies on the inner or outer 
side of each line according to the orientation of its unit outward normal. 

Notice that this representation is particularly convenient in conjunction with or 
particle system since we may associate each line Ik to a lattice site k and that the 
unit normal Nk is a function of the lattice site only, not the number of particles 
7]{k) at that site. Assuming an equally spaced lattice, the angle 9 between consec­
utive unit normals will be fixed and given by ^ = 27r/K. This prescribes all of the 
unit normals once the first one is chosen. Thus, as the particle system evolves, the 
only parameters that need to be determined in this representation are the signed 
distances ro,.. . ,rK-i- Next we will show how to compute these distances based 
upon the particle configuration. First, however, we refer the reader to Fig. 10.2 
which illustrates the representation and notation discussed in this section. 

Least-squares construction 

Let us denote by Lk the length of the polygon segment on the line Ik between 
the vertices Xk and X^+i. Note that to relate the polygon ideally to the particle 
system, each edge length Lk should be proportional to the number of particles 
rj{k) at the site k. If we let AL denote the proportionality factor (i.e. the per-
particle-length), then the ideal relationship between the polygon and the particle 
system is: 

Lk = Lk := r]{k) AL (ideal case) (10.13) 

However, this is not always realizable in the form of a closed polygon with the 
prescribed unit normals Nk. As such it is not always possible to choose the pa­
rameters Tk to satisfy the constraint (10.13) for a\\0 < k < K—1. We will instead 
try to satisfy the constraints in a least squares sense by choosing 

{^0. • • •, rx-i} = a rgminE{ro , . . . , VK-I) 

where 

K-l 

2 
1 

^(ro,. . . ,rK-i) = - ^ ( L , - r / ( i ) A L ) ' (10.14) 
i=0 
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We may generate an expression for each vertex point Xk in terms of the unit 
normals A ô,••• ,NK-I and the distances ro,.• • ,^K-I by noting that X^ is given 
by the intersection of lines Ik-i and Ik (see Fig. 10.2) and therefore satisfies both 
line equations (Xk-Nk = Vk and Xk-N^-i = rfc-i). Hence 

where Tk denotes the unit tangent vector of the line Ik (by clockwise rotation of 
its outward unit normal Nk). This of course yields 

and 

L, = {X,,, - X,) • n = ^"""^^"•7' + '̂"̂  (10.16) 
smt7 

from which we can now see that the partial derivatives of E are given by 

dE _ rfc-2 - 4rfc-i cos^ + (2+4 cos^ 0)rk - ^rj^i cos 6 + rk\.2 
dvk sin^ 0 

_ Lfc-i - 2 cos OLk + Lk+i 
sinO 

Setting ^ = 0 yields the following optimality criteria for the distances 

(10.17) 
(r̂ _2 + r^2) - 4cose{rl_^ + r^ i ) 

+(2+4cos2|9)r^ = ALsin^('7;(^-l)-2cos(977(A;)+ry(A:+l)) 

10.8 Experimental Results 

In this section, we describe illustrate our algorithm on a real data set. We used the 
stochastic implementation of equation 10.12 as described in Section 10.7 above. 
Specifically, we considered the problem of segmenting the left ventricle (short-
axis view) of a heart from an MRI data set gotten from the the Department of 
Radiology of the Emory Medical School. 

Our results are shown in Figure 10.3. We start from a polygonal initial curve 
and let the contour grow according to the stochastic snake model given above. 
"Green" indicates birth and "red" indicates death. Notice that one gets a death 
process when the contour leaks over the boundary which pushes it back to a steady 
state position. 
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Figure 10.3. Stochastic Snake Capturing Left Ventricle of Heart from MRI 

10.9 Conclusions and Future Research 

In this paper, we proposed a novel approach to active contours based on a stochas­
tic interpretation of curvature-driven flows. There are a number of extensions 
which we would like to consider in some future work. 

First of all, the theory is now restricted to convex objects. Using the gradi­
ent term, we were able to overcome this difficulty, however we are considering 
other approaches based on first principles. One way would be to use negatively 
weighted particles (particles with "negative" mass) for concavities in the given 
curve. 

Secondly, we are interested in extending our work to active surfaces. There is a 
theory of stochastic flows for surfaces; see [476]. However, the extension would 
certainly be nontrivial. We would need to consider the theory on the 2D discrete 
torus. 
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Chapter 11 

Invariant Processing and Occlusion 
Resistant Recognition of Planar 
Shapes 

A. Bruckstein 

Abstract 
This short paper surveys methods for planar shape smoothing and processing 
and planar shape recognition invariant under viewing distortions and even 
partial occlusions. It is argued that all the results available in the literature 
on these problems implicitly follow from successfully addressing two basic 
problems: invariant location of points with respect to a given shape (a given 
set of points in the plane) and invariant displacement of points with regard to 
the given shape. 

11.1 Introduction 

Vision is an extremely complex process aimed at extracting useful information 
from images: recognizing three-dimensional shapes from their two-dimensional 
projections, evaluating distances and depths and spatial relationships between ob­
jects are tantamount to what we commonly mean by seeing. In spite of some 
irresponsible promises, made by computer scientists in the early 60's, that within 
a decade computers will be able "to see", we are not even close today to hav­
ing machines that can recognize objects in images the way even the youngest of 
children are capable to do. As a scientific and technological challenge, the pro­
cess of vision has taught us a lesson in modesty: we are indeed quite limited in 
what we can accomplish in this domain, even if we call to arms deep mathemati­
cal results and deploy amazingly fast and powerfiil electronic computing devices. 
In order to address some practical technological image analysis questions and 
in order to appreciate the complexity of the issues involved in "seeing" it helps 
to consider simplified vision problems such as "character recognition" and other 
"model-based planar shape recognition" problems and see how far our theories 
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(i.e. our "brain-power") and experiments (or our "number-crunching power") can 
take us toward working systems that accomplish useful image analysis tasks. As 
a result of such scientific and commercial efforts we do have a few vision systems 
that work and there is a vast literature in the "hot" field of computer vision dealing 
with representation, approximation, completion, enhancement, smoothing, exag­
geration, characterization and recognition of planar shapes. This paper surveys 
methods for planar shape recognition and processing (smoothing, enhancement, 
exaggeration etc.) invariant under distortions that occur when looking at planar 
shapes from various points of view. These distortions are the Euclidean, Simi­
larity, Affine and Projective maps of the plane to itself and model the possible 
viewing projections of the plane where a shape is assumed to reside into the im­
age plane of a pinhole camera, that captures the shape from arbitrary locations. A 
further problem one must often deal with when looking at shapes is occlusion. If 
several planar shapes are superimposed in the plane or are floating in 3D-space 
they can and will (fully, or partially) occlude each other. Under full occlusion 
there is of course no hope for recognition, but how about partial occlusion? Can 
we recognize a planar shape from a partial glimpse of its contour? Is there enough 
information in a portion of the projection of a planar shape to enable its recogni­
tion? We shall here address such questions too. The main goal of this paper will 
be to point out that all methods proposed to address the above mentioned topics 
implicitly require the solution of two fundamental problems: distortion-invariant 
location of points with respect to given planar shape (which for our purposes can 
be a planar region with curved or polygonal boundaries or in fact an arbitrary set 
of points) and invariant displacement, motion or relocation of points with respect 
to the given shape. 

11.2 Invariant Point Locations and Displacements 

A planar shape S, for our purpose, will be a set of points in R? points that most 
often specify a connected a planar region with a boundary that is either smooth or 
polygonal. The viewing distortions are classes of transformations 1/̂  : R'^ —> R^ 
parameterized by a set of values </>, and, while the class of transformations is 
assumed to be known to us, the exact values of the parameters are not. The classes 
of transformations considered are continuous groups of transformations modeling 
various imaging modalities, the important examples being: 

• The Euclidean motions (parameterized by a rotation angle 9 and a two-
dimensional translation vector (tx.ty), i.e. (j) has 3 parameters). 

V J : ( x , y ) ^ ( x , y ) 
cos 0 sinO 

-sinO cos 9 "r V̂ X5 iy) 
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Similarity transformations (Euclidean motions complemented by uniform 
scaling transformations, i.e. |<?̂ | = 4 parameters). 

Vf: {x,y)-^{x,y) cos u sznU 
—sinO cosO 

Oi-i- [tx.ty) 

Equi-Afiine and Affine Mappings (parameterized by 2 x 2 matrix - 4 pa­
rameters - or 3, if the matrix has determinant 1 - and a translation vector, 
i.e. \(j)\ = 6 or 5 parameters). 

{x,y) -^ {x,y) an ai2 
«21 Ct22 

• V^X5 '^yj 

• Projective Transformations (modeling the perspective projection with \<p\ = 
8 parameters). 

vi {x,y) 
1 

asix + as2y + 1 
{x^yA) 

an ^21 
^12 ^22 

ttl3 tt23 

Given a planar shape S C R"^ and a class of viewing distortions V^ : R"^ 
we consider the following problem: 

R^ 

Two observers A and B look at SA = V^^ (5) and at SB = V<f>B {^) respec­
tively without knowing (j)^ and (J)B- In other words A and B look at S from 
different points of view and the details of their camera location orientation and 
settings are unknown to them (See Figure 11.1). Observer A chooses a point 
PA in its image plane R^, and wants to describe its location w.r.t. V^^ (5) to 
observer B, in order to enable him to locate the corresponding point PB — 
y<t>Biy;^{PA))- A knows that B looks at SB = V^s{S) = V^siVi^'iSA)), 
but this is all the information available to A and B. How should A describe the 
location of P^ w.r.t. SA to JB? 
Solving this problem raises the issue of characterizing a position (PA) in the 
plane of SA in a way that is invariant to the class of transformations V$. 

Let us consider a very simple example: take 5 be a set of indistinguishable points 
in the plane {Pi,P2,... ,PN} and V^ be the class of EucHdean motions. A 
new point P should be described to observers of this point constellation, under 
arbitrary viewing distortions K ,̂ i.e. observers of 

K ^ { P i , . . . , p ^ } = {y^(P i ) ,y^ (P2) . . . v4Piv)} 

so that they will be able to locate V(f>{P) in their respective "images". How should 
we do this? Well, we shall have to describe P 's location w.r.t. {Pi, P 2 , . . . , P/v } in 
an Euclidean-invariant way. We know from elementary geometry that Euclidean 
motions preserve lengths and angles between line segments so there are several 
ways to provide invariant coordinates in the plane w.r.t. the shape S. The origin 
of an invariant coordinate system could be the Euclidean-invariant (in fact even 
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Figure 11.1. 

Affine-invariant) centroid of the points S, i.e. Os = [J2i=i ̂ i) 1^- ^^ ^^^ ^^ 
axes (say the x-axis) of a "shape-adapted invariant" coordinate system, one may 
choose the longest or shortest (or closest in length to the "average" length) vector 
among {OPi} fori — 1,2,..., TV. This being settled, the y-axis can be defined 
as a 90°- rotation counter-clockwise and all one has to do is to specify P in this 
adapted and Euclidean-invariant coordinate system with origin at Os and orthog­
onal axes chosen as described above. Note that many other solutions are possible. 
We here assumed that the points oiS are indistinguishable, otherwise the problem 
would be even simpler. Note also that ambiguous situations can and do arise. In 
case all the points of S form a regular iV-gon, there are TV equal length vectors 
{pPi\ z = 1,2,..., AT and we can not specify uniquely an x-axis. But, a moment 
of thought will reveal that in this case the location of any point in the plane is 
inherently ambiguous up to rotations of 27r/TV. 

Contemplating the above-presented simple example one realizes that solving 
the problem of invariant point location is heavily based on the invariants of the 
continuous group of transformations V .̂ The centroid of the point constellation 
(5), Os, an invariant under V̂ ,̂ enabled the description of P using a distance 
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d{Osy P)y the length of vector OsP (again a V^-invariant), up to a further param­
eter that locates P on the circle centered at Os with radius d{OsP), and then the 
"variability" or inherent "richness" of the geometry of 5* enabled the reduction of 
the remaining ambiguity. 

Suppose next that v̂ e v^ant not only to locate points in vŝ ays that are invariant 
under V^ but we also want to perform invariant motions. This problem is already 
completely addressed in the above presented example, once an "5-shape-adapted" 
coordinate system became available. Any motion can be defined with respect to 
this coordinate system and hence invariantly reproduced by all viewers of S. In 
fact, when we establish an adapted frame of references we implicitly determine 
the transformation parameters, (/), and can effectively undo the action of F^. 

To complicate the matters further consider the possibility that the shape S will 
be partially occluded in some of its views. Can we, in this case, establish the lo­
cation of P invariantly and perform some invariant motions as before? Clearly, in 
the example when .S is a point constellation made of AT indistinguishable points, if 
we assume that occlusion can remove arbitrarily some of the points, the situation 
may become rather hopeless. However, if the occlusion is restricted to wiping out 
only points covered by a disk of radius limited to some Rmax, or alternatively, we 
can assume that we shall always see all the points within a certain radius around 
an (unknown) center point in the plane, the prospects of being able to solve the 
problem, at least in certain lucky instances, are much better. Indeed, returning to 
our simple example, assume that we have many indistinguishable landmark points 
(forming a "reference" shape S in the plane), and that a mobile robot navigates in 
the plane, and has a radius of sensing or visibility of Rmax- At each location of the 
robot in the plane, P , it will see all points of 5 whose distance from P is less than 
Pmax, Up to an arbitrary rotation. Hence, the question of being able to specify P 
from this data becomes the problem of robotic self location w.r.t the landmarks. 
So given a reference map (showing the "landmark"points ofS in some "absolute" 
coordinate system), we want the robot to be able to determine its location on this 
map from what it sees (i.e. a portion of the points of 5 translated by P and seen in 
an arbitrary rotated coordinate system). Clearly, to locate itself the robot can do 
the following: 

Using the arbitrarily rotated constellation of points of S within its 
radius of sensing, i.e. 

5(P, R) = {QeiPi - P)/Pi e 5, d{{PiP) < R} 

when Qe is a rotation matrix 2 x 2 about P, "search" in S for a 
similar constellation by checking various center points (2 parame­
ters: Xp^yp) and rotations (1 parameter: 0). As stated this solution 
involves a horrendous 3-dimensional search and it must be avoided 
by using various available tricks like invariant geometric signatures 
and (geometric) hashing based on "distances" from P to n^(Pi — P) 
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and distances and angles between the Pi's seen from P. This leads 
to much more efficient, Hough-Transform like solutions, for the self 
location problem. By the way, this is exactly how satelites determine 
their orientation in space with respect to the constellations of distant 
stars acting as landmark points! 

In the above discussed problem it would help if the points of S would be ordered 
on a curve, forming, say, a polygonal boundary of a planar region, or would be dis­
crete landmarks on a continuous but clearly visible and definable boundary curve 
in the plane. Fortunately for those addressing planar shape analysis problems this 
is most often the case. 

11.3 Invariant Boundary Signatures for Recognition 
under Partial Occlusions 

If the shape 5 is a region of R^ with a boundary curve dS = C that is either 
smooth or polygonal, we shall have to address the problem of recognizing the 
shape S from V^-distorted portions of its boundary. Portions of the boundary, 
and not the entire boundary because, we must remember, we are dealing with a 
scenario of possible occlusions. Our claim is that if we can effectively solve the 
problem of locating a point P on the curve C in a F^-invariant way based on the 
"local behavior" of C in a neighborhood of P, then we also have a way to detect 
the possible presence of the shape S from a portion of its boundary. How can we 
locate P based on the local behavior of C in V^-invariant ways? We shall have 
to associate to P a set of numbers ("co-ordinates" or "signature" values) that are 
invariant under the class of F^-transformations. To do so, one again has to rely on 
known geometric invariants of the group of viewing transformation assumed to 
act on S to produce its image. The fact that we live on a curve C makes our life 
quite a bit easier. 

As an example, consider first the case where C is a polygonal curve 
and V(f) is the group of Affine-transformations. Since all the view­
ing transformations map Hnes into lines and hence the vertices of 
the poly-line C into vertices of a transformed poly-line V0((7) we 
can define the local neighborhood of each vertex C{i) of C, as 
the "ordered" constellation of 2n + 1 points {C(^ - n ) , . . . , C{i -
1), C(i), C{i + 1 ) , . . . , C{i -h n)} and associate to C{i) invariants of 
V(f, based on this constellation of points. Affine transformations are 
known to scale areas by the determinant of their associated 2 x 2 ma­
trix, A, of "shear and scale" parameters, hence we know that ratios of 
corresponding areas will be affine invariant. Therefore we could con­
sider the areas of the triangles Ai = [{C{i - l)C{i)C{i -f-1)], A2 = 
[C{i - 2)C{i)C{i + 2)] • • • An = [C{i - n), C(i), C{i + n)] and 
associate to C(i) a vector of ratios of the type {Ak/Ai\kJ = 
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{ 1 , 2 , . . . , n} , A: ^ I) (See Figure 11.2). This vector will be invariant 
under the affine group of viewing transformation and will (hopefully) 
uniquely characterize the point (7(i) in an affine-invariant way. 

Figure 11.2. 

The ideas outlined above provide us a procedure for invariantly characterizing the 
vertices of a poly-line, however, we can use similar ideas to also locate interme­
diate points situated on the line segments connecting them. Note that the number 
n in the example above is a locality-parameter : smaller n's imply more local 
characterization in terms of the size of neighborhoods on the curve C. Contem­
plating the foregoing example we may ask how to adapt this method to smooth 
curves where there are no vertices to enable us to count "landmark" points to 
the left and to the right of the chosen vertex in view-invariant ways. There is a 
beautiful body of mathematical work on invariant differential geometry provid­
ing differential invariants associated to smooth curves and surfaces, work that 
essentially carried out Klein's famous Erlangen program for differential geom­
etry, and is reported on in books and papers that appeared many years ago, see 
([97], [890], [378], [501] and [136]). Differential invariants enable us to de­
termine a V^-invariant metric, i.e. a way to measure "length" on the curve C 
invariantly with respect to the viewing distortion, similar to the way one has, in 
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a straightforward manner, the Euclidean-invariant arclength on smooth curves. If 
we have an invariant metric, we claim that our problem of invariant point char­
acterizations on C can be readily put in the same framework as in the example 
of a poly-line. Indeed we can now use the invariant metric to locate to the left 
and right of P on C (if we define P — C(0), and describe C as C()u) where 
^ is the invariant metric parameterization of C about C(0) = P) the points 
{C(0 - n A ) , . . . , C(0 - A), C(0 + A ) , . . . , C(0 + nA}, and these 2n + 1 points 
now form an invariant constellation of landmarks anchored at P == C(0) (See 
Figure 11.3). Here A is arbitrarily chosen as a small "invariant" distance in terms 
of the invariant metric. It is very nice to see that letting A \ 0 one often re­
covers, from global invariant quantities that were defined on the constellation of 
points about C(0) — P , differential invariant quantities that correspond to known 
"generalized invariant curvatures" (generalizing the classical curvature obtained 
if Vfj) is the simplest, Euclidean viewing distortion). Therefore to invariantly lo­
cate a point P on C, we can use the existing V^ invariant metrics on C (note that 
if C is a polygon - the ordering of vertices is an immediate invariant metric!) to 
determine about P an invariant constellation of "landmark" points on the bound­
ary curve and use global invariants of V^ to associate to P an "invariant signature 
vector" /p (A) . If A \ 0 this vector yields, for quite a variety of "good" choices 
of invariant quantities "generalized invariant curvatures" for the various viewing 
groups of transformations V^. 

We however do not propose to let A \ 0. A is a locality parameter (as was n 
before) and we could use several small, but finite, values for A to produce (what 
we can call) a "scale-space" of invariant signature vectors {/pJAie/^an^eCo/A's)-

This freedom allows us to associate to a curve C(ju), parameterized in terms 
of its "invariant metric or arclength", a vector valued scale space of signature 
functions {Ip[iJi)}/n^^eRange^ that will characterize it in both a localized and view-
invariant ways. This characterization being local (its locality being in fact under 
our control via A and n) is useful to recognize portions of boundaries in scenes 
where planar shapes appear both distorted and partially occluded. The recogni­
tion process becomes, in terms of the vector-valued signature function, a partial 
matching algorithm, see [129]. 

11.4 Invariant Processing of Planar Shapes 

Smoothing and other processes of modifying and enhancing planar shapes in­
volves moving their points to new locations. Here we are naturally led to define 
planar shape deformations or evolutions, by motions of points on the shape bound­
aries that are small and based on the local geometry, i.e. the geometry of the 
constellation of other boundary points in the neighborhood. In the spirit of the 
discussion above, we want to do this in "viewing-distortion-invariant" ways. To 
do so we have to locate the points of a shape S (or of its boundary C = 6S) and 
then invariantly move them to new locations in the plane. The discussions of the 
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Figure 11.3. 

previous sections shov^ed us various v^ays to invariantly locate points on S or in 
the plane of S, Moving points around is not much more difficult. We shall have 
to associate to each point (of S, or in the plane of S) a vector M whose direction 
and length have been defined so as to take us to another point, in a way that is V^-
invariant. In the example of S being a constellation of points, with a robot using 
the points of 5 to locate itself at P, we may also want it to determine a new place 
to go, i.e. to determine a point Pnew = P-^M, so as to have the property that from 
V<f,{P) a robot using the points {V^(Pi) . . . V(J>{PN)} will be able to both locate 
itself and move to V^(Pnew)- Of course, on shapes we shall have to do motions 
that achieve certain goals Hke smoothing the shape or enhancing it in desirable 
ways as discussed in [761] . To design view-distortion invariant motions, we can 
(and indeed must) rely on invariant point characterizations. Suppose we are at a 
point P on the boundary C = SS of a, shape S, and we have established a constel­
lation of landmark points about P. We can use the invariant point constellation 
about P to define a F^-invariant motion from P to Pnew (See Figure 11.4). 

Let us first consider again a very simple example: if V^ is the Affine 
group of viewing transformations, the centroid of the point constella­
tions about P is an invariantly defined candidate for Pnew Indeed it 
is an average of points around P and the process of moving P to such 

^ Pnew 
or, differentially, toward such a new position can (relatively 
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easily) be proved to provide an affine invariant shape smoothing op­
eration. If AS is a polygonal shape, i.e. dS = C is a poly-line, then 
moving the vertices according to such a smoothing operation can be 
shown to shrink any shape into a polygonal ellipse, "the affine image 
of a regular polygon" with the same number of vertices as the orig­
inal shape. This beautiful result is a generalization of the very early 
work of Darboux [244], see also [130] and [717], on "a problem in el­
ementary geometry" that addresses the evolutions of planar polygons 
under an iterative process which replaces the vertices of a polygon by 
the (ordered) midpoints of its edges. In fact ellipses and polygonal el­
lipses are the results of many reasonably defined invariant averaging 
processes [703]. 

If we are dealing with a smooth continuous boundary curve C and we move 
the points infinitesimally according to a local "velocity" vector invariantly de­
fined we are in the realm of "geometric" curve evolution processes described by 
nonlinear partial differential equations. A very prominent recent example of such 
an evolution process is the Euclidean invariant curve evolution moving the smooth 
boundary points in the direction of the local normal vector Nc proportionally to 
the local Euclidean curvature kc. The temporal evolution of simple closed curves 
(boundaries of planar shapes) under this rule, described by 

— Q == kc^Nc^ Co = original boundary. 

was thoroughly analyzed and it was proved to smoothly deform and shrink any 
original curve into an infinitesimal circle, see e.g. [334] and [361]. This nice 
mathematical result, together with the fact that other Euclidean invariant motions 
like Blum's prairie fire evolution model [100], [142] which postulates constant 
velocity motion in the direction of the local normal and leads to "shocks" or 
"wavefront" collisions that were found usefiil for shape descriptions since they 
produce the so-called "shape skeletons", generated a lot of interest and activity in 
the computer vision community. This activity culminated with the realization that 
a variety of geometric and viewpoint invariant shape evolutions exist and may be 
useful in invariant shape analysis and classification. Note that kcNc = ^ ^ , i.e. 
that in the Euchdean case the invariant vector kcNc associated to a point C on a 
smooth curve is the second derivative of the curve with respect to the Euclidean 
invariant arclength. This observation yields a very nice interpretation of this in­
variant evolution: a point on the curve is simply replaced by weighted average of 
points of the curve of C{s) in the neighborhood with averaging weight depen­
dent on their distance measured in the view invariant metric, from the anchor part 
C. If the averaging kernel is Gaussian then if is readily seen that a "geometric" 
diffusion process results, but recall that a variety of local processing and averag­
ing operations are readily available and implementable and should be considered 
as viable alternatives in generating useful shape evolutions. The process of de-
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riving the invariant evolutions is, of course, readily generalized to more complex 
viewing transformations and distortions [131], [703]. 
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Figure 11.4. 
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11.5 Concluding Remarks 

The main point of this paper is the thesis that in doing "practical" view-point 
invariant shape recognition or shape processing for smoothing or enhancement, 
one has to rely on the interplay between global and local (and preferably not 
differential) invariants of the group of viewing transformations. 

Invariant reparameterization of curves based on "adapted metrics" enables us 
to design generalized and local but not necessarily differential signatures for par­
tially occluded recognition. These signatures have many incarnations, they can 
be scalars, vectors or even a scale-space of values associated to each point on 
shape boundaries. They are sometimes quite easy to derive, and generalize the 
differential concept of "invariant curvature" in meaningful ways. A study of the 
interplay between local and global invariances of viewing transformations is also 
very useful for invariant shape smoothing, generating invariant scale-space shape 
representations, and also leads to various useful invariant shape enhancement an 
exaggeration operations. 

The point of view that geometry is the study of invariances under groups 
of transformations is, of course, the famous Erlangen program of Felix Klein. 
Several books appeared over the years that carry out parts of this program for 
Euclidean aflfine and projective geometry, see for example Guggenheimer [370], 
Buchin [136], Blaschke [97], Lane [501]. These theories found their way into 
the computer vision literature rather late, for example though the works of Weiss 
[875],[875] [876], [877], [677], Cygansky [242], [833], Abter and Burkhardt [1] 
and others. The point of view exposed in this paper developed through a series of 
papers written over many years. These papers, with the details of what is exposed 
herein, are [127], [126], [128], [130], [131], [129], [132], [761]. Other researchers 
have made significant contributions to the field and I'll mention the important con­
tributions of Peter Olver [141], [610], Jean-Michel Morel and T. Cohignac [211], 
[212], Luc Van Gool and his team [829], [830], M. Brill [55], [54], Z. Pizlo and 
A. Rosenfeld [650], L. Moisan [582], J. Sato and R. Cippola [707], [708] and O. 
Faugeras [307]. 

Students, collaborators and academic colleagues and friends have helped me 
develop the point of view exposed in this paper. I am grateful to all of them for 
the many hours of discussions and debates on these topics, for agreeing and dis­
agreeing with me, for sometimes fighting and competing, and often joining me on 
my personal journey into the field of applied invariance theory. 



Chapterl2 

Planar Shape Analysis and Its 
Applications in Image-Based 
Inferences 

A. Srivastava, S. Joshi, D. Kaziska and D. Wilson 

Abstract 
Shapes of boundaries can play an important role in characterizing objects in 
images. We describe an approach for statistical analysis of shapes of closed 
curves using ideas from differential geometry. A fundamental tool in this 
shape analysis is the construction and implementation of geodesic paths 
between shapes. We use geodesic paths to accomplish a variety of tasks, 
including the definition of a metric to compare shapes, the computation of 
intrinsic statistics for a set of shapes, and the definition of probability mod­
els on shape spaces. We demonstrate this approach using three applications: 
(i) automated clustering of objects in an image database according to their 
shapes, (ii) interpolation of heart-wall boundaries in echocardiographic im­
age sequences, and (iii) a study of shapes of human silhouettes in infrared 
surveillance images. 

12.1 Introduction 

Detection, extraction and recognition of objects in an image is an important area 
of research. Objects can be characterized using a variety of features: textures, 
edges, boundaries, colors, motion, shapes, locations, etc. These features are often 
used in a statistical framework to perform image analysis. In particular, one de­
fines a feature space, trains probability models on these spaces using past data, 
and uses them to conduct statistical inferences on future data. Shape often pro­
vides an important clue for determining how an object appears in an image. For 
example, we have displayed the images of four animals in the top panels of Figure 
12.1. The lower panels show the silhouettes of these animals in the corresponding 
images. It is easy to see that the shapes of these silhouettes can help shortlist, or 
even identify, the animals present in these images. Tools for shape analysis can 
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Figure 12.1. Analysis of shapes of objects' boundaries in images can help in computer 
vision tasks such as object recognition. 

prove important in several applications including medical image analysis, human 
surveillance, military target recognition, finger-print analysis, space exploration, 
and underwater search. One reason for pursuing shape analysis is the possibility 
that an efficient representation and analysis of shapes can help even in situations 
where the observations are corrupted, e.g. when objects are partially obscured 
or corrupted by excess clutter. Shape is a global feature that can help overcome 
loss of some local data. This possibility, along with the development of statistical 
methods, has led to the idea of Bayesian shape analysis. In this approach a con­
textual knowledge is used to impose prior probabilities on shape spaces, followed 
by the use of posterior probabilities to perform inferences from images. 

In order to perform statistical analysis of shapes, one needs tools to address the 
following questions: 

1. How can an object be represented by the shape of its boundary? 

2. How can dissimilarities between the shapes of two closed curves be 
quantified? 

3. How to compute summary statistics, such as mean, covariance, etc, for a 
given collection of observed shapes? 

4. What family of probability models can be used to describe variability in a 
collection of shapes? 

5. How to solve an optimization problem, e.g. estimation of maximum 
a-posteriori (MAP) shape, on a shape space? 

6. Given an observed shape, how to decide which family of shapes does it 
belong to? 

In summary, one needs tools for representation, comparison, clustering, learning, 
estimating, and testing of shapes. Solutions to several of these questions exist as 
shapes have been an important topic of research over the past decade. However, a 
comprehensive approach for analysis of shapes in R^ has emerged only recently. 
A significant part of the past efforts has been restricted to "landmark-based" anal­
ysis, where shapes are represented by a coarse, discrete sampling of the object 
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contours[284, 747]. Since automatic detection of landmarks is not straightfor­
ward and the ensuing shape analysis depends heavily on the landmarks chosen, 
this approach is limited. In addition, shape interpolation with geodesies in this 
framework lacks a physical interpretation. A similar approach, called active shape 
models, uses principal component analysis (PCA) of landmarks to model shape 
variability [223]. Despite its simplicity and efficiency, its scope is rather limited 
because it ignores the nonlinear geometry of shape space. Grenander's formula­
tion [364] considers shapes as points on infinite-dimensional manifolds, where 
the variations between the shapes are modeled by the action of Lie groups (dif-
feomorphisms) on these manifolds [366]. In summary, the majority of previous 
work on analyzing shapes of planar curves involves either a discrete collection 
of points or diffeomorphisms on R^. Seldom have shapes been studied as closed 
curvesl 

In contrast, a recent approach [478, 755] considers the shapes of continuous, 
closed curves in R^, without any need for landmarks, diffeomorphisms, or level 
sets to model shape variations. We summarize this approach in Section 12.2, and 
present three applications of this approach in later sections. First, in the area of 
computer vision, one is interested in automated partitioning of an observed set 
of shapes into clusters of similar shapes, which is useful in applications such as 
image retrieval, organization of large databases of images, and learning of prob­
ability models on the shape space. We describe a method for clustering shapes 
where dissimilarities between shapes are quantified using geodesic lengths on the 
shape space. Second, we look at a problem in ecocardiographic image analysis 
where shapes of epicardial and endocardial boundaries are studied to determine 
the extent and progression of disease in a patient's heart. We focus on the specific 
problem of interpolating these boundaries in image sequences when an expert pro­
vides contours for the first and last frames in the sequence. Lastly, we will present 
an application involving human surveillance with a goal of detecting humans in 
low-quality night-vision (infrared) images. Our approach is to use a statistical 
analysis of shapes of human silhouettes in detection, and we present a statistical 
model to capture human shapes. 

The rest of this chapter is organized as follows. In Section 2 we present a 
differential-geometric representation of shapes that leads to natural and efficient 
statistical analysis. In Sections 12.3-12.5, we describe the three applications and 
present a summary in Section 6. 

12.2 A Framework for Planar Shape Analysis 

We start with a basic question of how to represent shapes of closed curves. 
Our approach is to identify a space of closed curves, remove shape-preserving 
transformations from it, impose a Riemannian structure on it, and treat the re­
sulting quotient space as the shape space. Using the Riemannian structure of this 
space, we have developed algorithms for computing geodesic paths on these shape 
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Figure 12.2. Alternate representations of a closed curve (left panel) via x and y coordinate 
functions a (second panel), angle function 9 (third panel), or curvature function K (last 
panel). 

spaces. We summarize the main ideas here and refer to the recent paper by Klassen 
et al [478] for details. 

1. Geometric Representation of Shapes: Consider the boundaries or silhou­
ettes of the imaged objects as closed, planar curves in M^ (or equivalently in 
C) parameterized by the arc length. Define the angle function as follows: note 
the angle, made by the velocity vector with the positive a;-axis, as a function of 
arc length. Coordinate function a{s) relates to the angle function 9{s) according 
to a{s) = e^^^^\ j — \f^. The curvature fiinction of this curve is given by 
K{S) — 0{s). A curve can be represented by its coordinate function a, the angle 
function 0, or the curvature function K, as demonstrated in Figure 12.2. 

In this approach, we choose angle functions to represent and analyze shapes. 
The direction function of a unit circle is given by Oo{s) = s. For any other closed 
curve of rotation index 1, the direction function takes the form 0 = OQ-^-H, where 
/i G L^, and I? denotes the space of all real-valued functions with period 27r 
and square integrable on [0,27r]. The next issue is to account for equivalence of 
shapes. As shown in Figure 12.3, shape is a characteristic that is invariant to rigid 
motions (translation and rotation) and uniform scaling. Additionally, for closed 
curves, shape is also invariant to the placement of origin (or starting point) on 
the curves. To build representations that allow such invariances, we proceed as 
follows. We remove the scale variations by forcing all curves to be of length 27r. 
The translation is already removed since the angle function 6 is invariant to the 
translation of the curve in M?. To make shapes invariant to rotation, restrict to ^ G 
{9Q + L ^ } such that, ^ /Q ^ 0{s)ds = n. Also, for a closed curve, 0 must satisfy 
the closure condition: J^ ^ exp(j 0{s))ds = 0. Summarizing, one restricts to the 

setC = {e e 00-^V\ ^fQ''e(s)ds = TT, ^l'^e^^^'Us = 0}. Furthermore, 
to remove the re-parametrization group (relating to different placements of the 
origin), define the quotient space S = C/S^ as the space of continuous, planar 
shapes, where S^ denotes the unit circle in R^. C is called the pre-shape space 
and S is called the shape space. 

For the purpose of shape analysis, the incidental variables such as scale, loca­
tion, orientation, etc, are termed as nuisance variables, and are removed from the 
analysis as described above. In contrast, detection and recognition of objects in 
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Figure 12.3. Shape is a characteristic that is invariant to rigid rotation and translation, and 
uniform scaling. Shape spaces are always quotient spaces. 

images requires estimation of both their shapes and their nuisance variables. In 
this case, the shape and the nuisance variables may have independent probability 
models. Let Z — {SO (2) x M^ x M .̂) be the space of nuisance variables, and 
let {9, z) be a representation of a closed curve a such that 9 e S is its shape and 
z e Z axQ its nuisance variables. 

2. Geodesic Paths Between Shapes: An important tool in a Riemannian anal­
ysis of shapes is to construct geodesic paths betv^een arbitrary shapes. Klassen 
et al. [478] approximate geodesies on S by successively drawing infinitesimal 
line segments in L^ and projecting them onto S, as depicted in the top panel 
of Figure 12.4. For any two shapes ^i , ^2 ^ ^, one uses a shooting method to 
construct a geodesic between them. The basic idea is to search for a tangent di­
rection g at the first shape 9i, such that a geodesic in that direction reaches the 
second shape ^2 (called the target shape) in unit time. This search is performed 
by minimizing a "miss function", defined as the chord length or the L^ distance 
between the shape reached and 92, using a gradient process. The geodesic metric 
is {gi,g2) = JQ^gi{s)g2{s)ds on the tangent space of 5 . This choice implies 
that a geodesic between two shapes is the path that uses minimum energy to 
bend one shape into the other. Shown in the bottom two rows are examples of 
geodesic paths connecting the two end shapes. We will use the notation ^t{^,g) 
for a geodesic path starting from ^ G <S, in the direction g € T0{S), as a function 
of time t Here T (̂«S) denotes the space of functions tangents to S at the point 9. 
lfg€ T^i (<S) is the shooting direction to reach ^2 in unit time from 9i, then the 
following holds: '^oi9i,g) = 9u ^i{9i,g) = 92, and ^o{9i,g) = g. The length 
of this geodesic is given by d{9i, ^2) = Vig^d)-



194 Srivastava, Joshi, Kaziska & Wilson 

Shape Reached 

V Chord Length 

Initial 

Target Shape 

92 

Initial Shape Gj 

Figure 12.4. Top: A cartoon diagram of a shooting method to find geodesies in shape space. 
Bottom two rows: Examples of a geodsic path in S. 

3. Mean Shape in S: For a collection ^ i , . . . , ^^ in S, and d{Oi, 9j) the geodesic 
length between 6i and Oj, the Karcher mean is defined as the element ^ G *S that 
minimizes the quantity YH^I d{0, Oi^. A gradient-based, iterative algorithm for 
computing the Karcher mean is presented in [503, 454] and is particularized to S 
in [478]. 

This approach provides a comprehensive framework for a statistical analysis 
of planar shapes. In the next three sections, we present some applications of this 
framework to problems of practical interest. 

12.3 Clustering of Shapes 

In order to facilitate training of probability models for shape families, one needs 
to organize the observed shapes into clusters of similar shapes. One of the popular 
techniques for clustering points in Euclidean spaces is A;-mean clustering [429]. In 
this method, n given points are clustered into k groups, for a given k, in such a way 
that the sum of within cluster-variances is minimized. Since computing means of 
shapes is expensive, we modify this procedure so that it avoids computing cluster 
means at every iteration. 

Our approach is to divide n given shapes into k clusters in such a way that 
a cumulative dispersion within the clusters is minimized. Let a configuration C 
consist of clusters denoted by Ci, C 2 , . . . , Cj^. If n^ is the size of Q , then the cost 



Planar Shape Analysis and Its Applications in Image-Based Inferences 195 

Q associated with a cluster configuration C is given by [401]: 

«(C') = E M ^ ^ d(̂ a,̂ 6)M. (12.1) 

We seek configurations that minimize Q, i.e., C* = argmin Q{C). This cost func­
tion differs from the usual variance function and avoids the need for updating 
means of clusters at every iteration. 

In [755], we utilize a stochastic search process to find an optimal configuration. 
The basic idea is to start with a random configuration of n shapes into k clusters, 
and use a sequence of moves, performed probabilistically, to re-arrange that con­
figuration into an optimal one. The moves are restricted to be of two different 
kinds: move a shape from one cluster to another, or swap two shapes from two 
different clusters. The probabilities of performing these moves are set to the neg­
ative exponential of the resulting Q function. Additionally, a temperature variable 
T is decreased slowly in each iteration to simulate annealing so that this process 
converges to an optimal configuration in due time. Next we present the algorithm 
for clustering of n planar shapes into k clusters. 

Algorithm 1. 7. Compute pairwise geodesic distances between all n shapes. 
This requires n{n — l ) /2 geodesic computations. 

2. With equal probabilities pick one of two moves: 

(a) Move a shape; 
/. Pick a shape Oj randomly. If it is not a singleton in its cluster, 

then compute Qj, the cost obtained after moving 6j to Ci, for 
alii ^ 1,2,...,k. 

a. Compute the probability PM {ji i] T) according to 

exp(-Qf/T) 
PMh,r,T) = -—r / ,,. , 1 = 1,2, . . . , / : , 

and re-assign Oj to a cluster chosen according to the probability 

PM. 

(b) Swap two shapes; 

/. Select two clusters randomly, and select a shape from each of 
them. Let Q^^^ and Q^̂ ^ be the configuration costs before and 
after the swap, respectively. 

a. Compute the probability Ps{T), where 

and swap the two shapes according to that probability. 

3. Update temperature using T = T/l3 and return to Step 2. We have used 
P = 1.0001 in our experiments. 
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Figure 12.5. Clustering of 50 shapes from ETH-80 dataset using Algorithm 1. Each row 
represents a cluster. 

Displayed in Figure 12.5 are the results of Algorithm 1, where a collection of 50 
shapes have been sorted into into seven clusters. All the shapes in a cluster have 
been placed in the same row. (These shapes are taken from the ETH database.) 
With only a few exceptions (e.g. the pear in row one or the dog in row four) 
similar shapes have been clustered together. Shown in Figure 12.6 is an evolution 
of algorithm (left panel) and a histogram ofQ{C*) values resulting from 200 runs 
of the algorithm, each starting at a different random initial condition. Additional 
examples of clustering databases, consisting of thousands of shapes, are presented 
in [755]. Once the shapes are clustered, the next goal is to develop probability 
models that efficiently capture variability within clusters. Another extension is 
to form a hierarchy, where one organizes shapes into a tree structure. The mean 
is computed for each cluster at each each level of the tree. The clusters of these 
means are used to form the next level of the tree [755]. 

12.4 Interpolation of Shapes in Echocardiographic 
Image-Sequences 

Shape analysis continues to play a major role in medical diagnostics using non­
invasive imaging. Shapes and shape variations of anatomical parts are often 
important factors in deciding normality/abnormality of imaged patients. For ex-
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Figure 12.6. Left panel shows the evolution of Q under Algorithm 1. Right panel shows 
the histogram of minimum Q values obtained in 200 runs. 

ample, the tv^o images displayed in Figure 12.7 were acquired as the end diastolic 
(ED) and end systolic (ES) frames from a sequence of echocardiographic im­
ages during systole, taken from the apical four chamber view. Note that systole 
is the squeezing portion of the cardiac cycle and that the typical acquisition rate 
in echocardiography is 30 image frames/second. Superimposed on both images 
are expert tracings of the epicardial (solid lines) and endocardial borders (broken 
lines) of the left ventricle of the heart. From these four borders, indices of cardiac 
health, including chamber area, fractional area change, and wall thickness, can be 
easily computed. Since a manual tracing of these borders is too time consuming to 
be practical in a clinical setting, these borders are currently generated for research 
purposes only. The current clinical practice is to estimate these indices subjec­
tively or (at best) make a few one-dimensional measurements of wall thickness 
and chamber diameter. 

A major goal in echocardiographic image analysis has been to develop and im­
plement automated methods for computing these two sets of borders as well as 
the sets of borders for the 10-12 image frames that are typically acquired between 
ED and ES. Different aspects of past efforts [896, 188, 187] include both the 
construction of geometric figures to model the shape of the heart as well as vali­
dation. While it is difficult for cardiologists to generate borders for all the frames, 
it is possible for them to provide borders for the first and the last frames in a 
cardiac cycle. Since it is not uncommon for the heart walls to exhibit diskinetic 
(i.e. irregular) motion patterns, the boundary variations in the intermediate frames 
can be important in a diagnosis. Our goal is to estimate epicardial and endocar­
dial boundaries in the intermediate frames given the boundaries at the ED and ES 
frames. 

As stated earlier, a closed contour a has two sets of descriptors associated 
with it: a shape descriptor denoted hy 9 ^ S and a vector z G Z of nui­
sance variables. In our approach, interpolation between two closed curves is 
performed via interpolations between their shapes and nuisance components, re­
spectively. The interpolation of shape is obtained using geodesic paths, while that 
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Figure 12.7. Expert generated boundaries, denoting epicardial (solid lines) and endocardial 
(broken lines) borders, drawn over ED (left) and ES (right) frames of an echocardiographic 
image sequence. 

of the nuisance components is obtained using linear methods. Let ai — {Qv^^i) 
and 0:2 = (^2,'2:2) be the two closed curves, and our goal is to find a path 
$ : [0,1] -̂> 5 X Z such that $0 = {Qi,z\) and $1 = (̂ 2,>2̂ 2). For exam­
ple, in Figure 12.7, the endocardial boundary (broken curves) of the ED and ES 
frames can form a i and 0̂ 2, respectively. Alternatively, one can treat the epicar­
dial boundaries (solid curves) of ED and ES frames as a\ and a^ as well. The 
different components are interpolated as follows: 

1. Shape Component: Given the two shapes Q\ and ^2 in <S, we use the shoot­
ing method to find the geodesic that starts from the first and reaches the 
other in unit time. This results in the flow '^i(Ox,g) such that ^0(^1,p) = 
0\ and ^\{Q\,g) — O2. This also results in a re-parametrization of ^2 such 
that the origins (points where 5 = 0) on the two curves are now registered. 
With a slight abuse of notation we will also call the new curve ^2- Let a 
shape along this path be given by Ot — ^ t (^ i ,p ) . Since the path Ot lies in 
5 , the average value of Qt for all t is TT. 

2. Translation: If pi , P2 represent the locations of the initial points on the two 
curves, i.e. p^ = a^(0), i == 1, 2, then the linear interpolation between them 
is given by p(t) = (1 - i)v\ + iv^-

3. Orientation: For a closed curve a^, the average orientation is defined by 

^^ "" ^ / o ^ ' ' 7log(^i('5))<^'5, ?' ^ 1,2, 2 = v ^ . Given (pi and (/)2, a 

linear interpolation between them is (l){t) = {1 - t)(j)2 -{-1^2, where 4>2 — 

argmin^^{^2_2^,^2,02+27r} l</>" hi-

4. Scale: If pi and p2 are the lengths of the curves ai and 0̂ 2, then a linear 
interpolation on the lengths is simply p{t) = (1 - t)pi H- tp2. 

Using these different components, the resulting geodesic on the space of closed 
curves is given by {^t - i ^ P? 1]} where: 

Ms) = pit) + pit) [ expiJiOtir) - TT + (l>{t)))dT . 
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Figure 12.8. Interpolated shapes using geodesic paths in shape space. 

Shown in Figure 12.8 is a sequence of 11 image frames for the same patient 
as displayed in Figure 12.7. Again, each image frame has a set of epicardial and 
endocardial borders overlaid on the image. In Figure 12.8, borders in the first and 
last frames have been traced by an expert, while the borders on the intermediate 
frames have been generated using the path ^t, one each for epicardial and en­
docardial boundaries. Note that the endocardial border is more distorted than the 
epicardial border in the transition. In view of the geodesic paths in S relating to the 
minimum bending energy, this method provides a smoother interpolation for the 
endocardial borders, as compared to a direct linear interpolation of coordinates. 

We foresee a number of uses for this idea. First, this method could be included 
in an acquisition system so that if an expert traces sets of borders at ED and ES, 
then the borders for the intermediate frames can be generated automatically. Since 
the technique for generating the intermediate borders uses no image information, 
they may not always be acceptable. However, one can implement software that 
allows the expert to adjust the intermediate contours manually to reflect a better 
match with the images. In this way, models will be available for both computer-
based automated methods as well as validation and testing. As a future extension, 
one might modify the proposed interpolation to include image information. That 
is, formulate a boundary-value problem in S that seeks an optimal path under an 
image-based energy function, while fixing the expert generated boundaries as the 
end points. 
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Figure 12.9. Top panels: Examples of infrared images of human subjects. Bottom panels: 
hand extracted boundaries for analyzing shapes of human silhouettes. 

12.5 Study of Human Silhouettes in Infrared Images 

There is a great interest in detection and recognition of humans using static im­
ages and video sequences. While most applications use visible-spectrum cameras 
for imaging humans, certain limitations, such as large illumination variability, 
has shifted interest towards cameras that operate in bandwidths beyond the vi­
sual spectrum. In particular, night vision cameras, or infrared cameras, have been 
found important in human detection and tracking, especially in surveillance and 
security environments. These cameras capture emissivity, or thermal states, of the 
imaged objects, and are largely invariant to ambient illumination. In this section, 
we investigate the use of infrared images in detection of human silhouettes. Al­
though, we are generally interested in the full problem of detection, tracking, and 
recognition, here we restrict ourselves to two specific subproblems: (i) building 
statistical shape models for human silhouettes, and (ii) their use in improving 
silhouette detection. 

Using a hand-held Raytheon Pro250 IR camera, we have hand-generated a 
database of human silhouettes. Shown in Figure 12.9 are some examples: the top 
panels show five IR images and the bottom panels show the corresponding hand-
extracted human silhouettes. Furthermore, the database has been partitioned into 
clusters of similar shapes. These clusters correspond to front views with legs ap­
pearing together, side views with legs apart, side views with leg together, etc, and 
an example cluster is shown in Figure 12.10. 

12,5.1 TPCA Shape Model 

Our first goal is to "train" probability models by assuming that elements in the 
same cluster are samples from the same probability model. These models can 
then be used for future Bayesian discoveries of shapes or for classification of new 
shapes. To train a probability model amounts to estimating a probability density 
function on the shape space <S, a task that is rather difficult to perform precisely. 
The two main difficulties are: nonlinearity and infinite-dimensionality of «S, and 
they are handled here as follows. <S is a nonlinear manifold, so we impose a prob-
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Figure 12.10. An example of a cluster of human silhouettes. 

ability density on a tangent space instead. For a mean shape /i G S, T^{S) C L^, 
is a vector space and more conventional statistics applies. Next, we approximate 
a tangent function p by a finite-dimensional vector, e.g. a vector of Fourier co­
efficients, and thus characterize a probability distribution on T^{S) as that on a 
finite-dimensional vector space. Let a tangent element g e T (̂<S) be represented 
by its approximation: g{s) = YllLi ^i^i{^)^ where {e^} is a complete orthonor-
mal basis of T,j^{S) and m is a large positive integer. Using the identification 
g = yi = {xi} e W^, one can define a probability distribution on elements of 
T^[S) via one on W^. The simplest model is a multivariate normal probability 
imposed as follows. Using principal component analysis (PCA) of the elements 
of X, determine variances of the principal coefficients, and impose independent 
Gaussian models on the these coefficients with zero means and estimated vari­
ances. This imposes a probability model on T^(5), and through the exponential 
map (exp^ : T (̂«S) i-̂  S defined by exp^(p) = V'lC/^iP)) leads to a probability 
model on S, We term this model "Tangent PCA" or TPCA. 

Consider the set of 40 human silhouettes displayed in Figure 12.10. Their 
Karcher mean // is shown in the top-left panel of Figure 12.11. For each observed 
shape Oi, we compute a tangent vector Qi, such that ^i (/x, gi) = 6i. Using TPCA 
model we obtain a normal probability model on the tangent space Tf^{S). Shown 
in the bottom row of Figure 12.11 are 12 examples of random shapes generated 
by this probability model. 
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Figure 12.11. Top: Mean shape (left) and singular values (right) of covariance in Tf^{S). 
Bottom: Random samples from a Gaussian probability model on the principal coefficients 
of ̂  G T^{S). 

12.5.2 Bayesian Shape Estimation 

Shown in Figure 12.12 is an example of estimating a human silhouette in an in­
frared image. The left panel shows the observed image / , and we seek a closed 
curve a* = argmax^, P{cx\I) — argmax^, P{d)P{l\d). The prior P ( a ) comes 
from the TPCA model described previously. For the likelihood function P{I\a) 
there are a variety of choices: Kullback-Leibler divergence between interior and 
exterior pixel histograms, absolute difference between entropies of interior and 
exterior pixel densities, Gaussian models for pixels, etc. In this paper, we use a 
simple function that measures the proportion of saturated pixels, i.e. pixels with 
highest possible value, inside the contour. The remaining three panels in Figure 
12.12 show the evolution of a as P{pi\I) is maximized. 

12.6 Summary & Discussion 

We have described a geometric approach for statistical analysis of planar shapes, 
and its use in image-based inferences. Shapes of closed curves are represented by 
their angle functions, restricted appropriately to remove shape-preserving trans­
formations. Geodesic paths on the resulting shape space, under the classical \? 
Riemannian metric, are used to impose a metric on the shape space. The use 
of geodesic paths also leads to a framework for statistical modeling of shape 
variability, including an intrinsic technique to compute sample statistics (means, 
covariances, etc) of a given set of shapes. We have demonstrated this framework 
using three applications of shape analysis in clustering, medical image analysis, 
and human surveillance. 

One limitation of the proposed model is its assumption of arc-length parametriza-
tion for all shapes, which does not allow local stretching or compressing of shapes. 
In some situations, it is preferable to match shapes via local stretching/shrinking, 
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Figure 12.12. Bayesian shape extraction: Left panel shows an IR image / and the remaining 
three panels show the evolution of a search that maximizes the posterior P{a\I). Estimated 
curves are drawn over the image in black. 

and not be limited to bending only. A recent paper [572] describes an extension 
that uses a different Riemannian metric on shape spaces to allow for both bending 
and local stretching/shrinking. 
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Chapterl3 

Diffeomorphic Point Matching 

H. Guo, A. Rangarajan and S. Joshi 

Abstract 
In medical imaging and computer vision, the problem of registering point-
sets that differ by an unknown non-rigid transformation frequently arises. 
We discuss the matching problem of shapes parameterized by point sets. 
Mathematical models of diffeomorphic landmark matching and diffeomor­
phic point shape matching are formulated. After formulating an objective 
function for diffeomorphic point matching, we give numerical algorithms to 
solve the objective. Results are shown for 2D corpus callosum shapes. 

13.1 Introduction 

Point matching and correspondence problems arise in various application areas 
such as computer vision, pattern recognition, machine learning and especially in 
computational anatomy and biomedical imaging. Point representation of image 
data is widely used in all areas and there is a huge amount of point feature data 
acquired in various modalities, including MRI, CT and Diffusion Tensor Images 
(DTI) [223, 315, 199]. The advantage of point set representations of shapes over 
other forms like curves and surfaces is that the point set representation is a uni­
versal representation of shapes regardless of the topologies of the shapes. This is 
especially useful in biomedical imaging because it has the ability to fuse different 
types of anatomical features in a single uniform representation. 

Point matching in general is a difficult problem because, as with many other 
problems in computer vision, like image registration and segmentation, it is often 
ill-posed. In this chapter, we attempt to formulate a precise mathematical model 
for point matching. There are two important cases that need to be distinguished. 
When the two point-sets are of equal cardinality and when the correspondences 
are known, we have the landmark matching problem. This problem is not as dif­
ficult as the case when the correspondences are unknown. When we have two 
point-sets of unequal cardinality and when the correspondences are unknown, we 
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have the point shape matching problem. The presence of outliers in either/both 
sets makes the correspondence problem even more difficult. In the following, 
we will first discuss the landmark matching problem and then the point shape 
matching problem. 

13.2 Diffeomorphic Landmark Matching 

We assume the image domain is the d-dimensional Euclidean space R*̂ . Usually 
d = 2 ov d — Z.ln landmark based registration, we assume that we have two 
corresponding sets of feature points, or landmarks, {pi G Q.i\i — 1, 2,..., n} and 
{qi e U>2\i ^ l ,2 , . . . ,n} where ^ i C R^ and 0.2 ^ R" .̂ We need to find a 
transformation / : fii —> ^̂ 2 such that \/i = 1,2,..., n, /(pj) = Qi. 

In many applications, we are required to find the transformation within 
some restricted groups, like rigid transformations, similarity transformations, 
affine transformations, projective transformations, polynomial transformations, 
B-spline transformations and "non-rigid" transformations. Different transforma­
tion groups have different degrees of freedom, namely, the number of parameters 
needed to describe a transformation in the group. This also determines the number 
of landmark pairs that the transformation can exactly interpolate. Let us look at 
some examples. In two dimensional space, where d = 2, a rigid transformation, 
which preserves Euclidean distance, has 3 degrees of freedom and cannot interpo­
late arbitrary landmark pairs. The landmark pairs to be matched must be subject 
to some constraints. That is, they have to have the same Euclidean distance. A 
similarity transformation has 4 degrees of freedom and can map any 2 points to 
any 2 points. An affine transformation has 6 degrees of freedom and can map any 
3 non-degenerate points to any 3 non-degenerate points. A projective transforma­
tion has 8 degrees of freedom and can map any 4 non-degenerate points to any 
4 non-degenerate points. In three dimensional space, where d — 3, a. rigid trans­
formation has 6 degrees of freedom. A similarity transformation has 7 degrees of 
freedom. An affine transformation has 12 degrees of freedom and can map any 4 
non-degenerate points to any 4 non-degenerate points. A projective transforma­
tion has 15 degrees of freedom and can map any 5 non-degenerate points to any 
5 non-degenerate points. 

The term "non-rigid" transformation is often used in a narrower sense. Al­
though similarity, affine and projective transformations do not preserve Euclidean 
distance, they all have finite degrees of freedom. In the literature, "non-rigid" 
transformations usually refer to a transformation with infinite degrees of freedom, 
which can potentially map any finite number of points to the same number of 
points. So we immediately see a big difference between finite degree of freedom 
transformations and non-rigid transformations. Given a fixed number of land­
mark pairs to be interpolated, the former is easily over constrained but the latter 
is always under constrained. This is one of the reasons why the non-rigid point 
matching problem is much more difficult. To find a unique non-rigid transforma-
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tion, we need further constraints. This is termed regularization in the computer 
vision and medical image analysis literature [347]. 

Two desirable properties of non-rigid transformations are smoothness and 
topology preservation. Again, let Hi C R^ and ^2 Q R^- A transformation 
/ : Oi -^ 02 is said to be smooth if all partial derivatives of/, up to certain or­
ders, exist and are continuous. A transformation / : Oi —̂  ^2 is said to preserve 
the topology if Oi and Img(/) = {p2 ^ 02|3pi G Hi, p2 = f{pi)} have the 
same topology. A transformation that preserves topology is called a homeomor-
phism and its definition is: A transformation / : Hi —> ^2 is a homeomorphism 
if / is a bijection and if it is continuous and if its inverse is also continuous. A 
smooth transformation / : Hi —> ̂ 2 may not preserve the topology. There are 
several cases when this is true. First, the smooth map / is a bijection but the in­
verse is not continuous. Second, the smooth map / may fail to be a bijection. That 
is, multiple points may be mapped to the same point and we call this the folding 
of space. There are two sub-cases here, one sub-case is that at some point, the 
tangent map of / is not an isomorphism. The other sub-case is that the tangent 
map of/ is an isomorphism at every point but globally it is not a bijection. On the 
other hand, a homeomorphism may not be smooth because in the definition, we 
only require continuity in both / and its inverse but we do not require differentia­
bility. A transformation / that is both smooth and topology preserving is called 
a diffeomorphism. The diffeomorphism / : Oi —> O2 is defined as a bijection 
that is smooth and its inverse is also smooth. Now let us look at an example of a 
smooth transformation, namely, the Thin-Plate Spline (TPS) interpolation [851]. 

For simplicity, we discuss the problem in 2-D space. Everything in the 
2-D formulation easily applies to 3-D except we have a different kernel in 
3-D. The original thin-plate spline interpolation problem is formulated as: 
find a smooth function / : 0 ^ R, such that the thin-plate energy 

/ / a [ ( 0 ) ^ + 2 ( ^ ^ ) 2 + ( 0 ) ^ ] ^^^y ^^ minimized, subject to constraints at 

n control points {pi G n | i — 1,2,..., n} 

f{Vi) ^Vi.pien, Vi G R, ?: - 1,2, . . , n . (13.1) 

The reproducing kernel Hilbert space (RKHS) method is used to solve this 
problem. We assume / is in the Sobolev space l^^'^(n). Let | | / | p = E = 

11^ iB)' + ^i&)^ + &']d^dy' where | | / | | is the norm of / in 
W^'^{Q.). Since W^''^{Q.) is a Hilbert space, from the Riesz representation 
theorem, for any p e ft, the evaluation linear functional 

dp : W^'^n) ^ R, 5p{f) = f{p) (13.2) 

has a representer [467] Up 6 W''''^{fl) such that 

Spif) = m = < up,f>. (13.3) 
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Now the original problem is transformed to the problem: find a function / G 
M^^'^(n) with minimal norm | | / | | , subject to constraints 

<Upi, f >=Vi,i = 1,2, . . . ,n . (13.4) 

For Pa, Pb ^ ^, u{pa,Pb) = '^paiPb) Js the kernel of the reproducing kernel 
Hilbert space. 

Let T be the linear subspace spanned by Up., i = 1,2, ...,n. Any function 
/ G VK^'^(n) can be decomposed into f = fr + f± where fr^T and f± is 
in the orthogonal complement of T and hence < Up^, f± >= 0. We know i f / T 
satisfies (13.4), then / also satisfies (13.4) only with \\f\\>fr i f /± 7̂  0. So we 
only need to search for the solution in T. The general solution can thus be written 
as 

f{p) =ao + aix + a22/ + ^ Wiu{pi, p), (13.5) 

where ao, ai , a2, tt̂ i G R and functions of the form ao + aia: + a2y span the null 
space. 

With this form, E can be rewritten as 

^ - ^ WiUijWj = WUW^, (13.6) 

where W — {w\ ,...,Wn) and U is the matrix with elements Uij = u{pi,pj). 
Bookstein [101, 102] applied thin-plate splines to the landmark interpolation 

problem. The goal is to find a smooth transformation / : O —> H that interpolates 
n pairs of landmarks {pi G n | i = 1,2, ...,n} and {qi e ft\i = 1, 2, ...,n} and 
also minimize the thin-plate bending energy 

E : tJL .d^f) h.2 ( ^ ) ^ + 2( "^f^i^f 
dxdy dy'^ 

dxdy, (13.7) 

where / i and /2 are the x and y components of the mapping. If we interpret each 
of / i and /2 as the bending in the z direction of a metal sheet, or thin plate, 
extending in the x-y plane, the energy in (13.7) is the analog of the thin plate 
bending energy. The kernel in this case is 

U{r) = r^log r^ , 

where r is the distance ^fx^^'^ry^. We also denote 

[ 1 ^\ 2/1 1 

P = I ^ ^^ ' ^M , w h i c h i s 3 x n , 

•t ^n 2/n 

(13.8) 

(13.9) 



Diffeomoiphic Point Matching 209 

Duchon [286] proved that if P has maximum column rank, then the solution 
exists and is unique and the general solution is of the form 

f{x,y) = ai -{- a;^x -\- ttyy + Y^WiU{\pi - ix,y)\). (13.10) 

Because an affine transformation has no contribution to the bending energy, the 
transformation allows for a free affine transformation. Define the matrices 

K 

0 [/(ri2) ... U{rin) 
U{r2i) 0 ... U{r2n) 

U{rni) U{rn2) 0 

, which is n x n, 

and 

L = 
K P 
P^ O 

, which is (n + 3) x (n + 3), 

(13.11) 

(13.12) 

where the symbol ^ is the matrix transpose operator and O is a 3 x 3 matrix of 
zeros. 

Let V — {vi,'",Vn) be any n-vector and write Y = ( y | 0 00)'^. The 
coefficients W = {wi,..., i^n) and (ai, â ,̂ a^) can be found by 

L-^Y = {W\aia:,ayf . (13.13) 

A numerically stable solution in a different form is given by Wahba [851] using a 
QR decomposition. 

While the preceding development is somewhat appealing, there is no mech­
anism to guarantee a diffeomorphic transformation. Intuitively this problem is 
known as the folding of space. 

^ 

b 

(a) (b) (c) 

Figure 13.1. The folding problem in TPS and the desirable diffeomorphism. 

Figure 13.1a shows the displacement of landmarks. Figure 13.1b is the thin-
plate spline interpolation. We can see the folding of space. This is the drawback of 
thin-plate spline interpolation. Due to the folding of space, features in the template 
may be smeared in the overlapping regions. And furthermore, the transformation 
is not invertible. A diffeomorphic transformation is strongly desirable, which pre-
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serves the features, the topology and which is smooth as shown in Figure 13.1c. 
Next we show that such a diffeomorphism always exists. 

Theorem. A diffeomorphic transformation that interpolates arbitrary numbers 
ofn pairs of landmarks always exists. 

Proof 
We show the existence by construction. We construct a simple, although most 

likely undesirable in most of the applications, diffeomorphism. The intuitive idea 
is to dig canals connecting the landmark pairs. We first choose the first pair of 
landmarks pi and qi. For simplicity, we assume the dimension d of space is 2. 
The proof is similar for d > 2. First assume no other landmarks lie on the line 
connecting pi and qi. Establish a coordinate system such that pi and qi are on 
the X axis, shown in Figure 13.2, where dots are source landmarks and squares 
are target landmarks. Let the signed distance from pi to qi be a. Construct the 
transformation / i : fti —> ^2 such that / i (x, y) = {x\ y'), 

x/ - x + ae-"^ (13.14) 

y' = y 

where v = ta.n{j^y), for any arbitrarily small e. We choose e to be sufficiently 
small so that any other landmarks do not lie in the belt 
{{x,y)€B?\\y\<e}. 

It is easy to show that / i is a diffeomorphism and that it maps pi to qi and keeps 
all other landmarks q2,--, qn fixed. This is very much like the flow of viscous fluid 
in a tube. Similarly we can construct a diffeomorphism fi that maps pi to qi and 
keeps all other landmarks fixed, for i = 1,2,..., n. The composition of this series 
of diffeomorphisms 

/ - / n 0 . - - / 2 0 / i (13.15) 

is also a diffeomorphism and obviously / maps p^ to g ,̂ for i = 1,2,..., n. 
If some landmark qk lies on the line joining pi and qi, we can find such a 

direction such that we draw a line l^ through qk and there are no other landmarks 
on the line. Then we make a diffeomorphism h transporting qk to a nearby point 
q'l^ along the line without moving any other landmarks, using the same canal as 
in the viscous fluid technique. Then we make a diffeomorphism fi as described 
before. After that, we move landmark q'^ back to the old position with the inverse 
of/i~^. So we use Fi = h~^fih in place of fi. 

One straightforward approach to find a diffeomorphism for practical use is to 
remedy the thin-plate spline so that it does not fold. We can restrict our search 
space to the set of diffeomorphisms and the ideal one should minimize the thin-
plate energy. We make the observation that if the Jacobian of the transformation / 
changes sign at a point, then there is folding. We can place a constraint requiring 
the Jacobian to always be positive. There is some literature on this approach but 
most of these approaches do not guarantee that the transformation is smooth [440, 
197]. 
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Figure 13.2. Diffeomorphism construction. 

Another approach is to utiHze the flow field [289, 442, 571]. We introduce 
one parameter, the time t into the diffeomorphism. Let 0^ : H —> H be the dif­
feomorphism from n to O at time t. A point x is mapped to the point ^^(x). 
Sometimes we also denote this as (/>(x, t). It is easy to verify that for all the values 
oft, (l)t forms a one parameter diffeomorphism group. If x is fixed, then 0(x, t) 
traces a smooth trajectory in Ct. The interpolation problem becomes: find the one 
parameter diffeomorphic group 0(-,t) : H -^ O such that given JH e O and 
Qi e n Vv* := 1,2,..., n, (/)(a;, 0) — x and 0(pi, 1) = qi. We introduce the velocity 
field v{x,t) and construct a dynamical system by the transport equation 

^J^=v{^{x,t),t). (13.16) 

The integral form of the relation between (/)(x, t) and v{x, t) is 

0 ( x , l ) = a ; + / v{(t){x,t),t)dt. (13.17) 
Jo 

Obviously, such a (j){x,t) is not unique and there are infinitely many such so­
lutions. With the analogy to the TPS, it is natural that we require the desirable 
diffeomorphism results in minimal space deformation. Namely we require the 
deformation energy 

/ / \\Lv{x,t)\\^dxdt (13.18) 
7o Ja 

to be minimized, where L is a given linear differential operator. 
The following theorem [442] states the existence of such a velocity field and 

shows a way to solve for it. 

Theorem (Joshi and Miller). Let pi € ft and qi G O Vi — 1,2, ...,n. The 
solution to the energy minimization problem 

v{') = arg min / / \\Lv{x,t)\\'^dxdt (13.19) 
Jo JQ 
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subject to 

(l>{Pul)=qu V7: = l ,2 , . . . ,n (13.20) 

where 

0(, x , l ) = x + / v{(j){x,t),t)dt (13.21) 

exists and defines a diffeomorphism </>(•,!) : H —> H. TTze optimum velocity field 
V and the diffeomorphism cj) are given by 

where 

( K{cj,{put),<l>ipi,t)) • • • K{<l>(put),<l>{Pn,t)) \ 

Km)) = 
V K{<i>{pn,t),(l>{put)) Ki4>{p„,t),<f>{p„,t)) J 

(13.23) 
with {K{{4>{f))ij denoting the ij, 3 x 3 block entry 
{K{<t){t))ij = K{(f>{pi,t),<t>{pj,t)). and 

4>{pi,-) = arg min / y;^fe, i f( ;^(^(i))- ' ) i , -^(Pj , i ) rf«(13.24) 
<i>{Pi,-)Jo '-^ 

subject to cf>{pi,l) = qi, i = 1,2, ...,N with the optimal diffeomorphism given 
by 

^{x,l)=x-^ v{^{x,t),t)dt. (13.25) 

The proof [442] is omitted here. With this theorem, we can convert the original 
optimization problem on the vector field v{x, t) to a problem of finite dimensional 
optimal control with end point conditions. 

This problem is called the exact matching problem because we required the 
given set of points pi,i = l ,2 , . . . ,n map exactly to the other given set of 
points Qi^i = 1,2, ...,n. The exact matching problem is symmetric with re­
spect to two sets of landmarks or two point shapes. When the two point sets 
{pi e ^i\i = 1,2, ...,n} and {g-j G n2 | i = 1,2, ...,n} are swapped, the new 
optimal diffeomorphism is the inverse of the old diffeomorphism. This is stated 
more formally in the following theorem. 

Theorem. If (j){xkA) = Vk ^i^d (j){x^t) and v{x,t) minimize the energy 
E =JQ Jc^\\Lv{x,t) W^dxdt, then the inverse mapping maps the landmarks back­
ward (j>~^{ykA) — ^k cii^d (j)~^{x,t) and —v{x, —t) also minimize the energy 
E. 
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Proof: First, from the known property of the diffeomorphism group of such 
a dynamical system, (j)(x,ti -{• ^2) = </)(0(x, t i ) , t2) , it is easy to show that 
(/)"^(x, t) = (j)(x, —t). This is because 

0 ( , - O o 0 ( . , O ( x ) 

= <j>{ct>{x,t),-t) 

- 0(a:,O) 

= X. 

Furthermore, (j)[x, - t )and —v{x, —t) also satisfy the transport equation 

Suppose 0(x, t) and v{x, t) minimize the energy 

E= f f \\Lv{x,t)\\'^dxdt 
Jo JQ 

but 0~^(x, t) — 0(x, -t) and -v{x, -t) do not minimize the energy 

E^ [ f \\Lv{x,t)\\^dxdt 
Jo Jn 

Let the minimizer be ijj{x,t) and u{x,t) such that \fk, 'il^{yk) — x^ and 
JQ J^ \\Lu{x,t)\\'^dxdt < JQ / ^ \\Lv{x, 1)11"^dxdt. Then, we can construct 

ilj~'^{x,t) = ij{x,-t) 

such that ip~^{x,t) and -z/(x, — ]t) satisfy the transport equation and ilj~^{xk, 1) = 
yk. However /^ / ^ \\Lu{x,t)\\'^dxdt < J^ J^ \\Lv{x,t)\\'^dxdt contradicts the 
assumption that v{x, t) is the minimizer of the energy E. 

The exact matching problem can be generalized to the inexact matching prob­
lem. In the inexact matching problem, we do not require that the points exactly 
match. Instead, we seek a compromise between the closeness of the matching 
points and the deformation of space. We minimize 

/ / \\Lv{xM''dxdt + \y^\\qi-cj>{pul)\\\ (13.26) 
Jo Jn ^ 

which can be similarly solved. 
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13.3 Diffeomorphic Point Shape Matching 

In the diffeomorphic point matching problem, the points are samples from the 
shape and we have a point representation of the shape. When we have two such 
shapes represented by points, usually the cardinality of the points in the two shape 
point-sets are different and there is no point-wise correspondence. We want to find 
the correspondence between the two shapes. The approach we take is clustering. 
The two point shapes are clustered simultaneously and we assume there is a one-
to-one correspondence between the clusters. The correspondences between the 
two sets of clusters are, unfortunately, also unknown. We put the correspondence 
and the diffeomorphism together and by minimizing an objective function which 
has both the clustering energy and the diffeomorphic deformation energy, we are 
able to find the clustering, the correspondence between cluster centers and the 
diffeomorphism in space simultaneously. The objective fimction is 

Ni N N2 N 

= g ^ M ^ i l l x . - r f c l l ^ + g j ^ M / J l y . - S f c l p (13.27) 
i = l fc=l j = l k=l 

N 1 

+ V||5fc-(/)(rfc,l)||2 + A / / \\Lv{xM^dxdt 
k=i '̂ 0 JQ 

In the above objective function, the M^ and M^ are the cluster membership ma­
trices, which satisfy Mg e [0,1], \/ik and Mj^ G [0,1], VjA; and Xlf^i Mg = 1, 
^k=i ^jk ~ ^' ^^^ matrix entry M^^ is the membership of data point Xi in clus­
ter k whose center is at location rk. The matrix entry Mjj^ is the membership of 
data point i/j in cluster k whose center is at position Sk. Point-set X has Ni points, 
Y has N2 points and the number of shared cluster centers is N. 

The diffeomorphic deformation energy in ft is induced by the landmark 
displacements from r to s, where x e ft and (t>{x,t) is the one parameter dif­
feomorphism: n -^ n . Since the original point-sets differ in point count and are 
unlabeled, we cannot immediately use the diffeomorphism objective functions 
as in [442] or [145] respectively. Instead, the two point-sets are clustered and 
the landmark diffeomorphism objective is used between two sets of cluster cen­
ters r and s whose indices are always in correspondence. The diffeomorphism 
(̂ (o;, t) is generated by the velocity field v{x^ t). (j){x, t) and v{x^ t) together sat­
isfy the transport equation QI — v{(t>{x,t),t) and the initial condition Vx, 
0(a:, 0) = x holds. This is in the inexact matching form and the displacement 
term X^^^j \\sk — <j>{rk^ 1)|P plays an important role here as the bridge between 
the two systems. This is also the reason why we prefer the deformation energy in 
this form because the coupling of the two sets of clusters appear naturally through 
the inexact matching term and we don't have to introduce external coupling terms 
as in [372]. Another advantage of this approach is that in this dynamic system 
described by the diffeomorphic group (j){x^t), the landmarks trace a trajectory ex-
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actly on the flow lines dictated by the field v{xy t). Also, the feedback coupling 
is no longer needed as in the previous approach because with this deformation 
energy described above, due to the above theorem, if </>(x, t) is the minimizer of 
this energy, then (j)~^{x, t) is the inverse mapping which also minimizes the same 
energy. 

We are now ready to give an algorithm that simultaneously finds the cluster 
centers, the correspondence and the diffeomorphism. 

The joint clustering and diffeomorphism estimation algorithm has two com­
ponents: i) diffeomorphism estimation and ii) clustering. For the diffeomorphism 
estimation, we expand the velocity field in term of the kernel K of the L operator 

^(x,O-5Zafc(t) i^(a; ,0fc(O) (13.28) 

fc=i 

where 0^(0 is notational shorthand for (/>(rfc, i) and we also take into consider­
ation the affine part of the mapping when we use thin-plate spline kernel with 
matrix entry Kij — r|- logrij and rij —1| Xi - Xj ||. After discretizing in time t, 
the objective in 13.27 is expressed as 

Ni N N2 N 

i=l k=l j=l k-l 

+ E ll'̂ fc -"•"- E E [i'(*)rfKi) + ai(t)K{4>k{t),4>im f 
k=l 1=1 t=0 

N N S 

(13.29) 

where 

/ 1 cl>\{t) ^f(i) \ 

P(t) = (13.30) 

V 1 <t>],{t) <t>%{t) J 

and d is the affine parameter matrix. We then perform a QR decomposition on P, 

P{t) = {Q,{t) : Q2{t)) m 
0 

(13.31) 

We iteratively solve for ak{t) and (/>fc(t) using an alternating algorithm. When 
(f)k{t) is held fixed, we use the following approximation to solve for ak{t). The 
solutions are 

d{t) = R-\t) [Qiimt -h 1) - Qi{t)K{c^{t))Q2{tHt)] (13.32) 

(13.33) 
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where K{^{t)) denotes the thin-plate spline kernel matrix evaluated at (t){t) = 

7W = {Qi{t)Km))Q2{t)+xr'Qiimt+1). (13.34) 
When ak{t) is held fixed, we use gradient descent to solve for <̂ fc(̂ ): 

dE ^ 
—— = 2 V < ak{t),ai{t) - 2Wi > ViK{Mt).Mt)) (13.35) 

where Wi = si - n - E ^ i /o «m(0^(^m(t), Mt))dt. 
The clustering of the two point-sets is handled by a deterministic anneahng EM 

algorithm which iteratively estimates the cluster memberships M^ and M^ and 
the cluster centers r and s. The update of the memberships is the very standard 
E-step of the EM algorithm [199] and is performed as shown below. 

= exp ( - / ? | | x . - r . f ) .^^^^ 

El l iexp(- /3 | lx , -n | |2) 

Er=iexp(-/?||%-«,|P) 
where /? = ^ is the inverse temperature. The cluster center update is the M-step 
of the EM algorithm. This step is not the typical M-step. We use a closed-form 
solution for the cluster centers which is an approximation. From the clustering 
standpoint, we assume that the change in the diffeomorphism at each iteration is 
sufficiently small so that it can be neglected. After making this approximation, we 
get 

E»^'i Mgxk + sk- Ell /o ai{t)K{Mt), h(t))dt 

'" " 1 + EfAM^ '^"-''^ 

1 + EfiiMj^ 

In the clustering and diffeomorphic estimation steps, we let A vary proportion­
ately with the temperature. This controls the rigidity of the mapping, starting 
from an almost rigid mapping while we obtain good correspondence and grad­
ually softens so that good clustering is achieved. In this way both clustering and 
diffeomorphism are obtained simultaneously at convergence. 

The overall algorithm is described below. 

• Initialization: Initial temperature 
T = 0.5(maxi \\xi — Xcp + max̂ - ||i/j — 2/c|P) where Xc and yc are the 
centroids of X and Y respectively. 

• Begin A: While T > Tfinai 

- Step 1: Clustering 
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Figure 13.3. Point sets of nine corpus callosum images. 

Update memberships according to (13.36), (13.37). 
Update cluster centers according to (13.38), (13.39). 
Step 2: Diffeomorphism 
Update ((/), t*) by minimizing 

k=i 1 

' f f \\Lv{x,t)\\^dxdt 
Jo Jn 

+ AT 

according to (13.32)(13.33) and (13.35). 
- Step 3: Annealing. T ^ ^T where 7 < 1. 

• End 

Next we show the experimental results applying the algorithm to nine sets of 
2D corpus callosum slices. The feature points were extracted with the help of 
a neuroanatomical expert. Figure 13.3 shows the nine corpus callosum 2D im­
ages, labeled CCl through CC9. In our experiments, we first did the simultaneous 
clustering and matching with the corpus callosum point sets CCS and CC9. The 
clustering of the two point sets is shown in Figure 13.4. There are 68 cluster cen­
ters. The circles represent the centers and the dots are the data points. The two sets 
of cluster centers induce the diffeomorphic mapping of the 2D space. The warp­
ing of the 2D grid under this diffeomorphism is shown in Figure 13.5. Using this 
diffeomorphism, we calculated the after-image of original data points and com­
pared them with the target data points. Due to the large number of cluster centers, 
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Figure 13.4. Clustering of the two point sets. 
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Figure 13.5. Diffeomorphic mapping of the space. 

the cluster centers nearly coincide with the original data points and the warping 
of the original data points is not shown in the figure. The correspondences (at the 
cluster level) are shown in Figure 13.6. The algorithm allows us to simultaneously 
obtain the diffeomorphism and the correspondence. 

Figure 13.6. Matching between the two point sets. 
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Figure 13.7. Overlay of the after-images of eight point sets with the ninth set. 

13.4 Discussion 

There are other approaches to the diffeomorphic point matching problem which 
we have not considered here. One indirect approach is to use distance trans­
forms to convert the point matching problem into an image matching problem. 
There are as yet no theoretical and/or experimental comparisons between dis­
tance transforms-based diffeomorphisms and our approach. Also, there are other 
approaches to diffeomorphic landmark matching [145, 372]. While we have only 
provided results for 2D diffeomorphic point matching, the theoretical formu­
lation presented here extends to 3D. Finally, the joint clustering and matching 
formulation is not the only approach that in principle can marry diffeomorphisms 
and correspondence [198]. However, it appears to be the simplest formulation 
that does not require us to establish point correspondences via estimation of 
permutations. 

Acknowledgements 

We acknowledge support from the National Science Foundation (NSF IIS 
0307712). 



Chapterl4 

Uncertainty-Driven, Point-Based 
Image Registration 
C. Stewart 

Abstract 
Point-based registration is the problem of computing the transformation that 
best ahgns two point sets, such as might be obtained using range scan­
ners or produced by feature extraction algorithms. The Iterative Closest 
Points (ICP) algorithm and its variants are the most commonly used tech­
niques for point-based registration. The ICP algorithm may be derived as 
the solution to a global optimization problem. A commonly-used lineariza­
tion of the distance function in this optimization problem produces a useful 
approximation to the covariance matrix of the ICP-estimated transforma­
tion parameters. Two recent algorithms exploit this covariance matrix to 
improve ICP registration. One uses the covariance matrix to sample the cor­
respondences so that the estimate is well-constrained in all directions in 
parameter space. A second uses the covariance matrix to guide a region-
growing and model-selection technique that "grows" accurate estimates from 
low-order initial estimates that are only accurate in small image regions. Both 
show substantial improvements over standard ICP on challenging alignment 
problems. 

14.1 Introduction 

Point-based registration techniques have been used in many applications, ranging 
from 3d modeling and industrial inspection to medical imaging. In point-based 
registration, the data are geometric point sets, V and Q, such as image feature lo­
cations or 3d range measurements. The points are treated as samples from curves 
or surfaces in W', and they may have associated attributes such as intensity values 
or normal vectors. The goal of point-based registration is to compute the transfor­
mation, M : R*̂  -^ M ,̂ that best aligns the point sets. Of particular interest here 
are parametric transformation models of the form M(p; ^), where p G R^ is 
point location, and 0 is the vector of transformation mapping parameters to be 
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Figure 14.1. Synthetic range data sets illustrating the challenges that arise when the set of 
surfaces being aligned differ significantly in size. In the example on the left two planar 
surfaces have 1 mm deep groves cut into them. When a small amount noise is added to the 
data, constraints from matching points on the much larger planar surface prevent matches 
along the surface of the grooves from rotating the ICP alignment into place. A similar 
effect occurs with the alignment of two data sets from a spherical shell, shown on the right. 

estimated. Similarity, affine, projective and quadratic transformations all fit into 
this category of parametric models. 

Most approaches to point-based registration require establishing correspon­
dence between points from V and Q. If reliable correspondences are knov^n, 
estimating the optimal set of transformation parameters is well-understood. On 
the other hand, given an accurate estimate of 0, establishing correspondence is 
straightforward. This poses a classic "chicken-and-egg" problem. This problem is 
widely addressed using the Iterative Closest Points (ICP) algorithm, discovered 
almost simultaneously in the early 1990's by several groups [82, 164, 185, 560, 
916]. The idea of ICP is straightforward: (1) given a transformation parameter 
estimate, 0, apply the transformation to a subset of V, and for each transformed 
point find the closest point from Q; (2) from these (temporary) correspondences, 
compute a new transformation parameter estimate 0. These two steps are repeated 
until an appropriate convergence criteria is met. Important variations on ICP are 
discussed and analyzed in [697]. 

While initialization of ICP is clearly an important issue, the primary focus of 
this chapter is convergence. Ensuring proper convergence of ICP is challenging. 
Two reasons for this are illustrated in Figures 14.1 and 14.2. First, when there 
are significant variations in the sizes and the orientations of the surfaces to be 
registered, correspondence constraints from large surfaces can impede the align­
ment of smaller surfaces, mostly due to the effects of noise. Second, when the 
point sets represent complicated curve or surface patterns, such as in the vascu­
lar structure of the retina (Figure 14.2), misalignments early in the ICP process 
can cause mismatches that drive the algorithm to an incorrect local minimum. 
These mismatches often have relatively small alignment errors and therefore are 
not eliminated easily using robust estimation. 

These two problems — one caused by a lack of balance in the constraints 
and one caused by incorrect correspondences — have been addressed recently 
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in papers from the 3d modeling literature [339], and from the medical imaging 
literature [765]. Underlying both is the use of uncertainty in the transformation 
estimate that is computed by ICP. Unlike earlier work, which studied the influ­
ence of uncertainty in point locations [276] and evaluated the uncertainty of the 
final ICP result [766], these two new techniques use uncertainty to guide the ICP 
estimation process itself. This new theme in registration could have important 
implications for developing more reliable and more general-purpose algorithms. 

The goal of this chapter is to present this uncertainty-driven approach to regis­
tration. Section 14.2 formulates the point-based registration problem and derives 
both the ICP algorithm and the commonly-used normal distance form of ICP. 
Section 14.3 derives the transformation estimation equations and resulting ap­
proximate covariance matrix. This is used as a measure of uncertainty in the two 
algorithms described in Sections 14.4 and 14.5. The chapter concludes with a 
summary of the techniques and an outline of important questions suggested by 
the uncertainty-driven approach. 

14.2 Objective Function, ICP and Normal Distances 

Given are two point sets, V and Q. These points sets are generally discrete, but 
they may be formed into a mesh. For expository purposes, however, they may be 
modeled in the continuous domain using an implicit function, e.g. / : R^ —» R, 
such that Q = {q I / ( q ) = 0}. The point set registration objective function may 
be defined based on the proximity between transformed points from V and the set 
S: 

F(e;V,Q)= T m i n | | M ( p , ; 0 ) - q f . (14.1) 

The goal of registration, now stated more formally, is to find the parameter 
estimate 0 minimizing this objective fianction. 

Several approaches to minimizing F{6]V,Q) arQ possible. Here are two: 

• The approach taken in the ICP algorithm alternates steps of solving the 
two minimization problems. The inner minimization (the matching step) in 
(14.1) is solved for fixed 0 to produce a correspondence set C — {p^, q^}, 
and then the outer minimization is solved in slightly altered form by re­
placing the inner minimization with just the distance ||M(p^; 0) — q-ip. 
If infinitesimal steps are taken in q̂  and in 6, this converges to a local 
minimum of the objective function. 

• Q is represented implicitly using a distance fianction in E"̂  that is 0 at 
locations q where / ( q ) = 0. Example representations include Chamfer 
distance measures [103] and octree splines [164]. Derivatives of the objec­
tive function (14.1) may be computed based on computing derivatives of 
the distance function without expHcitly identifying the closest point in Q. 



224 Stewart 

Figure 14.2. Example of misregistration of retinal images. Contours in black are blood 
vessel centerlines detected in one retinal image and contours in white are blood vessel 
centerlines detected in a second retinal image (of the same eye). The complexity of the 
structure of the vessels, together with a small initial misalignment, causes ICP to mismatch 
a significant fraction of the contours and converge to an incorrect estimate. 

The focus of this chapter is on the ICP approach, which has been used widely, 
especially in the range image literature [697]. 

With the focus on ICP, the matching step must be examined in more detail. 
Using the implicit function definition of Q, the minimization 

m i n | | M ( p , ; 0 ) - q f (14.2) 

becomes 

min | |M(pi; 6) - q||^ subject to / ( q ) = 0. 

Writing this using Lagrange multipliers and introducing the simplifying notation 
p- = M{pi; 0) creates the function 

Mq,A) = | | p ^ - q f - 2 A / ( q ) , 

which must be minimized simultaneously over q and A. Computing partial 
derivatives dh/dq, and dh/dX and setting the results equal to 0 yields 

(p^ - q) - AV/(q) = 0 

/ (q) = 0 (14.3) 

Solving this, in turn, requires an iterative technique. Let q̂  be the current best esti­
mate of the closest point. After the iterations converge it will be the corresponding 
point for pj in ICP. Linearizing / around qj produces 

/ (q) = (q - mfVi = 0 and V/(qi) = 77i, 
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f(q)=0 

Figure 14.3. Illustrating the linearization of implicit function / that defines point set Q. 
Let Pi be a transformed point from V, let q̂  be the closest point from Q, and let rj^ be the 
local surface normal. (The linearization is pictured as the dashed line segment.) A small 
change in the transformation that moves Pi to p'/ does not require recomputation of the 
closest point from Q in order to compute the (approximate) distance from p^' to Q. 

where r)^ is the normal to / at q^. Substituting these into (14.3) produces the 
system of equations 

I Vi\ (ci\ _( P\ 

Solving yields 

P^ - 'Hi'HiV'i + r/^r/fq*. (14.4) 

This produces an update q̂  <^ q. This point, hov^ever, does not satisfy / (q ) — 0, 
a problem that must be solved by moving along the constraint surface in direction 
q - q̂  rather than directly making the substitution q̂  <— q. This important detail 
is not a concern here, however, because the current focus is on approximating the 
objective function. 

