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Preface

Abstract

Biological vision is a rather fascinating domain of research. Scientists of
various origins like biology, medicine, neurophysiology, engineering, math-
ematics, etc. aim to understand the processes leading to visual perception
process and at reproducing such systems. Understanding the environment is
most of the time done through visual perception which appears to be one of
the most fundamental sensory abilities in humans and therefore a significant
amount of research effort has been dedicated towards modelling and repro-
ducing human visual abilities. Mathematical methods play a central role in
this endeavour.

Introduction

David Marr’s theory was a pioneering step towards understanding visual percep-
tion. In his view human vision was based on a complete surface reconstruction
of the environment that was then used to address visual subtasks. This approach
was proven to be insufficient by neuro-biologists and complementary ideas from
statistical pattern recognition and artificial intelligence were introduced to bet-
ter address the visual perception problem. In this framework visual perception is
represented by a set of actions and rules connecting these actions. The emerg-
ing concept of active vision consists of a selective visual perception paradigm
that is basically equivalent to recovering from the environment the minimal piece
information required to address a particular task of interest.

Mathematical methods are an alternative to tackle visual perception. The cen-
tral idea behind these methods is to reformulate the visual perception components
as optimization problems where the minima of a specifically designed objective
function "solve" the task under consideration. The definition of such functions is
often an ill-posed problem since the number of variables to be recovered is much
larger than the number of constraints. Furthermore, often the optimization pro-
cess itself is ill-posed due the non-convexity of the designed function inducing the
presence of local minima. Variational, statistical and combinatorial methods are
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three distinct and important categories of mathematical methods in computational
vision,

Variational techniques are either based on the optimization of cost functions
through the calculus of variations or on the design of partial differential equations
whose steady state corresponds to the solution of the visual perception task. Such
techniques have gained significant attention over the past decade and have been
used to address image restoration and enhancement, image segmentation, track-
ing and stereo reconstruction among other problems. The possibility 1o use the
calculus of variations in the oplimization process is the most important strength
of these methods combined with the fact that one can integrate many terms and
build quite complicated objective functions at the expense of converging toward
local minima.

Statistical methods often consist of two stages, a learning and an execution one.
Complex conditional, multi-dimensional distributions are used (o describe visual
perception tasks that are leamt through a training procedure. Visual perception is
then formulated as an inference problem, conditional to the observations (images).
One can claim that such methods are suitable to address constrained optimization
problems, in particular when the subset of solutions can be well described through
a conditional parametric density function. They suffer from the curse of dimen-
sionality, e.g. in the Bayesian case when very-high dimensional integrals have to
be computed.

Discrete optimization is an alternative to the continuous case often addressed
through statistical and variational methods. To this end, visual perception is of-
ten redefined as a labelling procedure at the image element level according to a
predefined set of plausible classes. Such a simplification often reduces the dimen-
sionality of the problem and makes possible the design of efficient optimization
algorithms. On the other hand such methods can have limited performance be-
cause of the discretization of the solution space, in particular when the solution
lives in a rather continuous in-homogeneous space. One can refer to graph-based
methods for addressing such tasks.

The choice of the most appropriate technique to address visual perception is
rather task-driven and one cannot claim the exisience of a universal solution to
most of the visual perception problems, In this edited volume, our intention is to
present the most promising and representative mathematical models to address
visual perception through variational, statistical and combinatorial methods. In
order to be faithful to the current state of the art in visual perception, a rather
complete set of computational vision components has been considered starting
from low level vision tasks like image enhancement and restoration and ending at
complete reconstruction of scene’s geometry from images.

The volume is organized in six thematic areas and thirty-three chapters present-
ing an overview of existing mathematical methodologies to address an important
number of visual perception tasks.
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Contributions & Contributors

Image reconstruction from either destroyed or incomplete data is a crucial low
level task of visual perception. Local filter operators, diffusion methods as well as
variational methods are among the most studied methods in the domain. The book
starts with three tutorial chapters in this thematic area. The total variation method
and diffusion filters as well as image decomposition in orthogonal bases, two of
the most instrumental methods to address image reconstruction are presented in
the first chapter. Image inpainting/completion is a more advanced problem con-
sisting of restoring missing information in images ; it belongs to the same family
and is covered in chapter 2. In the third chapter of this thematic area, an intro-
duction to the problem as well as the most prominent techniques from the area of
variational methods are presented.

Image segmentation and object extraction are of particular interest with appli-
cations in numerous domains. In its simplest instantiation the problem consists
of creating an image partition with respect to some feature space, the regions be-
ing assumed to have uniform visual structure in this space. Such a problem can
be solved in many ways. Labelling is an example where the objective is to as-
sign to the local image element the most likely hypothesis given the observation.
Two chapters explore such a concept in this thematic area, the watershed trans-
formation is one of them and combinatorial optimization through the graph-cuts
paradigm is another. Evolution of curves and surfaces is an alternative method to
address the same problem. Classes are represented through moving interfaces that
are deforming in order to capture image regions with consistent visual properties.
The snake model - a pioneering framework - is the predecessor of the methods
presented. First, an overview for finding multiple contours for contour comple-
tion from points or curves in 2D or 3D images is presented using the concept of
minimal paths. Then in order a method that integrate region statistics is presented
within deformable models leading to a new class of deformable shape and texture
models. Use of prior knowledge is important within the segmentation process and
therefore in the next chapter the design of shape priors for variational region-
based segmentation is presented. Segmentation through the propagation of curves
through the level set method is an established technique to grouping and object
extraction Therefore, methods to address model-free as well as model-based sep-
mentation are part of this thematic area. Last, but not least, a stochastic snake
model based the theory of interacting particle systems and hydrodynamic limits
is presenled as a new way of evolving curves as a possible alternative to level set
methods.

Representing and understanding structures is an essential component of biolog-
ical vision, ofien used as a basis for high level vision tasks. Therefore, a thematic
area dedicated to shape modelling and registration is present in this volume.
Shape representations of various form are explored while at the same time the
notions of establishing correspondences between different structures represent-
ing the same object are presented as well as methods recovering correspondences
between shapes and images.
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Motion analysis is a fundamental area of computational vision and mostly con-
sists of two preblems, estimating correspondences between images and being able
to track objects of interest in a sequence of images. Optical flow estimation can be
addressed in different ways. In this thematic area we explore the use of parametric
motion models as well as the estimation of dense correspondences between im-
ages. Furthermore, we present a compendium of existing methods to detect and
track objects in a consistent fashion within several frames as well as vaniational
formulations to segment images and track objects in several frames. Understand-
ing the real 3D motion is a far more complicated task of computational vision
in particular when considering objects that do exhibit a number of articulations.
Human motion capture is an example that is presented in this thematic area. We
conclude with methods going beyond objects that are able to account, describe
and reproduce the dynamics of structured scenes.

Stereo reconstruction is one of the best studied tasks in high level vision. Under-
standing and reproducing the 3D geometry of a scene is a fundamental compenent
of biological vision. In this thematic area the shape from shading problem i.e. that
of recovering the structure of the scene from one single image is first addressed,
Different methods exploring the use of multiple cameras to recover 3D from im-
ages are then presented, based on differential geometry, variational formulations
and combinatorial optimization. The notion of time and dynamic behaviour of
scenes is also addressed where the objective is to create 3D temporal models of
the evolving geometry.

Medical image analysis is one of the most prominent application domains
of computer vision and in such a constrained solution space one can develop
methods that can better capture the expected form of the structures of inter-
est. Regularization, segmentation, object extraction and registration are the tasks
presented in this thematic area. Model-free combinatorial methods that aim to
recover organs of particular interest, statistical methods that aim to capture the
variation of anatomical structures, and variational methods that aim to recover and
segment smooth vectorial images are presented. Last, but not least a comprehen-
sive review of statistical methods to image registration is presented, a problem that
consists of recovering correspondences between different modalities measuring
the same anatomical structure.

In order to capture the spectrum of the different methods and present an
overview of mathematical methodologies in computational vision a notable
number of contributors was invited to complete such an effort. Eighty-three con-
tributors from the academic and the industtial world, from nine different countries
and thirty-eight institutions have participated in this effort. The final outcome
consists of 6 thematic areas, 33 chapters, 625 pages and 929 references.

N. Paragios, Y. Chen & O. Faugeras



List of Contributors

Agrawal, Motilal
Artificial Intelligence Center
SRI International, Menlo Park, USA
mailto:agrawal@ai.sri.com
http://www.ai.sri.com/people/agrawal/

van Assen, Hans
Division of Image Processing, Department of Radiology
Leiden University, Leiden, Netherlands
mailto:H.C.van_ Assen@lumc.nl

Aubert, Gilles
Department of Mathematics
Universite de Nice/Sophia Antipolis, France
mailto:gaubert@math.unice.fr
http://math1.unice.fr/~gaubert/

Barlaud, Michel
Laboratoire 138
CNRS-Universite de Nice/Sophia Antipolis, France
mailto:barlaud@i3s.unice.fr
http://www.i3s.unice.fr/~barlaud/

Barron, Carlos
Department of Computer Science
University of Houston, Houston, USA
mailto:cbarron@uh.edu

Bertalmio, Marcelo
Departament de Tecnologia
Universitat Pompeu Fabra, Barcelona, Spain
mailto:marcelo.bertalmio@upf.edu



XXIV List of Contributors
http:/fwww.tecn.upfes/~mbertalmio

Bergtholdt, Martin
Department of Mathematics & Computer Science
University of Mannheim, Germany
mailto:bergtholdi@uni-mannheim.de
http://www._cvgpr.uni-mannheim.de/

Blake, Andrew
Microsoft Research Cambridge, UK
mailto:ablake@microsoft.com
http://www.research.microsoft.com/~ablake

Boykov, Yuri
Departament of Computer Science
University of Western Ontario, Canada
mailto:yurif@csd.uwo.ca
http://www.csd.uwo.ca/faculty/yuri/

Brox, Thomas
Faculty of Mathematics and Computer Science
Saarland University, 66041 Saarbriicken, Germany
mailto:brox{@mia.uni-saarland.de
http:/fwww.mia.uni-saarland.de/brox/

Bruckstein, Alfred M.
Computer Science Department
Technion, Haifa, Israel
mailto:freddy(@cs.technion.ac.il

Caselles, Vicent
Departament de Tecnologia
Universitat Pompeu Fabra, Barcelona, Spain
mailto:vicent.caselles@upf.edu
http://www.iua.upf.es/~vcaselles/

Chan, Tony
Department of Mathematics
University of California at Los Angeles, USA
mailto:chan@math.ucla.edu
http://www.math.ucla.edu/~chan

Chen, Ting
Depattment of Radiology
NYU Medical School, New York, USA



List of Contributors
mailto:ting.chen@med.nyu.edu

Chen, Yunmei
Departiment of Mathematics
University of Florida, Gainesville, USA
mailtoryun@math.ufl.edu
http://www.math.ufl.edu/~yun/

Cohen, Laurent
CEREMADE
Universite Paris IX Dauphine, Paris, France
mailto:cohen(@ceremade.dauphine. fr
http://www.ceremade.dauphine.fr/~cohen

Cremers, Daniel
Imaging & Visualization Department
Siemens Corporate Research, Princeton, NJ, USA
mailto:daniel.cremers@scr.siemens.com
http://www.cs.ucla.edu/~cremers

Davis, Larry
Department of Computer Science
University of Maryland, College Park, USA
mailto:lsd@cs.umd.edu
http://evi.umiacs.umd.edu/users/lsd/

Deriche, Rachid
IN.R.I.A. Sophia Antipolis, France
mailto:Rachid.Deriche@intia.fr
hitp/fwww-sop.inria.fr/odyssee/team/Rachid.Deriche/

Doretto, Gianfranco
Computer Science Department
University of California at Los Angeles, USA
mailto:doretto@cs.ucla.edu
hitp/fwww.cs.ucla.edu/~doretto/

Esedoglu, Sclim
Department of Mathematics
University of California at Los Angeles, USA
mailte:esedoglu@math.ucla.edu
http:/fwww.math.ucla.edu/~esedoglu

Faugeras, Olivier
[N.R.I.LA. Sophia Antipolis, France

XV



KXV

mailto:Olivier. Faugeras@inria. fr
http:/fwww-sop.inria.fr/odyssee/team/Olivier.Faugeras

Fisher IIT, John
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, USA
mailto:fisher(@ai.mit.edu
http://www.ai.mit.edu/people/fisher/

Fleet, David
Department of Computer Science
University of Toronto, Toronto, Canada
mailto:fleet@cs.toronto.edu
http://www.cs.toronto.edu/~fleet/

Frangi, Alejandro
Depariment of Technology
Pompeu Fabra University, Barcelona, Spain
mailto:alejandro.frangi@upf.edu
http:/Awww.tecn.upf.es/~afrangi/

Grady, Leo
Imaging and Visualization Department
Siemens Corporate Research, Princeton, USA
mailto:leo.grady(@siemens.com

Guo, Hongyu

List of Contributors

Department of Computer, Information Science and Engineeting

University of Florida, Gainesville, USA
mailto:hguo@cise.ufl.edu
http:/Awww.cise.ull.edu/~hguo

Haro, Gloria
Departament de Tecnologia
Universitat Pompeu Fabra, Barcelona, Spain
mailto:gloria.haro@upf.edu
http://www.tecn.upl.es/~gharo

Herbulot, Ariane
Laboratoire [35
CNRS-Universite de Nice/Sophia Antipolis, France
mailto:herbulot@i3s.unice.fr
http:/Awww.i3s.unice.fr/~herbulot/

Huang, Xiaolei



List of Contributors xxvii

Division of Computer and Information Sciences

Rutgers, the State University of New Jersey, New Brunswick, USA
mailto:xiaclei@paul.rutgers.edu
http:/fwww.research.rutgers.edu/~xiaolei/

Jehan-Besson, Stephanie
Laboratoire GREY C-Image
Ecole Nationale Supéricure d’Ingénieurs de Caen, France
mailto:stephanie jehan@greyc.ensicaen. fr
http://wwrw.greyc.ensicaen.fi/~jehan

Joshi, Sarang
Department of Radiation Oncology and Biomedical Engineering
University of North Carolina, Chapel Hill, USA
mailto:sjoshi@unc.edu
http://www.cs.unc.edu/~joshi

Joshi, Shantanu
Department of Electrical Engineering
Florida State University, Tallahassee, USA
mailto:joshi@eng.fsu.edu

Kakadiaris, Ioannis
Department of Computer Science
University of Houston, Houston, USA
mailtoiikakadia@central.uh.edu
http:/Awww.vcl.uh.edu/~ioannisk/

Kaziska, Dave
Department of Statistics
Florida State University, Tallahassee, USA
mailto:kaziska@stat.fsu.edu

Keriven, Renaud
Département d’Informatique
Ecole Normale Supérieure, Paris, France
mailto:Renaud Keriven(@ens. fr
hitp://cermics.enpe. fi/~keriven/home.html

Kolmogorov, Vladimir
Microsoft Research Cambridge, UK
mailto:vok@microsoft.com
http:/fwww.research.microsoft.com/~vnk

Lenglet, Christophe



XXViii List of Contributors

LN.R.ILA. Scphia Antipolis, France
mailto:clenglet@sophia.inria.fr
http:/fwww-sop.inria.fr/odyssee/team/Christophe.Lenglet/

Lelieveldt, Boudewijn
Division of Image Processing, Department of Radiology
Leiden University Medical Center, Leiden, Netherlands
mailto:B.Lelieveldt@lumc.nl

Markussen, Bo
Department of Computer Science
University of Copenhagen, Denmark
mailto:boma@diku.dk
http:/fwww.bomar.dk/

Metaxas, Dimitris
Division of Computer and Tnformation Sciences
Rutgers, the State University of New Jersey, New Brunswick, USA
mailto:dnm@cs.rutgers.edu
http://www.cs.rutgers.edu/~dnm/

Meyer, Fernand
Centre de Morphologie Mathématique
Ecole des Mines de Paris, Paris, France
mailto:fernand. meyer@cmm.ensmp. fr
http://cmm.ensmp.fr

Mitchell, Steven
The University of Iowa, Iowa City, USA
mailto:steve{@componica.com

Mittal, Anurag
Real-time Vision and Modeling Department
Siemens Corporate Research, Princeton, USA
mailto:anurag.mittal@siemens.com
http:/Awww.umiacs.umd.edw/~anurag

Mrizek, Pavel
Upek, Husinecka 7, Praha 3, Czech Republic
mailto:pavel. mrazek@upek.com

Nain, Delphine
Departments of Electrical and Computer and Biomedical Engineering
Georgia Institute of Technology, Atlanta, USA
mailto:delfin@cc.gatech.edu



List of Contributors XXiX
http://www.bme.gatech.edu/groups/bil/

Nielsen, Mads
Department of Innovation
IT University of Copenhagen, Denmark
mailto:malte@itu.dk
http:/fwww.itu.dk/people/malte

Ordas, Sebastian
Department of Technology
Pompeu Fabra University, Barcelona, Spain
mailto:sebastian.ordas@upf.edu

Paragios, Nikos
C.E.R.TILS.
Ecole Nationale des Ponts et Chaussées, Champs sur Marne, France
mailto:nikos. paragios@certis.enpc.fr
http://www.enpc.fi/certis/people/paragios.html

Park, Frederick
Department of Mathematics
University of California at Los Angeles, USA
mailto: fpark@math.ucla.edu
http://www.math.ucla.edu/~fpark

Pollefeys, Marc
Department of Computer Science
University of North Carolina, Chapel Hill, USA
mailto:marc@ces.unc.edu
hitp://fwww.cs.unc.edu/~marc/

Pons, Jean-Philippe
CERTILS.
Ecole Nationale des Ponts et Chaussées, Champs sur Marne, France
mailto:Jean-Philippe.Pons@certis.enpe.fr
http://www.enpe. fr/certis/people/pons.html

Prados, Emmanuel
LN.R.ILA. Sophia Antipolis, France
mailto:Emmanuel . Prados{@sophia.inria.fr
http://www-sop.inria.fr/odyssee/team/Emmanuel . Prados/

Rangarajan, Anand
Department of Computer, Information Science and Engineering
University of Florida, Gainesville, USA



XXX List of Contributors

mailto:anand@cise.ufl.edu
http:/fwww.cise.ufl.edu/~anand

Reiber, Johan H.C.
Department of Radiology
Leiden University Medical Center, Leiden, the Netherlands
mailto:J.H.C Reiber@lumc.nl
hitp:/fwww.lkeb.nl

Rousson, Mikael
Imaging and Visualization Department
Siemens Corporate Research, Princeton, USA
mailto:mikael.rousson{@scr.siemens.com

Sapiro, Guillermo
Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, USA
mailto:guille@ece.umn.edu
hitp:/fwww.ece.umn.edu/users/guilie/

Schnérr, Christoph
Department of Mathematics & Computer Science
University of Mannheim, Germany
mailto:schnoerr@uni-mannheim.de
hitp://www.cvgpr.uni-mannheim.de/

Soatto, Stefano
Computer Science Department
University of California at Los Angeles, USA
maitto:soatto@cs.ucla.edu
http:/fwww.cs.ucla.edu/~soatto/

Sonka, Milan
Dept. of Electrical and Computer Engineering
The University of Iowa, Towa City, USA
mailto:milan-sonka@uiowa.edu
http:/fwww.engineering.uiowa.edu/~sonka/

Srivastava, Anuj
Department of Statistics
Florida State University, Tallahassee, USA
mailto:amuj(@stat.fsu.edu
http://stat.fsu.edu/~anuj

Steidl, Gabriele



List of Contributors XXXI

Faculty of Mathematics and Computer Science
University of Mannheim, Mannheim, Germany
mailto:steidl@math.uni-mannheim.de
http://kiwi.math.uni-mannheim.de/

Stewart, Charles
Department of Computer Science
Rensselaer Polytechnic Institute, Troy, USA
mailto:stewart@cs.rpi.edu
http://www.cs.rpi.edu/~stewart

Sun, Yivong
Imaging and Visualization Department
Siemens Corporate Research, Princeton, USA
mailto:yiyong.sun(@siemens.com

Szeliski, Rickard
Microsoft Research, Redmond, USA
mailto:szeliski@microsoft.com
http://www.research.microsoft.com/~szeliski/

Tannenbaum, Allen
Departments of Electrical and Computer and Biomedical Engineering
Georgia Institute of Technology, Atlanta, USA
mailto;tannenba@bme.gatech.edu
http://www.bme.gatech.edu/groups/bil/

Tschumperlé, David
GREYC - UMR CNRS 6072
Centre National de la Recherche Scientifique (CNRS), Caen, France
mailto:David. Tschumperle@greyc.ensicaen fr
http://www.greyc.ensicaen.fr/~dtschump/

Unal, Gozde
Intelligent Vision and Reasoning
Siemens Corporate Research, Princeton, USA
mailto:gozde.unal@siemens.com

Veksler, Olga
Departament of Computer Science
University of Western Ontario, Canada
mailto:olga@csd.uwo.ca
http:/fwww.csd.uwo.ca/faculty/olga/

Vemuri, Baba



XXXii List of Contributors

Department of Computer, Information Science and Engineering
Univiversity of Florida, Gainesville, USA
mailto:vemuri@cise.ufl.edu

http://www.cise.ufl.edu/~vemuri

Wang, Zhizhou
Tmaging and Visualization Department
Siemens Corporate Research, Princeton, USA
mailto:zhizhou.wang@siemens.com

Weickert, Joachim
Faculty of Mathematics and Computer Science
Saarland University, Saarbriicken, Germany
mailto:weickert@mia.uni-saarland.de
http:/fwww.mia.uni-saarland.de/weickert/

Welk, Martin
Faculty of Mathematics and Computer Science
Saarland University, Saarbriicken, Germany
mailto:welk{@mia.uni-saarland.de
hitp:/Awww.mia.uni-saarland.de/welk/

Weiss, Yair
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Jerusalem, Israel
mailto:yweiss@cs-huji.ac.il
http://www.cs.huji.ac.il/~yweiss/

‘Wells I, William
Department of Radiology
Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
mailto:swi@bwh.harvard.edu
http://splweb.bwh.harvard.edu:B000/pages/ppl/sw/homepage.html

Williams, James
Imaging and Visualization Depariment
Siemens Corporate Research, Princeton, USA
mailto:jimwilliams@siemens.com

Wilson, Dave
Department of Mathematics
University of Florida, Gainesvilte, USA
mailto:dew(@math.ufl.edu



List of Contributors xXX%iii
http://www.math.ufl.edu/~dew/

Yezzi, Anthony
Departments of Electrical and Computer and Biomedical Engineering
Georgia Institute of Technology, Atlanta, USA
mailto:ayezzi{@ece.gatech.edu
http:/Awww.ece.gatech.edu/profiles/ayezzi/

Yip, Andy
Department of Mathematics
University of California at Los Angeles, USA
mailto:mhyip@math.ucla.edu
http://www.math.ucla.edu/~mhyip

Zabih, Ramin
Department of Computer Science
Cornelt University, Ithaca, USA
mailto:rdz@cs.cornell.edu
http:/fwww.cs.cornell.edu/~rdz

Zeitouni, Ofer
School of Mathematics
University of Minnesota, Minneapolis, USA
mailto:zeitouni@math.umn.edu

Zillei, Lilla
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology, Cambridge, USA
mailto:lzollei@cesail.mit.edu
hitp://people.csail.mit.edu/peaple/lzollei/

Zucker, Steven
Department of Computer Science and Program in Applied Mathematics
Yale University, New Haven, USA
mailto:steven.zucker@yale.edu
hitp:/fwww.cs.yale.edu/homes/vision/zucker/steve.htiml



Part I

Image Reconstruction



Chapterl

Diffusion Filters and Wavelets: What
Can They Learn from Each Other?

J. Weickert, G. Steidl, P. Mrazek, M. Welk, and T.
Brox

Abstract

Nonlinear diffusion filtering and wavelet shrinkage are two methods that
serve the same purpose, namely discontinuity-preserving denoising. In this
chapter we give a survey on relations between both paradigms when space-
discrete or fully discrete versions of nonlinear diffusion filters are considered.
For the case of space-discrete diffusion, we show equivalence between soft
Haar wavelet shrinkage and total variation (TV) diffusion for 2-pixel signals.
For the general case of N-pixel signals, this leads us to a numerical scheme
for TV diffusion with many favourable properties. Both considerations are
then extended to 2-D images, where an analytical solution for 2 x 2 pixel
images serves as building block for a wavelet-inspired numerical scheme
for TV diffusion. When replacing space-discrete diffusion by fully discrete
one with an explicit time discretisation, we obtain a general relation between
the shrinkage function of a shift-invariant Haar wavelet shrinkage on a sin-
gle scale and the diffusivity of a nonlinear diffusion filter. This allows to
study novel, diffusion-inspired shrinkage functions with competitive perfor-
mance, to suggest new shrinkage rules for 2-D images with better rotation
invariance, and to propose coupled shrinkage rules for colour images where
a desynchronisation of the colour channels is avoided. Finally we present
a new result which shows that one is not restricted to shrinkage with Haar
wavelets: By using wavelets with a higher number of vanishing moments,
equivalences to higher-order diffusion-like PDEs are discovered.

1.1 Introduction

Signal and image denoising is a field where one often is interested in removing
noise without sacrificing important structures such as discontinuities. To this end,
a large variety of nonlinear strategies has been proposed in the literature including
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Figure 1.1. (a) Left: Original image with additive Gaussian noise. () Middle: Result after
shift invariant soft wavelet shrinkage. (¢) Right: Result after nonlincar diffusion filtering
with total variation diffusivity.

wavelet shrinkage [275] and nonlinear diffusion filtering [642]; see Figure 1.1.
The goal of this chapter is to survey a number of connections between these two
technigues and to outline how they can benefit from each other.

While many publications on the connections between wavelet shrinkage and
PDE-based evolutions (as well as related variational methods) focus on the anal-
ysis in the continuous selting (see e.g. [49, 114, 161, 163, 568]), significantly less
investigations have been carried out in the discrete setting [214]. In this chapter
we give a survey on our coniributions that are based on discrete considerations.
Due to the lack of space we can only present the main ideas and refer the reader
to the original papers [584, 585, 586, 760, 882] for more details.

This chapter is organised as follows: In Section 1.2 we start with briefly sketch-
ing the main ideas behind wavelet shrinkage and nonlinear diffusion filtering.
Afterwards in Section 1.3 we focus on relations between both worlds, when we
restrict ourselves to space-discrete nonlinear diffusion with a total variation (T'V)
diffusivity and to soft Haar wavelet shrinkage. Section 1.4 presents additional re-
lations that arise from considering fully discrete nonlinear diffusion with arbitrary
diffusivities, and Haar wavelet shrinkage with arbitrary shrinkage functions. Tn
Section 1.5 we present a new result that generalises these considerations to higher-
order diffusion-like PDEs and shrinkage with wavelets having a higher number of
vanishing moments. The chapter is concluded with a summary in Section 1.6,

1.2 Basic Methods

1.2.1 Wavelet Shrinkage

Wavelet shrinkage has been made popular by a series of papers by Donoho and
Johnstone (see e.g. [274, 275]). Assume we are given some discrete 1-D signal
f = (fi)icz that we may also interpret as a piecewise constant function. Then the
discrete wavelet transform represents f in terms of shifted versions of a dilated
scaling function , and shifted and dilated versions of a wavelet function . In
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case of orthonormal wavelets, this gives

F=Y_(helel+ Y, D (L, (1.1)

(1= J=—oc icE

where 7 (s) := 279/2)(2795 — i) and where {.,) denotes the inner product
in Lz(R). If the measurement f is corrupted by moderate white Gaussian noise,
then this noise is contained to a small amount in all wavelet coefficients (f, 4},
while the original signal is in general determined by a few significant wavelet
coefficients [540]. Therefore, wavelet shrinkage atlempts to climinate noise from
the wavelet cocfiicients by the following three-step procedure:

1. Analysis: Transform the noisy data f to the wavelet coefficients df =
{f,¥?} and scaling function cocfficients ¢ = {f, »7) according to (1.1).

2. Shrinkage: Apply a shrinkage function Sp with a threshold parameter 4 to
the wavelet coefficients, i.e., Sp(d?) = Se{{f,¥7}).

3. Synthesis: Reconstruct the denoised version u of f from the shrunken
wavelet coefficients:

wi=Y (FeMer+ > > Sel{f,vd) ¢l (1.2)
i€l j=—o0 i€L

In this paper we pay particular attention to Haar wavelets, well suited for piece-
wise constant signals with discontinuities. The Haar wavelet and Haar scaling
functions are given respectively by

wlx) = 11— 1, (1.3)
wle) = lpy (1.4)

where 1, 4) denotes the characteristic function, equal to 1 on [a, b) and zero ev-
erywhere else. In the case of the so-called soff wavelet shrinkage [274], one uses
the shrinkage function

_f s—0sgns if |s| >0,
Sa(s) = { o if |5 <o (15}

1.2.2  Nonlinear Diffusion Filtering

The basic idea behind nonlinear diffusion filtering [642, 870] in the 1-D case is
to obtain a family u(«, ) of filtered versions of a continuous signal f(x) as the
solution of a suitable diffusion process

e = (g{|uz|) vr)z (1.6)

with f as initial condition,

u{x,0) = f(x)
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and reflecting boundary conditions. Here subscripts denote partial derivatives, and
the diffusion time ¢ is a simplification parameter: Larger values correspond to
more pronounced filtering.

The diffusivity g{|u4|) 15 a nonnegative function that controls the amount of
diffusion. Usually, it is decreasing in |u|. This ensures that strong edges are less
blurred by the diffusion filter than low-contrast details. In this chapter, the fotal
variation (TV) diffusivity

1
s]) =+— L

gllsh = 1 &
plays an important role, since the resulting TV diffusion [27, 272] does not require
to specify additional contrast parameters, leads to scale invariant filters, has finite
extinction time, interesting shape-preserving qualities, and is equivalent to TV
regularisation [695] in the 1-D setting; see the references in [882] for more details.
Unflortunately, TV diffusion is not wnproblematic in practice: In correspond-
ing numerical algorithms the unbounded diffusivity requires infinitesimally small
time steps or creates very ill-conditioned linear systems. Therefore, TV diffusion

is often approximated by a model with bounded diffusivity:

1
Uy = (—mur)z (18)

This regularisation, however, may introduce undesirable blurring effects and
destroy some of the favourable properties of unregularised TV diffusion,

1.3 Relations for Space-Discrete Diffusion

In this section we study connections between soft Haar wavelet shrinkage and
nonlinear diffusion with TV diffusivity in the space-discrete case, This allows us
to find analytical solutions for simple scenarios. They are used as building blocks
for numerical schemes for TV diffusion.

1.3.1 Egquivalence for Two-Pixel Signals

We start by considering wavelet shrinkage of a two-pixel signal (fo, fi) in
the Haar basis [760]. Its coefficients with respect to the scaling function ¢ =

71 5 7-1 and the wavelet ¥ = (-1, 7—‘ LY are given by
L i — f[} + o 1‘ E fﬂ - fl

vz Ve
Soft thresholding of the wavelet coefficient yields

[ d—08sgnd if |d| >0,
Sold) = { 0 if |d| <0, (19

(1.9)



Diffusion Filters and Wavelets: What Can They Learn from Each Other? 7

leading to the filtered signal {ug, ) with

" Jo + 76‘-5811 (fr—fo) i 0 < |fi=-fl/V?2,

ug(f)) = { (fug-l- fl)/?. olsi, (1.11)
_ ho= Lsen(fi—fo) i 0<|fh—fol/VZ,

uif) = { (}f-l— fi)/2 else. (L12)

On the other hand, space discrete TV diffusion of a two-pixel signal with
reflecting boundary conditions and grid size | creates the dynamical system

';},ﬂ = SEN (’u.] —'U.()) {l A 3)
iy =  —sgn{u —ug) (1.14)

with initial conditions u(0) = fo and u; {0} = f1. The dot denotes differentia-
tion with respect to time. It is easy to verily that this system with discontinuous
right hand side has the unique analytical solution
fo+tsgn(fi-fo) i t<{fi—fol/%
awnlt _— : 1.1
wt) = { TSR e (%)

Interestingly, this is equivalent to soft Haar wavelet shrinkage with threshold # =
v/2t. Moreover, we observe that a finite extinction time is obvious in the two-pixel
model and that no problems with degenerated diffusivities appear [760].

1.3.2 A Wavelet-Inspired Scheme for TV Diffusion of Signals

Let us now investigate if we can also benefit from the 2-pixel equivalences in
the case of general discrete 1-D signals with N pixels. To this end, we perform
a wavelet decomposition on the finest scale only. Haar wavelets create natural
two-pixel pairings, but unfortunately, their shrinkage is not shift invariant, As a
remedy, Coifman and Donoho have proposed to apply cyele spinning [213]: On
one hand, shrinkage is performed on the original signal. In parallel to this the
signal is shifted by 1 pixel, shrinkage is performed, and then the result is shifted
back. Averaging both filtered signals creates a process that is shift invariant by
construction.

Interestingly this procedure does also inspire a novel numerical scheme for TV
diffusion. It uses the analytical solution ol the two-pixel model as a building block.
With the two-pixel model, TV diffusion with time step size 27 is performed on
all pixel pairs (uz2;, u2i11). In parallel we perform TV diffusion on all pixel pairs
{1241, u2:). Averaging both results Jeads to the following numerical scheme for
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Figure 1.2. (a) Top left: Original signal without noise, (b) Top right: With additive Gaus-
sian noise, SNR=8 dB. (c) Bottom left: Result with two-pixel scheme. SNR = 24.5 dB. (d)
Bottom right: Result with classical regularised scheme. SNR = 24.6 dB. From [760].

TV diffusion [760]:
h
u:.‘+1 = ui—‘ + %sgn (uf‘ﬂ —uf) min (1, Elufﬂ —~1.st)

T . h & :
= g sm (uf —uf_ ) min (1, E|u§” - u:-‘h1|) , (1.17)

where the upper index & denotes the time level k7, and A is the spatial grid
size. Although this scheme is explicit, it is even absolutely stably since it is
based on a linear combination of analytical two-pixel interactions that satisfy a
maximum—minimum principle. Moreover, it can be shown that the scheme is also
conditionally consistent to the continuous TV diffusion [760]. Tt should be noted
that it does not require any regularisation of the diffusivity such as (1.8), and
hence does not suffer from corresponding dissipative artifacts at edges. In Figure
1.2 it is shown that it is a competitive alternative to conventional schemes based
that approximate regularised TV diffusion.

1.3.3  Generalisations to Images

Interestingly, the considerations in Subsections 1.3.1 and 1.3.2 can be generalised
to the 2-D setting [882]. By considering an image with 2 x 2 pixels, one shows
that soft Haar wavelet shrinkage and space-discrete TV diffusion are equivalent
by deriving the same analytical solution for both processes. In order to use this
4-pixel solution as a building block for a numerical scheme for 2-D TV diffusion,
we consider the four 2 x 2 cells containing some pixel (i, 7). By computing their
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1l

Figure 1.3, {a) Left: Original image, 93 » 93 pixels. (b) Middle: Standard explicil scheme
for regulanised TV diflusion (¢ = 0.01, v = 0.0025, 10000 iterations). (c) Right: Same
with four-pixel schemc without regularisation (v = 0.1, 250 iterations), Note that 40 times
larger time steps are used. From [882].

analytical solutions and averaging the results, we obtain a wavelet-inspired nu-
merical scheme for 2-D TV diffusion. In the same way as its 1-D counterpari, it is
explicil, absolutely stable, conditionally consistent, and does not require any reg-
ularisation of the singular TV diffusion equation. Compared to classical explicit
discretisations based on regularised TV diffusion, it creates sharper edges, even
when significantly larger time step sizes are used; see Figure 1.3,

1.4 Relations for Fully Discrete Diffusion

The previous section focused on space-discrete TV diffusion and soRt Haar
wavelet shrinkage. This restriction allowed us to derive analytical solutions for
both paradigms. In order to obtain additonal connections let us now investigate
fully discrete nonlinear diffusion with arbitrary diffusivities and Haar wavelet
shrinkage with general shrinkage functions.

1.4.1 Diffusion-Inspired Shrinkage Functions

Let us consider a discrete signal ( f;);ez- It is easily seen that one cycle of shift-
invariant Haar wavelet shrinkage on a single level creates a filtered signal (u,).cz
with
v o JmFUithin V2o (fimfin
3 4 4 6 \/Q
= £S (f‘a i fs) (118)
4 V2

On the other hand, the first iteration of an explicit (Euler forward) scheme for a
nonlinear diffusion filter with initial state f, time step size + and spatial step size



10 Weickert, Steidl, Mrazek, Welk & Brox
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Figure 1.4. (a) Top: Four popular shrinkage functions: soft, garrote, firm, and hard
shrinkage. (b) Bottom: Corresponding diffusivities. From [585].

1 leads to

e 9llfir=Fil) (i =f2) — gUfFF - (FF-SE20), (119)

-
which can be rewritten as

u; = %ﬂ + (fi = fixa) (i —rg{|fi - fvi+LD)
= f) (;li il — .f,:|)) . (1.20)

Comparing (1.18) and (1.20) shows that both methods are equivalent if

L5 (3) = (3-roteh). (121

This formula states a general correspondence between a shrinkage function Sy of
a shift-invariant single scale Haar wavelet shrinkage and the diffusivity g of an
explicit nonlinear diffusion scheme [585). It does not only allow to reinterpret a
number of shrinkage strategies as nonlinear diffusion filters (Figure 1.4), it also
leads to novel, diffusion-inspired shrinkage functions (Figure 1.5). Interestingly,
some of these diffusion-inspired shrinkage functions turn out to belong to the ones
with the best denoising capabilities [385]. A detailed analysis of this connection
in terms of extremum principies, monotonicity preservation and sign stability can
be found in [586].

1.4.2 Wavelet Shrinkage with Improved Rotation Invariance

In order to extend our results from 1-D signals to 2-D greyscale images, we have
ta specify the 2-D Haar Wavelet transform first. [t is based on a lowpass filter L
with coefficients (715, :%) and a highpass. ﬁlter.H with coefﬁcients (%, —715)
Applying the 1-D filters L and H alternatingly in & and ¥ direction gives a 2-D
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Figure 1.5. (a) Top: Four popular diffusivitics: linear, Charbonnier, Perona—Malik, and
Weickert diffusivity. (b) Bottem: Corresponding shrinkage functions. From [385].

o

Figure 1.6. (a) Left: Original image. (b) Right: The first three levels of a 2-D Haar wavelet
decomposition.

Haar wavelet decomposition with the following structure:

ot = Lx) « L{y) v}, (1.22)
wi = L{x)* H(y) o, (1.23)
wi’"l = H(z)=L{y)» o, (1.24)
witl = H(z)* H{y)+ ! (1.25)

with % := f. Figure 1.6 illustrates this principle.

The basic idea behind classical 2-D wavelel shrinkage is now to shrink all
wavelet coefficients wy, w, and w,,, separately according to their magnitude.
If shift invariance is required, one averages the results for the 4 shift possibili-
ties. However, even in this case, one usually observes a severe lack of rotation
invariance.
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Figure 1.7. (a) Left: original images. {(b) Middle: reconstruction after iterated shift in-
variant hard wavelet shrinkage. {c) Right: reconstruction by a diffusion-inspired wavelet
shrinkage with much better rotation invariance. From [584].

In order to address this problem, let us investigate 2-D nonlinear diffusion fil-
tering. In its isotropic variant with a scalar-valued diffusivity {642], it is based on
the rotationally invariant equation

g = div{g(|Vu|) Vi) (1.26)

In a similar way as in the [-D situation, one can now consider explicit dis-
cretisations and relate the diffusivities to shrinkage functions [or shifi invariant
Haar wavelet shrinkage. In contrast to classical shrinkage where the wavelet co-
efficients are shrunken separately, this leads to novel shrinkage rules where the
wavelets are coupled [584], e.g.

Slwe) = 1wy (1 —ATyg (1 [wi + wg + 2wl )) , (1.27)
Stw,) = w, (1 —41’9(1/133. +w§+2w3y)) ‘ (1.28)
S{Wey) = wWay (1 —drg (ﬁwg +wy + 2'“"3:3;)) . (1.29)

Because of the rotation invariance of the nonlinear diffusion equation, one can ex-
pect that these shrinkage rules lead to a significantly better realisiation of rotation
invariance than classical 2-D wavelet shrinkage. These expectations are confirmed
by the experiments in Figure 1.7.
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Figure 1.8, (a) Left: Zoom into an original image. (b) Middle: After classical wavelet
shrinkage without coupling the RGB channels. (¢) Right: Wavelet shrinkage with
diffusion-inspired chamnel coupling.

1.4.3  Diffusion-Inspired Wavelet Shrinkage of Colour Images

While we have investigated diffusion-inspired shrinkage of greyscale images in
the previous section, let us now turn our attention to colour images. In this
case wavelet shrinkage is frequently applied such that the different colour chan-
nels (e.g. RGB or YUV) are shrunken separately. This can result in a lack of
synchronisation that creates artifacts at colour edges.

For nonlinear diffusion filtering of colour images, one ofien uses a process
with a joint diffusivity that steers the evolution of all three channels [344]. In the
continuous setting such an evolution has the structure

Syu; = div (g(( 23: |vu;,-|2) m) vu,;) (1.30)
i=1

where the index i specifies the colour channel. By considering an explicit dis-
cretisation and relating it to wavelet shrinkage, we end up with shrinkage rules
where all channels are coupled. Figure 1.8 illustrates that this diffusion-inspired
shrinkage of colour images leads to a more convincing behaviour at edges where
all channels remain synchronised.

1.5 Wavelets with Higher Vanishing Moments

Up to now we have only considered relations between Haar wavelet shrinkage and
nonlinear diffusion with diffusivities depending on first order derivatives. In this
section, we will see that there exists also a relation between one step of translation
invariant wavelet shrinkage with wavelets having m > 1 vanishing moments and
explicit difference schemes of diffusion-like equations whose diffusivities include
m-th order derivatives. To our knowledge these relations have not been considered
in the literature before.

For the sake of simplicity, we restrict our attention to the periodic setling, i.e.,
in the following all indices are taken modulo V. We are concemed with wavelet
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filters A* := (R, ..., kY, _,), 1 = 1,2 having the perfect reconstruction property
My—1 Mi=1
( SoomR + > h}chi_l) = do. (1.31)
k=0 k=0
Moreover, we assume that h' has m > 1 vanishing moments:
Mi—|
ST Eh =0, r=0,..m-l, (1.32)
k=0
My—1
S Emhy = ym # 0. (1.33)
k=0

Examples of such filiers are for m == 1 the Haar filter pair

o._ 1 1, 1
=5, W=

with v, = —1/+/2, and for m = 2 the Daubechies filter pair

(1,-1) (1.34)

R = #(1+\/§,3+v§,3—~/§,1-\/§), (1.35)
Bl o= 4\f( 1+ V3, 3—\/1'1,—3—v’§,1+\/§) (1.36)

with vz = /3 / /2. Then the three steps of wavelet shrinkage applied to the signal
f g (f':}1 - fN— |J read as follows;

» Analysis step: For j = 0,..., N — 1, we compute

My—1 N-1
Z R fiss = D hoifis (1.37)
k=0
Ml'_l N=-1
di = 3 Bhferi = D bkl (1.38)
k=0 k=0

« Shrinkage step: For § = 0,..., N — | we shrink the highpass coeflicients
d;as Sp(d;),7=0,...,.N-1

« Synthesis step: For j =0,..., N — 1, we compute

My—1 M; -1
Uy == ( > hicjk+ Z ki Se(d, - k)) (1.39)

Assume now that the samples fi := f(kh) with & := 1/N were taken from a
sufficiently smooth periodic function with period 1. Then we obtain by the Taylor
expansion that

o= 3 B s ah) + o), (1.40)

=0
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Since h' has m vanishing moments, it follows with (1.38) that
My—-1

:l
4 = Z O Z KThL + O(A™)
r=0
}‘rrr.
= S (Ihyym + O(R™Y), (1.41)
Thus,
FM Ry = ——d; + O(h). (1.42)
Similarly, we conclude that
1).”; ‘ﬂ’fl 1
o= 2, s 00, (143)

Let us now consider a higher-order dlffusmn-hke equation with periodic boundary
conditions:

u = ((g(lu‘m)i)u(m))(m) , (1.44)
w(x, 0} = f(x), (1.45)
w0) = (1), r=0,...,2m—-1 (1.46)

We approximate the inner and outer m—th derivatives by (1.42) and (1.43),
respectively. This results it

wiih) ~ ST %L"‘l (==

'y h —k ) dj—k' (1‘47)

Finally, the approximation of w; by a forward difference with time step 7 leads to
an iterative scheme whose first step reads

) (=1mm)?
uj e fj+ (*‘\r hm)2 Z hk (‘ J i

Since our filter pair has the perfect reconstruction property (1.31), we have with
Sy(s} = sin (1.39) that u; = ;. Thus, ugl) can be rewritten as

My—1 M1
(Z heik+ Y hidix
k=0
—1)™(m!)? td;_x
-(1+2»r( (ﬁ{ih@’)",} g("r:;;m" ))) (1.49)

Comparing this equation with (1.39) we see that the signal obtained by wavelet
shrinkage coincides with those of the first step of our iterative scheme if

Sy (3—3‘-—5) =g (“"hm N g(|s[)) . (1.50)

m! 77t T

)d,-_k. (1.48)
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This fundamental relation generalises (1.21). It gives the connection between the
shinkage function Sp of single scale, shift-invariant wavelet shrinkege with m
vanishing moments and the “diffusivity” g of the diffusion-like PDE (1.44) of or-
der 2m. For 1 = 1 il coincides with our result (1.21) for Haar wavelet shrinkage.
For m = 2 we obtain

S (% ) (2{, ol |)) (151

1.6 Summary

The goal of this chapter was to give a survey on connections between two
discontinuity-preserving paradigms for signal and image denocising: wavelet
shrinkage and nonlinear diffusion [iltering. Unlike most other researchers in this
field we focuscd on discrete connections. It turned out that the wavelet and the
diffusion community can indeed learn much from each other.

Focusing on soft Haar wavelet shrinkage and space-discrete TV diffusion, we
showed that diffusion filters can benefit from wavelet shrinkage: It was possible
to derive wavelet-inspired schemes for TV diffusion that are explicit, absolutely
stable, do not require regularisations in order to cope with singularities, and per-
form favourably.

On the other hand, investigating fully discrete schemes for nonlinear diffusion
filtering and its higher-order generalisations allowed us to find a general rela-
tion between its diffusivity and the shrinkage function of shift-invariant wavelet
shrinkage on a single scale. This led to diffusion-inspired shrinkage functions
with competitive performance, io shrinkage rules with improved rotation invari-
ance, and to coupling stralegies for wavelet shrinkage of colour images. Hence,
also wavelet methods can benefit from diffusion methods.

These connections give rise to the question whether it is also possible to design
hybrid methods that benefit from both worlds by attempting to combine the ef-
ficiency of wavelet sirategies with the quality of diffusion methods. They can
be either regarded as iterated shift-invariant wavelet shrinkage methods, or as
multiscale diffusion filters. First experiments confirm that this is indeed an inter-
esting class of methods [587]. Performing a theoretical analysis of the connections
between single-step multiscale procedures and iterated single scale methods, how-
ever, still leads to a lot of challenging questions. They are a topic of our current
research.
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Chapter2

Total Variation Image Restoration:
Overview and Recent Developments

T. Chan, S. Esedoglu, F. Park and A. Yip

Abstract

Since their introduction in a classic paper by Rudin, Osher and Fatemi
[695], total variation minimizing models have become one of the most pop-
ular and successful methodology for image restoration. More recently, there
has been a resurgence of interest and exciting new developments, some
extending the applicabilities to inpainting, blind deconvolution and vector-
valued images, while others offer improvements in better preservation of
contrast, geometry and textures, in ameliorating the staircasing effect, and
in exploiting the multiscale nature of the models. In addition, new computa-
tional methods have been proposed with improved computational speed and
robustness. We shall review some of these recent developments.

2.1 Introduction

Variational models have been extremely successful in a wide variety of restoration
problems, and remain one of the most active areas of research in mathematical
image processing and computer vision. By now, their scope encompasses not only
the fundamental problem of image denoising, but also other restoration tasks such
as deblurring, blind deconvolution, and inpainting. Variational models exhibit the
solution of these problems as minimizers of appropriately chosen functionals. The
minimization technique of choice for such models routinely involves the solution
of nonlinear partial differential equations (PDEs) derived as necessary optimality
conditions.