The approximate closest point in (14.4) may be substituted back into the dis­
tance calculation equation (14.2) to yield a simplified but approximate calculation 
of distance. After some manipulation this yields, 

min | |M(p,; 9) - q f = a[(M(pi; 0) - q i )^ r , J^ (14.5) 

where a = rjjrj^. When / ( q ) is a distance function, a ^ 1 because a unit step 
normal to the surface produces a unit change in distance. This is equivalent to 
assuming 77̂  is a unit vector, an assumption made throughout the remainder of 
this chapter. As illustrated in Figure 14.3, equation (14.5) simply reflects the fact 
that computing the minimum distance between a point and a linear structure does 
not require knowing the closest point on the linear structure; all that is needed is 
any point from the structure and the normal vector. 

Turning back to the original problem of estimating the transformation parame­
ters, (14.5) may be substituted into the original objective function (14.1) to obtain 
the approximation 

Fi0; •P,Q)=Y1 [(M(Pi; 0) - qi)^»7i]^ (14.6) 
Pier 



226 Stewart 

This approximation allows the calculation of the point-registration objective func­
tion without updating the correspondences.^ It is valid as long as changes in the 
transformation parameters keep mapped points M(pi ; 0) in locations where the 
linearization around q̂  is valid. This is used in deriving the covariance matrix in 
the next section. Equation 14.6 also leads to the "normal-distance" form of the 
ICP algorithm, originally proposed in [185]. The summation on the right-hand 
side of (14.6) is minimized for a fixed set of correspondences to estimate the next 
set of transformation parameters. The fact that this is a closer approximation to the 
true underlying objective function shows why use of normal distance constraints 
causes much faster and more reliable convergence of ICP [697]. 

14.3 Parameter Estimates and Covariance Matrices 

The next step is to derive equations for estimating the transformation parameters 
given a fixed set of correspondences, C = {(pi,qi)}- This leads directly to an 
approximation for the covariance matrix of the resulting estimate. 

The derivation starts with a simplified form of the transformation model: 

M ( p ; ^ ) - p + X(p)0. (14.7) 

A few examples will clarify this revised form. For a 3D rigid transformation using 
a small angle approximation (see [339], e.g.), 

M(p; ^) - R p + t ;^ p + r X p + t = p + (S l) K 

Here, r is the vector of small angle approximations, t is the translation, and S is 
the skew-symmetric matrix such that Sr = r x p . This form is used for estimating 
incremental estimates of a rigid transformation. Writing an affine transformation 
in the form (14.7) is straightforward.^ A 2D quadratic transformation is written 

T 
M(p;0) = P + ( t / X^r)0 

Here 0 is a 12x1 vector and if p = {u, v)^ then x(p) = (1, i*, f, v?, uv, v^)^. 
Using the form of (14.7), the normal-distance ICP equation (14.6) for a fixed 

set of correspondences becomes 

F{e-c)^ Y, [{Pi^MPi)o-cii)^m?' (14.8) 
(pi ,qi)€C 

^ See [576] for a recent generalization to second-order approximations. 
^Planar homographies may not be written in this form because side constraints must be imposed 

on the parameter vector. Different derivations of the estimation equations and covariance matrices are 
needed, combining the normal-distance form of (14.6) with the covariance derivations in [389, Ch. 4]. 
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Rewriting, 

F{6;C)= Y. [r7fX(pO0-»7f(qi-Pi)]' 
(p«,qi)ec 

= { X 0 - y f ( X 0 - y ) (14.9) 

where 

/ r , r X ( p i ) \ / r 7 r ( q i - p i ) \ 
X = and y = : 

WkMvk)) \nl{^k-Pk)l 

Taking the derivative with respect to 6, setting the result to 0, and solving yields 
the estimate, 

e= {X^Xy^X^y. (14.10) 

This has the structure of a linear regression problem. Making the simplifying 
assumption (discussed below) that y is the only random variable, the expected 
value of the estimate is 

e = E[e] = {X^X)-^X^E[y]. 

Moreover, if y is independent and identically distributed (i.i.d.), with covariance 
matrix a^I, then the covariance matrix of the parameter estimate is 

Ê  =:E[{e-e){d-df] = a'^{x^x)-^ (i4.ii) 
When robust weighting of the correspondences is added (see, e.g. [764]), the 

estimate becomes 

0 = (X^WX)"^X^Wy. (14.12) 

where W is a diagonal matrix of the weights of the individual constraints. The 
parameter estimate covariance matrix is then approximately 

Y^Q - E[{e - e){d - ey^] = a^x'^wx)-^ (14.13) 
The approximate covariance matrix has been used in a number of algorithms, 

including the ones described here. Before proceeding to these, it is impor­
tant to examine the assumptions and approximations underlying the foregoing 
derivation. 

• The derivation of the covariance matrix that started from (14.6) is based on 
a fixed correspondence set. The prior derivation leading to (14.6) showed 
that (14.6) is a good approximation to the original objective function (which 
involves changing correspondences) when changes in the transformation 
are not large enough to invalidate the linearization around the points q .̂ 
This is true in particular as the overall algorithm — not just the estimate for 
a fixed set of correspondences — nears convergence. 
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• In deriving (14.11) from the estimate equation (14.10), the matrix X is as­
sumed to depend only on deterministic quantities. For this to hold, point 
locations p, are treated as deterministic. While this clearly underestimates 
the uncertainty, the effects of this should be small since the Pi values 
themselves will be much larger than errors in p .̂ 

• Errors in the normal directions are assumed to be small enough that any 
resultant errors in projections onto the normal vectors — as in r/f X(pi) 
and 'nj{pi — qi) — are relatively insignificant. Since the errors in these 
projections will be proportional to the error in the orientation and since 
for small error angles, </>, cos(/) ~ 1, this is reasonable, especially as the 
algorithm converges. 

• Weight matrix W is also assumed to be non-random. Since each wi de­
pends on the error in the correspondence and therefore in the transformation 
itself, this is again an oversimplification. 

• Finally, r]J{pi — q^) is assumed to be i.i.d. In part this says that all er­
rors in the point positions are along the normal direction. On the negative 
side, this ignores errors that depend on the sensor direction [276]. On the 
positive side, since the point sets are treated as sets of samples from contin­
uous manifolds, the errors in the point positions q tangent to the manifold 
keep the points (almost) on the manifold and do not change the distance 
measurement significantly. 

Overall, it should be clear that the derived covariance matrix (a) is only a rough 
approximation of the true covariance matrix, (b) the approximation becomes more 
accuracte as the ICP estimation process nears the minimum, and (c) the primary 
effect of the approximation is that the magnitude of the covariance matrix is 
under-estimated. 

14.4 Stable Sampling of ICP Constraints 

This section and the next present applications of the covariance matrix estimate 
in ICP algorithms that address the two problems described in the introduction. 
This section considers the situation (Figure 14.1) where the ICP correspondences 
match points from the same surface in the two different data sets and are therefore 
in a sense "correct", but they still do not pull the estimate in the direction needed 
to correctly align the surfaces. 

This problem is addressed in [339] by using the covariance matrix to select 
a subset of the correspondences that will constrain the transformation estimate 
as uniformly as possible in all directions. This sampling strategy is governed 
by a spectral decomposition of the parameter estimate covariance matrix and its 
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inverse: 
^ m m 

^~e = ^(^""WX) = $ : A,7,7j, ^e = E(VA.)7,7j. (14.14) 
j=i j=i 

The Xj 's and 7^ 's are the eigenvalues and eigenvectors, respectively, of the in­
verse covariance matrix, ordered so that Ai > A2 > • • • > Ar̂  > 0. The Â  
values represents the "stability" — the inverse of the variance — in direction 7^ 
in parameter space. Ideally, the stability values for each direction should be ap­
proximately equivalent. Stated another way, the condition number \i/Xm should 
be as small as possible. 

Consider the constraints from Equation (14.9) and in particular consider the 
projection of the constraint for correspondence i onto eigenvector.;: 

ri!yi{Pi)lr (14.15) 

The magnitude of this projection tells how much the ith point correspondence 
constrains the transformation in the jth direction in parameter space. Given a 
subset C of the correspondence set C, the value 

s]= Y, [r7rX(p,)7,]V|Cl (14.16) 
(Pi,qi)ec' 

is roughly proportional to the inverse variance of the estimate in the jth direction 
based on the subset. The goal of the stable sampling algorithm is to find a subset 
that makes these 5^ values as close to equal as possible, thereby constraining the 
estimate equally-well in all directions. 

The steps involved are: 

1. Compute the inverse covariance matrix and its eigenvector decomposition 
from a small initial set C of correspondences in the region where the 
data sets overlap. These correspondences and the overlap region must be 
computed using an earlier ICP parameter estimate. 

2. Compute s | for each eigenvector based on the initial set. 

3. For eigenvector j with the smallest 5^, choose the correspondence from 
the overlap region that has the greatest magnitude of (14.15), add it to the 
correspondence set C, and update sj (14.16) for all eigenvectors. Note that 
the chosen correspondence is taken from C — C 

4. Repeat until a sufficient number of correspondences have been selected or 
until the addition of a new correspondence starts to increase the approxi­
mate condition number — the ratio between the largest Sj value and the 
smallest. The second condition tests if the constraints available to increase 
the stability of the smallest eigenvalue have been exhausted. 

For details of the data structures and search algorithms that make this compu­
tation efficient, see [339]. Two other important details should be mentioned here, 
however. 
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• The parameter vector 0 involves parameters of different units, including 
rotation angles and terms of differing orders. Numerically, the individual 
components of 0 are not comparable; they can differ by several orders 
of magnitude. To solve this, the subsets of V and Q that form the cor­
respondences should each be centered and then normalized so that the 
average magnitude of corresponding points p^ and q̂  are each 1 [339,389]. 
All computations of the sample selection technique should be done in the 
centered and normalized system. 

• The constraint rjJX.{pi) depends on a point location from V and a normal 
from Q. This means sampling must be applied after correspondences are 
formed, even though many correspondences will not be used. This wasted 
computation may be avoided easily. Observe that after the ICP algorithm 
has removed the worst of the misalignments, the surface normals of the 
transformed points p^ should be roughly parallel to the normals from q^. 
Therefore, the transformed normals from p^ can be used in place of the 
normals from rj^ in the above calculations. This means the sampling can be 
computed prior to establishing correspondence. 

The overall computation places a third step in each iteration of ICP: (1) ap­
ply stable sampling to select a subset of the points in the overlap region, (2) 
establish matches (correspondences) for these points, and (3) compute the new 
transformation estimate using the correspondences. 

Using this technique, the two problem examples shown in Figure 14.1 are each 
correctly aligned. For the iteration starting from the positions shown in the figure, 
the condition numbers dropped from 66.1 to 3.7 for the planes and from 26.9 
to 4.1 for the spheres using stable sampling. The RMS alignment errors after ICP 
converged using stable sampling were in each case a factor of 3 lower than when a 
spatially-uniform sampling of point set V was used. See [339] for more examples. 

14.5 Dual-Bootstrap ICP 

The second algorithm that exploits the covariance matrix during the registration 
process is designed to avoid the problem of mismatches due to poor initialization. 
The problem occurs in particular in the registration of retinal images because of 
the complexity of the vascular structure and the effects of disease. 

The Dual-Bootstrap algorithm described here uses points detected along the 
centers of blood vessel curves [146, 331] as the registration point sets V and Q. 
Registration is initialized using matches between landmarks — branching and 
cross-over points of the vessels — detected in the two images. Unfortunately, 
images with significant pathologies sometimes have very few landmarks and even 
fewer that match correctly for initialization. Therefore, the approach taken is a 
hypothesize-and-test method, where single correspondences are generated to form 
initial transformation estimates that are only accurate in small image regions. The 
Dual-Bootstrap algorithm tests each small region and initial estimate separately 
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Figure 14.4. Initial (upper left), intermediate (upper right, lower left), and final (lower right) 
results of the Dual-Bootstrap ICP algorithm on a pair of retinal images. Vessel centerhnes 
forming the point sets V and Q are shown using white and black contours. The rectangle 
drawn on top of the images shows the current region, R. The images are well-aligned 
within R in each iteration, and as R is expanded to cover the entire overlap region, the 
overall estimate converges to an accurate alignment. 

by "growing" an image-w îde transformation estimate. If the initial transformation 
is moderately accurate the Dual-Bootstrap algorithm rarely fails to produce an 
accurate result. 

Dual-Bootstrap ICP works by iterating three steps, illustrated in Figure 14.4: 

1. It applies one iteration of ICP using only points from the current region, R, 
(the highlighted rectangle in the panels of Figure 14.4). 

2. Based on the correspondences and the covariance matrix, the best transfor­
mation model is selected from among a set of possible models. Initially, 
when the region is small, there are only sufficient constraints for a similar­
ity transformation. The eventual image-wide transformation is a quadratic 
model [147]. In between, the algorithm can select an affine transformation 
or a simplified version of the quadratic transformation. 
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3. The Dual-Bootstrap algorithm uses the uncertainty in the transformation to 
expand the boundary of the region, R. More stable transformations lead to 
faster region growth. 

These steps are repeated until the entire process converges for the given initial 
estimate. If the final estimate covers the apparent overlap between images and is 
sufficiently accurate and stable, the estimate is accepted as correct. Otherwise, 
another starting landmark correspondence and associated region is tried. This 
greedy process terminates and indicates that no alignment is possible if the initial 
possibilities are exhausted. 

The model selection and region growing steps are most relevant to the theme of 
this chapter, so they are discussed in more detail in the remainder of this section. 

Model selection techniques [135, 799] choose the model that optimizes the 
trade-off between the alignment accuracy of high-order models and the stability 
of low-order models, with stability being measured using the covariance matrix 
of the parameters. The Dual-Bootstrap ICP model selection criteria is based on 
the expression (see [135] for a derivation): 

^ l o g 2 7 r - ^ M , r 2 + i l o g d e t ( E ^ ) , (14.17) 
i 

where d is the number of degrees of freedom in the model, ^ ^ Wiv'^ is the 
sum of the robustly-weighted alignment errors (ri = (M(pi; 0) — cii)'^r]^), and 
det(E^) is the determinant of the parameter estimate covariance matrix. Intu­
itively, for higher-order models d increases, — ^ ^ Wirf increases (because the 
residuals decrease), and det(Il^) decreases because the models are less stable. 
In choosing the best model, (14.17) is evaluated for a set of models using a fixed 
correspondence set. The model with the greatest value of (14.17) is chosen. 

The growth of the region in step 3 of the Dual-Bootstrap algorithm is based on 
the uncertainty in the mapping of point locations on the boundary of the regions. 
This uncertainty is computed from the covariance of the transformation parameter 
estimate using fairly standard covariance propagation techniques, often called the 
"transfer error" [389, Ch. 4] in the computer vision literature. As before, let p ' = 
M(p , 0) be the mapping of point location p . The covariance of this mapping is 
approximately 

where 

Sp/ = J S ^ J 

J = ^ W = x(p), 

using the definition of M from (14.7). No uncertainty in p is considered because 
p is treated simply as a position in the coordinate system of set V, not an estimated 
point location. 

The transfer error is used to expand each of the four sides of region rectangle 
R (Figure 14.5). Let p^ be one of these points, described in a coordinate system 
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Figure 14.5. Expansion of the region R in the Dual-Bootstrap ICP algorithm. The center 
of each side of the region rectangle is pushed outward in inverse proportion to the transfer 
error variance. This means that more certainty in the transformation leads to faster growth 
in R. The new region is the axis-aligned rectangle formed by the four outwardly-moved 
points. 

centered on the rectangle, and let p'^ be its mapping into the coordinate system 
of Q. Let rjg be the outward normal of the side of the rectangle and let rj'^ be the 
mapping of this normal into the coordinate system of Q. The variance of p^ in 
the outv/ard direction is a^ — 77̂  Ep/̂ ?7'̂ . Using this, the outv^ard movement of 
Ps is: 

^Ps^P 
{pJVs 

max(l, a"^) 
(14.18) 

This growth is proportional to the current distance (pjri^) of p^ from the center of 
R, and is inversely proportional to the transfer error in the normal direction. The 
lower bound of 1 in the denominator prevents growth from becoming too fast. The 
center of each side of i? is expanded outward independently using Equation 14.18, 
and the new region is the axis-aligned rectangle formed by the resulting four 
points (Figure 14.5). Parameter P controls the growth rate; the setting used in 
practice, P = \/2 — 1, ensures that the area of i?. at most doubles in each iteration. 

The Dual-Bootstrap ICP algorithm has been tested on thousands of retinal 
image pairs, including images of unhealthy eyes in various stages of disease pro­
gression [765, 810]. Overall, when there is at least 30% overlap between images, 
at least one starting correspondence, and enough extracted vessels to form a sta­
ble covariance matrix, the algorithm never fails. Together, the region growth and 
model selection techniques work to keep the algorithm near the optimal estimate 
within region R. More detail about the behavior of these techniques is as follows: 

• Model selection is imperfect. The algorithm tends to switch to higher-order 
models too early. Estimation errors in these higher-order models may lead 
to more mismatches, especially on the region periphery. Empirically, the 
implementation uses the heuristic that the quadratic model may not be used 
until the region has grown to 20% of the image size. A likely cause of this 
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problem is that the covariance matrix used underestimates the amount of 
uncertainty. 

• Region growth, on the other hand, works extremely well. One measure of 
this is that halving or doubling the growth rate does not change the effec­
tiveness of the algorithm. Removing region growth altogether, on the other 
hand, reduces the number of image pairs that the algorithm is able to align 
by 16%. 

14.6 Discussion and Conclusion 

This chapter has addressed the problem of point-based registration, focusing 
on the use of covariance-based techniques to improve the performance of the 
iterative closest point (ICP) algorithm in both range image and retinal image 
registration. The chapter started by formulating the objective function and then 
deriving the normal distance version of ICP. This provides a locally-accurate 
approximation to the overall objective function without the need for rematch-
ing. This approximation was then used to derive the equations for estimating the 
transformation parameters and the covariance matrix of this estimate. Several sim­
plifying assumptions were used in deriving this matrix. These assumptions lead 
to an underestimate in the overall amount of uncertainty, but are a reasonable 
approximation as the overall ICP process nears convergence. 

The chapter then summarized two algorithms in which the covariance matrix is 
used to modify the behavior of ICP. In the stable sampling algorithm of [339], the 
covariance matrix is used to guide the selection of correspondences, ensuring that 
all directions in parameter space are well-constrained. Geometrically, this allows 
the ICP algorithm to accurately align small-scale surfaces. In the Dual-Bootstrap 
ICP algorithm of [765], the covariance matrix is used to grow a transformation 
estimate and its associated region, starting from a small region surrounding a 
single correspondence. The covariance matrix helps avoid mismatches between 
vascular structures by controling the growth of the region and the selection of 
transformation models. Empirical results show that in both algorithms the use of 
the covariance matrix substantially improves the registration results. 

The algorithms work well despite the approximations needed to compute the 
covariance matrix. The main reason for this effectiveness is that the covariance 
matrix plays its most important role as the algorithms near convergence. Stable 
sampling only has a significant effect when the dominant structures of the data are 
well-aligned — the small surface misalignments then appear in the eigenvectors 
of the smaller eigenvalues and may therefore be corrected through the sampling 
procedure. In the Dual-Bootstrap algorithm, the alignment is always close to con­
vergence in region R, even when the alignment appears to be poor throughout the 
image. This means that the parameter estimate covariance matrix may be used to 
guide the growth and model selection based only on points from R. 
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The work described here offers a new approach to improving the performance 
of registration algorithms — using the uncertainty in the estimates being com­
puted to guide further steps in the overall algorithm. This is reminiscent of 
recursive estimation techniques such as the Kalman filter [637], but in the new 
algorithms uncertainty is used more broadly, beyond the estimation equations 
themselves. This could point toward the development of a variety of new algo­
rithms. Moving in this direction requires that a number of issues be addressed. On 
the theoretical side, a new and more accurate approximation of the covariance ma­
trix is needed that depends on fewer assumptions. One approach might be the use 
of resampling methods such as the bootstrap technique from statistics [295]. On 
the more applied side, a second advance would be integrating uncertainty-driven 
methods with approaches to initialization based on keypoint matching [121]. A 
third advance would be incorporating uncertainty information into deformable 
registration, one of the most important problems in medical image analysis. 

Acknowledgements 

Portions of this research were supported by National Science Foundation Exper­
imental Partnerships grant EIA-0000417, by the Center for Subsurface Sensing 
and Imaging Systems under the Engineering Research Centers Program of the Na­
tional Science Foundation (Award Number EEC-9986821), and by the US Army 
INSCOM. Thanks go to Rich Radke and Charlene Tsai for comments that sig­
nificantly enhanced the presentation and to Natasha Gelfand for the images in 
Figure 14.1. 



Part IV 

Motion Analysis, Optical Flow 
& Tracking 



Chapter 15 

Optical Flow Estimation 
D. Fleet and Y. Weiss 

Abstract 

This chapter provides a tutorial introduction to gradient-based optical flow 
estimation. We discuss least-squares and robust estimators, iterative coarse-
to-fine refinement, different forms of parametric motion models, different 
conservation assumptions, probabilistic formulations, and robust mixture 
models. 

15.1 Introduction 

Motion is an intrinsic property of the world and an integral part of our visual ex­
perience. It is a rich source of information that supports a wide variety of visual 
tasks, including 3D shape acquisition and oculomotor control, perceptual organi­
zation, object recognition and scene understanding [319, 346, 393, 525, 542, 596, 
754, 822, 865]. In this chapter we are concerned with general image sequences of 
3D scenes in which objects and the camera may be moving. In camera-centered 
coordinates each point on a 3D surface moves along a 3D path X{t). When pro­
jected onto the image plane each point produces a 2D path x{t) = {x(t),y{t))^, 
the instantaneous direction of which is the velocity dx(t)/dt. The 2D velocities 
for all visible surface points is often referred to the 2D motion field [407]. The goal 
of optical flow estimation is to compute an approximation to the motion field from 
time-varying image intensity. While several different approaches to motion esti­
mation have been proposed, including correlation or block-matching (e.g, [25]), 
feature tracking, and energy-based methods (e.g., [5]), this chapter concentrates 
on gradient-based approaches; see [59] for an overview and comparison of the 
other common techniques. 
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Figure 15.1. The gradient constraint relates the displacement of the signal to its temporal 
difference and spatial derivatives (slope). For a displacement of a linear signal (left), the 
difference in signal values at a point divided by the slope gives the displacement. For 
nonlinear signals (right), the difference divided by the slope gives an approximation to the 
displacement. 

15.2 Basic Gradient-Based Estimation 

A common starting point for optical flow estimation is to assume that pixel 
intensities are translated from one frame to the next, 

I[x,t) = /(x-fix, t + 1) , (15.1) 

where I{x,t) is image intensity as a function of space x — (x,y)^ and time 
t, and u = (1̂ 1,1̂ 2)̂  is the 2D velocity. Of course, brightness constancy rarely 
holds exactly. The underlying assumption is that surface radiance remains fixed 
from one frame to the next. One can fabricate scenes for which this holds; e.g., 
the scene might be constrained to contain only Lambertian surfaces (no specular-
ities), with a distant point source (so that changing the distance to the light source 
has no effect), no object rotations, and no secondary illumination (shadows or 
inter-surface reflection). Although unrealistic, it is remarkable that the brightness 
constancy assumption (15.1) works so well in practice. 

To derive an estimator for 2D velocity u, we first consider the ID case. Let 
/i(x) and /2(x) be ID signals (images) at two time instants. As depicted in Fig. 
15.1, suppose further that f2{x) is a translated version of/i(x); i.e., let f2{x) = 
/ i {x — d) where d denotes the translation. A Taylor series expansion of/i (x — d) 
about X is given by 

fi{x-d) = h{x)-df[{x)^-0{d^f'{), (15.2) 

where / ' = df{x)/dx. With this expansion we can rewrite the difference 
between the two signals at location x as 

fl{x)-f2{x) = df[(x)^0{d^f'{). 

Ignoring second- and higher-order terms, we obtain an approximation to d\ 

h{x) - h{x) 
d = 

f[{x) 
(15.3) 
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The ID case generalizes straightforwardly to 2D. As above, assume that the 
displaced image is well approximated by a first-order Taylor series: 

I{x + ti, i -f-1) « I{x, i) + U' V/(x, t) + It{x, t) , (15.4) 

where V/ = (/x, ly) and /( denote spatial and temporal partial derivatives of the 
image 7, and w = (ui, ^2)^ denotes the 2D velocity. Ignoring higher-order terms 
in the Taylor series, and then substituting the linear approximation into (15.1), we 
obtain [409] 

VI{x,t)-u-^It[x,t) - 0. (15.5) 

Equation (15.5) relates the velocity to the space-time image derivatives at one 
image location, and is often called the gradient constraint equation. If one has 
access to only two frames, or cannot estimate It, it is straightforward to derive 
a closely related gradient constraint, in which It{x,t) in (15.5) is replaced by 
SI{x, t) = I{x, t + 1) - I{x, t) [533]. 

Intensity Conservation 

Tracking points of constant brightness can also be viewed as the estimation of 2D 
paths x{t) along which intensity is conserved: 

I{x{t),t) = c , (15.6) 

the temporal derivative of which yields 

jll{x{t)^) = 0. (15.7) 

Expanding the left-hand-side of (15.7) using the chain rule gives us 

d ^, , . . dl dx dl dy dl dt „^ ^ ,.^ox 

where the path derivative is just the optical flow u = {dx/dt, dy/dtY. If we 
combine (15.7) and (15.8) we obtain the gradient constraint equation (15.5). 

Least-Squares Estimation 

Of course, one cannot recover u from one gradient constraint since (15.5) is one 
equation with two unknowns, ui and U2. The intensity gradient constrains the 
flow to a one parameter family of velocities along a line in velocity space. One 
can see from (15.5) that this hne is perpendicular to V/ , and its perpendicular 
distance from the origin is | / t | / | |V / | | . 

One common way to further constrain u is to use gradient constraints from 
nearby pixels, assuming they share the same 2D velocity. With many constraints 
there may be no velocity that simultaneously satisfies them all, so instead we find 
the velocity that minimizes the constraint errors. The least-squares (LS) estimator 
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minimizes the squared errors [533]: 

E{u) = ̂ 9{x) [u . VI{x, t) + It{x, 01' , (15.9) 
X 

where g{x) is a weighting function that determines the support of the estimator 
(the region within which we combine constraints). It is common to let g{x) be 
Gaussian in order to weight constraints in the center of the neighborhood more 
highly, giving them more influence. The 2D velocity u that minimizes E{u) is 
the least squares flow estimate. 

The minimum of E{u) can be found from its critical points, where its 
derivatives with respect to u are zero; i.e., 

^ ^ § i i ^ = J^g{x) [mij+u,i^i, + u,] = 0 

dE{uuU2) ^ j^gix) [u,Iy'+u,Uy + Iyh] = 0. 

These equations may be rewritten in matrix form: 

Mu = 6 , (15.10) 

where the elements of M and b are: 

When M has rank 2, then the LS estimate is ii = M~^6. 

M 
Yloly-^t 

Implementation Issues 

Usually we wish to estimate optical flow at every pixel, so we should express M 
and 6 as functions of position x, i.e., M(x) u{x) = b{x). Note that the elements 
of M and 6 are local sums of products of image derivatives. An effective way to 
estimate the flow field is to first compute derivative images through convolution 
with suitable filters. Then, compute their products (Ix^, hJy, ly^, Ixh and lyh), 
as required by (15.10). These quadratic images are then convolved with ^(cc,) to 
obtain the elements of M(cc) and b[x). 

In practice, the image derivatives will be approximated using numerical dif­
ferentiation. It is important to use a consistent approximation scheme for all 
three directions [303]. For example, using simple forward differencing (i.e., 
Ix = I{x,y) — I{x -\- 1,2/)) will not give a consistent approximation as the x, 
y and t derivatives will be centered at different locations in the xyt-cuhQ [407]. 
Another practicality worth mentioning is that some image smoothing is generally 
useful prior to numerical differentiation (and can be incorporated into the deriva­
tive filters). This can be justified from the first-order Taylor series approximation 
used to derive (15.5). By smoothing the signal, one hopes to reduce the ampli­
tudes of higher-order terms in the image and to avoid some related problems with 
temporal aHasing. 



optical Flow Estimation 243 

h 

Figure 15.2. (left) A single moving grating viewed through a circular aperture is consistent 
with all 2D velocities along a line in velocity space, (right) With two drifting gratings there 
are multiple constraint lines that intersect to uniquely constrain the 2D velocity. (After [6]) 

Aperture Problem 

When M in (15.10) is rank deficient one cannot solve for u. This is often called 
the aperture problem as it invariably occurs when the support g{x) is sufficiently 
local. However, the important issue is not the width of support, but rather the 
dimensionality of the image structure. Even for large regions, if the image is one-
dimensional then M will be singular. As depicted in Fig. 15.2 (left); when each 
image gradient within a region has the same spatial direction, it is easy to see that 
Tank\M] — 1. Moreover, note that a single gradient constraint only provides the 
normal component of u, 

-It V/ 

'' ||v/|| ||v/|| • 
When there exist constraints with two or more gradient directions, as depicted in 
Fig. 15.2 (right), then the different constraint lines intersect to uniquely constrain 
the 2D velocity. 

15.3 Iterative Optical Flow Estimation 

Equation (15.9) provides an optimal solution, but not to our original problem. 
Remember that we ignored high-order terms in the derivation of (15.3) and (15.5). 
As depicted in Fig. 15.1, i f / i is linear then d = d. Otherwise, to leading order, 
the accuracy of the estimate is bounded by the magnitude of the displacement and 
the second derivative of / i : 

\d-d\ < 
d'\fi'{x)\ 

+ 0{d^ (15.11) 

For a sufficiently small displacement, and bounded | / (V/i I? we expect reasonably 
accurate estimates. This suggests a form of Gauss-Newton optimization in which 
we use the current estimate to undo the motion, and then we reapply the estimator 
to the warped signsils to find the residual motion. This continues until the residual 
motion is sufficiently small. 
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In 2D, given an estimate of the optical flow field u ^, we create a warped imagQ 
sequence I^{x,t): 

I^{x,t-\-6t) = I{x-\-u^St,t-^St), (15.12) 

where 6t is the time between consecutive frames. (In practice, we only need to 
warp enough frames for temporal differentiation.) Assuming that u = u^ -\- 6u, 
it is straightforward to see from (15.1) and (15.12) that 

I^{x,t) = I^{x + Su,t-i-l) , (15.13) 

If 6u = 0, then clearly I^ would be constant through time (assuming brightness 
constancy). Otherwise, we can estimate the residual flow using 

6u = M-^b (15.14) 

where M and b are computed by taking spatial and temporal derivatives 
(differences) of/^. The refined optical flow estimate then becomes 

In an iterative manner, this new flow estimate is then used to rewarp the original 
sequence (as in (15.12)), and another residual flow can be estimated. 

This iteration yields a sequence of approximate objective functions that con­
verge to the desired objective function [91]. At iteration j , given the estimate u^ 
and the warped sequence P, our desired objective function is 

E{Su) = Y^g{x) [l{x,t)-I{x-^u^ -i-Su^t-i-l)]^ (15.15) 
X 

= ^ ^ ( c c ) [ 7 ^ ( x , i ) - P ( a ; + JM,i + l ) ] ' 
X 

« Y,9{x) \vP{x,t)'Su-^li{x,t)\ = E{Su).(l5A6) 
X 

The gradient approximation to the difference in (15.15) gives an approximate 
objective function E. From (15.11) one can show that E approximates E to 
second-order in the magnitude of the residual flow, Su. The approximation er­
ror vanishes as Su is reduced to zero. The iterative refinement with rewarping 
reduces the residual motion at each iteration so that the approximate objective 
function converges to the desired objective function, and hence the flow estimate 
converges to the optimal LS estimate (15.15). 

The most expensive step at each iteration is the computation of image gradi­
ents and the matrix inverse in (15.14). One can, however, formulate the problem 
so that the spatial image derivatives used to form M are taken at time t, and as 
such, do not depend on the current flow estimate u^ [375]. To see this, note that 
the spatial deriatives are computed at time t and it is straightforward to see that 
I(x,t) = P(a3, t). Of course 6 in (15.14) will always depend on the warped im­
age sequence and must be recomputed at each iteration. In practice, when M is 
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Temporal Sampling with Period T 

245 

Warp 

Figure 15.3. (Left) The spectrum of a translating signal is nonzero on a line in the frequency 
domain. Temporal sampling introduces spectral replicas, causing aliasing for higher speeds 
(steeper slopes). (Right) The problem may be avoided by blurring the images before 
computing derivatives. The spectra of such coarse-scale filters will be insensitive to the 
replicas. Velocity estimates from the coarse scale are used to warp the images, thereby 
undoing much of the motion. Finer-scale derivative filters can now be used to estimate the 
residual motion. (After [743]) 

not recomputed from the warped sequence then the spatial and temporal deriva­
tives will not centered at the same location in {x,y,t) and hence more iterations 
may be needed. 

Temporal Aliasing and Coarse-To-Fine Refinement 

In practice, our images have temporal sampling rates lower than required by 
the sampling theorem to uniquely reconstruct the continuous signal. As a 
consequence, temporal aliasing is a common problem in motion estimation. 

The spectrum of a translating signal is confined to a plane through the origin 
in the frequency domain [322, 866]. That is, if we construct a space-time signal 
/ ( x , t) by translating a 2D signal fo{x) with velocity u, i.e., / ( x , t) = fo{x — 
ut), one can show that the space-time Fourier transform o f / ( x , t) is given by 

F{uJa:,UJy,UJt) = Fo{oJa:,UJy)S{uiUJa: -{-U20^y-\-(^t) (15.17) 

where FQ is the 2D Fourier transform of /o and SQ is a Dirac delta. Equation 
(15,17) shows that the spectrum is nonzero only on a plane, the orientation of 
which gives the velocity. When the continuous signal is sampled in time, replicas 
of the spectrum are introduced at intervals of 27r/T radians, where T is the time 
between frames (see Fig. 15.3 (left)). It is easy to see how this causes problems; 
i.e., the derivative filters may be more sensitive to the spectral replicas at high 
spatial frequencies than to the original spectrum on the plane through the origin. 

This suggests a simple approach to aliasing problems [25, 75]. Optical flow 
can be estimated at the coarsest scale of a Gaussian pyramid, where the image 
is significantly blurred, and the velocity is much slower (due to subsampling). 
The coarse-scale estimate can be used to warp the next (finer) pyramid level to 
stabilize its motion. Since the velocities after warping are slower, as shown in 
Fig. 15.3 (right)), a wider low-pass frequency band will be free of aliasing. One 
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can therefore use derivatives at the finer scale to estimate the residual motion. 
This coarse-to-fine estimation continues until the finest level of the pyramid (the 
original image) is reached. Mathematically, this is identical to iterative refine­
ment except that each scale's estimate must be up-sampled and interpolated before 
warping the next finer scale. 

While widely used, coarse-to-fine methods have their drawbacks, usually stem­
ming from the fact that fine-scale estimates can only be as reliable as their 
coarse-scale precursors; a poor estimate at one scale provides a poor initial guess 
at the next finer scale, and so on. That said, when aliasing does occur, one must 
use some mechanism such as coarse-to-fine estimation to avoid local minima in 
the optimization. 

15.4 Robust Motion Estimation 

The LS estimator is optimal when the gradient constraint errors, i.e., 

e{x) = U'VI{x,t)-\-It{x,t) , (15.18) 

are mean-zero Gaussian, and the errors in different constraints are independent 
and identically distributed (IID). Not surprisingly, this is a fragile assumption. 
For example, brightness constancy is often violated due to changing surface ori­
entation, specular reflections, or time-varying shadows. When there is significant 
depth variation in the scene, the constant motion model will be extremely poor, 
especially at occlusion boundaries. 

LS estimators are not suitable when the distribution of gradient constraint errors 
is heavy-tailed, as they are sensitive to small numbers of measurement outliers 
[380, 518]. It is therefore often crucial that the quadratic estimator in (15.9) be 
replaced by a robust estimator, /?(•), which limits the influence of constraints with 
larger errors (e.g., see [40, 89, 612]): 

E[u) = J2 six) p{e{x), a) . (15.19) 

For example, Black and Anandan [89] used the redescending Geman-McClure 
estimator [342], p{e,a) — e^/(e^ + a^), where a'^ determines the range of 
constraint errors for which influence is reduced. 

Among the various ways one might minimize (15.19), one very useful approach 
takes the form of iteratively reweighted least-squares [518]. In short, this is an iter­
ative solution in which the weights g{x) in (15.9) are scaled by a weight fiinction 
that downweights those constraints that are inconsistent (i.e., have large errors) 
with the current motion estimate. Often it is also useful to anneal the optimization, 
wherein cr̂  starts large, and is then slowly decreased to achieve greater robustness. 



Optical Flow Estimation 247 

15.5 Motion Models 

Thus far we have assumed that the 2D velocity is constant in local neighbour­
hoods. Unfortunately, even for small regions this is often a poor assumption. We 
now consider generalizations to more interesting motion models. 

Affine Model 

General first-order afiine motion is usually a better model of local motion than 
a translational model (e.g., [75, 89, 320]). An affine velocity field centered at 
location XQ can be expressed in matrix form as 

U{X\XQ) — A(cc; xo) c , (15.20) 

where c = (ci, C2, C3, C4, C5, CQ)^ are the motion model parameters, and 

A(x; XQ) 
1 0 X-XQ y-yo 0 0 
0 1 0 0 X—XQ y—yo 

Combining (15.20) and (15.5) yields the gradient constraint equation 

VI{x,t)A{x;xo) c -\- It{x,t) = 0 , 

for which the LS estimate for the neighbourhood has the form 

c - M-^b, (15.21) 

where now M and b are given by 

M = ^ p A ^ V / ^ V / A , b = -^gA^Vl'^It. 
X X 

When M is rank deficient there is insufficient image structure to estimate the six 
unknowns. Affine models often require larger support than constant models, and 
one may need a robust estimator instead of the LS estimator. 

Iterative refinement is also straightforward with affine motion models. Let the 
optimal affine motion be n = A c, and let the affine estimate at iteration j be 
u^ = Ac^. Because the flow is linear in the motion parameters, it follows that 
Su = u — u^ and Sc = c — c^ satisfy 

Su = A6c . (15.22) 

Accordingly, defining /-^(cc, t) to be the original sequence I{x,t) warped by u^ 
as in (15.12) we use the same LS estimator as in (15.21), but with I and c replaced 
by P and 6c. The updated LS estimate is then c^'^^ = c^ -\- 6c. 

Low-Order Parametric Deformations 

There are many other polynomial and rational deformations that make useful mo­
tion models. Similarity deformations, comprising translation [di, <i2)> 2D rotation 
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Figure 15.4. (a,b) Mouth regions of two consecutive images of a person speaking, (c) Flow 
field estimated using dense optical flow method, (d) Flow field estimated using the learned 
model with 6 basis flow fields. (After [319]) 

0, and uniform scaling by s are a special case of the aflfine model, but still very use­
ful in practice. In a neighbourhood centred at XQ it has the same form as (15.20), 
but with c= [di, d2, s cos 6*, s sinO)^ and 

A{x\ XQ) 
1 0 x-xo -y-\-yo 
0 1 y -yo X -xo 

With this linear form, one can solve directly for c using linear least-squares, and 
then compute the similarity parameters di^d2, s, and 0. 

Another useful motion model is the projective deformation (or homography) 
[75], which captures image deformations of a 3D plane under camera rotation 
and translation. See in Chapter 17 for a discussion of homographies and related 
motion models. 

Learned Subspace Models 

Many objects exhibit complex motions that are not well modeled by low-order 
polynomials. For example Fig. 15.4(a,b) shows two frames of a mouth during 
speech, for which non-rigidity, occlusion, and fast speeds make flow estimation 
difficult. Interestingly, the regression framework above extends to diverse types 
of complex 2D motions with the use of basis flow fields, {^j(a?)}/=i, such that 
the local optical flow field is expressed as 

(15.23) 

In this context, optical flow estimation reduces to the estimation of the linear 
coefficients c, analogous to the affine model discussed above. 

In [319] a motion basis was learned for human mouths. This was accomplished 
by applying a robust estimator with a generic smoothness model [89] to mouths 
to obtain training data (e.g., see Fig. 15.4(c)). The principal components of the 
ensemble of training flow fields were then extracted and used as the basis. Figure 
15.4(d) shows the optical flow obtained with the subspace model and a robust 
estimator. The model was found to greatly increase the quality of the optical flow 
estimates, and the temporal variation in the subspace coefficients were then used 
to recognize linguistic events [319]. 
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General Differentiable Warps 

In general, one can formulate area-based regression in terms of warp functions 
w(x\p) that are not necessarily smooth in space, nor linear in the warp parameters 
p. One can parametrize the warp as a function of time, or assume the two-frame 
case: 

I{x,t) = I{w{x;p),t-^1). (15.24) 

The warp functions must be differentiable with respect to p. To develop an effi­
cient estimation algorithm, one may need to further constrain w to be invertible 
(e.g., see [375]). 

15.6 Global Smoothing 

While area-based regression is commonly used, some of the earliest formulations 
of optical flow estimation assumed smoothness through non-parametric motion 
models, rather than an explicit parametric model in each local neighbourhood 
(e.g., see [407, 593,714]). Horn and Schunck [409] proposed an energy functional 
of the form: 

E{u) - /"(V7.w + 7t)2 -f A ( | | V n i | p + ||VtX2in dxdy . (15.25) 

A key advantage of global smoothing is that it enables propagation of information 
over large distances in the image. In image regions of nearly uniform intensity, 
such as a blank wall or tabletop, local methods will often yield singular (or poorly 
conditioned) systems of equations. Global methods can fill in the optical flow 
from nearby gradient constraints. 

Equation (15.25) can be minimized directly with discrete approximations to 
the integral and the derivatives in (15.25). Thie yields a large system of linear 
equations that may be solved through iterative methods such as Gauss-Seidel or 
SOR overrelaxation [352]. Alternatively one can solve the corresponding Euler-
Lagrange (PDE) equations under reflecting boundary conditions (e.g., [133,714]). 
Recent extensions to global methods include robust penalty functions (for data 
and smoothness terms), the use of coarse-to-fine search for optimization, and the 
incorporation of stronger local constraints on the motion, resulting in impressive 
optical flow estimates [133]. 

The main disadvantage of global methods is computational efficiency. Even 
with more efficient optimization algorithms (e.g. [779, 878]) the computational 
cost is far higher than with local methods. Whether this is justified may depend 
on the image domain and the need for dense optical flow. Another problem is 
in the setting of the regularization parameter A that determines the amount of 
desired smoothing (similar problems arise in choosing the support width for area-
based regression). Prior knowledge on the smoothness of flow can be useful here, 
and more sophisticated methods might be used to estimate (or marginalize) the 
regularization parameter. 
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15.7 Conservation Assumptions 

All of the above formulations assumed intensity conservation. Nevertheless, 
gradient constraints may be used to track any differentiable image property. 

Higher-Order Derivative Constraints 

Some techniques assume that image gradients are conserved (e.g., [593, 743, 
823]). This provides two further constraints at each pixel, i.e., 

-\-U2lxy+Ixt = 0 (15.26) 

Ullxy -f U2lyy -^ lyt = 0 . 

These are useiul insofar as they provide more constraints with which to esti­
mate motion parameters. Conversely, higher-order derivatives are often extremely 
noisy, and the conservation of V / implies that the motion field has no first-
order deformation (e.g., rotation). Intensity conservation (15.7), by comparison, 
assumes only that the image motion is smooth. 

Phase-Based Methods 

Phase-based methods [320, 321] are based on an initial decomposition of the 
image into band-pass channels, like those produced by quadrature-pair filters in 
steerable pyramids [330]. While multi-scale representations are commonly used 
for flow estimation, a further decomposition into orientation bands yields more 
local constraints, often with better signal-to-noise ratios. Complex-valued band­
pass images can be represented as real and imaginary images, or in terms of 
amplitude and phase images. Figure 15.5 shows the real-part of a ID band-pass 
signal, along with its amplitude and phase. Amplitude encodes the magnitude of 
local signal modulation, while phase encodes the local structure of the signal (e.g., 
zero-crossings, peaks, etc). 

Phase-based methods assume conservation of phase in each band-pass channel. 
The phase-based gradient constraint, given a complex-valued band-pass channel, 
r(x, t), with phase (/)(x, t) = arg[r(x, t)], is simply 

V(/)(ir,t)"u + (/)t(x,t) = 0 . (15.27) 

These may be combined to estimate optical flow using any of the estimators 
above. In practice, because phase is a multi-function, only uniquely defined on 
intervals of width 27r, explicit differentiation is difficult. Instead, it is convenient 
to exploit the following identities for computing spatial derivatives and temporal 
differences, 



optical Flow Estimation 251 

Real Part 
of Signal 

Amplitude 
Component 

Phase 
Component 

Figure 15.5. A band-pass filtered ID signal can be expressed using its amplitude and phase 
signals. Note the linearity of phase over large spatial extents. 

where Im[r] denotes the imaginary part of r, r* is the complex-conjugate of r, 
and Tx = dr/dx. Compared to phase, r{x, t) is relatively easy to differentiate 
and interpolate [322, 320]. 

Phase has a number of appealing properties for optical flow estimation. First, 
phase is amplitude invariant, and therefore quite stable when significant changes 
in contrast and mean intensity occur between frames. Second, phase is approxi­
mately linear over relatively large spatial extents, and has very few critical points 
where the gradient is zero. This is important as it implies that more gradient con­
straints may be available, and that the range of velocities that can be estimated 
is significantly larger than with image derivatives. This also improves the accu­
racy of gradient-based estimates, reducing the number of iterations required for 
refinement. Phase has also been shown to be stable with respect to first-order de­
formations of the image from one time to the next [321]. Both the expected spatial 
extent of phase linearity and the stability of phase are determined, in part, by 
filter bandwidth. The main disadvantages of phase concern the computational ex­
pense of the band-pass filters, and the spatial support of the filters near occlusion 
boundaries and fine-scale objects. 

Brightness Variations 

While contrast normalization, or the use of phase, provides some degree of in-
variance with respect to deviations from brightness constancy, more significant 
variations in brightness must be modeled expHcitly. The models may be object 
specific, to model objects under different lighting conditions [375], poses or con­
figurations [91]. Alternatively, the models may be physics-based [390], or they 
may be generic models for smooth mean and contrast variations [595]. Despite the 
wide-spread use of brightness constancy these models may be extremely useful 
for certain domains. 
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15.8 Probabilistic Formulations 

One problem with the above estimators is that, although they provide useful esti­
mates of optical flow, they do not provide confidence bounds. Nor do they show 
how to incorporate any prior information one might have about motion to further 
constrain the estimates. As a result, one may not be able to propagate flow esti­
mates from one time to the next, nor know how to weight them when combining 
flow estimates from different information sources. These issues can be addressed 
with a probabilistic formulation. 

The cost function (15.16) has a simple probabilistic interpretation. Up to nor­
malization constants, it corresponds to the log likelihood of a velocity under the 
assumption that intensity is conserved up to Gaussian noise. 

I{x,t) = I{x-\-u,t + l)-\-rj. (15.28) 

If we assume that the same velocity u is shared by all pixels within a neighbour­
hood, that T] is white Gaussian noise with standard deviation a, and uncorrelated 
at different pixels, we obtain the conditional density 

p{I\u) oc e ~ ^ ^ ^ ^ ^ , (15.29) 

where E{u) is the LS objective function (15.16). To obtain further insight into 
this likehhood function, we again approximate E to second order using E as in 
(15.15). Under this approximation the likelihood function is Gaussian with mean 
M.~^ b and covariance matrix M~^. 

The approximate covariance matrix M~ defines an uncertainty ellipse around 
the estimated optical How. These uncertainties can be propagated to subsequent 
frames, or to other spatial scales [744]. They can also be used directly in algo­
rithms for 3D reconstruction [418]. (See [880] for a more detailed discussion of 
likelihood functions for probabilistic optical flow estimation.) 

The probabilistic formulation also allows one to introduce prior information. 
Equation (15.29) can be combined with a prior probabihty distribution over local 
velocities. For example, a very useful prior model is that the local flow tends 
to be slow (e.g. [744]). This is convenient to model with a zero-mean Gaussian 
distribution, 

p{u) a e^""^" . (15.30) 

Combining this prior probability with the approximate likelihood function (15.29) 
gives us a Gaussian posterior probability whose mean (and mode) is 

u - (M + A / ) - ^ 6 , (15.31) 

where A is the ratio of the noise and prior variances, A = a'^/o-p. Note that this 
Bayesian estimate will actually be biased, and will not correctly estimate the 
speed or direction of patterns where the local uncertainty is large. This has the 
benefit that it dampens the estimates to help avoid divergence in iterative refine­
ment and tracking. Interestingly, many "illusions" in human motion perception 
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can actually be explained with a prior favoring slow motions and a Bayesian 
model of inference [881]. 

Total Least-Squares 

When one assumes significant image noise that contaminates spatial as well 
as temporal derivatives, then the maximum likelihood motion estimate given a 
collection of space-time image gradients is given by total-least-squares (TLS) 
[598, 867]. If we view velocity as a unit direction in space-time, or in 3D homo­
geneous coordinates v = a{ui,U2,1), a e 7Z, and denote the space-time image 
gradient o^ ^ (V/(cCfc,t),/^(ccfc,t))^, then the gradient constraint becomes 
Ok^v = 0. The sum or squared constraint errors is then 

E{v) = v'^Sv , where S = ^ o^ o^ ^ . (15.32) 
k 

The TLS solution is obtained by minimizing E{v) in (15.32), subject to the 
constraint \\v\\ = 1 to avoid the trivial solution. The solution is given by the 
eigenvector corresponding to the minimum eigenvalue of S. This approach has 
been called tensor-based, with S called the structure tensor [86, 390, 428], These 
methods have produced excellent optical flow results [305]. 

Different noise models yield different estimators. TLS is a ML estimator when 
the noise in Ok is additive, isotropic and IID. When the noise is anisotropic and not 
identically distributed the formulation becomes much more complex [597]. More 
complex noise models, especially those with correlated noise in local regions, 
remain a topic for future research. 

15.9 Layered Motion 

One common problem with area-based regression methods concerns the size of 
spatial support. With larger support there are more constraints for parameter es­
timation, but there is a greater risk that simple parametric motion models will 
be unsuitable. This is particularly serious near occlusion boundaries where mul­
tiple motions exist. For example, in the scene depicted in Fig. 15.6 the camera 
was translating, and therefore both the soda can and the background move with 
respect to the camera, but with different image velocities. To demonstrate this, 
Fig. 15.6 (right) shows a subset of the gradient constraints in the small region 
(marked in white) at the left side of the can. There are two points with a high 
density of constraint-line intersections, corresponding to the velocities of the can 
and the background. 

One way to cope with regions with multiple motions is to explicitly model 
the layers in the scene. The layered model is like a cardboard cutout represen­
tation of a scene in which different cardboard surfaces correspond to different 
layers, and they are assumed to be able to move independently [435, 853]. Lay­
ered motion estimation can be formulated using probabilistic mixture models, 



254 Fleet & Weiss 

Figure 15.6. (left) The depth discontinuity at the left side of the can creates a motion 
discontinuity as the camera translates right, (right) Motion constraint lines in velocity space 
are shown from pixels within the white square. (After [435]) 

with the Expectation-Maximization (EM) algorithm for parameter estimation 
[38, 435, 878, 879]. 

Mixture Models 

Let there be a region of pixels {a^/c}^i in which we suspect there are multiple 
velocities; e.g., the region might contain an occlusion boundary. By way of no­
tation, let u{x\ c) denote a parameterized flow field with parameters c. Within a 
single region of the image we will assume that there are Â  motions, parameter­
ized by Cn, fori <n < N. Furthermore, according to the our mixture model, the 
individual motions occur with probability vfin- These mixing probabilities tell us 
what fraction of the K pixels within the region we expect to be consistent with 
(i.e., ownedhy) each motion. Of course the mixing probabilities sum to 1. 

Let us further assume that we have one gradient constraint per pixel within the 
region. Let Ok = {VI{xk, t)^It{xk, t))^ denote the spatial and temporal image 
derivatives at pixel Xk. As above, given the correct motion, we assume that the 
gradient constraint is satisfied up to Gaussian noise: 

e{Xk\Cn) = VI{Xk,t)'Un{x\ Cn)-^It{Xk,t) = TJ , 

where 77 is a mean-zero Gaussian random variable with a standard deviation of 
ay. Thus, the likelihood of observing a constraint Ok given the n^^ flow model, 
is simply Pn{ok \ Cn) = G(e{xk\ Cn)'^ (Jv) where G{e\ a) denotes a mean-zero 
Gaussian with standard deviation a evaluated at e. 

Finally, given the mixing probabilities and likelihood fianctions, the mixture 
model expresses the probability of a gradient measurement o^, as 

N 

p{ok\m,ci, ..., CN) = ^rnnPn{ok\cn) ^ 

The probability of observing Ok is a weighted sum of the probabilities of 
observing Ok fi*om each of the individual motions. The joint likelihood of a col­
lection of K independent observations {0^}^^ is the product of the individual 
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probabilities: 

K 

L{m, ci, ..., CN) = ]][p(ofc|m, ci, ..., CN) . (15.33) 
A ; = l 

Our goal is to find the mixture model parameters (the mixture proportions and 
the motion model parameters) that maximize the likelihood (15.33). Alternatively, 
it is often convenient to maximize the log likelihood: 

K / N \ 

logL(m, ci, ..., cr^) = X^log ( X] '^nPn{ok\cn) I . 

EM and Ownerships 

The EM algorithm is a general technique for maximum likelihood or MAP param­
eter estimation [257]. The approach is often explained in terms of a parametric 
model, some observed data, and some unobserved data. Our observed data are 
the gradient constraints. The model parameters are the motion parameters and 
mixing probabilities, and the unobserved data are the assignments of gradient 
measurements to motion models. Note that if we knew which measurements were 
associated with which motion, then we could solve for each motion independently 
from their respective constraints. 

Roughly speaking, the EM algorithm is an iterative algorithm that iterates two 
steps that compute 1) the expected values of the unobserved data given the most 
recent estimate of the model parameters (the E Step), and then 2) the ML/MAP es­
timate for the model parameters given the observed data, and the expected values 
for the unobserved data. 

A key quantity in this algorithm is called the ownership probability. An owner­
ship probability, denoted qni^k), is the probability that the n*^ motion model is 
responsible for the constraint (i.e., generated the observed data) at pixel x^. This 
is an important quantity as it effectively segments the region, telling us which pix­
els belong to which motions. Using Bayes' rule, the probability that Ok is owned 
by model Mn can be expressed as 

. . . , >, p{Ok\Mn)p{Mn) 
p{Mn\ok) = :^^ . 

In terms of the mixture model notation here, this becomes 

'7n(x.) = ^ r ' ' " ^ ' \ ' ' " , ^ , • (15.34) 

That is, the likelihood of the observation given the n^^ model is simply 
Pn{ok I Cn), and the probability of the n^^ model is just rrin. The denominator 
is the marginalization of the joint distribution p{ok, Cn) over the space of mod­
els. And of course it is easy to show that Yin ^n i^k) — ^-^^ the context of the EM 
algorithm these ownership probabilities can be viewed as soft assignments of data 
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to models. Once these assignments are made we can perform a weighted regres­
sion to find the motion parameters of each model, using the same tools developed 
above for a single motion. 

Given ownership probabilities, the updated mixing probability for model Mn 
is just the fraction of the total available ownership probability assigned to the n*^ 
model, m,n = ^ Ylk=i Qni^k). The estimation of the motion model parame­
ters is similarly straightforward. That is, given the ownership probabilities, we 
estimate the motion parameters for each model independently as a weighted area-
based regression problem. For the case of a translational motion model, where the 
motion parameters are just Cn = Un, this is just the minimization of the weighted 
least-squares error 

K 

E{Un) = J^QniXk) [S/I{Xk,t)'Un + It{Xk,t)f , (15.35) 
k=l 

Because the mixture model likelihood function (15.33) will have multiple local 
minima, a starting point for the EM iterations is required. That is, to begin the 
iterative procedure one needs an initial guess of either the ownership probabilities, 
or of the model parameters (motion and mixture parameters). Often one starts by 
choosing random values for the initial ownership probabilities and then begin with 
the estimation of the mixing probabihties and the motion model parameters. 

Outliers 

As above, we must expect outliers among the gradient constraint observations. 
Gradient measurements near an occlusion boundary, for example, may not be 
consistent with either of the two motions. As a result, it is often extremely useful 
to introduce an outlier model, MQ, in addition to the motion models; the likeli­
hood for this outlier layer may be modeled with a uniform density [435]. Figure 
15.7 shows results for the region near the can with two motion models and an 
outher model like that described here. For the region shown in Fig. 15.7, the mea­
surement constraints owned by the outlier model are shown in the bottom-right 
plot. 

15.10 Conclusions 

This chapter surveys several approaches to optical flow estimation. It is therefore 
natural to ask what works best? While historically some techniques have been 
shown to outperform others [59], in recent years several different approaches have 
produced excellent results on benchmark data sets, provided one pays attention to 
detail. Some of the important details include (1) multiple scales to help avoid 
local minima, (2) iterative warping and estimate refinement, and (3) robust cost 
functions to handle outliers. Accordingly, many techniques work well up to the 
limits of the key assumptions, namely, brightness constancy and smoothness. 
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Figure 15.7. The top figures show a region at a depth discontinuity, and some of the con­
straint lines from pixels within that region. The black crosses in the upper-right show a 
sequence of estimates at EM iterations. White crosses depict the final the estimates. The 
bottom figures showing ownership probabilities. The bottom-left shows ownership proba­
bilities at each pixel (based on the motion constraint at that pixel). The next two plots shown 
the velocity constraints where intensity depicts ownership (black denotes high ownership 
probability). The bottom-right plot shows constraint lines owned by the outlier model. 
(After [435]) 

Future research is needed to move beyond brightness constancy and smooth­
ness. Detecting and tracking occlusion boundaries should greatly improve optical 
flow estimation. Similarly, prior knowledge concerning the expected form of 
brightness variations (e.g., given knowledge of scene geometry, lighting, or re­
flectance) can dramatically improve optical flow estimation. Brightness constancy 
is especially problematic over long image sequences where one must expect 
the appearance of image patches to change significantly. One promising area 
for future research is the joint estimation appearance and motion, with suitable 
dynamics for both quantities. 



Chapterl6 

From Bayes to PDEs in Image 
Warping 

M. Nielsen and B. Markussen 

Abstract 
In many disciplines of computer vision, such as stereo vision, flow com­
putation, medical image registration, the essential computational problem is 
the geometrical alignment of images. In this chapter we describe how such 
an alignment may be obtained as statistical optimal through solving a par­
tial differential equation (PDE) in the matching function. We treat different 
choices of matching criteria such as minimal square difference, maximal cor­
relation, maximal mutual information, and several smoothness criteria. All 
are treated from a Bayes point of view leading to a functional minimization 
problem solved through an Euler-Lagrange formulation as the solution to a 
PDE. We try in this chapter to collect the most used methodologies and draw 
conclusions on their properties and similarities. 

16.1 Motivation and problem statement 

In many disciples in computer vision, the essential ill-posed problem is that of 
matching two images. The same problem has been given different names depen­
dent on the context: matching, correspondence, flow, registration, warping, etc. 
No matter the name, the problem is to establish pairs (a;i,x*2) of points so that 
h (^i) ~ ^2(^2). Here the notation ^ has been used for "corresponds to". At this 
point, we will denote the correspondence with a function W, disregarding prob­
lems in relation to whether it has unique values or whether it is defined in every 
point: 

X2 = W{xi) : Hi 1-̂  ^2-

Using projection images / i , /2 as in stereo vision [653], optic flow computa­
tion [409], and x-ray imaging, a unique correspondence will not in general exist. 
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This is a serious problem of also practical importance since occlusion often ap­
pears in real world examples. However, this is due to the projection and not the 
fundamental problem of establishing a geometrical alignment. In this chapter, we 
will not deal with the problems originating from the projection (such as occlu­
sions) leading to multi-valued or locally undefined functions W. We will limit 
ourselves to mappings originating from physical actions such as deformations, 
articulations, or viscous flows of objects. That is, taking the domains Hi and ^2 
as the A/^-dimensional Euclidean space IR^, 

X2==w{xi), xi eJR^,x2 eJR^.W en, 
where ?î  is a set of admissible warps. We will later define the set of admissible 
warps as the set of diffeomorphisms V: differentiable mappings where the inverse 
exists and also is differentiable. This setup is valid for all physical, non-projected, 
imaging situations of evolving objects. It also applies to the situation of mapping 
images of different objects of identical topology. 

16.2 Admissible warps 

The set 7i of admissible warps must from a physics/engineering point of view ful­
fill some basic requirements. Nevertheless, often for mathematical convenience 
and guaranteing unique solutions, these properties may be violated. In the follow­
ing we list the required properties, the most popular choices of sets of admissible 
warps, and shortly list their pros and cons. 

The required properties of admissible warps are: 

Realizability A smooth development over time must be able to produce the warp. 
Otherwise an underlying physical process would not be reaHzable. 

Preservation An admissible warp must be defined for all points in the source 
image. Otherwise points would disappear and have no image. 

Smoothness The admissible warp must be continuous and differentiable. Oth­
erwise non-physical situations like breaking objects under zero-viscosity 
would arise. 

Composition The warp of a warp must be an admissible warp. Otherwise, 
warped images would not be images themselves, since they could not 
necessarily be warped again. 

Invertibility The inverse of an admissible warp must also be an admissible warp. 
Otherwise, we could match A to B, but not necessarily B to A. Hence, all 
the above properties must also be fulfilled for the inverse warp. 

Examples of these are shown in Figure 16.1. 
The most general class of warps fulfilling all the above criteria is the set of 

positive diffeomorphisms V^: non-reflective differentiable mappings where the 
inverse exists and also is differentiable. They form a group so that the difference 
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W(x) 

Figure 16.1. Example of a one dimensional matching function W(x) 
preservation is violated, a b the smoothness, and at c the invertibility. 

IR t-̂  IR. At a the 

of any two warps exists: W — W20 W^^ takes Wi into W2. A non-reflective dif-
feomorphism W — {wn}n<N has positive Jacoby determinant with the Jacobean 
given by J{W) = {dwn/dxm}^^^^j^- In 2D this reads 

W 
u[x,y) 
v{x,y) 

where Vx, y G IR^ : det( J (W)) = u^Vy — UyVx > 0. 

The group of diffeomorphisms is not always very easy to handle. Hence, other 
sets of admissible warps often are employed in practical algorithms. From a math­
ematical point of view, the two most "nasty" properties of diffeomorphisms are: 
- It is not possible to decide whether a mapping is diffeomorphic from the indi­
vidual coordinate functions. 
- One cannot span all diffeomorphisms in a neighborhood by exponentiating the 
local afline connection. That is, one cannot view the group as a manifold. 
The first nasty property makes it algorithmically necessary to treat all coordinate 
functions at the same time. One cannot decouple their computation and prove 
properties in simple seperable form. The second nasty property makes it compH-
cated (though not impossible) to define sensible norms on diffeomorphisms since 
"geodesies will not be straight", to put it simply. Norms are often a very necessary 
ingredient in identifying warps, as one wishes to find the "smallest" warp fulling 
some data constraints. 

The two nasty properties of diffeomorphism have lead to alternative choices of 
admissible sets of warps. The most popular choice has been (here stated in 2D): 

v{x,y) 
where u,v G S^. 

Here, S^ is a Sobolev space of order n (all derivatives up to order n exist and 
are square integrable). We will denote this space of admissible warps Sn- The 
popularity of Sn mainly comes from the fact that the Sobolev spaces are normed 
regular spaces, and the norm on Sn may simply be computed as the sum of the 
norm of the coordinate functions {u, v). Using S^ (employing the L2-norm) fur-
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Figure 16.2. Two images of large deformations: Left is the maximum likelihood diffeomorphic warp, 
right is a Sobolev warp. The latter shows a folding and is not invertible. 

therm ore makes it possible to prove uniqueness and existence of solutions: the 
theory from Tikhonov regularization [797] of ill-posed problems carries over. 

The price to pay for this mathematical and algorithmic convenience is that some 
of the above properties are violated. The definition on the fiall domain, continuity 
and differentiability (up to order n) of the warp, and the smooth development are 
fulfilled. While, we cannot any longer guarantee an inverse warp and composition 
of warps. 

For small deformations, there may not be huge difference, from a practical point 
of view, of the warps minimizing any Sobolev norm or one minimizing a norm 
on diffeomorphisms. Nevertheless, it is evident from theory, and also practical 
experiments, that for larger deformations, the Sobolev norm minimizing warps 
suffer also from practical deficiencies such as foldings making several points map 
to the same point. 

Lately, also the space of functions of bounded variation 5F-space has been em­
ployed as warp functions. These also (in a zero-measure set) violate the continuity 
and differentiability criterion. They have mainly been employed to overcome 
problems due to a projective transformation (such as occlusion), and they will 
not be treated further here, but show nice practical properties in e.g. the optic flow 
setting [122]. 

16.3 Bayesian formulation of warp estimation 

The problem of identifying a warp given a pair of images is ill-posed since a 
unique solution in general does not exist. Hence, an inference is necessary and a 
mere deduction is not viable. We employ statistical inference. The optimal warp 
may be identified on basis of the posterior: 

Many different solution may be singled out from the posterior: the mean, gen-
erahzed median, local modes, or global modes. We employ the MAP (Maximum 
A Posteriori) scheme being the minimum risk estimator when all wrong solutions 
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are considered equally bad. That is, we wish to find the warp that maximizes the 
posterior. 

We then ignore the evidence p{Ii .h) in our quest for W, since it does not de­
pend on W. Notice, if you wish to probe the posterior as a normalized probability 
density function computing e.g. mean and/or moments, normalization may easi­
est be obtained through explicit normalization by / 'p{W\Ii, l2)^W. Our optimal 
estimate reads: 

VF* := argmaxp(VK|/i, 12) — argmin ( - Iogp(/i, /2IVK) — logp(M^)). 
wen wen 

In which the first term is denoted the log-likelihood or matching or data term and 
the second term is denoted the log-prior or smoothness or regularization term. 

Normally, we will assume a Markov property of both the likelihood and the 
prior so that the marginal distribution in a point only depends on a spatial neigh­
borhood M of this point, and so that the total distribution may be written as 
independent marginal distributions. Hence, 

ly* - argmin / (Pd{W{x' e Afix))) + Ps(W{x' G Af{x)))) dx. 
Wen J ^ ^ 

In the discrete setting, this translation using the Markov property is straightfor­
ward. In the continuous setting however, this is not the case since the distribution 
is a product integral and the space of warps on the finite neighborhood is still in­
finite dimensional. Without treating potential problems arising from this, we will 
simply assume that in the continuous domain we may write 

P{W{x' eJ\f{x))) ^F{W{x),DW{x)), 

where D is an appropriate finite list of differential operators. In the discrete setting 
this is straightforward using appropriate finite difference operators. 

In this way the functional ^ [ ly] - ^d[W]-f-^5[Vl^] -= - logp(W|/ i , 12) reads 

E[W]= f Fd{W{x),DW{x))dx-\- f Fs{W{x),DW{x)) dx. 

As a conclusion, we have now cast the MAP estimation problem into a 
functional minimization problem that may be solved by a gradient descend 
algorithm: 

W{x,0) = Wo{x), 

dW{x,t) _ SE (16-1) 

di ''Jw' 
where WQ is some initial guess, and typically the identity WQ (X) = x. 

In the following we will examine different likelihood and prior terms, and to 
the degree the result is known to us, comment on problems regarding existence 
and uniqueness of the solution. In some special simple cases direct solution of the 
Euler Lagrange equation 6E/SW = 0 may even be possible. 
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16.4 Likelihood: Matching criteria 

In this section we go through some of the most commonly adopted match­
ing criteria, their statistical justifications, and when appropriate their variational 
formulation to plug into the gradient descend PDE (Eq.16.1). 

Landmarks. We will start with the simplest possible scenario where a number of 
landmarks Xi and their match yi are known a priori: 

p{IiJ2\W) = l[S{y,-W{xi)). 
i 

This will normally be solved as a constraint minimization problem: 

W - argmin Es[W] 
wen•.yi=w{x^) 

either using Lagrange multipliers or a gradient projection algorithm [681]. For 
simple smoothness terms this may even be solved analytically [102]. This is the 
case fovH = S (see below). 

Given imprecise landmark matches the likelihood reads: 

p{h,h\W):=l[G^,{yi-W{xi)), 
i 

here using additive Gaussian noise of standard deviations cr̂ . In this case the 
minus log-likehhood is quadratic in W\ 

Like for the precise landmark matches this may be solved analytically for simple 
smoothness terms. 

The situation where the landmarks are not matched up in pairs so that yp{i) — 
W{xi) is the quantity for minimization and the minimization must also be per­
formed over the permutation function j = P{i) is not tractable to solve by 
gradient descend approaches, but must be combined with algorithms for solving 
the "optimal marriage problem" [349]. 

Image noise models. A more interesting class of Hkelihood terms does not require 
an identification of landmarks, but operate directly on the image functions. The 
simplest here is to assume a model of i.i.d. Gaussian additive noise: hix) = 
Ii{W{x)) + r}{^)' This leads to a data term 

E,[W] = ^J{I,(x)-h{W{x)))'dx 

=> 
SEg ^ fl2ix)-h{W{x))^ 

sw 
. j hi±,mmyj,^wix)),x. 
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Of course other i.i.d. noise models than Gaussian can be assumed leading to the 
more general form 

Ed[W] - j ct>{h{x)-h{W{x)))dx 

^ = l<P'{h{x)-h{W{x)))Vh{W{x))dx. 

Furthermore the noise model may be generalized to stationary noise process, 
e.g. the Brownian noise model, where the local increments are i.i.d. Gaussian: 

Ed[W] = ±^l\V{h{x)-h{Wix))rdx 

This term has, to our best knowledge, never been employed in practice, but would 
potentially allow for drift in intensities like in MR images with a smooth bias 
fields uncorrelated between the two images. 

Intensity transforms. Another model directly taking into account that image 
intensities are not the result of the same formation process but may arise from 
different modalities is the correlation ratio: 

J ^/hm^VhW 
The probabiHstic interpretation on this is very similar to the additive Gaussian 
noise process above, but with the additional degree of freedom that images may be 
multiplied with a free parameter so that (a/i — 6/2) is the term for minimization. 
Here appropriate constraint on a, b must be added, so that ab = 1, to avoid the 
trivial solution a = b = 0. Formal derivation of this leads to the correlation ratio 
being proportional to the log-likelihood. The variation of this with respect to the 
warp is computed by Hermosillo et al. [397]. 

The final data term we will present is the mutual information criterion [652]. 
This is not simplest derived from the Bayes point of view, but from the Minimum 
Description Length principle [676]. In general, Bayes and MDL inference has 
been shown to be identical and merely a reformulation of each other [430]. Some 
problems may easier be formulated in the Bayes language, while others are most 
easily formulated using the MDL language. Mutual information belongs to the 
latter category. The basic idea here is to find the warp so that I2 may be commu­
nicated in the shortest message possible to a person already knowing / i . Using 
Shannon's formalism of J (x) = —\ogp{x), where X is the information shows 
that this does not change anything with respect to handling the prior term. The 
total object of minimization is the sum of the code length of the likelihood and 
the prior: J — X ĵ̂ ta "̂  -^prior* ^^^ ^^^® length of/2 knowing Ii{W{x)) may be 
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written as a (neglectable) constant minus the mutual information of h and h so 
that 

Ed[W] = - [pwiiui2) log ^ ^ . ^ ^ ; - ; ^ \ d n d i 2 , 

where zi, 22 are the intensities in image / i and /2 respectively and p{i) is the dis­
tribution of intensities in the image. p{ii, 22) is the joint distribution of intensities 
in corresponding positions. Hence, it depends on the warping o f / i . In this case 
we find [397]: 

^ = / f - ^ ^ ^ ^ # ^ - 4 T % 7 ^ ) ^̂ (̂̂ (-)) d-
SW J \pw{^i^^2) dh p{^\) dh J 

This concludes our journey through likelihood terms. A final comment is that 
all these are of course constructed models relying on the image formation pro­
cess. In any situation, the choice of model comprises a compromise between the 
modeling capabiHties and the model complexity. The models presented here are, 
to our opinion, gradually more complex allowing for more loose definitions of 
"correspondence". 

16.5 Prior: Smoothness criteria 

All the likelihood terms above are not sufficient to ensure a regular warp. The prior 
term ensures this, when regular warps are more probable than irregular warps. In 
this section we look at a number of priors and the properties they induce on the 
warps. In order to make a prior on warps ensuring the above mentioned properties, 
rather complex constructions must be used. Before going into such constructions, 
we handle the simplest and most popular cases. Some of these also have the nice 
property that they ensure the existence of solutions. 

Sobolev norms. The most simple construction is a Brownian motion model for 
the coordinate functions so that 

Es{W) - j 11̂ (̂ )̂111̂ ^ 
2o-2 

6E^ _ f AW{x) 
SW ~ I- dx, 

where J is the Jacobean and A denotes the coordinate-wise Laplacean. This 
Brownian motion assumptions hence leads to a first order Sobolev norm 5'̂  induc­
ing a gradient descend which is the heat equation in the coordinate fiinctions, and 
thereby fulfill the realizability, preservation, and smoothness, but not necessarily 
the composition and invertibility criteria. We may denote this warp diffusion. It 
has been employed for simplifying 3D shape correspondences in the geometry-
constrained diffusion [26], and in the optic flow setting in the original work by 
Horn and Schunck [409]. 



From Bayes to PDEs in Image Warping 267 

Next step of complication is to use the local second order structure for a 
Gaussian model to construct the prior. In this case 

EsiW) = j \\lr{H\W{Tm? 

5Es f AAW(x) ^ 

where H is the component-wise Hessian and Tr is the component-wise trace. In 
2D with W — {u,v), this reads 

This is also denoted the Thin-Plate energy as Es compares to the bending energy 
of a thin plate [102]. This is simply the second order Sobolev norm ^ l - Since it 
does not depend on the first order structure, it is invariant to affine transformations 
of any of the source or destination images [348]. Furthermore, it remains the nice 
existence properties of the Sobolev norm regularizers, but still does not in general 
lead to invertible warps. 

For the Sobolev norms it is in general possible to solve the Euler-Lagrange 
equation analytically by eigenfunction expansions. Especially in the exact land­
mark matching scenario this leads to very simple schemes just involving the 
Inversion of an NM x NM matrix where M is the number of landmarks and 
N the dimensionahty of the warp domain [102]. 

It has also been proved for more complex likelihood terms such as image 
difference, correlation ratio, and mutual Information that the Solution exists [397]. 

Diffeomorphic warps. We could now continue to Sobolev norms of even higher 
Order. However, they have never proved their value in practice, and may mainly 
be Seen as an exercise in symbol manipulation. Instead we tum to the construc-
tion of a sensible prior on the space of diffeomorphisms. This is a little more 
complex than the above quadratic separable energies that lead to simple separable 
linear PDEs in the warp. On the other hand, the motivation is to obtain prov-
able invertible warps, that may even be constructed source-destination Symmetrie 
[600]. 

Above, we used Brownian motion models in the coordinate function to con­
struct a prior. In the warp setting we may make another Brownian motion 
construction more natural for warps [601]. Assume a warp W is constructed as 
the composition of H small warps W^ = W^ ^: 

W = WHO-"OW2OWI= Yl °^^-
h<H 

Furthermore, assume that these warps are statistically independent. In this case 
such a sequence of warps may be considered a Brownian motion in the Space 
of diffeomorphisms. If we only look at the hrst order structure J{W{xh)) in a 
point Xh foUowing along the warps so that x^ — Wh{xh-i) we find by chain rule 
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Figure 16.3. The independent action of the parameters on a unit Square. 

differentiation: 

^(^(^o)) - n j{^h[xK-x)) 
h<H 

Assuming Statistical independence and finite variance of the individual entries in 
the Jacobians lead to a unique Solution for the distribution p>i,6 (J) only dependent 
on the infinitesimal mean and variance 

6 = lim HmQm{J(Wl^^)-l), A= lim //var(J(Ty^^O)-

The exact probability density function is a rather complicated entity and is to our 
knowledge only known exphcitly in dimension N = 2, see [427]. In this case it 
for 6 ^ 0 and A = a"^! can be written as 

p^.j^o{J) = G,{S)giF,9), 

where Ga is the Gaussian distribution with Standard deviation a and S, F, 0 are 
the local scaling, skew, and rotation respectively: 

Scaling S = log(det( J(W))) 

Skewness F = 
2 det{J{W)) pmwi 

Rotation 6 = arctan ni2 -J2i\ 

The distribution may be approximated very well by the foUowing expression 
independent in the parameters [601]: 

p , . , , o ( J ) « G < , ( S ) G , / ^ ( ö ) e - ^ / ^ 
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Furthermore assuming spatial independence of the Jacobeans of the warps leads 
to the following energy and its Variation: 

{u/\ 
[n ) 

SEs 
6W 

=^ 

=: 

52 ^ 26>2 4- 2aF 

2(j2 

1 2logD-2cTF ÖD 1 ö\\J\\l 

(j2 D JW'^'D ÖW 

where J is the Jacoby matrix of W and D — det( J ) . 
This smoothness term provably leads to source-destination Symmetrie (and also 

thereby also invertible) Solutions [600]. It fuliills all the above mentioned prop-
erties, but is more complicated to handle than the regularizers based on Sobolev 
norms as they lead to Hnear terms in the PDEs. Furthermore, existence of the 
Solution still remains to be proved on the continuous domain. 

The Solution above is not the only one fulfilling all the properties. Any 
smoothness term on the foUov îng form will ensure this: 

Fs{W) - Al f{S^) + A2 9{F) + A3 h{e^) 

where f,g,h are differentiable monotonically increasing functions. Especially the 
cases (Al, A2, A3) = (1,0,0) leads to nearly incompressible (area preserving) 
warps in the landmark matching cases, whereas (Ai, A2, A3) = (0,1,0) leads to 
nearly conformal (angle preserving) mappings. 

16.6 Warp time and Computing time 

The realizability requirement on admissible warps implicitly assumes the exis­
tence of a physical mechanism producing the warp. Suppose this physical process 
evolves over the time interval [0, T]. At time zero we have the initial image / i and 
at time T we have the final image I2. Similarly, the warp at time zero is simply 
the identity mapping Wo{x) — x and the warp WT at time T is the warp between 
the initial and final image. At other points of time t intermediate warps Wt exist. 
We refer to the time variable t as the warping time, which is to be interpreted as 
a physical time. For any two points of time 5, ̂  the physical mechanism produces 
the warp Wg^t = Wt o W~^ from time s to time t. The collection of warps Wg^t 
must satisfy the following flow properties 

Ws,s{^)=X, Ws,t = Wu,toWs^u^ 

The first property states that there is no physical action at a Single time point. The 
second property states that the evolution from time s to time t can be realized 
by composing the evolution from time s to time u with the evolution from time 
u to time t. The Brownian motion in the space of diffeomorphisms discussed in 
Section 16.5 uses warping time. Here the warp Wf^ can be considered as the 
warp from time {h — l)T/H to time hT/H. The Statistical assumptions leading 
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to the Brownian prior then State that the flow of warps is temporal homogeneous 
and stochastically independent over disjoint time intervals. 

The introduction of the warping time can be impracticable for implementations 
since it requires the estimation of the entire flow of warps Wt instead of the final 
warp W =^ WT- If only the final warp is needed, then it can be beneficial to 
neglect the warping time. In this formulation an energy fiinctional Es{W) of the 
warp is defined, e.g. implicitly using the warping time. The corresponding MAP 
estimation is often performed using gradient descend, see (Eq.16.1), over some 
artificial time variable t. We refer to such a time variable as the Computing time. 

16.7 From fluid registration to diffeomorphic 
minimizers 

A classical PDE approach to Image warping still left undiscussed is fluid registra­
tion. Let J^ be some partial differential operator, e.g. the linear elasticity operator 
with Lame constants /i and A from the Navier-Stokes equation 

^v = j^\/'^v 4- (A -f M ) V ( V • v). 

The velocity field v{x) is given by the PDE J/fv = b with appropriate boundary 
conditions, see [196]. Here the driving force b is given by the direction minimizing 
the matching criteria. The fluid registration is given by the evolution 

dWt _ SEdjW)^ 

dt " ' ' * ' ' " 6W '^=^** 

Over the infinitesimal time increment dt the warp is evolved by V t̂+dt — (^ + 
vtdt o Wf^) o Wt. This composition of warps ensures the admissibihty at every 
point of time. As time increases the matching criteria Ed{Wt) is minimized. If 
we define the energy of the velocity field by / W^vW^ dx, then the total warping 
energy is given by the squared length of the gradient descend path 

Albeit linked to physics via the Navier-Stokes equation the temporal variable t 
in the fluid registration method is a Computing time. This is due to the fact that 
the driving force at time t depends on the image I2 at the infinite future and 
hence is non-physical. To reformulate the fluid registration method in a Bayesian 
framework and Interpret the temporal variable as warping time the energy should 
be decoupled from the matching criteria. For this we define the velocity field on 
its own right, now over a finite time horizon v{t,x)\ [0, T] x IR^ —> IR^. The 
warp W[x) = WT{X) is connected to the velocity field via the transport equation 

Wt{x) = x+ [ v{s,Ws{x))ds 
Jo 
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and the corresponding smoothness criteria is defined via the energy 

Es{W) = [ [ \\^v{t,x)fdxdt, 

See [442]. This functional may be interpreted as an iterated Sobolev norm. If 
V* denotes the MAP Solution to the velocity field, then the corresponding warp 
VK* = W^ is given by 

W;{x)=^x+ f v*{s,W;{x))ds. 
Jo 

The Bayesian formulation of the fluid registration method is closely Hnked to 
the Brownian prior described at the end of Section 16.5. The Statistical assump-
tions leading to the Brownian prior imply, see [495], that there exist coefficient 
functions 6, /^ : IR^ —> JR^ such that the flow of warps is the Solution to the 
stochastic differential equation 

Wt(x) =x-^ / h{Ws{x))ds-^y^ h{Ws{x))dBk{s). 
/ c = l 

Here the Bk{sys are stochastically independent Brownian motions and the inte­
gral is the so-called Itö stochastic integral. Let the function a{x, y) be defined by 
a{x,y) — Y^=\ fk{x) fkiuY' If the functions b{x) = b and a{x,x) = A are 
constant, then the distribution of the Jacobean J{WT) exactly equals the distri-
bution PA,b{J) discussed above. Instead of using the Jacobeans it is possible to 
do the Bayesian analysis directly on the Brownian motions B^, see [545]. More-
over, if the covariance function a{x,y) is the Greens function for the Square of 
the partial differential operator J^, i.e. ^*J^a(.T, y) — Sx=y, then the MAP warp 
in the fluid registration formulation equals the MAP warp in the Brownian prior 
formulation. This was proved explicitly for the landmark matching problem in 
[545]. 

16.8 Discussion and open problems 

Above we have presented the warp-estimation process in the Bayes framework 
leading to PDEs as gradient descend algorithms in the minus log posterior. For all 
likelihood or data terms existence of a Solution to the PDE has been proved using 
a Sobolev norm regularizer on the warp. 

We have presented such Sobolev norm regularizers. Among which the second 
Order "thin-plate bending energy" is one of the most populär choices in biomed-
ical image registration. We have argued that the Sobolev norm regularizers has 
a deficiency in fulfilling the required property of invertibility. As a remedy we 
have made the connection of iterated Sobolev norms to more complex regulariz­
ers based on norms on diffeomorphisms. Basically, this indicates that all existence 
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results may carry over to these more theoretically satisfactory albeit more com-
plex norms. Nevertheless, from a formal point of view, many open problems still 
exists: 

• Are iterated Sobolev norms formally identical to the Brownian warps? 

• Does the more complex diffeomorphic norms guarantee existence of 
Solution to the Euler-Lagrange equation? 

• Can efficient algorithms for the diffeomorphic norm minimizers be con-
structed? 

• Can a more formal connection between fluid flows and Brownian warps be 
established? 

• How does Scale arise in the representations? Can we carry over knowledge 
from weakly turbulent flows? 

These are open problems of more theoretical nature. The final and maybe most 
important challenge is to characterize the Solution implied by the different PDEs 
in Order to make it possible to make qualified decision of which methodology to 
apply in which practical setting. 



ChapterlT 

Image Alignment and Stitching 

R. Szeliski 

Abstract 
Stitching multiple images together to create beautiful high-resolution 

panoramas is one of the most populär consumer applications of image 
registration and blending. In this chapter, I review the motion models (ge-
ometric transformations) that underlie panoramic image stitching, discuss 
direct intensity-based and feature-based registration algorithms, and present 
global and local alignment techniques needed to establish high-accuracy 
correspondences between overlapping images. I then discuss various com-
positing options, including multi-band and gradient-domain blending, as 
well as techniques for removing blur and ghosted images. The resulting tech­
niques can be used to create high-quality panoramas for static or Interactive 
viewing. 

17.1 Introduction 

Algorithms for aligning images and stitching them into seamless photo-mosaics 
are among the oldest and most widely used in Computer vision. Image stitching al­
gorithms have been used for decades to create the high-resolution photo-mosaics 
used to produce digital maps and satellite photos [570]. Frame-rate image align­
ment is used in every Camcorder that has an image stabilization feature. Image 
stitching algorithms come "out of the box" with today's digital cameras and can 
be used to create beautiful high-resolution panoramas. 

In film photography, special cameras were developed at the turn of the Cen­
tury to take wide-angle panoramas, often by exposing the film through a vertical 
slit as the camera rotated on its axis [559]. In the mid-1990s, image align­
ment techniques started being applied to the construction of wide-angle seamless 
panoramas from regulär hand-held cameras [543, 180, 776]. More recent work 
in this area has addressed the need to compute globally consistent alignments 
[781, 709, 739], the removal of "ghosts" due to parallax and object movement 
[570, 248, 739, 825, 7], and dealing v^ith varying exposures [543, 825, 7]. (A 
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coUection of some of these papers can be found in [74].) These techniques have 
spawned a large number of commercial stitching products [180, 710]. 

While most of the above techniques work by directly minimizing pixel-to-
pixel dissimilarities, a different dass of algorithms works by extracting a sparse 
set offeatures and then matching these to each other [148, 121]. Feature-based 
approaches have the advantage of being more robust against scene movement, 
and are potentially faster. Their biggest advantage, however, is the ability to 
"recognize panoramas", i.e., to automatically discover the adjacency (overlap) 
relationships among an unordered set of Images, which makes them ideally suited 
for fuUy automated stitching of panoramas taken by casual users [121]. 

What, then, are the fundamental algorithms needed for image stitching? First, 
ŵ e must determine the appropriate motion model relating pixel coordinates in one 
image to pixel coordinates in another (Section 17.2). Next, we must somehow 
estimate the correct alignments relating various pairs of images, using either di-
rect pixel-to-pixel comparisons combined with gradient descent ox feature-based 
alignment techniques (Section 17.3). We must also develop algorithm to com-
pute globally consistent alignments from large collections of overlapping photos 
(Section 17.4). Once the alignments have been estimated, we must choose a fi­
nal compositing surface onto which to warp and place all of the aligned images 
(Section 17.5). We also need to seamlessly blend overlapping images, even in 
the presence of parallax, lens distortion, scene motion, and exposure differences 
(Section 17.6). In the last section of this chapter, I discuss additional applications 
of image stitching and open research problems. For a more detailed tutorial on all 
of these components, please consult [778]. 

17.2 Motion models 

Before we can stitch images to create panoramas, we need to establish the math-
ematical relationships that map pixel coordinates from one image to another. A 
variety of such parametric motion models are possible, from simple 2D trans-
forms, to planar perspective models, 3D camera rotations, and non-planar (e.g., 
cylindrical) surfaces [776, 781]. 

Figure 17.1 shows a number of commonly used 2D planar transformations, 
while Table 17.1 Hsts their mathematical form along with their intrinsic dimen-
sionality. The easiest way to think of these is as a set of (potentially restricted) 
3 x 3 matrices operating on 2D homogeneous coordinate vectors, x' — {x\y',l) 
and X — (x,y, 1), s.t. 

x' - Hx, (17.1) 

where ~ denotes equality up to scale and H is one of the 3 x 3 matrices given in 
Table 17.1. 

2D translations are useful for tracking small patches in videos and for com-
pensating for instantaneous camera jitter. This simple two-parameter model is the 
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Figure 17.1. Basic set of 2D planar transformations 

one most commonly associated with Lucas and Kanade's patch tracker [533], 
although, in fact, their paper also describes how to use an affine motion model. 