Perhaps the most basic (fundamental) image restoration problem is denoising.
It forms a significant preliminary step in many machine viston tasks, such as ob-
ject detection and recognition. It is also one of the mathematically most intriguing
problems in vision. A major concern in designing image denoising models is to
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preserve important image features, such as those most easily detected by the hu-
man visual system, while removing noise. One such important image feature are
the edges; these are places in an image where there is a sharp change in image
properties, which happens for instance at object boundaries. A great deal of re-
search has gone into designing models for removing noise while preserving edges;
recently there has also been a lot of effort in preserving other fine scale image fea-
tures, such as texture. All successful denoising models take advantage of the fact
that there is an inherent regularity found in natural images; this is how they at-
tempt to tell apart noise and actual image information. Variational and PDE based
models make it particularly easy to impose geometric regularity on the solutions
obtained as denoised images, such as smoothness of boundaries. This is one of
the main reasons behind their success,

Total variation based image restoration models were first introduced by Rudin,
Osher, and Fatemi (ROF) in their pioneering work [695] on edge preserving image
denoising. It is one of the earliest and best known examples of PDE based edge
preserving denoising. It was designed with the explicit goal of preserving sharp
discontinuities (edges) in images while removing noise and other unwanted fine
scale detail. Being convex, the ROF model is one of the simplest variational mod-
els having this most desirable property. The revolutionary aspect of this model is
its regularization term that allows for discontinuities but at the same time disfa-
vors oscillations. [t was originally formulated in [695] for grayscale imagery in
the following form:

inf f Vul. @2.1)
Jalu—f)2de=0? Jq

Here, £ denotes the image domain (for instance, the computer screen), and is
usually a rectangle. The function f(x) : @ — R represents the given observed
image, which is assumed to be corrupted by Gaussian noise of variunce ¢2. The
constraint of the optimization forces the minimization to take place over images
that are consistent with this known noise level. The objective functional itself is
called the fotal variation (TV) of the function u(z); for smooth images it is equiv~
alent to the £.' norm of the derivative, and hence is some measure of the amount
of oscillation found in the function u{x). Optimization problem (2.1} is equiva-
lent to the following unconstrained optimization, which was also first infroduced
in [695]:

inf A — Y de. 2.2
o L1l [ (22)

Here, A > 0 is a Lagrange multiplier. The equivalence of problems (2.1) and (2.2)
has been established in [162]. In the original ROF paper [695] there is an itera-
tive numerical procedure given for choosing A so that the solution u(z) obtained
solves {2.1).

We point out that total variation based energies appear, and have been pre-
viously studied in, many different areas of pure and applied mathematics. For
instance, the notion of total variation of a function and functions of bounded
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varjation appear in the theory of minimal surfaces. Tn applied mathematics, to-
tal variation based models and analysis appear in more classical applications such
as elasticity and (luid dynamics. Due to ROF, this notion has now become central
also in image processing.

Over the years, the ROF model has been extended to many other image restora-
tion tasks, and has been modified in a variety of ways to improve its performance.
In this article, we will concentrate on some recent developments in tolal variation
based image restoration research. Some of these developments have led to new
algorithms, and others to new models and theory. While we try to be compre-
hensive, we are of course limited to those topics and works that are of interest to
us, and that we are familiar with. In particular, we aim to provide highlights of a
number of new ideas that include the use of different norms in measuring fidelity,
applications to new image processing tasks such as inpainting, and so on. We also
hope that this article can serve as a guide to recent literature on some of these
developments.

2.2 Properties and Extensions

2.2.1 BV Space and Basic Properties

The space of functions with bounded variation (BV) is an ideal choice for mini-
mizers to the ROF model since BV provides regularity of solutions but also allows
sharp discontinuities (edges). Many other spaces like the Sobolev space W1! do
not allow edges. Before defining the space BV, we formally state the definition of
TV as:

[ivs =sup{ / JV-gdx | g € CHOR™, fg(x)] < wxen} 23)
¢ 1]

where f € L'(2) and @ C R™ is a bounded open set. We can now define the
space BV as {f € L'() | [,,|Vf] < co}. Thus, BV functions amount to L'
functions with bounded TV semi-norm. Moreover, through the TV semi-norm
there is a natural link between BV and the ROF model.

Given the choice of BV (1) as the appropriate space for minimizers of the ROF
model (2.2), there are the basic properties of existence and uniqueness to settle.
The ROF model in unconstrained form (2.2) is a strictly convex functional, hence,
admits a unique minimum. Moreover, it is shown in [162] that the equality con-
straint f,,(u — f)?dx = o? in the non-convex ROF model (2.1) is equivalent
to the convex inequality constraint [, (u — f)?dx < ¢2. Hence, the non-convex
minimization in (2.1} is equivalent to a convex minimization problem which un-
der some additional assumptions is further equivalent to the above unconstrained
minimization (2.2).

For BV functions there is a useful coarea formulation linking the total vari-
ation to the level sets giving some insight into the behavior of the TV norm,
Given a function f/ € BV(S}) and v € IR, denote by {f =~} the set:
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{x € R?| f(x) =~}. Then, if f is regular, the TV of f can be given by:

f;lvﬂ zf: f{fzy} ds d-. 24

Here, the term |, (=) ds represents the length of the set {f = +}. The formula
states that the TV norm of f can be obtained by integrating along ali contours of
{f = +} for all values of ~. Thus, one can view TV as controlling both the size
of the jumps in an image and the geometry of the level sets.

2.2.2 Multi-channel TV

Total variation based models can be extended to vector valued images in various
ways.

An interesting generalization of TV denoising to vector valued images was
proposed by Sapiro and Ringach [704]. The idea is to Lhink of the image u :
R?2 — R™ gg a parametrized two dimensional surface in R™, and to use the
difference between eigenvaiues of the first fundamental form as & measure of
edge strength. A variational model results from integrating the square root of the
magnitude of this difference as the regularization term,

Blomgren and Chan [98] generalized total variation regularization to vectorial
data as the Euclidean norm of the vector of (scalar) total variations of the compo-
nents. This generalization has the benefit that vector valued images defined on the
line whose components are monotone functions with identical boundary condi-
tions all have the same energy, regardless of their smoothness. This implies good
edge preserving properties.

Another interesting approach generalizing edge preserving variational denois-
ing models to vector valued images is due to Kimmel, Malladi, and Sochen [473].
They regard the given image u(z) : B2 — R™ as a surface in R™12, and
propose an area minimizing flow (which they call Beltrami flow) as a means of
denoising it.

2.23 Scale

The constant A that appears in the ROF model plays the role of a “scale pa-
rameter”. By tweaking A, a user can select the level of detail desired in the
reconstructed image. In this sense, A in (2.2) is analogous to the time variable in
scale space theories for nonlinear diffusion based denoising models. The geomet-
ric interpretation of the regularization term in (2.2) given by the co-area formula
suggests that A determines which image features are kept based on, roughly
speaking, their “perimeter to area™ ratio.

The intuitive link between A and scale of image features can be exactly verified
in the case of an image that consists of a white disk on a black background. Strong
and Chan [770] determined the solution of the ROF functional for such a given

image f(z). It turns out to be (1 — 5=)f(x) for A > ¥. In particular, there is
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always a loss of contrast in the reconstruction, no matter how large the fidelity

constant A is. And when A < 1, the solution is identically 0, meaning that the

madel prefers to remove disks of radius less than % This simple but instructive
example indicates how to relate the parameter A to the scale of objects we desire to
preserve in reconstructions, Strong and Chan’s observation has been generalized
to other exact solutions of the ROF model in [69].

The parameter A can thus be used for performing multiscale decomposition of
images: Image features at different scales are separated by minimizing the ROF
energy using different values of A. Recent research along these lines is described
in section 2.5.3.

2.3 Caveats

While using TV-norm as regularization can reduce oscillations and regularize
the geometry of level sets without penalizing discontinuities, it possesses some
properties which may be undesirable under some circumstances,

Loss of contrast. The total variation of a function, defined on a bounded do-
main, is decreased if we re-scale it arcund its mean value in such a way that the
difference between the maximum and minimum value (contrast) is reduced. In
[770, 567], the authors showed that for any non-trivial regularization parameter,
the solution to the ROF model has a contrast loss. The exampie of a white disk
with radius R over a black background discussed in 2.2.2 is a simple illustration.
In this case, the contrast loss is inversely proportional to f(xz)/r before the disk
merges with the background, In general, reduction of the contrast of a feature by
h > 0 would induce a decrease in the regularization term of the ROF model by
O(h) and an increase in the fidelity term by O(h?) only. Such scalings of the
regularization and fidelity terms favors the reduction of the contrast.

Loss of geometry. The co-area formula (2.4) reveals that, in addition to loss of
contrast, the TV of a function may be decreased by reducing the length of each
level set. Tn some cases, such a property of the TV-norm may lead to distortion
of the geometry of level sets when applying the ROF model. In {770], Strong and
Chan show that, for circular image features, their shape is preserved at least fora
small change in the regularization parameter and their location is also preserved
even they are corrupted by noise of moderate level. In [69], Bellettini et al. extend
Strong and Chan’s results and show that the set of all bounded connected shapes
C that are shape-invariant in the solution of the ROF model is precisely given by

{c c RY : C convex,dC € €' and ess sup kac(p) < |00|/|C|} ;
pEIC

Here, |C| is the perimeter of C, |C| is the area of C and kac(p) is the curvature

of 8C at p. The downside of the above characterization is that the ROF model

distorts the geometry of shapes that do not belong to the shape-invariant set. For

instance, it has been shown in [567], if the input image is a rectangle R over a
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background with a different intensity, then cutting a corner {an isosceles triangle)
with height k of the rectangle would induce a reduction in the TV-norm by O(h)
and an increment of the fitting term by O(h?), thus favoring cutting the comers.

Staircasing. This refers to the phenomenon that the denoised image may look
blocky (piecewise constant). In the 1-D discrete case, there is a simple explanation
to this — the preservation of monotonicity of neighboring values. Such a property
requires that, for each i, if the input f = {f;} satisfies f; < fipq (resp. =),
then the output must satisfy u; < w4 (resp. =) for any A In the case where f
satisfies f;, -1 < fi, = fio+1 < fi,+2 for some iy, which often happens when
the true signal is monotonically increasing around ig and is corrupted by noise but
w satisfies w1 < Ui, = Ujpp1 < Ug,a2, then, visually, v looks like a staircase
at iy but a monotonically increasing signal is more desirable. In the 2-D case, the
monotonicity preserving property is no longer true in general, for instance, near
corners of image fealures, However, away from the corners where the curvature
of the level sets is high, staircase is ofien observed.

Loss of Texture. Although highly effective for denoising, the TV norm cannot
preserve delicate small scale features like texture. This can be accounted for from
a combination of the above mentioned geometry and contrast loss caveats of the
ROF model which have the tendency to affect small scale features most severely.

2.4 Variants

Total variation based image reconstruction models have been extended in a variety
of ways. Many of these are modifications of the original ROF functional (2.2),
addressing the above mentioned caveats.

2.4.1 Iterated Refinement

A very interesting and innovative new perspective on the standard ROF model has
been recently proposed by Osher et al. [615]. The new framework involved can be
generalized to many convex reconstruction models (inverse problems) beyond TV
based denoising. When applied to the ROF model in particuiar, this new approach
fixes a number of its caveats, such as loss of contrast, and promises even further
improvements in other significant aspects of reconstruction, such as preservation
of textures.

The key idea is to compensate for the loss of signal in reconstructed images by
minimizing the ROF model repeatedly, each time adding back the signal removed
in the previous iteration. Thus, starting with a given fo{x) := f(z), repeat for
i=1,2,3,...

1. Set u;(x} = argmin,, of (2.2) using f;(x) as the given image.

2. Set fip1(x) = fi(x} + (f — uj(m)).
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When applied to the characteristic function of a disk, this algorithm recovers it
perfectly after a finite number of iterations without loss of contrast.

The algorithm can be generalized to inverse problems of the form inf,, J{u) +
II{w, f}. Here, J is a convex regularization term, and II (u, f) a fidelity term that
is required to be convex in « for every f. In this setting, the iterative procedure
above becomes: Starl with ug = 0, repeat for j = 1,2,3, ...

i1 = arg lrti)n H{w, f) + J(w) — J{uy} = (D J(u;), w — uy}. (2.5

Here, D, J(u;) denotes the derivative of the functional J at the j-th iterate u;,
and (-, ) represents the duality pairing. If J is non-differentiable (as in the ROF
model), then D,,.J(u;) needs to be understood as an element of the subgradient
AJ(u;) of J at u;. It is clear from formula (2.5) that the algerithm involves re-
moving from the regularization term J(u) its linearization at the current iterate
TJ’.J;.

Formula (2.5) suggests the following definition; For p € &.J(w), let
DP(u,v) = J{u) — J{v) — (p,u—v)

be the generalized Bregman distance associated with the functional J. It defines
a notion of distance between two functions » and v because it satisfies the condi-
tions D¥(u,v) > 0 for all u, v, and DP(u, «} = 0. However, it is not a metric as
it needs not be symmetric or satisfy a triangle inequality.

A number of important general theorems have been established in [615],
including:

* As long as the distance of the reconstructed image u; to the given noisy
f{x) remains greater than o (the noise variance), the iteration decreases the
Bregman distance of the iterates u; to the frue (i.c. noise-free) image.

« H(u;, f) decreases monotenically and tends to 0 as j — oo.

In [615], further results can be found about the convergence rate of the iterates u;
to the given image f under certain regularity assumptions on f.

2.4.2 I Fitting

A simple way to modify the ROF model in order to compensate for the loss of
contrast is to replace the squared L2 norm in the fidelity term in (2.2) by the L?
norm instead. The resulting energy is

/ﬂ[vu|+,\fn|u—f1m. 2.6)

Discrete versions of this model were studied for one dimensional signals by
Alliney [14], and in higher dimensions by Nikolova [602]. In particular, it has
been shown to be more effective that the standard ROF model in the presence of
certain types of noise, such as salt and pepper. Recently, it has been studied in the
continuous setting by Chan and Esedoglu [165].
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Although the modification involved in (2.6) seems minor, it has certain desir-
able consequences. First and foremost, the scaling between the two terms of (2.6)
is different from the one in the original ROF model (2.2), and leads to contrast in-
variance: If u(x) is the solution of (2.6) with f(«) as the given image, then cu(z)
is the solution of {2.6) with ¢ f{z) as the given image. This property does not hold
for (2.2). A related consequence is: If the given image f(x) is the characteristic
function of a set {2 with smooth boundary, then the image is perfectly recovered
by model (2.6) for large enough choices of the parameter A. This is in contrast to
the behavior of the ROF model, which always prefers Lo remove some of the orig-
inal signal from the reconstructed one, and preserves a very small class of shapes.
This statement can be generalized beyond original images given by characteristic
functions of sets to show that a wide class of regular images are left unmodified
by mode! (2.6) for large enough choices of the parameter A,

In addition to having better contrast preservation properties, model (2.6) also
turns out to be useful for the denoising of shapes. A natural variational model
for denoising a shape S, which we model as a subset of R™, is the following:
mingeg- Per(E) + A|lS & Y|, where the first term in the energy represents the
perimeter of the set X, and the second represents the volume of the symmetric
difference of the sets .5 and ¥ weighted by the scale parameter A > 0. This model
is exactly the one we would get if the minimization in the standard ROF model
(2.2) is restricted to functions of the form u(x) = 1n(z) and f(z) = 1g(z).
Unlike the standard ROF problem, however, this minimization is non-convex. In
particular, standard approaches for solving it run the risk of getting stuck in local
minima. The total variation model with L' fidelity term (2.6) turns out to be a
convex formulation of the shape denoising problem given above. Indeed, the fol-
lowing statement has been proved in [165]: Let () be a minimizer of (2.6) for
f(x) = 1g(x). Then, for a.e. i € [0,1], the set B(p) = {= € RY : uz) > pu}
is a minimizer of the shape denoising problem. Thus, in order to solve the ron-
convex shape denoising problem, it suffices to solve instead the comvex problem
(2.6} and then take (essentially) any level set of that solution.

2.4.3  Anisotropic TV

In [299], Esedoglu and Osher introduced and studied anisotropic versions of the
ROF model (2.2). The motivation is to privilege certain edge directions so that
they are preferred in reconstructions. This can be useful in applications in which
there may be prior geometric information available about the shapes expected in
the recovered image. In particular, it can be used to restore characteristic functions
of convex regions having desired shapes.

The idea proposed in [299] is to replace the total variation penalty term in (2.2)
with the following more general term:

f@(Vu) = sup /vu(:.r:)divg(:r:) dx
f geCH{IER™) 40
glx)eWy¥zeql
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where the function ¢ : R" — R is a convex, positively one-homogeneous
function that is O at the origin, and the set W, is defined as follows:

Wi ={yeR”:z -y <ofz)Vr e R"}.

For example, if ¢(x) == |z|, then the set W, turns out to be simply the unit ball
{y € RY : |y} < 1}, and the definition of [, ¢(Vu) given above reduces Lo Lhe
standard definition of total variation. Another simple example in two dimensions
is ¢(x, ) = |z| + ly|, in which case the set W, is just the closed unit square.

The set W defined above is the Wulff shape associated with the function ¢. It
determines the shapes that are compatible with the anisotropy ¢. For example, it is
proved in [299] that if (=) is the characteristic function of (a scaled or translated
version of) the Wulff shape W,, then the solution % is a constant multiple of
f{x). This result generalizes that of Strong and Chan [770] and Meyer in [567]
that concern the case of a disk for the standard ROF model.

If W, is a convex polygon in two dimensions, then its sides act as preferred
edge directions for the reconstructions obtained by the anisotropic ROF model.
Indeed, it is proved in [299] that if u{z) = lx(x} is a solution 10 the anisotropic
model, and if I is known to be a set with piecewise smooth boundary 8%, then
9% should include a line segment parallel to one of the sides of W; wherever its
tangent becomes parallel to one of those sides. On the other hand, one can show
that 8% can include corners that are different than the ones in W,

In addition to being of interest for applications, the results of [299] are also of
theoretical interest. Indeed, these anisotropic variants of total variation constitute
an infinitude of equivalent regularizations (in the sense that the semi-norms they
define arc equivalent), yet the properties of their minimizers have been shown to
be extremely different. That suggests that in general one should not expect an
image restoration model to perform quite as well as the original ROF model just
because its regularization term is equivalent to total variation.

2.4.4 HYY Regularization and Inf Convolution

As discussed in Section 2.3, staircasing is one of the potential caveais to watch for
when using total variation based regularization. It occurs even more severely in
reconstructions by functionals that have a non-convex dependence on image gra-
dients; one famous example is the Perona-Malik scheme, which can be thought
of as gradient descent for such an energy functional whose dependence on image
gradients grows sublinearly at infinity. The TV mode] is borderline convex: its
dependence on image gradients is linear at infinity. This feature, which is respon-
sible for its ability te reconstruct images with disconfinuities, is also responsible
for the staircasing effect.

A natural approach to overcoming the staircasing effect is to make the recon-
struction model more convex in regions of moderate pradient (away [rom the
edges). A functional designed to accomplish this was proposed by Blomgren,
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Mulet, Chan, and Wong [99]. It has the form
/ |V POV g 4 X / {u~ F)Y* ds. 2.7
I 0

Here, the function P(£} : R — [0,2] is to be chosen so that it monotonically
decreases from 2 to 0. A simple example is P(£) = fz’g’

The idea behind (2.7) is that the model automatically adapts the gradient expo-
nent to fit the data, so that near edges it behaves exactly like the ROF model, and
away from the edges it may behave more like the Dirichlet energy. This leads to
much smoother reconstructions in regions of moderate gradient and thus prevents
staircasing. On the other hand, unlike the ROF model, (2.7) is non-convex and
difficult to analyze.

Another approach to preventing staircasing is to introduce higher order deriva-
tives into the energy; the cost of moderately high but constant gradient regions
is zero for such terms. On the other hand, a functional that depends on higher
order derivatives would not maintain edges in its reconstructions, 1l is therelore
necessary to once again allow the model to decide for itself where to use the total
variation norm and where to use higher order derivative norms. One of the earli-
est proposals of this kind was made by Chambolle and Lions in [162], where they
introduced the notion of inf convolution between two convex functionals, In this
approach, an image u is decomposed into two parts: 14 = 4y + u2. The u; compo-
nent is measured using the total variation norm, while the second component 2y
is measured using a higher order norm. The precise decomposition of u into these
two components is part of the minimization problem. More precisely, one solves
the following variational problem that now involves two unknowns:

inf [ (V| + a|DPug| + Maug + ug — [)? dz.
w1z S
Minimizing this energy requires the discontinuous component of the image to be
allocated to the w1 component, while regions that are well approximated by mod-
erate but nearly constant slopes get allocated to the ug component at very little
cost. This prevents staircasing to a remarkable degree in the one dimensional ex-
amples presented in [162]. Another method that utilizes total variation and higher
order derivatives to suppress staircasing is by Chan, Marquina, and Mulet in [168].
Despite the important contributions listed above, staircasing remains one of the
challenges of total variation based image reconstructions.

2.5 Further Applications to Image Reconstruction

2.5.1 Deconvolution

The TV norm can also be used to regularize image deblurring problems. The
forward degradation model for a blurred and noisy image can be realized as: f =
k +u + n, where f is the observed (degraded) image, % a given point spread
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function (PSF), u the clean image, » an additive noise (often Gaussian), and *
denoting the convolution operator.

The task of restoring an image v« under the above degradation is known as
deconvolution if the PSF £ is known or blind deconvolution if there is little or
no known a priori information on the PSF. If we reptace the u in the uncon-
strained ROF model (2.2) with the convolulion & * u, then we arrive at the TV
deconvolution model:

min ||k s w = J1B + Aulullzy- @8

Here, as in the ROF model (2.2), the regularization parameter A, is related to the
statistical signal to noise ratio (SNR).

Extending the work by You and Kaveh [911], Chan and Wong introduce in
[176] the TV blind deconvolution model;

Jmin [k w = fl3+ Xallullry + AclE| oy 29
where the additional parameter Ag controls the spread of k. Moreover, solu-
tions {w{Ag)} of (2.9) form a one parameter family corresponding to Az. The
authors also propose an alternating minimization algorithm for minimizing the
above energy (2.9) which we denote by £(u,4&). Here, given u™ one solves
for k"1 := argming £'(u", k), then given £°*!, one solves for u"t! =
arg min, F(u, k™*!) alternatingly. Such an alternating procedure is shown to be
convergent when the TV-norm is replaced by the Jf!-norm.

A key advantage of using TV regularization [or blind deconvolution is that the
TV norm can recover sharp edges in the PSF (e.g. motion blur or out-of-focus
blur) while not penalizing smooth transitions.

2.5.2 Inpainting

Image inpainting refers to the filling-in of missing or occluded regions in an image
based on information availabie on the observed regions. A common principle for
inpainting is to complete isophotes (level sets) in a natural way — such a philos-
ophy is also true for professional artists to restore damaged ancient paintings. To
this end, several successful inpainting models have been proposed such as Mas-
nou and Morel [553] and Bertalmio et al. [79]. We refer the reader to [171] and the
references therein for other more recent models. Among these models, Chan and
Shen proposed in [171] a TV inpainting model which uses variational methods in
inpainting. The basic ingredient is to solve the boundary value problem:

min/ |V subject to U=y inQ2\ D. (2.10)
v oJa
Here, D is the missing region to be inpainted, ug is the observed image whose

value in I is missing. Thus, the TV inpainting method simply fills-in the missing
region such that the TV in £2 is minimized. The use of TV-norm is desir-
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able because it has the effect of extending level sets into [ without smearing
discontinuities along the tangential direction of the boundary of D.

With a slight modification of (2.10), simultancous inpainting (in D) and
denoising {in 2\ D) may be done as follows:

minf V| + )\f (1 — 'rtn}zd.?:. 2.11)
¥ In D

Define a spatial varying parameter A.{x) whichis 0 in I? and is A in @\ D. Then
the Euler-Lagrange equation for (2.11) can be written as

Vu
-V - (W) -+ QAE('LL = UO) =}
which has the same form as that for the ROF model, except the regularization
is switching between 0 and A in different regions. Thus, it is easy to modify an
implementation of the ROF model to the TV inpainting model. Finally, we remark
that some variants of (2.11) such as curvature-driven diffusion (172] and Euler’s
Elastica [167] have been proposed which complete isophotes in a smoother way.

2.5.3 Texture and Multiscale Decomposifions

Another way of looking at denoising problems is by separating a given noisy
image f into two components to form the decomposition: f =« + v, where u is
the denoised image and v = f — u the noise. In [567], Meyer adopts this view for
the purpose of texture extraction where v captures not only noise but also texture,
To do this, he proposed a new decomposition model:

inf {E(u) = / [Vul + A, f=u+ v} (2.12)
" 0
where the * norm is given by:

o = _inf (Vo toPlom [v=2u01 + 00} 13)

g={g1.92
and the v component lies in what is essentially the dual space of BV, the & space:
G={v|v=20g1+89:, 0,9 € L°R")}. (2.14)

Here, v is an oscillatory function representing texture and the x norm is designed
to give small value for these functions. Thus, the main idea in (2.12) is to try to
pull out texture by controlling |}v||.. Experiments in [843, 619] (discussed below)
visually show that the model (2.12) extracts texture better than the standard ROF
model.

In practice, the model (2.12) is difficult to implement due to the nature of the
* norm. Vese and Osher [843] were the first to overcome this difficulty where
they devise an L? approximation to the norm || - ||,. In a later work [619], Osher
et al. propose another L? approximation based on the  ~! norm and introduce a
resulting fourth order PDE. Both works numerically demonstrate the effectiveness
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of the model {2.12) for texture extraction and also give some further applications
to denoising and deblurring.

In a related work, Aujol et al. {36] propose a decomposition algorithm based
on Meyer’s work [567] where they [urther decompose an imageas [ = u +v-+w
where u, v, and w are cartoon, texiure, and noise respectively.

Given the scale properties of the ROF model seen in section 2.2.3, it is natu-
ral to consider a multiscale decomposition based on the ROF medel. Multiscale
decompositions are of particular interest since one may want to extract image
features of many different scales (either coarse or fing). One such multiscale de-
composition is Tadmor et al. [784] and proceeds in a hierarchical manner, After
choosing an initial Ay = A to remove the smallest oscillation in a given image f,
the regularization parameters {\;}, A; = 27\ induce a sequence of dyadic scales
for j = 1,..., & If we denote by u; the solution to the ROF model (2.2) for
parameter A;, then f has the decomposition:

F=un Fun +un, +---+uy +u,-

with v, denoting the k-th stage residual vy, = f — (uy, +ur, +ur, + -+ +
uy, ). Furthermore, the authors show that ||v,, |l. — Oas k - oo, Hence ||f -
Ef:o ux, il — 0as & — oo and the decomposition converges to f in the * norm,
A related work based on merging dynamics of a monotonicity constrained TV
model can be found in [169].

2.6 Numerical Methods

There have been numercus numerical algorithms proposed for minimizing the
ROF objective. Most of them fall into the three main approaches, namely, di-
rect optimization, solving the associated Euler-Lagrange equations and using the
dual variable explicitly in the solution process to overcome some computational
difficulties encountered in the primal problem. We will focus on the latter two
approaches.

2.6.1 Artificial Time Marching and Fixed Point Iteration

In their original paper {695], Rudin et al. proposed the use of artificial time march-
ing to solve the Euler-Lagrange equations which is equivalent to the steepest
descent of the energy function. More precisely, consider the image as a function
of space and time and seek the steady state of the equation

ou _ Vu
at {Vu|g
Here, |Vulg := 1/{Vu| + §? is a regularized version of |Vu| to reduce degen-

eracies in flat regions where |Vu| = 0. In numerical implementation, an explicit
time marching scheme with time step Al and space step size Az is used. Under

) - 2A(u — f). (2.15)
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this method, the objective value of the ROF model is guaranteed to be decreasing
and the solution will tend to the unique minimizer as time increases, However,
the convergence is usuatly slow due to the Courant-Friedrichs-Lewy (CFL) con-
dition, At < cAx?|Vu| for some constant ¢ > 0 (see [546]), imposed on the size
of the time step, especially in flat regions where | Vu| = 0. To relax the CFL con-
dition, Marquina and Osher use, in [546], a “preconditioning” technique to cancel
singularities due to the degenerate diffusion coefficient 1/|Vu/:

% — vy {v - (l%‘m) ~ 22— ,r)} 2.16)
which can also be viewed as mean curvature motion with a forcing term —2A(u —
f). Explicit schemes suggested in [546] for solving the above equation improve
the CFL to At < eAz? which is independent of |Vu|.

To completely get rid of CFL conditions, Vogel and Oman proposed in [849]
a fixed point iteration scheme (FP) which solves the stationary Euler-Lagrange
directly, The Euler-Lagrange equation is linearized by lagging the diffusion co-
efficient and thus the (i + 1)-th iterate is obtained by solving the sparse linear
equation:

Vué-f—l ) .

v-( — ] = Mutt - f) =0, @17
[Vurlg

While this method converges only linearly, empirically, only a few iterations are

needed to achieve visual accuracy. In practice, one typically employs specifically

designed fast solvers to solve (2.17) in each iteration.

2.6.2 Duality-based Methods

The methods described in Section 2.5.1 are based on solving the primal Euler-
Lagrange equation which is degenerate in regions where Vu = 0. Although
regularization by 1/|Vu|s avoids the coefficient of the parabolic term becom-
ing arbitrarily large, the use of a large enough g for effective regularization will
reduce the ability of the ROF model to preserve edges.

Chan et al. in [166], Carter in [151] and Chambolle in [160] exploit the dual
formulation of the ROF model By using the identity ||x|| = supjg<; % - g for
vectors in Euclidean spaces and treating g as the dual variable, one arrives at the
dual formulation:

sup ffV»gdw—L/(V-g)zdx (2.18)
geCHO, BN Ja 2x Jo

where B? is the unit disk in &2, Once g is obtained, the primal variable can
be recovered by . = f — A~1V . g. A promise of the dual formulation is that
the objective function is differentiable in g, unlike the primal problem which is
badly behaved when YV« = 0. However, the optimization problem becomes a
consirained one which requires additional complexity to solve.
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The approach used in [166] solves for u and g simultaneously. Its derivation
starts by treating the term Vu/| V| in the primal Euler-Lagrange equation as an
independent variable g, leading to the system:

-V-g+AMu—f)=0, g|Vulg — Vu = 0.

The above system of nonlinear equations is solved by Newton's method and
quadratic convergence rate is almost always achieved. In the Newton updates,
one may combine the two equations 1o eliminate the need to update g, thus the
cost per iteration is as cheap as the fixed point iteration (2.17). Empirically, this
primal-dual method is much more robust than applying Newton’s method directly
to the primal problem in « only.

In [160], Chambolle devised an efficient algorithm solely based on the dual
formulation (2.18). By carefully looking at the Euler-Lagrange equation for
{2.18) and eliminating the associated Lagrange multipliers, one arrives at solv-
ing H(g} — {H(g)| = 0 where H{g) = —V(f — A1V - g) is the negative of
the gradient of the primal variable «. The update formula for g used in [160] is a
simple relaxation g"*! = ?:_:; (gg,.“ )I where 7 > 0 is chosen to be small enough
so that the iteration converges.



Chapter3

PDE-Based Image and Surface
Inpainting

M. Bertalmio, V. Caselles, G. Haro, and G. Sapiro

Abstract

Inpainting, the technique of modifying an image in an undetectable form,
is as ancient as art itself. The goals and applications of inpainting are nu-
merous, from the restoration of damaged paintings, photographs and films,
to the removal of selected undesirable objects. This chapter is intended to
present an overview of PDE based image inpainting algorithms, with em-
phasis in models developed by the authors. These models are based on the
propagation of information along the image isophotes and on the minimiza-
tion of an energy functional which follows a relaxation of the Elastica model.
This last variational formulation can be easily extended to 3D to fill holes in
surfaces, a problem closely related to image inpainting. Basic PDE-based ap-
proaches to inpainting share the shortcoming that they cannot restore texture,
so combinations of these algorithms with texture synthesis techniques are
also discussed. Some results are shown for applications such as removal of
text, restoration of scratched photographs, removal of selected objects and re-
construction of 3D surfaces with holes. Other recent approaches to the image
inpainting problem are also briefly reviewed.

3.1 Introduction

The modification of images in a way that is non-detectable for an observer who
does not know the original image is a practice as old as artistic creation itself.
Medieval artwork started to be restored as early as the Renaissance, the motives
being often as much to bring medieval pictures “up to date” as to fill in any gaps
[298, 852]. This practice is called retouching or inpainting. The object of inpaint-
ing is to reconstitute the missing or damaged portions of the work, in order to
make it more legible and to restore its unity {298].

The need to retouch the image in an unobtrusive way extended naturally from
paintings to photography and film. The purposes remain the same: to revert dete-
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rioration (¢.g., cracks in photographs or scratches and dust spots in film), or to add
or remove elements (e.g., removal of stamped date and red-eye from photographs,
the infamous “airbrushing” of political enemies [475]).

Digital techniques are starting to be a widespread way of performing inpainting,
ranging from altempts to fully automatic detection and removal of scratches in
film [484, 485, 486], all the way to software tools that allow a sophisticated but
mostly manual process.

This article is intended to be an overview of PDE based image inpainting al-
gorithms, with emphasis in those models which were developed by the authors
and that motivated a significant amount of effort in the area {some of the major
contributions by other groups in image inpainting are briefly reviewed as well).

We should first note that classical image denoising algorithms do not apply to
image inpainting. In common image enhancement applications, the pixels contain
both information about the real data and the noise {e.g., image pius noise for
additive noise), while in image inpainting, there is no significant information in
the region to be inpainted. The information is mainly in the regions surrounding
the areas to be inpainted. There is then a need to develop specific techniques to
address these problems.

Mainly three groups of works can be found in the literature related to digital
inpainting. The first one deals with the restoration of films, the second one is
related to texture synthesis, and the third one is related to what we would call
geometric inpainting.

Kokaram et al. [484, 485, 486] use motion estimation and autoregressive mod-
els to interpolate losses in films from adjacent frames. The basic idea is to copy
into the gap the right pixels from neighboring frames. The technique can not be
applied to still images or to films where the regions to be inpainted span many
frames.

There are many works on texture synthesis, of which the most notable are based
on Markov Random Fields after the pioneering work of Efros and Leung [297].
These technigues synthesize texture which is both stationary and local [869]. In
[297] a new texture is incrementally synthesized by considering similar neighbor-
hoods in the sample texture. Igehy and Pereira [416] replace image regions with
synthesized texture [392, 745] according to a given mask. Ashikhmin [32] adds
the constraint that the synthesized texture match a sample image. This yields the
effect of rendering a given image with the texture appearance of a training tex-
ture, Efros and Freeman [296] introduce a simple and effective texture synthesis
technique that synthesizes a new texture by stitching together blocks of existing
sample texture. The resulis depend on the size of a block which is a parame-
ter tuned by the user that varies according to the texture properties. Hirani and
Totsuka [400] combine frequency and spatial domain information in order to fill a
given region with a user-selected texture. We will later show how texture synthesis
can be combined with PDE-based inpainting techniques to obtain state-of-the-art
algorithms.

Finally, let us mention the geometric approaches used for filling-in the missing
information in a region of the image. A pioneering contribution in the recovery
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of plane image geometry is due to D. Mumford, M. Nitzberg and T. Shiota [604].
They were not directly concerned with the problem of recovering the missing
parts of the image, instead, they addressed the problem of segmenting the image
into objects which sheuld be ordered according to their depth in the scene. The
segmentation functional should be able to find which are the occluding and the
occluded objects while finding the occluded boundarics. For that they relied on
a basic principle of Gestalt’s psychology: our visual system is able to complete
partially occluded boundaries and the completion tends to respect the principle
of good continuation [453]. When an object occludes another the occluding and
occluded boundaries form a particular configuration, called I'-junction, which is
the point where the visible part of the boundary of the cccluded object terminates.
Then our visual system smoothly continues the occluded boundary between T'-
junctions. In [604], the authors proposed an energy functional 1o segment a scene
which took inte account the depth of the objects in the scene and the energy of
the occluded boundaries between T-junctions. They assumed that the completion
curves should be as short as possible and should respect the principle of good
(smooth} continuation. Thus, to define the energy of the missing curve they had
to give a mathematical formutation of the above principles. Given two T-junction
points p and ¢ and the tangents 7, and 7, to the respective terminating edges, they
proposed as smooth continuation curve Eulet’s elastica, i.e., the curve minimizing
the energy

fc (o + BK*)ds @3.1)

where the minimum is taken among all curves C joining p and ¢ with tangents 1,
and 7, respectively, x denotes the curvature of C, ds its arc length, and o, 8 are
positive constants. Let us mention that Euler’s elastica has been frequently used
in computer vision ([406, 511, 735, 795, 796, 821, 892, 893, 8917) and a beautiful
account on it can be found in [589].

Inspired by the elastica, Masnou and Morel [551, 553, 352] proposed a
variational formulation lor the recovery of the missing parts of a grey level two-
dimensional image and they referred to this interpolation process as disocclusion,
since the missing parts can be considered as occlusions hiding the part of the
image we want to recover. Their algorithm performs filling-in by joining with
geodesic curves the points of the isophotes arriving at the boundary of the region
to be inpainted.

Mumford’s work on the Elastica Model and Masnou and Morel’s contribu-
tion inspired Bertalmio, Sapiro, Caselles and Ballester [79] to propose an edge
propagation PDE for the Image Inpainting lormulation. Replicating basic art con-
servators techniques, a third order PDE propagates the level lines arriving at the
missing region, and the completion tends to respect the principle of good con-
tinuation. Bertalmio , Bertozzi and Sapiro [77] showed the connection of this
equation with Navier-Stokes equations, as well as a parallel among Image Pro-
cessing and Fluid Dynamics quantities. On the other hand, Ballester, Bertalmio,
Caselles, Sapiro and Verdera [46] introduce a relaxation of the Elastica functional
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which then can be minimized with a system of coupled PDE’s: this is the first
variational approach to the inpainting problem that complies with the principle of
good continuation and is topologically independent.

The elastica has inspired most variational approaches to geometric image in-
painting [46, 48, 47, 167, 544] and we shall discuss in detail some of them in
Section 3.3. In particular, the approach in [47, 840] can be used for inpainting
3D images and surface hole reconstruction. Some other PDE methods for surface
hole reconstruction will be discussed in Section 3.4.

This article is organized as follows. Section 3.2 discusses inpainting by prop-
agation of informalion: PDE methods that propagate image quantities and do not
explicitly minimize any functional. Section 3.3 discusses variational methods for
inpainting: the inpainting problem is solved as the minimization of an energy
functional. In Section 3.4 we show how can we use the Laplace and AMLE
{Absolutely Minimizing Lipschitz Extension) interpolators in surface hole re-
construction, None of these purely-PDE-based methods can restore texture, so in
Section 3.5 we discuss how to adapt those algorithms to deal with texture. Finally,
in Section 3.6 we bricfly mention some other recent works on the inpainting prob-
lem. We finish with Appendix 3.8 where we collect some notation and definitions
used in the Lext.

3.2 Inpainting by Propagation of Information

3.2.1 Image Inpainting

In [79], Bertalmio, Sapiro, Caselles and Ballester propose to translate into math-
ematica! form the most basic techniques used by art conservators and restorators
to inpaint, introducing also the art term ‘inpainting’ to the Image Processing and
Graphics community.

Conservators at the Minneapolis Institute of Arts were consulted for this work
and made it clear that inpainting is a very subjective procedure, different for each
work of art and for each professional. There is no such thing as “the” way to
solve the problem, but the underlying methodology is as follows: (1.) The global
picture determines how 1o fill in the gap, the purpose of inpainting being to restore
the unity of the work; (2.) The structure of the area surrounding the gap {1 is
continued into it, contour lines are drawn via the prolongation of those arriving
at the gap boundary d€; (3.) The different regions inside 2, as defined by the
contour lines, are filled with color, matching those of 92; and {4.). The small
details are painted {e.g. little white spots on an otherwise uniformly blue sky): in
other words, “texture” is added.

The algorithm in [79] simultaneously, and iteratively, performs the steps (2.)
and (3.) above. The gap  shrinks progressively by prolonging inward, in a
smooth way, the lines arriving at the gap boundary 9. The image beyond 92 is
not taken into account, and texture is not dealt with (yet) with this first technique.
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The following exposition considers the grayscale case; for color images, the
authors apply their method to each of the three channels separately, but using a
color model like CIE — Lab instead of R(GG B, to avoid color arlifacts.

The digilal inpainting procedure will construct a family of images u(7, j, n} :
[0, M] x {0, N« N — R such that {4, §,0) — up(4, 7) and iy, o w3, §, ) =
ur(4,7), where ug(Z, §) is the image to inpaint and ug(4, {) is the output of the
algorithm (inpainted image).

Any general algorithm of that form can be written as:

w4, §) = w4, §) + Atul (4, 5), (4, 5) € 0 (3.2)

where the superindex n denotes the inpainting “time” n, {4, j) are the pixel coor-
dinates, At is the rate of improvement and u*(%, j) stands for the update of the
image u™ (%, 7). Note that the evolution equation runs only inside {2, the region to
be inpainted.

To design the update 4} (4, 7), the authors call L™ (i, j) the information that
needs to be propagated into the gap, and N7 (i, j) the propagation direction:

uP (i) = VL™, 5) - N™(i, 3), (3.3)

With equation {3.3), they estimate the information L™(¢, y) of the image and
compute its change along the N» direction. Note that when the algorithm con-
verges, ©"+!(i,7) = u™(4, ) and from (3.2) and (3.3) we have that VL" (3, ) -
Nn (4,7) = 0, meaning exactly that the information L has been propagated in the
direction N.

Bearing in mind that the goal is to propagate contours and that the Laplacian has
been frequently used as an edge detector, the authors choose for L™ {3, 7) a mono-
tone increasing function of the Laplacian, the most simple one being the Laplacian
itself. Thus, the proposed choice is L™(4, ) = Au™(3, 7). Other edge detectors
like Canny’s edge detector which leads to the choice L™ = ({V2u"(Vu™), Vu™)
could be used. |

For the field IV, the natural choice is the isophotes directions. This is a boot-
strapping problem: having the isophotes directions inside {2 is equivalent to
having the inpainted image itself, since we can easily recover the gray level image
from its isophote direction field (see [460],[639]). They use then a time varying
estimation of the isophotes direction field: ﬁ(i, o) = V4tur(d, §)

In terms of a continuous process, the inpainting procedure can be expressed as
a third-order PDE:

dulx,y,t

QoD _ G(aute,p ) Viun ) Ve € 0
To ensure a correct evolution of the direction field, a diffusion process is

interleaved with the image inpainting process described above. This diffusion cor-
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Figure 3.1, Restoration of an old photograph.
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Figure 3.2. Removal of superimposed text.

responds to the periodical curving of lines to avoid them from crossing each other,
as art conservators do. The authors use anisotropic diffusion, [15, 642], in order
to achieve this goal without losing sharpness in the reconstruction:

O
57 @y t) = kl@,y, 1) [Vulz,y, )], V(z,y) € 0 (3.5

where & is the Buclidean curvature of the isophotes of «.

For the numerical implementation, a forward-time upwind scheme is used for
(3.4) and a forward-time centered-space scheme for (3.5}, see [618, 695] for de-
tails . To speed up the process, a non-linear scaling is applied to v, in (3.4):
u; = sign(u,) |u¢[%. With a time step At of 0.1, one step of anisotropic diffu-
sion is run every fifieen sieps of inpainting. Convergence is typically achieved
after a few thousands iterations, depending on the size of ) and the initial condi-
tion inside it. The process may be sped-up by the use of multi-resolution for wide
gaps, and by pre-processing by running a few steps of the Heat Equation inside 2
to get a good initial condition:

%;f(:ﬂ, y,t) = Aufs,y,1),¥(z,y) € 2 3.6)

See examples in figures 3.1 and 3.2. [n both cases, the algorithm is supplied
only with the image to restore and a binary mask that specifies the region to re-
store. In figure 3.1, a deteriorated photograph is restored, the mask having been
manually selected with a simple paintbrush-like program by a non-specialist.
Observe that details in the nose and right eye of the middle girl could not be
completely restored. This is in part due to the fact that the mask covers most of
the relevant information, and there is not much to be done without the use of high
level prior information {e.g., the fact that it is an eye). These minor errors can be
corrected by the manual procedures mentioned in the introduction, and still the
overall inpainting time would be reduced by orders of magnitude.

Figure 3.2 shows a color example: results are sharp and without color artifacts.
This image is very ill-suited for texture synthesis algorithims, since the image gap
§t covers most of the image, which also has a very diverse background.

The technique presented above does not require any user intervention, once the
region to be inpainted has been selected. The algorithm is able to simultaneously



40 Bertalmio, Caselles, Haro & Sapiro

fill regions surrounded by different backgrounds, without the user specifying
“what to put where.” No assumptions on the topology of the region Lo be in-
painted, or on the simplicity of the image, are made. The algorithm is devised
for inpainting in structured regions (e.g., regions crossing through boundaries),
though it is not devised to reproduce textured areas.

3.2.2 Navier-Stokes Inpainting

In [77], the authors propose an approach that uses ideas from classical fluid dy-
namics to propagate isophote lines continuously from the exterior into the region
10 be inpainted. The main idea is to think of the image intensily as a “stream
function’ for a two-dimensional incompressible flow. The [.aplacian of the im-
age intensity plays the rolc of the vorticity of the fluid; it is transported into the
region to be inpainted by a vector field defined by the stream function. The result-
ing algorithm is designed to continue isophotes while matching gradient vectors
at the boundary of the inpainting region. The method is directly based on the
Navier-Stokes equations for fluld dynamics, which has the immediate advantage
of well-developed theoretical and numerical results. Existence and stability of
the solution to the proposed algorithm follow from the Navier-Stokes theory, and
the implementation is based on numerical methods used by the fluid dynamics
community.
In [77], the authors start by re-introducing the inpainting method of [79]:

wy = Viu-VAu (3.7)

and noting that its dynamics are those of a transport equation that convects the
image intensity u along level curves of the smoothness, Awu. This can be seen
by noting that (3.7) is equivalent to Du/Dt = 0 where D/Dt is the material
derivative 3/0t 4+ v - V for the velocity field v = V1 Au. In particular u is
convected by the velocity field v which is in the direction of level curves of ihe
smoothness Au.

Next, the authors introduce an analogy to transport of vorticity in incompress-
ible fluids. Incompressible Newtonian fluids are governed by the Navier-Stokes
equations, which couple the velocity vector field © to a scalar pressure p [195):

w+v-Vo=~-Vp+vV3y, V.v=0 (3.8)

In two space dimensions, the divergence free velocity field v possesses a stream
function ¥ satisfying V1% = . In addition, in 2D the vorticity, w = ¥V x 2,
satisfies a very simple advection diffusion equation, which can be computed by
taking the curl of the first equation in (3.8) and using some basic facts about the
geometry in 2D:

w + v Vw = V0. (3.9)
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Note here that in 2D the vorticity is a scalar quantity that is related o the stream
function through the smoothness or Laplacian operator, A% = w. In the absence
of viscosity v = {), we obtain the Euler equations for inviscid flow.

Both the inviscid and viscous problems, with appropriate boundary conditions,
are globally well-posed in two space dimensions, Solutions exist for any smooth
initial condition and they depend continuously on the initial and boundary data
[500].

In terms of the stream function, equation (3.9) implies that steady state inviscid
flows must satisfy

Vil . VAV =0 (3.10)

which says that the Laplacian of the stream function, and hence the vorticity,
must have the same level curves as the stream function. The analogy to image
inpainting in the previous section is now clear: the stream function for inviscid
fluids in 2D satisfies the same equation as the steady state image intensity equation
(3.7).

The authors then procceed to present a ‘Navier-Stokes” based method for image
inpainting. In this method the fluid dynamic quantitics have the following parallel
to quantities in the inpainting method:

[ Navier-Stokes | Image inpainting |
stream function ¥ Image intensity u
fluid velocity v = V¥ | isophote direction V' u
vorticity w = —AW smoothness w = Awu

where they denote by w the smoothness Au of the image intensity. Instead of solv-
ing a transport equation for w as in (3.7), they solve a vorticity transport equation
for w:

Sw /ot +v-Vw =V - (g(|Vuw|)Vw), (3.11}

where the function g allows for anisotropic diffusion of the smoothness w.
The image intensity u which defines the velocity field v = V+tu in (3.11) is
recovered by solving simultanecusly the Poisson problem

Au=w, tlsgng=up. (3.12)

For ¢ = 1, the direct numerical solution of of (3.11-3.12) is a classical way
to solve both the dynamic fluid equations and to evolve the dynamics towards a
steady state solution [644].

When using any PDE-based method to do inpainting, the issue of boundary
conditions becomes very important. In order to produce a result which, to the
eye, does not distiguish where the inpainting has taken place, we must at the
very least propagale both the image intensily and direction of the isophoie lines
continuously into the inpainting region.