The three-parameter rotation+translation (also known as 2D rigid hody motion 
or the 2D Euclidean transformation) is useful for modeling in-plane rotations, 
for example when different portions of a larger Image are scanned on a flatbed 
Scanner. 

Scaled rotation, also known as the similarity transform, adds a fourth Isotropie 
Scale Parameter s. This is a good model for a slowly panning and zooming Cam­
era, especially when the camera has a long focal length. The similarity transform 
preserves angles between lines. 

The six parameter affine transform uses a general 2 x 3 matrix (or equivalently, 
a 3 X 3 matrix where the bottom row is [ 0 0 1 ]). It is a good model of 
local deformations induced by more complex transforms, and also models the 3D 
surface foreshortening observed by an Orthographie camera. Affine transforms 
preserve parallelism between lines. 

The most general planar 2D transform is the Qighi-^diXdimQXQX perspective trans­
form or homography denoted by a general 3 x 3 matrix H. The result of 
multiplying Hx must be normalized in order to obtain an inhomogeneous result, 
i.e., 

, hoox + ^012; -^ho2 . , hiox + hiiy + hi2 

h2ox + h2iy + h22 
and y 

h2QX + h2iy + h22 ' 
(17.2) 

Perspective transformations preserve straight lines, and, as we will see shortly, 
are an appropriate model for planes observed under general 3D motion and 3D 
scenes observed under pure camera rotation. 

In 3D, the process of central projection maps 3D coordinates x = {x, y, z) to 
2D coordinates x' — [x', y',1) through ^pinhole at the camera origin onto a 2D 
projection plane a distance / along the z axis, 

x' = f-, y' = ß. (17.3) 
z z 

Perspective projection can also be denoted using an upper-triangulär 3x3 intrinsic 
calibration matrix K that can account for non-square pixels, skew, and a variable 
optic Center location. However, in practice, the simple focal length scaling used 
above provides high-quality results when stitching Images from regulär cameras. 
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Name 

translation 

rigid (Euclidean) 

similarity 

affine 

prqjective 

Matrix 

[ ^ 1 ^ 2 X 3 

[ ^ h ] 2 x 3 

[ ^ ^ 1 * ]2X3 

[ ^ ]2X3 

[ ^ ]3X3 

# D.O.R 

2 

3 

4 

6 

8 

Preserves: 

orientation H 

lengths H 

angles -\ 

parallelism H 

straight lines 

Icon 1 

~D] 
<>\ 

o\ 
Ol 
Ü 

Table 17.1. Hierarchy of 2D coordinate transformations. The 2 x 3 matrices are ex-
tended with a third [0^ 1] row to form a füll 3 x 3 matrix for homogeneous coordinate 
transformations. 

What happens when we take two images of a 3D scene from different camera 
positions and/or orientations? A 3D point p = {X, F, Z, 1) gets mapped to an 
image coordinate XQ through the combination of a 3D rigid-body (Euclidean) 
motion EQ and a perspective projection KQ, 

xo ^ KQEOP = Pop, (17.4) 

where the 3 x 4 matrix Po is often called the camera matrix. If we have a 2D 
point Xo, we can only project it back into a 3D ray in space. However, for a 
planar scene, we have one additional/>/a«e equation, UQ -p -\- do = Q, which we 
can use to augment P Q to obtain P Q , which then allows us to invert the 3D-^2D 
projection. If we then project this point into another image, we obtain 

Xi PlpQ Xo = HIOXQ, (17.5) 

where iiT lo is a general 3 x 3 homography matrix and xi and Xo are 2D homo­
geneous coordinates. This justifies the use of the 8-parameter homography as a 
general aHgnment model for mosaics of planar scenes [543, 776]. 

The more interesting case is when the camera undergoes pure rotation (which 
is equivalent to assuming all points are far from the camera). In this case, we get 
the more restricted 3 x 3 homography 

Hio = KIRIRQ KQ = KIRIQKQ . (17.6) 

In practice, we usually set K^ = diag(//c, fk, 1). Thus, instead of the general 8-
parameter homography relating a pair of images, we get the 3-, 4-, or 5-parameter 
3D rotation motion models corresponding to the cases where the focal length / is 
known, fixed, or variable [781]. Estimating the 3D rotation matrix (and optionally, 
the focal length) associated with each image is intrinsically much more stable than 
estimating a füll 8-d.o.f. homography, which makes this the method of choice for 
large-scale image stitching algorithms [781, 739, 121]. 
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An alternative to using homographies or 3D rotations is to first warp the Images 
into cylindrical coordinates and to then use a pure translational model to align 
them [180]. Unfortunately, this only works if the Images are all taken with a level 
Camera or with a known tilt angle. The equations for mapping between planar and 
cylindrical/spherical coordinates can be found in [781, 778]. 

17.3 Direct and feature-based alignment 

Once we have chosen a suitable motion model to describe the alignment between 
a pair of images, we need to devise some method to estimate its parameters. One 
approach is to shift or warp the images relative to each other and to look at how 
much the pixels agree. Approaches such as these are often called direct methods, 
as opposed to i]\Q feature-based methods described a httle later. 

17.3.1 Direct methods 

To use a direct method, a suitable error metric must first be chosen to compare 
the images. Once this has been established, a suitable search technique must be 
devised. The simplest search technique is to exhaustively try all possible align-
ments, i.e., to do a/w// search. In practice, this may be too slow, so hierarchical 
coarse-tO"fine techniques based on Image pyramids have been developed [75]. Al-
tematively, Fourier transforms can be used to speed up the computation [778]. To 
get sub-pixel precision in the alignment, incremental methods based on a Tay­
lor series expansion of the image function are often used [533]; these can also 
be applied to parametric motion models [533, 75]. Each of these techniques is 
described in more detail in [778] and summarized below. 

The simplest way to estabHsh an aHgnment between two images is to shift one 
image relative to the other. Given a template image IQ{X) sampled at discrete 
pixel locations {xi — (xi.yi)}, we wish to find where it is located in image 
/ i (cc). A least-squares Solution to this problem is to find the minimum of the sum 
ofsquared differences (SSD) function 

i?ssD(«) = Y}^i[xi +u)- loixif = Y^el (17.7) 
i i 

where u = {u,v) is the displacement vector and ê  = h{.^i -\- u) — Io{xi) is 
called the residual error. 

In general, the displacement u can be fractional, so a suitable Interpolation 
function must be applied to image Ii{x). In practice, a bilinear interpolant is 
often used, but bi-cubic Interpolation may yield slightly better results. 

We can make the above error metric more robust to outliers by replacing the 
squared error terms with a robust function p(e^) [764]. We can also model poten-
tial bias andgain variations between the images being compared, and to associate 
spatially varying weights with different pixels, which is a principled way to deal 
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with partial overlap and regions that have been "cut out" from one of the Images 
[43, 778]. The extended version of this chapter [778] also discusses correlation 
(and phase correlation) as an alternative to robust pixel difference matching. 
It also discusses how coarse-to-fine (hierarchical) techniques [75] and Fourier 
transforms can be used to speed up the search for optimal alignment. (Fourier 
transforms unfortunately only work for pure translation and for a very limited set 
of (small-motion) similarity transforms.) 

Incremental refinement 

To obtain better sub-pixel estimates, we can use one of several techniques. One 
possibility is to evaluate several discrete (integer or fractional) values of (n, v) 
around the best value found so far and to interpolate the matching score to find 
an analytic minimum. A more commonly used approach, first proposed by Lucas 
and Kanade [533], is to do gradient descent on the SSD energy function (17.7), 
using a Taylor Series expansion of the image function, 

^LK-ssD(n + Ali) ^ ^ [ J i ( a j . ^ + u)/\u + e,^]^ (17.8) 
i 

where 

Ji[x, + ti) - Vh{xi -Mi) - ( ^ , ä ^ ) ( ^ ^ + ^) (^'7.9) 

is the image gradient at Xi -j- u. 
The above least Squares problem can be minimizing by solving the associated 

normal equations. 

AAw = 6 (17.10) 

where 

A = Y^jf(cc^ + 14)71 (cci + w) and b = — Y ^ e ^ j f (cĉ  + it) (17.11) 
i i 

are called the Hessian and gradient-weighted residual vector, respectively. 
The gradients required for J i {xi -h u) can be evaluated at the same time as the 

image warps required to estimate / i {xi + u), and in fact are often computed as a 
side-product of image Interpolation. If efficiency is a concern, these gradients can 
be replaced by the gradients in the template image, 

Ji{xi^u) ^ Jo(x), (17.12) 

since near the correct alignment, the template and displaced target Images should 
look similar. This has the advantage of allowing the pre-computation of the Hes­
sian and Jacobian Images, which can result in significant computational savings 
[43]. 

Parametric motion 

Many image alignment tasks, for example image stitching with handheld cameras, 
require the use of more sophisticated motion models. Since these models typi-
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cally have more parameters than pure translation, a füll search over the possible 
ränge of values is impractical. Instead, the incremental Lucas-Kanade algorithm 
can be generalized to parametric motion models and used in conjunction with a 
hierarchical search algorithm [533, 75, 43]. 

For parametric motion, instead of using a Single constant translation vector n, 
we use a spatially varying motionfield or correspondence map, x'{x\ p), parame-
terized by a low-dimensional vector p, where x^ can be any of the motion models 
presented in Section 17.2. The parametric incremental motion update rule now 
becomes 

^LK-PMb + A p ) - ^ [ / i ( a : ' ( x i ; p + A p ) ) -/o(cCi)]2 
i 

« J2[Ji{x'i)Ap + ei]\ (17.13) 
i 

where the Jacobian is now 

Ji{xd-~=Vh{x'^^{xi), (17.14) 

i.e., the product of the image gradient V/ i with the Jacobian of correspondence 
field, Jx' = dx' jdp. 

The derivatives required to compute the Jacobian can be derived directly from 
Table 17.1 and are given in [778]. 

The computation of the Hessian and residual vectors for parametric motion can 
be significantly more expansive than for the translational case. For parametric mo­
tion with n Parameters and N pixels, the accumulation of A and h takes 0{n^N) 
Operations [43]. One way to reduce this by a significant amount is to divide the 
image up into smaller sub-blocks (patches) Pj and to only accumulate the simpler 
2 x 2 quantities (17.11) at the pixel level [739, 43, 778]. 

For a complex parametric motion such as a homography, the computation of 
the motion Jacobian becomes comphcated, and may involve a per-pixel division. 
Szeliski and Shum [781] observed that this can be simplified by first warping 
the target image / i according to the current motion estimate x'{x]p) and then 
comparing this warped image against the template I{){x). Baker and Matthews 
[43] call this the forward composiüonal algorithm, since the target image is being 
re-warped, and the final motion estimates are being composed, and also present 
an inverse compositional algorithm that is even more efficient. 

17.3.2 Feature-based registration 

As mentioned earlier, directly matching pixel intensities is just one possible 
approach to image registration. The other major approach is to first extract dis-
imciivQ features from each image, to match individual features to establish a 
global correspondence, and to then estimate the geometric transformation be-
tween the Images. This kind of approach has been used since the early days 
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of Stereo matching and has more recently gained popularity for Image stitching 
applications [148, 121]. 

Schmid et al [712] survey the vast literature on interest point detection and 
perform some experimental comparisons to determine the repeatability of feature 
detectors. They also measure the information content available at each detected 
feature point. Among the techniques they survey, they find that an improved 
Version of the Harris operator works best. 

More recently, feature detectors that are more invariant to scale [532] and 
affine transformations have been proposed. These can be very useful when match­
ing images that have different scales or different aspects (e.g., for 3D object 
recognition). 

After detecting the features (interest points), v ê must match them, i.e., deter­
mine which features come from corresponding locations in different images. In 
some situations, e.g., for video sequences or for stereo pairs that have been rec-
tified, the local motion around each feature point may be mostly translational. In 
this case, the error metrics introduced previously can be used to directly compare 
the intensities in small patches around each feature point. (The comparative study 
by Mikolajczyk and Schmid [569] discussed below uses cross-correlation.) 

If features are being tracked over longer image sequences, their appearance can 
undergo larger changes. In this case, it makes sense to compare appearances using 
an affine motion model. Because the features can appear at different orientations 
or scales, a more view invariant kind of representation must be used. Mikolajczyk 
and Schmid [569] review some recently developed view-invariant local image 
descriptors and experimentally compare their Performance. 

The simplest method to compensate for in-plane rotations is to find a dom­
inant orientation at each feature point location before sampling the patch or 
otherwise Computing the descriptor. Mikolajczyk and Schmid use the direction of 
the average gradient orientation, computed within a small neighborhood of each 
feature point. The descriptor can be made invariant to scale by only selecting 
feature points that are local maxima in scale Space. Among the local descriptors 
that Mikolajczyk and Schmid compared, David Lowe's Scale Invariant Feature 
Transform (SIFT) [532] performed the best. 

The simplest way to find all corresponding feature points in an image pair 
is to compare all features in one image against all features in the other, using 
one the local descriptors described above. Unfortunately, this is quadratic in the 
expected number of features, which makes it impractical for some apphcations. 
More efficient matching algorithms can be devised using different kinds ofindex-
ingschemes, many of which are based on the idea of finding nearest neighbors in 
high-dimensional Spaces. 

Once an initial set of feature correspondences has been computed, we need to 
find a set that is will produce a high-accuracy ahgnment. One possible approach 
is to simply compute a least Squares estimate, or to use a robustified version of 
least Squares. However, in many cases, it is better to first find a good starting set 
of inlier correspondences, i.e., points that are all consistent with some particular 
motion estimate. Two widely used Solution to this problem are RANdom SAmple 
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Consensus (RANSAC) and least median of Squares (LMS) [764]. Both techniques 
Start by selecting a random subset of k correspondences, which is then used to 
compute a motion estimate p. The RANSAC technique then counts the number of 
inliers that are within e of their predicted location. Least median of Squares finds 
the median value of the ||r^|| values. The random selection process is repeated 
S times, and the sample set with largest number of inHers (or with the smallest 
median residual) is kept as the final Solution. 

Geometrie registration 

Once we have computed a set of matched feature point correspondences, we still 
need to estimate the motion parameters p that best register the two images. The 
usual way to do this is to use least Squares, i.e., to minimize the sum of squared 
residuals given by 

ÄLS = E l l ^ ^ l l ' = l l * ^ ( * - P ) - * i l l ' ' (17.15) 
i 

where x[ are the estimated (mapped) locations, and x[ are the sensed (detected) 
feature point locations corresponding to point Xi in the other image. 

Many of the motion models presented in Section 17.2, i.e., translation, simi-
larity, and affine, have a linear relationship between the motion and the unknown 
Parameters p. In this case, a simple Hnear regression (least Squares) using normal 
equations works well. 

The above least Squares formulation assumes that all feature points are matched 
with the same accuracy. This is often not the case, since certain points may fall 
in more textured regions than others. If we associate a variance estimate af with 
each correspondence, we can minimize weighted least Squares instead, 

£;wLS = I ] ^ - ' | | n | p . (17.16) 
i 

As discussed in [778], a covariance estimate for patch-based matching can be ob-
tained by multiplying the inverse of the Hessian with the per-pixel noise estimate. 
Weighting each squared residual by the inverse covariance E~^ = a~^Ai (which 
is called the Information matrix), we obtain 

iJcwLS = X ; | | r , | |^- . = ^ r f S - V i = ^ c r - ^ f A, r , , (17.17) 
i i i 

where Ai is thopatch Hessian. 
If there are outliers among the feature-based correspondences, it is better to use 

a robust version of least Squares, even if an initial RANSAC or MLS stage has 
been used to select plausible inliers. The robust least Squares cost metric is then 

EnLs{u) = J2p{\\ri\\^-.). (17.18) 
i 

For motion models that are not linear in the motion parameters, non-linear least 
Squares must be used instead. Deriving the Jacobian of each residual equation 
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with respect to the motion parameters is relatively straightforward, once a suitable 
parameterization has been chosen [778]. 

17.3.3 Direct vs. feature-based 

Given that there are these two alternative approaches to aligning Images, which is 
preferable? 

My original work in image stitching was firmly in the direct (image-based) 
camp [776, 781, 739]. Early feature-based methods seemed to get confused in 
regions that were either too textured or not textured enough. The features would 
often be distributed unevenly over the images, thereby failing to match image 
pairs that should have been ahgned. Furthermore, estabhshing correspondences 
relied on simple cross-correlation between patches surrounding the feature points, 
which did not work well when the images were rotated or had foreshortening due 
to homographies. 

Today, feature detection and matching schemes are remarkably robust and can 
even be used for known object recognition from widely separated views [532]. Be-
cause they operate in scale-space and use a dominant orientation (or orientation 
invariant descriptors), they can match images that differ in scale, orientation, and 
even foreshortening. My own recent experience is that if the features are well dis­
tributed over the image and the descriptors reasonably designed for repeatability, 
enough correspondences to permit image stitching can usually be found. 

The other major reason I used to prefer direct methods was that they make op­
timal use of the Information available in image alignment, since they measure the 
contribution oievery pixel in the image. Furthermore, assuming a Gaussian noise 
model (or a robustified version of it), they properly weight the contribution of dif-
ferent pixels, e.g., by emphasizing the contribution of high-gradient pixels. (See 
Baker et al [43], who suggest that adding even more weight at strong gradients is 
preferable because of noise in the gradient estimates.) 

The biggest disadvantage of direct techniques is that they have a limited ränge 
of convergence. Even though hierarchical (coarse-to-fine) techniques can help, it 
is hard to use more than two or three levels of a pyramid before important details 
Start get blurred. For matching sequential frames in a video, the direct approach 
can usually be made to work. However, for matching partially overlapping images 
in photo-based panoramas, they fail too often to be usefiil. 

Is there no röle then for direct registration? I believe there is. Once a pair of im­
ages has been aligned with a feature-based approach, we can warp the two images 
to a common reference frame and re-compute a more accurate correspondence us-
ing patch-based alignment. Notice how there is a close correspondence between 
the patch-based approximation to direct alignment and the inverse covariance 
weighted feature-based least Squares error metric (17.17). 

In fact, if we divide the template images up into patches and place an imaginary 
"feature point" at the center of each patch, the two approaches retum exactly the 
same answer (assuming that the correct correspondences are found in each case). 
However, for this approach to succeed, we still have to deal with "outHers", i.e.. 
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regions that do not fit the selected motion model due to either parallax or moving 
objects. While a feature-based approach may make it somewhat easier to reason 
about outliers (features can be classified as inliers or outliers), the patch-based 
approach, since it establishes correspondences more densely, is potentially more 
useful for removing local mis-registration (parallax). 

17.4 Global registration 

So far, I have discussed how to register pairs of images using both direct and 
feature-based methods. In most applications, we are given more than a Single pair 
of images to register. The goal is to find a globally consistent set of alignment 
Parameters that minimize the mis-registration between all pairs of images [781, 
739, 709]. In order to do this, we need to extend the pairwise matching criteria to 
a global energy function that involves all of the per-image pose parameters. Once 
we have computed the global alignment, we need to perform local adjustments 
such as parallax removal to reduce double images and blurring due to local mis-
registration. Finally, if we are given an unordered set of images to register, we 
need to discover which images go together to form one or more panoramas. 

17.4.1 Bündle adjustment 

One way to register a large number of images is to add new images to the 
panorama one at a time, aligning the most recent image with the previous ones 
already in the coUection [781], and discovering, if necessary, which images it 
overlaps [709]. In the case of 360° panoramas, accumulated error may lead to the 
presence of a gap (or excessive overlap) between the two ends of the panorama, 
which can be fixed by stretching the alignment of all the images using a process 
called gap closing [781]. However, a better alternative is to simultaneously align 
all the images together using a least Squares framework to evenly distribute any 
mis-registration errors. 

The process of simultaneously adjusting pose parameters for a large collection 
of overlapping images is called bündle adjustment in the photogrammetry Com­
munity [805]. In Computer vision, it was first applied to the general structure from 
motion problem [780], and then later specialized for panoramic image stitching 
[739, 709]. 

In this section, I formulate the problem of global alignment using a feature-
based approach, since this results in a simpler System. An equivalent direct 
approach can be obtained by dividing images into patches and creating a Virtual 
feature correspondence for each one [739]. 

Consider the feature-based alignment problem given in (17.15). For multi-
image aHgnment, instead of having a Single collection of pairwise feature 
correspondences, {(x«, x\)}, we have a collection of n features, with the location 
of the v'th feature point in the jth image denoted by xij and its scalar confi-
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dence (inverse variance) denoted by Cij. Each Image also has some associated 
pose Parameters. 

In this section, I assume that this pose consists of a rotation matrix Rj and a 
focal length fj, although formulations in terms of homographies are also possible 
[781, 709]. The equation mapping a 3D point Xi into a point Xij in frame j can 
be re-written from (17.4-17.6) as 

Xij ~ KjRjXi and Xi ~ R~^K~^Xij, (17.19) 

where Kj = di3,g{fj,fj, 1) is the simplified form of the calibration matrix. The 
motion mapping a point Xij from frame j into a point Xik in frame k is similarly 
given by 

Xik ^ HkjXij =^ KkRkRJ^KJ^Xij. (17.20) 

Given an initial set of {{Rj.fj)} estimates obtained from chaining pairwise 
alignments, how do we refine these estimates? 

One approach is to directly extend the pairwise energy to a multiview 
formulation, 

^all-pairs-2D — 2_^ Z^ CijCik\\Xik{^ij; Rj, fj, Rk, fk) - ^ik\\ , (17.21) 
i jk 

where the Xik function is the predicted location of feature i in frame k given by 
(17.20), Xij is the observed location, and the "2D" in the subscript indicates than 
an image-plane error is being minimized. 

While this approach works well in practice, it suffers from two potential 
disadvantages. First, since a summation is taken over all pairs with correspond-
ing features, features that are observed many times get overweighted in the 
final Solution. Second, the derivatives of Xik w.r.t. the {{Rj,fj)} are a little 
cumbersome. 

An alternative way to formulate the optimization is to use true bündle adjust-
ment, i.e., to solve not only for the pose parameters {{Rj, fj)} but also for the 
3D point positions {xi}, 

^BA-2D = Y^^Cij\\Xij{Xi] Rjjj) -Xijf, (17.22) 
* j 

where Xij {xi] Rj, fj) is given by (17.19). The disadvantage of füll bündle adjust-
ment is that there are more variables to solve for, so both each Iteration and the 
Overall convergence may be slower. However, the computational complexity of 
each linearized Gauss-Newton step can be reduced using sparse matrix techniques 
[780, 739, 805]. 

An alternative formulation is to minimize the error in 3D projected ray 
directions [739], i.e., 

^BA-3D = ^ ^ C i ^ H Ä i ( x i ^ ; H j , / ^ ) -Xi\\^, (17.23) 
i 3 

where Xi{xij\ Rjyfj) is given by the second half of (17.19). 
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However, if we eliminate the 3D rays Xi, we can derive a pairwise energy 
formulated in 3D ray space [739], 

^all-pairs-3D ^ ^Y^CijCik\\Xi{Xij; Rj Jj) ~Xi{Xik]RkJk)f- (17.24) 
i jk 

This results in the simplest set of update equations [739], since the fk can be 
folded into the creation of the homogeneous coordinate vector. Thus, even though 
this formula over-weights features that occur more frequently, it is the method 
used both by Shum and Szehski [739] and in my current feature-based aUgner. 
In Order to reduce the bias towards longer focal lengths, I multiply each residual 
(3D error) by ^/TiJk^ which is similar to projecting the 3D rays into a 'Virtual 
Camera" of intermediate focal length. 

17.4.2 Parallax removal 

Once we have estimated the global orientations and focal lengths of our Cam­
eras, we may find that the Images are still not perfectly aligned, i.e., the resulting 
stitched image looks blurry or ghosted in some places. This may be caused by a 
variety of factors, including unmodeled radial distortion, 3D parallax (failure to 
rotate the camera around its optical center), small scene motions such as waving 
tree branches, and large-scale scene motions such as people moving in and out of 
pictures. 

Each of these problems can be treated with a different approach. Radial dis­
tortion can be estimated using one of several classic calibration techniques. 3D 
parallax can be attacked by doing a f\x\\ 3D bündle adjustment. The 3D positions 
of the matched features points and cameras can then be simultaneously recov-
ered, although this can be significantly more expensive that parallax-free image 
registration. 

When the motion in the scene is very large, i.e., when objects appear and dis-
appear completely, a sensible Solution is to simply select pixels from only one 
image at a time as the source for the final composite [248, 7], as discussed in 
Section 17.6. However, when the motion is reasonably small (on the order of a 
few pixels), general 2-D motion estimation (optic flow) can be used to perform 
an appropriate correction before blending using a process called local alignment 
[739]. This same process can also be used to compensate for radial distortion and 
3D parallax, although it uses a weaker motion model than exphcitly modeling the 
source of error, and may therefore fail more often. 

17.4.3 Recogn izing panoramas 

The final piece needed to perform fully automated image stitching is a technique 
to determine which images actually go together, which Brown and Lowe call rec-
ognizing panoramas [121]. If the user takes images in sequence so that each image 
overlaps its predecessor, bündle adjustment combined with the process of topol-
ogy inference can be used to automatically assemble a panorama [709]. However, 
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Figure 17.2. A set of Images and the panorama discovered in them 

users often jump around when taking panoramas, e.g., they may start a new row 
on top of a previous one, or jump back to take a repeated shot, or create 360° 
panoramas where end-to-end overlaps need to be discovered. Furthermore, the 
ability to automatically discover multiple panoramas taken by a user can be a big 
convenience. 

To recognize panoramas, Brown and Lowe [121] first find all pairwise Image 
overlaps using a feature-based method and then find connected components in the 
overlap graph to "recognize" individual panoramas (Figure 17.2). First, they use 
Lowe's Scale Invariant Feature Transform (SIFT features) [532] followed by near-
est neighbor matching. RANSAC is then used to find a set of inliers, using pairs 
of matches to hypothesize similarity motion estimates. Once pairwise alignments 
have been computed, a global registration (bündle adjustment) stage is used to 
compute a globally consistent alignment for all of the images. Finally, a two-level 
Laplacian pyramid is used to seamlessly blend the images [121]. 

17.5 Choosing a compositing surface 

Once we have registered all of the input images with respect to each other, we 
need to decide how to produce the final stitched (mosaic) Image. This involves 
selecting a final compositing surface, e.g., flat, cylindrical, or spherical. It may 
also involve Computing an optimal reference view to ensure that the scene appears 
to be upright, as described in [778]. 

If only a few images are stitched together, a natural approach is to select one 
of the images as the reference and to then warp all of the other images into the 
reference coordinate System. The resulting composite is called 2iflat panorama, 
since the projection onto the final surface is still a perspective projection, and 
hence straight lines remain straight. 

For larger fields of view, however, we cannot maintain a flat representation 
without excessively stretching pixels near the border of the image. (In practice, 
flat panoramas start to look severely distorted once the field of view exceeds 90° 
or so.) The usual choice for compositing larger panoramas is to use a cylindri-
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cal [180] or spherical [781] projection. In fact, any surface used for environment 
mapping in Computer graphics can be used, including a cube map that represents 
the füll viewing sphere with the six Square faces of a box [781]. 

The choice of parameterization is somewhat application dependent and in-
volves a tradeoff between keeping the local appearance undistorted (e.g., keeping 
straight lines straight) and providing a reasonably uniform sampling of the envi­
ronment. Automatically making this selection and smoothly transitioning between 
representations based on the extent of the panorama is an interesting topic for 
future research. 

17.6 Seam selection and pixel blending 

Once the source pixels have been mapped onto the final composite surface, we 
must decide how to blend them in order to create an attractive looking panorama. 
If all of the Images are in perfect registration and identically exposed, this is an 
easy problem (any pixel combination will do). However, for real images, vis-
ible seams (due to exposure differences), blurring (due to mis-registration), or 
ghosting (due to moving objects) can occur. 

Creating clean, pleasing looking panoramas involves both deciding which pix­
els to use and how to weight or blend them. The distinction between these two 
stages is a little fluid, since per-pixel weighting can be though of as a combination 
of selection and blending. In this section, I discuss spatially varying weighting, 
pixel selection (seam placement), and then more sophisticated blending. 

Feathering and center-weighting 

The simplest way to create a final composite is to simply take an average value at 
each pixel., However, this usually does not work very well, since exposure differ­
ences, mis-registrations, and scene movement are all very visible (Figure 17.3a). 
If rapidly moving objects are the only problem, taking a median filter (which is a 
kind of pixel selection operator) can often be used to remove them [417]. 

A better approach is to weight pixels near the center of the image more heav-
ily and to down-weight pixels near the edges. When an image has some cutout 
regions, down-weighting pixels near the edges of both cutouts and edges is prefer-
able. This can be done by Computing a distance map or grassfire transform, where 
each vahd pixel is tagged with its Euclidean distance to the nearest invalid pixel. 
Weighted averaging with a distance map is often c3\\Qd feathering [781, 825], and 
does a reasonable Job of blending over exposure differences. However, blurring 
and ghosting can still be problems (Figure 17.3b). 

One way to improve feathering is to raise the distance map values to some 
power. The weighted averages then become dominated by the larger values, i.e., 
they act like a p-norm. The resulting composite can often pro vi de a reasonable 
tradeoff between visible exposure differences and blur. 
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Figure 17.3. Final composites computed by a variety of algorithms: (a) average, (b) feath-
ered average, (c) weighted ROD vertex cover with feathering, (d) graph cut seams with 
Poisson blending. Notice how the regulär average cuts off moving people near the edges 
of Images, while the feathered average slowly blends them in. The vertex cover and graph 
cut algorithms produce similar results. 

In the limit as p -^ oo, only the pixel with the maximum distance value 
gets selected, v^hich is equivalent to Computing the Vornoi diagram. The result-
ing composite, v^hile usefUl for artistic guidance and in high-overlap panoramas 
{manifold mosaics) tends to have very hard edges with noticeable seams when the 
exposures vary. 

Optimal seam selection 

Computing the Vornoi diagram is one way to select the seams between regions 
where different Images contribute to the final composite. However, Vornoi images 
totally ignore the local image structure underlying the seam. 

A better approach is to place the seams in regions where the images agree, 
so that transitions from one source to another are not visible. In this way, the 
algorithm avoids "cutting through" moving objects, where a seam would look 
unnatural [248]. For a pair of images, this process can be formulated as a simple 
dynamic program starting from one edge of the overlap region and ending at the 
other [570, 248]. Unfortunately, when multiple images are being composited, the 
dynamic program idea does not readily generalize. 

To overcome this problem, Uyttendaele et al [825] observed that for well-
registered images, moving objects produce the most visible artifacts, namely 
translucent looking ghosts. Their System therefore decides which objects to keep, 
and which ones to erase. First, the algorithm compares all overlapping input image 
pairs to determine regions ofdifference (RODs) where the images disagree. Next, 
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a graph is constructed with the RODs as vertices and edges representing ROD 
pairs that overlap in the final composite. Since the presence of an edge indicates 
an area of disagreement, vertices (regions) must be removed fi^om the final com­
posite until no edge Spans a pair of unremoved vertices. The smallest such set can 
be computed using a Vertex cover algorithm. Since several such Covers may exist, 
a weighted Vertex cover is used instead, where the vertex v^eights are computed 
by summing the feather weights in the ROD. The algorithm therefore prefers re-
moving regions that are near the edge of the image, which reduces the likelihood 
that partially visible objects will appear in the final composite. Once the required 
regions of difference have been removed, the final composite is created using a 
feathered blend (Figure 17.3c). 

A different approach to pixel selection and seam placement was recently pro-
posed by Agarwala et al [7]. Their System computes the label assignment that 
optimizes the sum of two objective functions. The first is a per-pixel image ob-
jective CD that determines which pixels are likely to produce good composites. In 
their System, users can select which pixels to use by "painting" over an image with 
the desired object or appearance. Altematively, automated selection criteria can 
be used, such as maximum likelihood that prefers pixels which occur repeatedly 
(for object removal), or minimum likelihood for objects that occur infrequently 
(for greatest object retention). 

The second term is a seam objective Cs that penalizes differences in labelings 
between adjacent images. For example, the simple color-based seam penalty used 
in [7] measures the color difference between corresponding pixels on both sides 
of the seam. The global energy function that is the sum of the data and seam 
costs can be minimized using a variety of techniques [778]. Agarwala et al. [7] 
use graph cuts, which involves cycling through a set of simpler a-expansion re-
labelings, each of which can be solved with a graph cut (max-flow) polynomial-
time algorithm [113]. 

For the result shown in Figure 17.3d, Agarwala et al. [7] use a large data penalty 
for invalid pixels and 0 for valid pixels. Notice how the seam placement algorithm 
avoids regions of differences, including those that border the image and which 
might result in cut off objects. Graph cuts [7] and vertex cover [825] often pro­
duce similar looking results, although the former is significantly slower since it 
optimizes over all pixels, while the latter is more sensitive to the thresholds used 
to determine regions of difference. 

Laplacian pyramid blending 

Once the seams have been placed and unwanted objects removed, we still need 
to blend the images to compensate for exposure differences and other mis-
alignments. An attractive Solution to this problem was developed by Burt and 
Adelson [139]. Instead of using a Single transition width, a frequency-adaptive 
width is used by creating a band-pass (Laplacian) pyramid and making the transi­
tion widths a function of the pyramid level. First, each warped image is converted 
into a band-pass (Laplacian) pyramid. Next, the masks associated with each 
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source Image are converted into a low-pass (Gaussian) pyramid and used to per­
form a per-level feathered blend of the band-pass Images. Finally, the composite 
Image is reconstructed by interpolating and summing all of the pyramid levels 
(band-pass Images). 

Gradient domain blending 

An alternative approach to multi-band image blending is to perform the Operations 
in the gradient domain. Here, instead of working with the initial color values, the 
image gradients from each source image are copied; in a second pass, an image 
that best matches these gradients is reconstructed [7]. Copying gradients directly 
from the source Images after seam placement is just one approach to gradient 
domain blending. Levin et al [514] examine several different variants on this 
approach, which they call Gradient-domain Image STitching (GIST). The tech-
niques they examine include feathering (blending) the gradients from the source 
Images, as well as using an LI norm in performing the reconstruction of the image 
from the gradient field, rather than using an L2 norm. Their preferred technique is 
the LI optimization of a feathered (blended) cost function on the original image 
gradients (which they call GISTl-^i). While LI optimization using Hnear pro-
gramming can be slow, a faster iterative median-based algorithm in a multigrid 
framework works well in practice. Visual comparisons between their preferred 
approach and what they call optimal seam on the gradients (which is equiva-
lent to Agarwala et al 's approach [7]) show similar results, while significantly 
improving on pyramid blending and feathering algorithms. 

Exposure compensation 

Pyramid and gradient domain blending can do a good job of compensating for 
moderate amounts of exposure differences between images. However, when the 
exposure differences become large, alternative approaches may be necessary. 

Uyttendaele et al [825] iteratively estimate a local correction between each 
source image and a blended composite. First, a block-based quadratic transfer 
function is fit between each source image and an initial feathered composite. Next, 
transfer functions are averaged with their neighbors to get a smoother mapping, 
and per-pixel transfer functions are computed by splining between neighboring 
block values. Once each source image has been smoothly adjusted, a new feath­
ered composite is computed, and the process is be repeated (typically 3 times). 
The results in [825] demonstrate that this does a better job of exposure compen­
sation than simple feathering and can handle local variations in exposure due to 
effects like lens vignetting. 

High dynamic ränge imaging 

A more principled approach is to estimate a Single high dynamic ränge (HDR) 
radiance map from of the differently exposed images [252, 577]. This approach 
assumes that the input images were taken with a fixed camera whose pixel values 
are the result of applying a parameterized radiometric transfer function f{R^p) 
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to scaled radiance values CkR{x). The exposure values Ck are either known (by 
experimental setup, or from a camera's EXIF tags), or are computed as part of 
the Parameter estimation process. After the transfer function has been estimated, 
radiance values from different exposures can be combined to emphasize reliable 
pixels. 

Once a radiance map has been computed, it is usually necessary to display 
it on a lower gamut (i.e., 8-bit) screen or printer. A variety of tone mapping 
techniques have been developed for this purpose, which involve either Comput­
ing spatially varying transfer functions or reducing image gradients to fit the the 
available dynamic ränge. 

Unfortunately, most casually acquired images may not be perfectly registered 
and may contain moving objects. Kang et al. [452] present an algorithm that com-
bines global registration with local motion estimation (optic flow) to accurately 
align the images before blending their radiance estimates. Since the images may 
have widely different exposures, care must be taken v^hen producing the motion 
estimates, which must themselves be checked for consistency to avoid the creation 
of ghosts and object fragments. 

17.7 Extensions and open issues 

While image stitching has now reached a point where it is commonly used in 
consumer photo editing products, there are still a lot of open research problems 
that need to be addressed. 

The first of these is improving the reliability of fully automated stitching. 
Whenever images contain small amounts of overlap, repeated textures, or large 
regions of difference because of moving objects, it becomes increasingly diffi-
cult to disambiguate between accidental and correct alignments. Global reasoning 
about a compatible set of correspondences might be the Solution, as might be 
improvements in robust (partial) feature matching. 

Dealing with motion and parallax is another important area, since pictures are 
often taken with handheld cameras in highly dynamic situations. At some point, 
füll 3D reconstruction with moving object detection and layer extraction may be 
required, which also raises interesting issues in designing quick and easy user 
Interfaces to specify the desired final Output. 

Dealing with images at different resolutions and zoom factors is another in­
teresting area, especially since variable resolution image representations and 
Viewers are not common. A related issue is super-resolution, i.e., enhancing im­
age resolution through the combination of jittered photographs of the same region 
[543, 148]. Unfortunately, because of limitations in optics and motion estimation, 
there seems to be a very limited (< 2x) improvement that can be achieved in 
practice. 

Stitching videos is another area that is likely to grow as more digital cameras 
Start to include the abihty to take videos. Examples of stitching videos to obtain 
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summary panoramas have been around for a while [417,710]. In the future, we are 
likely to see the construction of "live" panoramas that include moving elements 
along with still portions [776]. 

Ultimately, image alignment and stitching will become part of a repertoire 
of Computer vision algorithms used to merge multiple Images (with different 
orientations, exposures, and other attributes) to create enhanced and innovative 
composite pictures and Photographie experiences. 



ChapterlS 

Visual Tracking: A Short Research 
Roadmap 
A. Blake 

Abstract 

A research roadmap to many of the best known, and most used, 
contributions to visual tracking is set out. The scope includes simple ap-
pearance models, active contours, spatiotemporal filtering and briefly points 
to important fürther topics in tracking. 

18.1 Introduction 

Visual tracking is the repeated localisation of instances of a particular object, or 
dass of objects, in successive frames of a video sequence. Video analysis may 
be causal or non-causal, but tracking is usually taken to be an online process, 
and therefore causal with some emphasis on eflficient algorithms. The question of 
automatic initialisation, though sometimes important, is not addressed here. This 
is sensible in that there are plentiflil applications where initialisation is not an 
issue, such as tracking vehicles on a highway, or indoor surveillance, in which 
initialisation can be effected by a simple motion trigger. The aim is to achieve 
location estimates at least as good as independent, exhaustive examinations of 
each frame [402]. Exploitation of object dynamics offers improved computational 
efificiency and more refined motion estimates. Perhaps most important of all, it 
offers extended capability to resolve ambiguity, as with a person in a crowd or a 
leaf on a bush (figure 18.1). 
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1,46 s 7.30s 

Figure 18.1. Tracking in Camouflage. The trail of tracked positions of a mov-
ing leaf, in heavy Camouflage, at two different times in a sequence. FOr details of 
the method see section 18.4. Images reprinted from [94]. For related movies see 
robots.ox.ac.uk/'-'̂ vdg/dynamics.html. 

18.2 Simple appearance models 

18.2.1 Simple patches 

The most basic tracker consists of matching a template patch T(r) , r E T onto 
an Image / ( r under translation [533] by cross correlation. The aim is to minimise 
the misregistration error 

r 6 T 

(18.1) 

and this can be done to subpixel resolution using an estimate of the gradi-
ent g(r) = V/ ( r ) , computed using a suitable filter (such as a gradient of 
Gaussian filter). Then the iterative registration algorithm altemates two steps, to 
convergence: 

1. Newton step on p 

i n 

2. Recompute template offset 

More generally, the dass of transformations can be generalised from translation 
X ^ X + u to a larger dass x —> W^(x) in which 7 are the parameters of, for 
example, an affine transformation or a non-rigid spline mapping [101] — see later 
for more details of these transformations. Taking ji — ß^ -[• Öfi and linearising 
gives 

dW 
/ (r)^T(I^(r , / io)) + (^/i-—VT, (18.2) 
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which can be solved iteratively for jj,, to perform generalised registration [533, 60, 
376]. 

18.2,2 Blobs 

An alternative approach to localising regions is to model only the gross properties 
of a region, modelling it as a "blob" [898], a Gaussian mixture model (GMM) in 
a Joint (r, 7) position and colour Space. Thus a pixel / ( r ) is modelled probabilis-
tically as belonging to a model M with probability p(r, / ( r ) | M) and in a new 
test image, each pixel is evaluated against each of a number of models M G A^. 
The model with the greatest hkelihood is assigned to the pixel. The Cluster of pix-
els with label M is deemed to be the new position of object M, whose moments 
(mean etc.) can be computed to represent the location of object M, and the GMM 
for M can also be updated periodically. 

Recently a Variation on the blob idea, "mean-shift" tracking [216] has been very 
influential because it allows progressive updating of object position without the 
Obligation to visit all pixels of each and every frame. Successive approximations 
to the estimated locations of an object are obtained iteratively as: 

h = 7 ^ X ] r t ( ; ( r ) ^ ( | | r - r i _ i f ) (18.3) 
rGT 

where C — YlreT A/'^(i*)p(||r —rt_i |p), g is the derivative of aparticular kernel 
function used to build spatial density functions, and w{v) is a weight measuring 
the degree of prevalence of the color of pixel r in the template relative to its preva-
lence in the test object. The result, used over an image sequence, is a remarkably 
tenacious tracker (figure 18.2), despite its simplicity. 

Figure 18.2. Mean shift tracking A mean-shift tracker, (here in a particle filter form — 
see later) is used here to trackplayer no 75 in a primitive form ofsport. Image reprinted 
from [640]. 

18.2.3 Background maintenance 

Blobs represent foreground objects as distributions over colour (and Space) but 
modelling a background, assuming it is largely static, is also useflil as a guide 
to what is not part of an object. [592]. Just as blobs model the foreground as a 
mixture, so also modelling background pixels as mixture distributions is useful 
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[691, 757]. If Mo is the background model, then pixels could be tested for their 
likelihood of belonging to the background in general by evaluating p{I \ Mo), 
and high scoring pixels removed from consideration as possible parts of any 
foreground object. What is more powerful still, when the background is static, 
is to model each background pixel individually by collecting statistics of colour 
over time from that pixel, and building a mixture model for p{I \ r, Mo). These 
form typically narrow distributions which make powerful tests for background 
membership. 

Having introduced some simple, though nonetheless very effective forms of 
tracker, the next section looks at some elaborations on the basic theme of matching 
shapes. 

18.3 Active contours 

An active contour is a parameterised curve r(s), 0 < 5 < 1 in the plane that is 
set up to be attracted to features in an image / ( r ) . A detailed account of the devel-
opment and mechanisms of active contours is given elsewhere [94], but here we 
summarise the main types. In section 18.4, explicitly dynamical forms of active 
contour r(5, t), t > 0, attracted to an image sequence I{t), are outlined. It focuses 
on the temporal filtering required to extract Information most effectively over a 
sequence, exploiting fuUy the temporal coherence of the moving scene. This sec­
tion is restricted to the static case and foUows the development of active contours 
from snakes to parametric structures and affine contour models. 

18.3.1 Snakes 

"Snakes" [455] have been one of the most influential ideas in Computer vision. 
They were revolutionary in their time because they directed attention away from 
bottom up edge detection, an enterprise which had become stuck in a rut, towards 
top down, hypothesis driven search for object structures. The main idea is that the 
active contour r{s) is dropped into a potential energy field F( r ) which is itself 
a function of the image intensity landscape. For example F( r ) = — |V/ | would 
generate an attraction of the snake towards high image contrast. An equilibrium 
configuration of the snake satisfies an (Euler-Lagrange) equation 

V "^ external force 
l-

internal forces 

in which internal force parameters can be adjusted to give the curve a tendency 
towards smooth shapes. Such a System can be converted to a numerical scheme, 
for example using finite differences along a fine polygonal approximation to the 
curve r(s), with typically hundreds of variables corresponding to the polygon 
vertices q^, i — 1 , . . . , M. Equilibria are then sought by iterative solving. Alter-
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Image contrast map snake equilibrum 

Figure 18.3. Snakes An input image andafilter to extract a contrast map F{Y), serving as 
aPotentialfieldunder which snakes can reach equilibrium. Images rephntedfrom [94]. 

natively direct Solution by dynamic programming [23] is also possible, with the 
added attraction that hard constraints can be incorporated easily. 

So far the snake is defined with respect to a single image / ( r ) but for shape 
tracking, its behaviour over an image sequence / ( r , t) must be defined. This can 
be expressed as a Lagrangian dynamical System [793, 241] with distributed mass 
and viscosity, whose equations of motion could typically take the following form 

P^tt 
inertial force 

= - \ m -
d{wir) d'^{w2r) 

ds + ds'^ 
+ VF 

externa! force 

(18.5) 

internal forces 

in which the additional parameters 7 and p respectively govem viscosity of the 
medium and distributed mass along the contour. 

Of course this leaves questions about how to choose parameters wi,W2y'y,p, 
which may be spatial functions, not just constants, unanswered. This is a problem 
that can be addressed effectively in a rather different framework, that of proba-
bilistic temporal filtering (see section 18.4). This idea was first cast [793] in a 
Space of State vectors consisting of vertices of the snake polygon {qi}. Practical 
implementation however, demands a much lower dimensional State Space, not just 
for computational economy but for stability [93], and this is elaborated in section 
18.4. 

18.3.2 Parametric structures 

If a lower dimensional State space is essential for stable tracking, one way to 
construct such a State Space is in terms of a State vector X = (A i , . . . , XK) 
whose components are physical degrees of freedom in the underlying object, rep-
resenting a contour (or set of contours) r(5; X) , 5 G [0,1]. For example X could 
encode the position and orientation of a rigid object. Then the image locations 
r(.Si, X) , i — 1 , . . . , M of M distinguished features on the curve (for example 
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vertices of a polyhedral object) can be predicted, and compared with observed 
locations rf{si). In principle X can then be estimated by minimising an error 
measure such as 

M 

E = Y.\\r{.Si,X)-rf{.Si)f. (18.6) 
i=l 

To include the possibility that the model contains vertices or multiple discon-
nected segments, T(S',X), S e [0,1] need not be everywhere smooth, and may be 
discontinuous at a finite set of points along s e [0,1]. 

A simple and highly effective example applies to the view of a road from a 
Camera mounted forward-looking on a car, for navigation purposes [268]. In that 
case X encodes the offset and orientation of the car on the road, and the obser-
vations are the road edges. Such a system resulted in the iirst autonomous, vision 
guided automobile to travel at realistic speeds on the open road. Other prominent 
examples of the parametric approach include real-time tracking of complex 3D 
wire-frame structures [384] and a hinged box [530], in which the prediction fiinc-
tion r{s] X) applies perspective projection to map a canonical structure, in State 
X, onto the image plane. The State vector X can also incorporate further Param­
eters which allow adjustment of the underlying canonical structure, in addition to 
Position and orientation, allov^ing tracking of any object from a given family of 
objects. This was successful for example with tracking automobiles in overhead 
views of the highway [487], in which the pose of the vehicle and also variations 
in automobile shape were encoded together in the State vector X. 

18.3.3 Affine contours 

Another natural way to construct a low-dimensional State space for tracking is to 
specify parameters relating directly to image-based shape of the active contour. 
This is especially appeahng because because, as we will see, the contour r(.s; X) 
can then often be expressed as a linear function of X and this considerably sim-
plifies the task of curve iitting and (later) of temporal filtering [93]. One natural 
choice is the planar affine Space in which Y{S\X) sweeps out the Space of 2D 
affine transformations of a base shape r(5): 

Y{S',X) = AY{S)-VU (18.7) 

where ^ is a 2 x 2 matrix and u is a 2 x 1 vector. It is natural because it is 
known to span the Space of outlines ofa planar shape, in an arbitrary 3D pose, and 
viewed under affine projection (the approximation to image projection that holds 
when perspective effects are not too strong). It is linear because we can choose 
X = (A, u) so that r(5; X) is linear in X, and this linear relation is denoted 

r(5;X) = H{s)X, (18.8) 

where H{s) is a simple (Hnear) function of f(s). For nonplanar 3D outlines, 
still under affine projection, there is a linear parameterisation of the form X = 
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{A, u, v) (see [94] for details) where v is another vector, so the dimensionality 
of X increases from 6 to 8. Of course the underlying dimensionality of the Space 
is still 6 — three parameters for 3D translation and 3 for rotation — and the 
additional 2 are the price of insisting on a linear parameterisation. 

Having defined the linear parameterisation r(s; X) of image curves, a curve 
can now be iitted to a particular set of image data. Suppose the data itself is a 
curve r /(5) , then the least Squares fit, the curve r(5; X) minimising 

/ ' 
^ \r{s;X)-rf{s)\'ds, (18.9) 

is given simply by 

X = n-^ f H^{s)rf{s)ds where n= f H'^{s)H{s) ds, (18.10) 

provided the Solution is unique. For better stability, regularisation on r(.s; X) can 
also be introduced. The Integrals in (18.10) have to be computed finitely in prac-
tice, and this can be achieved by a using finite parameterisation of the base curve 
f{s) (and therefore also of H{s))\ for example f{s) can be modelled as a B-spline 
[93, 94] or simply as a polygon [223]. 

There remains one important issue. The fitting scheme above is correct only if 
correspondence between the curves is known — that is, for any given value of 
s, the point r(s; X) in the plane is supposed to correspond to the point rf{s) on 
the data curve. In practice, of course, this is not the case: r /(5) may be parame-
terised quite differently from r{s;X) so that in principle one should fit r(5; X) 
to Tf{g{s)), for some unknown reparameterisation function g. In the case that the 
reparameterisation is not too severe, this is dealt with approximately by replac-
ing total displacement in (18.9) by normal displacement [94, Ch. 6 ] , as in figure 
18.4. Normal displacement is commonly used, for this reason, in tracking Systems 

Figure 18.4. Normal displacement a) Displacement along the normal from one curve 
to another, as shown, forms the basis for a measure of difference between curves that 
is approximately invariant to reparametrisation. b) Total displacement can be factored 
vectorially into two components, tangential and normal. Image reprinted from [94]. 
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[384, 223]. 
For füll details on curve fitting, regularisation, recursive fitting and normal 

displacement see [94, eh. 6]. 

18.3.4 Nonrigidity 

Nonrigid motions fall outside the affine families deseribed above, but may still be 
eaptured by a suitable spaee of shapes. The widely used "Aetive Shape Model" 
(ASM) [223] does this by analysing a training set of contours, and constructing 
an eigen-space of shape by Principal Components Analysis (PCA). Initially the 
high-dimensional parameterisation X = (q^, i = 1 , . . . , K) of polygon ver-
tices is chosen. Then the training set {ri(5),. . . , rNri^)} of curves is encoded 
in terms of its polygon-vertex representation X i , . . . , X^T • Now the sample co-
variance matrix S of the X i , . . . , X v̂̂  is computed and, as usual in PCA, its 
dominant eigenvectors are retained, and form a compact basis for curve shape. 
Components in this basis form a new, low-dimensional curve parameter X which 
captures nonrigidity. Finally it is possible to combine the rigid and the non­
rigid approach by explicitly projecting out the affine variations in the training set 
{ri(5),. . . , FATT(5)} of cirves, and using PCA to account only for the remaining 
nonrigid variability. In this way the curve parameter X contains both affine com­
ponents and, separately, components for nonrigid deformation as in figure 18.5. 

- — 

^ , 

K :̂̂  

— " ^ \ 

Figure 18.5. ASM components The dominant eigenvectors front PCA analysis ofa training 
set oflip shapes, describing the main non-rigid components ofmotion. Images reprinted 
from [94]. 

18.3.5 Robust curve distances 

Simple least Squares error measures like (18.9), and its modified counterpart 
for normal displacement, have no built in robustness to distortions of the data, 
in particular those caused by occlusion and clutter. The advantage of (18.9) is 
its tractability, in that it is quadratic and so can be minimised in closed form. 
"Chamfer matching", which has been used with notable success in pedestrian de-
tection [338], exchanges some tractability for robustness. In place of summing 
squared-distance (18.9), summing a truncated distance / d^{Y{s\ X) — rf{s)) ds, 
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where de{x) = min(|a:|, e), is more tolerant to outliers. Furthermore, the ideal of 
minimising over possible parameterisations, previously approximated by normal 
displacements, can be flilly restored to give an asymmetric distance 

p= f mmd,{r{s;X) -rf{s'))ds, (18.11) 

which can be expressed as 

p= f D{r{s]X))ds, where D{r) == mm d,{r - Tf{s')). (18.12) 

The image D{r) is the "chamfer image" which can be precomputed for a given 
observed data curve r / (.). In this way, much of the computational load of Comput­
ing p is compiled, once for all, into the computation of D{r). Then the marginal 
cost of multiple evaluations of p for numerous different values of X is very low, 
consisting simply of a summation along the curve r{s]X). This low marginal cost 
makes up considerably for the lack of closed form minimisation, and can be used 
to search efficiently over both pose and shape. Further Organisation of shapes into 
a tree structure based on similarlity makes matching even more efficient by reduc-
ing the number of evaluations of p required, and this has been very successful in 
matching even articulated shapes [338, 763]. 

A related distance measure [415], mentioned briefly here as a relative of the 
chamfer distance, is the Hausdorff distance mins min^/ |r(s; X) — r / (5 ' ) | which 
is also asymmetric and, in its pure form, not robust. Robustness is dealt with in 
practice by replacing min^, which is frail in that it makes the Hausdorff distance 
dependent on the distance between two particular points on each of the curves, by 
a quantile over s. 

18.4 Spatio-temporal filtering 

The difference between tracking and Realisation is that tracking exploits object 
dynamics, both for efficiency and for effectiveness. 

18.4.1 Dynamical models 

Dynamical models can be more or less elaborate, according to the nature of the 
motion being modelled. Some motions, for example of vehicles, talking lips or 
human gait are often quite predictable and it makes sense to model them in some 
detail [66, 95]. In any case it is natural to think of a classes of motions, and a 
probability distributions over that dass, which is very naturally represented as an 
AutoRegressive process (ARP) on the State vector X at time t (denoted Xt). A 
simple ARP on Xt, expressed in terms of a "driving" vector w^ of independent 
Gaussian noise variables, and constant Square matrix B, takes the form (first order 
AR process) 

X , ^ F ( X t _ i , w , ) , (18.13) 
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with F linear, and some examples follow. 

Tethered: Xt = Bwt 

Brownian: Xt = Xt-i -\- Bwt 

Constant velocity: Xt = Xt-i -\- Bwt + v 

Constrained Brownian: Xt — aXt-i + Bwt with \a\ < 1 

Damped oscillation: Xt = aiXt-i 4- a2-^t-2 + ^w^ with appropriate a i , a2. 

The last is, of course, not a first-order AR process, but is 2nd order, of the form 
Xt = F{Xt-i^ Xt_2) + wt- Details of the expressive power of various AR mod-
els, the roles of the various constants, and algorithms for leaming them from 
training data are detailed in [94, Ch. 9]. Of course these are just a few of the 
possible Hnear dynamical models. More elaborate models may also be appropri­
ate, and nonlinearity is also powerful for allowing switching between different 
kinds of motions [422] — effectively mixtures of AR models. 

18.4.2 Kaiman filter for point features 

Classically, the Kaiman filter is the exact computational mechanism for incorpo-
rating predictions from an AR model of dynamics into a stream of observations, 
and in due course this important idea was introduced into machine vision 
[377, 343, 312]. The most straightforward setting is the tracking of point features, 
such as polyhedral vertices, used with an afifinely deforming Image structure [673] 
(recall section 18.3.3) or a 3D rigid body structure [383] (as section 18.3.2). In 
either case, it is essential to represent explicitly the uncertainty in the Observation 
Yf{si) of each point, in terms of independent, two-dimensional Standard Gaussian 
noise vectors Vi: 

Vf[si) = r(.s^, X) + ö-̂ z/i i = 1 , . . . , M (18.14) 

where cii is the magnitude of the positional uncertainty associated with the mea-
sured the image location Vf{si) of the i*^ feature. Measurement uncertainty can 
then be traded off with uncertainty in the (noise driven) AR predictions to achieve 
a natural and automatic balance between the influence of observations and of pre-
diction. The result is that an estimate Xt of State Xt is propagated in the following 
manner. 

At each dock tick, predict: 

Xt^F{Xt-i.O). (18.15) 

— the ARP prediction equation (18.13) with zero noise. 

Each measurement ry(5i, t ) , . . . , Tf{sM,t) is assimilatedas: 

Xt =^ Xt + Ki,t{rf{si,t) - r ( , s ,Xt)) . (18.16) 



Visual Tracking: A Short Research Roadmap 303 

The "Kaiman gains" Ki^t are computed by an associated recursion whose details 
are omitted here, but see e.g. [268]. 

18.4.3 Kaiman filterfor contours 

Kaiman filtering for contour tracking [93] proceeds in a similar fashion as for 
point-features, but using the idea of normal displacement, introduced in section 
18.3.3 and illustrated here in fig 18.6. Only the normal component of feature 

Figure 18.6. Kaiman filter for contours Prediction andmeasurementphasesfor contours, 
with ohservations (double arrows) of normal displacement Images reprinted from [94]. 

displacement is assimilated, so that step (18.16) above takes instead the form: 

Xt =^ Xt + KltHs,,t) . (vfisi^t) - r{s,,Xtm (18.17) 

where 11(5 ,̂ t) is the normal to the curve r(5, Xt) at the i^^ sample point s = s .̂ 
Unlike the case of point features, where the locations s = Si are locations on 
the contour of distinguished point features, here the s = Si are simply a conve-
nient sampling pattem along the length of the contour, implementing a numerical 
approximation of the mean-square normal displacement. 

18.4.4 Particle filter 

The Kaiman filter has two limitations that can prove very restrictive in relatively 
unconstrained tracking problems. 

1. Clutter: it is limited to one Observation ry(s^, t) for each contour location 
v{si, t). Clutter in the image tends to generate multiple ohservations at each 
location, as figure 18.7 shows. 

2. Dynamics: the Kaiman filter is limited to ARP models of dynamics. Mild 
non-linearities can be dealt with, in practice, by local linearisation. Hybrid 
dynamical models that switch between ARPs (e.g. flight/bouncing/rolling) 
demand a more powerful mechanism for temporal filtering. 

Particle filters are a dass of Monte-Carlo temporal filters that are more powerful 
than the Kaiman filter in that they escape both from the restrictions of clutter 
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B 

Figure 18.7. Image clutter disrupts observations Active contour andnormals are shown. 
Grosses mark observations ofhigh contrast features, some ofwhich are triggered by the 
true object outline while others are responding to clutter, both inside andoutside the object. 
Image reprintedfrom [419]. 

[419] and dynamics [422], but at the cost of being only approximate. The idea 
of sampling shapes in cluttered observations derives originally from static studies 
[365]. The earliest form of the particle filter was the "bootstrap filter" [355]. The 
more powerful form described here is based [421, 523] on importance sampling . 

The essence of the particle filter is summarised in figure 18.8. In place of the 
Single estimate Xt in the Kaiman filter, particle filters maintain an entire set 
{Xf_i,n — 1 , . . . , A/'s} of possible estimated values of the State Xt. This is a 
robust approach that allows the explicit representation of ambiguity in a way that 
a Kaiman filter simply cannot. For example in clutter, the ambiguity is generated 
by uncertainty as to which of many visible features is actually generated by the 
true object. With hybrid dynamics, the ambiguity reflects uncertainty as to which 
ARP model currently explains the observed motion; typically ambiguity is height-
ened around the time that the model switches. The particle set for time t consists 
of the set of possible values {X'^_^} along with a set of positive weights {7r[^_i}. 

The algorithm description explains how the particle set evolves from one 
timestep to the next. First new values Xt^^ are generated by sampling from a pro-
posal distribution qt. In the simplest CONDENSATION [419] or bootstrap [355] 
forms of the filter, 

qt{Xt\XU)^P{Xt\Xt-i=Xt,) 

— the proposal is simply a Simulation of the dynamical model itself. In other 
words, particles are generated by predicting the change of State from time-step 
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Temporal update for time step t — 1 —> t 

From the sample-set {Xl^_i,7r^_i,n = 1 , . . . , ATg} at time t — 1, construct a 
new sample-set {X^^, TT^}, n = 1 , . . . , Â s for time t, as foUows. 

1. Select samples Xt^ by sampling from the "proposal distribution" 
Qt{X I Xr_i). 

2. Weight the new particles in terms of the vector of measured features 
^t = {rfisi,t),...,Vf{sM,t): 

""' ^*-^ qtiXt = X? I Xt_i = Xr_i) 

3. Resample, at occasional time-steps, to avoid the distribution of weights 
becoming too uneven: 

(a) Sample, with replacement, from {X^, n = 1 , . . . , A ŝ}? selecting 
X^' with probability proportional to TTI^, to form a new, resampled 
s e t { X - , n - l , . . . , A r s } . 

(b) Reset all weights to TTĴ  — 1. 

Figure 18.8. A Particle filter. Standard form ofparticle filier, foUowing [64IJ. 

t — lto timestep t. In the case of ARP dynamics (18.13) this gives 

X r = F ( X f _ i , w n , (18.18) 

where the wj^, n — 1 , . . . TV are independent draws of a Standard normal variable, 
thus using the ARP to make noisy predictions of object position. In this way, par­
ticles X^' sweep out a set ofapriori probably values for Xt. A more adventurous 
form of proposal distribution uses hints from the Image — "importance sampling" 
— at time t to generate probable values for Xt. For example, tracking hands or 
faces, a "pinkness" measure qf^^ {X) can be used to generate states Hkely to 
coincide with skin colouration in the image. 

The second step of the algorithm generates the weights TTĴ  and in doing so 
achieves two things: i) it takes account of the new measurements r/(5^, t); and ii) 
it compensates for any bias in the proposal distribution qt{.). Again, the simplest 
case is the CONDENSATION filter, in which qt{.) is unbiased, and the formula for 
weights simpliiies to 

7r^ = n^_,p{zt\Xt = X^). (18.19) 

A simple example of a measurement process was given earlier (18.14), and in that 
case the Observation likelihood is the Gaussian 

M 

p{z\X) (X exp - ^ 2^ll '^/(«i) - r ( s i . ^ ) f • (18-20) 
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Of course, part of the point of the particle lilter is to be able to track in clutter, and 
then the simple likelihood (18.20) is replaced by something non-Gaussian with 
multiple modes [419]. 

The third step of the algorithm controls the efficacy of the particle set in repre-
senting the posterior distribution over Xt via occasional reweightings. Details of 
how exactly reweighting is triggered are omitted here, but see [641]. 

Results of particle iiltering for an active contour was given in figure 18.1. This 
example uses simple CONDENSATION [419] to track a blowing leaf in severe clut­
ter. The figure shows a trail of estimated mean states Xt = [X^n ^ r ^ r l / [ Z ] n ^?] 
over time. 

18.5 Further topics 

There are a number of further topics in tracking that build on the ideas already 
outlined, and go beyond them in various intriguing v^ays. There is no space here 
to explore them in the depth they deserve, so pointers and brief summaries v^ill 
have to suffice. 

Fusing contour and appearance Much of this roadmap has addressed contour 
tracking, and in section 18.2 we briefly outlined approaches to appearance 
tracking. More recently there have been breakthroughs in Joint modelling 
and Realisation of contour and appearance [221] and the related approach 
[718], without dynamics however. An alternative fusion of appearance and 
contour combines particle filtering of contours [640] with an Observation 
model like the one used in mean-shift tracking. 

Filter Banks Observations based around contours have drawbacks both from the 
point of view of the principles of good Bayesian inference and, as above, the 
need to fuse both contour and appearance Information. A complementary 
approach is to model the observations as the Joint Output of a set of Al­
ter banks [340, 773], which harnesses both appearance from filters within 
the object contour, and contrast from those that straddle the contour. The 
approach becomes even more powerful when combined with background 
modelling [423]. Another impressively powerful Variation models filter Out­
puts as a hybrid [436], with each filter switching independently between 
models for stasis, steady motion, or random walk. 

Articulated and deformable structures Modelling deformation has been dis-
cussed above, and there are numerous variations on the theme, for example 
"deformable templates" [317, 914]. Outright articulation — jointed as-
semblies of rigid bodies — can be dealt with effectively using greedy 
strategies [402, 672], though at considerable computational cost, which can 
be mitigated using observation-cost gradient Information [115]. Altema-
tively, the ASM approach of section 18.3.4 can be used for articulation 
also [90]. Issues arising in image-based models when image topology 
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changes as the body articulates have been addressed using several shape 
Space models connected via "wormholes" [391], in a Markov network. 
Altematively, cartoon-like catalogues of outline-exemplars with differing 
topologies [338, 801], also connected in a Markov network, and matched 
using chamfers, are a very effective memory-intensive approach. 

Persistence Finally, there have been striking advances in trained recognisers for 
localising faces and Walking figures, in a single frame [847, 848]. These are 
so powerful and efficient that, without any recourse to dynamical models, 
real-time Performance can be achieved on a modern Workstation. However, 
these too can benefit from a dynamical approach [37, 894], promising real-
time tracking in the background of a desktop machine's process load, and 
on portable devices, in the future. 

All of these issues and others will be treated in more detail in a forthcoming, long 
Version of this roadmap article [92]. 
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Shape Gradient for Image and Video 
Segmentation 

S. Jehan-Besson, A. Herbulot, M. Barlaud, G. Aubert 

Abstract 
In this chapter, we propose to concentrate on the research of an optimal 
domain with regards to a global criterion including region and boundary 
functionals. A local shape minimizer is obtained through the evolution of 
a deformable domain in the direction of the shape gradient. Shape derivation 
tools, Coming from shape optimization theory, allow us to easily dififerentiate 
region and boundary functionals. We more particularly focus on region func­
tionals involving region-dependent features that are globally attached to the 
region. A general framework is proposed and illustrated by many examples 
involving functions of parametric or non parametric probability density flinc-
tions (pdfs) of image features. Among these functions, we notably study the 
minimization of Information measures such as the entropy for the segmen­
tation of homogeneous regions or the minimization of the distance between 
pdfs for tracking or matching regions of interest. 

19.1 Introduction 

Active contours are powerful tools for image and video segmentation or tracking. 
They can be formulated in the framev^ork of variational methods. The basic princi-
ple is to construct a PDE (Partial Differential Equation) from an energy criterion, 
including usually both region and boundary functionals. This PDE changes the 
shape of the current curve according to some velocity field which can be thought 
of as a descent direction of the energy criterion. Given a closed curve enclosing an 
initial region, one then computes the Solution of this PDE for this initial condition. 
The corresponding family of curves decreases the energy criterion and converges 
tow^ard a (local) minimum of the criterion hopefully corresponding to the objects 
to be segmented. 
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Originally, snakes [456], balloons [204] or geodesic active contours [157] are 
driven towards the edges of an Image through the minimization of a bound-
ary integral of features depending on edges. Active contours driven by the 
minimization of region functionals in addition to boundary fimctionals have ap-
peared later. Introduced by [207] and [680], they have been further developed in 
[922,174,192,626,625,254,910]. Actually, the use of active contours for the op-
timization of a criterion including both region and boundary functionals appears 
to be powerflil. 

However, the PDE computation is not trivial when the energy criterion involves 
region functionals. This is mostly due to the fact that the set of image regions 
does not have a structure of vector Space, preventing us to use in a straightforward 
fashion gradient descent methods. To circumvent this problem, we propose to take 
benefit of shape derivation principles developed by [751, 256]. This computation 
becomes more involved when global information about regions is present in the 
energy criterion, the so-called region-dependent case. It happens when Statistical 
features ofa region such as, for example, the mean or the variance of the intensity, 
are involved in the minimization. In this chapter, we propose a general framework 
based on shape derivation tools for the computation of the related evolution equa-
tion. Inside this theoretical framework, many descriptors based on parametric or 
non parametric pdfs of image features may be studied. We propose to give some 
results for both of them and some examples of applications. 

Region and boundary functionals are presented in section 19.2 while shape 
derivation tools are presented in section 19.3. Statistical region-dependent de­
scriptors based on parametric and non parametric probability density functions 
(pdfs) are studied in section 19.4. 

19.2 Problem Statement 

In many image processing problems, the issue is to find a set of image regions that 
minimize a given error criterion. The basic idea of active contours is to compute 
a Partial Differential Equation (PDE) that will drive the boundary of an initial 
region towards a local minimum of the error criterion. The key point is to compute 
the velocity vector at each point of the boundary at each time instant. 

To fix ideas, in the two-dimensional case, the evolving boundary, or active con-
tour, is modeled by a parametric curve r( .s , r) — {XI{SJT),X2{S^T)), where s 
may be its arc-length and r is an evolution parameter. The active contour is then 
driven by the foUowing PDE: 

Tr ^=^=^ with r ( r = 0) = To, 

where FQ is an initial curve defined by the user and v the velocity vector of 
r ( s , r ) . This velocity is the unknown that must be differentiated from an er­
ror criterion so that the Solution T{.,T) converges towards a curve achieving a 
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local minimum and thus, hopefuUy, towards the boundary of the object to be 
segmented, as r —̂  oo. 

Following the pioneer work of Mumford Shah [591], a segmentation problem 
may be formulated through the minimization of a criterion including both region 
and boundary functionals. Let Z// be a dass of domains of 7^^, and H an element 
ofU of boundary OD.. A boundary functional, ./&, may be expressed as a boundary 
integral of some scalar function k^ of image features: 

Jb{dn)=l kt{x,dn)dsi{x) (19.1) 
Jdn 

where du is the boundary of the region and da. its area element. 
The most classical example of boundary functional comes from the work of 
Caselles et al [157], where the authors minimize for an image in 2D: 

J{dn) = I g{\VI{dü{s))\)ds 
JdQ 

where s represents the arc length of the curve dO. and g{r) — •̂ _̂ -̂ ,̂„, m = 1 or 
2. The function g drives the curve towards the image edges characterized by high 
values of the image gradient. 

A region functional, J , may be expressed as an integral, in a domain Vt ofU, of 
some function k of some region features: 

J{n) = I k{x,n)dx (19.2) 
Jn 

Let US note that the scalar function k in (19.2) is generally region-dependent. A 
classical example of region-dependent descriptor is the following one proposed 
by [174, 254]: 

k{x,n) = {I{x)-f^{Q)f 

where fi{ft) represents the mean of the intensity values within the region ft. This 
dependency on the region must be taken into account when searching for a local 
minimum of the functional. 

Generally one uses a linear combination of region-based and contour-based 
terms in order to perform a segmentation task. A simple example is the segmen­
tation into two regions üin and üout, which basically correspond to objects and 
background. An appropriate energy functional for this task would be: 

J{üin,^out) = / /Cin(x,nin)dx+ / /̂ „̂̂ (x, Hont) dx-f / kb{x.) ds 
Jfli,, J^aut Jdflir, 

where kin is the descriptor for the object region, kout for the background region 
and kb the descriptor for the contour. 

The choice of the descriptors is dependent on the application. In this article 
we propose to focus on Statistical descriptors based on parametric or non para-
metric pdfs. Once this choice is made the terms have to be derived in order to 
calculate a velocity function that drives an initial contour towards a minimum. A 
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detailed State of the art on region-based active contours can be found in [432]. Let 
US briefly note that some authors do not compute the theoretical expression of the 
velocity field but choose a deformation of the curve that will make the criterion 
decrease [159, 192]. Other authors [922, 625] compute the theoretical expression 
of the velocity vector from the Euler-Lagrange equations. The computation is per-
formed in two main steps. First, region integrals representing region functionals 
are transformed into boundary integrals using the Green-Riemann theorem. Sec-
ondly, the corresponding Euler-Lagrange equations are derived, and used to define 
a dynamic scheme in order to make evolve the initial region. Another alternative is 
to keep the region formulation to compute the gradient of the energy criterion with 
respect to the region instead of reducing region integrals to boundary integrals. In 
[254], the authors propose to compute the derivative of the criterion while taking 
into account the discontinuities across the contour. In [431, 432] the computation 
of the evolution equation is achieved through shape derivation principles. 

This computation becomes more difficuh for region-dependent descriptors. It 
happens v^hen Statistical features of a region such as, for example, the mean or 
the variance of the intensity, are involved in the minimization. This case has been 
studied in [174, 254, 910,465, 234]. In [431,432] the authors show that the mini­
mization of functionals involving region-dependent features can induce additional 
terms in the evolution equation of the active contour that are important in practice. 
These additional terms are easily computed thanks to shape derivation tools. 

In the following, we present shape derivation tools for the computation of the 
evolution equation. 

19.3 From shape derivation tools towards region-based 
active contours models 

As far as the derivation is concerned, two main diflficulties must be solved. First, 
the set of image regions, i.e. the set of regulär open domains in K^, denoted by U, 
does not have a structure of vector space, preventing us from using in a straight-
forward fashion gradient descent methods. To circumvent this problem, shape 
derivation methods [751, 256] can be brought to bear on the problem as detailed 
in this section. Secondly, the descriptors kr or ki, may be region or boundary-
dependent. Such a dependence must be taken into account in the derivation of the 
functionals as pointed out in [431, 432, 34, 335]. We here recall a theorem giving 
relation betv^een derivatives that will be helpful for derivation of region func­
tionals for both region-independent and region-dependent descriptors. We also 
give some details and references for the derivation of boundary-based terms using 
shape derivation tools. 
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19.3.1 Shape derivation tools 

19.3.1.1 Introduction of transformations 

As it has already been pointed out, the optimization of the region functional J ( n ) 
is difficult since U does not have the structure of a vector Space. Variations of a 
domain must then be defined in some way. Let us consider a reference domain 
Q eU and the set A of applications T : Ü -^ IZ^, which are at least as regulär as 
homeomorphisms (i.e. one to one with T and T~^ continuous). We deiine 

i - {T one to one, T ,T-^ G V|/l '^(^,7^^)} 

where: 

W''^"^(n, 7^^) - [T-.Ü-^W' such that 

T G L^(n,7^'^) andö^T G L^(^ ,7^^) , i = 1, • • • ,n} 

Given a shape function F \U -^IV-,fovT e Ä, let us define F(T) -= F{T{Ü)). 
The key point is that W^'^{Vt, IZ^) is a Banach space. This allows us to define 
the notion of derivative with respect to the domain O as follows: 

Definition 19.3.1. F is Gäteaux differentiable with respect to fü ifandonly ifF 
is Gäteaux differentiable with respect to T. 

In Order to compute Gäteaux derivatives with respect to T we introduce a family 
of deformation (T(r))r>o such that T{r) G A for r > 0, T(0) = Id, and 

T(.) G cH[o,^];iy^'^(n,7e^), A > 0. 
For a point x G O, we denote: 

x(r) - T{T, X) with T(0, x) = x 

^ ( T ) = T{T, Ü) with T(0, n ) - n 

Let US now define the velocity vector field V corresponding to T{T) as 

dT 
V(r , x) = -—(r, x) Vx G 0 Vr > 0 

OT 

19.3.1.2 Relations between the derivatives 

We now introduce two main definitions: 

Definition 19.3.2. The Gäteaux derivative of J{ü) = J^ / (x , Q,)dx in the 
direction ofN, noted dJr{^, V), is equal to: 

This derivative is called the Eulerian derivative. 

Definition 19.3.3. The shape derivative ofk{x, ü), noted ks{x, O, V), is equal 
to: 

T—>0 T 



314 Jehan-Besson, Herbulot, Barlaud & Aubert 

The following theorem gives a relation between the Eulerian derivative and 
the shape derivative for the region functional (19.2). The proof can be found in 
[751, 256], an elementary one is provided in [432] for completeness. 

Theorem 19.3.1. The Eulerian derivative of the functionalJ {Vi) = J^ k{\, Q) dx 
in the direction o / V is the following: 

dJr{n,v)= f ks{\,n,Y)dx- f k{x,n){Y{x)'N{x))d2i{x) 
Jn Jdn 

where N is the unit inward normal to dVt and da. its area element. 

Note that Theorem 19.3.1 provides a necessary condition for a domain A to be 
an extremum of J{p): 

fks{x,n,V)dx- f A ; (x ,n ) (V(x) -N(x) )^a (x ) -0 VV. 
Jn JdCi 

19.3.2 Derivation ofboundary-based terms 

In the case of boundary-independent descriptors, the Eulerian derivative of J^ = 
JQ^ kb{x)dsi{x) in the direction Vn = (V • N) is the following: 

dJb{dn,Vn) = I (VÄ;6(x) • N - hix) /^)(V • N)6^a (19.3) 

where K is the mean curvature of dVt. 
>From this Eulerian derivative, we can deduce the following evolution equation 

for the active contour: 

Tr = {h{x)f'Z-\/h{x)-'^)'N with r(r-0)=ro. (19.4) 

This evolution equation has been computed by Caselles et al [157] by using 
techniques of calculus of variations. 

As far as boundary-dependent descriptors are concerned, the dependence on the 
boundary must be taken into account for the computation of the Eulerian deriva­
tive. In [335], the authors studied the following descriptor which represents the 
distance between the current boundary dO. and a reference one dürcf'-

kh — d{dü,dÜref)' 

The authors compute the evolution equation and they show that some terms appear 
Coming from the dependency of the descriptor with the boundary. This descriptor 
has been used for the introduction of shape prior for segmentation. Let us note 
that the introduction of shape priors for segmentation using active contours has 
also been studied by [628, 233, 235]. Let us also note that in [399], the authors 
remind some theorems for the computation of the Eulerian derivative of boundary-
dependent descriptors and in [177], the authors deal with shape metrics following 
considerations developed in [256]. 
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19.3.3 Derivation ofregion-based terms 

Let US now apply the previous results to differentiate the velocity vector of the 
active contour. 

19.3.3.1 Region-independent descriptors 

We first consider the simple case where the function k does not depend on O, i.e. 
k = A;(x). In that case, the shape derivative ks is equal to zero and the Eulerian 
derivative of J is simply (Theorem 19.3.1): 

dJr{9^,Y) = - f k{x){y{x) ' N(x))d3L{x) 
Jon 

This leads to the foUowing evolution equation for region-independent descriptors: 

r^ - kN with r ( r = 0) = TQ. 

This is the classical result [922, 625] when k has no region dependency. Let 
US now consider the more general case where the function k has some region 
dependency. 

19.3.3.2 Region-dependent descriptors 

Region-dependent descriptors of the form Jr{ft) = J^ A;(x, n )dx are more com-
phcated to differentiate. Using Theorem 19.3.1 one can obtains a derivative of the 
foUowing form [432, 34] for some of them (see section 19.4): 

dJr{n, V) - - / (A;(x, a ) + A(x, 0)) (V • N) da (19.5) 
JdQ 

This leads to the foUowing evolution equation for these region-dependent 
descriptors: 

rr = {k + A)N with r ( r = 0 ) = r o . 

The term ^ ( x , ft) is a term that comes from the region-dependence and so from 
the evaluation of the shape derivative kg. We here propose a general frame-
work for deriving some region-dependent descriptors based on parametric or non 
parametric statistics. The principle is to model region-dependent descriptors as 
foUows: 

6) J{n)= f k{x,G{n))dx, where G{n) =: [ H{x,n)dx (19. 
JQ Ja 

As shown in this equation, the function H is itself region-dependent, more 
precisely: 

H{x, fl) ^= H{x, K{n)), and K{n) = f L(x) dx (19.7) 
i n 

Note that we have stopped the process at the second level but it could conceivably 
continue. We have chosen this special case of dependency because it often arises 
in applications, as shown in sections 19.4.2 and 19.4.1. 
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Theorem 19.3.2. The Eulerian derivative in the direction ofV of thefunctional 
J defined in (19.9) is: 

drJiß, V) = - [ (^(x, n) + A;(x, n)) (V(x) • N(x))6Za(x) 
Jan 

where : 

A{x,n) = ( f kG{yi,G{n))d-K\ (L{X) f F ; ^ ( x , K ( n ) ) ( i x + H{x,K{n))] 

The terms ko and HK denote respectively thepartial derivative of the function k 
and H with respect to their second argument. 

Proof: According to Theorem 19.3.1, we have: 

drJ{Ü, y)= f ksdx- f k(y- N)da(x) 
Jn Jdvt 

Let US first compute the shape derivative ofk. From the chain rule we get: 

A:,(x,n,V) - /^G(x,G)d^G(n,V), (19.8) 

where ka denotes the partial derivative of the function k with respect to its second 
argument. 

Next we compute the Eulerian derivative of G in the direction of V. We apply 
again Theorem 19.3.1, and we get: 

drG{Ü,Y) = I Hsdi^- f H {V • N)^a(x). 

Plugging this into (19.8), we obtain: 

[ ksdx= ( f kG{yi, G{Ü)) 6/x ) [ f Hsdx- [ H(V • N)(ia(x) ) , 
Jn \JQ ) \Jn Jan ) 

We also compute the shape derivative of üf thanks to Theorem 19.3.1: 

F , ( x , n , V) = EK{yi,K)drK(Sl,V) 

The Eulerian derivative oiK in the direction of V is given by: 

drK{n,y) = I Lsdx- f L{x){V{x) ' N(x))^a(x) 
JQ Jan 

Since L does not depend on H, we obtain Lg = 0 and we get the result. 

We can now State the result for the general case where k is described as a linear 
combination or region functionals as foUows: 

j{n) = f k{x, 
Jn 

Gi(n) ,G2(n) , . . ,G„(f i ) )dx , (19.9) 
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where the functionals Gi are given by Gi(ü) = / ^ Hi{\, ü)d\ i = l..m. As 
shown in this equation, the function Hi is itself region-dependent, more precisely: 

Hi{x,n)''=^ Hi{x,Ka{n),K,2{n),..J<uM) (19.10) 

where Kij{n) = Lij{\) dx j=-l..li i = l..m. (19.11) 

We have chosen this special case of dependency because it often arises in 
apphcations, as shown in sections 19.4.2 and 19.4.1. 

Theorem 19.3.3. The Eulerian derivative in the direction ofV of the functional 
J defined in (19.9) is: 

drJ{n, V) - - / {A{x, Ü) + A;(x, n)) (V • N)da. 
JdQ 

where A[x,ü) = YZi Di T^^^Bij Li,(x)) + E™ i ( A H^), 

and Di = kGi{x,Gi{ü), ..,Gm{^)) dx i = l..m 
JQ 

Bij - f HiK^.{x,Kn{n),..,Ku,{n))dx i - l..m j = l..k 
JQ 

19 A Segmentation using Statistical Region-dependent 
descriptors 

In this section, we are interested in the minimization of the region functional 
(19.2) for region-dependent descriptors. The general framework introduced in 
section 19.3.3.2 allows us to compute the derivative and the evolution equation 
for many descriptors based on parametric or non parametric statistics. Some ex-
amples of computation are given for descriptors based on parametric statistics in 
section 19.4.1, while a general computation of the derivative is proposed for non 
parametric statistics in section 19.4.2. 

Let US first introduce some notations and some examples of region-dependent 
descriptors. We note f (x) the feature of interest of the image at location x. This 
feature may be the intensity of the image, the motion vector, a shape descriptor 
and is a function f : Üf —> W^ where flf C M^ is the image domain and m 
is the dimension of the feature. If f is the image intensity, m, = 1 for grayscale 
images and m = 3 for color Images. If f is a motion vector, m — 2. 

When considering the pdf of f within the region, denoted by g(f (x), H), we can 
choose the following general descriptor for segmentation: 

A;(x,n)-(^(g(f(x),n)) (19.12) 



318 Jehan-Besson, Herbulot, Barlaud & Aubert 

When minimizing the -log-likelihood function for independent and identically 
distributed observations (iid) f (x), we have: 

( p ( g ( f ( x ) , n ) ) - - l n ( g ( f ( x ) , n ) (19.13) 

When minimizing the entropy flinction, we get: 

V{q(fix), Ü)) = -q{f{x),fl) ln(9(f (x), n) (19.14) 

The concept entropy designates the average quantity of information carried out 
by a feature [229]. Intuitively the entropy represents some kind of diversity of a 
given feature. 

These descriptors may be chosen to characterize the homogeneity of a region 
according to the feature. In both cases, the pdf may be parametric, i.e. it foUows 
a prespecilied law (Gaussian, Rayleigh ...) or non parametric. In the last case, no 
assumption is made on the underlying distribution. 

As far as parametric pdfs are concerned, the descriptor (19.13) has first 
been introduced by [922] for the segmentation of homogeneous regions using 
region-based active contours and further developed by [625, 547]. In the case of 
parametric pdfs, the probability density function q is indexed by one or more Pa­
rameters, denoted by a vector 6, describing the distribution model. For example, 
when using a one dimensional Gaussian distribution, we get: 

where 0 — [/j, a]'^. The terms fi and a represent respectively the mean and the 
variance of the scalar feature f within the region ft. Note that the parameters of the 
distribution depend on H and that such a dependence must be taken into account 
during the derivation process. Some other descriptors for segmentation are derived 
from the development of the expression (19.13) for Gaussian distributions. For 
example, the descriptor k{x,ü) = (I(x) — ^)^ has been proposed by [174] for 
the segmentation of homogeneous regions, and the descriptor k{x,ü) — Q{cr'^) 
by [432]. 

As far as non parametric pdfs are concerned, the expression of the pdf g is given 
by the Parzen method [287]: 

g(f (x), ^ ) = p i ^ ^ ( f W - f (^)) dx (19.15) 

where K is the Gaussian kemel of the estimation with 0-mean and a-variance and 
\Ü\ the shape area. Non parametric pdfs have been introduced in region-based 
active contours in [34] for the minimization of the distance between two pdfs and 
in [465] for the minimization of information measures. The general descriptor 
(19.12) has been studied in [395, 396] and the descriptor (19.13) has been studied 
by [465, 464, 123]. 



Shape Gradient for Image and Video Segmentation 319 

19.4.1 Examples ofDescriptors based on parametric statistics 

In the case of parametric pdfs, the probability density function q is indexed by one 
or more parameters, denoted by a vector 0, describing the distribution model. The 
Parameters 0 depend on the domain H and such a dependence must be taken into 
account in the derivation process through the evaluation of the domain derivative. 
We propose here to give some results for the derivation of fiinctions depending on 
simple Statistical parameters such as the mean or the variance. This study can be 
extended to the derivation of the covariance matrix determinant. 

19.4.1.1 Region-dependent descriptors using the mean 

For a one-dimensional image feature / , let us choose: 

k{x,n) = ß(/(x) - M ) = e(/(x) - p ^ / W ' ^ ' ' ) (19.16) 

where ^ : R —> R"^ is a positive function of dass C^. The region functional can 
be expressed as in equation (19.9): 

where 

^1 (0 )= / / / i ( x , n ) d x = [ f{x)dxmdG2in)= [ H2{x,n)dx= f Idx 

In this case, the functions iiT ,̂ z — 1,2 do not depend on the region ü,li = I2 — 0 
and Kij(x) ==0 Vi, j . The terms Dj,j = 1,2 can then be computed: 

The terms Bij are equal to zero and the velocity vector of the active contour is 
then: 

[ Q\f-ß)dx N 

In this example, the term Coming from the region dependency of / is equal to 
^1^1 / ^ Q'{f — iJi)dx. Note that in the particular case of Q{r) — r^, this term is 
equal to zero [174, 254]. 

19.4.1.2 Region-dependent descriptors based on the variance 

Let US take another example of descriptor for one dimensional image feature. 
Consider the case where the function /c is a function of the variance given by: 

M: .«)=*')..(i/„(/w-.f)=.(i^) 
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where Q : R"^ -^ R"^ is of dass C^. 
We can then compute the velocity vector of the active contour from Theorem 

19.3.3 using: 

G2in) - [ H2{x,n)dx, if2(x,n)-i, /2-0, 

and we find: 

r .= [fc + ^V)((/-M)'-^ ')]N. 

In this simple example, we notice that the dependency of the function on the 
region induces the term A{x,ü) = Q'{(^'^) ( ( / ( X ) - M)^ - ^^) in the evolution 
equation, see [432] for details. 

This result can be extended to a descriptor based on the covariance matrix de-
terminant for multidimensional image features f = [/^, /^, •-, f^V- It can be a 
usefiil tool for the segmentation of homogeneous regions since minimizing the 
entropy is equivalent to minimize the determinant of the covariance matrix in the 
case of Gaussian distributions [360, 359]. The evolution equation can be com-
puted using Theorem 19.3.3, Details of the computation as well as experimental 
results for the segmentation of the face in color video sequences may be found in 
[432] . 