This means that any PDE-based method involving the image intensity u must
enforce Dirichlet (fixed «) boundary conditions as well as a condition on the di-
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rection of Vu on the boundary. Immediately we see that this poses a problem
for lower-order PDE-based methods. Indeed, any first or second order PDE (in-
cluding anisotropic diffusion) for the scalar « could typically only enforce one of
these boundary conditions, the result being an inpainting with discontinuities in
the slope of the isophote lines, or a method with a jump in « itself on the bound-
ary [172]. From a mathematical point of view, to fix this, one can either go to a
higher order equation for w, as in [79], that requires more boundary conditions, or
consider a vector evolution for Vu, which is the idea of the Navier-Stokes method.

The Navier-Stokes analogy guarantees, in a very natural way, continuiuty of'the
image intensity function u and its isophote directions across the boundary of the
inpainting region. First, consider a solution of the Navier-Stokes equation (3.8)
in primitive variables form satisfying the classical no-slip condition v = O on the
boundary f2. This condition guarantees two features: (a) that the stream function
¥ must be constant on the boundary, since the boundary is trivially a streamline
of the flow; (b) that the direction of the fluid velocity v is always tangent to the
boundary.

A general form of the no-slip boundary condition, for which well-posedness is
known, is to prescribe the velocity vector v = vy on the boundary. This would be
the natural choice for a moving boundary. Specifying the velocity on the boundary
is equivalent to specifying both the normal and tangential derivatives of the stream
function ¥ on the boundary, since v = V¥, However, specifying the tangential
derivative of ¥ determines ¥ on the boundary up to a constant of integration, by
simply integrating around the boundary with respect to its arc length. Similarly
this information determines the direction of flow on the boundary. The result is
that if we solve the Navier-Stokes equations with v fixed on the boundary, we
obtain a solution with a stream function ¥ and velocity field v both of which
are continuous up to the boundary. For the Navier-Stokes inpainting method, we
inherit the continuity across the boundary. For example, suppose we fix V51w
on the boundary. Then solving the Navier-Stokes inpainting equation with these
boundary conditions will not only result in continuous isophotes, but also will
produce an image intensity function that is continuous across 9§,

As for well-posedness and uniqueness of solutions, the authors note that with-
out the presence of viscosity in the method there is not a unique steady-state
solution. They expect that Navier-Stokes based inpainting may inherit some of
the stability and uniqueness issues known for incompressible fluids, although the
effect of anisotropic diffusion is not clear.

3.3 Variational Models for Filling-In

This section is a review of variational models for filling-in. We start with the
elastica-based disocclusion model introduced by Masnou and Morel [551, 553].
Then we present the filling-in approach by joint interpolation of vector fields and
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gray levels proposed by Ballester et al. in [46, 48, 47]. The connections of this
model with T. Chan and J. Shen approach [167] are then considerad.

3.3.1 Elastica-based Reconstruction of Level Lines

We review the main assumptions of Masnou’s approach to disocclusion [551,
553]. An image is usually modeled as a function defined in a bounded domain
D C RV (typically N = 2 for usual snapshots, N = 3 for medical images or
movies) with values in R¥ (5 = 1 lor grey level images, or k = 3 for color
images). For simplicity, we shall consider only the case of grey level images.
Any real image is determined in a unique way by its upper (or lower} level sets
Xouw={w € D:u(z) > A} (Xiu:= {2 € D: u(zx) < A}). Indeed we have
the reconstruction formula

u(z) =sup{A € R:z € X)u}. (3.13)

The basic postulate of Mathematical Morphology prescribes that the geometric
information of the image wu is contained in the family of its level sets [371, 723],
orin a more local formulation, in the family of connected components of the level
sets of u [154, 723, 726]. We shall refer to the family of connected components
of the upper level sets of u as the topographic map of u.

In the case that u is a function of bounded variation in D C RZ ie,
u € BV (D) (see Appendix and [19, 301, 926]), its tepographic map has a de-
scription in terms of Jordan curves {18). With an adequate definition of connected
components, the essential boundary of a connected component of a rectifiable
subset of R2 consists, modulo an * null set, of an exterior Jordan curve and an
at most countable family of interior Jordan curves which may touch in a set of
H'-null Hausdorff measure [18]. Since almost all level sets Xy u of a function u
of bounded variation are rectifiable sets, its essential boundary, &* Xy, consists
of a family of Jordan curves called the level lines of u. Thus, the topographic map
of « can be described in terms of Jordan curves. In this case, the monotone family
of upper level sets X u suffices to have the reconstruction formula (3.13) which
holds almost everywhere [371].

Let D be a square in R? and 2 be an open bounded subset of I? with Lipschitz
continuous boundary. Suppose that we are given an image ug : [\ 0 [a. 5],
0 < @ < b. Using the information of up on D\ﬁ we want to reconstruct the image
up inside £, We shall call 2 the hole or gap. We shall assume that the function
g is a function of bounded variation in D \ €. Then the topographic structure
of the image uy outside Qis given by a family of Jordan curves. Generically, by
slightly increasing the hole, we may assume that, for almost all levels A, the level
lines of X ,uq transversally intersect the boundary of the hole in a finite number
of points [551). Let us call A C R the family of such levels. As formulated by

Masnou [551, 553, 532], the disocclusion problem consists in reconstructing the
topographic map of g inside 2. Given A € A and two points . ¢ € X ug N O8O
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whose tangent vector at the level line X ,uy is 7, and 7, respectively, the optimal

completion curve proposed in [5351, 553] is a curve I contained in 0 minimizing
the criterion

/F (c+ BKIPYAH + (1, 10(p)) + (02 0(4) (3.14)

where x denotes the curvature of ', 7r(p) and 7r(g)) denote the tangents to '
at the points p and g, respectively, and (75, 70(p)), (74, T0(g)) denote the angle
formed by the vectors 7, and v (p}, and, respectively, for q. Here «, /4 are positive
constants, and p > 1. The optimal disocclusion is obtained by minimizing the
energy lunclional

>

where F denotes the family of completion curves associated to the level set
Xug. As we noted above, the family F), is generically finite, thus the sum in
(3.15) is generically finite. In [551, 553] the authors proved that for each p > 1
there is an optimal disocclusion in {2 and proposed an algorithm based on dynamic
programming to find optimal pairings between compatible points in X yup N OO
for p = 1, curves which are straight lines, thus finding in this case the minimum of’
(3.15) [551, 552]. In [20] the authors proposed a slight variation of the disocclu-
sion energy functional (3.15). First, they observed that by computing the criterion
Jr(e + B|x|P)dH" not only on the completion curve but also in a small piece of

([ e+ Bl + (o) + (o)) r (319
& TeF,

the associated level line outside ﬁ, the criterion (3.15) can be written as

[

where now the curves in F), are union of a completion curve and a piece of level
ling of 4g in £2 Y, Q for a domain £ O . This requires that the level lines of ug
are essentially in W2# in \ Q. Then, at least for €2 functions w, (3.16) can be
written as

f (+ BIsI7)dH" ) d (3.16)

20 TEeR,

P

VL S (.17

div —
|Vl

f [Vl + 8

with the convention that the integrand is 0 when |Vu| = 0, In {20], the authors
considered this functional when the image domain D and the hole §2 are subsets in
RN whit N > 2 and they studied the relaxed functional, proving that it ceincides
with

f / {0+ BlHpuzy Py dHN 1 dt (3.18)
Buzi]

for functions uw € C2(Q), N > 2,p > N — 1, and H{y>¢) denotes the mean
curvature of {u > £].
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Figure 3.3. The hole and the band

3.3.2 Joint Interpolation of Vector Fields and Gray Levels

In [46, 48, 471, Ballester et al. proposed to fill-in the hole Q using both the gray
level and the vector field of tangents (or normals) to the level lines of the image
outside the hole. Let 12 be a hyperrectangle in RN, N > 2, which represents the
image domain, and let £, §) be two open bounded domains in R with Lipschitz

boundary. Suppose that QeeD (for simplicity, we assume that ) does not
touch the boundary of the image domain D). Suppose that the image u is given

in D\ Q.Let B:=0Q \ €2, The set B will be called the band around {2 (see Figure
3.3).

To fill-in the hole O we shall use the information of g contained in B, mainly
the gray level and the vector field of normals (or tangents) to the level lines of ug
in B. We attempt to continue the level sets of ug in B inside {} taking into account
the principle of good continuation. Let 8, be the vector field of directions of the
gradient of ug on D\ €, i.e, fp is a vector field with values in R? satisfying
Go(x) - Dug(z) = |Dug{zx}| and |fp(x)] < 1. We shall assume that () has a
trace on 941,

We pose the image disocclusion problem in the following form: Can we extend
{(in a reasonable way) the pair of functions (g, &) from the band 2 \ Q to a pair

of functions {u, #) defined inside £} ? Of course, we will have to precise what we
mean by a reasonable way.

The data up is given on the band B and we should constrain the solution « to
be near the data on B. The vector field ¢ should satisfy ¢ - v = 8y - %, 8] < 1
on € and should be related to « by the constraint & - Du = | Du, i.e., we should
impose that # is related to the vector field of directions of the gradient of u. The
condition |6{zx)| < 1 should be interpreted as a relaxation of this. Indeed, it may
happen that #(x) = 0 (flat regions) and then we cannot normalize the vector field
to a unit vector (the ideal case would be that # = lf;;:J’ u being a smooth function
with Du{x) # 0 for all x € Q). Finally, we should impose that the vector field
fp in D \ © is smoothly continued by ¢ inside 2. Note that if # represents the
directions of the normals to the level lines of v, i.e., of the hypersurfaces u(z) =
A, A € R, then div{#) represents its mean curvature. We shall impose the smooth
continuation of the levels lines of up inside {2 by requiring that div (8) € L*(2),
p>1.
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Interpreting the elastica functional in this framework, we propose to minimize
the functional

Minimize / |div{®)|P{y + BIVK *u|)dr
Ja

Bl <1, |Du|—@-Du=0in5 @1
lu| < M
u=ugin B, 0-v*50 = g,

wherep > 1,7 > 0,3 > 0, g0 = 8g- ", K denotes a regularizing kernel of class
C" such that K (z) > 0 a.e., M = sup, . [uo(c)|, v** and denotes the outer unit
normal to §2. The convolution of D with the kernel K in {3.19) is necessary to
be able to prove the existence of a minimum of (3.19).

The functional can be interpreted as a formulation of the principle of good
continuation and amodal completion as formulated in the Gestalt’s theory of
vision.

Comments on model (3.19).
A) Could we fill-in the hole without the band? To discuss this suppose that we
are given the image of Figure 3.4.a, which is a gray band on a black background
partially occluded by a square (2. We suppose that the sides of the square hole
§t are orthogonal to the level lines of the original image. In these conditions, the
normal component of the vector field 8y outside €2 is null at 8. Thus if the
boundary data is just fg - | 55> We would have that 6 - VQ] s = 0. In particular,
the vector field & = 0 satisfies this condition. If we are not able to propagate ¢
inside 2 this may become an unpleasant situation, since this would mean that we
do no propagate the values of u at the boundary. If we write the functional (3.23)
with @ = 0, @ = 1, it turns out to be the Total Variation [695]. The decision of
extending the gray band or filling-in the hole with the black gray level would be
taken as a function of the perimeter of the discontinuities of the function in the
hole, Then the result of interpolating Figure 3.4.a, using Total Variation would
be that of Figure 3.4.b, and not the one in Figure 3.4.c, because the interpolating
lines in Figure 3.4.b, are shorter than the ones in Figure 3.4.c. To overcome this
situation we introduce the band around the hole. The introduction of the band
permits us to effectively incorporate in the functional the information given by
the data ug and the vector field 0 outside Q. In Figure 3.4.b, we display the result
of the interpolation with & = 0 on . InFi gure 3.4.c, we display the result of the
interpolation using (3.23), which takes into account the band B and computes the
vector field # in (2.

In practice, we suppose that only a narrow band around the hole influences
what happens inside the hole, even if, in principle, it could be extended to all the
known part of the image.
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Figure 3.4. a) Left: a strip with a hole. b) Middle: image disocclusion obtained using Total
Variation, ¢) Right: Image disocclusion obtained using functional (3.23).

B) X N = 2 and u is the characteristic [unciion of the region enclosed by a
smooth (C?) curve C then the terms

8 fn |div(6)[?| Du| + o fﬂ | Dy (3.20)

can be written as j'c(a + f3|klP)ds, where & is the Euclidean curvature (of the
level-sets). If p = 2, this coincides with Euler’s elastica (3.1). Euler’s elastica
{3.1) was proposed in [604] as a technique for removing occlusions with the goal
of image segmentation, since this criterion yields smooth, short, and not too curvy
curves. In terms of characteristic functions, Euler’s elastica can be written as

f|Vu| (a—i—,ﬁ‘ div (lv |) ) (3.21)

In [70], it was shown that the elastica functional is not lower semicontinuous. As
shown in [20], the functional proposed by Masnou and Morel {551, 552, 553] can
be interpreted as a relaxation of it, since it integrates functionals like the elastica
along the level lines of the function «. Our functional can be also considered as
a relaxed formulation of the encrgy of the elastica. For that, we introduced # as
a independent variable, and we tried to couple it to « by imposing that 8 - Du =
{ Du|. Finally, let us say that to be able to prove the existence of a minimum for
{3.23) we have convolved the Du term of (3.20). This permits to avoid some of
the mathematical difficulties involved in the study of (3.21).

C) Both coefficients vy and 3 are required to be > 0. The positivity of + gives us an
LP bound on div(f) which implies the regularity of the level lines of u ([554, 47]).
Ifwedonottake § > 0,8 = 0 ae. on B (or on (1) in the image of Figure 3.4.a
{since @ = 0 except on some curves) and the term [, |div(6}|Pdz would produce
a null value since div(#) = 0. If 3 > 0 we take into account the contribution of
a power of the curvature on the level line corresponding to the boundary of the
object.

D) In practice, functional (3.23) is used to interpolate shapes, i.e., io interpolate
level sets. The image is decomposed into upper level sets [ug > A], which are
interpolated using (3.23) to produce the level sets X« of a function u, which is
reconstructed inside {I by using the reconstruction formula (3.13). To guarantee
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! |

Figure 3.5. a) Left: a double cross with holes. b) Right: reconstructed image using func-
tional (3.23). Observe that due to our choice of upper level sets to decompose and
reconstruct the image, the white bar goes above the black ones,

that the reconstructed level sets correspond to the level sets of a function wu, they
should satisfy that X, 1w C Xyu. In practice, we force our solution to satisfy
this property.

Functional (3.23) could be used to interpolate functions. But, discontinuities of
the image have a contribution to the energy which is proportional Lo the jump. This
gives different weights to discontinuities of difTerent sizes and, &5 a consequence,
they are not treated in the same manner, When taking level sets, we treat all shapes
equally, and the parameters of the functional weight geometric quantities (like
length, total curvature) and decide which interpolation is taken as a function of
them. This approach is less diffusive than directly interpolating the gray levels. A
numerical implementation of (3.19) is possible using the scheme in [46].

E) The choice of decomposing the image ug into upper level sets, interpolating
them and reconstructing the function w, introduces a lack of symmetry (of upper
level sets versus lower level sets). This can be seen in Figure 3.5. Figure 3.5.a
displays the image to be interpolated. The choice we made gives Figure 3.5.b as
solution, favoring that the object whose level is 210 goes above the object whose
level is 0. But, in that case, the “true” information is lacking and we selected one
of the possible reasonable solutions,

3.3.3 A Variant and Mathematical Results

For the purposes of mathematical analysis and comparison with the implemen-
tation in [167], we write the boundary conditions in (3.19) in a relaxed way.
In particular, the condition u = ug in B will add the term 5 |u — wo|? dz in
(3.19). To be able to handle noisy data in B and to include the boundary condition
g ynian = gy in a variational framework, we add the term fﬁ |Pu) — f 50 G0t

Before continuing, let us make precise the functional analytic model for u and
§. We assume that £2 is a domain of class C. We assume that ug € BV (D \ ),
and #y : D\ ©2 — RY is the vector field of directions of the gradient of g, i.c.,
a vector field 0y € L=(D \ , RN), such that |0y| < 1 and

div 8y € LP(B), Bo - Dug = [Dug|, (3.22)
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where the last identity is understood in the sense of measures in B (therefore,
a.e.).

Let us denote by £,(€2, B, 0y) the space of couples (u, #} where u € BV{(S1),
¢ is 2 bounded measurable vector field from Q to RV, |4] < 1, div (§) € LP(Q),
6. Du = |Dul, L3(B), 8- v = gy on 90

If {u, 8) € £,(, B, 8y) we define

Ep(u, ) [ |div(#}P (v + 3|V K = ul)dx

(3.23)
/ | Dus| — rx/ ot —i—/\f |1t — wp|? d:
=1y

where v, 0, A >0,8>0,p>1,¢q = 1.
We propose to interpolate the pair (#,w} in £ by solving the minimization
problem
Minimize Ep(u,8), (u,8) € Ep(8), B, fq) (3.24)
Theorem, Assume that sup, a0, |g(%) Afp>1Lg>2 1 v, >0 and
B = 0, then there is a minimum (u, ) € £,(Q, B, 6y) for the problem (3.24).

The case p = 1 is is particularly interesting, in that case we should consider
div # to be a Radon measure and we do not know if an existence theorem holds in
this case.

The assumption ||goljs < 1 does not permit the level lines of the topographic
map of the image to be tangent to the boundary of the hole Q. To ensure it, we may
slightly change the topographic map by replacing the level lines which are near to
the tangent one by a constant gray level, and this gives us more freedom to choose
the vector ficld #y. On the other hand, the assumption ||go||oc < 1 permits to prove
the convergence (after subsequence extraction) of the minima of the functionals

Minimize [ﬂ |aiv (L) ‘p(qr + BIVE * ul)de+

V2 + | Dul?

a/ [ D —af ant + Af | — ug|dz (3.25)
! a0 B

Du fy] D’U,g 0

— = .
€* + | Dul? €2 + | Dugl?

That is, the minimizers of (3.25) converge (modulo a subsequence) to a minimum
of (3.24) as ¢ — 0+. For that, we proved in [47] the existence of minimizers for

both problems and we studied the two operators div ( Jg:| ) and div (ﬁ)

which appear in (3.23) and (3.25), respectively. Notice that the convergence of
minima of (3.25) to minima of (3.24) establishes a connection between the nu-
merical approach of T. Chan and J Shen [167] which is based on the direct
minimization of (3.25) and ours. Let us also mention that the authors of [167]
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Figure 3.6. Left: Four circles. Right: Reconstructed image.

compared model (3.25) with previous curvature driven diffusion and Total Varia-
tion based inpaintings [172, 171]. Their analysis in [172] showed that a curvature
term was necessary to have a connectivity principle.

Let us finally mention that a regularity result for the level lines of minimizers
0f (3.19) or {3.23) has been proved in [47].

3.3.4 Experimental Results

Examples in 2D. In the following experiments we show the results of the joint in-
terpolation of gray level and the vector field of directions using functional (3.19).
The experiments have been done with p = 1 and/or p = 2. The results are quite
similar and, unless explicitly stated, we display the results obtained with p = 1.

Figure 3.6 displays an image made of four circles covered by a square (left im-
age) and the result of the interpolation (right image) obtained with p = 2. Figure
3.7.a is a detail of the mouth of Lena with a hole. Figures 3.7.b displays the result
of the interpolation using (3.19), Figure 3.7.c shows the result of interpolating the
hole of Figure 3.7.a by using a simple algorithm: the value of pixels at distance
k from the boundary is the average of its neighboring pixels at distance & — 1
from the boundary. In Figure 3.7.b we see the effect of continuing the level lines
along the mouth, which is not the case in Figure 3.7.c. Figure 3.8.a is an image of
a woman with a flower. In Figure 3.8.b we have represented a hole covering the
region of the flower. In Figure 3.8.c we display the result of interpolating the hole
of Figure 3.8.b using (3.19).

Figure 3.9.a displays an image with text to be removed. Figure 3.9.b displays
the corresponding reconstructed result.

Examples in 3D. Let us describe how to use functional (3.19) to inpaint (fill-in)
holes (or gaps) on surfaces S, which we assume to be embedded in R3. To avoid
any confusion with our previous use of the word hole, let us use the word gap of
the surface. Assume, to fix ideas, that S is a smooth compact connected surface,
and M is a part of § which is unknown or could not be obtained during scanning.
Let us identify S with its known part. Let us choose a bounding box @ in R3
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Figure 3.7. a) Left: Detail of the mouth of Lena. b) Middle: Reconstructed mouth us-
ing (3.19). ¢) Right; Result of interpolating the hole in a) by means of a propagation of
neighbouring values.

Figure 3.8, a) Left: woman with flower. b) Middle: woman with a mask on the flower
representing the hole. ¢} Right: Result of interpolation using (3.19)

Figure 3.9. Removing the text on an image. a) Left: original image, b) Right: reconstructed
image.
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strictly containing the gap M and part of S (see Figs. 3.10.a, 3.10.b). Let .M be
the boundary of the gap (a curve or a set of curves in R*). Even if M is unknown,
its relative boundary in & is known. Let F be a neighborhood of & M @ defined

by
F={rec@:d(z,8§NQ) < ad{z,dM)}}, a0

where d denotes the distance. We assume that F \ (S N Q) consists of two con-
nected components, which can be identified as the two sides of the surface S.
With this information, we are able to complete an initial surface closing the gap
and determining a set A in the interior part of S, We take 1y = x4 and 6 as the
outer unit normal vector field to the known part of & in Q) [R40].

With the purpose of adapting them to our algorithm, the data, originally given
as a triangulated surface, were converted to an implicit representation in a regn-
larty spaced 3D grid. The result was visualized again as a triangulated surface.
Figures 3.10.a, 3.10.b display some particular heles with a bounding box isolat-
ing them (taken from a scanned version of Michelangelo’s David [516]). Figures
3.10.c, 3.10.e display the triangulated surface (the data) around the hole. The re-
constructed surface is displayed in Figures 3.10.d, 3.10.f. These images have been
rendered using the AMIRA Visualization and Modeling System [24].

The pioneering work [249] addressed the problem of hole filling via isotropic
diffusion of volumetric data (that is, iterative Gaussian convolution of some dis-
tance function to the known data), The approach proposed by these authors
addresses holes with complicated topology, a task very difficult with mesh rep-
resentations. Most algorithms on reconstructing surfaces from range data are
point-cloud reconstruction based and treat holes as regions with low sampling
density, thereby interpolating across them {21, 42, 76, 294, 404]. Of course, these
algorithms do not distinguish between a real hole in the data and one due to the
lack of sampling, and equally fill or fail to fill both cases in the same fashion.
Other point-cloud methods evolve a surface over time until it approximates the
data [186, 888, 918], or fit a set of 3D radial basis functions to the data, compute a
weighted sum of them and use a level set of this last function as reconstructed sur-
face [270, 150]. Mesh based methods for surface reconstruction [819, 240, 886]
can perform hole filling as a post-process or integrate hole filling into surface
reconstruction [240].

3.4 Surface Reconstruction: The Laplace and the
Absolute Minimizing Lipschitz Extension
Interpolation

In [158] we studied and classified the interpolation algorithms which satisfy a
reasonable set of axioms in terms of the solution of a partial differential equation.
Two particular examples are: the Absolutely Minimizing Lipschitz Extension,
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Figure 3.10. From top to bottom and lell to right: a) David’s left hand. b) A detail of
its hair. ¢) A zoomed detail of a) showing the triangulated surface with the hole. d) The
reconstruction of the hele in ¢) displayed as a triangulated surface. ) A zoomed detail of
b) showing the triangulated surface with the hole. f) The reconstruction of the hole in &)
displayed as a triangulated surface.

denoted as AMLE in the sequel, and the Laplacian interpolation. We study the
applicability of both of them to the problem of surface reconstruction.

We use the notation introduced in section 3.3.4. As we said there, we assume
that F \ (S N @) consists of two connected components, which can be identified
as the two sides of the surface S. By changing the sign of the distance function
in one of them, we may define the signed distance function to S N @ which we
denote by d,{x). Let us denote Q7 = Q\ F.
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The Laplacian interpolation is based on solving the PDE
—-Au =10 in Qr, (3.26)

with specified boundary data on 8¢} . Indeed, boundary data is only known in
dF N € where we should impose that u = d,. Thus, a reasonable assumption
would be to assume that

7,

0 8Qs\OF (327
lo1

where © denoles the outer unit normal to ¢@Q# \ F. Even if this boundary con-

dition is not the most reasonable one to reconstruct the surface & M ¢ {(which is

defined as &[u > (), we have used it in our experiments (see the resuit).

The AMLE interpolation ([31]) is based on solving the PDE
D*u(Du,Du} =0 inQr. (3.28)

with boundary data on dQx (here Du and D?u denote the gradient and the
Hessian matrix of u, respectively, so that in coordinates, D%u(Du, Pu) =
e affaurj B 5av). This equation can be solved with general domains and
boundary data, in particular the data can be given in a finite number of surfaces,
curves and/or points. Indeed, existence and unigueness of viscosity solutions of
(3.28) were proved in [434] for boundary data ¢ € C(8Qg). Moreover, as it
is proved in [434], the viscosity solution of (3.28) is an absolutely minimizing
Lipschitz extension of ¢, i.e., u € W1 (Qx) N C(Q) and satisfies

H}r)u”[‘m(Q(;RN) < HD'w“Lm(Qr;RN) (329)

forall Y C Qr and w such thatu — w € W&’m (). Finally, the AM LE is lo-
cally Lipschitz continuous in () 7 [434]. Let us mention that the AMLE model was
introduced by Aronsson in [31] as the Euler-Lagrange equation of the variational
problem (3.29).

As in the case of Laplace equation (3.26), the boundary data is only known in
8F N @ where we impose that v = d, (by the results in [445] there exist ab-
solutely minimizing Lipschitz extensions of d.|arnq and satisfy (3.28) but there
is no uniqueness result for them). In practice we impose the Neumann boundary
condition {3.27) in 8Q # \ OF. We observe again that even if this boundary con-
dition is not the most reasonable one to reconstruct the surface & M @ (which is
defined as 8[u > 0]), we have used it in our experiments (see the result).

3.4.1 Experimental Results

We display the results obtained using the 3D Laplace and AMLE interpolators
on some holes of Michelangelo’s David [516]. The result are visualized again
as a triangulated surface (using the AMIRA Visualization and Modeling Sys-
tem [24]). Figures 3.11.a, 3.11.b display the original images with holes. Figures
3.11.c, 3.11.d display the result obtained using the Laplace interpolator. Figures
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Figure 3.11. From top to bottom and left to right: a} David’s left hand with a hole. b) A
detail of its hair with a hole. ¢} and d) The results obtained with Laplace interpolator. ¢)
and f) Results obtained vsing AMLE interpolator.

3.11.e, 3.11.f display the result obtamed with the AMLE. Observe that the result
obtained with AMLE interpolation is less regular.

3.5 Dealing with texture

All the PDE-based approaches to inpainting share the shortcoming that they can-
not restore texture. The notion of texture implies a repetitive pattern, a missing
portion of which may usually not be restored just by propagating the level lines
into the gap in any clever way. On the other hand, there are a number of very
good texture synthesis algorithms, which in turn do not give as good results when
applied to gaps in ’structured’ (as opposed to "textured’) regions. In this section
we will comment on two methods to perform inpainting on images with textured
and/or structured regions. Both methods use the remarkable algorithm introduced
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by Efros and Leung for texture synthesis [297], which gives excellent results for
the inpainting problem as well, so we will start by discussing this algorithm.

3.5.1 Texture Synthesis by Non-Parametric Sampling

This algorithm [297] is fully automatic and produces very good texture synthe-
sis results. It is also very well suited to natural images when the regions to be
inpainted cover a large variety of textures.

Let the region to be filled be denoted by 2. 2 will be filled, pixel by pixel,
proceeding from the border A€} inwards, in an ‘onion-peel’ fashion. Let p(i, ) be
the pixel to fill-in next. We consider a n x n neighborhood of this pixel, call it
Ni;. This neighborhood will typically contain several empty pixels. With only the
filled pixels of N;;, we build the template 7;;. Next we compare 1}; with all the
posible templates T}, centered at (2, y} and shaped like T};, that are completely
outside £2. This comparison is done by computing a distance d(z, y) between both
templates, which uses the normalized sum of squared differences {SSD) metric.
We keep the set of coordinates (z, y) for which d(x, ¥) is below a given threshold.
From this set, we randomly pick a pixel coordinate (g, ¥o), and copy the image
value I(x:q,ya) to I(4, 7). Then, pixel {4, 7) is filled and we procceed to the next
empty pixel at the boundary.

3.5.2 Inpainting with Image Decomposition

The basic idea of this algorithm [80] is presented in Figure 3.12, which shows
a real result from this approach. The original image (first row, left) is first de-
composed into the sum of two images, one capturing the basic image structure
and one capturing the texture (and random noise), second row. This follows the
work by Vese and Osher reported in [842]. The first image is inpainted follow-
ing any of the PDE-based approaches described before, while the second one is
filled-in with a texture synthesis algorithm, third row. The two reconstructed im-
ages are then added back together to obtain the reconstruction of the original data,
first row, right. In other words, the general idea is to perform structure inpainting
and texture synthesis not on the original image, but on a set of images with very
different characteristics that are obtained from decomposing the given data. The
decomposition is such that it produces images suited for these two reconstruction
algorithms. This approach outperforms both image inpainting and texture synthe-
sis when applied separately. Indeed, a separate reconstruction of missing blocks
in wireless JPEG transmission was proposed in [669].

As for the decomposition step, the authors in [842], inspired by [567], pro-
pose a model to express any given image I as the sum of two images » and v,
where u will be a sketchy or cartoon image of [ (with sharp edges) and v will
be the the remainder (a term with noise, oscillations, texture.)Expressing then
Iz, y) = ulz,y) + v(z,y) and v(z,y) = V - (11, vy), the authors in [842] pro-
pose a minimization problem to find 1, v1, v2, whose Euler-Lagrange equations
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Figure 3.12, Structure and Texture inpainting using image decomposition (see text.)



38 Bertalmio, Caselles, Haro & Sapiro

are
Vu
u = -8, ~8,00+ 2Adw(w ) (3.30)
‘ 4]
,u-ﬁ = 2)\[8 (w—T)+ 62,91 + amgg} (3.31)
1192
g i d .

For some theoretical results and the detailed semi-implicit numerical imple-
mentation of the above Euler-Lagrange equations, see [842].

3.5.3 Exemplar-based Inpainting

In this work [238], Criminisi et al. propose a variation on [297], where they
modify the fill order of the algorithm.

Instead of the ‘onion-peel’ of [297], patches along the fill front arc given a
priority value P(i, j), which determines the order in which they are filled. This
priority P(%, ) is the product of a confidence term C(i, ) and a data term D (3, §).

The confidence term C(4, ) is an average of the values of C' for the neighbors
of {4, 7}, initially, C is 0 for pixels inside {2 and 1 for pixels outside. So C gives
higher priority to pixels that have more of their neighbors already filled, and to
pixels that are closer to 911,

The data term D{1, §) is proportional to the absolute value of the scalar product
of VL1(i, j), the isophote direction at (%, j), and ﬁ@nu{ifj), the normal to the
boundary of the fill front. So D gives higher priorities to patches where there is
an isophote *flowing into’ the gap.

Finally, €1 is filled not one pixel at a time as in [297], but patch by patch, where
a patch is the intersection of a n x n window (typically n = 9) with the gap. This
speeds up the process considerably.

3.6 Other Approaches

3.6.1 Other PDE-based Models

Other PDE based models have been proposed by Chan and Shen [171, 172, 167].
In [172] the authors proposed an anisotropic diffusion model (called (CCD)) with
curvature dependent diffusion coefficient. In [171] they compared several mod-
els, namely, TV based inpainting, segmentation-based inpaintings, and the {CCD)
model. Finally, in [167], the authors proposed to minimize the Elastica model
written as in (3.21) leading to a fourth order PDE gradient descent equation.
The connection of this model with model (3.23) has been mentioned in Section
3.3.3. Esedoglu and Shen proposed in [300] an inpainting functional based on
Mumford-Sha’s functional plus some terms which approximate the Elastica.
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Inspired by the real Ginzburg-Landau equation which develeps homogeneous
areas separated by phase transition regions {that are interfaces of minimal area),
H. Grossauer and O. Scherzer proposed to use the complex Ginzburg-Landau
equation for inpainting [369]. As we did above, we denote by £ the hole to
be inpainted and we suppose that the given image uwo : D — R has been
extended in rough way to ). Normalizing g to take values in [~1,1], the au-
thors defined vy = +/1 — |up|?, and wg = (ug,vp). Then the authors solve
the equation {which corresponds to the gradient descent method applied to the
Ginzburg-Landau functional)

%‘ =Au+€i2(1 —|lu}Hu inQ, (3.33)

with initial condition w(0) = w4 and boundary condition

ulan = uolag-

As an interesting feature of (3.33) let us mention that the solution corresponding
to the image in Figure 3.5 would be the symmetric one: half gray and half black
forming an X in the hole.

Inpainting models based on probability diffusion of orientations are proposed
in [8441. Indeed, the authors define the function P(z,#) as the probability that
there is a level line passing through x with direction # and propose to compute
P(z,8) as the asymptotic state of the PDE

P, + P(cos 0,8in 8) - Vo P = aPpy + BAP in{,

where P(z,#)(cos #,sin §) represents a probability distribution for the tangent
direction. This equation also includes an spatial diffusion of the probability
P{x,8). Knowing P(x,#), the authors define the orthogonal orientation of the
level line through x as the expectation of F(x,8), i.e., as the vector z(z) =
fﬂ%(— sin A, cos #)P{x,0) d0. Then the authors reconstruct the image inside {2
using z(x) and the value of the image on 95 [844].

A related model has been used in [892, 893] for the completion of illusory
confours. The connection between both models is given by the completion of
leve! lines as if they were illusory contours. The model in [892, 893] was inspired
by the work of [589] who interpreted the elastica as the mode of the probability
distribution underlying the stochastic process given by the differential equations
£ = {cos #,sin ), # being a normally distributed random variable with zero
mean and given variance.

Let us finally mention that a finite element implementation of the Willmore
functional f A H?2 dS has been used in [202] for surface restoration, As explained
in Section 3.3.2, this functional (in a relaxed form) is a term in functional (3.19).

3.6.2 Miscellaneous

Finally, let us briefly mention some other approaches to the inpainting problem.
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Tia and Tang [437] perform a texture-based segmentation of the image. Then
they find the curves in €2 that connect texture boundaries arriving at 9 these
curves, boundaries between different texture regions, are found with a robust ten-
sor voting algorithm that extrapolates curve shape. Then texlure is synthesised
inside each region, also with a tensor voting algorithm, where texture al pixel
{4, 7) is encoded as a vector of length N = n x n + | whose components are the
image intensity values at the n % n neighborhood of (%, j).

Levin et al. [515] use global information to guide the inpainting process.
They choose features like the norm of the gradient, compute the histogram of
these features over the whole image, define a probability taking these histograms
into account, and find an integrable gradient field inside 2 that maximizes that
probability and satisfies the boundary conditions at 9.

Kim and Kim [466] use genetic algorithms to approximate the solution to the
problem of minimizing the elastica inside £2, given the image and curvature values
at ¢,

Tan et al. [786] perform highlight removal with a proposed variant of inpainting
where the region to fill-in {2 is not empty but has some usetul information, from
which the highlights must be substracted.

Patwardhan and Sapiro [634] use wavelets in a Projection Onto Convex Sets
(POCS) setiing similar to Hirani and Totsuka’s [400], but without the need for
user-selection of similar neighborhoods. It is an iterative process where in each
step the image is wavelet-transformed, its coefficients constrained, then wavelet-
inverse-transformed, the resulting image values also constrained.

3.7 Concluding Remarks

In this chapter we have reviewed the area of image inpainting, which has received
a significant amount of attention from the image processing, computer vision,
computer graphics, and applied mathematics communities; following the early
works of Masnou-Morel [553] and Bertalmio-Sapiro-Caselles-Ballester [79, 46].
We can not forget of course also one of the first works in the arca, [605], where
the famous Laplacian Pyramid is used to fill-in holes.

Although image inpainting still has many open problems, the main challenges
are in the extension of this work to other visual sources, such as video [438, 885]
and sensor arrays [905]. Preliminary and very promising results are starting to
appear in this subject, and many important advances are expected in forthcoming
years.

3.8 Appendix

Let Q be an open subset of RY. By C§°(Q) (resp. C5°((; R™)) we denote the
space of functions (resp., vector fields with values in 72V with are C* and have
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compact support in (). By LP{Q}), 1 < p < oo, we denete the space of measurable
functions f : @ — R whose p-power is integrable (in the sense of Lebesgue).
L>{()) denotes the space of measurable functions in () which are essentially
bounded. By W1P((), 1 < p < ou, we denole the space of functions u ¢
LP{(Q) such that Vu € LP(Q). By W&‘P(Q) we denote the closure of C5°(Q) in
W1P(Q). Saying that u € W, (Q) is a way of saying that W7(Q) and u = 0

on the boundary of Q. By C'(}) we denote the space of continuous functions in
Q.

A function u € L'(Q) whose gradient Du in the sense of distribulions is a
{vector valued) Radon measure with finite total variation in € is called a function
of bounded variation. The class of such functions will be denoted by 8V (). The
total variation of Du on @ turns out to be

sip {/ udivz dx : 2 € CF(Q; BY),sup je(z)| < 1} ; (3.34)
Q TEQ
{where for a vector v = (v1,...,un) € RY we set |v]|? := 2;11 v?) and will be

denoted by | Du|(Q) or by fQ | D). The total variation of 1 on a Borel set B C )
is defined as inf{|Du|(A) : Aopen , BC AC Q}.

A measurable set £ € RY is said to be of finite perimeter in Q if (3.34) is
finite when u is substituted with the characteristic function x p of £. The perime-
ter of E in @ is defined as P{FE, Q) := |Dxy|{(Q). We shall use the notation
P(E)} := P(¥, R™). For sets of finite perimeter E one can define the essential
boundary §* E, which is countably (V — 1) rectifiable with finite H” ! measure,
and compute the outer unit normal % (x) at %™~ almost all points = of 8* E,
where HV =1 is the {V — 1} dimensional Hausdorff measure. Moreover, | Dx
coincides with the restriction of HY - to 8*E.

If u € BV(Q) almost all its level sets [u > A] = {z € Q : u{z) = A}
are sets of finite perimeter. Thus at almost all points of almost all level sets of
1 € BV((Q) we may define a normal vector #{:r} which ceincides | Du|-a.e. with
the Radon-Nikodym derivative of the measure Du with respect to | Dul, hence it
formally satisfies @ - Du = |Du/, and also |#| < 1 a.e. (see [19], 3.9). For further
information concerning functions of bounded variation we refer to {19, 301, 926].
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Chapter4

Levelings: Theory and Practice

F. Meyer

Abstract

Connected operators enlarge the flat zones of an image and never create
a contour where no contour was present. This definition is too vague to be
useful in practice, except for binary images. For grey-tone images a more
precise characterization has to be given in order to be operational. This leads
to the introduction of floodings, razings, flattenings and levelings. Extending
the notion of a flat zone and of a contour leads to extended connected oper-
ators. The chapter concludes by showing the versatility and power of these
operators in practice.

4.1 Introduction

Filtering is ubiquitous in image processing before compression or segmentation,
for suppressing noise or simplifying images. An ideal filter should suppress noise
and unwanted details without degrading in any other respect the image. For in-
stance it should not blur or displace the contours if one wishes to segment the
filtered image. It should not create spurious structures such as minima or maxima
if the aim is to describe the topography of a relief or to construct its watershed
line. Each element in the filtered image should be traceable in the initial image.

It seems difficult to design a filter complying with all these constraints. Linear
filters produce a blurring of the image. The problem is to find a good trade-off
between smoothing and localization of the contours: a large smoothing simplifies
the detection but creates poorly localized contours whereas a reduced smoothing
does not suppress enough noise. Non linear smoothing techniques [642] avoid
smoothing across object boundaries. However, depending on a number of param-
eters, they are difficult to tune. Alternate sequential filters based on openings and
closings also displace the contours [724].

Connected operators do not suffer from this drawback, they enlarge the ex-
isting flat zones and produce new ones [726]. They are specially designed for
simplifying images without blurring or displacing contours. The simplest ones
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suppress particles or holes in binary images [725]. Clipping peaks and filling val-
leys until a plateau of a given size is produced constitutes the area openings and
closings introduced by Luc Vincent [845]. Particle reconstruction aliows to sup-
press all connected particles not containing a marker. Applied on each threshold of
a grey tone imape, one obtains reconstruction openings and closings. [367, 846].
They are both members of a larger family, operating symmetrically on peaks and
valleys, which comprises flattenings and razings [564].[555]. Their scale space
properties and PDE formulation are studied in [566].

The present paper gives an insight in the nature and construction of these op-
erators and illustrates their use. As we are concerned with practical applications
we will restrict ourselves to a digital framework. Let 7 be some complete totally
ordered lattice, and let D, be arbitrary sets in the discrete space. We call O the
smallest element and (3 the largest element of 7. Fun(D,7 ) represents the image
defined on the support D with value in 7. The value of [unction f at pixel p will
be written f,. A presentation of levelings and flatienings in the continuous space
may be found in [555], [565].

4.2 Binary connected operators

The functions f, g, i met in this section are binary and are the indicator functions
of binary sets, being equal to 1 in the particles and to 0 in the holes. A binary
connected operator suppresses particles and/or fills holes:

Definition 1. A connected operator transforms an image f into an image g in
such away that the following relation is verified for all pairs of neighboring pixels
:¥ (p, q) neighbors: fp = f; = gp = gq or equivalently g, # 9, = fp # fq (1).

The relation {1} expresses that any contour between the pixels p and ¢ in the
destination image ¢ corresponds to a contour in the initial image f at the same
place. There is however no coupling between the directions of the transitions:
between p and g, the function g may for instance be increasing and f decreasing.
Relation (1) may be rewritten as g, > g4 = fp > f, or fp < fy(1bis). As an
example, the complementation of a binary image is a connected operator. This
shows that a connected operator may turn a regional minimum into a maximum
and vice-versa. If a function ¢ and a function f verify relation (1) for all pairs of
pixels, we say that by definition g is a planing of f.

Planings may be specialized in 3 ways :

« A planing verifying ¢ = f only suppresses holes and is called flooding. 1t
is characterized by g > f and ¥ (p, ¢) neighbors: g, > g, = f, = gp(=1)
2

+ Planings which only suppress particles are called razings and verify ¢ <
f. They are characterized by: ¢ < f and V¥ (p, ¢) neighbors: ¢, > gq =
Jq=9,=0)03)
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Figurc4.1. g, < gp => gp = fo

= Monotone planings are called levelings. They may suppress both particles
and holes bul if a hole and a particle are adjacent, the hole cannot be-
come 4 particle and simultaneously the particle a hole. Levelings introduce
a coupling between the directions of the transitions: between p and ¢ :
9p > g = [p > [4 (4).

When applied to each threshold of a grey-tone function, these binary operators
generate interesting grey-tone operators.

4.3 Flat grey-tone connected operators

4.3.1 Level by level construction

The definitions of planings and monotone planings given in the preceding section
still make sense if g and h are grey-tone functions. Relations (2) and (3) fully
specify floodings and razings for grey-tone functions. Relation (2) has an obvious
physical meaning. Fig.4.1A and Fig.4.1B represent respectively a possible and an
impossible flooding ¢ of a relief f: if for two comparable pixels a lake verifies
gy < @y, then the highest pixel is necessarily at ground level (g, = f,), otherwise
the lake presents an unconstrained wall of water as in fig.4.1B.

On the contrary the relations (1) and (4) indicate that to any contour of g
corresponds a contour of f at the same location, but do not establish a relation
between the values of the functions themsetves. However, applying the corre-
sponding binary operators on each threshold of a grey-tone function produces a
well constrained operator: a function ¢ is a flattening (resp. leveling) of a function
fif and only if for each ¢, X* (g) is a planing (resp. monotone planing) of X* ( f)
(where X! (/) = {z | f(z) < L}). We derive the following criteria:

- An image g is a flattening of the image f ifF ¥ (p, g) neighbors:

foZgpand g, > fy
Gp > G¢ = or (3)
faZ gpandgy > fp

* An image g is a leveling of the image f iff ¥ (p, g) neighbors:
9p > 9= fp 2 gpand g, > [, (6).

Basically relation (5) means that any transition in the destination image g is
bracketed by a larger variation in the source image. If furthermore the direction of
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the transitions is always the same as in relation (6), flattenings become levelings.
Flattenings are floodings if they verify ¢ > f and razings if g < f.

4.3.2 A morphological characterization

Interesting characterizations may be derived from the relations (6) and (7). As an
example consider the implication [g, > g4 = g4 > f;] which is part of relation
(6). Recalling that the logical meaning of [A = B] is [notA or B] it may inter-
preted as [g, < gyor g, > fo] © [9; = fy A gp). As p may be any element of the

neighborhood N, of the central point ¢, we oblain g, > f, AV g, equivalent
TEN,

togy > fun {8V V 9z | = f3 Adgg, where § represents the elementary
xeNg

morphological dilation with a flat structuring element containing the central point
and all its neighbors. Taking into account the complete relation (6) yields the
following criterion for levelings: f Adyg < g < fVeg.

Since ¢ < dg and =g < g, the preceding criterion is equivalent with
(fArdg)Veg <g<(fVeg)Adg But(fAdg)Veg=(fVeg)A dg, giving
another criterion for levelings: ¢ = (f A 8g) V eg = (f V eg) A dg, known as the
morphological centre [724] between §¢ and =g.

The criterion characterizing flattenings, floodings and razings may be estab-
lished in a similar way:

* A function g is a flaitening of f if and only if : fAS(fAg) < g <
fve(fvg) ®

* A function g is a flooding of f ifand only if : g = f V z¢

* A function g is a razing of f ifand only if : g = f A g

In the next stage of generalization, the operators no longer commute with
anamorphosis, as it is the case for operators constructed threshold by threshold.

4.4 Extended connected operators

Repiacing (6,2) by a more general adjunction (e, 3), where J is an arbitrary
eroston verifying 8 < Id and o > Id ifs adjunct dilation, we get a generalized
leveling g = (f V B¢) A ag = (f A ag) V Bg. For which type of flat zones is it a
connected operator ?

We have the equivalence g = (f vV Bg) Aog o fAag < g < fv g,

A pixel p verifying g, < (fV 8g), also verifies the following equivalent

expressions: { g, < (89), ot gp < fp} & {gp > (B9), = 9 < Sy } (10)

The relation g, > (0g), means that eroding the function g with the erosion 3
decreases the value of g at pixel p, indicating that p has a lower neighbor for
the function g. In order to find this neighbor, we have to introduce the pulse

: y | tifx=nh ' _J tifr=h L
functions 14= { OifE Lk and [} (x) = Qifz £ h . Every im
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age g of Fun{D,7) can be written g = \ [¢== A [ and (89), =
xeD el
{ﬁ ( A lgg-)] = A [,6 (13})] . The minimal value in this expression is
weD P weT P

attained at a pixel &z = q. This pixel ¢ is the lower "neighbor" of p we are look-
ing for, and we write g, T gp ¢ gp > Ogplgy), where B5,(g,) = [ ( ;‘i")}p
is an erosion. Since g, < €1, the relation g, > F,,(g;} also indicates that
Baplgq) < 2. When this is the case, we consider that p and ¢ are of—neighbors
for the adjunction {a, (). B, has an adjunct dilation a4 (g,) = [ {15")] o Ver
ifying : gp > Gyp (94) & 0pg (gp) > g, Finally relation (10) may be rewritten
for any el —neighbors pand q: g, C g, = gp = fp-

The inequality f A ag < g may be treated in the same manner and putting
everything together, we obtain the characterization of levelings: ¢ is a leveling of
J if ¥ {p,¢) aB-neighbors g, C g, = fp = g» and g, > f;, quite similar to
relation (6).

As a summary we have found a general mechanism for defining transitions
between pixels for a given function, based on an adjunction (e, 3). Definitions
and characterizations of extended flattenings, floodings, razings and levelings are
obtained by simply replacing (6, €) by (e, 3) and the relation < by the relation
in all relations and definitions of the previous sections.

Negating the relation T yields the relation 2: for (p, ¢} x3-neighbors, g, 2 g,
ifonly if g, < Gy (99) © Qpq(9p) < gq When the relations {f, J f.} and
{fx 3 fy} are simultaneously true, we obtain a symmetrical relation written f, =
fy» expressing that there is a smooth transition between f,, and f, or that f; and f,
are at the same aef-level : {f, < f,,} © {0 < g (o) € fy < Boy(fa) < 0}
- {O < Oyz (fy) < f: <4, ,a:(fy) < Q}.

We are now able to define smooth zones based on arcwise connectivity.