19.4.2 Descriptors based on non parametric statistics 

19.4.2.1 Region-dependent descriptors based on non parametric pdfs of image 
features 

We consider the following descriptor, where (/? is a function: R"*" —> R"̂  and q is 
givenby (19.15): 

A; (x ,n )^^ (g ( f (x ) ,n ) ) (19.17) 

Theorem 19.4.1. The Eulerian derivative in the direction V of the functional 
J{Q) — f^k{x,ü)dx where k is definedin (19.17) is: 

dJrin,V) = - f (Ä:(x,n) + A ( x , n ) ) ( V . N ) d a ( x ) 

where A{x,ü) — 
1 / (̂ '(̂ (f(x),n))[g(f(x),n) - Kim - m)w 

Proof: The criterion is differentiated using the methodology developed in 
section 19.3.3.2. We have: 

•In <-'2lSij .In 
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c. Initial curve d. Iteration 100 

\r^ -^. 

e. Final curve 

ZZl 

f. Initial histograms g. Iteration 100 h. Final histograms 

Figure 19.1. Evolution of segmentation and histograms with the minimization of the 
entropy for a grayscale image (/ = 7) 

with G\(x,n) - f Hi{x,x,n)dx, Hi{x,x,n) = K{f{x)-f{x)), 
Ja 

G2{n) = f H2ix,n)dx, i J2(x,o)- i , 
Jn 

In comparison with the general results presented in section 19.3.3.2, we must 
pay attention to the fact that Hi depends on x and x during the derivation process, 

These results can then be used for segmentation using Information measures such 
as the entropy or the mutual information [395, 396]. If we choose to minimize 
the entropy as in [395], (p{q) = -q\n{q). In Figure 19.1, an example of seg­
mentation of an osteoporosis image is given by minimizing J{D,i.ny^out) — 
E{Vtin) + E{üout) + A /p (i5 where E{Qin) and E{üout) represent respectively 
the entropy of the one-dimensional feature / (x) = I{x) inside and outside the 
curve and A /p ds is the classical regularization term that minimizes the curve 
length balanced with a positive parameter A. The Figure 19.1 shows the evolu-
tion of the segmentation and the evolution of the associated histograms (of the 
region ftin and Howt) during iterations. Figure 19.2 shows an example of seg­
mentation of color Video by minimizing the Joint entropy of a two dimensional 
feature f (x) = [^(x), /7(x)]^, where Y is the luminance and U is the chromi-
nance. The Joint entropy is computed by using the Joint probabilities between each 
color Channel. In Figure 19.2, we can see the evolution of the object histogram 
(histogram inside the region O^^). 

19.4.2.2 Minimization of the distance between pdfs for tracking 

We next assume that we have a function ^ : 71^ x IZ^ —» 7^+ which allows 
US to compare two pdfs. This function is small if the pdfs are similar and large 
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c. Initial curve d. Iteration 100 e. Final curve 

f. Initial histogram g. Iteration 100 h. Final histogram 

Figure 19.2. Evolution of segmentation and the associated object histogram (histogram of 
the two components color of the region inside the curve) with the minimization of the Joint 
entropy 

othenvise. It allow ŝ us to introduce the following flinctional w^hich represents the 
"distance" between the two histograms: 

D{n)= f ip{q{f,n),q{f,nref))df (19.18) 

The distance can be for example the Hellinger distance when ^{q,q) = 
{VQ ~ y/o) • Using the tools developed in section 19.3.3.2, we can compute the 
Eulerian derivative of the functional D. We have the 

Theorem 19.4.2. The Eulerian derivative in the direction V of the functional D 
defined in (19.18) is: 

drD{n,Y)^--^ f (öi(^(g(.,n),^(.,n,e/))*i^(f(x))-C(n))(V.N)da(x), 
I ̂ ' I Jdci ̂  

where di(fi{.^.) is the derivative of (p according to its first variable and 
C{Q) = J^rn di(p{q{i,fl),q{f,ftref))Q{^,^)df. The first term under the in­
tegral, öi(/?(g(., n ) , g(., ^ref)) * ^> is the convolution of the function 
diLp{q{., n),q{., ftref)) : 7e^ ^ 7^ with the kernel K. 

A proof of this theorem can be found in [34, 433]. An example of tracking is 
given in Figure 19.3 for a two-dimensional Image feature f (x) = [H{\)^ V{\)]^, 
where H is the hue and V is the value of the color System HSV. 

19.5 Discussion 

In this article, we focus on the problem of finding local minima of a large dass 
of region and boundary functionals by applying methods of shape derivation 
[256, 751]. We more particularly tum our attention to region-based function­
als involving region-dependent descriptors. We propose a general methodology 
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(i) m^.--^ 
a. Reference 

(ii) 
e. Reference 

b. Initial c. Iteration 200 d. Final 

f. Initial g. Iteration 200 h. Final 

Figure 19.3. Example of tracking using the minimization between the current histogram 
and a reference one; (i) segmentation, (ii) histogram. Figure a represents the reference 
segmentation and Figure e the associated reference object histogram. Figures b, c and d 
show the evolution of the curve and Figures / , g, h the evolution of the object histogram. 

to derive region-based functionals based on parametric or non parametric pdfs. 
To illustrate our framework, some examples of derivation and computation of 
the evolution equation are given for parametric and non parametric Statistical 
descriptors. 



Chapter20 

Model-Based Human Motion Capture 
I. Kakadiaris and C. Barrön 

Abstract 

Human motion analysis is a challenging research area aimed at automat-
ing the study of human behavior. An important part of any such System is 
the component that performs the Human Motion Capture (HMC); in order 
for human motion to be processed and semantically analyzed, a mathemat-
ical representation of the observed motion needs to be extracted. There are 
two separate aspects to a HMC System; sensing (hardware) and processing 
(Software). The processing itself comprises of an initialization (anthropom-
etry and pose estimation) and a tracking phase. In this chapter, we present 
methods for three-dimensional model-based human motion capture from 
uncalibrated passive optical sensors with semi-automatic initialization and 
tracking. Such methods allow for non-intrusive capture of natural human be­
havior from Video cameras or from archival recordings. We demonstrate the 
accuracy, advantages, and limitations of our methods for various classes of 
data. 

20.1 Introduction 

In Computer vision, human motion analysis (HMA) is a term that describes a 
broad field with diverse applications. At its core, the goal of HMA is to provide 
automated Systems that can recognize humans and their behavior. More specifi-
cally, its aim is to develop algorithms that can process image sequences in order 
to detect, track, and provide semantic context for the people recorded and the ac-
tivities they are involved in. Activities is a very loose term in this context, and 
several diverse areas of applications have been studied that can be classilied un-
der the HMA heading, as indicated by the early seminal surveys of Aggarwal and 
Cai [8] or Gavrila [337], the later v^ork of Moeslund and Granum [580] or the 
recent review by Wang et al [854]. They include tele-presence (teleconferencing, 
interactive Virtual worlds, avatar animation), perceptual user interfaces for control 
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and command (gestures, sign-language, signaling), kinesiology (diagnosis, train-
ing, rehabilitation), ergonomics (robotics, product design, testing), content-based 
Video storage and retrieval (from Sports to choreography), and last but not least, 
smart visual surveillance. The last area alone is rapidly becoming a driving force 
behind advancements in the lield, as there is an increasing awareness of its im-
portance, ranging from parking lot safety to maintenance of strict access control 
environments, and beyond. 

An important part of any successful HMA System is the component that per-
forms the Human Motion Capture (HMC); in order for human motion to be 
semantically analyzed, it iirst needs to be captured. In other words, a mathematical 
representation of the motion observed needs to be extracted. This is a challeng-
ing task in its own right, and gamers large interest as it includes fundamental and 
inherently difficult problems such as Image segmentation, and shape and motion 
estimation. This is all compounded by the fact that the objects being studied are 
non-rigid bodies that are frequently occluded. 

There are two separate aspects to a human motion capture System; sensing 
(hardware) and processing (Software). Subsequently, the Systems used for HMC 
can be classified into several different categories according to the methods used 
to carry out each of these tasks. Although electromechanic or electromagnetic 
sensing devices can be used, we restrict our discussion to optical sensors. 

Optical sensors can be active or passive. The key difference is whether or not 
special equipment such as measuring devices or markers need to be wom by the 
subject. Active optical sensing operates by placing visible markers on the subject 
in the form of a body suit and employs arrays of calibrated infrared cameras in 
a predefined, restricted space. It allow ŝ for simpler processing and it is used suc-
cessfully in highly controUed environments (e.g., movie production). On the other 
hand, passive sensing does not require special equipment suits; it captures motion 
from regulär video sequences. Passive sensors operate in the visible or infrared 
spectrum. It is important here to differentiate, between Single and multiple sensor 
Systems, whether they are moving or stationary, and whether or not the sensors 
need to be calibrated before motion capture. Passive sensing Systems, and in par-
ticular single sensors, are the preferred and often compelling alternative in terms 
of cost, reliability, ease of use, and adaptabihty. Another important aspect is that 
they are non-intrusive, allowing for natural human behavior capture from video 
cameras or from archival recordings. 

Once the observed human motion has been recorded by the appropriate sensing 
devices, its mathematical representation can be extracted. This processing step en-
tails an initialization phase (anthropometry and pose estimation) before the actual 
tracking can occur. In our context, the problem of anthropometry pose estimation 
from a single image can be formulated as follows: 

Given a sei ofpoints in an image that correspond to the projection of 
landmark points ofa human subject, estimate both the anthropomet-
ric measurements (up to a scale) ofthe subject and his/her pose that 
best match the observed image. 
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Tracking can then be stated as follows: 

Given an image sequence of a moving human, estimate his or her 
motion by estimating the corresponding pose of the human at each 
frame ofthe image sequence. 

As mentioned earlier, motion capture of non-rigid objects such as moving hu-
mans presents several challenging steps including segmentation of the human 
body from the background and into meaningful body parts, handhng of occlu-
sions, and tracking body parts along the image sequence. The approaches that 
have been proposed for HMC can be classified into two groups: model-based 
approaches and view-based approaches. Model-based approaches use a priori 
models expHcitly defined in terms of kinematics and dynamics. They differ based 
on the types of models used (stick figures, surface or volume), the ways of model-
ing motion dynamics (kinetics, kinematics), and on whether the model is general 
or customized for the person under Observation. In general, model-based ap­
proaches are preferred, as the use of predefined or acquired models introduces 
robustness that overcomes obstructions related to lighting conditions, clothes, 
rapid motion, occlusion, image quality, and problems with camera calibration. 

The rest ofthe chapter is organized as follov^s: Section 20.2.1 summarizes our 
methods for human body model acquisition, while Section 20.2.2 summarizes 
our methods for human body tracking. Section 20.3 presents selected results, and 
Section 20.4 offers a brief reflection into the future. 

20.2 Methods 

The Problem of human body model acquisition entails shape and motion esti-
mation for the moving parts of a complex multi-part object. In earlier work, we 
have developed a Part Segmentation Älgorithm (PSA) that recovers all the mov­
ing parts of a multi-part object by monitoring and reasoning over the deformation 
of its apparent contour [449]. This älgorithm allows partial overlap between the 
parts and determination of their Joint location (if any). We have employed this 
älgorithm to build a 3D model ofthe person under Observation. First, the apparent 
body contour ofa moving subject is segmented into its constituent parts and then 
the 3D shape of a subject's body parts is estimated by fusing information from 
Images taken from three cameras placed orthogonally [447]. Having obtained a 
geometric model of the person to be tracked the next step is motion estimation 
(i.e., tracking the human in the image sequence [448]). 

Note that this technique applies to humans of any anthropometric dimension. 
Hov^ever, it requires multiple cameras and the subject has to perform a set of 
movements according to a protocol that allows the Integration of information 
from multiple views in order to estimate the 3D shape of all the major parts ofthe 
human body. Recently, we have developed methods for estimating shape (both an-
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LF 

Segment 
Head 
Left Eye 
Lower Torso 
Left Clavicle 
Left Upper Arm 
Left Lower Arm 
Left Hand 
Left Hip 
Left Upper Leg 
Left Lower Leg 
Left Foot 
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Segment 
Neck 
Right Eye 
Upper Torso 
Right Clavicle 
Right Upper Arm 
Right Lower Arm 
Right Hand 
Right Hip 
Right Upper Leg 
Right Lower Leg 
Right Foot 

Figure 20.1. Names of the VHM's segments 

thropometry and pose) [57] and tracking [58] from a Single uncalibrated camera. 
In the following, we present results for each of these methods separately. 

20.2.1 Human body model acquisition 

We have developed a four-step technique for simultaneously estimating a human's 
anthropometric measurements (up to a scale parameter) and pose from a Single 
uncalibrated image. The user initially selects a set of image points that constitute 
the projection of selected landmarks. Using this information, along with a priori 
Statistical information about the human body, a set of plausible segment length 
estimates are produced. In the third step, a set of plausible poses are inferred 
using a geometric method based on Joint limit constraints. In the fourth step, pose 
and anthropometric measurements are obtained by minimizing an appropriate cost 
function subject to the associated constraints. The novelty of our approach is the 
use of anthropometric statistics to constrain the estimation process which allows 
the simultaneous estimation of both anthropometry and pose. 

For the purposes of our research, we have developed a generic Virtual human 
model (VHM) and a Statistical model for the distributions of various model mea­
surements. This allows our algorithm to employ a hierarchical solver to estimate 
the Parameters of a VHM whose projection most closely matches the image. Our 
VHM (Fig. 20.1) was inspired by the human body model employed at the Hu­
man Modeling and Simulation Center at the University of Pennsylvania [41]. Its 
skeleton consists of a set of sites/landmarks (Table 20.1) and a coUection of Seg­
ments (Fig. 20.1). Using the anthropometric measurements in [594], we build 
a cadre family for our Statistical model, also known as a boundary family [39]. 
The cadre family is a multivariate representation of the extremes of the popula-
tion distribution. It has the ability to span the multivariate space in a systematic 
fashion and to capture a significant amount of the variance in the space using 
a small number of sample human models. Our particular cadre family has 2187 
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Table 20.1. Information related to the joints of the Stick Model 
ID 
at 
sp 
la 
Ic 
le 
Ih 
Ik 
Is 
Iw 
ra 
rc 
re 
rh 
rk 
rs 
rw 
wt 

~r~ 
UT+LT 

Joint 
atlanto occipital 
solar plexus 
left ankle 
left clavicle 
left elbow 
left hip 
left knee 
left Shoulder 
left wrist 
right ankle 
right clavicle 
right elbow 
right hip 
right knee 
right Shoulder 
right wrist 
waist 

From 
NK 
UT 
LLL 
UT 
LUA 
LT 
LUL 
LC 
LLA 
RLL 
UT 
RUA 
LT 
RUL 
RC 
RLA 
LT 

To 
HD 
NK 
LF 
LC 
LLA 
LUL 
LLL 
LUA 
LHD 
RF 
RC 
RLA 
RUL 
RLL 
RUA 
RHD 
UT 

DOF 
Tz*Rz*Ry*Rx 
Tz*Ry*Rz*x 
Tx*Rz*Rx*Ry 
Tz*Rx*Ry 
Tz*Ry 
Tz*Rz*Rx*Ry 
Tz*R-y 
Tz*Rz*Rx*Ry 
Tz*Ry*Rx*Rz 
Tx*R-z*R-x*Ry 
Tz*R-x*Ry 
Tz*Ry 
Tz*R-z*R-x*Ry 
Tz*R-y 
Tz*R-z*R-x*Ry 
Tz*Ry*R-x*R-z 
Tz*Ry*Rz*Rx 

Table 20.2. The segments used for Computing the covering set 
T2 h 

LC LUA 
h 

LLA 
5̂ 

LHP 
IQ I7 

LUL LLL 

PR 
3 
2 
4 
3 
5 
2 
3 
4 
6 
4 
3 
5 
2 
3 
4 
6 
1 

~~k~ 
LF 

VHMs. Specifically, our algorithm has the following steps: 1) Selection of pro-
jected landmarks; 2) Initial anthropometric estimates; 3) Initial pose estimates; 
and 4) Iterative minimization over lengths and angles. 

Step 1 is accomplished via a simple user interface that allows a user to select 
the projection of visible landmarks of the subject's body. In order to conduct an­
thropometric measurements, the user is also prompted to select pairs of segments 
from the covering set given in Table 20.2. These pairs need to be oriented either 
parallel to the image plane, or similarly w îth respect to the camera. Let X be the 
set of indices these segments have. Let hn (n e X) be the length of segment n 
measured on the image, and let ln{q) (q = 1,..., 2187) be the length of the same 
segment n on the VHM indexed by q in our cadre family. According to projective 
geometry, ratios of these measurements carry over to ratios of the corresponding 
measurements on the VHM. We fix an indexing set /C for the possible ratios s^, 
and alv^ays choose as denominator the segment with the smaller average length: 

Sk 
hm/hn ifßiln) > /^ (Im) 
hn/hm otherwise 

v^here /j. (In) is the average of the lengths ln{q) over all VHMs (indexed by q) in 
the cadre family. 

Having established the set JC of ratios that v̂ e are going to use, we next compute 
the corresponding length ratios 'rk{q), (where k e JC and q = 1, • • •, 2187) on 
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each VHM (indexed by q) in our cadre family, and let O be the covariance matrix 
of theirratios. 

Step 2 identifies the VHM q^ from the cadre family whose length ratios Tk{q^) 
are closest to the ratios Sk using the Mahalanobis distance. It requires solving the 
foUowing discrete selection problem: 

(f - argmin ^(rA;(g) - Sk)(Y^Vkj(rj{q) - Sj)), 
^ keK jeK. 

where [v^j] = 0~^. 
We have now identified a VHM with the right proportions (correct up to scale). 

In the next two steps of the algorithm the variables we want to estimate are the 
lengths of the body segments (the scale factor) and their pose. Therefore, we will 
solve a System of equations where prior Information about the human body (e.g., 
relations between lengths of segments) will provide constraints to an optimization 
that minimizes the discrepancy between the synthesized appearance of the VHM 
(for that pose) and the image data of the subject in the given image. 

As mentioned earlier, the user selects a set of points on the image that corre-
spond to the projection of sites of the VHM. For each of these points, we set up a 
point-to-Hne constraint, since the site will lie on a Hne that goes through the Cen­
ter of the Camera and the projection of a landmark. Let c be the camera's center 
of projection, m^ be the position of a VHM's site, and m^ be the corresponding 
projection point selected by the user. The point-to-line constraint is ĉ  = c + Xdi, 

Gathering all these constraints together, the optimization problem becomes: 
minimize | |(mi,c^)| | subject to Cj{mi){j — 1,2,3), where Ci(m^) is a con­
straint derived from the ränge of motion of the VHM's Joint; C2{mi) is a 
constraint that enforces symmetry between the left and right sides of the VHM 
(e.g., RC^iLC, RFÄJLF, R U L Ä I L U L ) , and Cs{mi) proportional constraints (i.e., 
Tkiq"") ~ Sk). 

We seek to minimize the value of this function using a BFGS nonlinear solver 
[919]. Due to the large number of degrees of freedom, we apply the solver in a 
hierarchical manner. Our method schedules an optimization process starting with 
the joints closer to the waist and moving outwards using the priorities given in 
Table 20.1 (PRcolumn). 

In Order for the nonlinear solver not to get trapped into a local minimum, 
we use a geometric method to provide an initial estimate for the pose of the 
segments whose endpoints were selected by the user. We compute two ini­
tial estimates as follows. Let m^ be the projection of site rrii in the image, 
li > 0 be the length of the segment of which this landmark is the end-effector, 
j be the position of the parent Joint of that landmark on the VHM's skele-
ton, and di be the unit direction between the camera and m^. Then, the two 
possible initial guesses for rui are: mn = c -\- Xidi and mi2 = c + X2di, 

where A = yj[di* {c - j)]^ - \\c-jf i-ll X^ = di • {j - c) + A and 
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X2 = di • {j — c) — A. Information about the Joint limits is used to prune the 
Solutions that are not feasible. 

20.2.2 Model-based tracking 

Having obtained a geometric model of the person to be tracked the next step is 
to track the human in the image sequence. We achieve this by continuously com-
paring the difference between the actual image frame and the synthetic image 
computed by projecting the estimated VHM to the image plane. We assume that 
the VHM is described by a set of parameters 6 . The proposed algorithm assumes 
that the similarity of appearance of the subject over the time of acquisition leads to 
the minimum of a convex function on 9 . Specifically, the method searches for the 
best pose in each image by minimizing the discrepancies between the image under 
consideration and a synthetic image of an appropriate VHM. By including in the 
objective function penalty factors from the image segmentation step, the search 
focuses on the regions that belong to the subject. These penalty factors convert the 
objective function to a convex function, which guarantees that the minimization 
converges to the global minimum. In addition, we follow a hierarchical decompo-
sition approach from the hip towards the limbs and the head using ensembles of 
no more than three Segments and restrict the search on the meridian directions (as 
per Algorithm 6). By constraining movement to one meridian direction at a time, 
the minimization procedure reduces to a one-dimensional problem. 

We now describe our method in more detail. In each frame, let p be the coordi-
nates of a pixel, v^ be the intensity in location p of the current image, V^ be the 
intensity in location p of the synthetic image of the projection of the VHM, \{Vp) 
be penalty factors for the projected values of the VHM's Segments, and \{vp) be 
penalty factors for the image frame. The values of the penalty factors A are close 
to 1 for pixels that belong to a region in the image that corresponds to the subject 
being tracked or to a region in the synthetic image that corresponds to the pro­
jection of the VHM's segment, and assume a large positive value otherwise. The 
tracking problem can then be described as determining the set of parameters B 
that minimize the value of the function / (O) : 

minimize / ( B ) - ^ \{Vp)\{vp) (Vp - v^f . (20.1) 
p 

Our hierarchical method of solving this is presented in Algorithm 3. We use an 
iterative forward and backward prediction algorithm, where the Output of process-
ing one frame is used as input for the next. We present this algorithm first. Let tf 
be the number of frames in the image sequence, 5/ denote the selected initial 
frame, Vf a frame counter, Cf denote the current frame, and fd denote the order 
of processing the frames (it can take only two values: 1 for forward or - 1 for 
backward). 

Algorithm 2. HUMAN MOTION TRACKING 
1: Vf — 1, fd = l, and Cf = Sf. 



332 Kakadiaris & Barrön 

2: while (vf ^ tf) do 
3: Find B that minimizes / (B ) (Algorithm 3). 
4: if c/ — tf then /̂ ^ = —1, c/ = 5/ 4-1. 
5: eise Vf = Vf + 1. 
6- cf = Cf-\- fd. 

The objective function / (B ) described in Eq. 20.1 is nonlinear and non-convex, 
and the search Space for B is high dimensional. The key to solving Eq. 20.1 
is to restrict the search to subspaces, and proceed hierarchically to cover the 
whole search space. The subspaces in the search space correspond to the Parame­
ters that describe each area of the VHM: hips (HPS), chest-neck-head (CNH), 
left arm (LAR), right arm (RAR), left leg (LLG) and right leg (RLG). Thus, 
B - {OHPS, ^CNH, ^LAR, ^RAR, ^LLG, ^RLG)- Each subspace S describes 

an ensemble of at most three articulated segments (Lf, Lf, L§). For each Seg­
ment in an ensemble, all that is required is the estimation of the segment's rotation 
Ö L = {oi, ßy 7), since the position of its distal end has already been established in 
previous steps of the algorithm. The only exception is the initial subspace, HPS, 
which requires the determination of both positional and rotational Information. 

Algorithm 3. HiERARCHICAL D E C O M P O S I T I O N 

1: Update the VHM's appearance. 
2: Segment the next image. 
3: Find B restricted to HPS that minimizes / ( B ) 
4: for Sin {CND,LAR,RAR,LLG,RLG}, 
5: for L in (Lf, Li Li). 
6: Predictprojected angle (Algorithm A). 
7: Compute line-sphere intersection. 
8: Perform convexity test (Algorithm 5 / 
9: Find B restricted to L that minimizes / ( B ) in two steps: 

Compute a, ß (meridian directions), and 
Compute 7 (the segment's rotation with respect to its axis). 

We now describe each of the mentioned steps in more detail. For each ensem­
ble S, the prediction algorithm searches a small sector of a circular region. The 
estimation of the projected angle is based on the continuity of a Hne that connects 
an active Joint and its next Joint or site over a segment. Let ei and 62 be scaling Pa­
rameters, Is be the projected length ofa segment, Im be the length's lower bound. 
IM be the length's Upper bound, ß be a set of points, and 0 be the empty set. The 
steps predicting the projected angle are the following: 

Algorithm 4. PREDICTION 

1: Im == eils, IM == h, ^i =" ^2ls> and ß=0. 
2: while (B=^ and Im > O; do 
3: for all the points on the sector ofthe circular region between 

Im and IM on the parent segment 's orientation 
4: Compute a linefrom the active Joint to thepoint. 
5: if the Hne lies inside the segment then add this point to B. 
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6: if ß = 0 then 1^ = 1^- öi and IM = IM - ^i-
7: If J5=0 then return no projected angle. 
8: Estimate the center ofmass ofB. 
9: return projected angle ofthe center ofmass. 

Using a projected angle as input, the convexity test is performed on the merid-
ian direction perpendicular to the segment's orientation. The objective is to verify 
that changes in the angle ofthe active Joint result in a basin on / ( B ) . Let es be 
a Parameter, 0 be the projected angle, Oi be the left limit, 9r be the right limit, 
and JR^ {9) = / ( 6 ) be the objective function restricted to angles on the merid-
ian direction Ri (see Algorithm 6). The steps to perform a convexity test are the 
foUowing: 

Algorithm 5. CONVEXITY TEST 

1: Ol =0-e3md0r = 0-\-€s. 
2: Si = fn, {Oll Sr - fn, {Or), and S = /R, {9). 
3: if Si > S A Sr > S then return convexity on [9i,9r]. 
4: ifSi >6'then 
5: repeat until \9r - 9i\ > 180° 
6: 9r = 9 -{- e-s, Sr = JR^ {9r). 
7: \iSr>S then return convexity on [9i, 9r]. 
8: eise 
9: repeat until \9r -9i\> 180° 
10: 9i=9-e:,,Si = fR,[9i). 
11: \iSi> S then return convexity on [9i, 9r\-
12: return no convexity on [9i,9r]. 

Finally, we compute a rotation on the meridian directions as foUows. Let us 
consider a joint-segment ensemble for which the coordinate System ofthe Joint 
ZXY(a, ß, 7) is rotated by a rotation matrix M. Let i, j , and k be the unit vectors 
ofthe global coordinate Systems, c be the camera's center of projection, s be the 
current site position, and j be the current Joint position with respect to the global 
coordinate System. The spherical coordinates are denoted by r, -0, cj where r > 0, 
ijj e [0,27r] and tu e [-7r/2,7r/2] centered at the origin ofthe global coordinate 
System. Note that when the position of a site moves along the direction ip this is 
equivalent to almost moving parallel over the image plane, while moving along 
the direction u is equivalent to moving towards or av^ay from the image plane. 
Let Atjj, Auj be the amount to rotate a site around the image plane or towards and 
backwards from the camera respectively. Then, the angles a,ß, and 7 to locally 
rotate the joint-segment ensemble are obtained by the foUowing algorithm: 

Algorithm 6. MERIDIAN MOTION 

1: Compute Vg, ißs ^nd UJS, the spherical coordinates of s. 
2: Compute the desirableposition 5i = (r^, t/̂ g -t- Ai/̂ ,uj + Au;). 
3: Compute p the Cartesian coordinates ofsi. 
4: Compute Pi — p — j , and pi -= --^ llPi 
5: Compute the rotated orthogonal unit vectors: 
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Table 20.3. Accuracy of the length estimates for the subject Vanessa 

Actual 
Estimated 
PE% 

LC 
UT+LT 
0.6279 
0.6402 
1.9589 

LLA 
LDÄ 

0.8625 
0.8516 
1.2638 

LHP 
LUA 

0.6949 
0.6728 
3.1803 

LF 

Eur: 
0.5517 
0.5594 
1.3957 

LF 
EEE 

0.4778 
0.4888 
2.3022 

ii = Mi, ji = Mj, and ki =^ Mk. 
6: Ifthe segment's direction is negative sei: 

ii = -H,ji = -ji, and ki = -ki. 
7: Compute the orthogonalprojection ofpi on the rotated local coordinate 

System: xi = ii • pi, yi == j i • pi, and zi = ki - pi. 
8: Compute the angles o;, /5,7 taking into consideration the orientation of 

the Segment at its initialpose, i.e., for its angles equal to (0,0,0). 
case ±X: a = arctan(|i-) and ̂  = — arcsin(2;i). 
case ± Y: a = - arctan( |^) and ß = aresin(2^1). 
case ±Z: ß = — arctan(|i-) and 7 = arcsin(a;i) 

20.3 Results 

We have performed numerous experiments to assess the accuracy, limitations, 
and advantages of our methods. Due to Space considerations, we present selected 
results only. The real Image sequences were recorded using a PULNiX TMC-9700 
2/3" Color Progressive Scan, and a SONY Handycam Corder Hi8 at 30 frames per 
second. For our experiments, we selected 61 = 0 . 9 , €2 = 0.1, and €3 = 5°. 

For the first experiment, we applied our technique to an image from the subject 
Vanessa whose anthropometric dimensions were manually measured. Fig. 20.2(a) 
depicts the selected points, Fig. 20.2(b) depicts the reconstructed model overlaid 
to the image, and Figs. 20.2(c,d) depict the reconstructed model from novel views. 
Table 20.3 captures the percentage errors (PE) in estimating the length ratios. We 
observe that the estimation of anthropometric Information is within 3.2% of the 
anthropometric dimensions of the subject. Figure 20.3 summarizes results from a 
variety of application domains. Specifically, Figs. 20.3(a,d,g,i) depict a geologist, 
a basketball player, a tennis player and a golfer, respectively. Figs. 20.3(b,e) depict 
the reconstructed models overlaid to the images, and Figs. 20.3(c,f) depict novel 
views of the reconstructed VHM. The second experiment assessed the robustness 
of our method in the presence of occlusion. To that end, we have recorded an 
image sequence depicting a human drawing on a board (Fig. 20.4(a)). Fig. 20.4(b) 
depicts the results of our algorithm overlayed onto the original image sequence, 
while Fig. 20.4(d) depicts the estimated trajectories for Ish, le, Iw, rsh, re, rw, and 
rhd. To validate our algorithm we compared the reconstructed coordinates of the 
markers' tips on the plane of the board using MatchMover (REALVIZ Products) 
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Figure 20.2. Anthropometry and pose estimation for the subject Vanessa: (a) selected 
points, (b) reconstructed model overlaid to the Image, and (c,d) novel views of the 
reconstnicted 3D skeleton. 

and our algorithm. Fig. 20.4(c) depicts the estimates of our algorithm for the right 
hand as compared with the estimates obtained with MatchMover. For the right 
hand there is occlusion at frames 44-46, 83-85 and 123-125. For these frames 
MatchMover requires manual intervention. However, our algorithm can cope with 
partial self-occlusions without any need for intervention. 

In addition, we have tested our algorithm using a variety of video clips to 
assess the robustness of our method with respect to differences in lighting condi-
tions, differences in motion cadence, and degraded image quality. As an example, 
a Video clip obtained from David Carradine's Kung Fu Workout video, which 
presents difficulties due to Variation of lighting, presence of shadows, rapid mo­
tion, and self-occlusion, is analyzed in Fig. 20.5. Figure 20.6 presents tracking 
results for a video clip (from http://www.fencing.net/) depicting two fencers in 
an action called parry-riposte. Both fencers were tracked independently. In all the 
clips tested, our algorithm successMly estimated the movement of the subjects. 
Currently, we are developing a vision-based Interface that will allow an astronaut 
to remotely control ROBONAUT by tracking the astronaut's upper body move-
ments. The ROBONAUT (ROBOtic astroNAUT) is an anthropomorphic robot 
with two arms, two hands, a head, a torso and a stabilizing leg, that is currently 
being developed at NASA Johnson Space Center to provide an astronaut Sub­
stitute for EVA Operations. We have developed a technique for estimating Upper 
body motion from monocular Images [550], estimating the motion parameters of 
the links by maximizing the conditional probability of the frame to frame inten-
sity differences at Observation points. Our contribution is that technique relates 
the frame to frame intensity difference to the motion parameters, we have consid-
ered also: a) the camera noise, b) the shape errors of the model, and c) the position 
errors due to the motion estimation errors resulting from the motion analysis of 
previous frames. Preliminary results in that domain indicate that for a camera 
noise level of PSNR=40 dB our algorithm achieves a reduction of the error vari-
ance of up to 40% for the estimated translation parameters and up to 35% for the 
rotation parameters. 
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(g) (h) 

(i) 0) 
Figure 20.3. Input Images depicting (a) a geologist, (d) a basketball player, (g) a tennis 
player, and (j) a golfer along with the user selected input landmarks; (b,e) Reconstructed 
models overlaid to the images; (c,f) Novel views of the reconstructed VHM; and (i,k) 
Reconstructed 3D models. 
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Figure 20.4. (a) Frames 0, 90, 120, and 149 from a video depicting a human writing on 
a board. (b) Overlay of our results onto the Image sequence. (c) Estimated coordinates of 
the markers' tips on the plane of the board using MatchMover (REALVIZ Products) and 
our algorithm. (d) Estimated 3D trajectories for Ish, le, Iw, Ihd, rsh, re, rw, and rhd for the 
image sequence depicting a subject writing on the board. 
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Figure 20.5. Frames from the Tiger Kung Fu moves sequence with overlay and novel views. 
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Figure 20.6. Frames from the fencing sequence with novel views. 

20.4 Discussion 

Although the problem of autonomous, continuous detection and tracking of hu­
man motion in video data from a Single camera is far from solved, significant 
progress in this direction has been made in recent years. It is an area of active 
research that is receiving significant attention (as evidenced by the large num-
ber of papers in the area), especially after the recent increased awareness of its 
importance in relation to homeland security. As a result, several Systems have 
been designed to tackle this problem, with varying degrees of success. Commer-
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Figure 20.7. Commanding a ROBONAUT Simulation developed at NASA-JSC with the 
estimated motion parameters of the HAZEL-B sequence. (a-c) Frames 1, 45, 90 from the 
sequence HAZEL-B. (d-f) Original frames with the model overlayed at the estimated Po­
sition and orientation. (g-i) Coronal and (j-l) sagittal view of the postures corresponding to 
the frames 1, 45, 90 of the sequence. 
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cial Systems have entered the market. Model-based approaches can effectively 
overcome some of the issues that have been hindering progress in the past, such 
as handling occlusions. As the computational efficiency and the availability of 
processing power increase, such algorithms become more attractive. The key to 
success of model-based methods for HMA is to restrict the problem in more 
specific domains, focusing on the specific requirements of an appHcation in-
stead of attempting a general, all encompassing approach. After all, monitoring 
and surveillance Systems vary greatly depending on the application. In a secu-
rity surveillance environment such as an access control area (e.g., airport), the 
System needs to be robust enough to be able to handle thwarting attempts and 
could be primarily focused on human motion detection. Monitoring Systems on 
the other hand, deployed in other types of environments, such as hospital ICUs or 
retirement homes, are primarily aimed at human motion analysis, trying to detect 
dangerous behavior rather than persons themselves. Spoofing attacks tend to be 
less of a concem for such monitoring Systems, and the main concem is accuracy. 

Conceming Validation, we are now at a point where several published algo­
rithms exist, and a thorough evaluation of their Performance on a comprehensive 
corpus of data is needed to assess issues of accuracy, robustness, and computation 
cost. In addition, the role of biometrics and how they can be integrated [645, 921] 
with human motion capture results points in promising future research directions. 
A strong interest in security applications is expected to drive such research in the 
near fiiture. 

In summary, research in human motion analysis has entered an exciting phase 
that will continue to provide challenging problems as well as inspired Solutions to 
the Computer vision Community. 
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Modeling Dynamic Scenes: An 
Overview of Dynamic Textures 

G. Doretto and S, Soatto 

Abstract 
Dynamic scenes with arbitrary radiometry and geometry present a challenge 
in that a physical model of their motion, shape, and reflectance cannot be 
inferred. Therefore, the issue of representation becomes crucial, and while 
there is no right or wrong representation, the task at hand should guide the 
modeling process. For instance, if the task is three-dimensional reconstruc-
tion, one can make assumptions on reflectance and illumination in order to 
recover shape and motion. If the task is synthesis, or reprojection, the cor-
rect shape is unimportant, as long as the model supports the generation of 
a valid view of the scene. If the task is detection or recognition, a physical 
model is not necessary as long as one can infer a Statistical model that can 
be used to perform Classification, We concentrate our attention on the two 
latter cases, and describe a modeling framework for dynamic scenes for the 
purpose of synthesis, detection and recognition. In particular, we restrict our 
attention to sequences of Images of moving scenes that exhibit certain Statis­
tical stationarity properties, which have been called Dynamic Textures. They 
include sea-waves, smoke, foliage, whirlwind etc. In this chapterwe describe 
a characterization of dynamic textures and pose the problems of modeling, 
leaming, recognition and segmentation of dynamic textures using tools from 
time series analysis, and System identification theory. 

21.1 Introduction 

Consider a sequence of images ofa moving scene. Each image is an array of pos­
itive numbers that depend upon the shape, pose, viewpoint (geometry), material 
reflectance properties, and light distribution (radiometry) of the scene, as well as 
upon the changes of all of these factors over time, i.e. upon the dynamics of the 
scene. In principle, to fuUy analyze and understand the properties of a video se­
quence, one would want to recover the physical model of the scene that could have 
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generated the Images. Unfortunately, it is well known that the Joint reconstruction 
of radiometry, geometry, and dynamics of the scene {visual reconstruction prob-
lem) is an intrinsically ill-posed problem: From any number of images it is not 
possible to uniquely recover all the unknowns (shape, pose, reflectance, light dis-
tribution, and viewpoint). This means that it is always possible to construct scenes 
with different radiometry, geometry, and dynamics that give rise to the same im­
ages. For example, a video clip of the sea at sunset could have been originated by 
a very complex dynamic shape (the surface of the sea) with constant reflectance 
properties (homogeneous material, water), but also by a very simple shape (e.g. 
the plane of the television monitor) with a dynamic non-homogeneous radiance 
(the televised spatio-temporal signal). The ill-posedness of the visual reconstruc­
tion problem can be tumed into a well-posed inference problem within the context 
of a specific task, and one can also use the extra degrees of freedom to the benefit 
of the appHcation at hand by satisfying some additional optimahty criterion (e.g. 
the minimum description length (MDL) principle [675] for compression). This 
way, even though one cannot infer "the" (physically correct) model of a scene, 
one can infer a representation of the scene that can be sufficient to support, for 
instance, control, or recognition tasks. 

In this chapter we survey a series of recent papers that describe very simple 
Statistical models that can explain the measured video signal, predict new mea-
surements, and extrapolate new image data. These models are not models of the 
scene, but Statistical models of the video signal. In general, they fail to capture 
the correct radiometry, geometry, and dynamics of the scene. Instead, they cap­
ture a mixture of the three that is equivalent to the underlying physical model 
of the scene, once the Statistical model is "visualized" as a sequence of images. 
HopefuUy, these models will provide a representation of geometry, radiometry 
and dynamics that is sufiicient to support recognition and segmentation tasks. 

We put the emphasis on sequences of images that exhibit some form of tempo­
ral regularity^, such as sequences of fire, smoke, water, foliage or flowers in wind, 
clouds, crowds of waving people, etc., and we refer to them as dynamic textures 
[278]. In Statistical terms, we assume that a dynamic texture is a sequence of im­
ages, that is a realization from a stationary stochastic process^. In Section 21.2 we 
describe a representation of dynamic textures introduced in [748] that is general 
(it accounts for every possible decomposition of images, and every possible dy­
namics of sequences), and precise (it allows making analytical Statements and 
drawing from the rieh literature on System Identification). In Section 21.7 we 
describe a technique to leam model parameters using maximum Hkelihood or 
prediction error methods. Under the hypothesis of second-order stationarity, there 
is a closed-form sub-optimal Solution of the leaming problem. In Section 21.4 
the model is tested on Simulation and prediction, showing that even the simplest 

'The case of sequences that exhibit temporal and spatial regularity is treated in [280]. 
^A stochastic process is stationary (of order k) if the Joint statistics (up to order k) are time­

invariant. For instance a process {/(t)} is second-order stationary if its mean 7 = E[I{t)] is constant 
and its covariance E[{I{t\) — I){I{t2) — /)] only depends upon t2 — t i . 
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instance of the model captures a wide ränge of dynamic textures. The algorithm 
is simple to implement, efficient to learn and fast to simulate; it allows gener-
ating infinitely long sequences from short input sequences, and to control the 
Parameters in the Simulation [281]. In Section 21.7 we investigate the discrim-
inative power of the models and describe a Classification scheme based on the 
Ä;-nearest neighbor rule, as it has been proposed in [698]. Section 21.7 addresses 
the Problem of segmenting the image plane of a video sequence into homoge-
neous regions characterized by constant spatio-temporal signatures, as introduced 
in [279]. We illustrate a region-based segmentation framework where we model 
the signatures with dynamic texture models and compare them by means of the 
distances proposed in Section 21.5.1. 

21.1.1 Related work 

Statistical inference for analyzing and understanding general images has been 
extensively used for the last two decades. There has been a considerable amount 
of work in the area of 2D texture analysis, starting with the pioneering results 
of Julesz [444], until the more recent Statistical models (see [658] and references 
therein). 

There has been comparatively little work in the specific area of dynamic (or 
time-varying) textures. The problem has been first addressed by Nelson and 
Polana [596], who classify regional activities of a scene characterized by com-
plex, non-rigid motion. Szummer and Picard's work [783] on temporal texture 
modeling uses the spatio-temporal auto-regressive model, which imposes a neigh-
borhood causality constraint for both spatial and temporal domain. This restricts 
the ränge of processes that can be modeled, and does not allow to capture rota-
tion, acceleration and other simple non translational motions. Bar-Joseph et al. 
[50] uses multi-resolution analysis and tree-merging for the synthesis of 2D tex­
tures and extends the idea to dynamic textures by constructing trees using a 3D 
wavelet transform. 

Other related work [318] is used to register nowhere-static sequences of im­
ages, and synthesize new sequences. Parallel to these approaches there is the work 
of Wang and Zhu [855, 856] where images are decomposed by Computing their 
primal Sketch, or by using a dictionary of Gabor or Fourier bases to represent im­
age Clements called "movetons." Such models capture the temporal variability of 
either the graph describing the Sketches, or the movetons. Finally, in [913] feed-
back control is used to improve the rendering Performance of the dynamic texture 
model we describe in this chapter. 

The problem of modeling dynamic textures for the purposes of synthesis has 
been tackled also by Computer graphics researchers. The typical approach is to 
synthesize new video sequences using procedural techniques that essentially en-
tail clever concatenation or repetition of training image data. The reader is referred 
to [716, 869, 499, 83] and references therein. 
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21.2 Representation of dynamic textures 

The intuitive notion of a dynamic texture is that of a sequence of images that 
exhibits temporal regularity. Individual images are clearly not independent real-
izations from a stationary distribution, for there is a temporal coherence intrinsic 
in the process that needs to be captured. Therefore, the underlying assumption 
is that the temporal correlation of sequences can be modeled by the Integration 
of independent and identically distributed (HD) samples from a stationary distri­
bution. In other words, a sequence of images can be modeled as the Output of a 
dynamical System. We follow [278] and now make this concept precise. 

Let {I{t)}t=i...T, I{t) ^ ^^, be a sequence of r images. Suppose that at each 
instant of time t we can measure a noisy version of the image, y{t) = ^(0 + 
w{t), where w{t) G W^ is an HD sequence drawn from a known distribution 
Pw{') (that can be inferred from the physics of the imaging device), resulting in 
a positive measured sequence {y(t)}t=i...r- We say that the sequence {I[t)] is 
a (linear) dynamic texture if there exists a set of n spatial iilters 0ĉ  : M —» W^, 
a = 1 . . . n and a stationary distribution q{-) such that, defining x{t) G M^ such 
that I{t) = (l){x{t)) (where 0(-) indicates the combination of the Output of the 
n iilters {cßa} respectively appHed to each of the n State components) we have 
x{t) = J2i=.i "^i^it - i) + v{t), with v{t) G W an HD reahzation from the 
density g(-), for some choice of matrices, Ai G R'^^'^\ i = 1 , . . . , A;, and initial 
condition x(0) = XQ. Without loss of generality, we can assume A; = 1 since we 
can augment the State of the above model to be x{t) = [x{t)^ x{t - l)^ ... x{t -
k)'^]'^. Therefore, a linear dynamic texture is associated to the dynamical System 

x{t + l) = Ax{t)-\-v{t) 

y{t) = <}>{x{t))-\-w{t) 

with x[Q) = xo, v{t) ~ q{') unknown, w{t) ~ Pw[') given, such that I(t) — 
(j){x{t)). One can easily generalize the definition to an arbitrary non-linear model 
of the form x[t + 1) = f{x{t),v{t)), leading to the concept of a non-linear 
dynamic texture. 

21.3 Leaming dynamic textures 

Given a sequence of noisy images {y(t)}t=i...T, leaming the dynamic texture 
model (21.1) amounts to identifying the model parameter A, the iilters </>(•), and 
the distribution of the input q{-). This is a form of System Identification prob-
lem [524], where one has to infer a dynamical model from a time series. The 
maximum-likelihood formulation of the dynamic texture leaming problem can be 
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posed as follows: 

g iven2/( l ) , . . . ,^ ( r ) , find 

A0(-) .^(-) = argmaxlogp(2/(l) , . . . ,2/(r)) (21.2) 
A,(f),q 

subject to (21.1) and f(t) ^ q. 

While we refer the reader to [278] for a more complete discussion about how to 
solve Problem (21.2), and how to set out the leaming via prediction error methods, 
here we summarize a number of simplifications that lead us to a simple closed-
form procedure. 

In (21.2) we have not made any assumption on the class of filters 0(-), and 
there are many ways in which one can choose them. However, in texture analysis 
the dimension of the signal is huge (tens of thousands components) and there is 
a lot of redundancy. Therefore, we view the choice of filters as a dimensionality 
reduction step and seek for a decomposition of the image in the simple (linear) 
form I{t) = E I L i ^i(t)^i = ^ ^ ( 0 . where C = [Qu ... ,0^] e M^^", m :^ n, 
and {Oi} can be an orthonormal basis of L^, a set of principal components, or 
a wavelet filter bank. Note that the inference method depends also upon what 
type of representation we choose for q. In principle, the unknown driving distri-
bution belongs to an infinite-dimensional space. In this exposition we assume the 
simplest parametric class of densities, which is Gaussian v{t) ^ A/'(0, Q), and 
Q e E^^^ is a Symmetrie positive-definite matrix. We assume a similar distri-

bution for the measurement noise w{t) ~ A/̂ (0, R), R e W^^'^. Under these 
hypotheses model (21.1) reduces to the foUowing linear Gauss-Markov model 

r x(t + 1) = Ax{t) + v{t) , v{t) - A/'(0, Q) , x{0) - xo , , . . . . 
\ y{t) = Cx{t) + w{t) , w{t) - A^(0, R) , ^^'-^^ 

and the System Identification problem consists in estimating the parameters 
A^CyQ.R from the measurements y{l),... ,y{T). It is well known that this 
model can capture the second-order properties of a generic stationary stochastic 
process [524]. 

The first Observation conceming model (21.3) is that the choice of matrices 
A,C,Q is not unique, in the sense that there are infinitely many such matrices that 
give rise to exactly the same sample paths y{t) starting from suitable initial con-
ditions. This is immediately seen by substituting A with TAT~^, C with CT~^ 
and Q with TQT^, and choosing the initial condition TXQ, where T e GL[n) is 
any invertible nxn matrix. In other words, the basis of the state-space is arbitrary, 
and any given process has not a unique model, but an equivalence class of models 
n = {[A] = TAT-\ [C] = CT-\[Q] = TQT^, \ T e GL{n)}. In orderto 
identify a unique model of the type (21.3) from a sample path y{t), it is neces-
sary to choose a representative of each equivalence class: such a representative is 
called a canonical model realization, in the sense that it does not depend on the 
choice of basis of the State space (because it has been fixed). 
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While there are many possible choices of canonical models (see for instance 
[446]), we will make the assumption that rank((7) = n and choose the canon­
ical model that makes the columns of C orthonormal: C^C — In, where In is 
the identity matrix of dimension n x n. As we will see shortly, this assumption 
allows to infer a unique model that is tailored to the data in the sense of delining 
a basis of the State Space such that its covariance P = limt_,oo E[x{t)x^(t)] is 
asymptotically diagonal (see Equation (21.7)). 

With the above simplifications one might use subspace identification tech-
niques [524] to leam model parameters in closed-form in the maximum-likelihood 
sense, for instance with the well known N4SID algorithm [832]. Unfortunately 
this is not possible. In fact, given the dimensionality of our data, the requirements 
in terms of computation and memory storage of Standard System identification 
techniques are far beyond the capabilities of the current state-of-the-art Worksta­
tions. For this reason, following [278], we describe a closed-form sub-optimal 
Solution of the leaming problem, that takes few seconds to run on a current 
low-end PC when m = 170 x 110 and r = 120. 

21.3,1 Closed-form Solution 

Let Y{ = [y{!),...,y{r)] G W^'''' with r > n, and similarly for XJ ^ 
[x ( l ) , . . . , x ( r ) ] G 1R̂ ><̂  and lyf - [w{l),... ,w{r)] e M^^^, and notice 
that 

Y{ = CXl-i-W^ . (21.4) 

Now let Y{ - UT>V^; U e R^^^; U'^U = I;V e W"", V^V = 7 be the 
Singular value decomposition (SVD) [352] with D = diag{cri, . . . , cr^}, and {cr̂ } 
be the singular values, and consider the problem of finding the best estimate of C 
in the sense of Frobenius: C'(r), X(T) — argminc,x[ l l ^ f IIF subject to (21.4). 
It follows immediately from the fixed rank approximation property of the SVD 
[352] that the unique Solution is given by 

C{r) = U , X{r) = E y ^ , (21.5) 

A can be determined uniquely, again in the sense of Frobenius, by solving the 
following linear problem: A{T) = argmin>i \\XJ — AXQ~^\\F, where XQ~^ = 
[x{0),... jx{r — l)] G M^ '̂̂  which is trivially done in closed-form using the State 
estimated from (21.5): 

A{T) - J:V' DiV{V' D2V)-'E-' , (21.6) 

where Z)i = 
0 0 

Ir-i 0 
andD2 = 

Ir-l 0 
0 0 

. Notice that C{T) is uniquely 

determined up to a change of sign of the components of C and x. Also note that 

1 '' 
E[x{t)x^{t)] = lim - V f (t + k)x^{t -^k) = E y ' ^ y S = E^ , (21.7) 
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Figure 21.1. Samples of four training sequences (top row) and four synthesized frames with 
the corresponding models (bottom row). (a) River sequence (r = 120 training images of 
m = 170 X 115 pixels). Simulation is performed with a model of State dimension n — 50. 
(b) Steam sequence (r = 120, m = 176 x 96), n — 30. (c) Fire sequence (r — 150, 
m = 360 X 243), n = 50. (d) Fountain sequence (r = 150, m = 320 x 220), n = 50. The 
river and steam sequences have been borrowed from the MIT Temporal Texture database, 
whereas the fire sequence comes fi-om the Artbeats Digital Film Library. In all these cases 
the State dimension n was given as input parameter. The movies are available on-line at 
h t t p : / / w w w . e s . u c l a . e d u / ~ d o r e t t o / p r o j e c t s / d y n a m i c - t e x t u r e s . h t m l . 

which is diagonal as mentioned in the first part of Section 21.7. Finally, the sample 
input noise covariance Q can be estimated from 

Qir)=^-J2vii)v'^ii), (21.8) 

where v{t) = x{t + 1) — Ä{T)x{t). Should Q not be füll rank, its dimensionality 
can be further reduced by Computing the SVD Q — UQEQUQ where D Q — 
diag{crQ^i,..., cTQ^ri^} with Uy < n, and one can set v{t) = Brj{t), with rj{t) ~ 
A^(0, / n j , and B such that BB^ = Q. 

In the algorithm above we have assumed that the order of the model n was 
given. In practice, this needs to be inferred from the data. FoUowing [278], one 
can determine the model order empirically from the singular values a i , (72,. . . , 
by choosing n as the cutoff where the singular values drop below a threshold. A 
threshold can also be imposed on the difference between adjacent singular values. 

21.4 Model Validation 

One of the most compelling validations for a dynamic texture model is to sim-
ulate it to evaluate to what extent the synthesis captures the essential perceptual 
features of the original data. Given a typical training sequence of about one hun­
dred frames, using the procedure described in Section 21.3.1 one can learn model 
Parameters in a few seconds, and then synthesize a potentially infinite number of 
new images by simulating (21.3). To generate a new image one needs to draw 
a sample v{t) from a Gaussian distribution with covariance Q, update the State 
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Figure 21.2. Error-bar plot of the average prediction error and Standard deviation (for 100 
trials), per pixel as a function of the length of the steam training sequence, expressed in 
gray levels (the ränge of pixel values is [0,255]). The State dimension is set to n = 20. 

x{t + 1) = Ax{t) -\- v{t), and compute the image I{t) = Cx{t). This can be 
done in real-time. Even though the result is best shown with movies, Figure 21.1 
provides some examples of the kind of Output that one can get (see [278] for more 
results). The simple model (21.3), that captures only the second-order temporal 
statistics of a video sequence, is able to represent most of the perceptual features 
of sequences of images of natural phenomena, such as fire, smoke, water, flowers 
or foliage in wind, etc., and even dynamic textures that are periodic Signals in 
time [277]. 

An important question is how long should the input sequence be in order to 
capture the dynamics of the process. To answer this question experimentally, for 
a fixed State dimension, we consider the prediction error as a function of the length 
r, of the input (training) sequence. This means that for each length r, we predict 
the frame r -f 1 (not part of the training set) and compute the prediction error per 
pixel in gray levels. We do so many times in order to infer the statistics of the 
prediction error, i.e. mean and variance at each r. Using one criterion for leaming 
(the procedure in Section 21.3.1), and another one for Validation (prediction er­
ror) is informative for challenging the model. Figure 21.2 shows an error-bar plot 
including mean and Standard deviation of the prediction error per pixel for the 
steam sequence. The average error decreases and becomes stable after approxi-
mately 70 frames. The plot of Figure 21.2 validates a-posteriori the model (21.3) 
inferred with the procedure described in Section 21.3.1. Other dynamic textures 
have similar prediction error plots [278]. 
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21.5 Recognition 

According to the model (21.3) a dynamic texture is characterized by a linear dy-
namic System with multiple-input and multiple-output (MIMO) driven by white 
noise (which is also a vector autoregressive moving average (ARMA) model). 
Therefore, foUowing [698], in order to build a recognition System able to cate-
gorize dynamic textures, one needs to first define a base measure in the space 
of vector ARMA models, and then to characterize probability distributions in that 
space. Defining an appropriate base measure in the space of vector ARMA models 
is not trivial, since each model entails a combination of an input density and State 
and Output transition matrices that have a very particular Riemannian structure 
(they are not a, linear space), and this problem remains unsolved to this day. 

>From a pattem recognition viewpoint [288], constructing a probability density 
is not necessary to solve problems such as Classification, clustering or group-
ing. For instance, the /c-nearest neighbor algorithm only requires a distance to 
be implemented. This approach can be applied to the space of models, that 
will be endowed by a probability structure induced by the notion of distance 
that we have defined. More precisely, suppose a set of model samples Mi , 
• • •, MTV, is given, where each model is labeled with Xj, which is one out of 
c classes. Given a new model sample M, the label Xm is chosen by taking a 
vote among the k nearest model samples. That is, A^ is selected if the ma-
jority of the k nearest neighbors have label Xm- For c = 2 this happens with 

probability Et(/c4-i)/2 ( ^ ] P(Anx|M)^(l - P ( A ^ | M ) ) ^ - \ Itcanbe shown 

[288] that if k is odd, iV » c, and c = 2, the error rate is bounded above 
by the smallest concave function of P* (the optimal error rate) greater than 

EitV^^^( ^ ) ( / ' *^ '^^ ( l -P*)^^ + P*^-^(l-F*)^+i).Notethattheanalysis 

holds for k fixed as N -^ oo, and that the rule approaches the minimum error rate 
for /c —» oo. 

We assume that a model M is given by the couple {A,C). That is, we do 
not consider the covariance of the measurement noise R, since that carries no 
Information on the underlying process. Moreover, we consider processes with 
different input noise covariance as equivalent, which means that we ignore Q. 

21.5.1 Distances between dynamic texture models 

One of the difiiculties in defining a distance between ARMA models is that each 
model M is described not only by the parameters [A, C), but by an equivalence 
dass of such parameters, as pointed out in Section 21.7. Therefore, a suitable 
discrepancy measure has to compare not the parameters directly, but their equiva­
lence classes. One technique for doing so has been proposed in [251]. It consists 
of building infinite observability matrices, whose columns Span the space gener-
ated by the measurements y{t) of the model (21.3), which is an n-dimensional 
subspace of the infinite-dimensional space of all possible measurements. Then 
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one can compute the geometric angles between such subspaces through their 
embedding. 

More formally, let S e W"^''''' and T G M^^"^ be two matrices with füll column 
rank. The n principal angles 9k G [O, f ] between ränge(»S*) and ränge(T) are 
recursively defined for /c — 1 , . . . , n as 

cost/fc - ^max^ \\sx\\2\\Ty\U " WSx^hWTy^h ) lor /c _ z , . . . , n 

subject ioxjS^Sx = 0 and yjT^Ty = 0, for i = 1,2, . . . , A: - 1 . 

Now, let Ml ^ {Al, Ci) and M2 == (A2, C2) be two models with the same Output 
dimensionality. Their infinite observability matrices Oi, fori — 1,2, are defined 
as Oi - [Cf AjCj ... {AJYCJ .. . ] ^ G ]R°°^^, and we refer to the 
principal angles between the ranges of Oi, and Ö2 as subspace angles. They can 
be computed in closed-form with a procedure described in [251]. 

For the case of minimum-phase single-input single-output (SISO) State Space 
models that correspond to autoregressive (AR) models, one can use the subspace 
angles to define the so-called Martin distance: 

dM[M„M2f=\nf{^^, (21.9) 

which was originally proposed in [548] as function of the cepstrum coeflficients-̂  
of the model, whereas the expression of the Martin distance as function of the sub­
space angles was introduced in [251]. It is also possible to define another distance, 
that uses only the biggest subspace angle, i.e. dp = On. Geometrically dp is the 
Finsler distance between two subspaces viewed as two Clements in the Grassman 
manifold G(oo, n) [874]. Roughly speaking, the difference between the Martin 
and Finsler distance is that d\i is an L^-norm but dp is an L°°-norm between 
linear Systems. 

Unfortunately, the generalization of d\j and dp to the case of MIMO linear 
dynamic Systems is not possible. For instance, it is not even guaranteed that the 
Martin distance be non-negative. Nevertheless, we used the idea of comparing 
two models by Computing their subspace angles, and tested the ability of the 
Martin distance, Finsler distance, and the naive Frobenius norm between model 
Parameters, to classify dynamic textures within a /j-nearest neighbor scheme. 

21.5.2 Performance ofthe nearest neighbor classifier 

We illustrate tests of the distances proposed in the previous section against a 
database of 50 categories of dynamic textures, each of which represented by 

^The cepstrum of a discrete-time process is the inverse Fourier transform ofthe logarithm ofthe 
power Spectrum. 
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four models, foUowing [698]. The models have State dimension n = 20, and 
have been extracted from sequences of length r = 75 frames of m = 48 x 48 
pixels, using the procedure illustrated in Section 21.3.1. The sequences capture 
natural phenomena Hke ocean waves, smoke, steam, fire, and plants. Included in 
the database are similar sequences with different dynamics. For example, there 
are water streams recorded from different angles, with ilows moving in different 
orientations and at different speeds. 

Between each pair of models of the database we computed the Frobenius norm, 
and the Martin and Finsler distance. Figure 21.3 shows a gray-level representation 
of the confusion matrix for a subset of 10 categories (40 sequences out of the en-
tire database), for the case of Frobenius norm (top) and Martin distance (bottom). 
Moving along the horizontal axis, we marked the first (with an "o") and second 
(with an "x") nearest neighbors. For example, with reference to the results using 
Martin distance (bottom), the dosest dynamic texture to Smoke 1 (in the vertical 
axis) is Smoke2 (in the horizontal axis). Similarly, the second dosest dynamic 
texture to Smoke 1 is Water-Fall-bl. 

If we define a hit when the first nearest neighbor of a sequence is one of the 
other three sequences in the same category, Figure 21.3 already highlights the 
differences between the Frobenius norm and the Martin distance. In the latter 
case most of the first nearest neighbors lie on the diagonal blocks (meaning that 
there are a lot of hits), whereas in the former they are almost randomly spread all 
over the blocks. In particular, if we count the number of correct hits for the whole 
database, in the case of Frobenius norm we obtain a hit ratio of 5.5%. This poor 
result is not unexpected since, even though ARMA models are linear, the space 
of model parameters is nonlinear and the Frobenius norm assumes linearity. On 
the other hand, the hit ratio of the Martin distance is 89.5%, whereas the Finsler 
distance is less efficient with a hit ratio of 24.5%. 

The encouraging results obtained using the Martin distance suggest that, in 
principle, a comprehensive database of models of commonly occurring dynamic 
textures can be maintained, and a new sequence could be categorized, after 
learning its parameters, using the Ä;-nearest neighbor rule. 

21.6 Segmentation 

Modehng the (global) spatio-temporal statistics of the entire video sequence can 
be a daunting task due to the complexity of natural scenes. An alternative con-
sists of choosing a simple dass of models, and then partition the scene into 
regions where the model fits the data within a specific accuracy. In this section, 
which follows [279], we discuss a simple model for partitioning the scene into 
regions where the spatio-temporal statistics, represented by a dynamic texture 
model, is constant. To perform this segmentation task we use a region-based ap-
proach pioneered in [591]. In particular, we revert to a level set framework of the 
Mumford-Shah functional introduced in [170, 809]. 
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Figure 21.3. Gray-level representation of the confusion matrices for a subset of 10 dynamic 
texture categories (40 sequences out of 200 of the entire database), computed using the 
Frobenius norm (top) and the Martin distance (bottom). 

Let n C M^ be the domain of an Image and {^i}i=i,...,N be a partition of H 
into N (unknown) regions"^. We assume that the intensities of the pixels yi{t), 
contained in the region Üi, are a Gauss-Markov process that can be modeled with 
a dynamic texture model (21.3), with (unknown) parameters Ai G R^̂ >^̂ % d G 
^mixn.^ and Qi e R^^^x^\ Note that we allow the number of pixels m^ to be 
different in each region, as long as YliLi ^* ~ ^ ' ^^^ ^̂ ^̂  ^^ ^^e entire image. 

"̂ That is, n = ufLi^i and Qi nQj =i/i,i^ j . 
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and that we require that neither the regions nor the parameters change over time, 
fti,Ai,Ci,Qi = const. With this generative model, the segmentation problem 
can be formalized as foUows: Given a sequence of Images {y{t)}t=i,...,T, y{t) ^ 
W^, with two or more distinct regions O ,̂ i — 1 , . . . , Â  > 2 that satisfy model 
(21.3), estimate both the regions Qi, and model parameters ofeach region, namely 
the matrices Ai, Ci, and Qi. 

If the regions H^, i = 1,... ,N were known, one would just be left with two 
Problems. The first one is the leaming of model parameters. This problem has 
already been solved in Section 21.3.1. Assuming that the parameters Ai, Ci, Qi 
have been inferred for each region, in order to set the stage for a segmentation 
procedure, one has to define a discrepancy measure among regions, i.e. between 
dynamic texture models. This problem have been approached in Section 21.7, and 
one can measure the discrepancy between different models by comparing either 
the subspace angles or their combination via the Martin distance (21.9). 

On the other hand, if the dynamic texture associated with each pixel were 
known, then one could easily determine the regions by thresholding or other 
grouping or segmentation techniques. However, a dynamic texture associated with 
a certain pixel x G 17, as defined in Equation (21.3), depends on the whole region 
Cli containing x. Therefore, we have a classic "chicken-and-egg" problem: If we 
knew the regions, we could easily identify the dynamical models, and if we knew 
the dynamical models we could easily segment the regions. Unfortunately, we 
know neither. 

Since one can always explain the image with a few high-order models with 
large support regions (the entire image in the limit), or with many low-order mod­
els with small support regions (individual pixels in the limit), in order to render 
the chicken-and-egg problem well posed, a model complexity cost needs to be 
added, for instance the description length of model parameters and the bound-
aries ofeach region [675]. This significantly complicates the algorithms and the 
derivation. Following [279], we simplify the problem, and first associate a local 
signature s(x) to each pixel x G H, by integrating Visual Information on a fixed 
spatial neighborhood ofthat pixel B(x) C Q.\ then we group together pixels with 
similar signatures in a region-based segmentation approach. 

Each signature contains the cosines of the subspace angles between the local 
dynamic texture model corresponding to {^/(x, t)}xGß(x),t=:i,...,r5 and a reference 
dynamic texture model, for instance the one corresponding to a preselected spatio-
temporal neighborhood centered at XQ G H, i.e. {'i;(x, t)}xgß(xo),t=i,...,r- With 
this representation, a segmentation of the image plane H into a set of pairwise 
disjoint regions Vti of constant signature Si G M^ is obtained by minimizing the 
Mumford-Shah cost functional [591]: 

^(r, {si]) = Y.j (̂ (̂ ) -Sifd^-\-v \T\ , (21.10) 

simultaneously with respect to the region descriptors {si}, modeling the average 
signature of each region, and with respect to the boundary F, separating these 
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Figure 21.4. Top row: segmentation of two dynamic textures that share the same 
dynamics, and differ only for the "orientation" of their spatial statistics. Middle 
row: segmentation of two dynamic textures that are identical in appearance, and 
differ only in the dynamics. Bottom row: segmentation when the region bound-
aries (of the flame), are changing in time. In all the experiments, the local dynamic 
textures were defined on neighborhood of 11 x 11 pixels, whereas the State 
dimension was set to n = 10. The contour evolutions are available on-line at 
h t t p : / / w w w . C S . u c l a . e d u / ~ d o r e t t o / p r o j ec t s /dynamic - segmen ta t ion .h tml . 

regions. The first term in the functional (21.10) aims at maximizing the homo-
geneity with respect to the signatures in each region O ,̂ whereas the second term 
aims at minimizing the length | r | of the separating boundary. 

Figure 21.4 demonstrates some aspects of dynamic texture segmentation, the 
reader is referred to [279] for a more complete account. The first row has a few 
snapshots of a sequence with ocean waves, where the portion of every frame 
within the Square and the circle have been rotated by 90 degrees. The superim-
posed contour evolution shows that the segmentation System can partition the 
image plane based only on the spatial statistics of the images. On the other hand, 
the sequence in the second row has the Square and circle filled with the same 
ocean waves of the background, but running at different speeds. In this case the 
algorithm segments based only on the dynamics of the regions. This ability is the 
most important aspect of this approach. The last row shows a sequence of fire 
combined with the ocean waves. Here the region boundaries are moving, against 
the initial hypothesis. The algorithm manage to estimates the "average" region 
where the flame is mostly present. 
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21.7 Discussion 

This chapter, which draws on a series of works published recently [748, 278, 698, 
279], illustrates that very simple Statistical models can capture the phenomenol-
ogy of very complex physical processes, such as water, smoke, fire etc. The fact 
that the synthesis from a very simple linear Gauss-Markov model is perceptually 
indistinguishable from the Simulation of non-linear Navier-Stokes partial differ-
ential equations, such as those that govem fluid motion, is indication that such 
models may be sufficient to support detection and recognition tasks and, to a cer-
tain extent, even synthesis and animation [281]. This work shows that modehng 
image motion, i.e. deformations of the domain of the image, can be done through 
modeling image values, i.e. the ränge of the image. Depending on the Statistical 
properties of the scene, this can be more or less efficient. Joint modeling of the 
Variation in domain and ränge of the image can result in more efiicient models, as 
it has been recently explored [282], pointing at a direction of new development. 
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Differential Geometry from the 
Frenet Point of View: Boundary 
Detection, Stereo^ Texture and Color 

S. Zucker 

Abstract 
Frenet frames are a central construction in modern differential geometry, in 
which structure is described with respect to an object of interest rather than 
with respect to extemal coordinate Systems. The Cartan moving frame model 
specifies how these frames adapt when they are transported along the object. 
We consider this as a model for integrating local Information with informa-
tion in a neighborhood for curve detection, Stereo, texture, and color. These 
different objects results in a series of geometric compatibility constructions 
useful within a number of different optimization and probabilistic inference 
techniques. 

22.1 Introduction 

Many problems in computational vision that involve inferences over noisy, local 
measurements have been formulated with a geometrical component. Our goal in 
this Chapter is to organize a number of such problems according to their geo­
metric content, to isolate a common thread between them that leads to differential 
geometry; and to introduce ideas from differential geometry to show how they can 
structure new approaches to seemingly unrelated computational vision problems. 
As described, the techniques can be used with a variety of different inference tech­
niques, including relaxation labeling [414], belief propagation, graph cuts [113], 
Markov random iields, quadratic programming, and so on. 

To prefigure the type of geometry we shall be concerned with, consider the 
Problem of boundary detection. Starting with local "edge" operators that Sig­
nal intensity differences in a small neighborhood around a point, the question 
is whether this intensity event is part of a boundary, or not. Since many objects 
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have smooth boundaries, and since these boundaries project into the Image as 
smooth curves, determining whether a putative boundary point continues through 
an image neighborhood containing that point is often key. Mathematically, since 
only a neighborhood is involved, the analysis is local. Computationally, since such 
questions can be asked around each point in the image, the local analysis must be 
applicable in a neighborhood around each point; i.e., it is parallel. Differential ge-
ometry is a mathematical abstraction of boundary completion that satisfies these 
requirements. It will lead, as we show, to connections between the local estimates 
that are specialized for each problem. 

Expanding the above points, recall that the best linear approximation in an in­
finitesimal neighborhood to a smooth (boundary) curve is its tangent, and that this 
tangent approximation can be made around each point. Therefore the question be-
comes whether nearby tangents are consistently part of a Single curve. To develop 
an intuition about what consistent might mean, recall the classical Gestalt demon-
stration of perceptual good continuation (Fig. 22.1). Observe how the "Figure 8" 
appears to continue across the crossing point; that is, how orientation is contin-
ued along the tangent direction. Many such demonstrations were developed in the 
early 20*'' Century ([483]). 

Approximately a half Century earlier a fundamental series of discoveries be-
gan conceming the differential geometry of curves, and they continued through 
the time period dominated by the Gestalt psychology movement. Frenet (in 1847) 
and, independently Serret (in 1851), introduced the idea of adapting a coordinate 
frame directly to a curve, rather than using extrinsic coordinates. The remarkable 
discovery was that changes in (derivatives of) this frame could be expressed di­
rectly in terms of the frame itself. The result is a beautiful expression of the theory 
of curves that fits precisely the requirements for perceptual Organization above. 
The Frenet-Serret theory was extended by Darboux to surfaces a few decades 
later, and was then elaborated to the powerful repere mobile-thQ moving frame-
by Elie Cartan. Moving frames are not slaves to any coordinate System; rather, 
they are adapted to the object under study, be it a curve, a surface (notice the 
texture flow in Fig. 22.1), a metric space or manifold. For Computer vision ap-
plications, we shall adapt them to curves (in 2-D and in 3-D), to texture, and to 
color. Local approximations of how these frames move will provide the geome­
try of connections that can be used with the different inference techniques listed 
above. 

There are many excellent texts describing this approach to differential geome­
try. We recommend [611, 753], which we have foUowed closely in preparing this 
Chapter. For related discussions see also [482]. This research was done in collab-
oration with Ohad Ben-Shahar, Lee Iverson, and Gang Li. I thank Pavel Dimitrov 
for illustrations and AFOSR, DARPA, NIH, and ONR for support. 
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.; ( 

Figure 22.1. Perceptual Organization is related to Gestalt notions of "good continuation." 
Observe how the "Figure 8" appears as a Single curve, with smooth connections across the 
Crossing point, and not as the non-generic arrangement of the two shapes in the middle. 
Such notions of orientation good continuation hold for textures as well; notice how this 
example appears to continue behind the occluders. 

22.2 Introduction to Frenet-Serret 

From a Newtonian perspective a curve can be thought of as the positions a{t) = 
(ai( t ) , a2{t), as{t)) in Euclidean 3-space swept out by a moving point a at pa-
rameter (time) t. Providedthe coordinate functions (a i , «2,0:3) are differentiable, 
a curve can be defined as a differentiable map a : I -^E^, from the open interval 
/ into E^. For now we shall assume the curve is simple, i.e., it does not cross 
itself, so the map is one-to-one and is an immersion of / into E*̂ . 

The derivative of a gives the velocity or tangent vector of a at i 

A curve is regulär provided these derivatives are not zero simultaneously. 
A reparameterization 5 = s{t) yields the arc-length (unit speed) parameteri-

zation in which the length of each tangent vector is 1. We denote this unit speed 
curve by ^ : / -^ E^ with | |^ '(5) | | = 1, 5 G / . 

For simplicity, we work with ß for the remainder of this Section. We are inter-
ested in direction and, for non-straight lines, the rate at which the curve is bending. 
Intuition is helped by picturing the unit tangents as vectors in E^ attached to the 
points ß{s) G E^, that is, as a vector field along the curve. Euclidean coordinates 
for this vector field can again be differentiated: 

dt^ ^^' dt^ ^^' dt^ « «-(^W,^W,-7:/W,W) 
to yield the acceleration, but geometrically the following construction will be 
more useful. (i) Denoting the unit tangent T = /? , we obtain T = ß , 
the curvature vector field. Observe T is orthogonal to T by differentiating 
T 'T = 1. The direction of the curvature vector is normal to ß, and its length 
/^(s) = | |T (s)||, 5 G / is the curvature, (ii) The vector field N = T /K defines 
the principal normal, and (iii) the vector field 5 = T x TV is the binormal vector 
field of/?. 
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:2ü^..^. 

Figure 22.2. The Frenet frame attached to a point on a curve a{s) approximated to third 
Order. 

The Frenet frame field on ß is the triple (T, A ,̂ B) such that T'T = N -N = 
B • B = l,al\ other dot products = 0, and the (i)-(iii) above hold (Fig. 22.2). 

The remarkable property of this construction is that the derivatives of the frame 
can be expressed in terms of the frame itself. For K > 0 and introducing the 
torsion r WQ have: 

r \ N^ = 
B' 

0 
— K 

0 

K 

0 
—r 

0 " 
r 
0 

/ T 
N 

\ B 
(22.1) 

These are the famous Frenet-Serret formulas. The torsion r measures how rapidly 
the curve is twisting out of the (osculating) plane spanned by {T,N). It is in 
this sense that the Frenet frame is adapted to the individual curve in a way that 
captures its essential (differential) geometric structure. 

Basically all of Information about the curve is contained in the Frenet-Serret 
formulas. The foUov îng theorem is fundamental in differential geometry: Let 
K,,r : I -^RhQ continuous (K,{S) > 0, 5 G / ) . Then there is a curve ^̂  : 7 -^ E^ 
with curvature function K,{S) and torsion T{S). Any two such curves differ only 
by a proper Euclidean motion. 

Writing the Taylor approximation to the curve in the neighborhood of ß{0), 
and then substituting the Frenet formulas above and keeping only the dominant 
terms, v ê obtain: 

2 3 

ß{s) « ß{0) + sß'{0) + jß"{0) + jsß"'{0) (22.2) 

2 3 

^ ß{0)-\-sTo + KojNo-hKoTojBo. (22.3) 

Thus the Frenet approximation shows how the tangent, curvature, and torsion 
effect the curve at each point (Fig.22.2). 
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Figure 22.3. Two ways to think about the local structure of a curve in the plane, (left) The 
Frenet Frame is a (tangent, normal) coordinate frame that is adapted to the local structure 
of each point along a curve; and (right) the osculating circle is that circle with the largest 
contact with the curve among all circles tangent at that point. 

22.3 Co-Circularity in R^ x S 1 

We now focus on curves in the plane E^. Observe that the first two terms in the 
Frenet approximation give the line in which the tangent (or best linear approxima-
tion) lies; the first three terms give the best quadratic approximation (a parabola) 
which, expressed in the (x,y) plane, has the shape y == KQX? /2 near /?(0). 

The quadratic approximation around a point is determined by the curvature at 
that point, which can be defined in another way. Suppose the curve is not straight, 
and choose any three points on ß in the neighborhood of/3(0). Taking the limit 
as the three points approach /?(0), the osculating circle at that point is obtained. 
This is the unique circle tangent to the curve at that point such that its center lies 
on the normal and its radius is the inverse of the curvature (Fig.22.3). 

The quadratic parabola is approximated by the osculating circle at that point, an 
Observation introduced for the geometry of co-circularity [630] ̂  The basic idea 
is illustrated in Fig. 22.4, which shows how local measurements of the tangent 
to a curve at an arbitrary point q and at a nearby point in its neighborhood have 
different orientations. The geometry of consistency is given by Frenet: if the frame 
in the neighborhood of q is transported along the curve to q, it should match the 
frame at q. If it does not, it is inconsistent. 

However, the curve must be known before transport can be applied, but this is 
what we seek. The Solution to this chicken-and-egg problem is to transport not 
along the actual curve, but along its approximation. We earlier showed that curva­
ture dictates this approximation, and it can either be measured directly (which is 
what we think happens in neurobiology, [271]) or estimated by other means ([35]). 
In any case, once the system is discretized, the osculating circle and parabolic ap-

'Because of space limitations, references are very limited; we recommend that the original 
publications are consulted for additional references. 
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The osculating circle approximates 

a curve in the neighborhood of a point 

True image 
curve 

Locai tangent 

Figure 22.4. The geometry of co-circularity for curve detection in Images, (left) Mea-
surements of orientation differ at points along a curve. To determine whether they are 
consistent, nearby tangents are transported along the osculating circle approximation to 
the curve. If the transported tangents agree they are consistent; otherwise not. (right) To 
accomplish this transport Operation in images, tangent position, orientation, and curvature 
must be discretized. This shows those nearby tangents that are consistent with a horizon­
tal tangent at the center; that is, those tangent which, if transported along a (discretized) 
approximation to the osculating circle would support the central, horizontal tangent. (The 
width of the curve for this example is taken to be 3 pixels.) In the language of relaxation 
labeling, this is called an excitatory compatibility field. Note that the osculating circle and 
parabola approximations agree to within a fraction of a pixel over this neighborhood. 

proximations agree to within a fraction ofa pixel over the neighborhoods involved 
(Fig. 22.4); cf. [468]. Such geometric compatibility fields can be used with a num-
ber of different inference techniques, including relaxation labeling [414], belief 
propagation, and Bayes [480]. They are related to the forms that arise in elas-
tica [589, 406]. For a different attempt to minimize a functional in curvature, see 
[732]. 

22.3.1 Multiple Orientations and Product Spaces 

Thus far in this Chapter we have been concentrating exclusively on simple, regulär 
curves. But the "figure 8" example in Fig. 22.1 is not simple, and it provided the 
motivation for the geometric approach. Which way should the curve be continued 
at the Crossing point? For such examples, although ß{si) = ß{s2) for .si ^ S2 
at the Crossing point, we have ^'(.si) ^ ß\s2), which provides a clue. Instead 
of assuming there is only one unique tangent per pixel, which is commonplace in 
Computer vision [259], we shall allow more than one. 

To allow multiple tangents at each position, it is natural to attach a copy of the 
Space of all possible tangents to each position (Fig. 22.3.1). Since in principle 
tangent angle is distributed around the circle and position is a real number, the 
resultant space is M^ x S^. (Note differences from the classical coordinate repre-
sentation.) This space is an example of another fundamental construct in modern 
differential geometry, the unit tangent bündle associated with a surface in E^. In-
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tuitively one might think of a surface as being covered by (i.e., as a union of) all 
possible curves on that surface. More generally, the tangent bündle to a surface is 
the Union of tangent Spaces at all points. If the surface is 2-D, the tangent bündle 
is 4-D. The geometric compatibility fields can be applied in parallel to all tangents 
in this Space. (We will be generalizing this construct in the next few Sections, and 
will show examples then.) 

[929] discusses the relevance of this product construction for the neurobiology 
of Vision. 

Figure 22.5. The need for higher-dimensional Spaces than the image arises in representing 
non-simple or piecewise-regular curves. Since a priori a curve could be passing through 
any pixel at any orientation, it is natural to represent the (discretized) circle (the Space of 
all unit vectors) 5^ at each (discretized) position (left). When the non-simple "figure 8" is 
lifted into the resultant Space, the lift is a simple curve in R^ x S^ (right). The (position, 
orientation) Space, which is abstract fi"om the image, is sufiicent to represent all possible 
curves in the image. 

22.4 Stereo: Inferring Frenet 3-Frames from 2-Frames 

We now move to 3-space, and consider the problem of inferring the structure of 
Space curves from projection into two images. Earlier we showed that a curve 
in M^ has a tangent, normal, and binormal Frenet frame associated with every 
regulär point along it. To sketch a geometric approach to Stereo compatibility, for 
simplicity consider only the tangent in this frame and imagine it as an (infinitly) 
Short line segment. This space tangent projects into a planar tangent in the left 
image and a planar tangent in the right image. Thus, Space tangents project to 
pairs of image tangents. Now, consider the next point along the space curve; it 
too has a tangent, which projects to another pair of image tangents, one in the 
left image and one in the right image. Thus, in general, transport of the Frenet 
3-frame in R^ from the second point back to the first has a correspondence in 
the left-right image pairs of 2-frames. [519] have developed this transport idea 
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(b) 

Figure 22.6. (a) Cartoon of the Stereo relaxation process. A pair of Space tangents associ-
ated with the Frenet approximation around the point with tangent e^. Fach of these tangents 
projects to a (left,right) Image tangent pair; compatibihty between the Space tangents thus 
corresponds to compatibihty over (left,right) image tangent pairs. The projected tangents 
are shown as thick Hnes. One left image tangent is redrawn in the right image (as a thin Hne) 
to illustrate positional disparity (AcOand orientation disparity (AO). The compatibihty be­
tween the tangent pair (i) and the pair (j) is denoted rij. Of course, for the füll System the 
complete Frenet 2-frames are used to infer the Frenet 3-frame attached to the Space curve. 
(b) Just as the osculating circle provided a local model for transport for image curves, a 
section of a helix provides a local model for a Space curve. The (T, N) components of the 
Frenet 3-frame define the osculating plane, which rotates as the frame is moved along the 
Space curve. 

to find corresponding pairs of image tangents such that their image properties 
match, as closely as the geometry can be approximated, the actual space tangents 
(Fig. 22.6). They show, in particular, that the stereo projection operator can be 
inverted to give the Frenet 3-frame and the curvature, but not the torsion. This 
builds on the related v^ork of [267, 713, 653] 

Two notions of disparity arise from the above transport model. First, the Stan­
dard notion of positional disparity corresponds, through the camera model, to 
depth. Second, an orientation disparity is introduced if the space tangent is not in 
the epipolar plane. In the computational vision literature, orientation disparity is 
largely unexplored, but it is vv̂ idely studied in visual psychophysics [410]. The ge-
ometric viev^point shov^s how^ to use position and orientation disparities together. 
Typical reconstructions from this algorithm are shown in Fig. 22.7. 
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(a) (b) (c) 

Figure 22.7. 3D reconstruction of a twig pair.(a) Left image (b) Right image; note in 
the highlighted region that subtleties in using the ordering constraint arise. Furthermore, 
occlusion of branches gives rise to discontinuities in orientation. Representing such discon-
tinuities as multiple tangents facilitates proper matching. (c) Reconstruction. Depth scale 
is shown at right (units: meters). 

22.5 Covariant Derivatives, Oriented Textures, and 
Color 

We now denote orientation in the plane as a unit length tangent vector E(q) at-
tached to point q = {x,y) G R^. With such tangent vectors attached to every 
point of an oriented texture results in a unit length vector field, which creates a 
need to generalize the notion of transport: the frame can now be moved in any 
direction in the texture, rather than just along the curve. 

Assuming good continuation as in the Introduction, a small translation V from 
the point q should rotate the vector E(q) a small amount. FoUowing the Frenet 
model, the frame { E T , EJV} is placed at the point q and the basis vector E ^ is 
identified with E(q) - the tangent vector at q (Fig. 22.5). Note that E T is drawn 
at an angle 0 - the local orientation measured relative to the x-axis - such that 
(q, 6) eM."^ X S^. Nearby tangents are displaced both in position and orientation 
according to the covariant derivatives, a tensor object whose components are es-
sentially the partial derivatives of the underlying pattem. (Covariant derivatives 
generalize the earlier derivatives which were taken only along the curve; i.e., with 
respect to the are length parameter s.) For vector fields the covariant derivative is 
taken in a direction given by another vector field, and is a vector. Again follow-
ing Frenet, we observe that such covariant derivatives, V y E T and VyETv, are 
naturally represented as vectors in the basis { E T , ETV} itself: 

V V T E T 

V y E N 

K ; I I ( V ) wuiY) 

W2l(V) W22{'V) 
E T 

E_/v 
(22.4) 

The coefficients WijCV) are 1-forms, real-valued functions defined on tangent 
vectors. They are functions of the displacement direction vector V, and since the 
basis {ET,Eiv} is orthonormal, they are skew-symmetric Wijiy) = —Wji{y). 
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Thus tfi i(V) = W22iy) — 0 and the System reduces to: 

V y E r 

V y E i v 
0 wi2iy) 

-Wi2{^) 0 
Ej-

Eiv 
(22.5) 

This begins to resemble the Frenet-Serret formulas but is more general; it is Car-
tan's connection equation; wi2(V) is called the connection form. Since iOi2(V) 
is linear in V, it can be represented in terms of { E T , E^V}: 

^12(V) — Wi2{ci E T + h EA^) — a Wi2iß'T) + h Wi2{ßN) ' 

The relationship between nearby tangents is thus govemed by two scalars at each 
point. 

KT = WUCET) 
A 

K,N =WI2(E.N) 
(22.6) 

We interpret them as tangential (KT) and normal (K,N) curvatures, since they rep-
resent a directional rate of change of orientation in the tangential and normal 
directions, respectively. 

The connection equation describes the local behavior of orientation for the gen­
eral two dimensional case, but is can be specialized to the one-dimensional case 
of curves developed earlier by considering only V^ : 

V E , E ; V 

0 WUCET) 

-Wi2{'EiT) 0 

which, in our earher notion, becomes: 

E T 

ETV 

r 0 K 

-K 0 

T 
N 

(22.7) 

(22.8) 

We refer to KT as the tangential curvature and KM as the normal curvature -
they represent the rate of change of the dominant orientation of the texture flow in 
the tangential and normal directions, respectively. In the language of frame fields, 
KT and K̂ V are just the coordinate functions ofVO with respect to {ET, EN}-

In the case of curves, the theory of frames is coupled to ordinary differential 
equations. For vector fields and texture flows, partial differential equations arise. 
In particular, since ET and EN are rigidly coupled, and we have 

KT = V X ET 

KN - ^ • ET 
(22.9) 

If KT and KN were known functions of position q — {x,y), a PDE could be 
solved for the rotation angle 0{q). Thus KT and Kpj are not completely indepen-
dent, and integrability conditions arise. In particular, unless KT and KM are both 
equal to zero, they cannot be constant simultaneously in a neighborhood around 
q, however small, or eise the induced flow is nonintegrable. [72] show that, given 
any texture flow {ET, EN}, its curvature functions KT and KJ\J must satisfy the 
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Figure 22.8. Displacement (transport) ofa Frenet frame within a vector field or an oriented 
texture amounts to rotation, but differs for difFerent displacements. The covariant derivative 
specifies the frame's initial rate of rotation for any direction vector V. The four dififerent 
cases in this figure illustrate how this rotation depends on V both quantitatively (i.e„ dif-
ferent magnitudes of rotation) and qualitatively (i.e., clockwise, counter-clockwise, or zero 
rotation). A pure displacement in the tangential direction ( E T ) specifies one rotation com-
ponent (the tangential curvature) and a pure displacement in the normal direction (Ejv) 
specifies the other (normal curvature) component. 

relationship 

V / C T • £̂ Ar — V/̂ AT • ^T — i^ -\- i^i. 

With osculating circles the natural local model for the geometry of regulär pla-
nar curves, and helices the natural model for regulär Space curves, [72] show that 
the natural local model for textures and flow^s is a helicoid in R^ x 5-^. This fol-
lows intuitively because each streamline or intergral curve through the flow can 
be locally approximated by a section of an osculating circle; this lifts to a section 
of a helix. The helicoid is a ruled surface built of these lifts. Local sections of the 
helicoid can be projected into the image and discretized to provide connection or 
compatibility fields for textures and flows (Fig. 22.9). 