Definition 2. We say fhat two values [, and [, are smoothly linked and we write
fe a fy if there exists a series of pixels {wg = x,21,%2,.. 8, = y} such that

fz. = ,fz‘-+1'

Definition 3. A set X is a smooth zone of an image f if and only if f, va f, for
any two pixels x and y in X.

The relation ©< is an equivalence relation. The associated equivalence classes
are the maximal smooth zones. It is easy to verify that the smooth zones of f
form a connection of D [725]. For the pair of elementary dilation and erosion
(4, €), one obtains ordinary flat zones,

Definition 4. 4 set X is uniformly smooth if f, = [, for any couple (x,y) of
af-neighbors in X.

3 2
11
since there exists a path with a slope smaller or equal to 1 between any couple of

For the slope dilation d; {(g) = gV (dg — 1), X = is a smooth zone
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pixels. However, there exists within X a sharp transition between values 1 and 4,
hence X is not a uniformly smooth zone.

Levelings enlarge smooth zones: g, C g, = f, [ f, is equivalent with
fo J Fp = 94 3 gp from which we derive f, pa f,, = g, b g,; this last relation
shows that any smooth (resp. uniformly smooth) zone for f is also a smooth zone
(resp. uniformly smooth) for ¢. Levelings are indeed connected operators [700].

Levelings create smooth zones: Any zone where {g > f} (resp. {g < f}) is
uniformly smooth.

Regional minima

If {rx, B} are flat operators, then the leveling based on (e, 3) does not create re-
gional minima or maxima, More precisely il g is a leveling of f, and X a regional
minimum of g, then there exists a set Z C X, which is a regional minimum for
f. However, this is not true if (¢, 8} are not flat operators.

4.4.1 Construction of floodings, razings, flattenings and levelings

We call Inter (g, f) the class of functions h € TZ, verifying g A f < h <
gV f. We say that g is farther away from f than h, or that ¢ is bigger than h in the
order f and we write ¢ >; hif and only if & € Inter (g, f) [555].

Proposition 1. > is an order relation on TE. Fora, f C T, Inter(a, f)isa
complete lattice for the order [. The function a is then the highest element, For
any family h; of Inter (a, f):

Vh; on {a < f}

N Ah;on {a < f}
Aghs = Ahjon {a> f}

Vh,on {a > f}

i VI h; =

Considering a pair of functions f and h we will now study the family of
tfloodings, razings and levelings of § within Inter (f, k).

4.4.1.1 Construction of floodings, razings, flatlenings and levelings

Each flooding of f verifies g > f. For this reason the order relations >; and >
are identical. If (g;) is a family of floodings of f, then \/ ¢g; also is a flooding
of f. The family of floodings of f belonging to Inter (£, A} is not empty and its
maximal element is written FI{ f, /). It is obtained by (inite iteration until stability
of hy = fV Bhp-q, with by = fV h. We recognize the usual reconstruction
closing if # = ¢ [846].

Similarly the largest razing of f for the order relation > in Inter { £, i), which
is also the smallest razing for the order relation > is equal to /\hn, where h,, =
F A ehyy, with hg = f Ak ; we write Rz(f, h). It is obtained by finite iteration
until h-,,f.}.] = h“.

The supremum for V; of a family of flattenings belonging to Inter (f, /) is
still a flattening. The largest flattening of Inter (f, k) is also the supremum be-
tween the largest flooding and the largest razing within Inter (f, h): 2(f, h} =
FI(f, h} V¢ Ba(f, h).
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Figure 4.2. Levelings with increasing slopes of the same reference and marker functions.

The supremum ¥ ¢ of two levelings is not necessarily a leveling but a flattening,
However if we replace h by k = ah Ay Bh, then all flattenings in Inter (f, k)
are levelings, Hence we will define the leveling of f constrained by h and write
A(f,h) as the largest flattening contained in Inter (f, k): A(S, k) = BE(f. k) =
FI(/, ) Vs Ra(f, k).

Fast algorithms, based for instance on hierarchical queues [563] exist for re-
construction closings and openings, producing respectively floodings and razings,

Since Aattenings and levelings rely on floodings and razings, their construction is
fast also.

4.5 Levelings for image simplification

Floodings FI{f, h}, razings Rz(f, i), flattenings =(f, h) and levelings A(f, h)
are all functions of two arguments and depend on these two arguments. Their
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Figure 4.3. Non connected structuring element

flat zones are larger than the flat zones of f, their contours correspond to con-
tours of f ; at the same time they are as close to A as possible in the lattice
Inter (f. h) . Furthermore, for each choice of an adjunction {¢, 3) a new operator
can be constructed, to which is associated a particular type of contours and flat
zones.

4.5.1 Varying (o, 5)

We will first explore the effect of various couples {r, &) on the same reference
and marker images. Starting with the ordinary flat dilation § (maximum value in
a neighborhood of size 1), we define the slope dilation 8y = Id v (§ — A), where
Id is the identity} . The adjunct slopc erosion is defined by £, = Id A (e +
A). Two neighboring pixels p and g are at level if | f, — fy| < A. Fig.4.2 presents
a picture by Seurat which is extremely grainy. The marker function is an alternate
sequential filter of size 4, giving a very crude approximation of the image. We
compare the results of 3 levelings ; the first being flat, the next being obtained for
slopes 1 and 2. Increasing the slope produces much larger flat zones and a much
smoother image. Nevertheless the contours remain sharp.

Figure 4.4, Left : f =original image. The marker image A is completely black with a white
dot on the lefl hand of the girt.

Center : leveling associated to the dilation and erosione™ 7

Right : leveling associated to the dilation é and erosion ¢ ; without jumps, the
reconstruction is much less complete (see for instance the books)

s+t

In our second example we compare two levelings based respectively on a non
connected and a connected structuring clement. The first leveling is associated
to the dilation 7 and its adjunct erosion £~ and is based on a non connected
structuring element consisting of a hexagon and two pixels at a distance of 4 pixels
apart on each side (see fig. 4.3). The central part cares for the normal connectivity
reconstructions whereas the couple of added pixels permits jumps from one zone
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Figure 4.5. Levelings obtained after Gaussian blurring

to another. The second leveling is the basic flat leveling based on (4, ). Both
levelings are applied on the same reference image [ (see fig.4.4left) and marker
image h (not illustrated here: it is completely black with a white dot on the hand
helding the telephone). Indeed the ordinary leveling based on (£, ) illustrated by
fig.4.4right is unable to reconstruct some parts of the image, although it uses the
same marker ; it is unable to jump from one book to the next on the shelf in the
background as is the case in fig.4.4center, where a leveling based on (61,27 )
has been used. As expected, since 4" > 4, the (g, ) leveling has larger flat
zones than the (=, 4 ) leveling.

4.5.2 Varying the marker function h

Gaussian blurring has a manifold of good properties from a theoretical point of
view. It remarkably simplifies images. [t has however one drawback: it blurs the
contours. The greater the simplification, the larger the blurring. For this reason,
levelings nicely finish off the work of Gaussian blurring by restoring all con-
tours, while keeping the simplification. This effect is illustrated in fig.4.5 where
blurrings with kernels of size 2 and 5 are restored by a slope leveling (slope 1).

In the two previous examples we have used a coarse simplification of the image
as marker, either afier an alternate sequential filter, or after a Gaussian blurring.
We will now present ways to siress interesting features of the image. The first
example stresses the contrast of the peaks. As marker we take a vertically shifted
copy of the image [ itself, by subtracting a constant value ; a razing constructed
with this marker function clips all peaks (fig.4.6left).

Some of them touch the marker functions, others do not. Let X be the set
where the razing and the marker function take the same value. In order to restore
these peaks to their original height we construct a second razing of the initial
image, but with a new marker function. equal to f on X and equal to 0 elsewhere
(fig.4.6right). This process has been applied to the Seurat picture and illustrated in
the first row of fig.4.7. First a razing has been applied clipping the peaks with the



74 Meyer

Figure 4.6. Two successive levelings permit to stress all peaks with the highest contrast.

lowest contrast {central image) but leaving the valleys unchanged. The resulting
image is then submitted to the dual operator, filling the valleys.

The next example also stresses the contrast of the picture, from the point of
view of the gradient. The gradient modulus is approximated as 6f — ef and
thresholded, yielding a binary set X containing the sharp transitions in the im-
age. The marker is equal to the original image within X and black outside as
illustrated in the bottom row of fig.4.7. A first razing produces the "black contour
leveling" image. A second marker is the image constructed with again the original
image within X, but with white outside. Applied on the result of the first razing,
this flooding produces the final image, where the salient contours are completely
restored and the rest of the image is smoothed out.

A last example shows the potential of levelings in the domain of selective im-
age compression. When a video sequence has to be compressed and transmitted,
it is worthwhile to compress the background more than the foreground, the face of
a person for instance. Leveled images can be compressed economically, as they
offer large smooth zones ; on the other hand, as the contours of the objects are
precisely restored, they remain perceptually attractive even for high degrees of
compression. In fig.4.8 we have constructed a composite marker image, made of
an alternate sequential filter of varying size: a large size for the background, a
low size for the foreground. The background is severely distorted. After level-
ing, contours of the background are restored and the face of the person appears
undistorted.

4.5.3  Multiscale filtering

Order relation between levelings, floodings and razings

The relation {being a leveling of} is a preorder relation. The relations {being a
flooding of} and {being a razing of} are order relations. Increasing floodings and
increasing levelings are ideal tools for hierarchical segmentation, where for the
same picture a series of segmentations with increasing coarseness is produced,
each contour present at a coarse scale being also present in each finer scale.

4.5.3.1 Construction of a hierarchy based on increasing floodings

The watershed transform is the tool of choice for detecting contours ; generally it
is used on a gradient image, associated to a set of markers. We flood the gradient
image and as the flooding increases, adjacent basins progressively merge, pro-
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Figure 4.7. First row: successive levelings according to the contrast of peaks and valleys.
Second row: the marker are the most contrasted contour zones.

ducing coarser and coarser segmentations. Depending on the law governing the
progression of the flooding, one obtains different results. Size oriented flooding
[368, 826] is produced by placing sources at ¢ach minimum and flooding the sur-
face in such a way that all lakes share some common measure (height, volume or
area of the surface). As the flooding proceeds, the level of some lakes cannot grow
any further, as the level of the lowest path point has been reached. In the fig.4.9, a
flooding starts from all minima in such a way that all lakes always have uniform
depth. Size oriented flooding allows to produce hierarchical segmentation with
good psychovisual properties. The depth criterion ranks the regions according to
their contrast, the area according to their size and the volume offers a nice balance
between size and contrast. The topographical surface to be flooded is a color gra-
dient of the initial image (maximum of the morphological gradients computed in
each of the R, G and B color channels). Synchronous volumic flooding has been
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Figure 4.8. Marker image and leveling for a high simplification of the background and a
faithful reproduction of the face.

Figure 4.9. Example of a height synchronous flooding. Four levels of flooding are
illustrated ; each of them is topped by a figuration of the corresponding catchment basins.

Figure 4.10, Initial image and 3 levels of a multiscale segmentation

used, and 3 levels of fusions have been represented, corresponding respectively to
15, 35 and 60 regions.

4.53.2 Construction of a hierarchy based on quasi-flat zones

Since levelings enlarge quasi flat zones, the quasi-llat zones of a family of in-
creasing levelings itself form a hierarchy. Fig.4.5.3.2 presents the construction. A
slope leveling is produced associated to an alternated sequential filter. The quasi-
flat zones are detected. However, as 1ig.4.5.3.2 shows, the quasi-flat zones have
two different natures: on one hand large homogeneous zones, and in the transition
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zones of high gradient tiny quasi-flai zones. For this reason, a more useful hierar-
chy is obtained if one gets rid of these transition zones. Only the largest of them
are retained as markers of a watershed segmentation, yielding the final result.

The process may then be repeated for a cascade of levelings based on coarser
and coarser alternate sequential filters. Fig.4.11 presents in the first row 3 increas-
ing slope levelings associated to alternate sequential filters of sizes 3, 6 and 9 and
in the second row the associated segmentations.

4.6 Conclusion

Floodings, razings and levelings have very interesting properties for image seg-
mentation. They do not blur nor displace the contours, do not create spurious
minima or maxima, may be cascaded in order to create a multiscale simplification
of the image. The family is exiremely large, since a leveling can be associated 1o
each adjunction (a, @), Furthermore, a leveling also depends on the choice of a
marker function, offering a unigue possibility in the family of filters to inject in
the filtering process a selection of the features one desires to stress.
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Figure 4.11. Hierarchy associated to increasing levelings. Linel : 3 increasing levelings
Line2 : Associated increasing partitions
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Graph Cuts in Vision and Graphics:
Theories and Applications

Y. Boykov and O. Veksler

Abstract

Combinatorial min-cut algorithms on graphs have emerged as an increas-
ingly useful tool for problems in vision. Typically, the use of graph-cuts is
motivated by one of the following two reasons. Firstly, graph-cuts allow ge-
ometric interpretation; under certain conditions a cut on a graph can be seen
as a hypersurface in N-D space embedding the corresponding graph. Thus,
many applications in vision and graphics use min-cut algorithms as a tool
for computing optimal hypersurfaces. Secondly, graph-cuts also work as a
powerful energy minimization tool for a fairly wide class of binary and non-
binary energies that frequently occur in early vision. In some cases graph
cuts produce globally optimal solutions. More generally, there are iterative
techniques based on graph-cuts that produce provably good approximations
which (were empirically shown to) correspond to high-quality solutions in
practice. Thus, another large group of applications use graph-cuts as an op-
timization technique for low-level vision problems based on global energy
formulations.

This chapter is intended as a tutorial illustrating these two aspects of
graph-cuts in the context of problems in computer vision and graphics. We
explain general theoretical properties that motivate the use of graph cuts, as
well as show their limitations.

5.1 Introduction

Graph cuts remain an area of active research in the vision and graphics com-
munities. Besides finding new applications, in the last years researchers have
discovered and rediscovered interesting links connecting graph cuts with other
combinatorial algorithms (dynamic programming, shortest paths [107, 477]),
Markov random fields, statistical physics, simulated annealing and other regular-
ization techniques [362, 113, 424], sub-modular functions [491], random walks
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and electric circuit theory [356, 357], Bayesian networks and belief propagation
[790), integral/differential geometry, anisotropic diffusion, level sets and other
variational methods [767, 109, 28, 477].

Graph cuts have proven to be a useful multidimensional optimization tool
which can enforce piecewise smoothness while preserving relevant sharp discon-
tinuities. This paper is mainly intended as a survey of existing literature and a
tutorial on graph cuts in the context of vision and graphics. We present some ba-
sic background information on graph cuts and discuss major theoretical results,
some fairly new and some quite old, that helped to reveal both sirengths and limi-
tations of these surprisingly versalile combinatorial algorithms. This chapter does
not provide any new research results, however, some applications are presented
from a point of view that may differ from the previous literature.

The organization of this chapter is as follows. Chapter 5.2 provides necessary
background information and terminology. In their core, combinatorial min-
cut/max-flow algorithms are binary optimization methods. Chapter 3.3 presents
a simple binary problem that can help to build basic intuition on using graph cuts
in computer vision. Then, graph cuts are discussed as a general tool for exact
minimization of certain binary energies.

Most publications on graph cuts in vision and graphics show that, despite their
binary nature, graph-cuts offer significantly more than “binary energy minimiza-
tion”. Chapter 5.4 shows that graph cuts provide a viable geometric framework
for approximating continuous hypersurfaces on N-dimensional manifolds. This
geometric interpretation of graph cuts is widely used in applications for com-
puting globally optimal separating hypersurfaces. Finally, Chapter 5.5 presents
generalized (non-binary) graph cuts techniques applicable to exact or approxi-
mate minimization of multi-label energies. In the last decade, such non-binary
graph cut methods helped to significantly raise the bar for what is considered a
good quality solution in many early vision problems.

5.2 Graph Cuts Basics

First, we introduce some basic terminology. Let G = (¥, £} be a graph which
consists of a set of nodes V and a set of directed edges £ that connect them. The
nodes set ¥V = {s,1} U P contains two special terminal nodes, which are called
the source, s, and the sink, ¢, and a set of non-terminal nodes P. In Figure 5.1(a)
we show a simple example of a graph with the terminals s and ¢. Such N-D grids
are typical for applications in vision and graphics.

Each graph edge is assigned seme nonnegative weight or cost w{p, ¢). A cost
of a directed edge (p, ¢) may differ from the cost of the reverse edge (g, p). An
edge is called a +-/ink if it connects a non-terminal node in P with a terminal. An
edge is called a n-/ink if it connects two non-terminal nodes. A set of all (directed)
n-links will be denoted by A. The set of all graph edges & consists of n-links in
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(a) A graph & (DAcuton§G

Figure 5.1. Graph construction in Greig et. al. [362]. Edge costs are reflected by thickness.

N and t-links {{s,p), (p, £)} for non-terminal nodes p € P. In Figure 5.1 t-links
are shown in red and blue, while n-links are shown in yellow,

5.2.1 The Min-Cut and Max-Flow Problem

An s/t cut C (sometimes we just call it a cuf) is a partitioning of the nodes in the
graph into two disjoint subsets S and 7 such that the source s is in 8 and the sink
{isin 7. Figure 5.1(b) shows one example of a cut. The cost ofa cut C' = {8, 7T}
is the sum of costs/weights of “boundary” edges (p, ¢) such thatp € Sandg € 7.
If (p, ) is a boundary edge, then we sometimes say that cut C severs edge (p, q).
The minimwm cut problem is to find a cut that has the minimum cost among all
cuts.

One of the fundamental results in combinatorial optimization is that the mini-
mum s/{ cut problem can be solved by finding a maxinum flow from the source
s to the sink ¢. Speaking informally, maximum [low is the maximum “amount of
water” that can be sent from the source to the sink by interpreting graph edges as
directed “pipes” with capacities equal to edge weights. The theorem of Ford and
Fulkerson [324] states that a maximum flow from s (0 ¢ saturates a set of edges
in the graph dividing the nodes into two disjoint parts {&, 7'} corresponding to a
minimum cut. Thus, min-cut and max-flow preblems are equivalent. In fact, the
maximum flow value is equal to the cost of the minimum cut.

5.2.2  Algorithms for the Min-Cut and Max-Flow Problem

There are many standard polynomial time algorithms for min-cut/max-flow[217].
These algorithms can be divided into two main groups: “push-relabel” style meth-
ods [330] and algorithms based on augmenting paths. In practice the push-relabel
algorithms perform better for general graphs. In vision applications, however,
the most common type of a graph is a two or a higher dimensicnal grid. For
the grid graphs, Boykov and Kolmogorov [110] developed a fast augmenting
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path algorithm which often significantly outperforms the push relabel algorithm.
Furthermore, its observed running time is linear.

While the (sequential} algorithm in [110] is very efficient, with the execution
time of only a few seconds for a typical problem, it is still far from real time, A
possible real time solution may come from a GPU acceleration that has become
popular for improving the efficiency of algorithms allowing parallel implementa-
tions on pixel level. Note that push-relabel algorithm can be run in parallel over
graph nodes [350]. In the context of image analysis problems, graph nodes typ-
ically correspond to pixels. Thus, pixel based GPU architecture is a seemingly
perfect maich for accelerating push-relabel algorithm for computing graph cuts in
vision and graphics. This is a very promising direction for getting applications of
graph cuts up to real time.

5.3 Graph Cuts for Binary Optimization

In this section we concentrate on graph cuts as a binary optimization tool. In
fact, min-cut/max-flow algorithms are inherently binary techniques, and so bi-
nary problems constitute the most basic case for graph cuts. In Section 5.3.1 we
discuss the earliest known example where graph cuts were used in vision, which
also happens to be a particularly clear binary problem, The example illustrates
that graph cuts can effectively enforce spatial coherence on images. Section 5.3.2
presents the general case of binary energy minimization with graph cuts.

5.3.1 Example: Binary Image Restoration

The earliest use of graph cuts for energy minimization in vision is due to Greig
et.al. [362]. They consider the problem of binary image restoration. Given a binary
image corrupted by noise, the task is to restore the original image. This problem
can be formulated as a simple optimization over binary variables corresponding
to image pixels. In particular, [362] builds a graph shown in Figure 5.1(a) where
non-terminal nodes p € 7 represent pixels while terminals s and ¢ represent two
possible intensity values. To be specific, source s will represent intensity 0 and
sink ¢ will represent intensity 1. Assume that [ (p) is the observed intensity at pixel
p. Let Dy(l) be a fixed penalty for assigning to pixel p some “restored intensity™
label [ € {0, 1}. Naturally, if /(p) = 0 then £2,(0) should be smaller than £5(1},
and vice versa. To encode these “observed data” constraints, we create two t-
links for each pixel node in Figure 5.1. The weight of t-link (s, p} is set to Dy (1)
and the weight of (p, t) is set to D,(C). Even though t-link weights should be
non-negative, the restriction D}, > 0 for data penalties is not essential.

Now we should add regularizing constraints that help to remove image noise.
Such constraints enforce spatial coherence between neighbering pixels by min-
imizing discontinuities between them. In particular, we create n-links between
neighboring pixels using any (e.g. 4~ or 8-) neighborhood system. The weight of
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these n-links is set to a smoothing parameter A > 0 that encourages a minimum
cut to sever as few n-links as possible.

Remember that a cut € (Figure 5.1(b)) is a binary partitioning of the nodes
into subsets S and 7. A cut can be interpreted as a binary labeling f that assigns
labels f, & {0,1} to image pixels: if p € Sthen f, = O and if p ¢ 7 then
Jp = 1. Obviously, there is a one-1o-one correspondence between cuts and binary
labelings of pixels. Each labeling f gives a possible image restoration result.

Consider the cost of an arbitrary cut C = {8, 7'}. This cost includes weights
of two types of edges: severed t-links and severed n-links. Note that a cut severs
exactly one t-link per pixel; it must sever t-link (p, t) if pixel p is in the source
compenent p € & or t-link (s, p) if pixel p is in the sink component p € 7.
Therefore, each pixel p contributes either D, (0) or Dy (1) towards the t-link part
of the cut cost, depending on the label f,, assigned to this pixel by the cul. The cut
cost also includes weights of severed n-links (p, ¢) € A Therefore,

|C| = ZD‘P(fP) + Z w{p,q}

peEP (gl
PES.qET

The cost of each C defines the “energy” of the corresponding {abeling f:

B(f)=1Cl= D Dplfp) + A >, Ifp=0,F=1), G

peP (pg)eN

where Z{-) is the identity function giving 1 if its arpument is true and 0 otherwise.
Stated simply, the first term says that pixel labels f, should agree with the ob-
served data while the second term penalises discontinuities between neighboring
pixels. Obviously, 2 minimum cut gives labeling f that minimizes energy (5.1).

Note that parameter A controls the relative importance of the data constraints
versus the regularizing constraints. Note that if A is very small, an optimal labeling
assigns each pixel p a label f, that minimizes its own data cost D,(fp). In this
case, each pixel chooses its own label independently from the other pixels. If A is
big, then all pixels must choose one label that has a smaller average data cost. For
intermediate values of A, an optimal labeling f should correspond to a balanced
solution with compact spatially coherent clusters of pixels who generally like the
same label. Noise pixels, or outliers, should conform to their neighbors.

Before [362], exact minimization of energies like (5.1) was not possible. Re-
searches still used them, but had to approach them with iterative algorithms like
simulated annealing [341]. In fact, Greig et.al, published their result mainly to
show that in practice simulated annealing reaches sclutions very far from the
global minimum even in simple binary cases. Unfortunately, the result of Greig
et.al. remained unnoticed in the vision community for almost 10 years probably
because the binary image restoration looked too restrictive as an application.
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(2) a cut on a 2D grid (b} a cut and a separating hypersurface in 3D

Figure 5.2. -t cut on a grid corresponds to binary partitioning of N-D space where the grid
is embedded. Such space partitioning may be visualized via a separating hypersurface.
As shown in (a), multiple hypersurfaces may correspond to the same cut. However, such
hypersurfaces become indistinguishable as the grid gets finer.

5.3.2 General Case of Binary Energy Minimization

In general, graph construction as in Figure 5.1 can be used for other binary “la-
beling” problems. Suppose we are given a penalty I, (1) that pixel p incurs when
assigned label | € £ = {0,1} and we need to find a spatially coherent binary
labeling of the whole image. We may wish to enforce spatial regularization via
some global energy function that generalizes (5.1)

E(f)= Y Dplfy) + Y Viglloi fo) (5.2)

peP (p)eN

The question is: can we find a globally optimal labeling f using some graph cut
construction? There is a definitive answer to this question for the case of binary
labelings. According to [491], a globally optimal binary labeling for {5.2) can be
found via graph cuts if and only if the pairwise interaction potential V,,, satisfies

VPG‘(U! 0) + V’P‘I(ll 1) S VT’Q(U! 1) I V?Jﬁ‘(lio)

which is called the regularity condition, The theoretical result in [491] is construc-
tive and they show the corresponding graph. It has the same form as the graph of
Greig et.al. in Figure 5.1, however, edge weights are derived differently.