The result of applying this System to overlapping flows is shown in Fig. 22.10. 
Notice in particular how woven textures can be thought of as multiple threads, or 
curves, overlapping one another. This emerged from our discussion of represent-
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Figure 22.9. Texture compatability fields are discretizations of a helicoid approximation to 
a flow lifl;ed into R^ x 5^. Three examples are shown: (A) both curvatures are zero; this is 
the analog to a straight line for curves; (B) tangential curvature is zero and normal curvature 
is positive; this shows a local portion of a texture flow in which the integral curves converge 
to a (singular) point, as lines converge to a point in the distance; and (C) both the tangential 
and the normal curvatures are positive. This is the general case: notice how singular points 
(where all orientations are possible) arise. These are indicated as multiple line Segments 
displayed at the same position. 

ing multiple orientations at each point. When overlapping textures are lifted into 
R^ X S^ their structure separates just as the "figure 8" separated at the crossing 
point. But now, in a discrete sense, such multiple values are very common. 

D 

ülillllili 

iiljijlijl; 
II 

"\ 

Figure 22.10. Examples of texture pattems rieh in orientation. (A) A woven texture with 
two dominant orientations. This is an extension of (B) two overlapping textures, which are 
naturally separated when lifted into R^ x 5^ in (C). The bottom panels illustrate how a 
noisy pattem (D) is refined using the geometric compatibilities in Fig. 22.9 to (B), thereby 
enforcing a Gestalt-like good contination of the flows. 
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Figure 22.11. The HSV color representation in S^ x [0,1]^ and the color wheel. 

22,5.1 HueFlows 

While color is normally thought of as a point in (R,G,B)-space, it can also be 
represented in the psychophysically motivated HSV color space. Here a color 
image is a mapping C : M^ —> <Ŝ  x [0,1]^ (see Fig.22.11). The hue component 
across the image is a mapping H:^^ -^ S^ and thus can be represented as a unit 
length vector field over the image, which [72] called the huefield. Displays of the 
hue field reveal that it may vary greatly, albeit smoothly, even within perceptually 
coherent objects (see Fig 22.12. 

Many color image enhancement algorithms are based on a form of anisotropic 
diffusion [2, 153], using either a vectorial representation or a manifold represen­
tation [787]. While diffusion in color Space can work within very smooth regions, 
it does have the tendency to blur inappropriately. 

Hue compatibility fields can be defined analogously to texture compatibility 
fields-see[73]. As expected, concepts of hue curvatures naturally arise, which ex­
press how the hue is flowing from one image position to those in its neighborhood. 
Just as with texture flows, a tangential and a normal hue curvature are required. 
Since the local behavior of the hue is characterized (up to Euclidean transforma-
tion) by this pair of curvatures, it is natural to conclude that nearby measurements 
of hue should relate to each other based on these curvatures. Or, put differently, 
measuring a particular curvature pair at a point should induce a field of coherent 
measurements, i.e., a hue function in its neighborhood. Coherence of hue to its 
spatial context can then be determined by examining how well it fits with those 
around it. Again, a helicoidal approximation in (position, hue) Space arises. 

Such flows are relevant to image denoising; for estimating mutual reflectance 
and color bleeding; for estimating smooth surface variations as separate from 
lighting variations (for lightness algorithms); and for separating cast shadow 
boundaries and highlights from other types of intensity edges. 
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Figure 22.12. A flow perspective on color Images is provided by their hue fields. These are 
typically piecewise smooth. Most importantly, hue can vary smoothly even within percep-
tually coherent objects. (top) A natural Image of an apple with varying hue. Notice that 
the everyday expression of "red apple" is limited. The corresponding hue field changes 
smoothly across the image of the apple's surface. (bottom) A 3D representation of the hue 
filed, where hue is represented as height. Identifying the top face with the bottom (since 
hue is a circle) leads to the (position, hue) space. 

22.6 Discussion 

In this Chapter we co-developed ideas from modern differential geometry and 
Problems in Computer vision. The differential geometry was based on Frenet and 
Serret's ideas of attaching frames directly to curves, rather than expressing curve 
structure in terms of extrinsic coordinate functions. Such ideas were carried to 
a remarkable stage by Cartan, whose moving frame concept is now central in 
mathematics. The covariant derivative emerges for differential Variation of frames 
in flows, as the normal derivative was useful for transporting a frame along a 
curve. 

The moving frame concept provides a natural abstraction for perceptual Orga­
nization Problems, at least for those that can be defined over short distances. We 
considered curve detection in 2D and Stereo as the projection of 3D curves to 
illustrate the power of this geometric abstraction. Techniques for integrating ori-
entation disparity with positional disparity emerged. But the real power was seen 
for flows, in which textures and hues were considered. 

Although the notion of tangent was introduced as the best linear approximation 
to a curve, modern definitions abstract via a limiting Operation to an equivalence 
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dass of curves. Our discussion attempted to avoid any unnecessary abstraction, 
so that all concepts had a direct counterpart in Computer vision terms. 

Consideration of non-simple curves motivated an elaboration of the types of 
representations normally considered in Computer vision from image-based ones 
to those that attach a space of possibilities at each point. It is commonplace to 
assume boundaries have a well-defined orientation at each point, but this holds 
for only a restricted dass of curves. Local occlusion clues involving "T" junc-
tions provide an important example of non-smooth curves, and our elaborated 
representation is capable of handling them as well. 

The Space of possible frames also has an important representation in differential 
geometry, and is related to fibre bundles. We just touched on such concepts in 
this Chapter, but fuUy expect them to be playing a much richer role in future 
applications of differential geometry to computational vision. 



Chapter23 

Shape From Shading 

E. Prados and O. Faugeras 

Abstract 
Shape From Shading is the process of Computing the three-dimensional 
shape of a surface from one image of that surface. Contrary to most of the 
other three-dimensional reconstruction problems (for example, stereo and 
Photometrie stereo), in the Shape From Shading problem, data are minimal 
(we use a single image!). As a consequence, this inverse problem is intrinsi-
cally a difficult one. In this chapter we describe the main difficulties of the 
problem and the most recent theoretical results. We also give some examples 
of realistic modelings and of rigorous numerical methods. 

23.1 Introduction 

The "Shape From Shading" problem (SFS) is to compute the three-dimen-
-sional shape of a surface from the brightness of one black and white image of 
that surface; see figure 23.1. 

üi 

Surface Photo Retrieve the surface(s) 
which gives the samc photo 

Figure 23.1. The "Shape-from-Shading" problem. 

In the 70's, Hörn [405] was the first to formulate the Shape From Shading prob­
lem simply and rigorously as that of finding the Solution ofa nonlinear first-order 
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a) b) c) 
a) The crater Illusion [638]: From the Image we perceive two craters, a small and a big 
one. But we can tum these craters into volcanoes (although upside down) if we imagine 
the light source to be at the bottom of the picture rather than at the top. This picture is 
actually that of a pair of ash cones in the Hawaiian Island, not that of a pair of craters. 
b-c) "Bas-relief Ambiguity" [68]: Frontal and side views of a marble bas-reHef sculpture. 
Notice how the frontal views appear to have füll 3-dimensional depth, while the side view 
reveals the flattening. This demonstrates that the image b) can be produced by two surfaces: 
the three-dimensional surface we imagine by visualizing image b) and the actual bas-relief 
which is at the origin of the two photos b) and c). 

Figure 23.2. Examples of Shape From Shading ambiguities. 

Partial Differential Equation (PDE) called the brightness equation. In a first period 
(in the 80's) the authors focus on the computational part of the problem, trying to 
compute directly numerical Solutions. Questions about the existence and unique-
ness of Solutions to the problem were simply not even posed at that time with the 
important exception of the work of Bruss and Brooks [134, 118]. Nevertheless, 
due to the poor quality of the results, these questions as well as those related to the 
convergence of numerical schemes for Computing the Solutions became central in 
the last decade of the 20th Century. Today, the Shape From Shading problem is 
known to be an ill-posed problem. For example, a number of articles show that 
the Solution is not unique [118, 608, 609, 690, 68, 292, 665, 663]. The encoun-
tered difficulties have often been illustrated by such concave/convex ambiguities 
as the one displayed in Figure 23.2-a). In this figure, the ambiguity is due to a 
change of the estimation of the parameters of the fighting. In fact, this kind of am­
biguity can be widely generalized. In [68], Belhumeur and coUeagues prove that 
when the lighting direction^ and the Lambertian reflectance (albedo) of the sur­
face are unknown, then the same image can be obtained by a continuous family of 
surfaces (depending linearly of three parameters). In other words, they show that 
neither shading nor shadowing of an object, seen from a Single viewpoint reveals 
its exact 3D structure. This is the "Bas-relief Ambiguity", see [68] and Figures 
23.2-b) and 23.2-c). Being aware of these difficulties, we therefore assume here 
that all the parameters of the light source, the surface reflectance and the camera 
are known. 

În the case of a distant light source. 
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As we have mentioned above, the modeling of the Shape From Shading prob-
lem introduced by Hörn leads to a PDE: the brightness equation. This equation 
arises from the following 

I{xi,X2) ^ R{n{xi,X2)), 

(xi,.T2) are the coordinates of a point x in the image. The brightness equation 
connects the reflectance map (R) to the brightness image (/). At the exception of 
an extremely small number of papers, for example [44, 506, 667], almost all the 
Shape From Shading methods assume that the scene is Lambertian. In this case, 
the reflectance map is the cosine of the angle between the light vector L(x) and 
the normal vector n(x) to the surface: 

fi = cos(L,n) = ^ — , (23.1) 

(where R, L and n depend on (xi,X2)). 

23.2 Mathematical formulation of the SFS problem 

In this section, we formulate the SFS problem as that of solving some explicit 
PDEs. These exphcit equations arise from equations (23.1). 
Let n be an open subset of M^ representing the image domain (e.g. the rect-
angle ]0,X[x]0, y[). We represent the scene by a three-dimensional surface 
S — {S{x)] X e Ü} , which can be expHcitly parameterized by using the func-
tion S defined on the closure ft into R^. The particular type of parameterization 
is irrelevant here but may vary according to the camera type (Orthographie versus 
pinhole) and to mathematical convenience. In this work, we assume that the light 
source is unique and punctual. For y G M"̂ , we denote L(y) the unit vector rep­
resenting the light source direction at the point y. If the light source is located at 
infinity then the light vector field is uniform (i.e. constant). In this case, we denote 
by L = (a, ß, 7) with 7 > 0, and 1 = (a, ß). If the light source is located at the 
optical Center, then L{S{x)) = S{x)/\S{x)\. 

23.2,1 "Orthographie SFS'' with afar light source 

This is the traditional setup for the SFS problem. Here, we assume in particu­
lar that the camera performs an Orthographie projection of the scene. For such 
a modeling, it is natural to denote by u the distance of the points in the scene 
to the camera; in other words, S is parameterized by 6* : x i-> [x,u{x)). For 
such a parameterization, a normal vector n(a:) at the point S{x) is given by^ 

^ The two columns of the Jacobian DS{x) are tangent vectors to S at the point S(x). Their cross 
product is a normal vector. 
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n{x) = (—Vn, 1). The SFS problem is then, given / and L, to lind a function 
u : ü —> M satisfying the brightness equation: 

Vx G n , I{x) = ( -Vu(x) . 1 + 7 ) / v / l + |Vn(x)|2. 

In the SFS literature, this equation is rewritten in a variety of ways as H{x, p) = 0, 
where p — Vn. For example, Rouy and Tourin [690] introduce 

HRIT{X,P) = I{x)y/1 + |p|2 -h p • 1 - 7. 

In [290], Dupuis and Oliensis consider 

HD/O(X, P) = I{x) V l + | p | 2 - 2 p - l + p • 1 - 1. 

In the case where L = (0,0,1), Lions et al. [522] deal with: 

HEiko{x,p) = \p\ - \ j ^ - 1- (called the Eikonal equation). 

The function H is called the Hamiltonian. 

23.2.2 "Perspective SFS " with afar light source 

"Perspective SFS" assumes that the camera performs a perspective projection 
of the scene. We therefore assume that S can be explicitly parameterized by 
the depth modulation function u defined on O. In other words, we choose 
S{x) — u{x).{xj - f ) , Vx G ü, where f denotes the focal length. For such a 
parameterization, a normal vector n(x) at the point S{x) is given by^ n(.x) — 
{fVu{x),u{x) -\- X • Vu{x)), Combining the expression of n(a;) and the change 
of variables-^ v = ln{u), we obtain from the irradiance equation (23.1) the 
foUowing Hamiltonian [663, 788, 228]: 

HP/F{X,P) = /(X)^f2|p|2 + ( ^ . p + 1)2 _ ( / 1 + ^^) . p . •7; 

23.2.3 ''Perspective SFS'' with apoint light source at the optical 
Center 

Here, we parameterize S by S{x) =^ u{x) . / (x, - / ) , \/x G 0 . In this 

case, we can choose^ n(a;) = {fVu- |fp^f2 x , Vu-x-^ ifp̂ f̂̂  / ) • Combining 
the expression of n(a:) and the change of variables^ v = ln{u), we obtain from 
equation (23.1) the foUowing Hamiltonian [664, 662]: 

Hoptcix^p) = /(x)Vf2|p|2 + (p.x)2 + Q(x)2 - Q{x). 

^We assume that the surface is visible (in front of the retinal plane) hence u > 0. 
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23,2.4 A generic Hamiltonian 

In [664, 662], Prados and Faugeras proved that all the previous SFS Hamiltonians 
are special cases of the foUowing "generic" Hamiltonian: 

with Kx^Kx > 0, Cx eR,Vx,Wx G R^ and A^ G A^2(R), the set of 2 x 2 real 
matrices. They also showed that this "generic" Hamiltonian can be rewritten as a 
supremum: 

Hgi^^P)^ sup {-fg{x,a)'p-lg[x,a)}\ 
a€ß2(0 , l ) 

see [662] for the detailed expressions of fg and lg, This generic formulation 
considerably simplifies the analysis of the problem. Theorems about the charac-
terization and the approximation of the Solutions are proved as much as possible 
for this generic SFS Hamiltonian. In particular, this formulation unifies the Ortho­
graphie and perspective SFS problems. Also, from a practical point of view, a 
Single algorithm can be used to numerically solve these various problems. 

23.3 Mathematical study of the SFS problem 

23.3.1 Related work 

It is well-known that the SFS problem is an ill-posed problem even when we 
assume complete control of the experimental setup. For example, the previous 
SFS PDEs do not have a unique Solution: several surfaces can yield the same Im­
age [292]. Before Computing a numerical Solution, it is therefore very important 
to answer the foUowing questions. Does there exist a Solution? If yes, in what 
sense is it a Solution (classical or weak)? Is the Solution unique? The various 
approaches for providing answers to these questions can be classified in two cat-
egories. First, Dupuis and Oliensis [290] and Kozera [493] deal with smooth 
(classical) Solutions. More precisely, Dupuis and Ohensis [290] prove the unique-
ness of some constrainted C^ Solutions, and they characterize some C^ Solutions. 
Kozera works with hemi-spheres and planes [493]. Nevertheless, we can design 
smooth Images "without (smooth) shape" [119, 479]; also, because of noise, of 
errors on parameters (focal length, light position, etc) and of incorrect modeling 
(interrecflections, extended light source, nonlambertian reflectance...) there never 
exist in practice such smooth Solutions with real Images. In other respects, this 
also explains why the global methods (e.g. [290,470, 606]) which are completely 
based on such regularity assumptions are somewhat disappointing with real im-
ages. This leads to consider the problem in a weaker framework. Second, in the 
90s, Lions, Rouy and Tourin [690, 522] propose to solve the SFS problem by us-
ing the notion of viscosity Solutions. Recently, their approach has been extended 
by Prados and Faugeras [665, 663] and by Falcone [144]. The theory of viscosity 
Solutions is interesting for a variety of reasons: 1) it ensures the existence of 
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weak Solutions as soon as the intensity Image is (Lipschitz) continuous; 2) it 
allows to characterize all Solutions; 3) any particular Solution is effectively com-
putable. Nevertheless, the work of Lions et al., Prados and Faugeras, Falcone et al. 
[690, 522, 665, 663, 144] has a very important weakness: the characterization of 
a viscosity Solution and its computation require in particular the knowledge ofits 
values on the boundary ofthe image. This is quite unrealistic because in practice 
such values are not known. At the opposite ofthe work based on the viscosity So­
lutions, Dupuis and Oliensis [290] characterize some C^ Solutions with much less 
data. In particular, they do not specify the values of the Solution on the boundary 
ofthe image. Considering the advantages and the drawbacks of all these methods, 
Prados et al. [664, 661] propose a new dass o^weak Solutions which guarantees 
the existence of a Solution"̂  in a large dass of situations including some where 
there do not exist smooth Solutions. They call these new Solutions: "Singular Dis-
continuous Viscosity Solutions" (SDVS). The notion of SDVS allows to unify 
the mathematical frameworks proposed in the SFS literature and to generalize the 
previous main theoretical results. 

23.3.2 Nonuniqueness and characterization ofa Solution 

The results presented in this section are based on the notion of SDVS [664]. Let us 
recall that the viscosity Solutions are Solutions in a weak sense and that the clas-
sical (differentiable) Solutions are particular viscosity Solutions. For more details 
about this notion of weak Solutions, we refer the reader to [52]. For an intuitive 
approach connected to Computer vision, see for example [664] and references 
therein. 

Since the CCD sensors have finite size, we assume that O is bounded. In 
this case, it is well known that the Hamilton-Jacobi equations of the form 
H(x,S7u{x)) = 0,Wx e n, (and so the SFS equations considered here) do not 
have a unique viscosity Solution [52]. It follows that for characterizing (and for 
Computing) a Solution, we need to impose additional constraints. In [664] (but 
also implicitly, in [290]) it is shown that the idea of State contraints (also called 
"Soner conditions") provides a more convenient notion of boundary condition 
than Dirichlet's^ or Neumann's^. The "state contraint" is a boundary condition 
which is reduced to 

H{x, u{x), Vu{x)) > 0 on dÜ, 

in the viscosity sense (see for example [52]). This constraint corresponds to the 
Dirichlet conditions 

Vx G ön , u{x) = (p{x) with (p{x) = -hoo, 

"^Corresponding to Dupuis and Oliensis' Solution, if one exists. 
^Dirichlet conditions consists in fixing the values ofthe Solutions. 
^Neumann conditions consists in fixing the values ofthe derivatives the Solutions. 
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in the viscosity sense. In a sense, completing an equation with State constraints 
consists in choosing the highest viscosity Solution. The interest of the notion of 
State constraints is twofold: 1) in contrast with the Dirichlet and Neumann bound-
ary conditions, the State constraints do not require any data^. 2) the notion of State 
constraints can be approximately expressed as ''u{x) increases when x tends to 
du''; see [664]. So the addition of this constraint provides a relevant Solution as 
soon as the original surface verifies this basic assumption. Let us emphasize that 
this constraint is in fact not a strong one since, for example, the condition is satis-
fied as soon as the image to be processed contains an object of interest in front of 
a background. 

The main difficulty encountered when one attempt to solve the SFS equations 
(described in section 23.2) is due to the fact that even if we impose Dirichlet or 
Soner (state constraints) boundary conditions all over the boundary of the image, 
these constraints are not sufficient for obtaining the uniqueness of the Solution. 
For characterizing a weak Solution (SDVS) or a classical Solution (C^), it is 
necessary and sufficient to impose (in addition) Dirichlet constraints at the 
Singular points which are local ^^minima*'^; at the other points, we just impose 
State constraints [661]. Let us remind the reader that the set of the Singular points 
isS = {xeü\I{x) = l}. These points are those of maximal intensity^ and 
correspond with the points for which the surface normal coincides with the light 
direction. 
Therefore, in practice, to be able to recover the original surface^^, we need to 
know what are the singular points which are local minima and the height of the 
surface at all these particular points. In the cases where we do not have this knowl-
edge (unfortunately, we do not have it in practice!), we are unable to recover the 
exact original surface. Nevertheless, let us note that Prados and Faugeras' frame-
work allows to understand exactly what we compute, namely the SDVS (which 
coincides with the value function considered in particular by Dupuis and Olien-
sis [290]). In practice, we fix the height of the Solution at the singular points and 
on the boundary of the image, when we know it, and we "send" these values to 
infinity when this Information is not available (i.e., we impose a State constraint). 
Finally Prados and his coworkers prove that, with such constraints, there exists a 
unique SDVS of the SFS equations^ ^ 

^Dirichlet (respectively, Neumann) boundary conditions require the knowledge of the exact values 
of the Solution (respectively, the exact values ofVu{x) • n{x), where n{x) is the unit inward normal 
vector to dO. at the point x) on the boundary of the image. In the SFS problem, we rarely have such 
data at our disposal. 

^More precisely, the minima oiu — (p, where tp is the adequate subsolution [661]. 
^Let US recall that we have assumed that I{x) = cos(n, L). 

'°i.e., in SFS, the photographed surface. 
'̂  With some weak adequate assumptions; see [661]. 
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23.4 Numerical Solutions by "Propagation and PDEs 
methods" 

In section 23.2, we have shown that the SFS problem can be considered as that of 
solving a iirst order PDE. In this section, we consider the numerical SFS methods 
consisting in solving directly the exact SFS PDE. We call them "propagation and 
PDEs methods". These numerical methods do not make any linearizations (at the 
opposite of the linear methods; see [291] for a recent State of the art). Moreover, 
they do not introduce any biases in the equations contrary to the variational meth­
ods which, for example, add regularization or integrability terms. For more details 
about variational approaches in Shape From Shading, we refer the reader to Hom 
and Brooks' book [408] and to the survey of Durou and his coworkers [291] (and 
references therein). 

23.4.1 Related work 

The propagation and PDEs methods can be subdivided into two classes. The 
"single-pass " methods and the iterative methods. The main single-pass methods 
are: the method of characteristic Strips (introduced by Hom [405]), the method 
of propagation ofthe equal-height contours (introduced by Bruckstein [125] and 
improved by Kimmel and Bruckstein [471]), i\iQ fast marching method (proposed 
by Sethian and Kimmel [728, 474]). Amongst the iterative methods let us cite in 
particular: the algorithm introduced by Rouy and Tourin [690] and its extensions 
by Prados and Faugeras [665, 663], the algorithms of Dupuis and Oliensis [290] 
based on the control theory and differential games, the algorithms of Falcone et 
al. [144] based on finite Clements. Let us note that, at the exception ofthe work 
of Prados and Faugeras [663, 664], all these methods deal only with the Eikonal 
equation [405, 125, 690, 471, 728] or with the Orthographie SFS with obHque 
light source [290, 144,474, 665]. 

In spite of the multiplicity of these methods, we can prove that they all com-
pute approximations of the same Solution. In particular, the initial equal-height 
contours method of Bruckstein [125] is a variant ofthe method ofthe character­
istic Strips of Hom [405]. In [125], Bmckstein assumes that the initial curve is an 
equal-height contour. By imposing such special Dirichlet boundary conditions, 
he drops the Neumann boundary conditions required by the basic method of the 
characteristic Strips (see [479] for a nice and rigorous study of these methods). 
Basically both above methods are Lagrangian methods that suffer from unstabil-
ity and topological problems, see for example [618]. To alleviate these problems 
Kimmel and Bmckstein [471] propose to Upgrade Bmckstein's method by using a 
Eulerian formulation ofthe problem. In other respects, the connection between the 
front propagation problems and the Hamilton Jacobi equations are well known. 
In particular, roughly speaking, it has beeb proved that the viscosity Solution of 
the Hamilton Jacobi equation associated with a front propagation corresponds 
with the evolution of the initial contour defined by Huygens' principle; see for 
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example [302]. In the same way, the other methods we cite above (Sethian's, 
Rouy-Tourin's, Dupuis-Oliensis', Falcone's and Prados-Faugeras' methods) com-
pute some approximations of the viscosity Solutions of the SFS equations. In 
particular in [731], Sethian and Vladimirsky prove that the numerical Solutions 
computed by the fast marching/ordered upwind methods converge toward the con-
tinuous viscosity Solution (with Dirichlet boundary data on the boundary of the 
image). In [664], Prados and Faugeras generalize and unify the results proved in 
[690, 290, 144, 665, 663]. More precisely, they show that in all cases, the authors 
compute approximations of the SDVS. Basically, the difference between the work 
[690, 290, 144, 665, 663] is based on the choice of the boundary conditions; see 
[661]. In a general manner, all propagation and PDE methods require additional 
constraints: in particular, Dirichlet, Neumann or Soner boundary conditions. In 
other words, the computed Solutions are characterized by the boundary condi­
tions. These boundary conditions must contain enough Information. Also, this 
information is thereby propagated "along" the Solutions. Let us note that except 
for Hom's [405] and Bruckstein and KimmePs method [125, 471], all the pre-
vious methods can deal with various Dirichlet/Soner boundary conditions. More 
precisely, the algorithms of Rouy and Tourin [690], Dupuis and Oliensis [290], 
Sethian [728] and Prados and Faugeras [665, 663] can use Dirichlet and/or Soner 
conditions on the boundary of the image du at all the singular points S and on 
any other part of the image (for example, on an equal-height contour...). For in-
stance, when we do not know the values of the Solution at any points of the image, 
we can impose State constraints (i.e. Soner conditions) ondüUS except for one 
point where we must impose a Dirichlet boundary condition. Contrary to these 
methods, let us note that Hom's [405] requires Dirichlet and Neumann boundary 
conditions and that Bruckstein's [125, 471] require the knowledge of an equal-
height contour. This last constraint is a very specific Dirichlet condition and is 
much stronger than the previous ones. Note that implicitly, Bruckstein methods 
[125, 471] also impose State constraints on du U S. 

Finally, from a more numerical point of view, we can also remark that the ap-
proximation scheme considered by Sethian [728] is the one designed by Rouy 
and Tourin in [690]. Moreover, Prados and Faugeras' schemes are extensions of 
the Rouy and Tourin's scheme and their Solutions coincide with those of Ohensis' 
schemes. 

23,4.2 An example ofprovably convergent numerical method: 
Prados and Faugeras' method 

In this section, we present the provably convergent numerical method of Prados 
and Faugeras [662]. Let us recall that this method unifies in particular the itera­
tive methods of Rouy and Tourin [690], Prados et al. [665, 663] and Dupuis and 
Ohensis [290]. 
We consider here a finite difference approximation scheme. The reader unfamiliar 
with the notion of approximation schemes can refer to [53] or [662]. Let us just 
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recall that, foUowing [53], an approximation scheine is a functional equation of 
the form 

S{p, X, u{x), u) = 0 Vx G n , 

which "approximates" the considered PDE. S is defined on TW x Q x R x B{Ti) 
into M, A^ = R"̂  X R"̂  and p = (/^i, ^̂ 2) ^ M deiines the size of the mesh that 
is used in the corresponding numerical algorithms. B{D) is the space of bounded 
functions defined on a set D. 

Definition 1. We say that a scheme S is stable^^ iffor allfixed mesh size p it has 
Solutions and ifall the Solutions are bounded independently of p. 

For ensuring the stability of a scheme, it is globally suflficient that it is 
monotonous (i.e. the function u H-> S{p^x^t^u) is nonincreasing) and that the 
function t H-> S{p,x,t,u) is nondecreasing, see [662]. For obtaining such a 
scheme, Prados and Faugeras [662] approximate the generic Hamiltonian Hg by 

u ^ ^ r w ^ J Y^^ 4^ r ^.u{x)-u{x + Si{x,a)hiei) . , . 
Hg{x,Vu{x))^ sup <2^{-fi{x,a))^-^ \ . \, '--lg{x,a) 

aeB(o,L) [~ri -Si[x,a)ni 
where fi{x^ a) is the i^^ component of fg{x, a) and Si{x, a) is its sign. Thus, they 
obtain the approximation scheme Simpi (p, x, u(x), u) = 0 with Simpi defined by: 

Simpi{p,x,t,u) = sup i y]{-fi{x,a)) s^{x,a) -l (x,a) 
aGß(o,i) [7^1 -Si{x,a)hi 

By introducing a fictitious time Ar , they also transform this implicit scheme in a 
"semi-impUcit" scheme (also monotonous): 

Ssemi{p,X,t,u) = t - {u{x) -\- Ar Simpi {PyX,u{x),u) ), 

where A r = {fg{x,ao) • (I//11, l//i2))~ ; ßo being the optimal control asso-
ciated with Simpi{p,x,u{x),u). Let us emphasize that these two schemes have 
exactly the same Solutions and that they verify the previous monotonicity condi-
tions (with respect to t and u). Prados and Faugeras prove in [662] the stability of 
these two schemes. 
By construction, these two schemes are consistent^^ with the SFS equations as 
soon as the brightness image / is Lipschitz continuous; see [662]. Using the 
stability and the monotonicity of the schemes and some uniqueness results, it 
follows directly from [53] that the Solutions of the approximation schemes Simpi 
and Ssemi converge towards the unique viscosity Solution of the considered equa­
tion (complemented with the adequate boundary conditions) when the mesh size 
vanishes; see [662]. 

We now describe an iterative algorithm that computes numerical approxima-
tions of the Solutions ofa scheme S[p^ x, u(x),u) — 0 for all fixed p = (hx-^h^). 
We denote, for k G 1?, x^ = (hxhi, k2h2), and Q := {A; G Z^ s.t. Xk G H}. We 

'̂  Following Barles and Souganidis definitions [53]. 
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call "pixel" a point Xk in ü. Since ü is bounded the number of pixels is iinite. The 
foUowing algorithm computes for all A; G Q a sequence of approximations U^ of 
u{xk): 
Algorithm: 

1. Initialisation (n = OJ.'Wk £ Q^ U^ = uo{xk); 
2. Choice ofapixel Xk andmodification (step n^-\) ofU]^: we choose U'^'^^ 

such that 

\ S{p,Xk,UJ^^\U^) = 0', 

3. Choose the next pixel Xk (using alternating raster scans [243]) and go 
back to 2. 

In [662], Prados and Faugeras prove that if UQ is a supersolution of the SFS 
scheme Simpi (respectively, Ssemi) then step 2 of the algorithm has always a 
unique Solution and that the computed numerical Solutions converge (when n -> 
+00) toward the Solutions of the scheme. Many details about the implementation 
of the algorithm can be found in [662]. 

23.5 Examples of numerical results 

In this section, we show some examples of numerical results on real images. 
In these experiments, we test the implicit generic SFS algorithm of Prados and 
Faugeras. At the same time, we suggest some applications of the SFS methods 
hoping that the results will convince the reader of the applicability ofthis method 
to real Problems. 
Let US recall that we have assumed that the camera is geometrically and photo-
metrically calibrated. In the experiments of sections 23.5.1 and 23.5.2 we know 
the focal length (5.8 mm) and approximately the pixel size (0.0045 mm; CCD 
size = 1/2.7") of the digital camera (Pentax Optio 330GS). In section 23.5.3, we 
choose some arbitrary reasonable parameters. Let us note that in these tests, we 
also make some educated guesses for gamma correction (when the Photometrie 
properties of the images seem incorrect). 

23.5.1 Document restoration using SFS 

In this section, we consider a reprographic System to remove the geometric and 
Photometrie distortions generated by the classical photocopy of a bulky book. 
Note that several Solutions have been proposed in the SFS literature. Let us cite 
in particular the work of Wada et al. [850], Cho et al. [193] and Courteille et 
al. [228]. Here, the acquisition process we use is a classical camera. The book 
is illuminated by a Single light source located at infinity or close to the optical 
Center (foUowing the models described in section 23.2). The acquired images are 
then processed using Prados and Faugeras' SFS method to obtain the shape of 
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the photographed page. Let us emphasize that, for obtaining a compact experi-
mental System, the camera must be located relatively close to the book. Therefore 
the perspective model is especially relevant for this appHcation. Also, the distor-
tion due to the perspective clearly appears in the image a) of figure 23.4. In this 
SFS method we assume that the albedo is constant. In this appHcation, this does 

a) b) 

Figure 23.3. a) Real image of a page oftext [size ~ 800 x 800]; b) Surface recovered from 
a) by Prados and Faugeras' generic algorithm (without removing the printed parts of a)), 

B. 

a) b) c) 

Figure 23.4. a) real image of a page containing pictures and graphics [size ~ 2000 x 1500], 
b) surface (textured by the printed parts of a)) recovered from a) by Prados and Faugeras' 
generic algorithm (after having removed and inpainted the ink parts of a)). c) An Or­
thographie projection of the surface b): the geometric (and Photometrie) distorsions are 
significantly reduced. 

not hold because of the printed parts. Before recovering the surface of the page, 
vŷ e therefore localize the printed parts by using image statistic (similar to Cho's 
[193]) and we erase them automatically by using an inpainting algorithm. This 
step can produce an important pixel noise. Nevertheless, this is not a problem for 
US because, as figure 23.3-b) shows, Prados and Faugeras' SFS method is ex-
tremely robust to pixel noise: figure 23.3-b) displays the result produced by this 
algorithm (after 10 iterations) using the image of a text page with its pigmented 
parts, Fig.23.3-a). In this test, characters are considered as noise. Once we have 
recovered the three-dimensional shape of the page, we can then flatten the surface. 
Note that at each step of this restoration process we can keep the correspondences 
with the pixels in the image. Thus, at the final step, we can restore the printed 
parts. 
To prove the applicability of this method, we have tested it on a page wrapped 
on a cylindrical surface ̂ ^ (we have used a cheap camera and flash in an approxi-

F̂or emphasizing the perspective effect. 
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Figure 23.5. a) Real face image [size c:̂  450 x 600]; b) surface recovered from a) by 
the generic SFS algorithm with the perspective model with the light source located at the 
optical Center; c) surface recovered by the generic SFS algorithm with the same modeling 
hypotheses as for b) after the inpainting process. 

mately dark room). Figure 23.4 shows the original image in a), the reconstructed 
surface (after 10 iterations) (textured by the ink parts of a)) in b) and an Ortho­
graphie projection of the reconstructed surface, in e). Figure 23.4-c) indicates that 
this method allows to remove the perspective and Photometrie distortions. 

23.5.2 Face reconstruction from SFS 

In this section we propose a very simple protocol based on SFS for face recon­
struction. We use one camera equiped with a basic flash in an approximately dark 
place. We have tested the implicit generic SFS algorithm on a real image of a face 
(using a small amount of make-up to make it more Lambertian) located at ~700 mm of 
the camera in an approximately dark place (see Fig.23.5-a)). Figure 23.5-b) shov^s 
the surface recovered by the generic algorithm with the perspective model with a 
point light source at the optical center. As in the previous application, the albedo 
is not constant over the whole image. Therefore we removed^"^ the eyes and the 
eyebrows in the image by using an inpainting algorithm. Figure 23.5 shows in c) 
the surface recovered from the image obtained after the inpainting process. 

23.5.3 Potential applications to medical images 

In this section, we are interested in applying the SFS method to some medical 
images. Our interest is motivated, for example, by the work of Craine et al. [232] 
(who use SFS for correcting some errors on the quantitative measurement of areas in the 
cervix, from colonoscopy images). We have applied Prados and Faugeras' algorithm 
to an endoscopic image of a normal stomach*^ (see figure 23.6-a)). For produc-
ing such an image, the light source must be very close to the camera, because of 
Space constraints. So the adequate modeling is that of the "perspective SFS" with 
the light source located at the optical center. In figure 23.6-b), we show the result 

"̂̂ Can be automated by matching the image to a model image already segmented. 
^^Suggested by Tankus and Soeben [789]; http://www.gastrolab.net/ 
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Figure 23.6. Reconstruction ofa normal stomach. a) Original image ofa normal stomach 
[size~ 200 X 200]; b) surface recovered from a) by the generic SFS algorithm with the 
perspective model with the light source located at the optical center; c) surface b) visualized 
with a different illumination. 

obtained. To further show the quality of the reconstruction, we display the sur­
face b) with a different illumination. Finally, notice that the stomach wall is not 
perfectly Lambertian (see Fig.23.6-a)). This suggests the robustness of this SFS 
method to departures from the Lambertian hypothesis. 

23.6 Conclusion 

After having presented the SFS problem, we have described its main difficulties: 
in practice, the classical SFS equations are ill-posed. In a second time, we have 
focused on the numerical methods. We have considered the propagation and PDEs 
methods; in particular Prados and Faugeras' methods. We have demonstrated the 
applicability of the SFS methods by displaying some experimental results with 
real images. Finally, we have suggested that SFS may be useful in a number of 
real-life applications. 



Chapter24 

3D from Image Sequences: 
Calibration, Motion and Shape 
Recovery 

M. PoUefeys 

Abstract 
In this chapter we discuss how to recover the motion and calibration of a 
Camera and the shape of a static object from an image sequence. The prob-
lem can be spHt into four subproblems: (1) Computing the geometric relation 
between neighboring images, (2) estimating the motion and caUbration of the 
Camera, (3) Computing a dense set of correspondences between neighboring 
images, (4) reconstruction of the 3D object shape. The approach we present 
here is fully automatic and can deal with photo or video sequences acquired 
with an uncalibrated hand-held camera. The different algorithms can also be 
used to provide Solutions for other applications. 

24.1 Introduction 

In recent years a lot of progress has been made in the area of 3D reconstruction 
from images. Computer vision researchers have obtained a deep theoretical under-
standing of the geometric relations between multiple views of a scene [389, 311]. 
This has resulted in the development of robust algorithms to compute those geo­
metric relations automatically and has made it possible to work with uncalibrated 
imagery. The adoption of bündle adjustment algorithms from photogrammetry has 
resulted in signiiicant accuracy improvements for calibration, motion and shape 
recovery algorithms. During the same period significant progress was also made 
in the area of stereo matching and 3D surface reconstruction. By building on those 
advances it is now possible to implement a processing pipeline that automatically 
obtains a detailed 3D model from an image sequence acquired with an uncali­
brated hand-held camera. In the remainder of this chapter we will discuss how this 
can be done. First, we introduce some notations and background, then we discuss 
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the Solution to the different subproblems. Section 24.2 deals with Computing the 
relation between neighboring views based on tracked or matched feature points. 
Section 24.3 explains how the 3D structure of the feature points and the motion 
and cahbration of the camera can be computed. Section 24.4 deals with dense 
correspondence matching and depth estimation and Section 24.5 describes how 
the computed information can be combined to construct a 3D surface model. An 
overview of the presented approach is shown in Fig. 24.1. 

24.1.1 Notations and background 

In this section we briefly introduce some of the geometric concepts and notations 
used throughout this chapter. A more in depth description of these geometric con­
cepts can be found in [389, 311]. K perspective camera is modeled through the 
projection equation 

Ax = PX (24,1) 

where A represents a non-zero scale factor, X is a 4-vector that represents 3D world 
point in homogeneous coordinates, x is a 3-vector that represents a corresponding 
2D image point and P is a 3 x 4 projection matrix. In a metric or Euclidean 
coordinate frame P can be factorized as follows 

P = KR"^[I | - t ] where K 
f s u 

rf V 
1 

(24.2) 

contains the intrinsic camera parameters, R is a rotation matrix representing the 
orientation and t is a 3-vector representing the position of the camera. The intrin­
sic camera parameter / represents the focal length measured in width of pixels, r 
is the aspect ratio of pixels, {u, v) represent the coordinates of the principal point 
and s is a term accounting for the skew. In general, s can be assumed zero. In prac-
tice, the principal point is often close to the center of the image, and the aspect 
ratio r close to 1. In many cases the camera does not perfectly satisfy the per­
spective projection model and distortions have to be taken into account, the most 
important being radial distortion. In practice, when the amount of radial distortion 
is limited it is sufificient to model the radial distortion as follows: 

A x - P ( X ) = K7^(R"^[I|-t]X)with7^(x) - {l^K,i{x^-^y^))[xyO]'^•^[001]'^ 
(24.3) 

where KI indicates the amount of radial distortion that is present in the image. 
For high accuracy applications, higher-order terms also have to be used. In this 
chapter the notation d(.,.) will be used to indicate the Euchdean distance between 
entities in the Images. 
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Figure 24.1. Overview of the calibration, motion and shape recovery pipeline. 
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24.2 Relating Images 

Starting from a collection of Images or a video sequence, the first step consists 
of relating the different Images to each other. This is not an easy problem. A re-
stricted number of corresponding points is sufficient to determine the geometric 
relationship between images. Since not all points are equally suited for match-
ing or tracking, the first step consist of selecting a number of interesting points 
oxfeature points. A typical choice consists of using Harris comers [385]. Some 
approaches also use other features, such as lines or curves, but these will not be 
discussed here. For a collection of images features are extracted independently in 
each image and then matched. A simple approach consists of using normalized 
cross-correlation. This approach can only deal with relatively small appearance 
variations. More advanced approaches, such as the one proposed by Lowe [531], 
can deal with larger variations. For a video sequence it is often more efficient to 
track features from one image to the next [738]. From these corresponding fea­
tures the epipolar geometry can be computed. However, since the correspondence 
problem is ill-posed, the set of initial corresponding points is typically contam-
inated with wrong matches or outliers. In this case, a traditional least-squares 
approach will fail and a robust method is needed. Once the epipolar geometry has 
been obtained it can be used to guide the search for additional correspondences. 
These can then in tum be used to further refine the epipolar geometry. 

24.2.1 Epipolar geometry computation 

The point -x! corresponding to the point x in another image is bound to be on the 
projection of its line of sight l ' ^ Fx where F is ÜIQ fundamental matrix for 
the two views under consideration. The fundamental matrix encodes the epipolar 
geometry. The following equation should be satisfied for all corresponding points: 

x^'^Fx - 0 . (24.4) 

The fundamental matrix has rank 2 and the right and left null-space of F corre-
sponds to the epipoles. The epipoles e and e' are the projections of the projection 
Center of one image in the other image. 

Given a number of corresponding points Eq. (24.4) can be used to compute F . 
This equation can be rewritten in the following form: 

[ xx' yx' x' xy' yy' y' x y 1 ] f = 0 (24.5) 

with X = [xy\]^ ,yi' = [x'y' l]^ and f a vector containing the Clements of the 
fundamental matrix. Stacking 8 or more of these equations allows to linearly solve 
for the fundamental matrix. Even for 7 corresponding points the one parameter 
family of Solutions obtained by solving the linear equations can be restricted to 
1 or 3 Solutions by enforcing the cubic rank-2 constraint det (Fi + AF2) = 0. If 
the Camera calibration is known an algorithm using only 5 corresponding points 
can be used [603]. As pointed out by Hartley [386] it is important to normalize 
the image coordinates before solving the linear equations. Otherwise the columns 
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of Eq. (24.5) would differ by several Orders of magnitude and the error would 
concentrate on the coefficients corresponding to the smaller columns. If feature 
points are well spread over the Image the foUowing normalization is appropriate: 

Xiv = K ^xwithKjv = 

U±h Q 
2 ^^ 

2 2 
1 

(24.6) 

with w and h the width and height of the Image. As we will see later this 
normahzation will also be useful for other processing steps. 

The initial set of correspondences can contain large number of outliers which 
will cause least-squares approaches to fail. To deal with this problem we use the 
RANSAC approach proposed by Fischler and BoUes [316]. A hypothesis for the 
fundamental matrix is obtained from a randomly selected minimal subset of data, 
and is used to classify each correspondence as an inlier or an outlier w.r.t the hy­
pothesis under consideration. If the initial data sample contains no outliers, it can 
be expected that a large number of inliers will support the Solution, otherwise the 
initial subset is probably contaminated with outliers. This procedure is repeated 
until the probability of having selected at least one outlier-free sample is in ex-
cess of 99% . The expression for this probabihty is F == 1 — (1 — JP)'^ with 7 the 
maximal fraction of inliers that has been observed, and p the number of features 
in each sample (p = 7 for a fundamental matrix) and m the number of trials. Once 
the epipolar geometry has been computed, it can be used to guide the matching 
process towards additional matches along the epipolar line. 

In the case of a video sequence, consecutive frames are very close together and 
the computation of the epipolar geometry is ill conditioned. To avoid this prob­
lem we propose to only consider properly selected key-frames for the structure 
and motion recovery. Using appropriately spaced key-frames is also important 
for fiirther steps such as the dense Stereo matching. If it is important to compute 
the motion for all frames, such as for insertion of Virtual objects in a video se­
quence [224], the pose for in-between frames can be computed afterwards. We 
propose to use model selection [800] to select the next key-frame only once the 
epipolar geometry model explains the tracked features better than the simpler 
homography model. 

24.3 Structure and motion recovery 

In the previous section it was seen how different views could be related to each 
other. In this section we will build on this to retrieve the structure of the scene and 
the motion of the camera, as well as the calibration. 

At first two Images are selected and used to set up and projective coordinate 
frame for the reconstruction. Then, the pose of the camera for the other views is 
determined in this frame and each time the existing reconstruction is refined and 
extended with newly observed features. In this way the pose estimation of views 
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that do not share features with the two initial views also becomes possible. Typi-
cally, a view is only matched with its predecessor in the sequence. In most cases 
this works line, but in some cases (e.g. when the camera moves back and forth) 
it can be advantageous to also relate a new view to a number of additional views. 
Once the structure and motion has been determined for the whole sequence, the 
results can be relined through a projective bündle adjustment. Then, the ambigu-
ity of the reconstruction can be restricted to a similarity transformation through 
self-calibration. Finally, a metric bündle adjustment can be carried out to obtain 
an optimal estimation of the structure and motion. 

24,3.1 Initial structure and motion 

Two Images of the sequence are used to set up a projective reference frame. The 
World frame is aligned with the lirst camera. The second camera is chosen so that 
the epipolar geometry corresponds to the computed F12: 

P l - [ I3X3 I O3 ] 
P2 = [ [ei2]xFi2 + ei2a^ | crei2 ] 

It was shown [306, 387] that this is sufficient to guarantee that the reconstruc­
tion differs from the recorded scene by no more than a projective transformation. 
Eq. (24.7) is not completely determined by the epipolar geometry, but has 4 more 
degrees of freedom. The 3-vector a determines the position of the reference plane 
(i.e. the plane at infinity in an affine or metric frame) and a determines the global 
Scale of the reconstruction. The parameter a can simply be put to one. If care is 
taken to perform all computations in a projectively invariant way (by perform-
ing measurements in image Space and by using homogeneous coordinates for 3D 
entities), one can simply choose a = [000]^. 

Once the two initial projection matrices have been fuUy determined the cor-
respondences between the two views can be reconstructed through triangulation. 
Due to noise the lines of sight will not exactly intersect. As mentioned before, 
with a projective basis it is important to minimize an image distance, not a 3D 
distance. In this case the distance between the reprojected 3D point and the image 
points is appropriate: 

c^(xi,PiX)2-f6^(x2,P2X)2 (24.8) 

It was noted in [388] that the only important choice is to select in which epipolar 
plane the point is reconstructed. Once this choice is made it is trivial to se­
lect the optimal point in the plane. A bündle of epipolar planes has only one 
Parameter. Minimizing the following equation is thus equivalent to minimizing 
equation (24.8). 

6 / (x i , l i ( a ) )2+^(x2 , l2 (a ) ) ' (24.9) 

with li{a) and 12(0:) the epipolar lines obtained in function of the parameter a 
describing the bündle of epipolar planes. It tums out (see [388]) that this equation 
is a polynomial of degree 6 in a. The global minimum of equation (24.9) can thus 



3D from Image Sequences; Calibration, Motion and Shape Recovery 395 

easily be computed. In both Images the point on the epipolar line l i (a) and 12(0;) 
dosest to the points xi and X2 respectively is selected. Since these points are in 
epipolar correspondence their lines of sight meet at a 3D point. 

24.3.2 Updating the structure and motion 

The previous section dealt with obtaining an initial reconstruction from two views. 
This section discusses how to add a view to an existing reconstruction. First the 
pose of the camera is determined, then the structure is updated based on the added 
view and iinally new points are initialized. 

For every additional view the pose towards the pre-existing reconstruction is 
determined, then the reconstruction is updated. The first step consists of finding 
the epipolar geometry as described in Section 24.2.1. Then the matches which 
correspond to already reconstructed points are used to infer correspondences be-
tween 2D and 3D. Based on these the projection matrix P is computed using 
a robust RANSAC procedure. Ehminating A from Eq. (24.1) yields two linear 
equations per correspondence: 

0 
v T 

T 
(24.10) 

with p a 12-vector containing the coefficients of the projection matrix. In this case 
a minimal sample of 6 matches is needed to compute P . A point is considered an 
inlier if there exists a 3D point that projects sufficiently close to all associated 
image points. We propose to verify this by attempting to refine the previous Solu­
tion for X based on all observations, including the one in the new view. Because 
this verification step is computationally expensive (as this has to be done for each 
generated hypothesis), it is advised to use a modified version of RANSAC with 
early termination of unpromising hypotheses [200]. 

One important problem is that the computation of the camera pose for an un-
calibrated camera remains ambiguous when all points are located on a plane. One 
possible Solution to this consists of using model selection to detect this case and 
to delay the computation of the corresponding camera projection matrices until 
after self-calibration since at this point the ambiguity can be resolved [656]. 

Once the pose for a new view has been determined, the 3D reconstruction of 
feature points is refined. This can be done using an iteratively reweighted least-
squares algorithm for each point. Eq. (24.1) can now be rewritten to become linear 
inX: 

?-iX - Pi 

Pay - P2 
x = (24.11) 

with P̂  the ?*-th row of P and (x, y) being the image coordinates of the point. An 
estimate of X is computed by solving the System of linear equations obtained from 
all views where a corresponding image point is available. To obtain a better So­
lution the criterion ^ d(PX, x) should be minimized. This can be approximately 
obtained by weighting Eq.(24.11) with ^ where X correspond to the previous 
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Solution for X. This procedura can be repeated one or two times. By solving this 
System of equations through SVD a normalized homogeneous point is automat-
ically obtained. If a 3D point is not observed the position is not updated. In this 
case one can check if the point was seen in a sufficient number of views to be 
kept in the final reconstruction. We recommend not to use points seen in less 
than 3 views. This avoids having an important number of outhers due to spurious 
matches. 

Of course, in an image sequence some new features will appear in every new 
image. If point matches are available that were not related to an existing point in 
the structure, then a new point can be initialized as described in Section 24.3.1. 

24.3.3 Refining structure and motion 

Once the structure and motion has been obtained for the whole sequence, it is rec-
ommended to refine it through a global minimization step. A maximum likelihood 
estimation can be obtained through bündle adjustment [804]. The goal is to find 
the Parameters of the camera view P^ and the 3D points X̂  for which the mean 
squared distances between the observed image points TLIJ and the reprojected im­
age points Pi(Xj) is minimized. The camera projection model should also take 
radial distortion into account. For m views and n points the following criterion 
should be minimized: 

m n 

If the errors on the localization of image features are independent and satisfy a 
zero-mean Gaussian distribution then it can be shown that bündle adjustment cor-
responds to a maximum likelihood estimator. This minimization problem is huge, 
but the special structure of the problem can be exploited to solve the problem 
much more efficiently [389, 804]. The key reason for this is that a specific resid­
ual is only dependent on one point and one camera, which results in a very sparse 
Jacobian. 

24.3.4 Upgradingfrom projective to metric 

The reconstruction obtained as described in the previous sections is only de-
termined up to an arbitrary projective transformation which is insufficient for 
visualization and to perform measurements. Therefore, we need to Upgrade our re­
construction by restricting the ambiguity to at most a similarity transformation. In 
recent years many self-calibration approaches have been proposed to achieve this. 
The first self-calibration algorithms were concerned with unknown but constant 
intrinsic camera parameters (e.g. [310]). Later algorithms for varying intrinsic 
camera parameters have also been proposed (e.g. [654]). An important issue with 
self-calibration is that in some cases the motion of the camera is not general 
enough to allow for self-calibration to recover the calibration uniquely [772]. 
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One of the most important concepts for self-calibration is the absolute conic 
and its projection in the images. The simplest way to represent the absolute conic 
is through the dual absolute quadric H* [803]. In a Euclidean coordinate frame 
n* •= diag(l, 1,1,0) and one can easily verify that it is invariant to similarity 
transformations. Inversely, it can also be shown that a transformation that leaves 
the dual quadric H* unchanged is a similarity transformation. For a projective 
reconstruction O* can be represented by a 4 x 4 rank-3 Symmetrie positive semi-
definite matrix. According to the properties mentioned above a transformation that 
transforms H* -^ diag(l, 1,1,0) will bring the reconstruction within a similarity 
transformation of the original scene. Our goal is thus to compute the location of 
n* in our projective reference frame. 

The projection of the dual absolute quadric in the image is described by the 
following equation: 

Acj* = P r 2 * P ^ . (24.13) 

It can be easily verified that in a Euclidean coordinate frame the image of the 
absolute quadric is directly related to the intrinsic camera parameters: 

ijü* ='KKJ (24.14) 

Since the images are independent of the projective basis of the reconstruction, 
Eq. (24.14) is also vahd for a projective reconstruction and constraints on the 
intrinsic camera parameters can be translated to constraints on the location of ^2*. 

If the self-calibration constraints on the camera intrinsics yield linear con­
straints on a;*, a linear self-calibration algorithm is thus easily obtained [654]. If 
the images have been normalized using Eq. (24.6), a focal length of a 60mm lens 
corresponds to 1 and thus focal lengths in the ränge of 20mm to 180mm would 
end up in the ränge [1/3,3]. The principal point should be mapped close to the ori-
gin. The aspect ratio is typically also around 1 and the skew can be assumed 0 for 
all practical purposes. Making this prior knowledge more explicit and estimating 
reasonable Standard deviations one could assume for example / ?̂  r / Ä̂  1 ± 3, 
u ^ V ^ 0 ± 0 . 1 , r « IdbO.l and s = 0 which approximately corresponds to 
4 ^ ? ^ 1 ± 9 , ^ ? ^ l i b 9 , ^ ^1±0.2,UJIO ^0±()m,cüU ^u^o ÄiOibO.l. 
The constraints on the left-hand side of Eq. (24.13) should also be verified on 
the right-hand side. The uncertainty can be taken into account by v^eighting the 
equations. 

^ip2n*P2'' -Ps^^P-A = 0 ^lp,n*PsA = 0 
^ ( p i n * p / - P2n*P2^) - 0 ^(^p^n^p^-^^ = 0 

(24.15) 
with Pi the ^th row of P and A a scale factor that is initially set to 1 and later 
on to P^Ü*P^^ v^ith Ü* the result of the previous Iteration. Since il* is a Sym­
metrie 4 x 4 matrix it is parametrized through 10 coefficients. An estimate of 
the dual absolute quadric O* can be obtained by solving the above set of equa-
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tions for all views through linear least-squares. The rank-3 constraint should be 
imposed by forcing the smallest singular value to zero. This scheme can be it-
erated until the A factors converge (typically after a few iterations). Although 
the equations related to the focal length are very much down-weighted, they 
can be important to regularize the Solution when the camera performs a (quasi-
)critical motion sequence [656]. The upgrading transformation T can be obtained 
from diag (1,1,1,0) — T n * T ^ by eigenvalue decomposition of O*. The metric 
structure and motion is then obtained from 

P M - P T " ^ and XM = TX. (24.16) 

This initial metric reconstruction can then further be refined through a metric bün­
dle adjustment. In this bündle adjustment the constraints on the camera intrinsics 
have to be enforced. These constraints can both be hard constraints (typically 
imposed through parameterization) or soft constraints (imposed by including an 
additional term in the minimization criterion). A good choice of constraints for a 
photo camera consists of imposing a constant focal length (if no zoom was used), 
a constant principal point, a constant radial distortion, an aspect ratio of one and 
the absence of skew. For a camcorder/video camera it is important to also estimate 
the (constant) aspect ratio as this can significantly differ from 1. 

24.4 Dense surface estimation 

Once the camera motion and calibration have been computed, multi-view recon­
struction algorithms can be used to compute the surface of the recorded scene. 
A multitude of approaches have been proposed in the Computer vision litera-
ture, e.g. [607, 308, 498]. Here v ê present a pragmatic approach well suited 
for images acquired with a hand-held camera. This approach combines two-view 
Stereo matching with a multi-view correspondence linking process [481]. This 
combines the advantages of small-baseline matching with wide-baseline triangu-
lation. In addition, this scheme is much less sensitive to inaccurate geometric and 
Photometrie calibration and avoids most problems with occlusions. First, Stereo 
rectification is performed on neighboring images and a Stereo matching algorithm 
is used to obtain a dense set of correspondences. Then, a dense depth map is 
computed by combining results from multiple stereo pairs. 

24.4.1 Rectification and stereo matching 

Since the calibration between successive image pairs has been computed, the 
known epipolar geometry constrains the correspondence search to one dimension. 
To simplify the matching process the images are warped so that the correspond-
ing epipolar lines become corresponding scanHnes. This process is called image 
pair rectification, Stereo matching can be performed more efficiently on rectified 
image pairs because image regions do not have to be warped separately for each 
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Figure 24.2. Rectified image pair (left,right) and computed disparity map (center). 

disparity evaluation, a simple image shift is sufficient. Most Stereo algorithms 
expect image pairs to be rectified. 

For some motions (i.e. when the epipole is located in the image) Standard rec-
tilication based on planar homographies is not possible and a more advanced 
procedure should be used. We propose to use an approach that works for all 
possible motions and guarantees minimal image sizes (without losing informa-
tion) [655]. The key idea is to use polar coordinates with the epipole as origin. 
Corresponding lines are given through the epipolar geometry. By taking the orien-
tation into account the matching ambiguity can be reduced to half epipolar lines. 
A minimal image size is achieved by Computing the angle between two consec-
utive epipolar lines so that the worst case pixel on the line preserve its area. To 
avoid image degradation, both correction of radial distortion and rectification can 
be performed in a Single resampling step. 

Stereo algorithms take a rectified image pair as input and compute a disparity 
map which encodes the horizontal displacement between corresponding pixels 
(see Figure 24.2). The correspondence search is typically limited to a specific 
disparity ränge. This ränge depends on the depth of the observed scene and the 
Camera configuration and can be computed from tracked/matched features. The 
simplest Stereo algorithms minimize the matching cost for each pixel separately. 
More advanced algorithms, such as the one we have used to compute the examples 
shown in this chapter [831], perform an optimization over a complete scanline 
that trades off matching cost with horizontal continuity. The most advanced -but 
also computational most expensive- algorithms perform an optimization over the 
whole image trading off matching cost with horizontal and vertical continuity. 
A complete taxonomy of Stereo algorithms can be found in [711] and a more 
in-depth discussion of some algorithms can be found in other chapters of this 
book. 

24.4.2 Multi-view linking 

The pairwise disparity estimation allows us to compute image to image correspon­
dence between adjacent rectified image pairs, and independent depth estimates for 
each camera viewpoint. An optimal Joint estimate is achieved by fiising all inde­
pendent estimates into a common depth map. The fusion can be performed in an 
economical way through controUed correspondence linking (see Figure 24.3). A 
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Figure 24.3. Depth fusion and uncertainty reduction from correspondence linking (left) 
and depth map (right). 

point is transferred from one Image to the next as foUows: 

x' - R'~\R{X) + D{R{x))) (24.17) 

with R{.) and R'{.) fiinctions that map points from the original image into the 
rectified image and D{.) a function that corresponds to the disparity map. When 
the depth obtained from the new image point x' is outside the confidence inter-
val the linking is stopped, otherwise the result is fUsed with the previous values 
through a Kaiman filter. The variance provided by the Kaiman filter can also be 
stored for later use. More details on this approach can be found in [481]. This 
approach combines the advantages of small baseline matching and wide baseline 
triangulation. It can provide a very dense depth map by avoiding most occlu-
sions (by linking to all its direct neighbors independently). The depth resolution 
is increased through the combination of multiple viewpoints and a large global 
baseline while the matching is simplified through the small local baselines. Due 
to multiple observations of a Single surface point the texture can be enhanced and 
noise and highlights can be removed. By only comparing image pixels between 
neighboring Images, this approach is also robust to small errors in calibration and 
can deal with some view-dependent variations and limited changes in lighting or 
exposure between images. 

24.5 3D surface reconstruction 

In the previous sections a dense structure and motion recovery approach was 
given. This yields all the necessary Information to build detailed 3D surface mod-
els. In practice, the 3D surface is approximated by a triangulär mesh to reduce 
geometric complexity and to tailor the model to the requirements of Computer 
graphics visualization Systems. A simple approach consists of overlaying a 2D 
triangulär mesh on top of one of the images and then building a corresponding 3D 
mesh by warping the vertices of the triangles in 3D Space according to the values 
found in the corresponding depth map. To reduce noise it is recommended to first 
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smooth the depth Image (the kemel can be chosen of the same size as the mesh 
triangles). The Image itself can be used as texture map (the texture coordinates 
are trivially obtained as the 2D coordinates of the vertices). 

It can happen that for some vertices no depth value is available. In these cases 
the corresponding triangles are not reconstructed. The same happens when tri­
angles are placed over discontinuities. This is achieved by selecting a maximum 
angle between the normal of a triangle and the line-of-sight through its center 
(e.g. 85 degrees). This simple approach works very well on the dense depth maps 
as obtained through multi-view linking. 

To reconstruct more complex shapes it is necessary to combine results from 
multiple depth maps. The simplest approach consists of generating separate mod-
els independently and then loading them together in the graphics System. Since 
all depth-maps can be located in a single metric frame, registration is not an issue. 
When necessary, a Volumetrie depth map integration approach [240] can be used 
to obtain a single 3D consensus surface. For optimal results the variance, obtained 
from the Kaiman filter in the multi-view linking step, should be used. 

Figure 24.4. Reconstmction of ancient Medusa head: video frame and recovered structure 
and motion for key-frames (top), textured and shaded view of 3D reconstmction (bottom). 

The example shown in Fig. 24.4 was recorded using a consumer Camcorder 
(Sony TRV900). A 20 second shot was made of a Medusa head located on the 
entablature of a monumental fountain in the ancient city of Sagalassos (Turkey). 
The recorded object is about Im across. Using progressive-scan frames of 720 x 
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576 are obtained. Key-frames are automatically selected and the structure of the 
tracked features and the motion and calibration of the camera is computed, see 
upper-right of Fig. 24.4. It is interesting to notice that for this camera the aspect 
ratio is actually not 1, but around 1.09 which can be observed by comparing the 
upper-left and the lower-left image in Fig. 24.4 (notice that it is the real picture 
that is unnaturally stretched vertically). The next stage consisted of Computing a 
dense surface representation. To this effect Stereo matching was performed for all 
pairs of consecutive key-frames. Using our multi-view linking approach a dense 
depth map was computed for a central frame and the corresponding image was 
appHed as a texture. Several views of the resulting model are shown in Fig. 24.4. 
The shaded view allows to observe the high-quality of the recovered geometry. 
We have also performed a quantitative evaluation of the results. The accuracy of 
the reconstruction was considered at two levels. Errors in the camera motion and 
calibration computations result in a global bias on the reconstruction. From the 
results of the bündle adjustment we have estimated this error to be of the order of 
3mm for points on the reconstruction. The depth computations indicate that 90% 
of the reconstructed points have a relative error of less than 2mm. Note that the 
Stereo correlation uses a 7 x 7 window which corresponds to a size of 5mm x 5mm 
on the object and therefore the measured depth will typically correspond to the 
dominant visual feature within that patch. 

24.6 Conclusion 

In this chapter we have presented the steps needed to automatically compute 3D 
models from image sequences. In the presented System we have attempted to ex-
tract as much Information as possible from the video sequence itself to make 
our approach as flexible as possible. However, this can also lead to some degen-
eracies such as critical motion sequences or pose estimation from planes which 
require additional measures. Therefore, when this Information can be obtained 
easily from some other source (e.g. pre-calibration) this might benefit efficiency 
and robustness. However, when the only available Information source are the Im­
ages themselves, it is critical to be able to extract all the necessary Information 
from them. Here we have focussed on the acquisition of photo-realistic 3D mod­
els of objects from Images recorded with an uncalibrated hand-held camera, but 
many of the algorithms and Solutions presented here can also be used to solve dif-
ferent problems. We have for example re-used many of the presented algorithms 
to implement the Software for a pan-tilt stereo-head designed to reconstruct the 
3D terrain model around a Mars lander. A key dement in the success of this 
project was the ability to calibrate from images. Another example is automatic 
matchmoving. The first part of the presented processing pipeline can be used to 
compute the camera motion so that Virtual objects can be correctly aligned with 
the real objects in video sequences. Some commercial products, such as 2D3's 
Boujou and RealViz' MatchMover, use algorithms similar to the ones described 
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in this chapter. Also, besides explicit 3D models, it is possible to build alterna­
tive Visual representations of the scene such as lightfields. We have adapted the 
presented pipeline to efficiently capture unstructured lightfields by waving the 
Camera over the scene of interest. Our unstructured lightfield approach avoids the 
need for a single consistent 3D representation and renders view-dependent effects 
such as highlights. 
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Chapter25 

Multi-view Reconstruction of Static 
and Dynamic Scenes 
M. Agrawal, A, Mittal and L. Davis 

Abstract 
We explore the reconstruction of a three-dimensional scene from multiple 

Images captured from far away viewpoints (wide-baseline camera arrange-
ment). Such an arrangement is required for complex scenes where the 
visibility from any one viewpoint is not suflicient to adequately reconstruct 
the entire scene. Also, such an arrangement reduces the error in triangula-
tion of the features, thereby improving the accuracy of reconstruction. Our 
emphasis is on algorithms that recover a Volumetrie model of the scene 
from calibrated cameras by explicitly modeling and detecting occlusions. We 
present a brief overview of the State of the art in such methods for multi-view 
reconstruction. In particular, algorithms based on a probabilistic framework 
have become quite populär and produce very accurate models. Several such 
probabilistic volume reconstruction methods will be described. For the dy-
namic parts of the scene, where an online reconstruction is needed, simpler 
methods are required. An important case of such scenes is that of Walk­
ing people in a surveillance scenario. For this case, we present fast online 
algorithms that recover approximate shape and appearance models and 3D 
trajectories of people as they walk in the scene. Finally, we address the prob-
lem of optimal placement of cameras in order to acquire the best possible 
image data for the reconstruction of a given scene according to the particular 
task specification. 

25.1 Introduction 

Reconstruction of surfaces from multiple images has been a central research 
Problem in Computer vision for a long time. Early work in this area focused on 
developing Stereo algorithms for binocular camera configurations. There is a vol­
ume of literature on binocular stereo with a number of algorithms that work well 
on many types of images. More recently, however, due to significant advances 
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in computational power, vision Systems using multiple cameras are becoming in-
creasingly feasible and practical. Example of multi-view vision Systems include 
the 3D room developed by Saito et al. [699] and the KECK Laboratory by Davis 
et al. [250]. These Systems are able to capture multiple synchronized images of 
indoor scenes. This has generated a renewed interest in the Computer vision Com­
munity to develop efficient, scalable, and robust algorithms for 3D reconstruction 
from multiple images. 

Going from binocular to multiple viev^s has the advantage of potentially 
increasing the stability and accuracy of the reconstruction, as the baseline is in-
creased. How^ever, in order to fully exploit this potential, the algorithm must be 
able to handle occlusions, especially if the viev^s are widely separated. The dis-
parity map representation, which is v^idely used in binocular Stereo, is unable to 
represent partially occluded background regions (due to the fact that only a Sin­
gle disparity value is assigned to each pixel in the reference image). Therefore, 
most multi-viev^ algorithms use an explicit representation of the 3D volume of 
the scene (in Section 25.2.8, v ê will present an algorithm that uses an alternative 
representation, multiple depth and visibility maps to represent the scene). The 
goal of reconstruction is to find volume Clements (voxels) that lie on the surface 
of the objects in the scene. In this chapter, we explore the problem of building a 
three dimensional model of a static as well as dynamic scene from multiple im­
ages captured from far away fiiUy calibrated viewpoints (wide-baseline camera 
arrangement). Section 25.2 discusses reconstruction of static scenes followed by 
reconstruction of dynamic scenes in Section 25.3. Finally, the problem of optimal 
placement of sensors for multi-view Systems is discussed in Section 25.4. 

25.2 Reconstruction of Static Scenes 

Reconstruction of static scenes from multiple images is an intensely researched 
area. The main challenge for the wide-baseline camera arrangement is to detect 
and handle occlusions. Therefore, we will restrict our discussion to approaches 
that model and detect occlusions explicitly. One of the simplest ways to build 
three-dimensional models is from multiple Silhouette images of an object. The 
Visual hüll algorithm for reconstruction from Silhouette images will be described 
in Section 25.2.1. The Visual hüll algorithm does not take into account the Pho­
tometrie properties of the scene. The voxel coloring framework discussed in 
Section 25.2.2 utilizes these Photometrie constraints to build photo-consistent 
models. This algorithm, however, works for only a special arrangement of cam­
eras. The Space carving algorithm presented in Section 25.2.3 is a generalization 
of voxel coloring that works for arbitrary placement of cameras. More recently, 
probabilistic approaches have become quite populär as they take into consid-
eration alternative hypotheses that better explain all the images. Several such 
probabiHstic algorithms will be described in Sections 25.2.5 through 25.2.8. In 
particular, Section 25.2.7 presents our probabilistic surface reconstruction algo-
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rithm. Here, the problem is formulated as one of estimating the probability that a 
3D point in the scene lies on the object's surface. An iterative scheme is presented 
that Updates this probability based on the visibility constraints that exist in the 
images. 

25.2.1 Visual Hull 

A Silhouette image is a binary image with the value at a point indicating whether 
that image point is part of the background or the object. The binary Silhouette 
images can be obtained by background subtraction algorithms or by segmentation. 
When the cameras are calibrated, each point in a Silhouette image defines a ray 
in scene space that intersects the object at some unknown depth along this ray. 
The entire Silhouette can thus be extruded for each camera, creating a cone-like 
volume that bounds the extent of the object. The Volumetrie representation of the 
object can then be obtained by intersecting these volumes. 

The volume obtained by the intersection of the generalized cones associated 
with a set of cameras is only an approximation of the true 3D shape. Lauren­
tini [502] characterized the best approximation obtainable in the limit by the 
infinite number of silhouettes captured from all viewpoints outside the convex hull 
of the object as the Visual hull. The visual hull is guaranteed to enclose the object, 
but since it does not capture concavities, it might not be the same as the object. In 
practice, only a finite number of silhouettes is used resulting in an approximation 
ofthis Visual hull. 

The reconstructed 3D volume is efficiently represented by using an oc-
tree [775]. An octree is a tree-structured representation that can be used to 
describe a bounded volume. The octree is constructed by recursively subdivid-
ing each cube into eight sub cubes, starting at the root node (a Single large cube). 
The current voxel is projected into all the images and tested to determine if it 
intersects the Silhouette in each image. If the projected voxel does not intersect 
the Silhouette in at least one image, the voxel is carved out, that is, marked trans­
parent. If the projected voxel intersects only Silhouette pixels in every image, the 
voxel is marked opaque. Otherwise, the voxel intersects both background and Sil­
houette points in the images and is termed ambiguous. This ambiguous voxel is 
then subdivided into octants, and each sub voxel is processed recursively. The 
process is terminated when either the desired octree resolution is attained or the 
voxel projects to sub pixel area within the images. 

A distributed version of this algorithm was implemented by Borovikov and 
Davis in [104]. Figure 25.1 illustrates the Volumetrie model obtained by using 
sixteen Silhouette images in an indoor setting. 

25.2.2 Voxel Coloring 

An approach along different lines is the photo-consistent voxel coloring algorithm 
by Seitz and Dyer [721]. The voxel coloring problem is to assign colors (radi-
ances) to voxels (points) in a 3D volume so as to maximize photo-consistency 
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(a) (b) (c) 

Figure 25.1. Illustration of visual hüll algorithm: (a) observed scene, (b) Silhouette image 
obtained by background subtraction, (c) voxelated VRML model 

with a set of input images. That is, rendering the colored voxels from each input 
viewpoint should reproduce the original image as closely as possible. Using the 
notion of photo-consistency, voxels that are not on the surface are automatically 
carved out in the process. 

For a Lambertian scene, photo-consistency implies that a voxel must project to 
similar colors in all viev^s in v^hich it is visible. Therefore, vs îthout noise or quan-
tization effects, a photo-consistent voxel should project to a set of pixels v îth 
equal color values. The consistency of a set of colors can be defined as their Stan­
dard deviation or, altematively, the maximum of the Li, L2, or Loo norm between 
all pairs of the projected colors in v^hich it is visible. The voxel is considered to 
be on a surface if the measure is less than some threshold. For points not on the 
surface of the scene, the colors need not be similar, as illustrated in Figure 25.2(a). 

The catch here is the fact that photo-consistency should be applied to only those 
views in which a voxel is visible. Therefore, occlusions must be detected before 
applying photo-consistency. However, to detect these occlusions, v^e must know 
the scene geometry first. Therefore, this becomes the chicken-and-egg problem. 
Seitz and Dyer solved this problem by imposing v^hat they called the ordinal visi-
bility constraint on the camera locations. This constraint requires that the cameras 
be placed such that no scene point should be contained vŝ ithin the convex hüll 
of the camera centers. This placement provides a depth ordering of points in the 
scene so that all the voxels can be visited in a Single scan in near-to-far order rel­
ative to every camera. Typically, this condition is met by placing all the cameras 
on one side of the scene and scanning voxels in planes that are successively fur-
ther from the cameras. Hence, the problem of detecting occlusions is solved by 
the scene traversal ordering used in the algorithm; the order is such that if voxel 
V occludes VQ then V is visited before VQ. This traversal greatly simplifies the 
computation of voxel visibility and allows a scene to be reconstructed in a Single 
scan of the voxels. 

The voxel coloring algorithm begins with a reconstruction volume of initially 
opaque voxels that encompasses the scene to be reconstructed. Voxels are tra-
versed in the order of increasing distance from the camera volume. Each opaque 
voxel is projected in the images and tested for photo-consistency. Those that are 
found to be inconsistent are carved away, that is, made transparent. The con­
sistency test is govemed by a threshold on the color Variation in the projected 
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(a) Illustration of photo-consistency (b) Illustration of space carving 

Figure 25.2. Illustration of photo-consistency and Space carving. (a) Two cameras see con-
sistent colors for the point A on the surface. For point B, not on the surface, the cameras 
see inconsistent colors. (b) For the current sweeping plane, only cameras that are above 
it (green) are used for the consistency check. Cameras that lie on the other side of the 
sweeping plane (red) are ignored. 

Images. The threshold corresponds to the maximum allowable correlation error. 
An overly conservative (small) value of the threshold results in an accurate but 
incomplete reconstruction. On the other hand, a large threshold yields a more 
complete reconstruction, but one that includes some erroneous voxels. In prac-
tice, the threshold should be chosen according to the desired characteristics of the 
reconstructed model, in terms of accuracy vs. completeness. The algorithm stops 
when all the remaining opaque voxels are photo-consistent. When these final vox­
els are assigned the colors they project to in the input Images, they form a model 
that closely resembles the scene. 

The voxel coloring approach yields excellent Volumetrie reconstruction pro-
vided the scene is colorful enough. However, the approach reconstructs only 
one of the potentially numerous scenes consistent with the input Images. Con-
sequently, it is susceptible to aperture problems caused by image regions of 
near-uniform color. These regions cause cusps in the reconstruction, since 
voxel coloring yields the reconstruction dosest to the camera volume. Thus, 
reconstruction of regions with similar colors is biased. 

25.2.3 Space Carving 

The ordinal visibility constraint imposes a significant limitation on allowable 
camera configurations in the voxel coloring approach. In particular, a widely used 
configuration in which the cameras Surround the scene is not handled by this al­
gorithm, as such an arrangement will not yield a near-to-far ordering of voxels 
relative to the camera volume. In the absence of such an ordering of voxels, there 
is no guarantee that the visibility of a voxel will not change after it has been 
checked for photo-consistency once. Therefore, algorithms that allow arbitrary 
camera placements must allow for multiple passes through the voxels. 
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The Space carving approach of Kutulakos and Seitz [497] is a generalization 
of the voxel coloring approach for arbitrary camera coniigurations. Space carving 
is a multi pass approach that makes multiple-plane sweeps, typically along the 
positive and negative directions of each of the X, Y, and Z axes. As in voxel 
coloring, during each sweep a plane of voxels is evaluated for photo-consistency. 
Photo-consistency is tested using only the cameras and other voxels that are on 
one side of the plane that includes the given voxel. By using only the subset of 
cameras that lie on one side of the sweeping plane, voxels will alv^ays be visited in 
an Order that ensures that the occlusion relations for the voxel are already knov^n 
for that subset of cameras. Figure 25.2(b) illustrates this, wherein for the current 
sweeping plane, only cameras that lie above it are used in the consistency check. 
Thus, when a voxel is evaluated, the transparencies of voxels that might occlude it 
from the cameras currently being used is known. Therefore, its photo-consistency 
may be easily evaluated from the set of cameras in which it is visible. If the 
voxel is inconsistent, it is carved out. Multiple iterations of the plane sweeps are 
necessary until no non-photo consistent voxels can be found on the surface of the 
carved volume and the process is terminated. 

At each iteration of the multi plane-sweep traversal of voxels, only those voxels 
that are photo-inconsistent in the subset of selected cameras are removed. If the 
test for photo-consistency is such that if a voxel is photo-inconsistent in a subset 
of views, then it will also be photo-inconsistent in the entire set of views, then the 
algorithm will never carve out voxels that would be photo-consistent in the final 
model. Because carving is conservative, the set of uncarved voxels produced by 
the algorithm is a superset of any other photo-consistent model. This superset of 
all photo-consistent volumes of the set of images is termed thophoto hüll and this 
encloses the true shape of the object. 

An alternative to this multi sweep approach used by space carving is the gener-
alized voxel coloring algorithm of Culbertson et al. [239]. This algorithm simply 
iterates over all the boundary voxels of the scene, checking for their photo-
consistency and removing those voxels that are not photo-consistent. Iterations 
are carried out until no change occurs in a complete pass. The main difference 
is that no specific plane is being swept in the scene. Without the plane sweep 
constraint the test of visibility of a voxel is more complicated. To improve its effi-
ciency, the algorithm maintains a data structure, that stores, for every pixel in the 
image, the surface voxel that is visible along the pixel's Visual ray. Thus, visibil­
ity may easily be determined by checking to see if this visible voxel matches the 
projection of the voxel in question. When a voxel is carved out, this data struc­
ture needs to be updated as the visibility of other voxels will also change. This 
update Operation will result in correct visibility but will be considerably slower. 
Fortunately, because carving is conservative, the data structure can be updated less 
frequently, and the resulting out-of-date visibility can still be used for carving at 
the possible cost of additional iterations. 
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25.2.4 Probabilistic Approaches 

A common problem underlying the approaches discussed until now is that they 
make hard decisions in carving away voxels. Therefore, if a voxel is carved away 
in error, there is no way to recover this voxel at a later step and this leads to a 
cascading effect, thereby generating large errors in reconstruction. This is mani-
fested in the final 3D model as large holes. Also, space carving requires the user to 
specify a global variance threshold for performing the photo-consistency check of 
the projected voxels (a voxel is consistent if the variance of its projected colors is 
less than this global threshold). A small threshold leads to incomplete reconstruc-
tions, whereas larger thresholds result in more errors. These two shortcomings of 
the Space carving algorithm can be addressed in a probabilistic framework that 
does not make hard decisions. 

25.2.5 Probabilistic Space Carving 

Broadhurst et al. [117] have proposed a probabilistic extension of the space 
carving algorithm for the case where the cameras satisfy the ordinal visibility 
constraint and therefore the images can be processed in a Single sweep. Most of 
the ideas from the original Space carving framework are retained but, significantly, 
the existence of a voxel is not a binary fiinction anymore. Instead, each voxel is 
assigned a probability that it belongs to the true 3D surface. The voxel array is 
processed using the plane sweep algorithm, starting with the plane dosest to the 
cameras. The probabilities of the planes prior to the current plane are used to de-
termine visibility for voxels in the current plane. This is then used to compute the 
probability of the current plane of voxels by comparing the likelihoods for the 
voxel being opaque and transparent using the Bayesian framework. 

The algorithm uses two models to describe a voxel. The first model describes 
what the projection of a voxel looks Hke in the image, and the second model 
describes what an image looks Hke when a voxel is removed. When a voxel exists, 
its projections in all the images are modeled by a spherical Gaussian distribution 
in RGB space, provided, of course the voxel is visible in that view. The probability 
of a voxel being visible in a particular view is computed using the probabihties 
of all the voxels in the line of sight. The second possibility is that the voxel is 
transparent. In this case when the transparent voxel is projected into each of the 
images, the image samples will have actually arisen from different voxels. In this 
case, it is assumed that each sample is locally independent and a transparent voxel 
is represented by a set of independent models (one for each image). 

The entire scene is traversed in a Single plane sweep. During the sweep, for 
each voxel, the probabihty of a voxel being opaque is determined using Bayes' 
theorem. The voxel and independent models are used to compute the likelihoods 
of the data given the models and Bayes' rule is used to compute the probabilities 
of the voxel. 
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25.2.6 Roxels: Responsibility Weighted Voxels 

The framework developed by Debonet and Viola [253] is also probabilistic. They 
use a probabilistic framework to represent voxels w îth partial opacity. Conse-
quently, this approach is able to reconstruct opaque as v^ell as transparent objects. 
In addition, this algorithm allov^s arbitrary camera placement and is therefore 
more general than the previous algorithm. 

The Roxel algorithm assigns colors and opacities to a uniform voxel space. The 
key Observation of this algorithm is the fact that the observed pixel intensity is a 
v^eighted linear combination of the colors along the ray, and the v^eights are a 
function of the voxel transparencies. These v^eights are termed as the responsi­
bility of a voxel for the Observation at that pixel. The Roxel algorithm altemates 
betv^een estimation of the colors, estimation of responsibilities, and estimation of 
opacities. The voxel colors can be computed from the images and the voxel re­
sponsibilities by inverting this linear System. Symmetrically, the voxel colors and 
images can be used to compute the responsibilities. Finally, the responsibihties 
can be used to compute the opacities and vice versa. 

It is assumed that initially each voxel along a cast ray is equally responsible 
for that pixel. The entire procedure is repeated until the global opacity estimate 
converges. At convergence, global color and transparency are extracted and com-
bined to form the final semi transparent voxelated space that accurately reflects 
the constraints provided by the input image viewpoints, the positions and shape 
of both solid and transparent objects, and the uncertainty that remains. 

25.2.7 Probabilistic Surface Reconstruction 

The probabilistic space carving algorithm presented in Section 25.2.5 can be ap­
plied to image sequences that can be processed in a Single sweep. In other w^ords, 
the Cameras must satisfy the ordinal visibility constraint, which is too restrictive. 
The Roxel algorithm allov^s arbitrary placement of the cameras and represents 
transparency with uncertainties. However, in real situations v ê generally en-
counter opaque objects. Our probabilistic surface reconstruction algorithm [9] 
reconstructs an opaque scene from an arbitrary set of cameras. Our algorithm 
is iterative and estimates the probability that a scene point lies on the true 3D sur­
face. This is done by explicitly estimating the probabilities that a 3D scene point 
is visible in a particular viev .̂ 

The key idea behind this algorithm is the visibility constraint that is inherent 
in the scene. For a consistent viewing of an opaque scene, the following two 
properties must be satisfied for all points in the scene. 

1. If a scene point is occluded from one viev ,̂ then there must be another 
surface point along the ray joining that scene point to the camera center of 
that view. 
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2. Conversely, if a surface point is visible in a view, then there cannot be an-
other surface point along the ray joining the camera center to that surface 
point. 

The algorithm uses these two visibility constraints in all the views simultaneously 
to refine the probability that a scene point lies on the true surface, in an iterative 
manner. 

To apply these viewing constraints, we must determine the visibility of a voxel. 
We use the pixel intensities of the projected images to obtain estimates for whether 
or not a surface point is occluded in a particular view. Under the assumption that 
the scene to be reconstructed is approximately Lambertian, if the 3D point X is 
not occluded in viev^s i and j , then the pixel intensities at the projections must 
match, that is, Ii{xi) ^ Ij{xj). Interpreted differently, if the absolute value of 
the difference in pixel intensities 6 — \Ii[pßi) — lj{xj)\ is large, then it is highly 
probable that X is occluded in one of the views % and j . The converse, however, is 
not true, unless of course each 3D point is uniquely colored. That is to say, even 
if ||/i(x^) — /j(xj) | | is 0, it is possible that X is occluded in one of the views. 
Therefore, the probability of a voxel being visible in two views is a function / of 
the pixel intensity difference b, where / must satisfy the following two properties. 

1. / should be high for small values of ^ and should decrease as ^ increases. 

2. For small values of ^, the value of / should reflect the uncertainty that exists 
on whether or not X is visible \ib is small. 

For a voxel to be visible in a subset of the views, it must be visible in all such pairs 
of views. Under the assumption of independence, the probabihty of this event can 
be obtained by multiplying the probabilities of visibility of each such pair. Fur-
thermore, we assume that each point in the scene is visible in at least V views. 
Knowledge about the camera placement can be used to obtain a conservative es-
timate of 1/ . In the worst case, V can be safely assigned a value of two. This 
reflects the fact that only those scene points visible in at least two images can be 
reconstructed. Therefore, the probability that a voxel is visible in a particular view 
can be determined from the subset of V views that includes that particular view 
and has the maximum probability of visibility. 

The algorithm is iterative. Starting with a distribution of probability that is high 
for many scene points, including those which are not surface points, our algorithm 
uses the visibility constraints to reduce the probabilities of the non-surface points, 
and, at the same time boost the probabihties of the true surface points. So in the 
end, the non-surface points are "carved" away. A probabilistic measure R(X) is 
introduced that measures how well X satisfies the visibility constraints, which 
is then used to update the probabilities for the next Iteration. By constraint 1, 
all points farther away from the camera along the line of sight than the current 
location should be either a non surface point or a surface point that is not visible 
along the viewing ray. The probability of this event is given by the sum of the 
probabilities of these two events Similarly, by constraint 2, all points along the 
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Figure 25.3. Results of probabilistic surface reconstruction algorithm: (a) one of the 14 
input images, (b) and (c) two rendered views of the VRML model 

viewing ray that are closer to the camera than X must be carved away, provided 
X is visible in that view, 

These two constraints are then translated into probabilities. Both the constraints 
must be simultaneously satisfied for a surface point to be a visible surface point 
in a particular view. Therefore, the evidence for X being a visible surface point 
in view i, Ei[X) is simply the product of these two probabilities of satisfying the 
constraints. Once the evidence Ei[X) for each voxel and viewing direction are 
computed, they are then scaled so that the maximum Ei{X) along each viewing 
direction is 1. This converts the absolute probabilities Ei{X) to relative probabil­
ities Ri{X) and accounts for the fact that along each viewing ray, there must be 
one surface point that is visible along that ray. Since a voxel is visible in at least 
V images, we can sort the Ri{X) and multiply the V largest values to obtain the 
Overall uncertainty R{X). 

Using these relative probabilities R{X) the probabilities ofa voxel being a sur­
face point are updated using Bayes' rule, wherein the probabiUties of the previous 
Iteration are taken as the prior. The iterations are initialized from probabilities of 
visibility computed with the assumption of visibility in a minimum of V views. 
The subset chosen is one with the highest probability of visibility. The algorithm 
converges in about 20 to 30 iterations. At each iteration of the algorithm, voxels 
with maximum probabilities along each viewing ray represent the reconstructed 
surface for that iteration, and the color for each voxel is determined as the aver-
age color of its projection in all the viewing directions in which it is not occluded. 
Most surfaces in the real world are smooth almost everywhere, except at sur­
face discontinuities. At each iteration, we take this into account by considering 
a small SD window centered at each voxel and then replacing the probability by 
the average probability in that window. Figure 25.3 shows the results of applying 
this algorithm on fourteen views ofa human subject captured using synchronized 
color Cameras placed on the four walls of a room. 
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25.2.8 Probabilistic Image-Based Stereo 

The probabilistic approaches described until now reconstruct a Volumetrie model 
of the scene. These approaches use a discretized volume and reconstruct the vol-
ume model to a predefined accuracy; for example, the number of octree levels 
is fixed from the Start. However, the Space requirement in a volume-based rep-
resentation is cubic. Thus, for large Images, a volume-based representation may 
not be suitable because of speed and memory requirements. Stretcha et al. [768] 
present a probabilistic stereo algorithm that estimates the depth map representa­
tion for each input image. These depth maps are relative to the positions and view 
directions of the cameras, and can later be integrated into a Single model. 

Occlusions are handled through a set of visibiHty maps. For each pair of views, 
the visibility map for the iirst image indicates whether a pixel in the first view is 
visible in the second image and likewise for the visibihty map of the second im­
age. Each input image is regarded as a noisy measurement of an unknown image 
irradiance or 'true image'. One of the views is taken as a reference view, and the 
depth map is computed in the reference map attached to this camera. The prob-
lem is formulated as one of estimating the true image and the depth map. This is 
solved in a Bayesian framework, wherein the visibility maps are regarded as the 
hidden or unobservable variables that must also be solved for during the course 
of the optimization. 

In the Bayesian framework, this is accomplished by maximizing the posterior 
probability of the unknown quantities given the images. This requires that the 
unknown variables be integrated over all possible values of the visibility map, 
which is computationally intractable. Instead, it is assumed that the probability 
density function for the visibility is centered about a Single value, which is then 
estimated iteratively from the current values of the unknown variables. This leads 
to an Estimation-Maximization (EM) based Solution, which iterates between (i) 
estimating values for the visibility maps, given the current estimate of the true 
image, its noise, and the depth map, and (ii) maximizing the posterior probabil­
ity of the unknown variables, given the current estimate of the depth maps. For 
the maximization step, given the visibility maps, it is straightforward to update 
the true image and its noise from visible views. The depth map is updated by per-
forming a gradient descent on an energy that assumes locally smooth prior depths. 
In the Expectation step, the visibility maps are computed photometrically, given 
the current estimates for the depth maps, color model, and noise. The depth map 
is used to find the corresponding pixel in the other image. The color model and its 
variance is then used to estimate the likelihood that a pixel is occluded or visible 
in the other view based on the observed color difference between the projected 
pixel and the voxel color. This is very similar to the visibility determination in the 
probabihstic surface reconstruction algorithm discussed in the previous section. 

These two steps of the EM algorithm are carried out until convergence, at which 
we obtain the true image and the depth estimates. The algorithm has few free 
Parameters, displays a stable convergence behavior, and generates accurate depth 
estimates. The algorithm has been applied to several real-world wide-baseline 
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image pairs, producing impressive results. As it is an image-space approach, the 
true image, and the depth map can be used to perform view interpolation, resulting 
in a high-quality walkthrough of the scene. 

25.3 Reconstraction of Dynamic Scenes 

Dynamic scenes may be considered at different levels of complexity. One naive 
approach would simply involve performing füll 3D reconstruction for each new 
frame. Such an approach, however, can be quite time-consuming, which might 
make the method impractical for real-time applications and does not utilize the 
temporal information available in the data. In this section, we will mostly describe 
methods that utilize such temporal continuity in order to improve the reconstruc­
tion results. These methods may also be categorized according to the precision of 
the desired reconstruction and the models and assumptions used. Such consider-
ations affect the quality of the reconstruction and the computational time taken. 
Some methods attempt to obtain very accurate 3D reconstructions at the expense 
of computational time, while others obtain approximate reconstructions for the 
sake of real-time Performance. 

25.3.1 Visual Hüll A Igorithms 

Algorithms describing the visual hüll reconstruction of static scenes have already 
been described in Section 25.2.1. One may obtain the visual huU of dynamic 
scenes by application of this visual hüll reconstruction algorithm at each time 
instant separately. For real-time applications, this is feasible if the visual hüll al­
gorithm is fast enough. Borovikov and Davis [104] describe methods to achieve 
real-time voxel reconstruction for dynamic scenes using a distributed architecture. 
The local memory and network bandwidth requirements are reduced by hierarchi-
cal flow of data in the multi processor System. They utilize an efficient method to 
process octrees using a depth-first-search (DFS) order of traversal through the 
nodes. These features make the System extremely efficient for real-time volume 
reconstruction, and hence the visual hüll algorithm can be applied to reconstruct 
dynamic scenes. 

25.3.2 Approximate 3D Localization of Targets for Surveillance 

In the context of surveillance applications, one is often not required to obtain very 
detailed 3D reconstruction of objects in a scene. Approximate localization of tar-
gets along with extraction of simple appearance models for matching and tracking 
across time are generally sufficient. This task simplification is also necessitated 
by the requirement of real-time Performance and often the coverage of a large 
area reducing the image resolution available for each target. 
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Different requirements can be considered for such multi sensor surveillance 
Systems. Some of the trade-offs involved include visibility in a crowded scene, 
accuracy of object localization, running time of the algorithm, and coverage area. 
Depending on the System requirements, different sensor coniigurations can been 
considered. 

One scenario of using multiple cameras involves a wide area with relatively 
sparse objects and little inter-object occlusions [215, 758]. In this case, one cam-
era is typically sufficient for observing one part of the scene and an overlap is 
required for hand-off between the detections of different cameras. Multiple cam­
eras may also be employed for the same part of the scene in order to deal with 
occlusions from static obstacles such as trees and buildings. The System devel-
oped at CMU under the DARPA VSAM project [215] is an example of such a 
System. The objective in this System was to cover a large area and detect and 
track objects over large distances as the object moves in the scene. Pan/tilt/zoom 
cameras are then utilized to foUow and zoom onto detected objects. Each camera 
detects objects in its field of view. Such objects are then classified using neural 
networks and Hnear discriminant analysis. 

Such detections are then brought into a common 3-D coordinate System by the 
use of geodetic coordinates that utilize the latitude, longitude, and elevation with 
respect to the WGS84 datum (so-called "GPS coordinates"). This allows easy 
Integration of all the detections in a common frame of reference. To determine 
3D locations of objects, wide-baseline triangulation is utiHzed when the views 
of multiple sensors overlap. When there is no overlap between the views, do-
main constraints are needed. If the assumption is used that the object is in contact 
with the domain, one can determine the contact location by passing a viewing ray 
through the bottom of the object in the image and intersecting it with a model 
representing the terrain. If a scene plane is available, it can be utilized. How-
ever, large outdoor scenes may contain significantly varied terrain. To handle 
these situations, geolocation is performed using ray intersection with a füll ter­
rain model provided by a georeferenced digital elevation map (DEM). Tracking 
is performed by generating a hypothesis for object location and comparing such 
a 3D hypothesis to the detections from each camera, using a variety of factors 
including geometrical proximity, object Classification and color-histogram-based 
appearance models. The best matched detection is then assigned to a tracked ob­
ject, and split/merge/enter/exit schemes are used to alter the number of objects 
being tracked. The tracking methodology is very similar to the original paper on 
Monte Carlo-based tracking by Isard and Blake [420]. 

When the cameras look at the same scene from different viewpoints, two dif­
ferent approaches can be considered. The approach that many such Systems [245] 
take is to sacrifice visibility for matching accuracy by using "stereo" pairs of 
sensors. Stereo matching is performed within each pair of cameras, and matched 
points are reconstructed in 3D by triangulation. Then, the 3D Information is in-
tegrated across such stereo pairs in a global coordinate System. Some Systems 
perform such integration in 3D Space by clustering 3D triangulated points into 
people-shaped blobs. However, most Systems [245, 578] assume that objects are 
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upright and moving on a ground plane and perform such clustering in an Or­
thographie vertical projection The plan-view image thus created simplifies and 
Speeds up the correspondence in time since only a 2D search is required. Detection 
and tracking are then performed in this plan-view image. The tracking in these 
Systems is often facilitated by the use of automatically developed appearance 
models consisting of color histograms obtained from the detected blobs. 

The altemate approach is to utiHze wide-baseline cameras for increasing visi-
bility of the cameras. When occlusion is moderate, one can consider an approach 
v^here detections are performed independently in each view and such detections 
are simply merged across viev^s in a consistent manner v^ithout regard to any ap­
pearance constraints [461]. Geometrie and temporal constraints are used to match 
the trajectories of such detections. 

When occlusion is significant from any given viewpoint and one wishes to max-
imize the visibility from a given number of sensors by placing sensors as far av^ay 
as possible, one requires more sophisticated reasoning that combines the visual 
and geometric constraints in a unified framework. Our work on this topic [578] 
addresses this scenario. In particular, v ê have addressed the problem of automat­
ically segmenting, detecting, and tracking multiple people in multi perspective 
Video where the scene being viewed is suflficiently "crowded" that one cannot as-
sume that any or all of the people in the scene v̂ ôuld be visually isolated from 
any vantage point. Figure 25.4 shov^s images of a typical scenario captured from 
6 views (only 2 views are shown in the figure due to space limitations). 

The System handles the case of partial occlusions by explicitly segmenting the 
foreground region belonging to difFerent people. Bayesian Classification is used 
and a probabilistic scheme is used for setting priors in such a procedure. The 
scheme, v^hich assumes know^ledge of approximate shape and location of objects, 
dynamically assigns priors for different objects at each pixel so that occlusion 
information is encoded in the priors. 

The image segmentations thus obtained are utilized by a region-based Stereo 
algorithm that is capable of finding 3D points inside an object if the regions be­
longing to the object in two views are known. No exact point matching is required. 
This is especially usefiil in wide-baseline camera Systems where exact matching 
is very difficult due to self-occlusion and a substantial change in viewpoint. 

Rather than performing inference in a Single view, the System combines the 
evidence gathered from different camera pairs using occlusion analysis so as to 
obtain a globally Optimum detection and tracking of objects. Higher weight is 
given to those pairs having a clearer view of a location than those whose view is 
potentially obstructed by some objects. The weight is also determined dynami­
cally and uses approximate shape features to give a probabilistic answer for the 
level of occlusion. 

Good segmentation of people in a crowded scene is facilitated by models of 
the people being viewed. Unfortunately, the problem of detecting and finding the 
positions of the people requires accurate image segmentation in the face of occlu­
sions. Therefore, we take a unified approach to the problem and solve both of them 
simultaneously. The algorithm uses segmentation results to find people's ground 
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Figure 25.4. Results of our algorithm [578] in a crowded scene: (a) and (b) images from a 
6-perspective sequence at a particular time instant, (c) result of segmentation of image (a) 
using our System, (d) result of detection and tracking as seen from image (a), (e) plan-view 
likelihood map obtained at this instant 

plane positions and then uses the ground plane positions thus obtained to obtain 
segmentations; the process is iterated until the results are stable. This helps to ob­
tain both good segmentations and ground plane position estimates simultaneously. 
Some results from this System are shown in Figure 25.4. 

Finally, there are methods that try to achieve detection and tracking of multiple 
occluding objects from a single view or a few views [423, 668, 920]. The idea 
is to develop appearance and motion models of objects while they are visible in 
Order to predict their trajectories when they are not visible from any view. When 
the objects become visible again, they are matched to the lost objects based on 
their appearance and motion characteristics. Such trajectory matching is often 
performed in a Bayesian sense by utilizing Monte Carlo samples to estimate the 
distribution of the State of the System at any given time. Although some significant 
progress has been made in this area, the problem is quite hard due to missing 
data. Thus, all such algorithms inevitably give inaccurate results when the object 
density is high, leading to inter-object occlusions and cases where the objects 
appear to be very close to each other. 

25.4 Sensor Planning 

Until now, we have described algorithms for 3D reconstruction of both static and 
dynamic scenes for varying model complexity. Another important, although rel-
atively less researched factor, that affects the Performance of any reconstruction 
method is the placement of the sensors for acquiring the best possible data suit-
able for the method. In this section, we address the problem of optimal placement 
of sensors for such Systems. 

As described in the previous section, different Systems have different require-
ments and may vary according to several characteristics: wide-baseline cameras 
for better triangulation and visibility vs. short-baseline cameras for better match­
ing, accuracy of reconstruction vs. the coverage of any object, non overlapping 
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Cameras for maximum coverage vs. overlapping cameras for high-density areas, 
and so on. Optimal sensor planning is a requirement for all of such Systems. 

Sensor planning has several different variations depending on the application. 
Following [556] and [791], one may classify these methods based on the amount 
of information available about the scene: (1) no information is available, (2) set 
of models for the objects that can occur in the scene is available, and (3) complete 
geometric information is available. 

The first set of methods, which may be called next view planning or incremen-
tal scene reconstruction, attempts to build a model of the scene incrementally by 
successively sensing the unknown world from effective sensor configurations us-
ing the information acquired about the v^orld up to this point [648, 556,496]. The 
Sensors are controlled based on several criteria such as occlusions, ability to vievŷ  
the largest unexplored region, and ability to perform good Stereo matching. Such 
constraints are translated into constraints on the camera positions, and satisfaction 
of these constraints guarantees Optimum and stable acquisition. The second set of 
methods assumes knov^ledge about the objects that can be present in the scene. 
The task, then, is to develop sensing strategies for model-based object recognition 
and localization [906]. 

The third set of methods assumes that complete geometric information is avail­
able and determines the location of static cameras so as to obtain the best views 
of a scene. The objective is either to detect the dynamic objects in the scene 
or to recover the appearance characteristics of the static parts. This problem 
v^as originally posed in the computational geometry literature as the "art-gallery 
problem" [614]. The traditional formulation of such problem requires only one 
camera to view any part of the scene and utilizes the simple assumption that two 
points are called visible if the straight line segment between them lies entirely 
inside the polygon. Even with such simple definition of visibility, the problem is 
NP-complete. The reader is referred to [614] for a survey of work done in this 
area. 

Several recent papers have incorporated more complicated constraints such as 
incidence angle and ränge into the problem and obtain an approximate Solution 
to the resultant NP-complete problem via randomized algorithms [354]. Several 
others [230, 671, 792, 556] have studied and incorporated more complex con­
straints based on factors such as resolution, focus, field of view, visibility, view 
angle, and prohibited regions. The set of possible sensor configurations satisfying 
all such constraints for all the features in the scene is then determined. 

In addition to the "static" constraints that have been considered so far, there are 
additional constraints that arise when dynamic obstacles are present. Our work 
in this area has focused on analyzing visibility constraints in the presence of 
random dynamic obstacles, and maximization of System Performance given task 
specification. 

The visibility analysis probabilistically determines the visibility rate of objects 
at different locations, given that visibility from even one or a few (two in the case 
of Stereo matching) sensors may be sufficient. Stated differently, the probability 
that the object is visible from at least one (or two for stereo matching) sensor is 
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Figure 25.5. Scene geometry: (a) 3D case, (b) 2.5D case, where the sensors have finite 
heights 

evaluated at all possible locations. Such analysis assumes a random occurrence of 
objects in a region according to a density function and then evaluates the proba-
bility that no such object appears in a region of occlusion where the occurrence of 
another object would cause the target object to be occluded from a given camera, 
as shown in Figure 25.5. 

The multi-view probabilistic analysis is then combined with several other static 
constraints such as image resolution, stereo matching, field of view, and back-
ground scene. An inherent difficulty in the integration of such constraints is the 
trade-off that is typically involved between different constraints. For instance, a 
reduction in the distance from the camera enhances resolution, but might increase 
the viewing angle from the camera and cause diflficulties in stereo matching, or 
may cause a part of the object to go out of the camera field of view. We have 
proposed a generic formulation that integrates a variety of such constraints and 
trade-offs in a Single quality measure according to user requirements and also 
utihzes the multi-view visibility constraints in a natural way. Integration of such 
a quality measure over a given region of interest leads to the development of a 
cost function that can then be minimized for eflficient sensor planning. Since ex-
act optimization of such criteria is an NP-hard problem, methods are proposed 
that yield "good" configurations for most cases. Customization of the method for 
a given System allows the method to be utilized for a variety of different tasks and 
appHcations. Figure 25.6 illustrates the result of such sensor planning for some 
example scenes. 

25.5 Conclusion 

Reconstruction of scenes from multiple cameras has made significant progress 
over the past few years. We presented a brief overview of the State of the art in 
multi-view reconstruction of static and dynamic scenes. We focused on algorithms 
that utilized the wide-baseline camera arrangement and modeled occlusions ex-
plicitly. Such algorithms can be either based on pure geometric intersections 
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Figure 25.6. Sensor planning results. Optimum configuration: (a) omni-cameras (360° field 
of view), (b) field of view restricted to 90°, (c) a Stereo requirement with omni-cameras, 
(d) no visibility with the left wall as background (object color matches the left wall) 

(visual hüll algorithm) or on the concept of photo-consistency (voxel coloring 
and Space carving). In particular, algorithms based on a probabilistic frame-
work are receiving more attention these days as they tend to produce superior 
reconstruction results. Several such probabilistic algorithms were described in 
detail. 

Next, we considered the reconstruction of dynamic scenes. The main im-
provement over frame-by-frame reconstruction is the utilization of the temporal 
continuity constraints existing in such scenes. In this context, we described 
efificient visual hüll methods for detailed reconstruction as well as fast but ap-
proximate target localization methods for multi-view surveillance applications. 
Finally, we addressed the problem of planning the placement of the sensors so 
that the data is acquired in an optimal manner for a given reconstruction task. 
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Graph Cut Algorithms for Binocular 
Stereo with Occlusions 

V. Kolmogorov and R. Zabih 

Abstract 
Most binocular stereo algorithms assume that all scene elements are visible 
from both cameras. Scene elements that are visible from only one camera, 
known as occlusions, pose an important challenge for stereo. Occlusions 
are important for segmentation, because they appear near discontinuities. 
However, stereo algorithms tend to ignore occlusions because of their dif-
ficulty. One reason is that occlusions require the input images to be treated 
symmetrically, which complicates the problem formulation. Worse, certain 
depth maps imply physically impossible scene configurations, and must be 
excluded from the Output. In this chapter we approach the problem of binocu­
lar Stereo with occlusions from an energy minimization viewpoint. We begin 
by reviewing traditional stereo methods that do not handle occlusions. If oc­
clusions are ignored, it is easy to formulate the stereo problem as a pixel 
labeling problem, which leads to an energy function that is common in early 
Vision. This kind of energy function can be minimized using graph cuts, 
which is a combinatorial optimization technique that has proven to be very 
effective for low-level vision problems. Motivated by this, we have designed 
two graph cut stereo algorithms that are designed to handle occlusions. These 
algorithms produce promising experimental results on real data with ground 
truth. 

26.1 Traditional stereo methods 

Computing stereo depth is a traditional problem in Computer vision, and has been 
the focus of a great deal of work (see [120, 711] for recent surveys). Given a 
pair of images taken at the same time, two pixels are said to correspond if they 
show the same scene element. The goal of stereo is to compute correspondences 
between pixels, which then determines depth. The binocular stereo problem is 
typically formulated as follows: 
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For every pixel in one Image, find the corresponding pixel in the other 
image. 

We will refer to this as the tradiüonal Stereo problem. 
The problem formulation above has many advantages. It easily fits within a 

dass of Problems that arise in early vision called/?/:x:e/ labeling problems, where 
the goal is to assign each pixel p — {pxiPy) ^ 'P a label from some set C. The 
label set C depends upon the particular problem; for example, in image denoising, 
C is intensities. In stereo, C consists of disparities. 

Pixel labeling problems have been widely studied in Computer vision. The prob­
lem is naturally formulated in terms of energy minimization, where the goal is to 
find the labeling / = ( / i , . • •, / p , . . •, /ipi) that minimizes 

(26.1) 

Here D^, is the penalty for assigning a label to the pixel p; A/̂  is a set of pairs 
of adjacent pixels, representing a neighborhood System; and V is the penalty for 
assigning a pair of labels to adjacent pixels. The first term of equation 26.1 gives 
a data cost for / , which requires / to respect the observed data, while the second 
term imposes spatial smoothness. Note that this energy fUnction has an elegant 
connection to the probabilistic framework provided by Markov Random Fields 
[520], where the first term comes from the likelihood and the second comes from 
the prior. 

The traditional stereo problem can be easily formulated as a pixel labeling prob­
lem. We will assign the label /p to the pixel p when the pixel p in one image / 
corresponds to the pixel p + /p in the other image I'. (Note that the set V consists 
of pixels in /.) The matching penalty Dp will enforce photoconsistency, which is 
the tendency of corresponding pixels to have similar intensities. The natural form 
otDp is Pp(/p) = \\I{p) - I'ip + /p)||2. 

The smoothness penalty V will depend on what kind of scene geometry we 
expect. If V gives too large a penalty for very different fp, fq, the Solution will 
tend to oversmooth. With fronto-parallel scenes, the natural choice is Vifp, fq) = 
X • T[fp ^ fq], where the indicator function T[] is 1 if its argument is true and 
otherwise 0. This choice of F is referred to as the Potts model. There are also more 
complex forms of V that naturally handle slanted or curved surfaces [88,113,521 ] 
(surprisingly, these often rely on the Potts model). 

The terms D and V can be easily visuaHzed as tables, which are \C\ x 1 or 
\C\ X \JC\, respectively. For stereo with the Potts model, they are 

Dp:= 

{I{Px,Py) 
{I{Px,Py)-
{I{Px,Py) -

-I'ip. 
I'iPx -
I'{Px -

,Pv)f 
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This visualization will prove useful when we describe how to minimize the energy 
function. 
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Figure 26.1. Expansion move example. The input labeling is shown at left. An expansion 
move is shown in the middle, and the corresponding binary labeling is shown at right. 

26.1,1 Energy minimization via graph cuts 

A major advantage of pixel labeling problems is that they can now be rapidly 
solved by powerful optimization algorithms such as graph cuts [113, 424]. If the 
label set C consists of contiguous integers and if K is a convex function of/p — fq, 
then the global minimum of E can be rapidly computed in a Single graph cut 
[424]. However, if y is convex it will give a large penalty for very different fp^ fq, 
and hence will oversmooth. Any dass of smoothness terms that includes the Potts 
model is NP-hard to minimize [113], so a good local minimum is the best that we 
can hope to achieve. 

If y is a metric on labels, then it is possible to efficiently minimize E using the 
expansion move algorithm. The Potts model is a metric, as are some other pop­
ulär choices of V that do not oversmooth [113]. The expansion move algorithm 
computes a strong local minimum, in a sense that we will describe with more pre-
cision shortly. Given a label a and a labeling / , another labeling / ' is defined to 
be an a-expansion move from / if for every pixel p 

fip) ^ f{p) => fip) = ex. 

Intuitively, / ' is obtained from / by assigning the label a to an arbitrary set of 
pixels. An example of an expansion move is shown in figure 26.1, with / at the 
left and / ' in the middle. 

The expansion move algorithm cycles through the labels in some order (fixed 
or random). For a particular label a, it computes the lowest energy expansion 
move from the current labeling, and moves to that labeling if its energy is lower. 
This is obviously a greedy algorithm, and terminates with a labeling that is a local 
minimum with respect to expansion moves. More precisely, when it terminates 
with a labeling / there is no a-expansion move from / whose energy is lower 
than E{f), for any label a. 

The number of expansion moves from a given labeling is 0{\£\ • 2'^') (recall 
that \V\ is the number of pixels). It is possible to prove that the energy of a local 
minimum with respect to expansion moves lies within a fixed multiplicative factor 
of the energy of the global minimum. The factor is at least 2, and depends on the 
exact form ofV (see [113] for details). 

The key challenge in the expansion move algorithm lies in solving the fol-
lowing subproblem: given a labeling / and a label a, find the lowest energy 
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a-expansion move from / . In an expansion move, each pixel p has two options: it 
can keep its old label /p, or it can switch to the new label a. As a result, an expan­
sion move can be naturally viewed as a binary image; there is a Single bit assigned 
to each pixel, representing which Option that pixel selects in this expansion move. 
For example, figure 26.1 shows at right the binary image corresponding to the 
expansion move at center. 

We can thus view the problem of finding the lowest energy expansion move as 
an energy minimization problem over binary Images. To formalize this, consider 
a binary image x = {xp\p ^V}. The labeling associated with x, given an 
initial labeHng / and a label a, will be a at pixels where x is 1, and the same as / 
elsewhere. We will write this labeling as f^" [x]. The problem of finding the lowest 
energy expansion move is to find the x that minimizes E( /" [x] ) , given / and a. 

We can now rewrite the energy E* as a new energy fianction ̂ (x) , where £^(x) •= 
E{f^\x\). The new energy function is defined on binary Images, and is given by 

C-(Xj = / ^ ^pXp^p) ~r / ^ Cp^q\Xp^ Xq) 

p p.q 

Just as before, the two terms can be visualized as tables, where 

Dpifp) 
Dpja) 

Cp^q — y{fpj\) 
V{aJ,) 

Vifp^a) 
V{a,a) 

The problem of minimizing ^(x) can be solved exactly with a Single graph 
cut as long as Sp^q has a property called regulärity, introduced in [491]. Sp^q is 
regulär if the sum of its diagonal Clements is less than or equal to the sum of its 
off-diagonal Clements; so a sufficient condition is 

V{a, a) + V{1, l') < V{1, a) + V{a, l') (26.2) 

for any labels lj\a. As long as this condition is met, the general-purpose con-
struction given in [491] can be used to minimize S, and hence to find the lowest 
energy expansion move. Note that if V is a metric, it clearly satisfies this condition 
since V{a, a) = 0 and so equation 26.2 is just the triangle inequahty. 

In summary, the traditional stereo problem is a pixel labeling problem. With the 
appopriate choices of Dp and V it can be formulated as an energy minimization 
problem. When F is a metric, a strong local minimum can be computed using the 
expansion move algorithm. This stereo algorithm, due to [113], yields very good 
experimental results. For example, the majority of the top-ranked methods on the 
Middlebury stereo database rely on graph cuts [711]. 

26.2 Stereo with occlusions 

The traditional stereo problem formulation, however, has some serious dis-
advantages. First, note that the problem formulation treats the input Images 
asymmetrically, which is unnatural. The pixels to be labeled V come from the 
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D 

Figure 26.2. It is impossible for the left camera to see the Square and the right camera to 
see the triangle at the same time. 

primary Image 7, while / ' appears only in the data term Dp. Second, by assigning 
every pixel in / a label, we assume that every scene element is visible in both 
images. This cannot be true if the scene has more than one depth.̂  

Worst of all, however, certain labelings / imply physically impossible 3D 
scenes, and hence must be excluded from consideration. This results from the 
geometry of the imaging process. An example showing this constraint is shown 
in figure 26.2. A general-purpose pixel labeling algorithm will almost invariably 
generate Solutions that violate these geometric constraints. For binocular stereo, 
these geometric constraints center on occlusions, which are scene Clements that 
are only visible from one camera. 

In this chapter we describe two binocular stereo algorithms that handle occlu­
sions. We take an energy minimization approach, and rely on the expansion move 
algorithm to minimize the energy. One key challenge is that graph cuts perform 
unconstrained QnQTgy minimization [491], while binocular stereo with occlusions 
requires a constrained energy minimization algorithm. 

The energy minimization approach to binocular stereo with occlusions consists 
of foUowing three steps: 

• Pick a representation for the problem. In other words, we need to choose 
the Space of valid (physically possible) configurations Cvaiid and define the 
correspondence between configurations and real scenes. 

' While it is possible to augment the label sei by adding a label that means "this pixel is occluded". 
this approach does not address the other difficulties of the traditional problem formulation. 
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• Design an energy flinction E : Cyaiid —̂  ^ that captures the desired 
properties of a Solution. 

• Develop an algorithm for minimizing this energy. 

Note that these steps are strongly interconnected. With a poor choice of repre-
sentation, it may be hard or impossible to impose the correct problem constraints. 
Even if an energy flinction does captures all the desirable properties, Computing 
a good minimum may be computationally intractable. We will get an effective 
algorithm only if all three issues are properly addressed. 

Ideally, a representation for the Stereo problem should have the foUowing 
properties: for a given coniiguration it should be easy to determine 

(PI) whether it is vahd or not (i.e. whether there exists a real scene correspond-
ing to this configuration); and 

(P2) what pixels in the left and in the right image correspond to each other. 
This is crucial since photoconsistency should only be imposed between 
corresponding pixels. 

There are two obvious types of representations for Stereo: voxel-style represen-
tations, and representations based on labeling pixels. Voxel-style representations 
rely on an explicit representation of the 3D space that the scene may occupy. 
Such representations have been used in many approaches, including voxel col-
oring [722], Space carving [498] and Silhouette intersection [549]. Pixel labeling 
approaches include all the Standard stereo methods, such as those surveyed in 
[120,711]. 

2^.2.7 Notation 

We will redefine V to now be the set of pixels in the left and in the right images 
(the previous definition was asymmetric). Let V be the set of (unordered) pairs of 
pixels that may potentially correspond. For simplicity we assume that images are 
rectilied; then we have 

V = {{p,q)\ py = Qy and Qx - Px ^ C} 

where C is the set of possible disparities: C = {0, - 1 , . . . , -dmax}- (We as­
sume that disparities lie in some Hmited ränge, so each pixel in the left image can 
potentially correspond to one of |£ | possible pixels in the right image, and vice 
versa). We call a pair v = (p, ̂ ) G V a voxel. Its disparity is denoted as d{v) (i.e. 
d{v) = qx-Px ^ Q-

Note that each voxel v e V corresponds to a point in 3D Space, as shown in 
figure 26.3. The disparity d{v) directly depends on the depth of this point, i.e. its 
distance to the cameras. If the cameras are parallel then —d{v) is inversely pro­
portional to the depth. In a more general Situation the relationship can be more 
complicated. In this chapter we assume that disparity is a monotonically increas-
ing function of the depth. In other words, the farther a point from the cameras the 
larger the disparity. 
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Figure 26.3. Voxel labeling algorithm. Voxels are given a binary label (active or not); dark 
shaded voxels are labeled as active. The disparity of the voxel (p, q) is rf((p, q)) = - 4 . To 
simplify the drawing, Orthographie projection is assumed. Note that the two gray-shaded 
voxels cannot be active if (p, q) is active. 

For a voxel v = {p,q) we can compute the matching penalty M{v) de-
scribing how photoconsistent the intensity of pixel p is v^ith the intensity of 
pixel q. The simplest function is the squared difference of intensities: M{v) = 
\\I{p) — r{q)\\^; however, more elaborate functions (for example, [87]) tend to 
give better results. 

26.3 Voxel labeling algorithm 

Our first approach, which first appeared in [490], is directly inspired by property 
P2. A configuration will just be a labeling ^ : V -^ {0,1} such that g{v) is 1 if 
the pixels p and q in voxel v = (p, q) correspond to each other, and 0 otherwise. 
In other words g{v) = 1 if and only if the the 3D point corresponding to voxel v 
is present in the scene and is visible from both cameras. If this is the case v ê vŝ ill 
say that v is active, 

The set of all configurations isC = {0,1}^. However, not all configurations 
in C are valid. Some of them violate the uniqueness constraint which says that a 
pixel in one image can correspond to at most one pixel in the other image. Let 
US define the set Cyaiid as follows: the configuration ^ G C is valid if for any two 
distinct voxels v, v' involving the same pixel (i.e. v — {p,q), v' — {p,q') with 
q ^ q') at least one of them has label 0: g{v) = 0 or g(^v') = 0. 
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Now let US define the energy we will minimize. It has three terms: data, 
occlusion and smoothness: 

E[9) - Edataig) H- EocM + Esmoothig) (26.3) 

The data term will be Edataig) — Ylvevdi'^) ' ^i'^)- Note that this sum con-
tains matching penalties only for voxels v which are active in configuration g (i.e. 
g{v) — 1). The term Eocc{g) penalizes occlusions: it is equal to CQCC ' \Pocc{g)\ 
where CQCC is the penalty for an occlusion and Vocc{g) is the set of pixels occluded 
in configuration g (i.e. pixels p such that g{v) = 0 for all voxels v — (p, q) G V). 

The smoothness term involves a notion of neighborhood; we assume that there 
is a neighborhood System on voxels 

Mv(z{{v,v'}\v,v' eV}. 

We require that for every pair {v^v'] G A/y the disparities of voxels v and v' 
are the same: d(v) = d(v'). For example, we can specify A/y as follows: voxels 
(p, q),{p', q') with the same disparity are neighbors if pixels p, p' in the left image 
are 4-neighbors. Now the smoothness term can be written: 

Esmooih{g) = 5 Z A . T[^('^) ^ g(y')\. 
{v,v'}eM'v 

To summarize, the voxel labeling Stereo algorithm solves the constrained 
minimization problem: 

g* = arg min E{g), (26.4) 

where E{g) is defined in equation 26.3. 

26.4 Pixel labeling algorithm 

The representation discussed above might seem natural for Stereo correspondence 
problem since it allows to identify corresponding pixels easily. However, it has 
several drawbacks. First, the smoothness term involved is rather restrictive — 
basically, it is the Potts model on voxels (see [492] for more details). Second, the 
set Cyaiid contains configurations which do not correspond to any physical scene. 
Consider, for example, the configuration g with g{a) = 0 for every voxel v G 
V. Every pixel is occluded in this configuration; thus, the configuration contains 
"holes". From a practical point of view, we can ensure that we will not get such a 
configuration by setting penalty for occlusion to a sufficiently large value. 

We now describe a different approach, first published in [490], which uses a 
representation proposed by [451]. We know that each pixel sees some dement of 
the scene (even though this dement may not be seen from the other camera). Our 
goal will be to compute the depth of this pixel (or, rather, its disparity). Thus, a 
configuration is a mapping f :V -^ C. The set of all configurations isC = C^. 
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As in the previous case, not all configurations are valid. Formally, the configu-
ration / G C is valid if for every voxel v — {p, q) the following property holds: 
if f{p) = d{v) then f{q) < d{v). This can be understood intuitively in terms 
of figure 26.2; if the left camera sees the Square, the right camera cannot see any 
scene element that is behind the square. 

Our energy function will be 

E{f) - Edataif) + EsmoothU)' (26.5) 

Similar to the previous case, we would like the data term to be a sum only over 
active voxels. Let us discuss how we can identify such voxels in this representa-
tion. The voxel v = {p, q) is active if the corresponding 3D point is present in the 
scene and is visible from both cameras. This means that f{p) = f{q) = d(y). 
This in tum motivates the following data term: 

where D{v) measures how similar intensities of pixels p and q are. For technical 
reasons explained in section 26.5 we need the term D{v) to be non-positive. We 
set D{v) = min {M(t>) - i^, 0} where K is a positive constant. 

The smoothness term is very similar to that of tradional Stereo problem, except 
that it is enforced for both images rather than just the left image: 

Esmoothif) = 2L/ ^Uv^fq) 

where V can be, for example, the Potts model: V{fp, fq) = X' T[fp / fq]. 
We thus obtain the following constrained minimization problem: 

r = arg min E{f), (26.6) 

where E{f) is defined in equation 26.5. 

26.5 Minimizing the energy 

In this section we sketch how we solve the constrained minimization problems 
given in equations 26.4 and 26.6. First, we convert our constrained minimization 
Problems into unconstrained ones. We add a hard constraint term Eyaiid which 
is zero if a configuration is valid, and infinite otherwise. In the case of the pixel 
labeling algorithm, for example, the energy becomes 

E{f) - Edataif) + EsmoothU) + E^alidU)-

All terms of this energy (including Eyaiid) can be written as a sum over pairs 
of pixels. In other words, the energy has the same fiinctional form as in equa­
tion 26.1, only the neighborhood System M is different and terms V are replaced 
by some other functions. Moreover, the representation of our problem resembles 
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that of traditional stereo problem (section 26.1). As in traditional Stereo, our goal 
is to assign disparities to pixels; the only change in representation is to consider 
pixels in both images. Thus, it is easy to adapt the expansion move algorithm 
described in section 26.1 to our minimization problem. We just need to ensure 
that for each a-expansion the corresponding binary energy function is regulär. We 
show in [490] that this condition holds assuming that terms D{v) are non-positive. 

In Order to apply the expansion move algorithm to the voxel labeling problem, 
we need to modify the definition of a-expansion. Indeed, the definition given in 
section 26.1 appHes to multi-label variables, while our problem has binary labels. 
We say that configuration g' is within a Single a-expansion move from coniigu-
ration g if voxels which are inactive in g and w^hose disparity is different from a 
are also inactive in g\ Then for every valid configuration g and disparity a it is 
possible to compute an optimal a-expansion move using graph cuts (see [490] for 
details). 

26.6 Experimental results 

26.6,1 Implementational details 

Expansion move algorithm We selected disparities a G £ in random order, 
and kept this order for all iterations. We performed three iterations. (The number 
of iterations until convergence was at most live but the result was practically the 
same). The voxel labeling algorithm was initialized with a configuration where ev­
ery voxel was inactive; the pixel labeling algorithm was initialized with all pixels 
having disparity zero. 

Matching penalty For our matching penalty M we made use of the method 
of [87] to handle sampling artifacts, with a slight Variation: we compute intensity 
intervals for each band (R,G,B) using four neighbors, and then take the average 
data penalty. (We used color images; results for grayscale images are slightly 
worse). 

Smoothness terms We used a Potts model for both algorithms (in one case 
this is the Potts model on voxels, while in the other the Potts model on pixels). 
This model is controUed by one parameter characterizing the penalty for a pair 
of neighboring voxels or pixels. This parameter, however, can depend on the pair. 
We can use this property to discourage discontinuities between adjacent pixels 
with very similar intensities. This trick is referred to as "static cues" in [113] and 
is quite usefiil for stereo. 

For the pixel labeling algorithm we set 

yp,p'{fp^ fp'j — ^p,p' ' ̂ [/p r" fp'] 
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where Xp^p' was implemented as the foUowing empirically selected decreasing 
function of A/(p, p') (the L^o norm of the intensity difference between p and p'): 

^ ^ ^ f s A i f A / ( p , p ' ) < 5 , 

^'^ 1 A otherwise. 

For the voxel labeling algorithm we used a similar expression: 

f 3A if max(A/ (p ,y ) , A/(g, q')) < 8, 

' A otherwise, 

where v — (p, q),v' — (p', (() and p and p' are pixels in the same image, as well 
as q and g'. 

Choice of Parameters The energy function for the voxel labeling algorithm as 
defined above depends on two numbers: occlusion penalty CQCC and smoothness 
interaction strength A. Similarly, the pixel labeling algorithm depends on the Pa­
rameters K and A. These parameters should be tuned for for different datasets to 
reflect our prior knowledge about the scene geometry, amount of noise in the Im­
ages and other factors. Selecting the parameters automatically, however, is a very 
challenging task. 

We set K in the pixel labeling algorithm using a simple heuristic which tries to 
estimate the amount of noise in the images. Details are given in [488]. It can be 
shown [488, 492] that K/2 approximately corresponds to the occlusion penalty, 
so for the voxel labeling algorithm we set CQCC — K/2. Finally, the parameter A 
was chosen to be proportional io K: X = K/b, 

26.6.2 A Igorithm Performance 

We have compared three algorithms: our voxel and pixel labeling algorithms with 
occlusions ("[KZ 'Ol]" and "[KZ '02]") and a traditional Stereo algorithm pro-
posed in [113] ("[BVZ]"). The latter technique was found to be the best algorithm 
for Stereo according to [782]. In addition, we tested the algorithms in two modes: 
with reporting occlusions (some of the pixels in the left image are marked as oc-
cluded) and without reporting occlusions (all pixels in the left image are labeled 
with some disparity). 

Determining occluded areas in the voxel and pixel labeling algorithms is easy 
since they Output what pixels correspond to each other. The information produced 
by [BVZ], however, is not sufficient to determine where occlusions are. To pro-
duce occlusions, we have augmented the algorithm: we introduced a new label 
"occluded" with some fixed penalty. 

Note that our voxel labeling algorithm does not produce depths for all pixels. 
We have filled occluded regions using some postprocessing: we have assigned to 
occluded pixels the depth label of the dosest non-occluded left neighbor lying in 
the same scanline. 

We primarily experimented with images from [711]; Output is shown in fig-
ures 26.4- 26.6. The running times below were obtained on 450MHz UltraSPARC 
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II processor. We used the max flow algorithm of [110], which is specifically 
designed for the kinds of graphs that arise in vision. 

Stereo pair 

Tsukuba 
Sawtooth 
Venus 

image number running times 
size oflabels [KZ'Ol] [KZ'02] [BVZ] 

384x288 
434 X 380 
434 X 383 

16 
20 
22 

69 secs 
115 secs 
145 secs 

80 secs 35 secs 
141 secs 66 secs 
159 secs 85 secs 

First we evaluated the three algorithms in the mode without reporting 
occlusions. Error statistics using the ground truth from [711] are as foUows: 

Stereo pair 
Tsukuba 
Sawtooth 
Venus 

[KZ 'Ol] [KZ '02] [BVZ] 
5.82(1.18) 5.91(1.86) 7.17(1.93) 
12.13(0.71) 11.77(0.67) 11.86(0.62) 
15.40(1.07) 13.19(0.69) 16.90(0.75) 

We determined the percentage of the pixels where the algorithm did not compute 
the correct disparity ("errors" — the first number), or a disparity within ±1 of the 
correct disparity ("gross errors" — the second number). We counted only pixels 
that are not occluded according to the ground truth since depth labels of such 
pixels cannot be determined from the photoconsistency constraint. 

We have also computed error statistics for the Tsukuba stereo pair in the mode 
with reporting occlusions. 

algorithm 
[KZ 'Ol] 
[KZ '02] 
[BVZ] 

Errors Gross errors False negatives False positives 
6.56% 
6.51% 
7.28% 

2.17% 
2.66% 
2.14% 

41.33% 
44.16% 
77.59% 

1.33% 
1.03% 
0.62% 

The first two columns count only pixels that are not occluded according to the 
ground truth. We considered labehng a pixel as occluded to be a gross error. The 
last two columns show error rates for occlusions. 

26.7 Conclusions 

We have presented two stereo algorithms that handle occlusions. The pixel label-
ing algorithm can be viewed as an improvement over the voxel labeling algorithm 
for two reasons. First, unlike voxel labeling, pixel labeling explicitly prohibits 
"holes" in the scene. In other words, it takes into account the fact that for any real 
scene the layer with disparity 0 (corresponding to the plane at infinity) is lilled. 
Second, our pixel labeling method allows not only Potts interactions, but other 
useful smoothness terms (for example, truncated linear terms). 

The major limitation of our approach lies in its bias towards fronto-parallel 
surfaces. With a sloped surface, our methods yield occlusions at discontinuities 
resulting from discretizing disparities. These occlusions are treated in the same 



Graph Cut Algorithms for Binocular Stereo with Occlusions 435 

[KZ 'Ol], occiusions [KZ '02], occlusions 

Figure 26.4. Sawtooth results (occlusions are shown in black). 

way as real occlusions at object boundaries. Note that in the pixel labeling algo-
rithm the problem can be alleviated by using a truncated linear smoothness term 
instead of Potts model. 

It is possible to extend our algorithms to handle multiple cameras [488, 490, 
492]. However, no scene point can lie inside the convex hüll of the camera centers. 
This is the same dass of camera configurations where voxel coloring [722] can 
be used, and includes many situations of practical interest. 
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Left Image Ground truth 

[BVZ] [BVZ], occlusions 

Figure 26.5. Tsukuba results (occlusions are shown in black). 
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Left Image 

[KZ 'Ol], occlusions 

[BVZ] [BVZ], occlusions 

Figure 26.6. Tree image results (occlusions are shown in black). 



Chapter27 

Modelling Non-Rigid Dynamic Scenes 
from Multi-View Image Sequences 

J.-P. Pons, R, Keriven and O, Faugeras 

Abstract 

This chapter focuses on the problem of obtaining a complete spatio-temporal 
description of some objects undergoing a non-rigid motion, given several cal-
ibrated and synchronized videos of the scene. Using Stereovision and scene 
flow methods in conjunction, the three-dimensional shape and the non-rigid 
three-dimensional motion field of the objects can be recovered. We review 
the unreahstic Photometrie and geometric assumptions which plague exist-
ing methods. A novel method based on deformable surfaces is proposed to 
alleviate some of these limitations. 

27.1 Introduction 

Recovering the geometry of a scene from several Images taken from different 
viewpoints, namely Stereovision, is one of the oldest problems in Computer Vi­
sion. More recently, some authors have considered estimating the dense non-rigid 
three-dimensional motion field of a scene, often called scene flow * [835], from 
multiple Video sequences. In this case, the input data are a two-dimensional array 
of Images, in which each row is a multi-view Stereovision dataset for a given time 
instant, and each column is a video sequence captured by a given camera. 

Combining Stereovision and scene flow allows to build a spatio-temporal model 
of a dynamic event. Once such a model is available, some novel Virtual views of 
the event can be generated by Interpolation across space and time [834]. 

' The scene flow should not be confused with the optica! flow, which is the two-dimensional motion 
field of points in an Image. Tbe optica! flow is the projection of the scene flow in the image plane of a 
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Stereovision and scene flow estimation both require to match different images 
of the same scene, in other words to find points in different cameras and in dif­
ferent frames corresponding to a same physical point. Once the correspondence 
Problem is solved, the shape and the three-dimensional motion of the scene can be 
recovered easily by triangulation. Unfortunately, this problem is a very diflficult 
task in Computer vision because a scene patch generally has different shapes and 
appearances when seen from different points of view and at different times. 

In Section 27.2, we report some important works on multi-view stereovision, 
scene flow estimation, and their integration. In particular, we show that, in order 
to solve the correspondence problem, most existing stereovision and scene flow 
algorithms rely on unrealistic simplifying assumptions that disregard either/both 
shape/appearance changes between different images of the scene. 

In Section 27.3, we propose a new method that overcomes some of these lim-
itations. Our method uses the prediction error [777] as a metric for shape and 
motion estimation. Both problems then translate into a generic image registration 
task. The latter is entrusted to a similarity measure chosen depending on imaging 
conditions and scene properties. In particular, our method can be made robust to 
appearance changes due to non-Lambertian materials and Illumination changes. 
Our method results in a simpler, more flexible, and more efficient Implementa­
tion than other deformable surfaces approaches. The computation time on large 
datasets does not exceed thirty minutes. Moreover, our method is compliant with 
a hardware Implementation with graphics processor units. 

Finally, in Section 27.4, we show some experimental results. Our stereovision 
algorithm yields very good results on a variety of datasets including speculari-
ties and translucency. We have successfully tested our scene flow algorithm on a 
challenging multi-view video sequence of a non-rigid event. 

27.2 Previous Work 

27,2.1 Multi-view complete stereovision 

Doing a complete review of the stereovision area is out of the scope of this chapter. 
Here, we are particularly interested in obtaining a complete scene reconstruc-
tion from a high number of input views. So we discard the methods in which 
the geometry of the scene is represented by depth maps or disparity maps. In-
deed, these methods compute several partial models which have to be fused at 
post-processing. Moreover, they cannot handle visibility globally and consistently 
since no complete model of the scene is available during the estimation. However, 
let US mention two important works in this category: the graph cuts method of 
[490] and the PDE-based method of [769]. The interested reader should also refer 
to [711] for a good taxonomy of dense two-frame rectified Stereo correspondence 
algorithms. 
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Thus, in the foUowing, we focus on multi-view complete Stereovision methods. 
These methods fall into two categories: the space carving framework and the 
deformable surfaces framework. 

In the Space carving framework [498], the scene is represented by a three-
dimensional array of voxels. Each voxel can be labeled empty or occupied. When 
the algorithm Starts, all voxels are occupied. Then the volume is traversed in an 
adequate order. Ifa voxel is not consistent with all the input Images, it is relabeled 
empty. The order of the traversal is important because the visibility of the voxels is 
taken into account in the consistency test. In an older method called voxel coloring 
[722], there was a constraint on the placement of the cameras, and the algorithm 
needed a Single pass. Space carving handles arbitrary camera configurations but 
is a little more expensive computationally. 

The Space carving framework suffers from several important limitations. First, 
these methods make hard decisions. Once a voxel is carved away, it cannot be 
recovered. And if one voxel is removed in error, further voxels can be erro-
neously removed in a cascade effect. This limitation is partially alleviated by the 
probabiHstic space carving method [117]. 

Second, in the original space carving algorithm, the photo-consistency test de-
rives from a brightness constancy constraint: corresponding points are asssumed 
to have the same color. This is a very naive assumption on the Photometrie prop-
erties of the scene. It requires a precise Photometrie calibration of the different 
cameras and only applies to strictly Lambertian scenes. In other words, this mea-
sure cannot cope with appearance changes between different Images. Moreover, 
the choice of the global threshold on the color variance is often problematic. 
Recently, there have been some attempts to relax these Photometrie constraints 
[802, 904]. 

Third, the voxel-based representation disregards the continuity of shape, which 
makes it very hard to enforce any kind of spatial coherence. As a result, space 
carving is very sensitive to noise and outliers, and typically yields very noisy 
reconstructions. 

We now tum to a review of Stereovision methods based on deformable surfaces. 
These methods inherit from the active contour method pioneered in [455]. Here, 
contrarily to the space carving framework, the formulation is continuous and has 
a geometric Interpretation. The unknown scene is modelled by a two-dimensional 
surface, and scene reconstruction is stated in terms of an energy minimization. An 
initial surface, positioned by the user, is driven by a partial differential equation 
minimizing an energy functional. 

The most prominent work in this category is the level set Stereovision method of 
[309]. In this work, the stereovision problem is formulated as a minimal surface 
approach, in the spirit of the geodesic active contours method [155]. In other 
words, the energy functional is written as the integral on the unknown surface of 
a data iidelity criterion. This criterion is the normalized cross correlation between 
image pairs. 

The surface evolution is implemented in the level set framework [618]. On the 
one hand, the implicit representation offers numerical stability and the ability to 
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handle topological changes automatically. On the other hand, it is quite expen-
sive computationally, even with a narrow band approach. So, some authors have 
proposed an Implementation with meshes [285] including a tangential smoothing 
operator to preserve the quality of the mesh and a merging/splitting procedure to 
handle topological changes. 

Recently, some authors have proposed a new Stereovision method to cope with 
non-Lambertian scenes [439]. Their method can estimate both the shape and the 
non-Lambertian reflectance of the scene. The surface deformation is driven by the 
minimization of the rank of a radiance tensor. This method Outputs a geometric 
and Photometrie model which allows to predict the appearance of novel views. 

Interestingly, in [309, 439], the geometric interpretation allows to agregate 
neighborhood Information during the matching process, for a better robustness 
to noise and to realistic imaging conditions. But in retum, these methods have 
to handle the geometric distortion between the different views. If fixed matching 
Windows are used, the underlying assumption is the fronto parallel hypothesis: 
Camera retinal planes are identical and the scene is an assembly of planes par­
allel to them. This assumption can still be found in recent work. In [517], the 
authors disregard projective distortion and attempt to minimize its impact by 
Computing the Stereo discrepancy of a scene patch with its two most front-facing 
Cameras only. However, this approach is vaHd only for a high number of spatially 
well-distributed cameras. 

In [309, 439], projective distortion is handled at least partially by taking into 
account the tangent plane to the object. For example, in [439], the radiance tensors 
are computed by sampling image intensities on a tesselation of the tangent plane. 
Thus, the matching score depends not only on the position of the surface but also 
on its orientation. Unfortunately, this first-order shape approximation results in a 
very complex minimizing flow involving second-order derivatives of the matching 
score. The computation of these terms is tricky, time-consuming and unstable, 
and, to our knowledge, all authors have resigned to drop them. 

27.2.2 Scene flow estimation 

Three-dimensional motion estimation from multiple video sequences has long 
been limited to rigid or piecewise-rigid scenes or parametric models. 

The Problem of Computing a dense non-rigid three-dimensional motion field 
from multiple video sequences has been addressed only recently. Two types of 
methods prevail in the scene flow literature. 

The first family of methods [915,149,599] relies on the spatio-temporal deriva­
tives of the input Images. As pointed out in [835], estimating the scene flow from 
these derivatives without regularization is an ill-posed problem. Indeed, the as-
sociated normal flow equations only constrain the scene flow vector to lie on a 
line parallel to the iso-brightness contour on the object. This is nothing but a 3D 
Version of the aperture problem for optical flow. In [149, 599], several samples of 
the spatio-temporal derivatives are combined in order to overconstrain the scene 
flow, whereas in [915], the aperture problem is solved by combining the normal 
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flow constraint with a Tikhonov smoothness term. However, due to the underly-
ing brightness constancy assumption, and to the local relevance of spatio-temporal 
derivatives, these differential methods apply mainly to slowly-moving lambertian 
scenes under constant illumination. 

In the second family of methods [835, 915], scene flow is constructed from 
previously computed optical flows in all the input Images. However, the latter may 
be noisy and/or physically inconsistent through cameras. The heuristic spatial 
smoothness constraints applied to optical flow may also alter the recovered scene 
flow. 

27.2.3 Shape-motion integration 

Shape and motion estimations are linked. Indeed, the knowlegde of the shape 
is required to compute the scene flow. Conversely, the motion in the different 
cameras constrains the shape of the scene. This suggests that more robustness and 
more precision can be expected when properly fusing Stereovision and scene flow 
estimation. More precisely, the correspondences across cameras and over time 
satisfy a round-about compatibility constraint that can be used to disambiguate 
the matching process. 

There have been a few attempts to perform this integration [599, 915, 836]. But 
due to their increased computational cost and their modelling complexity, these 
techniques have not gained a significant popularity. 

For example, in [836], shape and scene flow are estimated simultaneously using 
a plane-sweep carving algorithm in a 6D Space. But this approach has a very high 
computational and memory cost, and is unable to enforce the smoothness of the 
recovered motion. As a result, in [834], the same authors renounce to the fusion: 
the shape-motion consistency is enforced by modifying the voxel representation 
and the scene flow at post-processing. 

27.3 The Prediction Error as a New Metrie for 
Stereovision and Scene Flow Estimation 

We propose a common variational framework for complete stereovision and scene 
flow estimation which correctly handles projective distortion without any ap-
proximation of shape and motion and which can be made robust to appearance 
changes. 

The metric used in our framework is the ability to predict the other input views 
from one input view and the estimated shape or motion. This is related to the 
methodology proposed in [777] for evaluating the quality of motion estimation 
and Stereo correspondence algorithms. But in our method, the prediction error is 
used for the estimation itself rather than for evaluation purposes. 

Our method consists in maximizing, with respect to shape and motion, the sim-
ilarity between each input view and the predicted Images Coming from the other 
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views. We adequatly warp the input Images to compute the predicted Images, 
which simultaneously removes projective distortion. For example, in the case of 
Stereovision, we reproject the image taken by one camera onto the hypothetical 
surface, then we predict the appearance of the scene in the other views by project-
ing this texture-mapped surface in the other cameras. If the estimation of geometry 
is perfect, the predicted images coincide exactly with the corresponding input im-
ages, modulo noise, calibration errors, appearance changes and semi-occluded 
areas. This motivates our approach: we seek a shape or a motion maximizing the 
quahty of the prediction. 

Interestingly, this can be formulated as a generic image registration task. The 
latter is entrusted to a measure of image similarity chosen depending on imag-
ing conditions and scene properties. This measure is basically a function mapping 
two images to a scalar value. The more similar the two images are, the lower 
the value of the measure is. Consequently, our formulation is completely decou-
pled from the nature of the image similarity measure used to assess the quality 
of the prediction. It can be the normalized cross correlation, some Statistical mea-
sures such as the correlation ratio or the mutual Information [398], or any other 
application-specific measure. Through this choice, we can make the estimation 
robust to camera spectral sensitivity differences, non-Lambertian materials and 
Illumination changes. 

Furthermore, contrarily to [309, 439, 285, 517], our method is not a minimal 
surface approach, i.e. our energy fimctional is not written as the integral on the 
unknown surface of a data fidelity criterion. In this approach, the data attachment 
term and the regularizing term are mixed whereas we may have to control them 
separately. As a consequence, to design non trivial regularity constraints, one has 
to twist the metric. A good discussion of this topic can be found in [749]. The 
authors show in some numerical experiments that better results can be achieved 
by integrating the similarity on the images rather than on the surface. 

Consequently, in our method, the energy is defined as the sum of a matching 
term computed in the images and of a regularity constraint. The latter is required 
to make the problem well-posed. It is application-specific. For example, it could 
be designed to preserve shape or motion discontinuities. Here we focus on the 
design of the matching term and we settle for a straightforward regularization for 
each Problem. 

To minimize our energy functionals, we perform a gradient descent. We use 
a multi-resolution coarse-to-fine strategy to decrease the probability of getting 
stuck in irrelevant local minima. 

Our method for scene flow estimation neither needs previous optical flow 
computations nor makes use of ambiguous spatio-temporal image derivatives. It 
directly evolves a 3D vector field to register the input images captured at dif-
ferent times. It can recover large displacements thanks to the multi-resolution 
strategy and can be made robust to Illumination changes through the design of the 
similarity measure. 

Our method processes entire images from which projective distortion has been 
removed, thereby avoiding the complex machinery usually needed to match win-
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Figure 27.1. The camera setup and our notations. 

dows of different shapes. Moreover, its minimizing flow is much simpler than in 
[309, 439]. This results in elegant and efficient algorithms. 

273,1 Stereovision 

In the following, let a surface 5' C M^ model the shape of the scene. We note 
/i : n^ C R^ —> M^ the image captured by camera i. The perspective projection 
performed by the latter is denoted by 11̂  : 'E? —> M .̂ Our method takes into 
account the visibility of the surface points. In the sequel, we will refer to Si as 
the part of S visible in image i. The reprojection from camera i onto the surface 
is denoted by H"^ : 11^(5') -^ Si. With this notation in hand, the reprojection of 
image j in camera i via the surface writes Ij oUj on~^ :Ili{Sj) -^R^. We note 
M a generic measure of similarity between two images. 

The matching term M is the sum of the dissimilarity between each input view 
and the predicted images Coming from all the other cameras. Thus, for each 
oriented pair of cameras (i, j ) , we compute the similarity between li and the 
reprojection of Ij in camera i via S, on the domain where both are defined, i.e. 
Qi n Ili{Sj), in other words after discarding semi-occluded regions: 

Mij{S) = M\n,nnus,) {h , Ij o n,- o n r^ ) . 

(27.1) 

(27.2) 

We now compute the Variation of the matching term with respect to an in­
finitesimal vector displacement SS of the surface. Figure 27.1 displays the 
camera setup and our notations. We neglect the Variation related to visibil­
ity changes. This technical assumption is commonly used in the Stereovision 
literature [309, 439, 285, 517]. Using the chain rule, we get that 

dMij{S + e5S) 
de -j 

nn,(S,) 

d2M{yii) DIj{'i^j) DIlj{-x) 

i xd dx2 2X3 

^n,j+,55(xi) 

de 
dxi 
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where x^ is the position in Image i and D- denotes the Jacobian matrix of a 
function. For convenience to the reader, we have indicated the dimensions of the 
different matrices in the product. 

When the surface moves, the predicted image changes. Hence the Variation of 
the matching term involves the derivative of the similarity measure with respect to 
its second argument, denoted by Ö2M. The meaning of this derivative is detailed 
in Subsection 27.3.3. In the sequel, for sake of conciceness, we have omitted the 
images for which this derivative is evaluated. But the reader must be aware that 
the predicted images, as well as the domains where the similarity measures are 
computed, change along the minimizing flow. 

We then use a relation between the motion of the surface and the displacement 
of the reprojected surface point x = n~^(xi) : 

^^i,S+eSsi^i) 

de 
N^^5(x) 

N^di 
di , 

where d^ is the vector joining the center of camera i and x, and N is the outward 
surface normal at this point. 

Finally, we rewrite the integral in the image as an integral on the surface by the 

change of variable dx^ = - ^ ^ / ' dx., where Zi is the depth of x in camera i, and 

we obtain that the gradient of the matching term is 

VMij(S){^)=^-Ss,nS,{x) d2M{xi)DIj{xj)DUj{x)- N . (27.3) 

where J. is the Kronecker symbol. As expected, the gradient is zero in the regions 
not visible from both cameras. The reader should also note that the term between 
Square brackets is a scalar ftinction. 

The regularization term is typically the area of the surface, and the associated 
minimizing flow is a mean curvature motion. The evolution of the surface is then 
driven by 

as; 
dt 

-A i / + ^ ^ 6s,ns, Ö2M DIj DUj -^ N , (27.4) 

where H denotes the mean curvature of 5 , and A is a positive weighting factor. 

27,3.2 Sceneflow 
Let now 5* model the shape of the scene and If be the image captured by camera 
i at time t. Let v* : 5* -^ M.^ be a 3D vector field representing the motion of the 
scene between t and t -\-1. The matching term J^ is the sum over all cameras of 
the dissimilarity between the images at time t and the corresponding images at 
t -\-l warped back in time using the scene flow. 

i 

J^i{yr') = M{II, II+' o Ui o (nr^. + v ' ) ) . (27.6) 
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As the reader can check easily, its gradient writes 

N'di V^Ti{w') = -5st — P - Ö2M D/*+' Dlii . (27.7) 

In this case, the regularization term is typically the harmonic energy of the flow 
over the surface, and the corresponding minimizing flow is an intrinsic heat 
equation [78]. Then, the evolution of the scene flow is driven by 

^ = ^A^.v* + J2^sl ^ [d2MDll^' DU,f , (27.8) 
zr 

where r is the fictious time of the minimization, Asi- denotes the Laplace-
Beltrami operator on the surface, and yLz is a positive weighting factor. 

27.3.3 Some similarity measures 

For sake of completeness, we present two similarity measures than can be used 
in our framework: cross correlation and mutual information. Gross correlation 
assumes a local affine dependency between the intensities of the two images, 
whereas mutual information can cope with general Statistical dependencies. We 
have picked these two measures among a broader family of Statistical criteria 
proposed in [398] for multimodal image registration. 

In the following, we consider two scalar images / i , 72 ^ ̂  C M^ -^ M. The 
measures below can be extended to vector (e.g. color) images by summing over 
the different components. 

The minimizing flows given in Subsections 27.3.1 and 27.3.2 involve the 
derivative of the similarity measure with respect to the second image, denoted 
by d2M. The meaning of this derivative is the following: given two images 
/ i , I2 : n —> E^, we note d2M{Ii^l2) the function mapping O to the row vectors 
of M^, verifying for any image Variation öl: 

dM{hj2 + eöI)\ 

de 
f Ö2M(/i, /2)(x) J / (x) dx . (27.9) 

Cross correlation is still the most populär matching measure in the Stereovision 
area. Most methods still use fixed Square or rectangular matching Windows. In 
this case, the choice of the window size is a difificult trade-off between match 
reliability and oversmoothing of depth discontinuities due to projective distortion 
[711]. Some authors alleviate this problem by using adaptative Windows. 

In our method, since we match distortion-free images, the size of the match­
ing window is not related to a shape approximation. The matter here is in how 
big a neighborhood the assumption of affine dependency is valid. Typically, non-
Lambertian scenes require to reduce the size of the correlation window, making 
the estimation less robust to noise and outliers. 

In our Implementation, we use smooth Gaussian Windows with an infinite Sup­
port instead of hard Windows. Gaussian Windows are more elegant as regards the 
continuous formulation of our problem and can be implemented efficiently with 
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fast recursive filtering. Thus, we gather neighborhood Information using convo-
lutions by a Gaussian kemel. As this is the only difference with the traditional 
definition of normalized cross correlation, we do not give the füll expression of 
the measure here. Moreover, due to Space limitations, we invite the reader to refer 
to our technical report [657] for the expression of ^ 2 ^ in this case. 

Mutual information is based on the Joint probabiHty distribution of the two 
images, estimated by the Parzen window method with a Gaussian of Standard 
deviation ß: 

P{iui2) = ~^J^Gß{h{^)-•ii , / 2 ( x ) - ^ 2 ) <^x . (27.10) 

We note Pi ,P2 the marginals. Our measure is the opposite of the mutual 
information of the two images: 

P(iui2) 
M ^ ^ ( / i , / 2 ; P (z i , i2 ) log-

'Pi{ii)P2{i2) 

Its derivative with respect to the second image writes 

Ö2M^^(/1,/2)(X) = C(/1(X),/2(X)), 

dii di2 

C(n,^2) Gß^(^ 
d2P 
P ^)iiui.) 

(27.11) 

(27.12) 

In practice, along the minimizing flow, the ( function changes slowly relative to 
/ i and I2. So, in our Implementation, we update it only every ten iterations. 

27.4 Experimental Results 

We have implemented our method in the level set framework [618], motivated 
by its numerical stability and its ability to handle topological changes automati-
cally. However, our method is not specific to a particular surface model. Thus, an 
implementation with meshes would be straightforward. 

The predicted images can be computed very eflficiently thanks to graphics 
Card hardware-accelerated rasterizing capabilities. In our implementation, we 
determine the visibility of surface points in all cameras using OpenGL depth 
buffering, we compute the reprojection of an image to another camera via the 
surface using projective texture mapping, and we discard semi-occluded areas 
using shadow-mapping [720]. 

The bottleneck in our current implementation is the computation of the simi-
larity measure. Since it only involves homogeneous Operations on entire images, 
we could probably resort to a graphics processor unit based implementation with 
fragment shaders (see http://www.gpgpu.org). 

Name 
Buddha 
Bust 

#Images 
25 
24 

Image size 
500 X 500 
300 X 600 

Level set size 
128'̂  

128 X 128 X 256 

Time (sec.) 
530 
1831 

Table 27.1. Description of the Stereovision datasets used in our experiments. 
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27.4.1 Stereovision 

Table 27.1 describes the two challenging Stereovision datasets used in our exper-
iments. These datasets are publicly available from the OpenLF Software (LFM 
project, Intel). "Buddha" is a synthetic scene simulating a translucent material 
and "Bust" includes strong specularities. However, cross correlation with a small 
matching window (Standard deviation of 2 pixels) yields very good results. 

Using all possible camera pairs is quite expensive computationally. Moreover, 
it is often not necessary since, when two cameras are far apart, no or little part of 
the scene is visible in both views. Consequently, in practice, we only pick pairs of 
neighboring cameras. 

Our method is very efficient. The computation time does not exceed 30 minutes 
on a 2 GHz Pentium IV PC under linux. The number of iterations is 600 for both 
datasets. However, in practice, the convergence is often attained earlier. Hence the 
computation time could be reduced using an appropriate stopping criterion. In our 
experiments, the regularizer is a mean curvature motion. 

We show our results in Figures 27.2 and 27.3. For each dataset, we display some 
of the input Images, the ground truth, then some views of the estimated shape. 

Figure 27.2. Some images from the "Buddha" dataset, ground truth and our results. 

The Overall shape of the objects is successfuUy recovered, and a lot of details 
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Figure 27.3. Some Images from the "Bust" dataset, pseudo ground truth and our results. 

are captured: the nose and the collar of "Buddha", the ears and the moustache 
of "Bust". A few defects are of course visible. Some of them can be explained. 
The depression in the forehead of "Bust" is related to a very strong specularity: 
intensity is almost saturated in some images. 

Finally, compared with the results of the non-Lambertian Stereovision method 
of [439] on the same datasets, our reconstructions are significantly more detailed 
and above all our computation time is considerably smaller. 

27.4.2 Stereovision + sceneflow 
We have tested our scene flow algorithm on a challenging multi-view video se-
quence of a non-rigid event. The "Yiannis" sequence is taken from a collection 
of datasets that were made available to the Community by P. Baker and J. Neu­
mann (University of Maryland) for benchmark purposes. This sequence shows a 
character talking while rotating his head. It was captured by 22 cameras at 54 fps 
plus 8 high-resolution cameras at 6 fps. Here we focus on the 30 synchronized se-



Modelljng Non-Rigid Dynamic Scenes from Multi-View Image Sequences 451 

^>i' 
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Figure 27.4. First Images of one sequence of the "Yiannis" dataset and our results. 

quences at the lower frame rate to demonstrate that our method can handle large 
displacements. 

We have applied successively our Stereovision and scene flow algorithms: once 
we know the shape S^, we compute the 3D motion v* with our scene flow al-
gorithm. Since 6** + vMs a very good estimate of S^'^^, we use it as the initial 
condition in our Stereovision algorithm and we perform a handful of iterations to 
refine it. This is mush faster than restarting the optimization from Scratch. 

Figure 27.4 displays the first four frames of one of the input sequence and 
our estimation of shape and 3D motion at corresponding times. We successfully 
recover the opening then closing of the mouth, foUowed by the rotation of the head 
while the mouth opens again. Moreover, we capture displacements of more than 
twenty pixels. Our results can be used to generate time-interpolated 3D sequences 
of the scene. See the Odyssee Lab web page for more results. 

27.5 Conclusion and Future Work 

We have presented a novel method for multi-view stereovision and scene flow 
estimation which minimizes the prediction error. Our method correctly handles 
projective distortion without any approximation of shape and motion, and can be 
made robust to appearance changes. To achieve this, we adequatly warp the in-
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put views and we register the resulting distortion-free images with a user-defined 
similarity measure. 

We have implemented our Stereovision method in the level set framework 
and we have obtained results comparing favorably with state-of-the-art methods, 
even on complex non-Lambertian real-world images including specularities and 
translucency. Using our algorithm for motion estimation, we have successflilly 
recovered the 3D motion of a non-rigid event. 

Our future work includes a hardware implementation of our stereovision 
method with graphics processor units to further reduce the computation time, and 
the flision of shape and motion estimations in order to exploit their redundancy. 
We believe that this present work, by unifying stereovision and scene flow estima­
tion in the same coherent theoretical and computational framework, is a promising 
step towards this integration. 
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Interactive Graph-Based 
Segmentation Methods in 
Cardiovascular Imaging 

L. Grady, Y. Sun and J. Williams 

Abstract 

We examine the use of three techniques, graph cuts, isoperimetric mini-
mization and random-walk partitioning for the Interactive segmentation of 
cardiovascular medical images. These methods can often be used efFec-
tively without heavy reUance on leamed or explicitly encoded priors. We 
illustrate, through the use of a toy problem, the basic difference in the Per­
formance characteristics of the methods. Subsequently, the suitability of 
each method to a particular segmentation application in the cardiovascular 
imaging domain is demonstrated. 

28.1 Introduction 

Isolation and quantification of structures in medical images is a continuous and 
varied source of segmentation problems. Segmentation methods v^hich rely heav-
ily on leamed or explicit prior Information often require significant customization 
before they can be applied to a specific problem. It is often preferable to use 
methods which can be quickly tested on the problem and then later enhanced 
v^ith priors to improve accuracy. Graph partitioning algorithms are one such fam-
ily of methods. In particular, we look at three segmentation techniques based on 
graph partitioning that at first glance may appear similar, but on closer inspection 
demonstrate unique behaviors. It is the distinct nature of these behaviors that can 
make one preferable over another for a specific application. 

Although the graph cuts algorithm [362, 899] has been successftiUy employed 
in many applications, it is fundamentally a two-label algorithm. In fact, finding 
a minimal cut separating multiple terminals is an NP problem, although [113] 
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Algorithm 

Graph cuts 

Random walker 

Isoperimetric 

Functional 

Q{x) — x'^Lx 

Q{x) = x^Lx 

QW = ^ 

Field 

x = {0,l} 
0 < x < 1 

0<x 

Constraints 

Seedsfixedto{0,1} 

Seedsfixedto{0,1} 

Seeds fixed to {0} 

Table 28.1. A tabulated comparison of the three algorithms. See text for details. 

provided an algorithm for getting within a bound of the optimal Solution. The al­
gorithm finds the smallest cut between two seed groups. In cases of weak object 
boundaries or small seed groups there is a tendency to find the cut that minimally 
encloses the seeds. The random walker algorithm proposed in [357] has a simi-
lar user interface (i.e., user "painting"), but does not suffer from the "small cut" 
Problem and extends naturally to an arbitrary number of labels. The practical cost 
of this computation is currently higher than that of performing a binary graph cut 
on a similarly sized image graph. As will be discussed later, this algorithm also 
has a formal relationship to the graph cuts algorithm. 

Both graph cuts and the random walker algorithm require specification of seed 
points for each Output label in the resulting segmentation. In the case where a 
foreground/background segmentation is desired, a user is often interested in spec-
ifying only a few pixels in the foreground region instead of labeling pixels in 
both the foreground and background. Additionally, if one wants to apply one 
of these algorithms by specifying seeds automatically, it is easier to automati-
cally specify foreground seeds than both foreground and background seeds. The 
isoperimetric algorithm of [356] naturally extends the random walker algorithm 
to a Situation where only foreground labels are provided. Given a foreground-
labeled pixel (or pixel group), the isoperimetric algorithm may be derived by 
starting a random walker at each unlabeled pixel and calculating the expected 
number of steps before the walker reaches a labeled seed. As with the random 
walker algorithm, these probabilities may be calculated analytically with Simu­
lation of a random walk. The expected number of steps may be converted into 
a foreground/background segmentation by finding a threshold that produces the 
minimal isoperimetric ratio, from which this algorithm was originally derived 
[356]. Not surprisingly, there is a formal relationship between the random walker 
and the isoperimetric algorithm. 

28.2 Characteristic Behaviors of the Algorithms 

Table 28.1 illustrates differences between these three algorithms. These differ-
ences may appear to be subtle compared with the similarities. From a practical 
Standpoint, one might wonder if these algorithms retum similar results or whether 
we can expect essentially identical behavior. It is certainly true that applying each 
technique to a simple segmentation task (e.g., a black circle in a white back-
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Figure 28.1. Different "personalities" of the three algorithms. (a) Input image with 
user-specified foreground and background seeds. (b) Graph cuts finds the innermost cir-
cle because it represents the smallest cut between seeds. (c) Random walk partitioning 
finds the middle circle because it is the most "equal" boundary between the two seeds. (d) 
The isoperimetric algorithm finds the outermost circle, since it minimizes the isoperimetric 
ratio in (28.8). Note that no background seeds were used when applying the isoperimetric 
algorithm. (e) Both the random walker and isoperimetric algorithms give a soft segmenta­
tion that is converted into a hard segmentation. For this image, each produce s the same 
soft segmentation (up to a scaling constant) that may be interpreted as a probability that a 
pixel lies in the foreground segment. 

ground) will produce the same segmentation. However, Figures 28.1 and 28.2 are 
intended to illustrate the different "personalities" of each algorithm. 

Figure 28.1 shows three concentric circles, with a foreground seed in the in­
nermost circle and a background seed outside of the outermost circle. Given this 
user input, it is unclear how the "true" segmentation should be defined. Note that 
there is no ambiguity in the boundaries or difference in statistics of the regions. 
The real issue to be addressed by an algorithm that is given these seeds is: What 
does the user want? Depending on the user (or the goal), there are three valid 
Outputs: The innermost object (small circle), the middle boundary between the 
foreground/background seeds (middle circle), or the entire group of objects (the 
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(d) Random walker (e) Isoperimetric (f) Isoperimetric soft i 
mentation 

Figure 28.2. Weak edge behavior of the three algorithms. (a) Diagonal line image with 
user-specified seeds. (b) "Small cut" behavior of graph cuts. (c) More seeds overcome 
small cut issue, but yields a "blocky" segmentation (see text). (d) Random walker. (e) The 
isoperimetric algorithm finds the desired cut, but without background seeds. (f) Solution to 
(28.11) thresholded to produce a hard segmentation of (e) having a minimum isoperimetric 
ratio. 

outermost circle). These results are exactly those given by the three algorithms 
respectively. Note that, regardless of the number of concentric circles, graph 
cuts will always choose the smallest, random walker will choose the middle and 
isoperimetric will choose the largest. 

Graph cuts chooses the innermost circle because it will find the cut having the 
smallest cost. Each black/white transition of a ring will bear the same cost to 
cut, so the circle with smallest circumference will be preferred. This property is 
valuable because it finds the smallest object "unit" surrounding a foreground seed. 
The downside to this behavior is that a larger object (especially a textured object) 
requires many more seeds to locate. Additionally, this property is also the source 
of the "small cut" problem that can result in a retum of the trivial boundary that 
minimally encloses the seeds. 
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A random walker starting from a given pixel will be more likely to reach the 
seed that requires crossing a smaller number of circles. Therefore, for an odd 
number of concentric circles, the random walker algorithm will always choose 
the middle circle. Note, however, that the probabilities form a "wedding cake" 
between the inner and outer circle that could be used (using another rule, e.g., 
minimum cut) to find any of the intermediate circles as seen in Figure 28.1. This 
behavior of the random walker algorithm is beneficial because the "small cut" 
Problem is avoided and the most "equal" boundary between the seeds is found. 
However, this behavior can also result in the user having to place background 
seeds close to the foreground object in order to get the desired segmentation. Ad-
ditionally, if an even number of concentric circles are present, the random walker 
algorithm will, in its neutrality between the two seeds, retum a circle that threads 
the middle two circles instead of "snapping" the segmentation to the nearest circle. 

The isoperimetric algorithm will also produce a "wedding cake" distribution 
, where each level corresponds to a circle. Note that the background seed is not 
employed in the isoperimetric algorithm. Given this Solution, the isoperimetric 
algorithm looks for a threshold that produces a cut minimizing the isoperimetric 
ratio, defined as /i = ^ ^ j ^ (see below for detail). This ratio may be thought of 
intuitively as the ratio of the surface area (i.e., dual to the cut) to the volume. In 
a continuum setting, the isoperimetric ratio of a circle is /i = | ^ = ^ which 
will get smaller (and thus preferred) for a larger radius. Since the isoperimetric 
algorithm chooses the threshold that minimizes the isoperimetric ratio, the largest 
circle will be retumed out of the "wedding cake" distribution produced by the 
Solution. 

Figure 28.2 illustrates another aspect of the personality of the algorithms. Here, 
a (broken) black line was drawn on a white image. All three algorithms exhibit 
the ability to locate the weak boundary even though there is no intensity cue at the 
gap and the statistics of both regions are identical. However, with graph cuts there 
are two issues. First, we initially see the "small cut" problem of when small seed 
groups are placed. However, even when the seed groups are made large enough, 
the algorithm finds a "squared ofiP' cut that is unappealing. The reason for this 
squared off cut is because a 4-connected lattice is employed and, therefore, the 
squared off cut has the same cut cost as the diagonal cut, so one of these cuts is 
simply retumed by the algorithm. This issue may be ameliorated by using a lattice 
with increased Connectivity (e.g., 8-connected) at the cost of increased memory 
consumption. However, even for a 4-connected lattice, the random walker and 
isoperimetric algorithm neither exhibit a "squared off Solution nor suffer from 
the "small cut" problem. 

28.3 Applications on CT Cardiovascular data 

Computed tomography (CT) imaging has, in the last 5 years, undergone a revo-
lution in resolution. Premium multi-sHce Scanners now have between 16 and 256 
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detector rows with gantry rotational latencies of less than half a second. These ad-
vances have meant not only an increase in spatial, but also in temporal resolution. 
CT angiography (CTA) uses injected contrast to opacify the cardiovascular Sys­
tem for high-resolution imaging. CTA is now the modality of choice for imaging 
3D cardiovascular morphology. Due to the huge amount of data produced by these 
Scanners (2GB volumes are now not uncommon), automated an semi-automated 
post-processing techniques are no longer a curiosity, they are indispensable tools 
for the radiologist. 

28.3.1 Segmenting Individual Heart Chambers using Graph Cuts 

Electrophysiological ablation procedures, Hke pulmonary vein isolation for cur-
ing atrial fibrillation, are today guided by a combination of electrophysiological 
and morphological criteria. Therefore it is helpful for the electrophysiologist to 
have 3D visualizations of the cardiac Chamber which is subject to RF ablation 
available for pre-procedural planning, intra-procedural catheter guidance, and 
post-procedural foUow-up. This requires the tools for heart Chamber segmentation 
from CTA images. 

The requirements of the segmentation tools are: 

1. Accuracy: Segmentation shall be as close as possible to the ground truth 
provided by the user. 

2. Easy to use: The tool shall need minimal user input. 
3. Performance: The algorithm shall be fast and memory efficient. 

Since fuUy automatic segmentation inherently has the problem of reliability and 
repeatability, an interactive segmentation is more attractive. Interactive methods 
take advantage of the user knov^ledge of the anatomy, and increase the overall 
procedure eflficiency. 

Even with contrast, accurate Chamber segmentation with minimal user inter-
action is still a challenging problem. The diflficulty is largely due to the weak 
boundaries between Chambers. For example, the left atrium and left ventricle of-
ten have similar intensity due to direct blood pool connection through the mitral 
valve. Image noise and different imaging protocols across various sites also pose 
a challenge for the robustness of the segmentation algorithm. 

28.3.2 Multi-Resolution Banded Graph Cuts 

Boykov and JoUy [108] describe an interactive graph cuts algorithm. The algo­
rithm assumes that some voxels have been identified as object or background 
seeds based on a priori knowledge from the anatomy. It computes a globally 
optimal binary segmentation that completely separates the object seeds and the 
background seeds. 

Despite the power of finding a globally optimal Solution, the major difficulty 
of the graph cuts algorithm lies in the enormous computational costs and memory 
consumption. Typical CT scans generate a 3D volume of hundreds of slices of 
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images. For example, a volume of 512x512x300 has 75M voxels. A graph that 
Stores the nodes and edges can easily consume over 1GB memory. Performing a 
graph cut segmentation on this volume using the max-flow algorithm [345] can 
take several minutes. 

The approach we use to make the graph cuts algorithm practical in this context 
is a multi-resolution banded formulation. With the prior knowledge of the rough 
size of the Chamber, the background seeds can be automatically detected after the 
user specifies an object seed inside the Chamber. This makes it possible to achieve 
one-click-segmentation. What makes this possible is the compact shape of the 
heart Chamber and the relatively homogeneous intensity in the Chamber due to the 
contrast agent injection. 

The idea of this algorithm is first to get a rough segmentation using graph cuts 
on a reduced resolution graph. The low resolution estimate is then used to guide 
a high resolution banded cut. 

The algorithm contains five steps: 

1. Apply a seeded region growing [4] from the object seeds in the low res­
olution volume. The growing stops when reaching a predefined maximal 
distance that depends on the a priori knowledge of the typical Chamber 
size. The result may contain outliers due to leaking to left ventricle, the 
pulmonary arteries, and the bones. 

2. Dilate a layer from the boundary of the region growing. The outer layer of 
the dilation is marked as background seeds. 

3. Apply graph cuts in low resolution to get a rough segmentation of the left 
atrium. It is fast to solve because there are significantly fewer nodes for the 
low resolution graph. 

4. Dilate a layer from the boundary of the rough segmentation to form a band 
whose inner boundary is marked as object seeds and outer boundary is 
marked as background seeds. 

5. In high resolution, apply the graph cuts to get an accurate segmentation 
result. It is also fast to solve because the graph is built on the narrow band 
that only contains a few layers of voxels. 

28.3.3 Empirical Results 

Using the multi-resolution and banded graph cuts, the segmentation of the heart 
Chambers can be achieved with a Single mouse click inside the left atrium. 

Fig. 28.3(a) shows the one click segmentation of the left atrium using the multi-
resolution and banded graph cuts algorithm. It is segmented from a CT volume 
with the resolution of 512x512x370 and it takes less than 15 seconds to segment 
the left atrium on a Pentium 4 2.4GHz Computer and uses less than 200MB mem­
ory. Fig. 28.3(b) shows the separate heart Chambers and vessels, including left 
atrium, left ventricle, right atrium, right ventricle, and aorta. These Chambers are 
segmented individually using the multi-resolution, banded graph cuts algorithm. 
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(a) (b) 

Figure 28.3. Renderings of cardiac segmentations. (a) Left atrium. (b) Multiple Chambers. 

28.3.4 Random Walksfor Simultaneous Chamber Segmentation 

Where graph cuts are well suited to extraction ofa Single foreground object from 
a general background, extension to parallel multi-label segmentation does not fol-
low naturally. Altematively, the random walker algorithm can segment multiple 
regions in a Single interactive step. 

Assume that the user has provided K labeled pixels (hereafter referred to as 
seed points or seeds). For each unlabeled pixel, we ask: Given a random walker 
starting at this location, what is the probability that it first reaches each of the K 
seed points? It will be shown that this calculation may be performed exactly with-
out the Simulation of a random walk. By performing this calculation, we assign 
a J^-tuple vector to each pixel that specifies the probability that a random walker 
starting from each unlabeled pixel will first reach each of the K seed points. A 
final segmentation may be derived from these X-tuples by selecting for each pixel 
the most probable seed destination for a random walker. In this approach, we treat 
an Image (or volume) as a purely discrete object — a graph with a fixed number 
of vertices and edges. Each edge is assigned a real-valued weight corresponding 
to the likelihood that a random walker will cross that edge (e.g., a weight of zero 
means that the walker may not move along that edge). 

It has been established [450, 283] that the probability ofa random walker first 
reaching a seed point exactly equals the Solution to the Dirichlet problem [227] 
with boundary conditions at the locations of the seed points and the seed point in 
question fixed to unity, while the others are set to zero. A steady-state, DC circuit 
analogy is also given in [357]. Using the principle of superposition from circuit 
theory, it can be easily shown that the probabilities at each node sum to unity (as 
expected). For this reason, we need only solve K — 1 Systems, given K labels, 
since the remaining System is known via the unity constraint (i.e., at each node 
subtract the sum of the /^ — 1 Solutions at that node from unity to recover the 
Solution to the remaining System). 
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28.3.5 The Random Walker Algorithm 

We begin by defining a precise notion for a graph. A graph [382] consists of a pair 
G = {V,E) with vertices (nodes) v ^V and edges e^ECVxV.kn edge, 
e, spanning two vertices, Vi and Vj, is denoted by eij. A weighted graph assigns 
a value to each edge called a weight. The weight of an edge, Cij, is denoted by 
w[eij) or Wij. The degree of a vertex is di = Yl'^i^ii) ^^^ ^^^ edges Cij incident 
on Vi. Given a set of nonnegative weights, the probabihty that a random walker 
at node Vi transitions to node Vj is given by pij — ^ . The foUowing v îll also 
assume that our graph is connected. 

In Order to represent the image structure (given at the pixels) by random walker 
biases (i.e., edge weights), one must define a function that maps a change in image 
intensities to weights. Since this is a common feature of graph based algorithms 
for image analysis, several weighting functions are commonly used in the litera-
ture [737, 112, 356]. Additionally, it was proposed in [923] to use a function that 
maximizes the entropy of the resulting weights. In this work we have preferred 
(for empirical reasons) the typical Gaussian weighting function given by 

-ß{9i-9i? (28.1) 

where gi indicates the image intensity at pixel %. The value of ß represents the 
only free parameter in this algorithm. In practice, we employ 

Wij =:e-?^^^-^^^'+e, (28.2) 

where e is a small constant (we take e = 10"^) and p is a normalizing constant 
p = m.B,x{gi — gj),'^i, j . The purpose of (28.2) is to keep the choice of/3 relevant 
to images of different quantization and contrast, as well as make sure that none of 
the weights go identically to zero (resulting in a possible disconnection). 

The discrete Dirichlet problem has been discussed thoroughly in the literature 
[85, 283] and a convenient form for the Solution is given in [358]. We will now 
review the method of Solution. 

Deiine the discrete Laplacian matrix [561] as 

J-^ViVj — \ 

di if i = j , 

—Wij ifvi and Vj are adjacent nodes, (28.3) 

0 otherwise, 

where Ly^^. is used to indicate that the matrix L is indexed by vertices Vi and Vj. 
Partition the vertices into two sets, VM (marked/seed nodes) and Vu (unmarked 

nodes) such that VM DVU = V and VM H V ^ = 0. Note that VM contains all seed 
points, regardless of their label. Then, we may reorder the matrix L to reflect the 
subsets 

L = LM B 

B^ Lu 
(28.4) 

Denote the probability assumed at each node, Vi, for each label, s, by x | . Define 
the set of labels for the seed points as a function (t){;vj) = s, \/vj e VM, where 
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s e Z,0 < s < K. Define the \VM\ X 1 (where | • | denotes cardinality) marked 
vector for each label, s, at node Vj e VM as 

m^ - { ,/;^ ^ ^ ' (28.5) 
1 if(f){Vj) = 5, 

As demonstrated in [358], the Solution to the combinatorial Dirichlet prob lern 
may be found by solving 

Lux' = -Bm\ (28.6) 

which is just a sparse, Symmetrie, positive-definite, System of linear equations 
with \Vu\ number of equations and the number of nonzero entries bounded from 
above by 2|J5'| 4- \V\, Since Lu is guaranteed to be nonsingular for a connected 
graph [84], the Solution, x*, is guaranteed to exist and be unique. Therefore, the 
Potentials for all the labels may be found by solving the System 

LuX = -BM, (28.7) 

where X has columns taken by each x' and M has columns given by each m*. 
As mentioned above, one must solve only K — \ Systems, given K labels, since 
the probabilities at each node must sum to unity. 

28.3.6 Numerical Solution 

Many good methods exist for solving large, sparse, Symmetrie, linear Systems of 
equations (e.g., [352, 666]). A direct method, such as LU decomposition with 
partial pivoting has the advantage that the computation necessary to solve (28.7) 
is only negligibly increased over the amount of work required to solve (28.6). 
Unfortunately, current medical data volumes frequently exceed 256 x 256 x 256 ^ 
16M voxels, and hence require the Solution of an equal number of equations. 
Furthermore, there is no reason to believe that the resolution will not continue to 
increase. Most contemporary Computers simply do not have enough memory to 
allow an LU decomposition with that number of equations. 

The Standard alternative to the dass of direct solvers for large, sparse Systems 
is the dass of iterative solvers [374]. These solvers have the advantages of a small 
memory requirement and the ability to represent the matrix-vector multipHca-
tion as a fünction. In particular since, for a lattice, the matrix Lu has a circulant 
nonzero structure (although the coefificients are changing), one may avoid storing 
the matrix entirely. Instead, a vector of weights may be stored (or computed on the 
fly, if memory is at a premium) and the Operation Luxfj may be performed very 
cheaply. Furthermore, sparse matrix Operations (like those required for conju-
gate gradients) may be eflficiently parallelized [273, 363](e.g., for use on a GPU). 
Because of the relationship of (28.6) to a finite differences approach to solving 
the Dirichlet problem on a hypercube domain, the techniques of numerical Solu­
tion to PDEs may also be applied. Most notably, the algebraic multigrid method 
[734, 258] achieves near-optimal Performance for the Solution to equations like 
(28.6). 
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(a) Input (b) Seeds (c) Segmentation 

Figure 28.4. Random walker algorithm applied to a four-chamber slice of a cardiac CTA 
volume. (a) Original four-chamber slice. (b) User-specified seeds of each Chamber (i.e., left 
ventricle, left atrium, right ventricle, right atrium, background). (c) Resulting segmentation 
boundaries. 

We have implemented the Standard conjugate gradients algorithm with a mod-
ified incomplete Cholesky preconditioning [56], representing the matrix-vector 
multiplication implicitly, as described above on an Intel Xeon 2.4 GHz dual-
processor with 1GB of RAM. Solution of (28.6) using conjugate gradients 
(tolerance = 10"^, sufficient for the algorithm) for a 256 x 256 image with two 
randomly placed seed points required approximately 3 seconds. 

To summarize, the steps of the random walker algorithm are: 

1. Obtain a set, VM» of marked pixels (seeds) with K labels from the user. 

2. Using (28.1), map the image intensities to edge weights in the lattice. 

3. Solve (28.7) outright for the probabiHties or solve (28.6) for each label 
except the final one, / (for computational efficiency). Set x( = 1 -

4. Obtain a final segmentation by assigning to each node, Vi, the label 
corresponding to maxg (x|) . 

28.3.7 Empirical Results 

Using (28.1), we transformed a four-chamber view of a CTA heart volume into a 
weighted graph and applied the random walker algorithm. Results are displayed in 
Figure 28.3.7. The random walker algorithm was chosen for this problem because 
five labels are required to segment the four Chambers of the heart (each Chamber 
plus the background). Segmentation of this 256 x 256 image required approxi­
mately 20 seconds of computation time. We have found this algorithm reliable on 
a large variety of CTA cardiac data with varying levels of noise. 
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28.3.8 Isoperimetric algorithm 

Neither the graph cuts nor the random walker algorithm can be used when only 
foreground seeds are specified by the user. The isoperimetric algorithm of [356] 
may be interpreted as a natural extension of the random walker algorithm to a 
Single seed group. The segmentation is based on computation of the expected 
number of steps a random walker will take, starting from each pixel, to find the 
user-specified seeds. However, in the original formulation [356], the isoperimetric 
algorithm was derived from a segmentation goal of minimizing the isoperimetric 
ratio 

^^^) = m.n{x'rd,{lT-a:T)dy ^^^'^^ 

where 1-̂  is the vector of all ones and d is the vector of node degrees. The indicator 
vector, X, is defined as 

. . = {' ^ ' ^ ^ ^ ^ ' (28.9) 

where 5* indicates the set of foreground nodes. Unfortunately, a combinatorial 
minimization of this problem is NP-Hard [581]. Consequently, the vector x was 
relaxed to take real values and the "volume" (represented combinatorially by 
the denominator) was fixed to a constant, i.e., x'^d = k (see [356] for a füll 
exposition). 

Using a Lagrange multiplier to perform a constrained minimization gives the 
energy as 

Q{x) = x^Lx - \{x^d - k), (28.10) 

and the resulting minimum as 

Lx=^Xd, (28.11) 

Since we are only concemed with relative values of the Solution, and in order that 
(28.11) represents the expected number of steps required to find a seed, we ignore 
the scalar factor ^, setting f = 1. 

Although the Laplacian matrix in (28.11) is Singular, the incorporation of user-
specified seeds, i.e., x^ = 0, Vvi G VM removes the singularity. The Solution, Xi, 
at node, Vi, obtained through Solution of (28.11) gives the expected number of 
steps that a random walker would take to find a seed node (see [794] for justifica-
tion of this interpretation). Indeed, if one were to solve (28.11) for two seeds, vi 
and Vn, then 

du I , (28.12) Lx' = 

where 1^ represents the vector of all ones, du represents the vector containing 
the degrees of unlabeled nodes. The reason that (28.12) holds is because premul-
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tiplication of both sides by 1-̂  produces zero on the left hand side, so the right 
hand side must be balanced. Then, 

L[x^ -x^)^ 

(28.13) 
Since it is known [85] that multiplication of the Solution to the random walker 
Problem, XRW, (given the same two seeds as above) by the Laplacian results in 

dl 

du 
l^du - di_ 

-
-l^du - dn 

du 
dn 

= 
l^du -^ dn -^ dl 

0 
-l^du - dn - dl 

LXRW = 

p 
0 

-P 

(28.14) 

where p represents the effective conductance between nodes vi and Vn, the Solu­
tion to two (or more) isoperimetric Systems (28.11) also yields the random walker 
probabilities (up to a scaling and shift). It is intuitive that this should be true, since 
we would expect that a random walker having fewer expected steps to reach one 
seed over another would also be most likely to reach that seed first. 

Computation of a Solution to (28.11) yields a notion of how "far away" a given 
node is to a seed point, but it does not give a hard segmentation. Therefore, in 
accordance with [356], we convert the Solution to (28.11) to a hard segmentation 
by thresholding the Solution, x, at the value that produces a hard segmentation 
minimizing (28.8). Only n thresholds must be evaluated (i.e., one for each node) 
and the values of (28.8) may be evaluated quickly, leading to a fast production of 
a hard segmentation (see [356] for more details). Producing a hard segmentation 
in this way guarantees that all nodes belonging to the foreground segment are 
connected or, if more than one seed group is present, each group of foreground 
pixels is connected to a seed [356]. Note that this procedure for Converting a soft 
segmentation into a hard segmentation is very similar to what is performed in the 
NCuts algorithm [737]. 

To summarize, the steps of the isoperimetric algorithm are: 

1. Obtain a set, VM, of marked pixels (seeds) indicating foreground. 
2. Using (28.1), map the image intensities to edge weights in the lattice. 
3. Solve (28.11) for the expected number of steps taken by a random walker 

starting from each pixel to reach a node in VM-
4. Obtain a hard segmentation by trying n thresholds, a, of x and choosing the 

segmentation that produces the smallest ratio given in (28.8). Assign each 
node. Vi, to foreground ifxi < a and to background if a;̂  > a. 

28.3.9 Bone- Vessel Separation 

In CTA Scans, contrast enhanced and calcified blood vessels can appear with the 
same intensity profile as bones. Further confounding an automatic bone/vessel 
segmentation is the fact that bones and vessels often touch each other and partial 
volume effects produce a gradual, diffuse boundary. Due to the difficulty of this 
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(a) Input (b) Seeds (c) Vessel 

Figure 28.5. Isoperimetric algorithm applied to vessel/bone Separation. This problem is 
difficult because bone and vessel have similar intensities and touch each other (i.e., have a 
weak boundary) at several areas. (a) Original 3D image. (b) User-specified seeds of vessel 
(foreground) and bone (background). See text for meaning of background seeds in this 
application. (c) Resulting segmentation vessel segmentation. 

Situation, a user-guided mode is required to accurately separate bones and blood 
vessels. 

The ideal user interface for this application is for a user to provide a Single 
click on a blood vessel, without taking the time to label the bone. We first used an 
automatic segmentation algorithm to produce an initial bone/vessel segmentation. 
After this initial stage was completed, the user was able to click on a blood vessel 
and the isoperimetric algorithm was run on the subgraph of the original volume 
defined by the initial, automatic, segmentation. Application of the isoperimetric 
algorithm to this problem often gives the correct answer after placement of one or 
two vessel seed points. However, there were cases in which the vessel segmenta­
tion "bled" into the bone. To handle these circumstances, we allowed the user to 
enter "bone" seeds as well. Inclusion of a bone seed at node, Vi, had two effects: 

1. Scaling the di entry on the right hand side of (28.11) by a large factor, 
C » 1. This scaling has the effect of "pushing back" the Solution to 
(28.11) from node Vi. Altematively, the scaling may also be interpreted 
as an additional injection of current at Vi in the circuit analogy of the 
isoperimetric algorithm presented in [356]. 

2. Limiting the threshold, a, to a < Xi. With this limit, the resulting hard 
segmentation never encompasses the bone seed. 

The Performance of the isoperimetric algorithm is data dependent in this semi-
automatic application. However, the algorithm supported interactive Performance 
(sub-second) for the 64 x 64 x 64 sub-volumes used in our application. 
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28.4 Conclusions 

The three algorithms described in this section exhibit distinct behaviors that make 
each suitable for a given problem. In practice, once a particular method is found to 
work well on a given problem v^ithout priors, priors are then encoded or leamed 
from examples to improve overall Performance. It remains a challenge to improve 
the computational efficiency of these techniques. Already we have seen Perfor­
mance improvements of one to two Orders of magnitude by mapping the core 
solvers for these problems into commodity graphics hardware (GPU). 
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Models in Cardiac Image Analysis 
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Ordas, J. Reiber and M. Sonka 

Abstract 
This chapter introduces Statistical shape- and appearance models and 

their biomedical applications. Three- and four-dimensional extension of 
these models are the main focus. Approaches leading to automated landmark 
definition are introduced and discussed. The applicability is underlined by 
presenting practical examples of 3D medical image segmentation. 
Keywords: Statistical shape models, point distribution models, active shape 
models, active appearance models, multi-view models, landmarking, cardiac 
segmentation, magnetic resonance. 

29.1 Introduction 

Three-dimensional diagnostic organ imaging is now possible with X-ray com-
puted tomography, magnetic resonance, positron emission tomography, Single 
photon emission tomography, and ultrasound to name just the main imaging 
modalities. While imaging modalities are developing rapidly, the images are 
mostly analyzed visually and therefore qualitatively. The ability to quantitatively 
analyze the acquired image data is still not sufficiently available in routine clinical 
care. The wealth of information buried in these acquired data is not fuUy exploited 
because of the tedious and time-consuming character of manual analyses. This is 
even more so when dynamic three-dimensional image data need to be processed 
and analyzed. 

Much effort has been described on data driven approaches to automate the seg­
mentation of medical images, however there are three main reasons why these 
frequently exhibit lower success rate in comparison with human expert observers, 
especially when applied to clinical-quality images - data driven methods do not 
incorporate a sufficient amount of a priori knowledge about the segmentation 
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Problem; do not consider three-dimensional or temporal context as an integral 
part of their functionality; and position the segmentation boundaries at locations 
of the strongest local image features not considering true anatomical boundary 
locations and shape constraints. For these reasons, model driven image analy-
sis has received considerable attention over the last decade. Especially Statistical 
models of shape and appearance have found widespread application in biomed-
ical segmentation problems. In this chapter, we will briefly introduce Statistical 
shape- and appearance models and their biomedical applications, discuss issues 
inherent to 3D extension of these models, and focus on application examples of 
segmentation of 3D medical volume data. 

29. LI Background 

In general, Statistical models capture the mean shape and shape variations from a 
training set. Building on the principles explored by Kendall [458], and Dryden and 
Mardia [284], Cootes and Taylor developed a Statistical point distribution model 
(PDM), originally for shape analysis. This approach has helped to gain insight into 
typically occurring anatomical variations [220, 223]. Point Distribution Models 
describe populations of shapes using statistics of sets of corresponding landmarks 
of the shape instances [220, 223, 752]. By aligning N shape samples (consisting 
of n landmark points) and applying a principal component analysis (PCA) on the 
sample distribution, any sample x v^ithin the distribution can be expressed as an 
average shape x with a linear combination of eigenvectors P superimposed 

x = x-f P b . (29.1) 

In two-dimensional models, p — min(2n, A/" — 1) eigenvectors P form the prin­
cipal basis functions, v^hile in a three-dimensional model; p = min(3n, N - 1) 
eigenvectors are formed .̂ In both cases the corresponding eigenvalues provide 
a measure for compactness of the distribution along each axis. By selecting 
the largest q eigenvalues, the number of eigenvectors can be reduced, wehere a 
Proportion k of the total variance, VT, is described such that 

q p 

Y^K>k'VT where VT = Yl^i • (2^-2) 
i = l 2=1 

One of the primary contributions of PDMs was an ease of automated leaming of 
the model parameters from sets of corresponding points. 

Apart from shape analysis, the leamed PDM eigenvariations can be applied to 
image segmentation and motion tracking. This PDM extension is known as Ac­
tive Shape Model (ASM), and consists of an iterative image matching scheme 
designed to fit the model to image data, while constraining the allowed model 
deformations within the trained statistically plausible limits. ASMs may use a 

'The minimum operator is needed since we frequently have more corresponding shape points than 
training set samples. 
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gray-level model of scan lines perpendicular to the model contour or surface to es-
timate new update positions for each landmark points. Altematively, update points 
can be generated by an edge detector or a (neural or fuzzy) pixel classifier. The 
differences between the cloud of candidate image feature points and the model 
points drive the model alignment and deformation in each Iteration. The model 
deformation is statistically constrained to lie within the subspace spanned by the 
selected modes of Variation of the PDM. Early appHcations of Active Shape Mod­
els address segmentation of for instance echocardiographic data [223] and deep 
neuroanatomical structures from MR Images of the brain [293]. In recent litera-
ture, a diversity of other, mainly 2D biomedical appHcations have been described 
for a ränge of imaging modalities and organs. 

The third type of landmark based model is the Active Appearance Model 
(AAM) introduced by Cootes [219, 222]. AAMs are an extension of PDMs with 
a Statistical intensity model of a complete Volumetrie image patch, as opposed to 
merely scan lines near the landmarks in the ASM matching. An AAM is built by 
v^arping a mesh tessellating the training shapes to the mesh of the average shape. 
Obviously, this requires a consistent mesh node locahzation in all shapes of the 
training set. After intensity normalization to zero mean and unit variance, the in­
tensity average and principal components are computed. A subsequent combined 
PCA on the shape and intensity model parameters yields a set of components that 
simultaneously capture shape and texture variability. AAM matching is based on 
minimizing a criterion expressing the difference between model intensities and 
the target image. This enables a rapid search for the correct model location dur-
ing the matching stage of AAMs, while utilizing precalculated derivative images 
for the optimizable parameters. The sum of Squares of the difference between the 
model-generated patch and the underlying image may serve as a simple criterion 
for matching quality. 

AAMs have shown to be highly robust in the segmentation of routinely ac­
quired single-phase, Single slice cardiac MR [575] and echocardiographic images 
[105], because they exploit prior knowledge about the cardiac shape, image ap­
pearance and observer preference in a generic way. For a detailed background on 
2D Active Appearance Shape and Appearance Models and their application to 
image segmentation, the reader is referred to [218, 759]. 

This chapter focuses on dimensional extension of landmark based models, and 
is mainly limited to the well-established PDMs, ASMs and AAMs. For complete-
ness, we also mention a few proposed interesting alternatives to landmark-based 
Statistical modeling that also enable 3D statistically constrained segmentation: 

• Statistical Deformation Models [696, 529] are constructed by register-
ing several training sets using multi-level free-form deformations. These 
free-form deformations are parameterized using a control point grid, and 
Statistical analysis using PCA is performed on the control point sets, 
yielding an average deformation and principal components. 

• Probabihstic Atlases have been widely applied to 3D shape modeling, see 
for instance [528]. These are typically constructed by rigidly registering 
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a set of 3D manual segmentations, and probability maps are generated by 
blurring the segmented structure for each Image, and averaging over all 
subjects. These models can be applied to segmentation using expectation 
maximization algorithms. 

• A multiscale 3D shape modeling approach called M-reps was developed 
by Pizer et al. [649]. M-reps support a coarse-to-fine hierarchy and model 
shape variations via probabilistically described boundary positions with 
a v^idth- and scale-proportional tolerances. Points on the surface are ex­
pressed in a local object coordinate frame spanned by a medial skeleton, 
yielding object specific point correspondence. 

29.1.2 Issues inherent to 3D extension 

Initially, most PDM, ASM and AAM models were applied to 2D modeling and 
matching problems. However, because many modern imaging modalities dehver 
(dynamic) 3D image data, extension to higher dimensions is desired. A critical 
issue to achieve extension of PDMs to 3 and higher dimensions is point cor­
respondence: the landmarks have to be placed in a consistent v^ay over a large 
database of training shapes, otherwise an incorrect parameterization of the ob­
ject dass would result. In a 2D case, the most straightforward definition of point 
correspondence is by identifying evenly spaced sampling points on a boundary 
from one characteristic landmark to the next, although this may lead to a sub­
optimal sampling. In a 3D case, the problem of defining a unique sampling of 
the 3D object surfaces is more complex, and far from trivial. Because of this, 3D 
point correspondence has recently been intensively researched, and three main 
approaches can be distinguished: 

• Correspondence by parameterization: this has mainly been applied to 
relatively simple geometries that can be described using a spherical or 
cylindrical coordinate System, in combination with a few well-deiined land­
marks to fixate the coordinate frame. Applying this coordinate definition on 
all the samples yields parametrically corresponding landmarks, as will be 
exemplified in Section 29.2.3.2. 

• Correspondence by registration or fitting by mapping a 3D surface tessela-
tion of one sample to all the other samples. Lorenz et al. [527] for instance 
propose a 3D deformable surface that is matched to binary segmentations 
of new samples. By projecting the tesselation of the matched template to 
the new sample, correspondence for the new sample is achieved. Alter-
natively, non-rigid Volumetrie registration can be applied to define dense 
correspondences between training samples, as will be detailed later on in 
Section 29.2.1. These approaches have the advantage that topologically 
more complex shapes can be handled. 

• Correspondence by optimal encoding: Davies et al. [247] has applied for 
instance a Minimum Description Length (MDL) criterion to evaluate the 
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quality of correspondence in terms of the ability to encode the whole train-
ing set for a given landmark distribution. Stegmann [759] have shown that 
these MDL encoded models optimize model properties such as compact-
ness and specificity. Davies [246] also developed a 3D MDL approach 
for 3D objects, however to our knowledge this model has only been ap­
plied to shape analysis, and not for segmentation. In this chapter, no further 
applications are given for these MDL based approaches. 

In the next section, WQ introduce a number of recently proposed BD extensions 
of the PDMs, ASMs and AAMs. First, the issue of automatically defining a dense 
correspondence over the training set is addressed, detaiHng an example approach 
based on non-rigid registration. The achieved point correspondence is then in-
corporated into an Active Shape Model that can be applied to multi-modal and 
multi-planar sparse data. Subsequently, several higher dimensional extensions of 
Active Appearance Models are discussed. 

29.2 Methods 

29.2,1 3D Point Distribution Models 

Frangi et al. [327] have described a methodology for the construction of three-
dimensional (3D) Statistical shape models of the heart, from a large image 
database of dynamic MRI studies. Non-rigid registration is employed for the au-
tomatic establishing of landmark correspondences across populations of healthy 
and diseased hearts. The general layout of the method is to align all the images 
of the training set to an atlas that can be interpreted as a mean shape. Once all 
the necessary transformations are obtained, they are inverted and used to propa-
gate any number of arbitrarily sampled landmarks on the atlas, to the coordinate 
System of each subject. In this way, while it is still necessary to manually draw 
the contours in each training image, this technique relieves from manual land­
mark definition for establishing the point correspondence across the training set. 
The method can easily be set to build either 1- or 2-chamber heart models. More-
over, its generality allows for using it with other modalities (e.g., SPECT, CT) 
and Organs with shape variability close to that of the heart (e.g., liver, kidneys). A 
detailed description of the method can be found in [327], and can be summarized 
as foUows: 

1. The manually drav^n contours in the training set are converted into labeled 
shapes by flood-filling each (closed) sub-part with a different scalar value. 

2. The labeled shapes are aligned through a global transformation (rigid regis­
tration with nine degrees of freedom: translation, rotation, and anisotropic 
scaling) to a Reference Sample (RS) randomly chosen from the training set. 
The RS is therefore considered as the first atlas estimate. 
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3. A new atlas is constructed by shape-based averaging of the aligned shapes. 
This is performed by averaging the images in their distance transform do-
main, and defining a new labeled shape by considering the zero iso-surface 
of each sub-part separately. 

4. To minimize the bias introduced by the choice of the RS, steps 2 and 3 are 
repeated until the atlas becomes stable. At this point, the atlas is said to be 
in a Reference Coordinate System (RCS). 

5. Subsequently, each rigidly aligned shape is locally deformed (using non­
rigid registration) in order to accommodate to the RCS atlas. 

6. The obtained local transformations are averaged and the resulting transfor-
mation is applied to the RCS atlas. The new atlas is said to be in a Natural 
Coordinate System (NCS) and diminishes the influence of the RS selection. 

7. A new set of global and local transformations are recalculated in the same 
way as in steps 2 and 5 (Fig. 29.1(a)). 

8. Finally, any automatically generated landmarks in the NCS atlas can be 
propagated to the training shapes through the transformations in step 7 
(Fig.29.1(b)). 

9. In Order to build the Statistical shape models, the autolandmarked shapes 
are normalized with respect to a reference coordinate frame, eliminating 
differences across objects due to rotation, translation and size. 

Once the shape samples are aligned, the remaining differences are solely shape 
related, and PCA can be performed. In Fig. 29.2, the first 4 eigenmodes of the 
obtained model are displayed. The main characteristic variations consist of size 
difference, twisting, rotation and their combinations. The Ist mode describes the 
size differences of the hearts. The 2nd mode indicates the large Variation of the 
right ventricle. The 3rd and 4th modes describe the bending and twisting of the 
left ventricle. Higher modes combine vertical bends and less global deformations, 
but with decreasing impact to the total shape. 

29.2,2 3D Active Shape Models 

The bi-ventricular model described above was extended with a matching algo-
rithm to apply it to image segmentation [827]. A key design criterion behind 
this matching approach was applicability to data acquired with arbitrary image 
slice orientations, from different modalities (MR and CT), and even to sparsely 
sampled data with arbitrary image slice orientations. This implies that: 

• only 2D image data may be used for updating the 3D model, to ensure 
applicability to arbitrarily oriented sparse data 

• generation of update points is executed based on relative intensity differ­
ence to remove dependence on training-based gray-level models. 
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ali^incd sjinples 

(a) (b) 
Figure 29 .1 . (a) Final transformations. A set of final global (Tg) and local (Tj) transformations can take any 

sample shape of the training set, to the NCS atlas coordinate System, (b) Landmark propagation. Once the final 

global and local transformations are obtained, they are inverted and used to propagate any number of arbitrarily 

sampled landmarks on the NCS atlas, to the coordinate System of the original samples. 

To accomplish this, the landmark points are embedded in a surface triangulär 
mesh. During the matching, this mesh is intersected by the image planes, gener-
ating 2D contours spanned by the intersections of the mesh triangles. To remove 
dependencies on image orientation or limited resolution, model update Informa­
tion is represented by 2D point-displacement vectors. The 2D update vectors 
located at the intersections of the mesh with the image slices are first propagated 
to the nodes of the mesh, and projected to the local surface normals. Multiple con-
tributions from different mesh intersections to a Single mesh node are averaged to 
yield a Single 3D update vector per node. Scaling, rotation, and translation differ-
ences between the current State of the model and the point cloud representing the 
candidate Updates are eliminated by alignment. The current mesh State is aligned 
with the candidate model State using the Iterative Closest Point algorithm [82]. 
Successively, the parameter vector b Controlling model deformation is calculated. 
An adjustment to b with respect to the previous Iteration is computed, using both 
'^proposed 3-11̂ 1 Xcurrent 

Ö — ^current ~r ^O — ^current r ^ [p^proposed '^current) (29.3) 

with Xcurrent rcprcseuting the aligned current State of the mesh, and bcurrent rep­
resenting the Parameter vector describing the current shape of the model within 
the Statistical context. 

In the classic ASM[223], model Updates were generated using a (multi-
resolution) Statistical gray level model (GLM) in each sample point: this requires 
a modality-dependent training stage. To enable application to different modalities 
without retraining, a Fuzzy Inference System (FIS) was selected instead, which 
determines the 2D point-displacement vectors by pixel Classification based on 
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Figure 29.2. The 2-chamber PDM principal modes of Variation for end-diastolic phase. The shapes are generated 

by varying a Single model parameter (bi), fixing all others at zero Standard deviations (SD=\/X7) from the mean 

shape. 

relative intensity differences between tissues in the sampled data. This pixel Clas­
sification is realized by fuzzy clustering of the intensity Strips in the vicinity of the 
surface. Based on the resulting membership flinctions, different tissue transitions 
from blood to muscle and muscle to air can be inferred, which form the update 
points for the model matching. 

The combined active shape model has been applied to cardiac MR data, where 
the left and right ventricle are segmented (see Figure 29.3(a)). Modality inde-
pendence of the model has been shown in [827] , where the model is applied 
to MR and CT images without retraining. Independence of planar orientation is 
illustrated in Figure 29.3(b) 

Altematively, Kaus et al. [457] describe an ASM-based approach, where the 
matching mechanism is embedded in the internal energy term of an elastically de-
formable model. Training samples are manual segmentations expressed as binary 
volumes, and point correspondence is achieved by fitting a template mesh with a 
fixed point topology to each binary training sample. Contrary to van Assen et al. 
[827], they model the endo- and epicardial shapes separately. However, a coupling 
is realized by integrating connecting vertices between both surfaces and adding a 
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(a) (b) 

Figure 29.3. (a) Application of the bi-ventricular 3D ASM to a cardiac MR image volume. (b) Matching of the 

model to 3 sparse, arbitrarily oriented MR image planes 

connection term to the internal energy. In addition, they adopt a spatially varying 
feature model for each landmark. This approach has the advantage that Statistical 
shape constraints are imposed on the allowed elastic mesh deformation, while al-
lowing for some flexibility to deviate from the trained shapes to accommodate for 
untrained shape variability. 

29.2.3 3D and 4D A ctive Appearance Models 

29.2.3.1 2D + time Active Appearance Models 

Segmentation of sequences of 2D images, such as echocardiographic or cardiac 
MR slices is often hampered by the fact that segmentation results are not time-
continuous. Especially, sequential application of 2D segmentation techniques in 
subsequent frames may yield spatial and temporal discontinuities. To resolve that, 
an extension to 2D + time modeling has been proposed in [105, 828], where the 
temporal dimension is encoded into the model. In addition to spatial correspon-
dence, time-correspondence is defined by defining "landmark time frames" such 
as end-diastole and end-systole. The shapes are interpolated to a fixed number 
of frames using a nearest neighbor interpolation. This time-correspondence al-
lows the shape- and intensity vectors to be simply concatenated over the v^hole 
sequence and treated as 2D images, and the 2D AAM machinery described earlier 
can be applied unaltered. Though strictly speaking, this is not a fuUy 3D model, 
this way the segmentation is performed on all frames simultaneously, yielding 
time-continuous results. This approach has been validated on echocardiographic 
image sequences [105] and slice-based cardiac MR image sequences [828]. 
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Figure 29.4. Line parameterization, defining application specific point correspondence for 
the 3D cardiac left ventricle. The vertical line demarcates the starting point for a slice-based 
radial sampling, and is based on a well defined anatomical landmark 

29.2.3.2 3D Active Appearance Models: Modeling Volume Appearance 

As discussed in the 3D ASM section, Active Shape Models are updated based on 
local intensity models in the vicinity of the landmarks. AAMs hovv̂ ever differ in 
the sense that a complete intensity volume is modeled along v îth the shape, and 
model matching is based on trying to "blend in" the model in the target image. 
Mitchell et al. [574] have developed a 3D extension, where point correspondence 
is based on an application specific coordinate System (see Figure 29.4). 

To create such an appearance model of a fiill volume, all the sample volumes 
are v^arped to the average shape to eliminate shape Variation and yield voxel-
v^ise correspondence across all the training samples. The voxel intensities can be 
represented as a shape-free vector of intensity values. Warping an image I to a 
new image I ' involves creating a function which maps control points x^ to x^ 
as v^ell as the intermediate points in betv^een. For the 2D case, either piecewise 
affine warping or thin-plate spline warping is adequate and landmark points are 
used to construct the shape area as a set of triangles. 

In 3D models, piecewise affine warping is extended to tetrahedra with four 
Corners, x i , X2, xs, and X4. Any point within the tetrahedron is represented as 
X = a x i +/?X2 +7x3 +^X4. In a general case creating a tetrahedral representation 
of volume is solved using a 3D Delaunay Triangulation algorithm. Because all 
volumes are warped to the average volume, barycentric coordinates, a, /?, 7, (!> are 
precomputed for each fixed voxel point eliminating the time consuming process of 
searching for the enclosing tetrahedron for each voxel point during the matching. 

After the warping phase, the shape-free intensity vectors are normalized to an 
average intensity of zero and an average variance of one as described above. Next, 
PCA is applied to the shape-free intensity vectors to create an intensity model. In 
agreement with the AAM principle, shape information and intensity information 
are combined into a Single active appearance model. Lastly, another PCA is ap­
plied to the coefficients of the shape and intensity models to form a combined 
appearance model [222]. 
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In the equations below, the subscript s corresponds to shape parameters while 
the subscript g represents intensity (gray-level) parameters. To summarize, the 3D 
AAM is created as follows: 

1. Let x^ denote a vector of 3D landmark points for a given sample i. Com-
pute a 3D PDM and approximate each shape sample as a linear combination 
of eigenvectors, where b^ = P j ( x — x) represents the sample shape 
Parameters. 

2. Warp each image to the mean shape using a warping such as piecewise 
affine or thin plate spline warping to create shape-free intensity vectors. 

3. Normalize each intensity vector, applying a global intensity transform with 
parameters h^, to match the average intensity vector g. 

4. Perform a PCA on the normalized intensity Images. 

5. Express each intensity sample as a linear combination of eigenvectors, 
where b^ — -Pj(g - g) represents the sample shape parameters. 

6. Concatenate the shape vectors b^ and gray-level intensity vectors b^ in the 
following manner 

the weighting matrix W is a diagonal matrix relating the different units of 
shape and intensity coefficients. 

7. Apply a PCA to the sample set of all b vectors, yielding the appearance 
model 

h = Qc . (29.5) 

29.2.3.3 3D Active Appearance Models: Matching 

Matching an appearance model to image data involves minimizing e.g. the root-
mean-square intensity difference between the image data and appearance model 
instance by modifying the affine transformation, global intensity parameters, and 
the appearance coefficients. A gradient descent method is used that employs the 
relation between model coefficient changes and changes in the voxel intensity 
difference between the target image and the synthesized model [222]. 

Gradient descent optimization requires the partial derivatives of the error flinc-
tion defined by the intensity of the target and synthesized model volume. While 
it is not possible to create such a function analytically, these derivatives may be 
approximated using iixed matrices computed by randomly perturbing model coef­
ficients for a set of known training Images and observing the resulting difference 
in error images [222]. 
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Figure 29.5. 3D AAM matching process. (a) The initial position of the model in the Volu­
metrie data set. (b) Final match result. The straight lines show the position of frames in the 
other two cutting planes. 

Fig. 29.5 demonstrates the model matching process, from initial model position 
to the final fit. The 3D AAM was validated on cardiac MR and echocardiographic 
data in [574]. 

29.2.3.4 Multi-view Active Appearance Models 

The 3D and 2D + time AAMs described above have mainly been designed to 
Segment a Single image set at a time, v^hereas cardiac MR patient examinations 
typically consist of a number of standardized acquisitions depicting different geo-
metrical or fünctional features of the heart. For instance, the short-axis, long-axis, 
perfusion, rest-stress and delayed enhancement images provide complementary 
Information about different aspects of cardiac function of the same heart. Because 
it involves views of the same heart, the shape features and image appearance in 
the different viev^s are highly correlated: for example, an apical LV infarction may 
exhibit wall thinning in the apical regions in both a 4-chamber and a 2-chamber 
view. So far, such existing correlations between different parts of an integral 
patient examination have not been integrated into segmentation algorithms. To 
accomplish such behavior, the so-called Multi-View Active Appearance Model 
(AAM) was developed: an AAM extension that captures the coherence and cor-
relation between multiple parts of a patient examination. Model training and 
matching are performed on multiple 2D views simultaneously, combining infor-
mation from all views to yield a segmentation result. The Multi-View model is 
constructed by aligning the training shapes for different views separately, and 
concatenating the aligned shape vectors Xi for each of the N views. A shape 
vector for N frames is defined as: 

_ ( T T T \ (29.6) 

By applying a PCA on the sample covariance matrix of the combined shapes, 
a shape model is computed for all frames simultaneously. The principal model 
components represent shape variations, which are intrinsically coupled for all 
views. For the intensity model, the same applies: an image patch is warped on 
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Figure 29.6. The most significant eigenmode for the multi-view AAM, varying from -2 
(left) to +2 (right) Standard deviations. Note that the appearance simuhaneously changes 
in the 4-chamber (top row), short-axis (middle row) and 2-chamber views. 

the average shape for view i and sampled into an intensity vector gi, the intensity 
vectors for each single frame are normalized to zero mean and unit variance, and 
concatenated: 

9 = {9ii92^9h'") (29.7) 

Analogous to the other AAMs, a PCA is applied to the sample covariance ma-
trices of the concatenated intensity sample vectors. Subsequently, each training 
sample is expressed as a set of shape and appearance coeflficients. A com-
bined model is computed from the combined shape-intensity sample vectors. 
In the combined model, the shape and appearance of both vievv̂ s are strongly 
interrelated, as is illustrated in Figure 29.6. 

Like in all AAMs, estimation of the gradient matrices for Computing parame-
ter Updates during image matching is performed by applying perturbations on the 
model, pose, and texture parameters, and measuring their effect on the residual 
images. Because of the correlations between views in the model, a disturbance in 
an individual model parameter yields residual images in all views simultaneously. 
The pose parameters however, are perturbed for each view separately: the model is 
trained to accommodate for trivial differences in object pose in each view, whereas 
the shape and intensity gradients are correlated for all views. In the matching pro-
cedure, the pose transformation for each view is also applied separately, whereas 
the model coefficients intrinsically influence multiple frames at once. Hence, the 
allowed shape and intensity deformations are coupled for all frames, while the 
pose Parameter vectors for each view are optimized independently. 

Multi-view AAMs have been successfully applied to segmentation of long-axis 
cardiac MR views and left-ventricular angiograms [613]. In Figure 29.7, examples 
of matching results are given for combined long- and short-axis cardiac MR scans. 
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Figure 29.7. Multi-view AAM detected contours (white dotted lines) for two patients (top 
and bottom row) in a 4-chamber (left), short-axis(middle) and 2-chamber view (right). 

29.2.3.5 3D + time Active Appearance Models 

Applying 3D AAM segmentation to the füll cardiac cycle v^ould require multiple 
models for different phases because any temporal knowledge of the interrelation-
ship betv^een frames v^ould be lost. To extend the 3D AAM framework to 3D + 
time, Stegmann [759] has proposed to incorporate a time element to the model by 
phase-normalizing objects to a common time correspondence and concatenating 
shape and texture vectors of individual phases into a Single shape and texture vec-
tor. In essence, this is similar to applying a multi-viev^ AAM to different 3D time 
frames. Also, Stegmann has greatly improved the matching Performance of 3D 
AAMs compared to the technique of Mitchell [574], by for instance introducing 
the "whiskers AAM": AAMs augmented with ASM-like scan line profiles that in-
crease the model context awareness and lock-in ränge. In addition, the decreased 
computation time in his implementation (0.4 s for simultaneously segmenting the 
end diastolic and end systolic frames) enables an exhaustive search of several 
model initializations, rendering manual initiahzation unnecessary. 

29.3 Discussion and Conclusion 

Active Shape and Appearance models are being employed in medical image anal-
ysis more and more frequently. As most diagnostic imaging modalities nov^adays 
deliver a high resolution, three-dimensional depiction of organs (sometimes over 
time), this chapter focused on higher dimensional extensions of Active Shape and 
Appearance models. Both models utilize a Point Distribution Model principle that 
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captures the shape of an object from a set of examples in a compact mathemat-
ical description. To extend from 2D to higher dimensional PDMs, the deiinition 
of point correspondence in 3D is the most critical issue. Correspondence by reg-
istration or fitting has shown great potential in clinical applications, and can be 
apphed to topologically complex shapes. Combining this registration-based corre­
spondence with correspondence by optimal encoding may further optimize model 
properties such as compactness and specificity. 

Active shape models are matched to Image data by locally updating the model 
based on image information in the vicinity of the landmarks: main challenges for 
extending ASMs to 3D lie in generating update points using a robust (preferably 
modality and training independent) classifier. In addition, the use of an inter-
mediary mesh combined v^ith local mesh Updates enables application to sparse, 
arbitrarily oriented image planes; this is not possible vŝ ith AAMs due to the re-
quirement of a densely sampled intensity volume. For AAMs, the main extension 
to higher dimension lies in defining a robust volume tesselation in 3D. Extensions 
to 2D + time, 3D + time and multiple views mainly rely on concatenating shape 
and intensity vectors for multiple time instances or geometric viev^s. 

A major limitation of the approaches described in this chapter is the fact that 
all methods rely on a balanced and representative training set. In case of a too-
limited-number of training samples, or when presented v^ith unrepresentative 
cases, the shape models may be overconstraining the segmentation results towards 
the model. A Solution lies in applying a constraint relaxation when the model is 
close to its final Solution, as has been proposed by Kaus et al. [457]. 

In conclusion, the field of 3D Statistical shape modeling is rapidly expanding, 
with several biomedical applications. The landmark-based approaches introduced 
in this chapter have demonstrated to be an important step towards automated seg­
mentation of dynamic volume data, because they utilize shape and appearance 
knowledge in a principled manner. 
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ChapterSO 

Characterization of Diffusion 
Anisotropy in DWI 
Y. Chen 

Abstract 

Difiusion-weighted magnetic resonance imaging (DWI) is unrivaled in 
its ability to quantify changes in biological tissue microstructure noninva-
sively. The quantification is based on the anisotropy of water diffüsion and 
über pathways determined from DWI measurements. This chapter is devoted 
to the study of the characterization of diffüsion anisotropy. Two methods 
for characterizing diffüsion anisotropy are introduced. One uses transition 
probability density fünction (PDF), and the other uses apparent diffüsion 
coefficient (ADC) profiles. Techniques for estimating the PDF and ADC 
profiles from high angular resolution DWI are reviewed. In particular we pre-
sented a variational framework for the estimation of the PDF modeled as a 
mixture of two Gaussians. We also described a variational model for the esti­
mation of the ADC profiles represented by a truncated spherical harmonic 
series, and the algorithm for the characterization of diffüsion anisotropy 
using ADC profiles. These two models are distinguished by simultaneous 
smoothing and estimation. Experimental results indicate the effectiveness of 
these models in enhancing and revealing intravoxel information. 

30.1 Introduction 

Diffüsion-weighted magnetic resonance imaging (DWI) adds to conventional 
MRI the capability of measuring the random motion of water molecules, referred 
to as water diffüsion. The mobility of water molecules within tissue depends 
on the microstructure of the tissue. For instance, in most gray matter in the 
brain, the mobility of water molecules is the same in all directions and is termed 
Isotropie dififusion. However, in fibrous tissues, such as cardiac muscle and brain 
white matter, water diffüsion is with preferred direction along the dominant fiber 
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orientation, and hindered to different degrees in different directions, causing dif-
fusion anisotropy. DWI renders such complex Information non-invasively and in 
vivo about how water diffuses into intricate 3-d representations of tissue. The 
anisotropy of water diffusion in tissue, and the sensitivity of water diffusion to 
the underlying tissue microstructure form the basis for the utilization of DWI 
to infer neural Connectivity [67], and to probe tissue structures, compositions, 
architectures, and organizations [62, 67]. 

The goal of DWI data analysis is to characterize diffusion anisotropy and re-
construct über pathways. The changes in diffusion anisotropy or fiber pathways 
reflect the changes in underlying tissue properties, that can often be corre-
lated with processes that occur in development, degeneration, disease, and aging 
([660]). In this chapter we focus our attention on the characterization of diffusion 
anisotropy, that is to classify the diffusion as Isotropie, anisotropic with one über 
or anisotropic with multiple fibers within a voxel. Two types of methods in the 
study of this problem will be introduced in the next two sections. 

One of the methods uses the probability density function (PDF) p on the dis-
placement r of water diffusion over a period of time t. Since p(r, i) is largest in 
the directions of least hindrance to diffusion and smaller in other directions, the 
information about p(r, t) reveals fiber orientations and diffusion anisotropy. The 
Standard methodology employed in most DWI experiments is the the Stejskal-
tanner pulsed gradient spin echo method [762]. Two magnetic field gradient 
pulses of strength G and duration ö with a temporal Separation of A between the 
onset of the pulses are applied to the simple spin-echo sequence. If the duration 
of the pulses 5 is negligible comparing with A, the attenuation of the MR Sig­
nal .s(q) with respect to the diffusion sensitizing gradient q measures the Fourier 
transformation (FT) of the average PDF p(r, A) on a spin displacement r over 
diffusion time A [64]: 

s{q) = soJp{r,A)e'^'^dr, (1.1) 

where q = (27r)~^j6G, 7 is gyromagnetic ratio of protons in water, and SQ is the 
MR Signal in the absence of any gradient. 

The other method for the characterization of diffusion anisotropy utilizes the 
apparent diffusion coefficient (ADC). The ADC in DWI is defined as a function 
d{0, (ß) in the Stejskal-tanner equation: 

. (q) = Soe~'"'^''^\ (1.2) 

where (ö,(/>) (0 < ö < TT, 0 < 0 < 27r) represents the direction of q in spher-
ical coordinates, the 6-factor is defined as 6 = 47r^|qp(A - 6/3). For Gaussian 
diffusion, the PDF is a Gaussian: 

1 - r ^ D - ^ r 
p(r,t) = ==exp{ }, (1.3) 
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and the measurement s(q) is related to the diffiision tensor D by 

s(q) = 5oe-^""^", (1.4) 

where u is the normalized q. In this case the ADC is xx^Dw, that is independent 
of the diffusion time t and the magnitude |q| of the diffusion sensitizing gradi-
ent q. For non-Gaussian diffusion equation (1.2) can be used to estimate d{9, (ß) 
when the diffusion time A and diffusion gradient strength G (hence |q|) are iixed. 
The ADC proiiles d{6, cß) for non-Gaussian diffusion is much more complicated. 
By high angular resolution acquisitions with larger b value, it is possible to reveal 
the complex shape of the ADC profiles, which provides the Information about 
the variance of diffusivities in different directions, and indicates the presence of 
multiple intravoxel fiber populations [11, 328, 818]. Recently the spherical har-
monic approximation [13, 183, 329] and high rank tensors representation [620] 
of the ADC profiles have been used for characterizing diffusion anisotropy for 
non-Gaussian diffusion. 

30.2 EstimationofPDF 

From equation (1.1), the PDF p(r, A) can be estimated from the inverse FT of 
s{q)/so. However, it requires a large number of measurements of s{q) over a 
Wide ränge of q for a inverse FT. Recently, Tuch et al. [818] developed q-space 
imaging method to obtain high angular resolution diffusion (HARD) measure­
ments. In [868] Wedeen et al. succeed in acquiring 512 measurements of 5(q) in 
each Scan to perform a stable inverse FT. In related work Ozarslan et al. [621], es­
timated the PDF by taking a inverse FT on simulated DWI Signals. The Simulation 
considers the diffusion in a cylinder, when the applied diffusion gradient makes 
an angle 0 with the direction of the cyHnder. The signal attenuation s{q)/so is 
given by the formula in [750]. 

A more common approach to estimate a transition PDF of diffusion over time t 
from much sparser set of measurements s{q) is assuming p(r, t) to be a Gaussian. 
Under this assumption the measurement s(q) is related to the diffusion tensor D 
via (1.4). The diffusion tensor .D is a 3 x 3 positive definite matrix. By using 
model (1.3) the reconstruction of p(r, t) can be posed as estimating the diffusion 
tensor D via (1.4), which in principle requires only six independent diffusion-
weighted measurements 5(q) plus SQ. This technique is known as diffusion tensor 
imaging (DTI). Based on the theory, that the principle eigenvector (PE) of D 
parallels to the mean fiber orientation, it is possible to infer the orientation of the 
diffusion within a voxel. DTI is in particular useful for creating white matter fiber 
tracts [64, 190,411]. 

However, it has been recognized that the single Gaussian model is inappropriate 
for assessing multiple fiber tract orientations, when complex tissue structure is 
found within a voxel [11, 63, 328, 329, 818, 868]. A simple extension to non-
Gaussian diffusion is to assume that the multiple compartments within a voxel 
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are in slow exchange and the diffusion within each compartment is a Gaussian 
[11, 328, 632, 817]. Under these assumption the diffusion can be modeled by a 
mixture of n Gaussians: 

p(r, t) = J2 M{^^tfdet(Di)r'/'e^^^^, (2.2) 

where fi is the volume fraction of the voxel with the diffusion tensor Di, fi > 0, 
Y^^ f^ = 1, and t is the diffusion time. Inserting (2.2) into equation (1.1) it yields 

s(q) = 5of^/ie-'""^^". (2.3) 

To estimate Di and fi, at least 7n — 1 measurements s(q) plus SQ are required. 
In [817] Tuch et al. acquired HARD images with a large 6-values, and extended 
the DTI to a mixture of two Gaussians to the voxels, where the signal s{q) ex-
hibited multiple local maxima. The Di and fi in the mixture problem (2.3) was 
solved with certain physiological constraints on the eigenvalues of Di. Without 
constraints solving (2.3) is an ill posed problem. In [632] Parker et al. used the 
mixture model to estimate the PDF for the voxels where the Gaussian model fits 
the data poorly. Such voxels were identified by using the spherical harmonic rep-
resentation of the ADC profiles. The Gaussian mixture problem (2.3) was solved 
by using Levenberg-Marquard algorithm [666]. 

To enhance the accuracy and stability in the estimation of biGaussian density 
function, recently, we developed [182] a variational framework to estimate Di and 
fi in (2.3). Different from the methods developed in [817] and [632], where the 
estimation was performed at each voxel independently, the model in [182] incor-
porated a smoothness constraint into the estimation. Then, the mixture problem 
solving is well-posed, and Di and fi {i = 1,2) were estimated over entire vol­
ume simultaneously by a Joint smoothing and data fitting. This algorithm took two 
steps. The first step is to find the region where the diffusion is strongly Isotropie 
or anisotropic with one fiber, (i.e. the location where the Single Gaussian model 
fits well). This region was determined using the SHS representation of the ADC 
profiles d{6, (/)). The detail of this method is given in the next section. Denote this 
region by Hi. In the second step we solve the foUowing minimization problem: 

2 

min /(V|VL,|^^(") + |V/f̂ ("))6/x + Ai / {f-lfdx 

p /»27r /»TT ^ 

+A2 / / / |y"/^e-^"'^^^^^"-e-^^|25m6>c^(9#dx, (2.4) 
Ja Jo Jo ^^1 

with the constraint Lf'"^ > 0. In (2.4) / = / i in (2.3), Li is a lower triangulär 
matrix from the Cholesky factorization of A (Di = LiLj) (see [862]). With the 
constraints on L*^'^ the factorization is unique, and D is positive definite. In (2.4) 
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ivLir = Ei<„,„<3ivir'"r 
1 1 

with Parameters k, a > 0, and Gaussian kemel Ga- Region f̂ i is given as a prior. 
The second term can help to skip local minima of (2.4). Finally the location where 
the model Solution / = 1 is adjusted from ^ i by the smoothing term in (2.4). This 
property makes the model less sensitive to the preliminary choice of Qi. 

The smoothing terms in this model is featured by minimizing a nonstandard 
growth fiinction, i.e. pi and pf are functions of x rather than a constant as the 
Standard L^ norm. Similar idea has been applied in image restoration in [99,184]. 
By the choice of pi{x) (also for pf) the speed and direction of the smoothing 
govemed by these terms at each point x varies according to the image gradient. 
At the locations where the magnitudes of the image gradients are high, Pi{x.) ^ 1, 
the diffUsion at these locations is based on minimizing the total Variation norm of 
the image gradient, and the direction of the diffusion is strictly tangential to the 
edges [98,162, 695]. In homogeneous regions the image gradients are very small, 
Pii'x) ^ 2, and the diffusion is essentially isotropic. At all other locations, the 
image gradient forces 1 < pi < 2, and the diffusion is between isotropic and 
total Variation based, and varies depending on the local properties of the image. 
Therefore, the smoothing resulting from this model is very adaptive, and preserves 
the features in Li and / . 

Model (2.4) has been appHed to a set of HARD MRI human data. The 
raw HARD MR Images were obtained on a GE 3.0 Tesla Scanner with 
TR/TE=1000/85ms. The field of view =220 mm x 220 mm. 24 axial sections 
covering the entire brain with the slice thickness=3.8 mm and the intersection 
gap=1.2 mm. The diffusion-sensitizing gradient encoding is applied in 55 direc-
tions with b = lOOOs/mm^. Thus, a total of 56 diffusion-weighted images, with 
a matrix size of 256 x 256, were obtained for each sHce section. 

To accommodate the constraint on Li into the model in our numerical scheme 
we let L ^ ' ^ = ^m- ßy solving (2.4) we obtained the Solutions Li and / , and 
consequently, Di = LiLj {i = 1,2). Fig. la shows the model Solution / in a 
health adult brain slice through the extemal capsule. Fig. Ib represents a color 
pie, which is implemented by relating the azimuthal angle (</>) of the vector to 
color hue (H) and the polar angle {9 > n/2) to the color Saturation (S). We 
define H - (/)/27r, S = 2{7r - 6>)/7r, and Value{V) = 1 in SHV, so (cj), 9) 
is corresponding to a vector in the lower hemisphere. The upper hemisphere is 
just an antipodally Symmetrie copy of the lower one. The xy plane is the plane 
of discontinuity. Figs. Ic and Id show the color representation of the directions 
for the PE of JDI(X) and JD2(X), respectively, in the same slice as in Fig. la. By 
comparing the color-coding in Figs. Ic and Id with the color pie shown in Fig. 
Ib, the directions of the PE's are uniquely determined. 

To examine the accuracy of the model in recovering intravoxel Information we 
selected a region inside the corpus callosum, where the diffusion is known as 
one-fiber diffusion. We computed the direction in which the ADC profiles d is 
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maximized. This direction field is shown in Fig. 2a. On the other hand we solved 
(2.4), and obtained f ^ 1 on this region. The direction field generated from the 
PE of Dl is then shown in Fig. 2b. These two vector fields are comparable, and 
the one in Fig. 2b is more regularized due to the regularization terms in the model. 

Most recently, we [373] proposed to replace the data fidelity term in (2.4) by 

Ja, Jo Jo ^^i 

If we determine the strong Gaussian diffusion region fti using the DWI signal 
s{q) and so, this change enable us to solve the mixture problem without any prior 
knowledge on d. 

' / 
> 

*. 
•H7"> 

-•; 

L J^ J 

• :- ' ^ . 
A . 

* • •» 

\ 

c * . • • 

*r ' 

•V* 

-'s' 

V 

1, 

»' 
1 
,.-* 

• .K-

I . 

' j ^^ 

».̂  

(c) (d) 

Figure 30.1. (a). Model Solution / , (b). color pie, (c). color-coding of the Ist fiber direction 
mapping, (d). color-coding of the 2nd fiber direction mapping. 

For sparsely distributed data it is difficult to get a desirable estimate for the 
PDF without a model, since a inverse FT requires the measurements s(q) from 
a Wide ränge of q, while the 5(q)'s with high |q| have very poor signal to noise 
ratio. One of the alternatives for characterizing diffusion anisotropy is to use the 
ADC profiles estimated from HARD MRI measurements. 
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(a) 

Figure 30.2. Direction field obtained by (a) maximizing d, (b). the PE of Di (Solution of 
(2.4)) 

30.3 Estimation of ADC profiles 

In this section we discuss methods for estimating ADC profiles and characterizing 
diffusion anisotropy using the estimated ADC profiles. 

The ADC profiles d(x, ^,0) is related to the observed signal in DWI through 
the Stejskal-tanner equation (1.2). For Gaussian diffusion d{u) = bu^Dn. Many 
models for smoothing and estimation the diffusion tensor D in DTI model (1.4) 
having the ability of preserving the positive definite, anisotropy, or directional 
property of the PE of D have been developed [178, 260, 313, 633, 660, 812, 813, 
838, 864, 872]. 

The trace of D provides a measure of the total diffusion within a voxel. The PE 
ofD indicates the direction of the diffusion. In particular the fractional anisotropy 
(FA), which is a measure of the orientational coherence of the diffusion compart-
ments within a voxel [647], has become the most widely used measure of diffusion 
anisotropy. The FA is defined as 

where Â  (?' = 1,2,3) are the eigenvalues of D. If fibers are strongly aligned 
within a voxel, the FA is high, and the diffusion is anisotropy at that voxel. If 
diffusion is isotropy, the FA is zero. 

For non-Gaussian diffusion, ADC profiles are more complex. Tuch et al. [818] 
recognized that HARD imaging with high 6-values is able to exhibit the vari-
ance of the signal as a function of diffusion gradient orientations. This admitted a 
generation of the concept of DTI to higher order tensors to characterize complex 
diffusion properties [13, 183, 329, 620]. 

To quantify diffusion anisotropy in [620] özarslan et al. extended DTI model 
(1.4) to the high rank tensor model: 

, . 3 3 3 

log ^ ~^X^ X] •••X!^M'i2. •iiö'iife "'9ii^ 
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where Di^i^^^^i^ are the components of the Cartesian rank-/ tensor and p^ ,̂ (1 < 
k <l) are the components of the gradient direction. 

In [13, 183, 329] the ADC profiles were represented by its truncated spherical 
harmonic series (SHS), and used for the characterization of diffusion anisotropy. 
This idea was iirst initiated by Frank [329], and then applied and more developed 
in [13,183]. In the work of [13,329] the ADC d{e, (j)) at each voxel was estimated 
from HARD raw data via the linearized version of (1.2): 

rf(q) = -\iog'-^, (3.2) 
0 So 

and then, approximated by its truncated SHS: 

d{0,(ß) =J2Y1 Ai^mYiM^.cp). (3.3) 
l-O m=-l 

where Yi^m{0,0): are the spherical harmonics, which are complex valued fiinc-
tions defined on the unit sphere. The odd-order terms in (3.3) are set to be zero, 
since the measurements are made by a series of 3-d rotation, and hence, d{0, </>) 
is antipodal symmetry. In [329] the A;,rn's (/ is even) are determined by inverse 
spherical harmonic transform: 

Ai,m= [ [ -\log^-^Yi^rn{OA)sineded(t>, (3.4) 

and in [13] they are estimated as the least-squares Solutions of 

. / X lma:c l 

--log^^ = J2T. ^i^mYiM^A)' (3.5) 

Then, the coefficients Ai^rn'^ were used to characterize the diffusion anisotropy. 
In their algorithm the voxels with the significant 4th order (/ = 4) components in 
SHS are characterized as anisotropic with two-fiber orientations (shorten as two-
fibers), while voxels with the significant 2nd order {1 = 2) but not the 4th order 
components are classified as anisotropic with Single fiber orientation (shorten as 
one-fiber), which is equivalent to the DTI model. Voxels with the significant Oth 
order (/ = 0) but not the 2nd and 4th order components are classified as Isotropie. 
The truncated order is getting higher as the structure complexity increases. Their 
experimental results showed that non-Gaussian profiles arise consistently in var-
ious brain regions where complex tissue structure is known to exist. Fig.3 from 
[13] shows typical ADC profiles (left column) from each of three regions: pons 
(top), optic radiation (middle), and Corona radiata (bottom), together with trun­
cated SHS of Orders 0, 2, 4, 6, and 8 (second from left to right columns). In each 
case, there is significant difference between the order 4 and order 2 models, which 
indicates significant non-Gaussian behavior. The models with order greater than 
4 do not appear to change the overall profile shape significantly. 

By this method the characterization of the diffusion anisotropy depends heav-
ily on the coefficients in SHS (3.2). To improve the accuracy and stability in the 
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Figure 30.3. Typical ADC profiles (left) together with spherical harmonic models of Orders 
0,2,4,6, and 8 (second from left to right) from each of the three regions (This Fig. is from 
[13]). 

estimation of Ai^rn and enhance the characterization of anisotropy recently we 
[183] proposed a variational model that has the ability of simultaneously smooth-
ing and estimating the ADC profiles from noisy HARD measurements s(q), and 
preserving the relevant features, positiveness and antipodal symmetry properties 
ofd. The basic idea of this approach is to approximate the ADC profiles at each 
voxel by a 4th order SHS (consider the case that the maximum number of fibers 
within a Single voxel is two), whose coeßicients are determined by solving the 
following constrained minimization prob lern: 

. r « - , J ^ H E iv^,,„(x)r-w + ivso(x)rW}dx 

-^ Jn Jo /o 

with the constraint: 

i 

d{^,9,<ß)= J2 ^ Ai,m{^)Yi,m{e,<l>)>0, (3.7) 
l=0,2,4m=-l 

where A > 0 is a parameter, 

1 
PU^) = 1 + 1 ^ , | ^ g ^ , ,^_^|.. P(x) - 1 + ^ ̂  , | ^ ^ ^ ^ ̂ ^|,. (3.8) 

In (3.8) /c, a > 0 are parameters, Ga^ is the Gaussian kemel, and ai^rn is the 
least-squares Solution of (3.5). 
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Since d{x,0,^) is a real valued flinction, and Yi^rn satisfies 11,-m = 
{—ly^^'^^Yi^rn, each complex valued flinction Ai^rn is constrained by 

where F denotes the complex conjugate of F. This constraint reduces the 15 
unknown complex valued functions Ai^rn in (3.7) to 15 real valued functions: 

^^o(x), (/ = 0,2,4), i?e^/,,n(x), and /mAi,^(x),(/= 2,4, m = l , . . . , / ) . 

Model (3.6)-(3.7) differs from (3.4) or (3.5) in two aspects. First in model (3.4) 
or (3.5), the A/̂ n̂'s are estimated at each individual voxel, the relations of Ai^rn 
across voxels are not taken into account. While in model (3.6)-(3.7) Ai^rn{^) 
are recovered over the entire volume with a smoothness constraint. Due to the 
present of the regularization term problem (3.6) is well-posed, and able to re-
veal the smooth change of diffiision anisotropy across voxels. Secondly, in (3.6) 
the estimation of d is based on the original Stejskal-tanner equation (1.2) rather 
than its (log) hnearized form (3.2). It has been observed in [864] that the original 
model provided better results in tensor field estimation from DTI. The smoothing 
terms in (3.6) are based on minimizing a nonstandard growth functional. As ex-
plained in the previous section by the choices of pf,^(x) and p(x), the smoothing 
is isotropic in the homogeneous region, TV based along the edges, and varies in 
between isotropic and TV based in other regions depending on the image gradi-
ents at the location. Since the diffusion govemed by this model is very adaptive so 
that the features in A^^^(x) and so(x) are well preserved. The positiveness and 
antipodal Symmetrie properties of c? are constrained in (3.7). 

The algorithm for the characterization of diffusion anisotropy in [183] is mainly 
based on the Ai^rn'^ in SHS estimated from HARD raw data, and the variance a 
of the ADC profiles d(Oj (f>) about its mean, which is as foUows. 

l.If 

i,,(x) =: \ ^ ^ , (3.9) 
2-^i=0,2,4 Z^m=-i l^^ml(x) 

is large, or the variance cr(x)(x) of (i(x, 9, (j)) about its mean cr{iQ) is small at a 
particular voxel x, the diffusion at this voxel is classified as isotropic. 

2.1f 

^2(x) - . — —̂  — , (3.10) 
2_v/=0,2,4 l^m=-l l^^mKXj 

is large at a voxel x, the diffusion at this voxel is characterized as one-fiber 
diffusion. 

3. For each uncharacterized voxel after the above two steps, search the direc-
tions {0,(j)), where d{0^ (ß) attains its local maxima. If there is only one local 
maximum, d is viewed as one-fiber diffusion. For the rest of the voxels that 
have more than one local maximum (say 3), the diffusion anisotropy is flirther 
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characterized by the weights: 

Wi 
Y^i=ld{Oi,(t)i) -3drr 

where {9i, 4>i) (?* = 1,2,3) are the directions in which d attains 3 local maxima. 
If one of the weights is significant, it is considered as one fiber diffusion. If two 
weights are similar but much larger than the third one, it is viewed as two-fiber 
diffusion, if all three weights are similar, then higher order approximation of SHS 
for d is required. 

We applied model (3.6)-(3.7) to simulated data to test whether this model can 
efficiently reconstruct ADC profiles from noisy HARD measurements. 

The simulated data was a set of SQ and Ai^rn on a 3d lattice of dimension 6 x 
6 x 5 . This volume consists of two homogeneous regions. In the region 1 5o(x) = 
562, ^0,0 = 6.28 x 1 0 - ^ A2,o = -8.81 x 10"^, A4,o = 6.15 x 1 0 - ^ i?e^2,i = 
5.22 X l b - ^ ReA2,2 = 5.08 x 10"^, ReA4,i = -8.47 x 1 0 - ^ ReA4,2 = 4.92 x 
1 0 - ^ ReA4.3 = 3.10 X 1 0 - ^ ReA4A = ' - 1 . 3 8 x 10"^, ImA2,i = -1.82 x 
10-4, jmA2,2 = -1.13 X 1 0 - ^ /m^4, i = 9.62 x 1 0 - ^ ImA4,2 = 3.46 x 1 0 - ^ 
ImA4,3 = -3.58 X 10"^, ImA^A = 1.75 x 10"^ In the region 2 5o(x) = 378, 
^0 0 = 6.08 X 1 0 - ^ A2,o = 2.04 x 10"^, ^4,0 = 2.63 x 10"^ ReA2,i = 6.63 x 
1 0 - ^ ReA2,2 = -9.71 X 10-^i?e^4,l = l-'27 x lO"'*, i?e^4,2 = 2.'22 x 10"^, 
ReA4.3 = i.24 X 1 0 - ^ ReA4A = 4.19 x 1 0 - ^ ImA2,i= 5.77 x 1 0 - ^ 
ImA2,2 = 9.56 X 1 0 - ^ ImA4,i = 6.51 x 1 0 - ^ /m.44',2 = 6.64 x 1 0 - ^ 
ImA4.3 = 7.52 X 1 0 - ^ ImA4A = 3.71 x 10"^ 

Fig. 4 shows the true, noise, and recovered ADC profiles <i(x, (9,0) for a par-
ticular slice of size 4 extracted from the volume 6 x 6 x 5 . The ADC profiles 
c?(x, 0, <j)) shown in Fig. 4a were computed by using (3.3) with the simulated 
data. Using this true d the corresponding str-ue(x, 0, (j)) was constructed via (1.2) 
with b = lOOOs/mm^. Then we generated the noisy HARD MRI signal 5^ by 
adding a zero mean Gaussian noise with Standard deviation 5 — 0.5. Using s^i 
and simulated 

So we estimated Ai ^^ as the least-squares Solutions of (3.5), and 
model Solutions of (3.6)-(3.7), and then, obtained two corresponding d's via (3.3) 
shown in Figs. 4b and 4c, respectively. Comparing these three figures, it is clear 
that the noisy measurements Sn changed the original shapes ofd from Fig. 4a into 
Fig. 4b, while by applying model (3.6)-(3.7) to the noisy data to reconstruct the 
ADC profiles, the shapes ofd in Fig. 4a were recovered, as shown in Fig. 4c This 
experiment demonstrated that model (3.6)-(3.7) was effective in simultaneously 
regularizing and recovering ADC profiles. 

Model (3.6)-(3.7) has also been applied to human HARD MR brain data for the 
estimation of ADC profiles and characterization of diffusion anisotropy. 

The raw DWI data was acquired in the same way as in the experiment shown 
in Fig. 1. The diffusion-sensitizing gradient encoding is applied in fifty-five direc­
tions. Model (3.6)-(3.7) was applied to the raw data, and the coefficients Ai^rn'^ in 
SHS were obtained as the steady State Solutions to the flow of the Euler-Lagrange 
equation associated with the energy function in (3.6) with constraint (3.7). The 
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Figure 30.4. (a)-(c). The d generated by (3.3), where the >lz,m's are simulated data in (a), 
the least-squares Solutions of (3.5) with the noisy measurement Sn in (b), and the model 
Solutions of (3.6)-(3.7) in (c). 

initial Ai^rn^ were chosen as the least Squares Solutions of (3.5). Then (i(x, ^, 0) 
was computed via (3.3). 

To characterize the difftision anisotropy, we used the estimated >l/,^(x)'s to 
calculate -Ro(x) in (3.9), /?2(x) in (3.10), and variance cr(x) of (i(x, Q, cß) about its 
mean: cr(x) = JQ /^ ^((i(x, 6, (l>)-J2iLi ^(^^ ̂ i? (I)i)/55)'^d9d^. The diffusion at 
the voxels with -ßo(x) > 0.856, or cr(x) < 19.65 were classified as Isotropie. The 
diffusion at the voxels with JR2(X) > 0.75 were considered as one-fiber diffusion. 
For the remaining voxels we further classified them by using the method in the 
third step of the characterization algorithm above. The thresholds used for RQ, R2 
and a were selected by using their histograms. 

Fig. 5 shows the comparison of R2 (x) maps and FA map in (3.1) for a particular 
slice in a health adult brain volume. Fig. 5a displays the FA image obtained by 
using advanced System Software from GE. Fig. 5b-5d present the Ä2(x) images 
obtained by using (3.10), where the yl/^^(x)'s are estimated from three different 
models. The >l/,rn(x)'s used to obtain i?2(x) in Fig. 5b are directly computed 
from (3.4). Those used to obtain i?2(x) in Figs. 5c and 5d are the least-squares 
Solutions of (3.5) and the Solutions of (3.6)-(3.7), respectively. In Figs. 5a-5d the 
voxels with high levels of intensities are characterized as one-fiber diffusion. 

Although the image in Fig. 4a is obtained from a conventional DTI model (1.4), 
but it still comparable with the R2 map, since single tensor diffusion characterized 
by SHS representation agrees with that characterized by the DTI model. However, 
in DTI a voxel with a low intensity of FA indicates isotropic diffusion, while using 
our algorithm, multi-fibers diffusion may occur at the location with the low value 

ofi^2. 
It is clearly evident that the ability to characterize anisotropic diffusion is en-

hanced, as shown in Figs. 5a-5d. Fig. 5b indicates again that the estimations of 
Ai^rn directly from the log signals usually are not good. Even the least-squares 
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Solution of (3.5) are not always effective. This can be seen by comparing the 
anatomic region inside the Square of Figs. 5c and 5d, which are zoomed in Figs. 
5e and 5f, respectively. There is a dark broken line showing on the map of the ex-
temal capsule (arrow to the right on Fig. 5e), this same region was recovered by 
model (3.6)-(3.7) Our results also showed the connection in a cortical associative 
tract (arrow to the left in Fig. 5f), however, this connection was not mapped out 
on Fig. 5c or the zoomed image in Fig. 5e. In fact this connection was not mapped 
out on Figs 5a-5b either. Moreover, these two connection voxels are characterized 
by the third step in our algorithm as anisotropic diffusion with two-fibers (arrow 
to the right and left in Fig. 6b below). All these mapped connections are consis-
tent with the known neuroanatomy. Combined together, this experimental result 
indicates that Joint smoothing and estimation of the ADC profiles govemed by 
model (3.6)-(3.7) has the advantage over the existing models in the enhancement 
of the ability to characterize diffusion anisotropy. 

Fig. 6a shows a partition of Isotropie diffusion, anisotropic diffusion with one-
fiber, and two-fibers for the same slice displayed in figure 5. The two-fibers, one-
fiber, and Isotropie diffusion regions were fürther characterized by the white, gray, 
and black regions, respectively. The region inside the white Square in Fig. 6a, 
which is the same one squared in Figs. 5c and 5d, is zoomed in Fig. 6b. It is clearly 
to see the two voxels directed by arrows in Fig. 6b are classified as diffusion with 
two-fibers. Fig. 6c represents the shapes of c^(x, 0,(j)) at three particular voxels 
(upper, middle and lower rows). The d's in all three voxels are computed using 
(3.3). However, the ^^^^^(x) used in Computing d on the left column are the least-
squares Solutions of (3.5), while on the right column they are the model Solutions 
of (3.6)-(3.7). The first and second rows show two voxels that can be characterized 
as Isotropie diffusion using model (3.5), but as diffusion with two-fibers after 
applying model (3.6)-(3.7). These two voxels are the same voxels as in Fig. 5f 
(also Fig. 6b) directed by arrows. The lower row of Fig. 6c shows the one-fiber 
diffusion was enhanced after applying model (3.6)-(3.7). 

Finally, we would like to point out that the number of the local maxima in 
ADC profiles indicates the number of the fibers through a voxel. However, for 
non-Gaussian diffusion the directions in which the ADC profiles attains the local 
maxima may not be the same as the fiber orientations. 

30.4 Conclusion 

The quantification of diffusion anisotropy in biological tissues are very complex. 
Two types of methods for the characterization of diffusion anisotropy were intro-
duced in this chapter. One of them used the PDF of the diffusion of a mixture 
of n Gaussians. The second method was based on the significant components 
in the SHS approximation of the ADC profiles. The methods for estimation of 
the mixture of Gaussians and SHS approximation of the ADC profiles were also 
presented in this chapter. 
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Figure 30.5. (a). FA from GE Software, (b)-(d). R2 with the A/,m's as the Solutions of 
(1.7), least-squares Solutions of (2.7), and model Solutions, respectively. (e)-(f). Enlarged 
portions inside the Squares in (c) and (d), respectively. 

The second method of characterization did not require a prior knowledge for 
the PDF. However, the characterization might be less accurate, if the order of the 
significant components in the SHS was the only factor accounted for. In order to 
improve accuracy in [183] the variance, and the number of the local maxima of the 
ADC profiles was applied as the additional measurements in the characterization. 
But the extra measurements brought more parameters to be determined. There-
fore, better models and methods to study diffusion processes inside the tissue are 
needed. 
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(c) 

Figure 30.6. (a). Classification: White, gray, and black voxels are identified as two-fibers, 
one-fiber, and isotropic difiusion respectively. (b). Enlarged portions inside the white 
Squares in (a). (c). Three typical d's (upper, middle and lower rows) computed via (3.3). 
Ai^m used in (3.3) on the left and right columns are the least-squares Solutions of (3.5), 
and model Solutions of (3.6)-(3.7), respectively. 



ChapterSl 

Segmentation of Diffusion Tensor 
Images 

Z. Wang and B. Vemuri 

Abstract 
Diffusion tensor images(DTI), which are matrix valued data sets, have 

recently attracted increased attention in the fields of medical imaging and 
visualization. In this chapter, we review the State of art in DTI segmentation 
and present some details of our recent approach to this problem. 

31.1 Introduction 

In their seminai work [63], Basser et al. introduced diffusion tensor magnetic res-
onance imaging (DT-MRI) as a new MRI modality from which anisotropic water 
diffusion can be inferred quantitatively. Since then, DT-MRI has became a power-
ful method to study the tissue microstructure e.g., white/gray matter Connectivity 
in the brain or the spinal cord in vivo. DTI analysis consists of a variety of interest-
ing Problems: diffusion weighted image (DWI) acquisition, DTI restoration, DTI 
segmentation, DTI registration, fiber tracking and visualization. From all these, 
research on the DTI segmentation problem has only recently received much atten­
tion and will continue to do so in the near future. Segmentation is a fundamental 
problem in medical imaging and Computer vision in general. DTI has the added 
advantage of providing directional as well as scalar information in one image as 
opposed to just the scalar (contrast) information present in Standard MRI. In the 
foUowing, we will present a brief overview of various techniques currently in 
vogue in segmenting DTI. 

In the context of DTI segmentation in literature, there are three major ap-
proaches . The first approach is based on clustering techniques. To the best of our 
knowledge, the only published work using a clustering technique for DTI seg­
mentation is due to Wiegell et al. [889]. They used k-means to achieve automatic 
segmentation of thalamic nuclei from DTI. 
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The second approach is based on the now widely populär geometric active 
contour model, which was independently pioneered in the Computer vision Com­
munity by Malladi et al. [536, 538] and in the applied mathematics Community 
by Caselles et al. [152] and later refined in several approaches, leading to the 
geodesic active contours and the region-based active contours respectively in 
[156,462,174, 808,625]. Recently, the geodesic active contour models have been 
used to handle DTI segmentation in [313,646,925]. Zhukov et al. [925] proposed 
a level set segmentation method that segments DTIs by segmenting scalar-valued 
images computed from the diffusion tensor. The scalar-valued images are flinc-
tions of the eigen values of the diffusion tensors. However, this is not truly a 
matrix-valued image segmentation method since the direction information con-
tained in the diffusion tensors are ignored. In [313], Feddem et al. extended the 
concept of image gradients to matrix-valued images for segmenting the same. The 
stopping criteria in the Standard geodesic active contour is modified to a decreas-
ing function of gradient magnitude of the matrix-valued image. In the same year, 
Pichon et al. [646] introduced an interesting diffusion flow by using an alignment 
penalty of the curve tangent to the dominant eigen vector (the eigen vector with 
the largest eigen value of the diffusion tensor) field as the conformal factor in a 
geodesic active contour. A group of curves can evolve in this diffusion flow and 
Cluster together to yield a segmentation of the DTI. 

The third approach is based on region-based geometric active contours and pro-
vides a much more interesting insight into the segmentation of Symmetrie positive 
definite (SPD) matrix-valued images, in particular DTIs [860,858,687,508,510]. 
In [860], Wang and Vemuri were the first to apply the Mumford-Shah func-
tional [591] using an implementation involving the region-based active contours 
in a level-set framework to achieve matrix-valued image segmentation. This was 
done by incorporating a matrix distance based on the matrix Frobenius norm. 
Simultaneously, Rousson et al. [687] extended the geodesic active regions by 
incorporating region statistics of matrices for DTI segmentation. In both works 
[860, 687], a diffusion tensor is treated as a matrix wherein every component is 
independent and equally weighted. Still, they report realistic results for segment­
ing important subcortical structures like the corpus callosum from rat brains and 
human brains. 

Each of the diffusion tensors in the DTI however can be viewed as the co-
variance matrix of a local diffusion process. In [858], Wang and Vemuri were 
the first to use this fact in the context of DTI segmentation. In particular, they 
proposed a novel diffusion tensor "distance" based on concepts grounded in in­
formation theory and incorporated it in active contour without edges model [174] 
for DTI segmentation. Soon after, the concepts presented in Wang and Vemuri 
[858] were extended by Lenglet et al. [508, 510] to the case of general proba-
bility density field segmentation using region statistics as grouping criteria. In 
particular, they use the Fisher information metric on the manifold of a fam-
ily of probability density functions (pdf) as a distance for a family of pdfs, an 
idea that was also mentioned in [858] but not carried through. Very recently in 
[857, 859], Wang and Vemuri further extend their work in [858] to the case of the 
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piece-wise smooth regions, based on the curve evolution implementation of the 
Mumford-Shah flinctional ([808, 175]. 

Rest of this chapter is organized as follows: in section 31.2, we briefly present 
the k-means algorithm for DTI segmentation. Then, in section 31.3, several meth-
ods applying or extending boundary based active contours are discussed. In 
section 31.4, we present our recent work on DTI segmentation in detail. Finally, 
in section 31.5 we present the conclusions. 

31.2 K-means for DTI segmentation 

The K-means algorithm has long been used for unsupervised clustering [288]. 
Recently, Wiegell et al. [889] applied this technique for segmentation of thalamic 
nuclei from DTI. Specifically, they set the number of Clusters n to be 14 based on 
Visual inspection and the clustering measure between a voxel j and a Cluster k is 
defined as: 

Ejk = W^j - xfcllwfc + 7l|Dj- - D/CIIF (31.1) 

where Xj is the location of voxel j , x^ is the center of Cluster k, D j is the diffusion 
tensor at voxel j , D^ is the mean of the diffusion tensors in Cluster k which is 
simply a Channel by Channel mean. The first term is a Mahalanobis voxel distance 
defined as ||X||WA; =̂  Vx^W/c ' ^x where Wk is the covariance matrix of the 
voxels in Cluster k, and the second term is simply a Frobenius distance between 
two diffusion tensors defined as 

D i - D 2 | | f = /^ (Z) l , , ^ -Z)2 , i^ )2 

Note that due to its simplicity, the above form of diffiasion tensor distance has also 
been used extensively in DTI restoration [871, 178] and DTI registration [12]. 7 
is a weighting factor controls the tradeoff between voxel distance and diffusion 
tensor differences. The initialization of the algorithm is semi-automatic and the 
segmentation results are shown to agree with a histological atlas of the brain. 

31.3 Boundary-based active contours for DTI 
segmentation 

In their seminal work [455], Kass et al. introduced an elastically deformable 
contour dubbed the "snake" (a.k.a. "active contour") to find and link edges by 
evolving the "snake" in the image domain. However, this initial Version had sev­
eral Hmitations including the dependency on the parameterization and the inability 
to automatically change topology. A geometric active contour in a level-set frame-
work was then proposed in the pioneering works of Malladi et al. [536, 537, 538] 
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and Caselles et al. [152] to overcome these limitations. The level-set represen-
tation of evolving curves used in the works of Malladi et al. and Caselles et al. 
was first introduced by Dervieux and Thomasset in [261] and also independently 
developed and explored by Osher and Sethian [618] in fluid mechanics. Follow-
ing the basic ideas of the geometric active contours in [536, 537, 538, 152], a 
variational formulation for the same was independently introduced in Caselles et 
al. [156] and Kichenassamy et al. [462], leading to the so called geodesic snakes. 
These models were then further developed to yield more general and stable mod-
els in [887, 740, 907, 189]. Since in these methods motion of the active contour 
is governed by the local image forces and local curve geometry defined along the 
boundary, it is appropriate to categorize them as boundary-based active contours 
models. 

Lately, several authors have applied or extended some of these methods to DTI 
segmentation. Zhukov et al. [925] applied the following geometric active contour 
formulation to achieve DTI segmentation: 

^ - - F . V ( ^ (31.2) 

where the (̂  is a flinction whose zero level set is the evolving curve C (or sur-
face) and F = Fdata + ß^curv is the speed of the evolving curve. The first 
term of the speed is data dependent and they use the gradient of grey scale fea-
tures e.g., the gradient magnitude of some smoothed scalar volumes. Specifically, 
the scalar volumes they use are the trace of the diffusion tensor or a dimension-
less anisotropy measure computed from DTI. The second term is the well known 
curvature-dependent smoothing term [618]. 

The works of Feddem et al. and Pichon et al. are both based on the following 
evolution equation of geodesic active contours: 

^ = 5 ( . ) | V . ^ | V - | | ^ + V f f ( . ) - V ^ (31.3) 

where g{.)isa. stopping function and depends on the local properties of the image 
such as the image gradient. In [313], Feddem et al. extended the gradient magni­
tude definition of vector-valued image to matrix-valued image using the following 
form: 

gradMagiB^) : : - / ^ |VD, , , , f (31.4) 

where T>a is a Channel by Channel Gaussian smoothed DTI, 'D(j,ij is the ij — th 
component of D^ .̂ They use g{gradMag{Da)) in defining the stopping criterion 
function g{.) and showed results for extracting the cortex from a 2D projection of 
a 3D human brain DTI. 

Simultaneously, Pichon et al. proposed another modification of the geodesic ac­
tive contours by rewriting the defining variational principle of the geodesic active 
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contours. They define the weighted arc length L of curve C by 

L=\j \\ei-C,\\^Fads (31.5) 

where ei and Fa are the dominant eigen vector and the fractional anisotropy [65] 
of the DTI respectively. L is minimized when the curve C is maximally aligned 
with the dominant eigen vector at places with high anisotropy. Then, they derive 
a diffusion flow by minimizing L defined in (31.5) leading to: 

Ct = FaCss - curl{ei) x C, - VF« (31.6) 

Thus, the active contour evolves to get maximally aligned to the dominant eigen 
vectors of the DTI and a group of curves can evolve to form a fiber bündle that 
can potentially be used to Cluster the diffusion direction information. Note that the 
3D curves corresponding to the nerve fibers are represented by the intersection of 
two 3D surfaces with fixed end points. 

31.4 Region-based active contour for DTI segmentation 

Region-based active contours involve the use of quantities defined over the whole 
image domain to evolve the curves and surfaces and they are preferred over the 
boundary-based cousins (discussed above) in medical image segmentation due 
to their robustness to noise and relative insensitivity to initialization. Currently 
there are two representative segmentation approaches. The first one is based on 
the Mumford-Shah functional [591] and was developed by us in a series of papers 
[860, 858, 857, 859]. The second approach is based on geometric active regions 
[625] developed by Lenglet et al. [508, 510] and Rousson et al. [687]. The sec­
ond approach has been described in detail in an earlier chapter (of this book) by 
Deriche et al. and hence, we will focus on presenting the first approach pertain-
ing to our latest work that incorporates an information theoretic diffusion tensor 
"distance" in the Mumford-Shah functional for DTI segmentation. 

31.4.1 An information theoretic diffusion tensor "distance" 

In the context of DTI, water molecule diffusion inside a human or animal 
being imaged may be characterized by a rank two tensor D which is Sym­
metrie positive definite. This D is related to the displacement r of water 
molecules at each lattice point in the Volumetrie data at time t via p(r|t,D) = 
ex'p{~^ ^^—-)/^(27r)^|2^D|. Thus, it is natural to use the distance measure 
between Gaussian distributions to induce a distance between these diffusion 
tensors. The most widely used information theoretic "distance" measure is the 
Kullback-Leibler divergence defined as 

KL{p\\q) = Jp{^)log^^d^ (31.7) 
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for two given densities p{x) and q{x). The KL divergence is not Symmetrie and a 
populär way to symmetrize it is 

J{p,q)='^[KL{p\\q) + KL{q\\p)] (31.8) 

which is called the J-divergence. An information theoretic dififusion tensor 
"distance" can now be defined as the Square root of the J-divergence, i.e. 

d(Ti ,T2) = VJ(p( r | ^ ,T i ) ,p ( r | t ,T2) ) (31.9) 

It is known that twice the KL divergence and thus twice the J-divergence is the 
squared distance between two infinitesimally nearby points on a Riemannian man-
ifold of parameterized distributions [17]. Thus, taking the Square root in (31.9) is 
justified. Furthermore, equation (31.9) has a very simple closed form for the case 
of Gaussian distributions and is given by 

d(Ti,T2) = ^^Jtr{T^'T2 + T^'T^)-2n (31.10) 

where tr{-) is the matrix trace operator, n is the size of the Square matrix T i and 
T2. Note that the "distance" defined in equation (31.10) is not a true distance as 
it does not satisfy the triangle inequality. Rao's distance [33] between the Gaus­
sian distributions p(r|^, T i ) and p(r|t, T2)) can be used to define a true distance 
between T i and T2. However, this distance for diffusion tensors poses a com-
putational diflficulty for DTI segmentation in that it does not yield a closed form 
expression for the mean value of the DTI required in the piecewise constant seg­
mentation model. Instead, we choose the diffusion tensor "distance" defined in 
(31.10) as it approximates the Rao's distance between diffusion tensors and it is 
also computationally eßicient for the purpose of segmentation. Note that (31.10) 
has been proposed in various other contexts (for example [816]), however, to the 
best of our knowledge, this form of "distance" was proposed in the DTI analysis 
literature for the first time by our work in [858]. 

When the domain of the DTI undergoes an affine transformation, the diffu­
sion tensors will also be transformed but by a congruent transformation. If the 
affine domain transformation is represented by y = A x + b , then the vector r 
representing the displacement of a water molecule will be transformed accord-
ing to r = Ar . Since r has a Gaussian distribution with covariance matrix 2tT, 
the transformed displacement r has a covariance matrix of 2tATA^. Thus, the 
transformed DTI is given by 

t ( y ) = AT(x)A^, y = A x + b (31.11) 

The information theoretic diffusion tensor "distance" is invariant to such affine 
domain transformations, i.e. 

d(Ti ,T2) = 6/(ATiA^, AT2A^) (31.12) 

Although the transformation of the diffusion tensor is actually a congruent trans­
formation, the above invariance however will be referred to as "affine" invariance 
because, the congruent transformation on the diffusion tensors is induced by the 
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affine transformation of the domain on which they are deiined. It is easy to show 
that Frobenius norm of the diffusion tensor difference used in earlier published 
work [12, 871, 178, 860] does not have this property. 

In [858], we proved the foUowing novel theorem that allows the analytical 
computation of the mean value of a DTI. 

Theorem 1. The mean value ofa diffusion tensor field is defined as 

M(T,i?) = mmMe5PD(n) / d? [M,T(x)]dx (31.13) 

and is given by 

M = ^/B-^ V\/BAV^ \ / B ^ (31.14) 

where A = /^T(x)dx, B = /^T~^(x)dx and SPD{n) denotes the set of 
Symmetrie positive definite matrices ofsize n. 

This theorem is essential for the piecewise constant Mumford-Shah model used 
in the segmentation algorithm, wherein the DTI is modeled by piece-wise constant 
regions and the constant is the mean value taken over the region. 

31.4.2 The DTI Segmentation Model 

In [857, 859], DTI segmentation in M? was posed as a minimization of the 
foUowing variational principle based on the Mumford-Shah functional [591]: 

E[T,C)= /cZ2(T(x),To(x))dx + a / p(T)(x)6^x +/?|C| (31.15) 
JvL Jn/c 

where the curve C is the boundary of the desired unknown segmentation, ü. C 
R^ is the image domain, To is the given noisy DTI, T is a piecewise smooth 
approximation of To with discontinuities only along C, |C| is the arc length of 
the curve C, a and ß are control parameters, (i(.,.) is a measure of the distance 
between two diffusion tensors. The second term uses the Dirichlet integral [394] 
of the DTI T that is a map from R^ to «S, where <S is a Riemannian manifold of 
SPD matrices ofsize m with a metric g induced by the Rao's distance for matrices. 
As there are m{m + l)/2 independent components in SPD matrices ofsize m, 
the dimension of «S is m{m + l)/2. Let the local coordinates of a neighborhood 
of T(x) on S be given by u = (ni,..., Um{m+i)/2), then 

p{T){^)= ^ Yl 3ii{u)g-ö- (31.16) 
l<fc<nl<i,j<m(m+l)/2 ^ '^ 

where n = 2 for 2D segmentation. The extension of the Mumford-Shah functional 
to 3D is straight forward and can be achieved simply by replacing the curve C 
with a surface S and the implementation in 3D is similar to that in 2D. 
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31,4.3 The Piecewise Constant Model for DTI Segmentation 

The variational principle in equation (31.15) will capture piecewise smooth re-
gions while maintaining a smooth boundary, the balance between the smoothness 
of the DTI in each region and the boundaries is controUed by a and ß. When a 
is extremely large, equation (31.15) is reduced to a simplified form which aims to 
capture piecewise constant regions of two types i.e., binary segmentation: 

£ ; ( C , T i , T 2 ) - / d 2 ( T ( x ) , T i ) d x + / d^{T{^),T2)d^-^ ß\C\0\Al) 

where R is the region enclosed by C and R^ is the region outside C, T i and T2 
are the mean values of the DTI in region R and R^ respectively. 

The above model can be viewed as a modification of the active contour model 
without edges for scalar valued images by Chan and Vese [174]. It can segment 
DTIs with two types of regions with different mean (constant) values (each region 
type however can have disconnected parts) in a very efficient way. In [858], we 
incorporated the information theoretic diffusion tensor "distance" (31.10) in this 
active contour model to achieve DTI segmentation. 

The Euler Lagrange equation for the variational principle (31.17) is 

[ßk - d\T,Ti) + d\T,T2)] N = 0 
T i - M ( T , R), T2 = M ( T , R"") 

where k is the curvature of the curve C, N is the outward normal to the curve. 
When T i and T2 are fixed as T i = M ( T , R) and T2 = M ( T , i?^), we have the 
following curve evolution for the above equation: 

ÖC 

dt 

The curve evolution equation (31.18) can be easily written out in a level set 
framework leading to, 

dt 

^ = .[ßk- d\T,T^{t)) + d\T,T2{t))] N 

^ V . | | ^ - d 2 ( T , T i ) + d 2 ( T , T 2 ) |V(/>| (31.18) 

where (j) is the signed distance flinction of C. 
We then developed a modified version of the Chan and Vese [174] Implementa­

tion. Similar to [174], we used a two stage Implementation in which the first stage 
involves evolving the embedding flinction </> according to equation (31.18) for a 
fixed T i and T2. The second stage involves Computing the mean values T i and 
T2 for a fixed (j). What is different here from [174] is the computation of T i and 
T2 using (31.14). The major step in (31.14) is the computation of the Square root 
of an SPD matrix and can be achieved by matrix diagonalization [857]. 

Equation (31.18) can be easily discretized using an expHcit Euler scheme. Up-
dating according to equation (31.18) on the whole domain O has a complexity of 
0 ( | n | ) and will be rather slow when the the domain is large. Since we are only in-
terested in the evolving the zero level set, updating only a narrow band around the 
zero level set will suffice and this can be achieved using the narrow band method 
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described in [3, 539]. In order to maintain (/> as a signed distance function of C, 
it is necessary to reinitialize (ß and can also be done only within a narrow band. 
There are also several other efficient numerical schemes that one may employ for 
example the multi-grid scheme as was done in Tsai et al. [808]. In our work, an 
explicit Euler scheme with the narrow band method yielded reasonably fast Solu­
tions (3-5secs. for the 2D synthetic data examples and 2-10 minutes for the 3D 
real DTI examples on a IGhz Pentium-3 CPU). 

31.4.4 The Piecewise Smooth DTI Segmentation Model 

In certain cases, the piecewise constant assumption will be violated and the piece­
wise smooth model (31.15) has to be employed in such cases. In [857, 859], we 
extend our work to accommodate such cases. FoUowing the curve evolution Im­
plementation of the Mumford-Shah fünctional by Tsai et al. [808] and Chan et 
al. [175], we use a two-stage scheme. In the smoothing stage, the curve is fixed 
and a smoothing inside the curve and outside the curve are done by preserving the 
discontinuity across the curve. In the curve evolution stage, the inside and outside 
of the smoothed DTI are fixed while the curve is allowed to move. 

Discontinuity Preserving Smoothing 
When the curve is fixed, we have the following energy fünctional: 

£;c(T) = / (i2(T(x),To(x))dx-Ha / p(T)(x)rfx (31.19) 
Jn Jci/c 

As we have 

d2(T(x + Mxfc),T(x)) = Yl 9ij{u)p-p-h' (31.20) 

where d{.,.) represents Rao's distance between diffusion tensors. Since our diffu-
sion tensor "distance" approximates Rao's distance between infinitesimally close 
diffusion tensors and is computationally sound, the above energy fünctional can 
be discretized as follows where we use h = 1: 

Ec{T) = J2d\T{^,To{x)) + a ^ cfiTiK),T{y)) (31.21) 

where Nc defines a collection of neighboring pixels. If a pair (x,y) cuts across 
the boundary, it is excluded from Nc. 

We then have an energy fünctional of a DTI on a discrete grid and we can 
therefore compute its gradient with respect to this discrete DTI. A straight forward 
way to do this is to treat all the independent components of the diffusion tensors 
as the components of a vector and compute the gradient of this energy function 
with respect to this vector. However, the form of the gradient will not be compact. 
Instead, we use the derivative of a matrix function / ( A ) with respect to its matrix 
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variable A i.e., the components Aij as foUows: 

dA 
df{A) 

dAi 
lirridt-^o 

f{A-^dtEij)-f{A) 

dt 
(31.22) 

where E^^ is a matrix with a 1 at location {i,j) and 0 elsewhere. 
The directional Variation of E with respect to a perturbation V on T(x) is given 

by 

£;c(T(x) + V) - EC{T{K)) = ^tr [(B - T -^ (x )AT- i (x ) )V] (31.23) 

where A = aEyeiVc(x) T - ^ y ) + T ^ ' ( x ) and B - aEy^TVcCx) T(y) + 
To(x). In particular, let V = dtEij, and K = [B - T -^ (x )AT-^ (x ) ] , we 
have: 

£;c(T(x) + dtEij) - ^ c ( T ( x ) ) = ^tr{dtKEij) = ^dtKij 

then the gradient of Ec can be derived from equation (31.22) as: 

dEc 1 , . 1 
i - [ B - T - i ( x ) A T - ^ ( x ) ] (31.24) 

OT(x) A"' 4 

So the minimizer of the discrete variational principle (31.21) satisfies 

B = T - ^ ( x ) A T - i ( x ) (31.25) 

Note that the above analytical and compact equation (31.25) is a byproduct of 
our choice of difflision tensor "distance" in the form of (31.10). It is not plausible 
to derive such a nice form using the exact information theoretic diffusion tensor 
distance as given in [508, 510]. 

Curve Evolution Equation 
Once the discontinuity preserving smoothing of the DTI is achieved, the 

DTI is fixed and the curve C evolves for several steps in accordance with the 
minimization of the foUowing energy functional: 

^ T ( C ) = /d2(Tß(x) ,To(x) )cZx+ / d\TRr\^),T^(p^))d^ 

+a f p{TR){x)dx + a f p{TRo){x)d,x + ß\C\ (31.26) 
JR JR'^' 

The gradient descent of the above energy functional is given by, 

BC 
— = {-ßk+ [d\TR,To)-d''{TRc,To)] +a\p{TRc)-p{TR)]}N 

Again for implementation, we have 

dC 
dt 

= -ßm + [d\TR,To) - d\TRc,To)] N 

+a ^ d'{Tn.,TH.{y))- ^ d'{TH,Tn{y)) 

(31.27) 

N 
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The level set form of (31.27) can be easily derived and implemented similarly as in 
the piecewise constant case [808,175]. The major difference here lies in the com-
putation of T ß and TRC instead of the simple mean diffusion tensor values. Since 
the gradient can be computed as in (31.24), it is easy to design efficient numerical 
algorithm to achieve the discontinuity preserving smoothing. In [857, 859], we 
use gradient descent with adaptive step size due to its simplicity however, more 
sophisticated techniques such the implicit Euler with preconditioned conjugate 
gradient can be applied and will be the focus of our future research. 

31.4.5 Experimental Results 

In [858, 857, 859], we presented several sets of experiments on the application of 
our DTI segmentation algorithm. We will present excerpts of these results here for 
the purposes of Illustration. The first one is on 2D synthetic data sets, the second 
one is on Single slices of a real DTI and the last one is on a 3D real DTI. In these 
experiments, if not explicitly stated, the segmentation model used is the piecewise 
constant model in equation (31.17). 

The purpose of the synthetic data experiments is to demonstrate the need to use 
the füll information contained in the diffusion tensors for segmentation purposes 
as opposed to using scalar maps computed from the diffusion tensors. To this end, 
we synthesize two 2D diffusion tensor fields, both are 2 x 2 Symmetrie positive 
definite matrix valued Images on a 128 x 128 lattice and have two homogeneous 
regions. The two regions in the first diffusion tensor field differ only in the orien-
tations while the two regions in the second diffusion tensor field only differ in the 
scales. These two fields are visualized as ellipses at each lattice point, as shown in 
Fig. 31.1 top and bottom row respectively. Each ellipse's axes correspond to the 
eigenvector directions of the diffusion tensor and are scaled by the corresponding 
eigenvalues. With an arbitrary initialization, our model yields desired segmenta­
tion results as show in Fig. 31.1. The evolving boundaries of the segmentation 
are shown as curves in red. Note that the first diffusion tensor field can not be 
segmented by using only the scalar anisotropic properties of diffusion tensors as 
in [925] and the second diffusion tensor field can not be segmented by using only 
the dominant eigenvectors of the diffusion tensors. These two examples show that 
one must use the füll information contained in diffusion tensors to achieve quality 
segmentation. 

For the case of 2D slices of a 3D DTI from a normal rat brain, Fig. 31.2 de-
picts the segmentation procedure applied to extract the corpus callosum with the 
evolving segmentation boundary curve in red superimposed on the ellipsoid visu-
alization of the DTI. In the final step, the essential part of the corpus callosum is 
captured by our piecewise constant segmentation model. To further get the homs 
of the corpus callosum, we use the segmentation results of the piecewise constant 
model as initialization and apply the piecewise smooth region model (see equation 
31.15). The result is shown in Fig. 31.3, which depicts a significant refinement 
over the segmentation achieved using the piecewise constant region model in Fig. 
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31.2. In all the above experiments, the region corresponding to water surrounding 
the rat brain was excluded as it is of no significance in the biological context. 

Finally we demonstrate 3D segmentation results for a normal rat brain DTI of 
size 114 X 108 x 12. First row of Fig. 31.4 depicts the initialization, intermediate 
and the final stages of the segmentation algorithm in order to segment the corpus 
callosum. In addition, intersections of the final 3D segmentation with different 
slices of the D^x component of the DTI are shown in the bottom row of Fig. 31.4. 
As seen from the overlays in these images, the segmentation of the corpus callo­
sum is visually correct. It is evident that a significant part of the corpus callosum 
inside this volume is captured. 

Validation of the segmentations in the real DTI case for three dimensions is a 
hard problem since developing methods for obtaining ground truth segmentations 
by manually segmenting DTI data sets is nontrivial. We will focus our future 
efforts in this research direction. 

31.5 Conclusion 

We reviewed several approaches in DTI segmentation ranging from the clustering 
method to region-based active contour models. In particular, we present our recent 
approach in detail. Our novel DTI segmentation algorithm incorporates an Infor­
mation theoretic diffusion tensor "distance" into the populär region-based active 
contour models [174,175, 808]. The particular information theoretic discriminant 
we employed offers several advantages: It naturally foUows from the physical 
phenomena of diffusion, is affine invariant and is computationally tractable. The 
computational tractabiHty is facilitated by a novel theorem that we proved which 
allows for the computation of, the mean of the diffusion tensor field in closed 
form, and an analytical form of the discontinuity preserving smoothing of the dif­
fusion tensor field. By using a discriminant on diffusion tensors, as opposed to 
either the eigen values or the eigen vectors of these diffusion tensors, we make 
füll use of all the information contained in the diffusion tensors. Our approach 
was applied to synthetic and real DTI segmentation yielding very promising re­
sults. In situations where the data does not contain suflficient information for the 
algorithm to yield desired segmentations, one may resort to use of shape priors 
built using the DTI data sets and this is one of our current research foci. 
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Figure 31.1. Segmentation of synthetic diffusion tensor fields with two regions. Top tow: 
Two regions are homogeneous and differ only in the orientations. Bottom row: two regions 
are homogeneous and differ only in scale. Lefl to right are the initial, intermediate and final 
steps of the curve evolution process for segmentation. 

Figure 31.2. Segmentation of the corpus callosum from a real DTI slice. Left to right: 
initial, intermediate and final steps in segmenting the corpus callosum. 

Figure 31.3. Segmentation of the corpus callosum from a real DTI slice using the piecewise 
smooth model. Lefl to right: initial and final steps in separating the corpus callosum . 
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CDOOO 
Figure 31.4. 3D Segmentation of the corpus callosum from the DTI ofa normal rat brain. 
First row, left to right.: initial, intermediate and final steps in separating the corpus callo­
sum. Second row, left to right: a 2D slice of the corresponding evolving 3D segmentation 
in the first row superimposed on the Dxx component. Third row, left to right: different 2D 
slices of the final segmentation superimposed on the D^x component. 
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Variational Approaches to the 
Estimation^ Regularization and 
Segmentation of Diffusion Tensor 
Images 

R. Deriche, D. Tschumperle, C. Lenglet and 
M. Rousson 

Abstract 
Diffusion magnetic resonance imaging probes and quantifies the anisotropic 
diffusion of water molecules in biological tissues, making it possible to non-
invasively infer the architecture of the underlying structures. In this chapter, 
we present a set of new techniques for the robust estimation and regulariza­
tion of diffusion tensor images (DTI) as well as a novel Statistical framework 
for the segmentation of cerebral white matter structures from this type of 
dataset. Numerical experiments conducted on real diffusion weighted MRI 
illustrate the techniques and exhibit promising results. 

32.1 Introduction 

Diffusion magnetic resonance imaging is a relatively new modality [505] that ac-
quires, at each voxel, data allowing the reconstruction of a probability density 
fünction characterizing the average motion of water molecules. As of today, it is 
the only non-invasive method that allows to distinguish the anatomical structures 
of the cerebral white matter. Well-known examples are the corpus callosum, the 
arcuate fasciculus or the Corona radiata. These are commissural, associative and 
projective neural pathways, the three main types of fiber bundles, respectively 
connecting the two hemispheres, regions of a given hemisphere or the cerebral 
cortex with subcortical areas. Diffusion MRI is particularly relevant to a wide 
ränge of clinical applications related to pathologies such as acute brain ischemia, 
stroke, Alzheimer's disease or schizophrenia. It is also extremely useful in order 
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to identify the neural Connectivity pattems of the human brain [507] and refer-
ences therein. 
In 1994, Basser et al [63] proposed to model the probability density function 
(pdf) of the three-dimensional molecular motion r, at each voxel of a diffusion 
MR image, by a Gaussian distribution whose covariance matrix is given by the 
diffusion tensor. Diffusion tensor imaging (DTI) thus produces a volumic image 
containing, at each voxel, a 3 x 3 Symmetrie positive-deiinite matrix. The es-
timation of these tensors requires the acquisition of diffusion weighted images 
in several non-coUinear sampling directions as well as a T2-weighted image. 
Numerous algorithms have been proposed to perform a robust estimation and reg-
ularization of these tensors fields [811], [839], [884], [541], [872], [863], [864], 
[226], [814], [124], [179], [557],[679]. Among all these works, it is worth point-
ing out that [864] was the first to use the original Stejskal-Tanner equation, and 
not the linearized form, in the data term. The authors showed the importance of 
this model and relied on the Cholesky decomposition to estimate the Symmetrie, 
positive-definite tensors. In sections 32.2 and 32.3, we will tackle the estimation 
and regularization tasks within a common variational framework while taking into 
account the symmetry and positive definiteness constraints. 
Moreover, it is well-known that normal brain functions require specific cortical 
regions to communicate through fiber pathways. Based on DTI, most of the exist-
ing techniques addressing the issue of the anatomical Connectivity mapping work 
on a fiber-wise basis. In other words, they do not take into account the global 
coherence that exists among fibers of a given tract. Recent work by Corouge et 
al [225] has proposed to Cluster and align fibers by local shape parameterization 
so that a Statistical analysis of the tract geometrical and physiological properties 
can be carried out. This work relies on the extraction of a set of streamlines from 
diffiision tensor images by the method proposed in [583] which is known to be 
sensitive to noise and unreliable in areas of fibers crossings. 
For these reasons, we propose, in section 32.4, to directly perform the segmenta-
tion of diffusion tensor images in order to extract neural fibers bundles. Contrary 
to the methods proposed in [925], [889], [314],[861], [858] and [441], our ap-
proach is grounded on the expression of statistics in the space of multivariate 
Gaussian distributions [687], [508], [509]. We use this Information in a level-set 
and region-based framework to evolve a surface while maximizing the likelihood 
of the region to extract. The central point in the developments of section 32.4 
will be the choice of the probabihty metric, e.g. the dissimilarity measure used to 
compare any two probability density functions. 

32.2 Estimation of Diffusion Tensor Images 

32.2.1 Data acquisition 

Cur dataset consists of 30 diffiision weighted images AŜ  : 2̂ C M*̂  —> M, k = 
1,..., 30 as well as a Single image SQ corresponding to the signal intensity in the 
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absence of any diffiision-sensitizing gradient. They were obtained on a GE 1.5 T 
Signa Echospeed with Standard 22 mT/m gradient field. The echoplanar Images 
were acquired on 56 evenly spaced axial planes with 128 x 128 pixels in each 
slice. Voxel size is 1.875 mm x 1.875 m.m, x 2.8 mm., 6 gradient directions ĝ ;, 
each with 5 different 6-factors and 4 repetitions were used. Imaging parameters 
were: 6-factors between 0 and 1000 s.m,m~'^, TR = 2.5 s, TE = 84.4 ms and 
a Square field of view of 24 cm, [659] ̂  

32.2.2 Linear estimation 

We recall that the estimation of a field of 3 x 3 Symmetrie positive definite matrices 
D is performed by using the Stejskal-Tanner equation 32.1 [762] for anisotropic 
diffusion. 

Sk{x) = So{x) exp {-bzl'D{x)zk) ^x e Q (32.1) 

where g^ are the normalized non-coUinear gradient directions and b the diffiasion 
weighting factor. Many approaches have been derived to estimate the tensor field 
D. 
If we effectively restrict ourselves to 6 gradient directions, Westin et al. derived in 
[884] a compact analytical Solution to equation 32.1 and, by doing so, ehminated 
the need to solve it for every Single data point. The idea relies on the introduction 
of a dual tensor basis B^, computed from the tensor basis B^ = EkEk, and 
which can be used to decompose any given tensor D(x). We then end up with the 
closed-form Solution: 

^ 1 

LHH}^' (32.2) 
This method tums out to be sensitive to noise and easily influenced by potential 
outliers. This is due to the low number of measurements intrinsically used by 
this approach and by the choice of the minimization function (see [541] where 
the Geman-McLure M-estimator is used in order to reduce outlier-related arti-
facts). Moreover resulting tensors may not be positive definite, which requires a 
subsequent reprojection step [814]. 

32.2.3 Variational estimation 

In Order to deal with a more complete estimation approach, we propose to in-
corporate some important priors such as tensor positivity and regularity into 
a variational formulation of the estimation problem by minimizing the foUow-
ing energy on the manifold of real 3 x 3 Symmetrie positive-definite matrices 

^Data courtesy of J.F. Mangin and J.B Poline, CEA/SHFJ, Orsay, France 
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5+(3,M): 

argmm 
D(a;)G5+( 

-{• ap{\V'D{x)\)dx 

(32.3) 
where ijj controls the robust estimation and the Lagrange multiplier a, together 
with the scalar function p, drives the anisotropic regularity of the Solution. Min-
imizing this criterion, in the constrained tensor Space, leads to the foUowing 
evolution equation: 

r D(,^o) = Id 

\ ^ ^ ( G + G ^ ) D 2 + D 2 ( G + G ^ ) 

where G corresponds to the gradient of the unconstrained criterion. defined 

Vk = ln{So/Sk) - bglBgk-
Note that if ^ ( f ) = v^ and a == 0, the criterion reduces to a simple multilinear 
regression by least Square that generalizes the linear estimation method of Westin 
et al [884] and provides a positive definite Solution since the minimization is done 
in the constrained space 5"^ (3, M). This variational method converges to a much 
more consistent Solution thanks to its global behavior. Conceming the Implemen­
tation part, a carefully designed numerical scheme, based on manifold integration, 
to ensure that the estimate stays on S'^ (3, R) at each step of the gradient descent, 
is used to solve the associated Euler-Lagrange equations: 

^{i-vdt) - A'^D(i)A with A - exp (D(,)(G + G^)dt) 

Our iterative method Starts from a iield of Isotropie tensors that are evolving in 
*S''̂ (3,]R) and are morphing until their shapes fit the measured data So,Sk. En-
forcing the positiveness and regularity constraints has a large interest for DTI 
estimation, and leads to more accurate results than with classical methods. For 
more details, we refer the interested readers to the article [814]. 

32.3 Regularization of Diffusion Tensor Images 

The variational estimation method naturally brings some spatial coherence and 
smoothness into the generated tensor field. However, the fiindamental properties 
of diffusion tensors, like diffusivities and principal orientations, are contained in 
their spectral features. It can then be interesting to regularize the tensor field with 
regard to those spectral Clements. This will bring more coherence into the tensor 
structural information and thus improve any subsequent processing such as the 
tracking of neural fibers. 
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32.3.1 On some non-spectral methods and their limitations 

Non-spectral methods are based on a direct anisotropic smoothing of the diffusion 
weighted data Sk or consider each tensor as 6 independent scalar components 
'D{x)ij (by symmetry) with possible coupling. We thus evolve each 'D{x)ij by 
minimizing the following quantity: 

^ ( D ) = / ^ | D ( ^ ) - Do(a;)|2 + p{\Vl^{x)\)dx (32.4) 

where DQ designates the initial noisy tensor iield and the field gradient norm 
|VD| behaves as a coupling term between the tensors components. However, 
eigenvalues tend to diffuse faster than eigenvectors, resulting in a swelling ef-
fect on the tensors. 

Spectral methods separately consider the eigen-elements of the tensors. Eigenval­
ues smoothing is typically performed by a vector-valued anisotropic PDE ([702] 
and references therein) satisfying the maximum principle in order to preserve the 
positiveness. The three orthonormal eigenvectors define a matrix of 0(3) which 
can be regularized by acting only on the principal eigenvector u^ and then recon-
structing the associated tensor [226]. The field of orthonormal matrices can also 
be evolved under a scheme preserving the eigenvectors norms and angles [811]. 
This boils down to solving a System of coupled and constrained PDEs. However, 
all these approaches require a time-consuming step of eigenvectors realignment 
since a given vector and its opposite are both Solution of the same Singular value 
decomposition and thus yield artificially discontinuous vectors fields. 

32.3.2 Afast isospectral method 

In [179], we proposed an efficient alternative to the previous spectral techniques, 
which does not require any spectral decomposition, by building flows acting on 
a given submanifold of the linear set of matrix-valued functions and preserving 
some constraints. We showed that this amounts to characterizing the velocity of 
the flows (ie. the tangent space of the submanifold) at each point ofthat subman­
ifold. Actually, the relevant constraints (orthogonality, eigenvalues conservation 
...) can be expressed by simply working with the proper Lie group or homoge-
neous Space. For example, an isospectral flow acts on a field of real Symmetrie 
matrices and preserves their eigenvalues. Moreover, its velocity is directly de-
rived from the matrices field gradient, hence no need for realignment. If [X, Y] 
denotes the Lie bracket of X and Y, e.g. XY - YX, the general form for our 
isospectral flow is given by: 

^ = [D,[D,(G + G^)]] (32.5) 

where G prescribes the desired regularization process, such as 
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Figure 32.1. DTI regularization in the genu of the corpus callosum ([TOP LEFT]: Anno-
tated fractional anisotropy axial slice, [TOP RIGHT]: Original tensors, [BOTTOM LEFT]: 
Non-spectral regularization, [BOTTOM RIGHT]: Isospectral flow) 

p denotes the same scalar fünction as in section 32.2.3 and preserves important 
structures of the tensor field. A specific reprojection-free scheme based on the 
exponential map can also be used to implement the PDE (32.5): 

D(,+dt) = A^D(t)A with A = exp {dt{G + G^,D(i)]) 

Results of non-spectral smoothing and isospectral flow on diffusion tensors 
estimated in the genu of the corpus callosum are presented in figure 32.1. 

32.4 Segmentation of Diffusion Tensor Images 

The previous sections described algorithms for the estimation and the regular­
ization of diffiision tensor Images. We now focus on the segmentation of these 
tensor-valued Images, seen as fields of Gaussian probability density functions. 
We first set up the level-set and region-based surface evolution framework that 
will be used throughout this section. We then progressively introduce the var-
ious Statistical parameters associated with the probability metrics derived from 
the Euclidean distance, the Kullback-Leibler divergence and finally, the geodesic 
distance between probability density functions. 
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32.4.1 Level-set and region-based surface evolution 

Our ultimate goal is to compute the optimal 3D surface separating an anatomical 
structure of interest from the rest of a diffiision tensor Image. The region-based 
front evolution, as developed in [684], is an eßicient and well-suited framework 
for our segmentation problem. We hereafter summarize the basic notions of this 
technique. 

Let s be the optimal boundary between the object to extract Di and the back-
ground 02- We introduce the level-set [261], [262] and [618] function 0 : ^ -^ R, 
defined as follows: 

(j){x) = 0, if X G s 

{x) ^VEUCI{X,S), ifx e Hl 

^(t){x) = -T>Eucl{x,s), ifxefl2 

where T>EUCI{XI S) Stands for the EucUdean distance between x and s and ü = 
Hl U ^2- Furthermore, let H^{.) and 6e{.) be regularized versions of the Heavi-
side and Dirac flinctions as defined in [174]. 
Let q{x, r) be the probability density function of our random vector r of R^ de-
scribing the water molecules average motion at a given voxel x of a DTI dataset. 
We also denote by pi and p2 the probability distributions ofthopclfs g(x,.) respec-
tively in üi or ^2 . Then, according to the Geodesic Active Regions model [625], 
and by adding a regularity constraint on the Interface, the optimal partitioning of 
ü in two regions fti and ^2 is obtained by minimizing: 

^(0,Pi ,P2) = 1^1 \VH,{(t>)\dx- f H,{(l>)\ogpi{q{x,.))dx 
Ja Ja P2.6) 

- [l-HM))^ogp2{q{x,.))dx 
Ja 

We have reached the point where we need to express pi and p2, e.g. the proba­
bility distributions in the space of probability density functions 9(., r ) . This is the 
purpose of the next sections. 

32.4.2 Multivariate Gaussian distributions as a linear space 

When dealing with diffiision tensor Images, we recall that the molecular mo­
tion is assumed to foUow a Gaussian law of zero mean. The diffiision tensor 
can indeed be interpreted as the covariance matrix of the underlying Brownian 
motion. As proposed in [687], we Start by considering the parameters space of 
three-dimensional Gaussianpc^s <?(., r) as linear, which boils down to reducing a 
diffiision tensor image to a vector-valued volume, each voxel being assigned with 
the 6-dimensional vector of the variances and covariances, and the probability 
metric being Euclidean. 

Let u{x) be the vector representation of a tensor D(x), the probability 
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distributions ofu{x) in the regions 5 = 1,2 are defined as: 

The Euclidean mean vectors üs and covariance matrices Ag have to be estimated. 
They can simply be introduced as unknown in (32.6) and optimized for during the 
front evolution process. Our objective function 32.6 then becomes: 

^((^,{tIi,2,Ai,2}) = 1^1 \VH,{(t>)\dx- f H,{(l>)\ogpi{u{x)\üuAi)dx 
Ja Ja 

- / {1 - H,{(l)))logp2{u{x)\Ü2,A2)dx 
Jn 

This type of energy was studied in [684], [686], the Euler-Lagrange equations for 
(ß yield the following evolution equation for the level-set function (t){x) \/x e fl: 

Mx) = (^.(^)(z.div^ ^liog\MJ-(u{x) -ü,fAi\u{x)-ü^) 

+ 2^^^^) ~ '̂ 2)^A2 \u{x) - U2)] 

while it can be shown that the Statistical parameters must be updated by their 
empirical estimates [687]. Adequate implementation schemes for this type of op-
timization can be found in [174]. If we restrict the covariance matrices to the 
identity, these equations simplify and the likelihoods in equation (32.6) simply 
become the Euclidean distance between the vectors u and tls=i,2> which is equiv-
alent to the Frobenius norm of the difference between the corresponding tensors, 
as studied in [861]. 
Figure 32.2 illustrates this method on a synthetic dataset where the Y-shape re-
gion to be segmented only differs from the background by the orientation of its 
tensors. A crossing area with low fractional anisotropy was created and Gaussian 
noise was separately added on the eigenvalues and eigenvectors to stress the al-
gorithm. 

Motivated by the method proposed by Wang and Vemuri in [858], we now 
derive the statistics and the associated evolution equation based on a more 
natural and widely used measure of dissimilarity between pdfs, known as the 
KuUback-Leibler divergence or relative entropy. 

32.4.3 Information-theoretic statistics between distributions 

We will show that this approach is not only more natural, in the sense that it 
is strongly rooted and used in the information theory Community, but also more 
versatile since it enables the segmentation algorithm to work on fields of Gaussian 
densities as well as on non-parametric densities [508]. 
We consider a general probabiUty density function q{x, r) of the random vector 
r of E^. The symmetrized KuUback-Leibler divergence can be used to express 
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Figure 32.2. Segmentation (with Euclidean probability metric) of a noisy tensor field com-
posed by two regions with same scales but difFerent orientations ([TOP LEFT]: 2D-cut of 
the tensor field, [TOP RIGHT]: Final segmentation, [BOTTOM]: Surface evolution) 

the dissimilarity between diffüsion processes at different locations of O. With 
Q{x^')^Q{yi') Vx,y G ü two probability density ftinctions from M^ onto E"*", 
their symmetrized Kullback-Leibler divergence is given by: 

(32.7) 
We denote by q^ and ^2 the mean probability density functions over Qi and Ü2 
verifying equation 32.10. In this section, we make the assumption that üiQpdfs in 
Hl and ^2 have respective Gaussian distributions Pi\p2^ with means ^1,^2 ^^^ 
variancescrf,ö-2: 

P . i l , 2 ( # 5 . ^ . ) = 
1 

: exp 
-^iM^^s) 

We can then rewrite our objective function 32.6 as foUows: 

mA^iaA,2i) = ^ \ |VF , ( (^ ) | dx - / /7eWlogpf(g(a^)|gi,<r?)rfcc 
j ^ Jn 

- 1 (l-HM))^ogpl\q{x)\q^,al)dx 
Ja 

(32.8) 

In the case where the a^ are equal to 1, this energy is equivalent to the one 
proposed in [858]. As for the Euclidean probability metric, the Euler-Lagrange 
equations yield the foUowing evolution equation: 

0 t ( x ) - ( 5 c W ( i ^ d i v — l i + l o g 
Pl ( ^ W k l , ^ ! ) 

(32.9) 
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<S»IO 
Figure 32.3. Segmentation of a noisy tensor field composed by two regions with same 
scales but different orientations ([TOP LEFT]: 2D-cut of the tensor field, [TOP CENTER]: 
Segmentation obtained from [858], [TOP RIGHT]: Segmentation based on the Kull-
back-Leibler probability metric and associated statistics, [BOTTOM:] Respective surface 
evolutions) 

Moreover, it can be shown that the variance must be updated by its empirical 
estimation with respect to the KuUback-Leibler divergence, whereas some more 
work is needed for q^, defined as: 

^s=i,2 = a rgmm "K^I ^kii(li^)^Qs)dx (32.10) 

Indeed, for a general probability density function q{.^r), the variance is easily 
computed as in [686] but the estimation of the q^ might require the use of numer-
ical approximation techniques if no closed-form expression is available. It tums 
out that, for Gaussian/?4^s g(., r ) , the energy 32.8 simplifies as follows: 

V f \VH,{cl>)\dx + l [ H,m\og{27ral) + VlM^).Qi)<^T')dx 
Jn ^ Jn 

+ IJ{1- H,mi^og{27ral) + VlAq{x).q^)a^^)dx 

(32.11) 

Using the closed-form expressions provided in [858] for the symmetrized 
KuUback-Leibler divergence between two Gaussian pdfa and for the associated 
mean density ĝ  parameterized by the mean diffusion tensor D^, the Euler-
Lagrange equations for our energy yield (the dependence on x is omitted for the 
sake of clarity): 

(j)t = 4 ( 0 ) M^div 
V(j> l / ' 3 ( ( 7 f - ( 7 | 

\V<j>\ 2\ 2{alal) 
H-log + 

tr( D-^D2 + D2 ^D )(J2"^ - tr( D - ^ D i + D^ ' D jaf^ 

(32.12) 
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Notice that we obtain additional terms (the cr̂  coefficients) in equation 32.12 if 
compared to the Euler-Lagrange equations proposed in [858]. 
Figure 32.3 illustrates the importance of the variance in our model. 

The symmetrized Kullback-Leibler divergence, although it does not satisfy the 
triangle inequality, has many usefül properties and is widely used to measure 
dissimilarities between pdfa. However, for particular densities like multivariate 
Gaussian distributions of fixed mean, better probability metrics are available. In 
the next section, we show how a Riemannian metric can be associated with the 
6-dimensional parameters Space of these densities using the Fisher Information 
matrix. The geodesic distance, intrinsic mean and covariance matrix of multivari­
ate Gaussian distributions, as well as curvature Information, can be eflficiently 
computed to yield a generalized Gaussian distribution of multivariate Gaussian 
densities. This generaHzed distribution can then be used in our segmentation 
framework. 

32.4.4 A Riemannian approach to DTI segmentation 

We now consider the Riemannian manifold M of the family of three-dimensional 
Gaussian probability density functions parameterized by the 6 components of 
their covariance matrix E (in other words, the diffusion tensor D). Follow-
ing the work by Rao [670] and Burbea-Rao [138], where a Riemannian metric 
was introduced in term of the Fisher Information matrix, we wish to define the 
notion of geodesic distance and intrinsic statistics on this 6-dimensional man­
ifold whose coordinate System, in some local chart, is given by a real vector 
Parameter 6 = {0i,...,6e) G M^ such that for all random vector r G M ,̂ 
M = {qi^lO), 0 e M^}. In the following, we first show the main limitation 
of the Kullback-Leibler divergence together with its impact on the segmentation 
process. Then, we present the closed-form expression of the geodesic distance as 
well as original computational methods to approximate a generalized Gaussian 
distribution of multivariate Gaussian densities with common mean. 

The Fisher information matrix: The manifold {M,g) equipped with the Fisher 
Information matrix g = Qij^hj = 1, ...,6 has the structure of a Riemannian 
manifold [670], [746] when g is non-degenerate. We recall that g is defined as 
follows: 

f dlogq{r\e) dlogq{r\e) 

By plugging the definition of a Gaussian/?(^into equation 32.13, the 6 x 6 metric 
tensor, as presented in [509], can be expressed in terms of the parameters 9i, i = 
1,..., 6 used to describe thQpdfs. Thus, instead of considering the parameterized 
pdfs as living in the linear space R^, we do take into account the Riemannian 
structure of the underlying manifold. Moreover, the Kullback-Leibler divergence 
Dkl tums out to be a Taylor approximation of the geodesic distance between two 
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Figure 32.4. Segmentation of the corpus callosum with the Riemannian probability met-
ric ([LEFT]: 3 D view with an axial slice of diffusion tensors, [RIGHT]: A: Anterior, P: 
Posterior) 

nearby distributions q{r\9) and q{r\9 + d9), given suitable technical conditions. 
Indeed, as summarized in [45], it can be shown that: 

Vki{e,e-\-de) = -i 
dlogq{r\0) dlogq{r\6) 

dOi 
dOidOj 

This means that the infinitesimal squared geodesic distance g0{d6, dO) is twice the 
KuUback-Leibler divergence (this is also true for its symmetrized form). In other 
words, the method presented in the previous section assumes that we always com-
pute distances between nearby elements of A4, which, in general, does not hold. 
For gQnQmlpdfs, we may have no other choice but, in the more particular case of 
multivariate Gaussian densities with common mean, a closed-form Solution of the 
geodesic distance is available, thus allowing the comparison of any two of these 
distributions. We now introduce this geodesic distance and derive the associated 
intrinsic Statistical parameters. 

Geodesic distance and intrinsic statistics: We recall that S'^{m,M.) denotes 
the set of m X m real Symmetrie positive-definite matrices E (here m = 3). A 
detailed study on the definition of a Statistical model on this nonlinear space was 
presented by the authors in [509]. Another recent work by Pennec et al [636] relies 
on a comparable approach to derive tensor fields filtering techniques. FoUowing 
[509], [746], [137], [143], [325], [579] and [323], 5+(m,R) can be characterized 
as an affine Symmetrie space for which the geodesic distance Vg between any two 
elements Ei and E2 was derived by Jensen. 
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Theorem 32.4.1. (S.T.Jensen, 1976 [33]) 
Consider the family of multivariate Gaussian distributions with common mean 
vector but different covariance matrices. The geodesic distance between two 
members of the family with covariance matrices Ei and S2 is: 

-0,(^1,^2) = y^tr(log^(E^i/^E2S7i/^)) - l / 2 ^ ^ _ 
- m 

where the Xi are the roots ofthe determinantal equation |AEi — S2I =0. 

We now explain how to estimate the empirical mean, as proposed by Frechet 
[332], Karcher [454] and Pennec [635], as well as the empirical covariance matrix. 

Definition 32.4.1. The Gaussian distribution parameterized by E G 5''̂ (m,lR) 
anddefinedas the empirical mean ofN distributions Ek, k = l,...,N, achieves 
a local minimum of the function d^ : «S'"'"(m,R) —̂  R"*" known as the empirical 
variance and defined as: 

1 ^ _ 

a2(E,,...,EA,) = ---Y,Vl{'i:k.^)=nvl{Ek,Y.)] 
k=l 

Karcher proved in [454] that such a mean exists and is unique for manifolds 
of non-positive sectional curvature. This was shown to be the case for S'^{m^ R) 
in [746]. A closed-form expression ofthe mean cannot be obtained [579] but a 
gradient descent algorithm was proposed in [509]. A flow is derived from an initial 
guess Eo toward the mean of a subset of S'^ {m^ R). The following evolution was 
obtained: 

S,+i = S j / ' e x p ( - l s j ^ ' J2 log(Sfc-iSt)S7'/')Ej/' (32.14) 
k=l 

The empirical covariance matrix A^ relative to the mean E is defined as: 

Definition 32.4.2. Given N Clements of S'^ (m, R) and a mean value E, the 
empirical covariance matrix relative to E is defined as: 

N 

^'=N^,j:ß>'0i 

where ßk = Elog(E^'^E) /̂  the gradient ofthe squared geodesic distance 
Vr> (̂Efc, E) in vector form. 

Finally, as detailed in [509], the Ricci curvature tensor 71 can be computed at 
the mean E. Putting everything together and following Theorem 4 of [635], we 
have: 
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Theorem 32.4.2. The generalized Gaussian distribution in 5'"̂  (m, R) for a 
covariance matrix A^ ofsmall variance G^ — tr{A9) /̂  oftheform: 

^ ' ^ ^(27r)m(m+i)/2|A^| ^ 2 ^ ' ^ 

where ß — Y> log(E~^E) is expressed in vectorform andthe concentration matrix 
is ^ = (A^)~^ — 7^/3 4- 0((7) + e{a/^). $, is the injection radius at E and e is 
such that limo+ x~f^e[x) = 0 V^ G M+. 

Implementation: We can use the very same variational framework as the one 
described in section 32.4.2 in order to maximize the likelihoods of the diffUsion 
tensors distributions in Hi and ^2. This can now be achieved with respect to the 
geodesic distance by using pf̂ ^ 2(^Ps '^f) ^^^ Ŷ accordingly evolving the 
level-set function 0 toward the optimal segmentation. Figure 32.4 illustrates how 
well this approach performs on a real difflision tensor image. 

32.5 Conclusion 

Diffusion magnetic resonance imaging gives a direct insight into the micro-
structure of biological tissues through the measurement of hindered molecular 
motion. In this chapter, we have described efficient and versatile numerical meth-
ods for the estimation and the regularization of the difflision tensor images. We 
have also presented a novel Statistical and geometric approach to the segmenta­
tion of DTI data. The central point of this front evolution framework relies on 
the definition of dissimilarity measures and statistics between diffusion tensors, 
Seen as the covariance matrices of Gaussian probability density functions. The 
major contribution of this set of techniques is related to the robust extraction of 
anatomical structures in the brain white matter. 
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An Introduction to Statistical 
Methods of Medical Image 
Registration 
L. ZöUei, J. Fisher and W. Wells 

Abstract 
After defining the medical image registration problem, we provide a short 
introduction to a select group of multi-modal image alignment approaches. 
More precisely, we choose four widely-used Statistical methods applied in 
registration scenarios for analysis and comparison. We clarify the implicit 
and explicit assumptions made by each, aiming to yield a better under-
standing of their relative strengths and weaknesses. We also introduce a 
figural representation of the methods in order to provide an intuitive way 
of illustrating their similarities and differences. 

33.1 Introduction 

Registration of medical image data sets is the problem of identifying a set of ge-
ometric transformations which map the coordinate System of one data set to that 
of the others. Depending on the nature of the input modalities, we distinguish be-
tween uni-modal and multi-modal cases, according to whether the images being 
registered are of the same type. The multi-modal registration scenario is more 
challenging as corresponding anatomical structures will have differing intensity 
properties. In our analysis, we focus on the multi-modal case. 

When designing a registration framework, one needs to decide on the nature of 
the transformations that will be used to bring images into agreement. For exam-
ple, rigid transformations are generally sufficient in the case of bony structures 
while non-rigid mappings are mainly utilized for soft tissue matching. One must 
also evaluate the quality of alignment given an estimate of the aligning transfor-
mation. Objective functions or simüarity measures are special-purpose functions 
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that are designed to provide these essential numerical scores. The goal of a reg-
istration problem can then be interpreted as the optimization of such functions 
over the set of possible transformations. In general, these problems correspond to 
multi-dimensional non-convex optimization problems where we cannot automat-
ically bracket the Solution (as we would in the case of a ID line-search). Thus an 
initial estimate of the aligning transformation is needed before the search begins. 

In the past few decades there have been numerous types of objective functions 
proposed for solving the registration problem. Among these, there exist a variety 
of methods that are based on sound Statistical principles. These include vari-
ous maximum Ukelihood [512, 798], maximum mutual information [534, 883], 
minimum Kullback-Leibler divergence [201], minimum Joint entropy [771] and 
maximum correlation ratio [678] methods. We are primarily interested in these, 
and in our discussion we select four of these registration approaches for fur-
ther analysis. We explore the relative strengths and weaknesses of the selected 
methods, we clarify the type of explicit and implicit assumptions they make and 
demonstrate their use of prior information. By such an analysis and some graphi-
cal representations of the Solution manifold for each method, we hope to facilitate 
a deeper and more intuitive understanding of these formulations. 

In the past, similar or more detailed overview studies of the registration problem 
have been reported. Roche et al. [678], for example, have described the model-
ing assumptions in uni-modal registration applications and a general maximum 
likelihood framework for a certain set of multi-modal registration approaches, 
and we have described a unified information theoretic framework for analyzing 
multi-modal registration algorithms [927, 928]. 

33.2 The Similarity Measures 

In our analysis, we discuss four objective criteria that rely on clear Statistical 
principles: maximum likelihood (ML), approximate maximum likelihood (MLa), 
Kullback-Leibler divergence (KL) and mutual information (MI). While not an 
exhaustive list, these similarity measures are representative of a significant group 
of currently used registration algorithms. Many registration approaches either di­
rectly employ or approximate one of these measures. 

While the analysis presented here carries straightforwardly to registration of 
multiple data sets, for simplicity, we focus on the case of two registered ^2iXdi sets, 
u{x) and v{x) sampled on a: G M^. These data sets represent, for example, two 
imaging modalities of the same underlying anatomy in an M-dimensional space. 
In practice, we observe u{x) and Vo{x) where the latter is related to v{x) by 

Vo{x)^v{T\x)) or v{x)^Vo((T')-\x)), (33.1) 
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Figure 33.1. A 2D example of the registration problem. The observed input images are 
it(x*), an MRI slice, and Vo{x), a CT slice. v{x) is the CT slice that is in correct align-
ment with the MRI slice. The unknown transformation that relates the observed data to 
the aligned image is T*. The goal of the registration algorithm is to make T be the best 
estimateof(r*)~^ 

where T* : W^ —> M^ is a bijective mapping corresponding to an unknown rel­
ative transformation. The goal of registration is to find an estimate of an aligning 
transformation T ^ (T*)~ which optimizes some objective function of the ob­
served data sets.^ Figure 33.1 demonstrates the key components of the registration 
problem via a 2D example. 

Throughout our analysis (and consistent with practice) spatial samples Xi are 
modeled as independent random draws of a uniformly distributed random variable 
X whose Support is the domain ofu{x). Consequently, all the analyzed methods 
assume that 

(IID-i) observed intensities Vo{xi) and u{xi) can be viewed as independent 
and identically distributed {LLd) random variables, despite spatial 
dependencies present within the data. 

This is a simple consequence of the property that SL function of an i.i.d random 
variable is itself an i.i.d random variable under very general conditions. 

33.2.1 Maximum Likelihood 

The maximum likelihood (ML) method of parameter estimation has served as 
the basis for many registration algorithms. Its popularity in parameter estimation 
can be explained by the fact that as the sample size increases, ML becomes the 
smallest variance unbiased estimator. As we will see, practical issues generally 
preclude a direct ML approach. Analysis of the method is however useflil for 
comparison purposes. Given that the input images are related by an unknown 
transformation T* (see Figure 33.1), we parameterize the observed data samples 

^Technically speaking, u(x) may have undergone some transformation as well, but without loss 
of generality we assume it has not. If there were some canonical coordinate frame (e.g. an anatomical 
atlas) by which to register the data sets one might consider transformations on u{x) as well. 
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the entire manifold of Joint models is 
known and available according to ML 

initial estimate by ML 

ML: observed data evaluated under 
Joint models that are parameterized by T 

Figure 33.2. Joint density manifold of the registration search Space parameterized by T. 
According to the classical ML approach, the entire manifold of Joint models is known and 
available for the optimization task. The Solution is defined at the location which maximizes 
the likelihood of the observed sample pairs. Here T/ has been chosen as an initial estimate 
for the search. 

(a sequence of Joint measurements drav^n i.Ld) as 

^T* = {[u,VT^]^,.,.,[u,VT*]j^} 

= {[u{xi),v{r{xi))],..., [u{xN)/v(T^{xMm 

= {[u{xi),Vo{xi)],..., [U{XN),VO{XN)]} . 

According to the ML criterion, we obtain estimates by varying some parameters 
of a probabilistic model that is being evaluated on a set of observed data. In the 
case of our registration problem, the optimal geometrical transformation that ex-
plains the observations according to the ML criterion satisfies the (normalized) 
log-likelihood criterion: 

Tuh = arg max Cr [VT* ) (33.2) 

= argnmx -^ ^ l o g (p(K'^T*]^ ;T ) ) . (33.3) 
i 

CT{') in Equation (33.2) indicates that v ê are evaluating a model parameterized 
by the transformation T. 

This formulation of the registration problem implicitly assumes that 

(ML-i) as T approaches T*, Equation (33.3) is non-decreasing. 
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An important distinction between currently used registration methods and the 
classical ML approach is that the former optimize the objective criterion by trans-
forming the Joint observations ([U.VT*]^). In contrast, a classical ML approach 
optimizes the objective flinction by changing the parameters of the Joint density 
model under which we evaluate the observations (as a function of transformation 
T), leaving the observations static throughout the search process. Below, we will 
indicate these differences via notional graphs of the Solution paths of the selected 
methods. In Figure 33.2, according to the ML approach, the entire search space of 
Joint models (parameterized by transformation T) is considered to be known and 
available. We let the initial estimate of this example be T = T/ (the identity trans­
formation). The Solution Hes at transformation T* that maximizes the likelihood 
function with respect to the currently observed images. Thus the initial guess by 
ML is modified in order to satisfy the criterion. 

This framework highlights two practical obstacles to a direct ML approach. The 
optimization of Equation (33.2) requires the Solution of a System of non-linear 
equations for which no direct global Solution typically exists. Finding a globally 
optimal Solution would likely require that p{uy v] T) be pre-computed over all rel­
ative transformations T (see Figure 33.2). An alternative is to use an optimization 
procedure that searches for a local Optimum, which would require the ability to 
produce p{u,v\T) on demand, as we search. The first approach may be imprac-
tical due to computational and memory limitations. While the second approach 
may be feasible, as far as we know, it has not been tested or used. The second 
obstacle is that there are configurations of the data for which a considerable set 
of transformations form an equivalence dass under the ML criterion. As the rel­
ative transformations away from the Solution T = T* become large, we observe 
empirically that the Joint models tend toward Statistical independence. In addi-
tion, they may tend towards the same independent model (more on this appears 
in Section 33.2.4, below). In this Situation, the ML criterion will lose traction for 
such large transformations. (In Figure 33.2, such models are located outside of 
the dashed outline.) As we shall see, Ml-based approaches can be interpreted as 
moving away from these models. 

33.2,2 Approximate Maximum Likelihood 

As mentioned above, the optimization of Equation (33.2) is generally a very dif-
ficult Problem. Suppose, however, that we have a model of the Joint density of 
our data sets at one particular parameter setting, specifically when the multi­
modal images are registered. We can estimate this model from other registered 
data sets and evaluate new observations under the resulting model. This idea was 
first suggested by Leventon and Grimson and we refer to it as an approximate 
maximum likeHhood registration approach (MLa) [512]. (A similar approach has 
been discussed more recently in [924].) The approach makes two strong modeling 
assumptions: 
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the estimated a priori model used by MLa 
(assumed to be close to the true Joint model) 

Figure 33.3. The approximate ML method (MLa) searches over the set of Joint data sets 
offset by T. The goal is to maximize a criterion that is similar to likelihood with respect to 
a fixed model. 

(MLa-i) It is feasible to estimate or leam a Joint probability model over the data 
modalities of interest at the correct ahgnment^, and 

(MLa-ii) the resulting model accurately captures the Statistical properties of 
other unseen image pairs (of the same anatomy and with the same 
modality pairing as the training set). 

We denote the estimated Joint density model as 

As with all of the remaining methods, the MLa approach transforms the obser-
vations prior to evaluating the objective criterion. We denote the transformed 
observations as 

VT = {[u(xi),V,{fixi))]^,.,,,[u{xN),Voif{xN))]} 

= [[u{xi),v{rof{xi))],...,[aixN)MT*of{xN))]} 

= {[u{xi),v{T{x,))],..., [U{XN)MT{XN))]} 

= {[U,VT]I,-..,[U,VT]N}- (33.4) 

^ Assuming manual or other types of ground truth results are available from previous registration 
experiments. 
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We emphasize that the transformation T — f T* o T J in this particular notation 

refers to the relative transformation on v{x) rather than on the observed image of 
Vo{x). In practice, it is T that we apply to the observed image, so optimization is 
performed over T through Vo{T{x)). This is equivalent to implicit optimization 
over T through the relation v{T[x)) = Vo{T* o T{x)). While we express results 
on the implicit transformation, there are simple relationships which allow results 
to be expressed in terms of either T or T. 

The MLa approach estimates T to be the transformation that maximizes a 
criterion that is similar to the likelihood criterion: 

^MLa = argmax^Ty O ' T ) (33.5) 

= arg max — ^ log (p {[u, VT]i; T/ ) ) . (33.6) 

Notice that, according to this approach the Joint observations ([u, vrli) ^^^ ^^^" 
ied as a function of T and the model density p° is held static. It is under this 
particular fixed probability model that all the transformed inputs are evaluated. In 
Figure 33.3, we indicate the path of the MLa approach by tracing a sample search 
path. Beginning with the initial estimate, the algorithm searches over transfor-
mations to maximize the likelihood-like criterion with respect to the previously 
constructed, static density model. 

The MLa method also makes an implicit assumption when solving the 
registration problem. It assumes that: 

(MLa-iii) as T approaches (T*)~^, or equivalently as (T* o T) approaches Tj, 
Equation (33.6) is non-decreasing. 

In general, one cannot guarantee the validity of this assumption. Theoretically, 
there might exist some counter-intuitive scenarios for which this implicit hypoth-
esis would fail. The existence of these is explained by the information theoretic 
phenomenon oftypicality [229]. A more detailed discussion of this issue is not in 
the scope of this chapter; it is described in an information-theoretic framework in 
[928]. 

This obstacle, in the context of multi-modal registration, may explain some 
shortcomings of the MLa approach that were observed empirically by Chung et 
al [201]. It motivates their registration approach, which is described in the next 
section. 

33.2.3 Kullback-Leibler Divergence 

Chung et al suggested the use of KL divergence as a registration measure in Or­
der to align digital-subtraction angiography (DSA) and MR angiography (MRA) 
data sets [201]. Using the same modeUing assumption as in MLa (i.e. a model 



538 Zöllei, Fisher & Wells 

the estimated a priori model used by KL 
(assumed to be close to the true Joint model) 

Figure 33.4. According to the KL framework, at each poitit on the manifold, a Joint density 
is estimated from the ofFset data pairs. The aligning transformation is located where the 
KL distance (D) is minimized between that current estimate and a previously defined fixed 
model. 

of the Joint intensity data can be estimated from a set of registered data sets), 
they optimize an objective fimction based on a KL divergence term. That is, the 
distance between the Joint density at the current transformation estimate and the 
fixed model is to be minimized: 

fKL • argimn D {p{u,v\T)\\p°{u,v)), 

where p^ is constructed as in the MLa approach from correctly registered data 
sets and p{u, v;T) is a probability model estimated from the transformed sets of 
observedpixel intensities {u{xi),v{T{xi))} (or {u{xi),Vo{T{xi))} as discussed 
above). Whereas the previous methods utilize a likelihood function of the ob­
served data sets, here numerical or Monte Carlo integration is used in order to 
calculate the KL divergence terms directly. 

Consequently, in addition to assumptions MLa-i and MLa-ii, this approach 
makes the following hypothesis: 

(KL-i) There is a reliable method for estimating p{u^ v; T) from transformed 
observations, and 

(KL-ii) the KL divergence D [p[u, v\T)\\p°{u, v)) can be accurately estimated 
via numerical or Monte Carlo integration of 

'p{u,v-Ty II p {u, v; T) log dudv (33.7) 
p^'iu.v) 

by substitutingp {u, v; T) forp (n, v\T)\n the KL divergence integral. 
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The KL method has been demonstrated to be more robust with respect to, or 
less dependent on, the size of the sampling region (the area from which the Joint 
sample pairs are drawn from) than the MLa (or the MI) approaches [201]. This 
robustness is demonstrated empirically [201] and can be partly explained by typ-
icality, as discussed in the preceding section (Section 33.2.2). 

Provided that both of the KL assumptions are valid (the density estimate and the 
Integration methods are accurate), the KL divergence estimate is non-increasing 
as T approaches (T*)~^. This is supported by empirical comparisons in which 
KL did not exhibit some of the undesirable local extrema encountered in the 
MLa method[201]. Additionally, the authors emphasize that even though the es-
timated models represent a strong assumption, sufficient model distributions can 
be constructed even if manual alignment is unavailable. For example, the Joint 
probability distribution could be estimated from segmented data for correspond-
ing structures. 

In relation to the previous methods, both the samples {[u, ^T]^) (^nd the eval-
uation density (ß{u,v]T)) are being varied as a function of the transformation 
T, while the algorithm approaches the static Joint probability density model 
(p°{u, v)) constructed prior to the aUgnment procedure. Instead of evaluating the 
Joint characteristics of the transformed input data sets under the model distribu­
tion, the KL approach re-estimates the Joint model (p{u, v] T)) at every iteration 
and uses that when evaluating the observations. In Figure 33.4, the KL method 
is shown to approach the Solution by minimizing the KL distance between the 
model and the current estimate. 

33.2,4 Mutual Information and Joint Entropy 

As has been amply documented in the Hterature [534, 651, 652, 883], Mutual In­
formation (MI) is a populär information theoretic objective criterion. It estimates 
the transformation parameter T by maximizing the mutual information (or the 
Statistical dependence) between the input image data sets: 

TMI — arg max / (u; VT) • 

One way to define the MI term is to use marginal and Joint entropy measures. 
By definition, given random variables A and B, mutual information is the sum of 
their marginal entropies minus their Joint: 

I{A, B) = H{A) -f- H{B) - H{A, B). 

In the multi-modal alignment scenario that translates to 

I{U-VT) = H{p{u))+H{p{v-T))-H{p{u,v-T)). (33.8) 

If T is restricted to the dass of symplectic transformations (i.e. volume preserv-
ing), then H(p(u)) and H{p{v\ T)) are invariant to T. In that case, maximization 
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Figure 33.5. According to MI, the Solution is located maximum KL distance away from 
the worst-case, independent scenario, where the Joint density is defined as the product of 
its marginals: p{u, v] T) = p{u)p{v^ T). 

of MI is equivalent to minimization of the Joint entropy term, H{p{u, V] T)), the 
presumption being that this quantity is minimized when T = (T*)~ . The min­
imization of the Joint entropy term has also been widely used in the registration 
Community. 

MI can also be expressed as a KL divergence measure [494] as 

/ {u, VT) = D {p{u, v; T)Mu)p{v; T)). 

That is, mutual information is the KL divergence between the observed Joint den­
sity term and the product of its marginals. Accordingly, the implicit assumption 
of Ml-based methods is that: 

(Ml-i) as (T* o T) diverges from Tj (as we are getting farther away from 
the ideal registration pose) the Joint intensities look less statistically 
dependent, tending towards Statistical independence. 

This allows us to write the MI optimization problem as maximizing the divergence 
from the current density estimate to the scenario where the images are completely 
independent: 

TMI « ^TgumxD{p{u,v;T)\\p{u)p{v;T)). 

As in the KL divergence alignment approach, both the samples and the evaluation 
densities are being simultaneously varied as a function of the transformation T. 
However, instead of approaching a known model point according to KL distance, 
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the aim is to move farthest away from the condition of Statistical independence 
among the images, in the KL sense. This behavior is illustrated in Figure 33.5. 

Numerous variations on the mutual information metric have been introduced; 
for instance, one making it invariant to image overlap (normalized mutual in­
formation [771]) and another enhancing its robustness using additional image 
gradient information (gradient-augmented mutual information [651]). In this re-
port, we do not list and analyze these, given that they operate with similar 
underlying principles. 

33.3 Conclusion 

We have provided a brief comparison of four well-known and widely used multi­
modal image registration methods. We illustrated the underlying assumptions 
which distinguish them, and specifically, we clarified the assumed behavior of 
Joint intensity statistics as a function of transformation parameters. Considering 
the coUection of approaches discussed, we see that the ML approach has not ac-
tually been used, in practice. The related MLa method and the KL divergence 
method exploit prior information in the form ofstatic Joint density estimates over 
previously registered data. Subsequently, both make similar implicit assumptions 
regarding the behavior of Joint intensity statistics as the transformation estimate 
approaches the ideal alignment. In contrast, the MI approach makes no use of 
specific prior Joint statistics - instead, it simply moves away from the general 
dass of statistically independent models. Figure 33.6 serves as a visual guide to 
summarize how the different methods approach the Solution. 
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the estimated a priori model used by KL and MLa 
(assumed to be close to the true Joint model) 

initial estimate by ML 

ML: observed data evaluated under 
Joint models that are parameterized by T 

Figure 33.6. Manifold of the registration search Space parameterized by transformation T. 
The Illustration shows how each of the examined methods (ML, MLa, KL and MI) search 
through the settings in order to obtain the best estimate of the aligning transformation. Note 
that the ML method transforms the model to agree with the observed data, while the rest 
of the methods operate by transforming the observed data. 
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Absolute minimizing Lipschitz extension 
Interpolation, 52-55 

Active contours, Visual tracking 
nonrigidity, 300 
parametric structures, 297-298 
robust curve distances, 300-301 
snakes, 296-297 

Affine model 
optical flow estimation, 247 
Visual tracking, 298-300 

Anisotropie TV, 24-25 

Bayesian estimation, warping image, 
259-272 

Bayesian shape estimation, 202 
Binary connected operators, 66-67 
Binary energy minimization, 84 
Binary image restoration, 82-84 
Binocular Stereo with occlusions, graph cut 

algorithms fo, 423-438 
algorithm Performance, 433^34 
choice of Parameters, 433 
energy minimization via graph cuts, 

425^26 
expansion move algorithm, 432 
experimental results, 432^34 
implementational details, 432-^33 
matching penalty, 432 
minimizing energy, 431-432 
notation, 428^29 
pixel labeling algorithm, 430-431 
smoothness terms, 432 
Stereo with occlusions, 426^29 
traditional Stereo methods, 423-426 
voxel labeling algorithm, 429-^30 

Blobs, Visual tracking, 295 

Bone-vessel Separation, cardiovascular 
imaging, Interactive graph-based 
segmentation methods, 467^68 

Boundary-based terms, derivation of, 314 
Boundary extraction, segmentation, 

grouping, 63-174 

Cardiac imaging 
Interactive graph-based segmentation 

methods, 455^70 
algorithms 

characteristics behaviors of, 456-459 
comparison of, 456 

bone-vessel Separation, 467-468 
CT cardiovascular data, 459^69 
empirical results, 461-462,465 
heart Chamber segmentation, using 

graph cuts, 460 
isoperimetric algorithm, 466-467 
multi-resolution banded graph cuts, 

460^61 
numerical Solution, 464-465 
random walker algorithm, 463^64 
simultaneous Chamber segmentation, 

462 
three-dimensional active shape, 

appearance models, 471^86 
active appearance models, 480^82 
active shape models, 476-479 
4D active appearance models, 479^84 
multi-view active appearance models, 

482-484 
point distribution models, 475^76 
three-dimensional, with time active 

appearance models, 484 
two-dimensional, time active 

appearance models, 479-480 
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Clustering of shapes, 194—196 
Colour Images, diffiision-inspired wavelet 

shrinkageof, 13 
CT cardiovascular data, cardiovascular 

imaging, Interactive graph-based 
segmentation methods, 459^69 

Curve propagation, level set methods, 
grouping, 145-160 

data-driven segmentation, 151-154 
boundary-based segmentation, 151 
region-based segmentation, 152-154 

prior knowledge, 154-159 
average models, 154—157 
through linear shape Spaces, 157-159 

propagation ofcurves, 146-150 
level setmethod, 147-149 
level set methods, 149-150 
optimisation, 149-150 

Deconvolution, total Variation image 
restoration, 26-27 

Deformable models, texture, shape 
integration in, 113-130 

hybrid segmentation method, 116-120 
Gibbs models, 116-118 

integration of deformable models, 
119-120 

hybrid framework, deformable models 
in, 118-119 

metamorphs, deformable shape, texture 
models, 120-128 

metamorph dynamics, 123-126 
intensity data terms, 125-126 
shape data terms, 123-125 

metamorphs model representations, 
120-123 

model evolution, 126-127 
model fitting algorithm, 127-128 
model's deformation, 121-122 
model' s shape representation, 120-121 
model's texture, 122-123 

Deformable structures, visual tracking, 306 
Dial-bootstrap ICP, 230-234 
Diffeomorphic minimizers, in warping 

image, 270-271 
Diffeomorphic point matching, 205-220 

landmark matching, 206-214 
point shape matching, 214-218 

Diffeomorphic warps, 267-269 
Dififerentiable warps, optical flow 

estimation, 249 
Diffiision anisotropy, 487-502 
Diffiision filters, 3-16 

diffiision-inspired shrinkage functions, 
9-10 

equivalence for two-pixel signals, 6-7 
fully discrete diffiision, relations for, 9-13 
generalisations to images, 8-9 
nonlinear diffiision filtering, 5-6 
space-discrete diffiision, relations for, 6-9 

Diffiision-inspired shrinkage functions, 9-10 
Diffiision-inspired wavelet shrinkage of 

colour images, 13 
Diffiision tensor image estimation, 518-522 

data acquisition, 518-519 
linear estimation, 519 
variational estimation, 519-520 

Diffiision tensor image regularization, 
520-522 

fast isospectral method, 521-522 
non-special methods, 521 

Diffiision tensor image segmentation, 
503-516,522-530 

boundary-based active contours, 505-507 
curve evolution equation, 512-513 
discontinuity preserving smoothing, 

511-512 
experimental results, 513-514 
Fisher Information matrix, 527-528 
geodesic distance, intrinsic statistics, 

528-530 
information-theoretic statistics between 

distributions, 524-527 
level-set, region-based surface evolution, 

523 
multivariate Gaussian distributions, 

523-524 
region-based active contour, 507-514 
Riemannian approach to DTI 

segmentation, 527-530 
Distance between pdfs for tracking, 

minimization of, 321-322 
Dynamic scene modeling, non-rigid, 

multi-view image sequences, 439^52 
multi-view complete Stereovision, 

440^42 
scene flow, 446-447 
scene flow estimation, 442-443 
shape-motion integration, 443 
similarity measures, 447^48 
Stereovision, 445-446,449-450 

scene flow, 450-451 
scene flow estimation, prediction error, 

443-448 
Dynamic scene reconstruction, 416-419 
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approximate three-dimensional 
localization, surveillance targets, 
416-419 

Visual huU algorithms, 416 
Dynamic textures, 341-356 

closed-form Solution, 346-347 
distances between models, 349-350 
model Validation, 347-348 
nearest neighbor classifier, Performance 

of, 350-351 
recognition, 349-351 
representation, 344 
segmentation, 351-354 

Echocardiographic image-sequences, 
Interpolation of shapes in, 196-200 

orientation, 198 
Scale, 198 
shape component, 198 
translation, 198 

Elastica-based reconstruction of level lines, 
4 3 ^ 5 

Epipolar geometry computation, 
three-dimensional from Image 
sequences, 392-393 

Equivalence, two-pixel Signals, 6-7 
Exemplar-based inpainting, 58 
Extended connected operators, 68-71 

flattening, 70-71 
flattenings, 70-71 
floodings, 70-71 
levelings, 70-71 
razings, 70-71 

Extensions, total Variation Image restoration, 
19-21 

Fast marching methods, minimal paths, 
Image analysis, 97-112 

centered minimal paths, Virtual 
endoscopy, 110-111 

Euclidean distance traveled by front, 
Computing, 104 

fast marching, segmentation by, 108-110 
fast marching algorithm, 101 
minimal paths, 98-105 

fast marching resolution, 100-102 
geometrical optics, 98-99 
global minimum for active contours, 99 
Problem formulation, 99-100 

minimal paths from set of endpoints, 
105-107 

approach, 106-107 
multiple minimal paths, 106 

minimal paths in three-dimensional, 
102-103 

multiple minimal paths between regions, 
107-108 

minimal path between two regions, 
107-108 

tubulär structures, 108 
simultaneous estimate of path length, 

104^105 
simultaneous front propagation, 103-104 
two-dimensional fast marching for 

minimal action, algorithm, 101 
two-dimensional up-wind scheme, 102 

Filling-in, variational models for, 42-52 
elastica-based reconstruction of level 

lines, 4 3 ^ 5 
Joint Interpolation of vector fields and 

gray levels, 4 5 ^ 8 
Fisher Information matrix, diffusion tensor 

Image segmentation, 527-528 
Fiat grey-tone connected operators, 67-68 

level by level construction, 67-68 
morphological characterization, 68 

For Image simplification, order relations, 74 
Frenet frames, 359-374 
FuUy discrete diffusion, relations for, 9-13 

Geodesic paths between shapes, 193-194 
Geometrie representation of shapes, 192-193 
Geometrie snakes, stochastic model of, 

161-174 
birth, death zero ränge particle Systems, 

163-164 
event token list, using, 166-167 
experimental results, 173-174 
overview, 163 
Poisson System Simulation, 164—165 
random event, choosing, 166-168 
similarity invariant flows, 168-171 

gradient flow, 170-171 
heat equation and similarity flows, 

169-170 
stochastic snakes, 171 

envelope representation, 171-172 
least-squares construction, 172-173 
polygon representation, construction, 

171-173 
Virtual token list method, 167-168 

Gibbs models, texture, shape Integration in 
deformable models, hybrid 
segmentation method, 116-118 

Global registration, image alignment, 
283-286 
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bündle adjustment, 283-285 
parallax removal, 285 
recognizing panoramas, 285-286 

Gradient-based estimation, optical flow 
estimation, 240-243 

aperture problem, 243 
implementation issues, 242-243 
intensity conservation, 241 
least-squares estimation, 241-242 

Graph cut algorithms, binocular Stereo with 
occlusions, 423-438 

algorithm Performance, 433-434 
choice of Parameters, 433 
energy minimization via graph cuts, 

425^26 
expansion move algorithm, 432 
experimental results, 432-434 
implementational details, 432-433 
matching penalty, 432 
minimizing energy, 431-432 
notation, 428-429 
pixel labeling algorithm, 430^31 
smoothness terms, 432 
Stereo with occlusions, 426-429 
traditional Stereo methods, A22>-A26 
voxel labeling algorithm, 429-430 

Graph cuts in vision, graphics, 79-80, 82-92 
applications of graph cuts as 

hypersurfaces, 87-90 
example: binary image restoration, 82-84 
general case of binary energy 

minimization, 84 
graph cuts 

max-flow problem, 81 
algorithms for, 81-82 

min-cut, 81 
algorithms for, 81-82 

overview, 80-82 
graph-cuts, hypersurfaces, theories 

connecting, 90-92 
graph cuts as hypersurfaces, 84-92 

applications of graph cuts as 
hypersurfaces, 87-90 

overview, 85-86 
topological properties of graph cuts, 

86-87 
graph cuts for binary optimization, 82-84 

example: binary image restoration, 
82-84 

general case of binary energy 
minimization, 84 

max-flow problem, 81 
algorithms for, 81-82 

min-cut, 81 
algorithms for, 81-82 

multi-label problems, generalizing graph 
cuts for, 92-96 

approximate optimization, 94—96 
exact multi-label optimization, 92-94 
expansion, local minimum, 95-96 
swap moves, local minimum, 95-96 

overview, 80-82, 85-86 
topological properties of graph cuts, 86-87 

Heart Chamber segmentation, cardiovascular 
imaging, Interactive graph-based 
segmentation methods, using graph 
cuts, 460 

Hierarchy based on increasing floodings, 
levelings for image simplification, 
74-76 

Hierarchy based on quasi-flat zones, 
levelings for image simplification, 
76-77 

Higher vanishing moments, wavelets with, 
13-16 

Human motion capture, model-based, 
325-340 

covering set, segments for Computing, 329 
human body model acquisition, 328-331 
joints of stick model, Information related 

to, 329 
length estimates, accuracy of, 334 
model-based tracking, 331-334 

Hypersurfaces 
graph-cuts, theories connecting, 90-92 
graph cuts as, applications of, 87-90 

Image alignment, stitching, 273-292 
compositing surface, 286-287 
direct, feature-based alignment, 277-283 

direct methods, 277-279 
direct vs. feature-based, 282-283 
feature-based registration, 279-282 
geometric registration, 281-282 
incremental refinement, 278 
parametric motion, 278-279 

extensions, 291-292 
global registration, 283-286 

bündle adjustment, 283-285 
parallax removal, 285 
recognizing panoramas, 285-286 

motion models, 274-277 
seam selection, pixel blending, 287-291 

center-weighing, 287-288 
exposure compensation, 290 
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feathering, 287-288 
gradient domain blending, 290 
high dynamic ränge imaging, 290-291 
Laplacian pyramid blending, 289-290 
optimal seam selection, 288-289 

Image decomposition, inpainting with, 56-58 
Image inpainting, 36-40 
Improved rotation invariance, wavelet 

shrinkage with, 10-13 
Increasing floodings, hierarchy based on, 

levelings for Image simplification, 
74-76 

Infrared Images, human silhouettes in, 
200-202 

Inpainting, total Variation Image restoration, 
27-28 

Inpainting by propagation of Information, 
36-42 

Image inpainting, 36-40 
Navier-Stokes inpainting, 40-42 

Intensity transforms, image warping, 
265-266 

Invariant boundary signatures, recognition 
under partial occlusions, 182-184 

Invariant point, locations, displacements, 
178-182 

Invariant processing 
occlusion resistant recognition, planar 

shapes, 177-188 
planar shapes, 184-187 

Invertibility, image warping, 260 
Iterated refinement, total Variation image 

restoration, 22-23 
Iterative optical flow estimation, 243-246 

coarse-to-fine refinement, 245-246 
temporal aliasing, 245-246 

Joint Interpolation of vector fields and gray 
levels, 45-48 

Joints of stick model, human motion 
capture, Information related to, 329 

Kaiman filter 
for contours, 303 
for point features, 302-303 

Kullback-Leibler divergence, medical image 
registration, Statistical methods, 
537-539 

D fitting, 23-24 
Laplace interpolation, 52-55 
Laplacian pyramid blending, 289-290 

Layered motion, optical flow estimation, 
253-256 

mixture models, 254-255 
outliers, 256 
ownerships, EM, 255-256 

Leamed subspace models, optical flow 
estimation, 248 

Level set methods, curve propagation, 
grouping, 145-160 

data-driven segmentation, 151-154 
boundary-based segmentation, 151 
region-based segmentation, 152-154 

prior knowledge, 154-159 
average models, 154-157 
through linear shape Spaces, 157-159 

propagation ofcurves, 146-150 
level set method, 147-149 
level set methods, 149-150 
optimisation, and level set methods, 

149-150 
Levelings, 65-78 

binary connected operators, 66-67 
extended connected operators, 68-71 

flattening, 70-71 
flattenings, 70-71 
floodings, 70-71 
levelings, 70-71 
razings, 70-71 

flat grey-tone connected operators, 67-68 
level by level construction, 67-68 
morphological characterization, 68 

for image simplification, 71-77 
hierarchy based on increasing 

floodings, 74-76 
hierarchy based on quasi-flat zones, 

76-77 
multiscale filtering, 74—77 
Order relations, 74 
varying (alpha, beta), 72-73 
varying marker function h, 13-14 

levelings for image simplification, 71-77 
hierarchy based on increasing 

floodings, 74-76 
hierarchy based on quasi-flat zones, 

76-77 
multiscale filtering, 74-77 
varying (alpha, beta), 72-73 
varying marker function h, 73-74 

Lipschitz extension interpolation, 52-55 
Low-order parametric deformation, optical 

flow estimation, 247-248 



600 Index 

Medical imaging, 453-542. See also under 
particular medical specialty 

Statistical methods, 531-542 
approximate maximum likelihood, 

535-537 
Kullback-Leibler divergence, 537-539 
maximum likelihood, 533-535 
mutual information, Joint entropy, 

539-541 
similarity measures, 532-541 

Metamorphs, deformable shape, texture 
models, experimental results, 127-128 

Min-cut, 81 
algorithmsfor, 81-82 

Minimal paths, fast marching methods, 
image analysis, 97-112 

centered minimal paths, Virtual 
endoscopy, 110-111 

Euclidean distance traveled by front, 
Computing, 104 

fast marching, segmentation by, 108-110 
fast marching algorithm, 101 
minimal paths, 98-105 

fast marching resolution, 100-102 
geometrical optics, 98-99 
global minimum for active contours, 99 
Problem formulation, 99-100 

minimal paths from set of endpoints, 
105-107 

approach, 106-107 
multiple minimal paths, 106 

minimal paths in three-dimensional, 
102-103 

multiple minimal paths between regions, 
107-108 

minimal path between two regions, 
107-108 

tubulär structures, 108 
simultaneous estimate of path length, 

104^105 
simultaneous front propagation, 103-104 
two-dimensional fast marching for 

minimal action, algorithm, 101 
two-dimensional up-wind scheme, 102 

Model-based human motion capture, 
325-340 

covering set, Segments for Computing, 329 
human body model acquisition, 328-331 
joints of stick model, information related 

to, 329 
length estimates, accuracy of, 334 
model-based tracking, 331-334 

Motion analysis, 237-356 

Multi-channel TV, total Variation image 
restoration, 20 

Multi-label problems, generalizing graph 
cuts for, 92-96 

approximate optimization, 94—96 
exact multi-label optimization, 92-94 
expansion, local minimum, 95-96 
swap moves, local minimum, 95-96 

Multi-resolution banded graph cuts, 
cardiovascular imaging, Interactive 
graph-based segmentation methods, 
460-461 

Multi-view complete Stereovision, d3nnamic 
scene modeling, non-rigid, multi-view 
image sequences, 440-442 

Multi-view image sequences, non-rigid 
dynamic scene modeling, 439-452 

multi-view complete Stereovision, 
440-442 

scene flow, 446-447 
scene flow estimation, 442-443 
shape-motion Integration, 443 
similarity measures, 447^48 
Stereovision, 445^46,449-450 

scene flow, 450-451 
scene flow estimation, prediction error, 

443^48 
Multi-view linking, three-dimensional from 

image sequences, 399-400 
Multi-view reconstruction, static, dynamic 

scenes, 405^22 
Multiscale decompositions, total Variation 

image restoration, 28-29 

Navier-Stokes inpainting, 40-42 
Non-parametric pdfs of image features, 

region-dependent descriptors, 320-321 
Non-parametric sampling, texture synthesis 

by,56 
Non-parametric statistics, descriptors based 

on, 320-322 
Non-rigid djntiamic scene modeling, 

multi-view image sequences, 439-452 
multi-view complete Stereovision, 

440-442 
scene flow, 446-447 
scene flow estimation, 442-443 
shape-motion Integration, 443 
similarity measures, 447-448 
Stereovision, 445-446,449-450 

scene flow, 450^51 
scene flow estimation, prediction error, 

443^48 
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Nonlinear diffusion filtering, 5-6 
Numerical methods, total Variation knage 

restoration, 29-31 
artificial time marching, 29-30 
duality-based methods, 30-31 
fixed point Iteration, 29-30 

Occlusion resistant recognition, invariant 
processing, planar shapes, 177-188 

Optical flow, tracking, 237-356 
Optical flow estimation, 239-258 

brightness variations, 251 
conservation assumptions, 250-252 
global smoothing, 249 
gradient-based estimation, 240-243 

aperture problem, 243 
implementation issues, 242-243 
intensity conservation, 241 
least-squares estimation, 241-242 

higher-order derivative constraints, 250 
iterative optical flow estimation, 243-246 

coarse-to-fine refinement, 245-246 
temporal aliasing, 245-246 

layered motion, 253-256 
mixture models, 254-255 
outliers, 256 
ownerships, EM, 255-256 

motion models, 247-249 
Affine model, 247 
general differentiable warps, 249 
leamed subspace models, 248 
low-order parametric deformation, 

247-248 
phase-based methods, 250-251 
probabilistic formulations, 252-253 

total least-squares, 253 
robust motion estimation, 246 

Overview, 191-194 

Parametric statistics, descriptors based on, 
319-320 

Partial occlusions, invariant boundary 
signatures recognition under, 182-184 

Particle filter, image tracking, 303-306 
PDE-based image, surface inpainting, 33-62 

absolute minimizing Lipschitz extension 
Interpolation, 52-55 

filling-in, variational models for, 42-52 
elastica-based reconstruction of level 

lines, 4 3 ^ 5 
Joint Interpolation of vector fields and 

gray levels, 4 5 ^ 8 

inpainting by propagation of Information, 
36-42 

image inpainting, 36-40 
Navier-Stokes inpainting, 40-42 

Laplace Interpolation, 52-55 
other PDE-based models, 58-59 
surface reconstruction, 52-55 

experimental results, 54-55 
texture, 55-58 

exemplar-based inpainting, 58 
inpainting with image decomposition, 

56-58 
non-parametric sampling, texture 

synthesis by, 56 
Pixel blending, seam selection, image 

alignment, 287-291 
center-weighing, 287-288 
exposure compensation, 290 
feathering, 287-288 
gradient domain blending, 290 
high dynamic ränge imaging, 290-291 
Laplacian p3Tamid blending, 289-290 
optimal seam selection, 288-289 

Planar shape analysis, 189-204 
Bayesian shape estimation, 202 
clustering of shapes, 194—196 
echocardiographicimage-sequences, 

Interpolation of shapes in, 196-200 
orientation, 198 
Scale, 198 
shape component, 198 
translation, 198 

geodesic paths between shapes, 193-194 
geometric representation of shapes, 

192-193 
infrared Images, human silhouettes in, 

200-202 
mean shape in, 194 
overview, 191-194 
TPCA shape model, 200-202 

Point-based image registration, 
uncertainty-driven, 221-236 

dial-bootstrap ICP, 230-234 
objective function, ICP, normal distances, 

223-226 
Parameter estimates, convariance 

matrices, 226-228 
Stahle sampling, ICP constraints, 228-230 

Point matching, diffeomorphic, 205-220 
Projective geometry, Stereo reconstruction, 

357^52 
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Quasi-flat zones, hierarchy based on, 
levelings for Image simplification, 
76-77 

Random walker algorithm, cardiovascular 
imaging, Interactive graph-based 
segmentation methods, 463-464 

Region-based terms, derivation of, 315-317 
Region-dependent descriptors, 315-317 

based on variance, 319-320 
usingmean, 319 

Region-independent descriptors, 315 
Riemannian approach, difftision tensor 

image segmentation, 527-530 
Rotation invariance, improved, wavelet 

shrinkage with, 10-13 
Roxels, static scene reconstruction, 412 

Scale, total Variation image restoration, 
20-21 

Sensor planning, 419^21 
Shading, shape from, 375-388 

document restoration using SFS, 385-387 
face reconstruction from SFS, 387 
generic Hamiltonian, 379 
mathematical formulation, 377 
mathematical study, 379-381 
medical Images, applications to, 387-388 
nonuniqueness, 380-381 
numerical results, examples of, 385 
"Orthographie SFS" with far light source, 

377-378 
"perspective SFS" with far light source, 

378 
"perspective SFS" with point light source 

at optical center, 378 
"propagation, PDEs methods," numerical 

Solutions by, 382-385 
Shape, texture Integration in deformable 

models, 113-130 
hybrid segmentation method, 116-120 

Gibbs models, 116-118 
Integration of deformable models, 

119-120 
hybrid framework, deformable models 

in, 118-119 
metamorphs, deformable shape, texture 

models, 120-128 
metamorph dynamics, 123-126 

intensity data terms, 125-126 
shape data terms, 123-125 

metamorphs model representations, 
120-123 

model evolution, 126-127 
model fitting algorithm, 127-128 
model's deformation, 121-122 
model's shape representation, 120-121 
model's texture, 122-123 

Shape derivation tools, 313-314 
transformations, 313-314 

Shape gradient, image, video segmentation, 
309-324 

boundary-based terms, derivation of, 314 
distance between pdfs for tracking, 

minimization of, 321-322 
non-parametric pdfs of image features, 

region-dependent descriptors, 
320-321 

non-parametric statistics, descriptors 
based on, 320-322 

parametric statistics, descriptors based on, 
319-320 

region-based terms, derivation of, 
315-317 

region-dependent descriptors, 315-317 
based on variance, 319-320 
usingmean, 319 

region-independent descriptors, 315 
shape derivation tools, 313-314 

transformations, 313-314 
Statistical region-dependent descriptors, 

segmentation using, 317-322 
Shape modeling, registration, 175-236 
Shape priors, variational segmentation with, 

131-144 
matching functionals, psychophysical 

distance measures, 134-136 
shape representation, 133-136 

parametric contour representations, 
geometric distances, 133-134 

shape statistics, 136-139 
kemel features Space, shape distances 

in,136-137 
structure-preserving embedding, 

clustering, 137-139 
variational segmentation, 139-143 

experimental results, 142-143 
kemel-based invariant shape priors, 141 
matching distance, shape priors based 

on, 141-142 
variational approach, 139-141 

Shape representation 
geometric distances, 133-134 
invariance, 133-134 
parametric contour representations, 

invariance, 133-134 
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Simultaneous heart Chamber segmentation, 
cardiovascular imaging, Interactive 
graph-based segmentation methods, 462 

Snakes, geometric, stochastic model of, 
161-174 

birth, death zero ränge particle Systems, 
163-164 

event token list, using, 166-167 
experimental results, 173-174 
overview, 163 
Poisson System Simulation, 164-165 
random event, choosing, 166-168 
similarity invariant flows, 168-171 

gradient flow, 170-171 
heat equation and similarity flows, 

169-170 
stochastic snakes, 171 

envelope representation, 171-172 
least-squares construction, 172-173 
polygon representation, construction, 

171-173 
Virtual token list method, 167-168 

Sobolev norms, Image warping, 266-267 
Space carving, static scene reconstruction, 

409-411 
Space-discrete diffusion, relations for, 6-9 
Static scene reconstruction, 406^16 

probabilistic approaches, 411 
probabilistic image-based Stereo, 415^16 
probabilistic Space carving, 411 
probabilistic surface reconstruction, 

412-414 
roxels, 412 
Space carving, 409-411 
Visual hüll, 407 
voxel coloring, 407-408 

Statistical methods of medical image 
registration, 531-542 

approximate maximum likelihood, 
535-537 

Kullback-Leibler divergence, 537-539 
maximum likelihood, 533-535 
mutual Information, Joint entropy, 

539-541 
similarity measures, 532-541 

Statistical region-dependent descriptors, 
segmentation using, 317-322 

Stereo reconstruction, 357^52 
Stereovision 

dynamic scene modeling, non-rigid, 
multi-view image sequences, 
445-446 

multi-view complete, dynamic scene 
modeling, non-rigid, multi-view 
image sequences, 440-442 

Stitching, image alignment, 273-292 
compositing surface, 286-287 
direct, feature-based alignment, 277-283 

direct methods, 277-279 
direct vs. feature-based, 282-283 
feature-based registration, 279-282 
geometric registration, 281-282 
incremental refinement, 278 
parametric motion, 278-279 

extensions, 291-292 
global registration, 283-286 

bündle adjustment, 283-285 
parallax removal, 285 
recognizing panoramas, 285-286 

motion models, 274-277 
seam selection, pixel blending, 287-291 

center-weighing, 287-288 
exposure compensation, 290 
feathering, 287-288 
gradient domain blending, 290 
high dynamic ränge imaging, 290-291 
Laplacian pyramid blending, 289-290 
optimal seam selection, 288-289 

Stochastic model of geometric snakes, 
161-174 

birth, death zero ränge particle Systems, 
163-164 

event token list, using, 166-167 
experimental results, 173-174 
overview, 163 
Poisson System Simulation, 164-165 
random event, choosing, 166-168 
similarity invariant flows, 168-171 

gradient flow, 170-171 
heat equation and similarity flows, 

169-170 
stochastic snakes, 171 

envelope representation, 171 -172 
least-squares construction, 172-173 
polygon representation, construction, 

171-173 
Virtual token list method, 167-168 

Structure-preserving embedding, clustering, 
137-139 

Surface inpainting, 33-62 
absolute minimizing Lipschitz extension 

Interpolation, 52-55 
filling-in, variational models for, 42-52 

elastica-based reconstruction of level 
lines, 43-45 
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Joint Interpolation of vector fields and 
gray levels, 45-48 

inpainting by propagation of information, 
36-42 

image inpainting, 36-40 
Navier-Stokes inpainting, 40-42 

Laplace interpolation, 52-55 
other PDE-based models, 58-59 
surface reconstruction, 52-55 

experimental results, 54—55 
texture, 55-58 

exemplar-based inpainting, 58 
inpainting with image decomposition, 

56-58 
non-parametric sampling, texture 

synthesis by, 56 
Surface reconstruction, 52-55 

experimental results, 54—55 
Swap moves, local minimum, 95-96 

Texture, 55-58 
exemplar-based inpainting, 58 
inpainting with image decomposition, 

56-58 
non-parametric sampling, texture 

synthesis by, 56 
total Variation image restoration, 28-29 

Textures, dynamic, 341-356 
closed-form Solution, 346-347 
distances between models, 349-350 
model Validation, 347-348 
nearest neighbor classifier, Performance 

of, 350-351 
recognition, 349-351 
representation, 344 
segmentation, 351-354 

Three-dimensional active shape, appearance 
models, cardiac image analysis, 
471-486 

multi-view active appearance models, 
482^84 

three-dimensional 
4D active appearance models, 479^84 
with time active appearance models, 

484 
three-dimensional active appearance 

models, 480-482 
three-dimensional active shape models, 

476-479 
three-dimensional point distribution 

models, 475-476 
two-dimensional, time active appearance 

models, 479-480 

Three-dimensional from image sequences, 
389^04 

dense surface estimation, 398^00 
rectification, 398-399 

epipolar geometry computation, 392-393 
multi-view linking, 399-400 
structure, motion recovery, 393-398 

initial structure, motion, 394-395 
projective to metric, upgrading, 

396-398 
refming structure, motion, 396 
updating structure, motion, 395-396 

three-dimensional surface reconstruction, 
400-402 

Three-dimensional Images, projective 
geometry, Stereo reconstruction, 
357-452 

Total Variation image restoration, 17-32 
anisotropic TV, 24-25 
BV Space, basic properties, 19-20 
caveats, 21-22 
deconvolution, 26-27 
extensions, 19-21 
further applications, 26-29 
inpainting, 27-28 
iterated refmement, 22-23 
D fitting, 23-24 
multi-channel TV, 20 
multiscale decompositions, 28-29 
numerical methods, 29-31 

artificial time marching, 29-30 
duality-based methods, 30-31 
fixed point Iteration, 29-30 

properties, 19-21 
regularization, convolution, 25-26 
Scale, 20-21 
texture, 28-29 
variants, 22-26 

TPCA shape model, 200-202 
TV diffusion of Signals, wavelet-inspired 

scheme for, 7-8 
Two-pixel Signals, equivalence for, 6-7 

Uncertainty-driven, point-based image 
registration, 221-236 

dial-bootstrap ICP, 230-234 
objective function, ICP, normal distances, 

223-226 
Parameter estimates, convariance 

matrices, 226-228 
Stahle sampling, ICP constraints, 228-230 
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Variational segmentation, kemel-based 
invariant shape priors, 141 

Variational segmentation with shape priors, 
131-144 

matching ftinctionals, psychophysical 
distance measures, 134-136 

shape representation, 133-136 
parametric contour representations, 

geometric distances, 133-134 
shape statistics, 136-139 

kemel features Space, shape distances 
in, 136-137 

structure-preserving embedding, 
clustering, 137-139 

variational segmentation, 139-143 
experimental results, 142-143 
kemel-based invariant shape priors, 141 
matching distance, shape priors based 

on, 141-142 
variational approach, 139-141 

Visual huU 
algorithms, dynamic scene reconstruction, 

416 
static scene reconstruction, 407 

Visual tracking, 293-308 
active contours, 296-301 

Affine contours, 298-300 
nonrigidity, 300 
parametric structures, 297-298 
robust curve distances, 300-301 
snakes, 296-297 

articulated structures, 306 
deformable structures, 306 
filter banks, 306 
fusing contour, appearance, 306 
persistence, 307 
simple appearance models, 294—296 

background maintenance, 295-296 
blobs, 295 

simple patches, 294-295 
spatio-temporal filtering, 301-306 

dynamical models, 301-302 
Kaiman filter for contours, 303 
Kaiman filter for point features, 

302-303 
particle filter, 303-306 

Voxel coloring, static scene reconstruction, 
407-408 

Warps 
Bayesian estimation, 259-272 
composition, 260 
Computing time, 269-270 
diffeomorphic minimizers, 270-271 
diffeomorphic warps, 267-269 
fluid registration, 270-271 
general differentiable, motion models, 

optical flow estimation, 249 
image noise models, 264-265 
intensity transforms, 265-266 
invertibility, 260 
landmarks, 264 
matching criteria, 264-266 
open Problems, 271-272 
PDEs, 259-272 
preservation, 260 
realizability, 260 
smoothness, 260 

criteria for, 2662-69 
Sobolev norms, 266-267 
warp time, 269-270 

Wavelet shrinkage, 4-5 
Wavelets, 3-16 

with higher vanishing moments, 13-16 
shrinkage, 4—5 

with improved rotation invariance, 
10-13 

TV diffusion of Signals scheme, 7-8 