5.4 Graph Cuts as Hypersurfaces

Solution of many problems in vision, image processing and graphics can be rep-
resented in terms of optimal hypersurfaces. This section describes a geometric
interpretation of graph-culs as hypersurfaces in N-D manifolds that makes them
an attractive framework for problems like image segmentation, restoration, stereo,
photo/video editing, texture synthesis, and others.
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We show a basic idea allowing s-t cuts to be viewed as hypersurfaces, discuss
interesting theories that make various connections between discrete graph cuts
and hypersurfaces in continucus spaces, and we also provide a number of recently
published examples where a hypersurface view of graph cuts has led to interesting
applications in computer vision, medical imaging, or graphics.

5.4.1 Basic idea

Consider two simple examples in Figure 5.2. Throughout Section 5.4 we assume
that a graph has no “"soft” t-links, that is the source and the sink terminals are
directly connected only to some of the graph nodes via infinity cost t-links. In
fact, all nodes hardwired to two terminals can be effectively treated as multiple
sources and multiple sinks that have to be separated by a cut. Figure 5.2 shows
these sources and sinks in dark red and dark blue colors. Such sources and sinks
provide hard constraints or boundary conditions for graph cuts; any feasible cut
must separate sources from sinks. Other nodes are connected to the sources and
sinks via n-links.

Without loss of generality (see Section 5.4.2), we can concentrate on [easible
cuts that partition the simple 4- and 6- nearest neighbor grid-graphs in Figure 5.2
into two connected subsets of nodes: source component and sink component. Con-
tinuous 2D and 3D manifolds where the grid nodes are embedded can be split into
two disjoint contiguous regions, one containing the sinks, and the other containing
the sources. A boundary between two such regions are separating hypersurfaces
shown in green color. As illustrated in Figure 5.2(a), there are many separating
hypersurfaces that correspond to the same cut. They should all correctly separate
the grid nodes of the source and the sink components, but they can “freely move”
in the space between the grid nodes. Without getting into mathematical details,
we will identify a class of all hypersurfaces corresponding to a given cut with
a single hypersurface. In particular, we can choose a hypersurface that follows
boundaries of “grid cells”, or we can choose “the smoothest” hypersurface, Note
that the finer the grid, the harder it is to distinguish two separating hypersurfaces
corresponding to the same cut.

Thus, any feasible cut on a grid in Figure 5.2 corresponds to a separating hy-
persurface in the embedding continuous manifold. Obviously, the opposite is also
true; any separating hypersurface corresponds to a unique feasible cut. General-
ization of examples in Figure 5.2 would establish correspondence between s - ¢
graph-cuts and separating hypersurfaces in case of “fine” locally connected grids
embedded in N-D spaces. Following ideas in [109], one can set a cost (or arca)
of each continuous hypersurface based on the cost of the corresponding cut. This
defines a ent metric introduced in [109] for continuous N-D manifold embedding
a graph. By changing weights of n-links at graph nodes located in any particular
point in space, one can tune local costs of all separating hypersurfaces that pass
through such locations. In practical applications a cut metric can be easily tuned
to attract (repel) hypersurfaces to (from) certain locations on N-D manifolds. A
cut metric is a simple, yet sufficiently general tool. In particular, according to
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(a) connected source segment (b) disjoint source segments

Figure 5.3. Separating hypersurfaces can have different topological properties for the same
set of hard constraints, Separating hypersurfaces in (a) and (b) correspond to two distinct
feasible s — ¢ cuts. Min-cut/max-flow algorithms compute a globally optimal hypersur-
face/cut without any restrictions on its topological properties as long as the sources and the
sinks are scparated.

[109] a cut metric on 2D and 3D manilolds can approximate any given continu-
ous Riemannian metric. Finally, standard combinatorial algorithms for computing
minimum cost s — ¢ cuts (see Section 5.2.2) become numerical tools for extracting
globally optimal separating hypersurfaces.

5.4.2 Topological properties of graph cuts

The adjective “separating” implies that a hypersurface should satisfy certain hard
constraints or boundary conditions; it should separate source and sink grid cells
(seeds). Note that there are many freedoms in setting boundary conditions for
graph cuts. Depending on hard constraints, topological properties of separating
hypersurfaces corresponding to s — ¢ cuts may vary.

For example, we can show that the boundary conditions in Figure 5.2 guarantee
that any feasible cut corresponds to topologically connected separating hypersur-
face. For simplicity, we assume that our graphs are connected, that is, there are

o “islands” of disconnected nodes. In Figure 5.2 all source and all sink nodes
form two connected components. In such cases a minimum cosl cut must par-
tition the graph into exactly two connected subsets of nodes; one containing all
sources and the other containing all sinks. Assuming that the minimum cost cut
creaies three or more connected components implies that some of these compo-
nents contain neither sources, nor sinks. This contradicts minimality of the cut;
linking any “no-source/no-sink” subset back to the graph corresponds to a smaller
cost feasible cut.

Examples in Figure 5.3 illustrate different topological properties for separat-
ing hypersurfaces in more general cases where multiple disjoint components of
sources and sinks (seeds) are present. Note that feasible s — ¢ cuts may pro-
duce topologically different separating hypersurfaces for the same set of boundary
conditions.
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In fact, controlling topological properties of separating hypersurfaces by setting
up appropriate hard constraints is frequently a key technical aspect of applications
using graph cuts. As discussed in Section 5.4.3, appropriate positioning of sources
and sinks is not the only tool to achieve desired topology. As shown in Figure 5.4,
certain topological properties of separating hypersurfaces can be enforced via
infinity cost n-links.

5.4.3 Applications of graph cuts as hypersurfaces

Below we consider several examples from recent publications where graph cuts
are used as a method for extracting optimal hypersurfaces with desired topological
properties.

Methods for object extraction [107, 96, 683, 903] take tull advantage of topo-
logical freedom of graph-cut based hypersurfaces. In pariicular, they allow to
segment objects of arbitrary topology. The basic idea is to sct as sources (red
seeds) some image pixels that are known (a priori) to belong to an object of in-
terest and to set as sinks (blue seeds) some pixels that are known to be in the
background. A separating hypersurface should coincide with a desirable object
boundary separating object (red) seeds from background (blue) seeds, as demon-
strated in Figure 5.3. A cut metric can be set 1o reflect image gradient. Pixels
with a high image gradient would imply a low cost of local n-links and vice
versa. Then, minimal separating hypersurfaces tend to adhere to object bound-
aries with high image gradients. Another practical strength of cbject extraction
methods based on graph cuts is that they provide practical solutions for organ
extraction problems in N-D medical image analysis [107]. One limitation of this
approach to object extraction is that it may suffer from a bias to “small cuts”, but
this can often be resolved with proper constraining of the solution space.

Stereo was one of the first applications in computer vision where graph cuts
were successfully applied as a method for optimal hypersurface extraction. Two
teams, Roy&Cox [693, 692] and Ishikawa&Geiger {425}, almost simultaneously
proposed two different formulations of the stereo problem where disparity maps
are interpreted as separating hypersurfaces on certain 3D manifolds. Their key
technical contribution was to show that disparity maps {as optimal hypersurfaces)
can be efficiently computed via graph cuts.

For example, Roy&Cox [693, 692] proposed a framework for stereo where
disparity maps are separating hypersurfaces on 3D manifolds similar to one in
Figure 5.2(b). Points of this bounded rectangular manifold are interpreted as
points in 3D “disparity space” corresponding to a pair of rectified stereo images.
This disparity space is normally chosen with respect to one of the images, so
that each 3D point with coordinates (i, y, d) represents correspondence between
pixel (x,y) in the first sterec image and pixel {z + d,y) in the second image.
Then, solution of stereo problem is a hypersurface d = f(z, 4} on 3D manifold
in Figure 5.2(b) that represents a disparity map assigning certain disparity d 1o
each pixel (z, ¥} in the first image. Note that hypersurface d = f(z,y) separates
the bottom and the top (facets) of 3D manifold in Figure 5.2(b). Then, an optimal
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S

(a) Infeasible folding in [693, 692] (b) Infeasible folding in [425]

Figure 5.4. Graph-cuts approach allows to impose certain additional topelogical constraints
on separating hypersurfaces, if necessary. For example, {426, 111] propesed infinity cost
directed n-links, shown in brown color in (a), that forbid lolds on separating hypersurfaces
in Figure 5.2. In particular, a hypersurface in Figure 5.2(b) without such folds corresponds
to a disparity map 4 = f{z, ) according to [693, 692], Also, [425] impose monotonic-
ity/ordering constraint on their disparity maps by adding infinity cost directed n-links (in
brown color) that make illegal topological folds shown in (b). For clarity, examples in (a)
and (b) correspond to single slices of 3D manifolds in Figure 5.2(b) and 5.5(a).

disparity map can be computed using graph cuts as an efficient discrete model for
extracting minimal separating hypersurfaces.

According to [693], cut metric on 3D “disparity space” manifold in Fig-
ure 5.2{b} is set based on color consistency constraint between two stereo
cameras. Weights of n-links at node (x,y, d) are set as follows: if intensities of
pixels (. v) and (= + d, ¢} in two cameras are similar then the likelihood that two
pixels see the same 3D object point is high and the cost oM n-links should be small.
Later, [426, 692, ! 11] suggested anisotropic cut metric where vertical n-links are
based on the same likelihoods as above but horizontal n-links are fixed to a con-
stant encouraging smoother disparity maps that avoid unnecessary disparity level
jumps.

In general, separating hypersurfaces in Figure 5.2(b) can have folds that would
make them inappropriate as disparity maps d = f(z, y). If a minimum hypersur-
face computed via graph cuts has a fold then we did not find a feasible disparity
map. Therefore, [426, 111] propose a set of hard constraints that make topologi-
cal folds {see Figure 5.4(a}) prohibitively expensive. Note that additional infinity
cost vertical n-links (directed down) make folds infeasible. This topological hard
constraint takes advantage of the “direcied” nature of graph cuts; a cost of a cut
includes only severed directed edges that go from the (red) nodes in the source
component to the (bhug) nodes in the sink component. A cut with an illegal fold
in Figure 5.4(a) includes one infinity cost n-link.

Ishikawa& Geiger [425] also solve stereo by computing optimal separating hy-
persurfaces on a rectangular 3D manifold. However, their inlerpretation of the
manifold and boundary conditions are different. As shown in Figure 5.5(a}, they
interpret a separaling hypersurface z = f(x,y) as a “correspondence mapping”
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right image

left image

(a) Hypersurface as correspondence (b) Hypersurface separates two video clips

Figure 5.5. Two more examples of graph cuts as separating hypersurfaces. Formulation
of stereo problem in [425] computes pixel correspondences represented by a separating
hypersurface on a 3D manifold in (a). A smooth transition between two video clips is
performed in [499] via graph cuts computing globally optimal scparating hypersurface in
a 3D region of overlap between two clips in (b).

between pixels p = (x,y) in the left image and pixels ¢ = (f(z,y),¥) in
the right image (of a rectified stereo pair). Assignment of correspondences may
be ambiguous if a hypersurface has folds like one in Figure 5.4(b). In order to
avoid ambiguity, [425] introduce monotonicity (or ordering) constraint that is en-
forced by directed infinity cost n-links shown in brown color. Note that a cut in
Figure 5.4(b) severs two brown n-links that go from a (red) node in a source com-
ponent to a (blue) node in a sink component. Thus, the cost of the cut is infinity
and the corresponding separating hypersurface with a fold becomes infeasible.

Similar to [693, 692], the cut metric on manifold in Figure 5.5(a) is based on
color consistency constraint: a 3D points (x, ¥, z) on the manifold has low n-link
costs if intensity ol pixel {z, y) in the left image is close to intensity of pixel {z, y}
in the right image. Note thal hyperplanes parallel to diagonal crossection (from
bottom-left to top-right comers) of manifold in Figure 5.5{a) give correspondence
mappings with conslant sterec disparity/depth levels. Thus, spatial consistency of
disparity/depth map can be enforced with anisotropic cut metric where diagonal n-
links (from left-bottom to right-top corner) are set to a fixed constant representing
penalty for jumps between disparity levels.

Another interesting example of graph-cuts/hypersurface framework is a method
for video texture synthesis in [499]. The technique is based on computing a seam-
less transition between two video clips as illustrated in Figure 5.5(b). Two clips
are overlapped in 3D (pixel-time) space creating a bounded rectangular manifold
where transition takes place. A point in this manifold can be described by 3D co-
ordinates (xz,y,1) where p = (x,y) isa pixel and ¢ is time or video frame number.
The transition is represented by a separating hypersurface t = f(x,y) that speci-
fies for each pixel when to switch from clip 1 to clip 2. During transition a frame
may have a mix of pixels from each clip. The method in [499] suggest a specific
cut metric that for each point (x,y, ) in the overlap region depends on intensity
difference between two clips. Small difference indicates a good moment (in space
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and time) for seamless transition between the clips and n-links at such (z,y,t)
points are assigned a low cost. Note that “seamless transition” is a purely visual
effect and it may be achieved with any separating hypersurface in Figure 5.5(b).
In this case there is no real need to avoid hypersurfaces with “folds™ which would
simply allow pixels to switch between clip 1 and clip 2 a few times.

5.4.4 Theories connecting graph-cuts and hypersurfaces in R"

In this section we discuss a number of known results that established theoretically
solid connections between cuts on discrete graphs and hypersurfaces in contin-
uous spaces. It has been long argued in computer vision literature that discrete
algorithms on graphs, including graph cuts, may suffer from metrication artifacts.
Indeed, 4- and 6- nearest neighbor connections on 2D and 3D grids may produce
“blocky” segments. Such geemetric artifacts are due to “Manhattan distance™ met-
rication errors. [t turns out that such errors can be easily corrected, resolving
the long-standing criticism of graph cuts methods. Boykov&Kolmogorov [109]
showed that regular grids with local neighborhood systems of higher order can
produce a cut metric that approximates any continuous Riemannian metric with
arbitrarily small error. Using powerful results from integral geometry, [109] shows
that weights of n-links from a graph node embedded at point p of continuous N-D
manifold are solely determined by a given N x N positive-definite matrix D{p)
that defines local metric/distance properties at point p according to principles of
Riemannian geometry. This result is quite intuitive as weights of n-links at this
graph node define local measure for area/distance for hypersurfaces according to
the corresponding cut metric. It is also interesting that results in [109] apply to ar-
bitrary Riemannian metrics including anisotropic cases where local metric could
be direction-sensitive.

So far in Section 5.4 we followed the general approach of [109] where hy-
persurfaces on N-D manifolds have implicit representation via cuts on embedded
graphs. As illustrated in Figure 5.2, a cut only “implies” a separating hypersur-
face. A specific hypersurface can be obtained through additional conventions, as
discussed in Section 5.4.1. More recently, [477] proposed an explicit approach
to hypersurface representation by graph cuts that, in a way, is dual to [109]. The
basic idea in [477] is to bisect a bounded N-D manifold with a large number
of (random) hyperplanes. These hyperplanes divide the manifold into small cells
(polyhedra) which can be thought of as irregular voxels. Then, [477] build an ir-
regular “random-grid” graph where each cell is represented by a node. Two cells
are connected by an n-link if and only if they touch through a common facet.
Clearly, there is a one-to-one correspondence between a set of all n-links on the
graph and a set of all facets between cells. A cut on this graph explicitly represents
a unique hypersurface formed by facets corresponding to severed n-links. Obvi-
ously, a cost of any cut will be equal to the area of the corresponding hypersurface
(in any metric) if weights of each n-link is equal to the area of the correspond-
ing facet (in that metric). Thus, the model for representing hypersurfaces via
graph-cuts in [477] can be applied to any metric. In their case, min-cut/max-flow
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algorithms will compute a minimum separating hypersurface among all explicitly
represented hypersurfaces satisfying given boundary conditions.

Cuts on a graph in [477] represent only a subset of all possible hypersurfaces on
an embedding manifold. If one keeps bisecting this bounded manifold into finer
cells then the number of representable hypersurfaces increases. [477] proves that
bisecting the manifold with a countably infinite number of random hyperplanes
would generate small enough cells so that their facets can represent any contin-
uous' hypersurface with an arbitrarily small error. This demonstrates that their
approach to graph-cut/hypersurface representation is also theoretically solid.

Intuitively speaking, theoretical results in [109] and [477] imply that both ap-
proaches to representing continuous hypersurfaces via discrete graph cuts models
have reasonable convergence properties and that minimum cost cuts on finer
graphs “in the limit” produce a minimum separating hypersurfaces for any given
metric. Results such as [109] and [477] also establish a link between graph cuts
and variational methods such as level-sets [729, 616, 702, 617] that are also
widely used for image segmentation.

There is (at least) one more interesting theoretical result linking graph cuts
and hypersurfaces in conlinuous spaces that is due to G. Strang [767]. This result
was established more than 20 years ago and it gives a view somewhat different
from [109, 477]. Strang describes a continuous analogue of the min-cut/max-flow
paradigm. He shows that maximum flow problem can be redefined on a bounded
continuous domain § in the context of a vector field f(p) representing the speed
of a continuous stream/flow. A constraint on discrete graph flow that comes from
edge capacities is replaced by a “speed limit” constraint [f(p)| < ¢(p) where
c is a given non-negative scalar function®, Discrete flow conservation constraint
for nodes on a graph has a clear continuous interpretation as well: a continu-
ous stream/flow is “preserved” at points inside the domain if vector field [ is
divergence-free divf = 0. Strang also gives appropriate definition for sources
and sinks on the boundary of the domain®, Then, the continuous analogue of
the maximum flow problem is straightforward: find a maximum amount of water
that continuous stream § can take from sources to sinks across the domain while
satisfying all the constraints.

The main topic of this sections connects to [767] as follows. Strang defines a
“real” cut on £2 as a hypersurface v that divides the domain into two subsets. The
minimum cut should separate sources and sinks and have the smallest possible
cost f,r ¢ which can be interpreted as a length of hypersurface v in isotropic metric
defined by a scalar function ¢. Strang also establishes duality between continuous
versions of minimum cut and maximum flow problems that is analogous to the
discrete version established by Ford and Fulkerson [324]. On a practical note,

| piece-wise twice differentiable, see [477] for more details.

ZMore genetally, it is possible to set an anisotropic “speed limit” constraint f(p) € e(p} where ¢
is some convex set defined at every point p € §1.

3Sources and sinks can also be placed inside the domain. They would correspond to points in 0
where div f is non-null, t.e. where stream f has an in-flow or out-flow.
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a recent work by Appleton&Talbot [28] proposed a finite differences approach
that, in the limit, converges to a globally optimal solution of continuous min-
cut/max-flow problem defined by Strang. Note, however, that they use graph cuts
algorithms to “greatly increase the speed of convergence”.

5.5 Generalizing Graph Cuts for Multi-Label Problems

In this section, we show that even though graph cuts provide an inherently bi-
nary optimization, they can be used for multi-label energy minimization. In some
cases, minimization is exact, but in more interesting cases only approximate min-
imization is possible. There is a direct connection between the exact multi-label
optimization and a graph cut as a hypersurface interpretation of Section 5.4.
We begin by stating the general labeling problem, then in Section 5.5.1 we de-
scribe the case when optimization ¢an be performed exactly. Finally, Section 5.5.2
describes the approximate minimization approaches and their quality guarantees.

Many problems in vision and graphics can be naturally formulated in terms
of multi-label energy optimization. Given a set of sites 7 which represent pix-
els/voxels, and a set of labels £ which may represent intensity, stereo disparity, a
motion vector, etc., the task is to find a labeling f which is a mapping from sites
P tolabels L. Let f, be the label assigned to site p and f be the collection of such
assignments for all sites in P.

We can use the same general form of energy (5.2) that was earlier introduced
in the context of binary labeling problems. The terms D, (1) are derived from the
observed data and it expresses the label preferences for each site p. The smaller
the value of D,{{}, the more likely is the label { for site p. Since adding a con-
stant 10 Dy (1) does not change the energy formulation, we assume, without loss
of generality, that I3, ([)’s are nonnegative. The pairwise potential Vi,q(l,, 1;) ex-
presses priot knowledge about the optimal labeling f. In general, prior knowledge
can be arbitrarily complex, but in graph cuts based optimization, we are essen-
tially limited to different types of spatial smoothness priors. Typically Vi (15, 14)
is a nondecreasing function of |/l — I4||*. Different choices of Vy, (1, ;) imply
different types of smoothness, see Sections 5.5.1 and 5.5.2 .

5.5.1 Exact Multi-Label Optimization

In this section, we describe the only known case of exact multi-label minimiza-
tion of energy (5.2) via graph cuts. The corresponding graph construction is not
covered by the general theoretical result in [491], which applies to binary label-
ing cases only. We have to make the assumption that labels are linearly ordered.
This assumption limits the applicability of the method. For example, it cannot be
directly used for motion estimation, since motion labels are 2 dimensional and

*Here we used the norm || - || notation because, in general, f,, may be a vector
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Figure 5.6. Part of the graph construction for energy minimization in 5.3, |£| =4

cannot be linearly ordered®, Without loss of generality, assume that labels are in-
tegers in the range £ = {1,...,k}. Let Vy, = Aylfo — f,|. Then the energy
is:

E()=Y_Dy(f)+ D Mlfo—fols (5.3)

peEP (p.g)EN

In vision, [425, 111] were the first to minimize energy (5.3) with a minimum
cut on a certain graph G. In fact, this graph is topologically similar to a graph
of Roy&Cox [693] where separating hypersurface on 3D manifold gives a stereo
disparity map, see Section 5.4.3.

The graph is constructed as follows. As usual, vertices V contain terminals s
and t. For each site p, create a set of nodes py, ..., py_1. Connect them with edges
{5, ..., 84}, where ] = (s,p1), 8§ = (pj—1,9;), and £} = (pg-1,t). Bach edge
t7 has weight K + Dy (), where Kp = 1+ (k ~ 1) 35, .5 Apg- Here N is
the set of neighbors of p . For each pair of neighboring sites p, g and for each
Jj € {1,...,k — 1}, create an edge (p;, g;) with weight A,,. Figure 5.6 illustrates
the part of G which corresponds to two neighbors p and 4. For each site p, a cut
on G severs at least one edge #F. The weights for 7 are defined sufficiently large
80 that the minimum cut severs exactly one of them for ¢ach p. This establishes a
natural correspondence between the minimum cut and an assignment of a label to
p. If the minimum cut severs edge ¢, assign label 4 to p. It is straightforward to
show that the minimum cut corresponds to the optimum f [111].

Ishikawa [424] generalized the above construction to minimize any energy
function with convex V},,’s. His construction is similar to the one in this section,
except even more edges between p;’s and g;’s have to be added. Unfortunately,
a convex Vp, is not suitabie for the majority of vision applications, especially if
the number of labels is large. Typically, object properties tend to be smooth every-
where except the object boundaries, where discontinuities may be present. Thus in
vision, a piecewise smooth model is more appropriate than the everywhere smooth
medel. However using a convex V,, essentially corresponds to the everywhere
smooth model. The penalty that a convex V,,, imposes on a sharp jumps in labels
is so large, that in the optimal f discontinuities are smoothed out with a “ramp”.
It is much cheaper to create a few small jumps in f rather than one large jump.

3[terative application of the algorithm described here was vsed for motion in [694]
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Figure 5.7, From left to right: a labeling £, a labeling within one standard move of f (the
changed site is highlighted by a black circle), labeling within one green-vellow swap of f,
labeling within one preen expansion of f.

Of all the convex ¥, the one in (5.3) works best for preserving discontinuities.
Nevertheless in practice, it oversmooths disparity boundaries [837].

53.5.2 Approximate Optimization

The potential V,, in the previous section is not discontinuity preserving because
Vyq is allowed to grow arbitrarily large. One way to construct a discontinuity pre-
serving Vj,, is to cap its maximum value. Perhaps the simplest example is the
Potts model Vyq = Apy - Z(fp # f,) [113). We have already seen Potts V,, in
Section 5.3.1%, and it corresponds to the piecewise constant prior on f, Unfortu-
nately, energy minimization with Potts V,, is NP-hard {113], however graph cuts
can be used to find an answer within a factor of 2 from the optimum [113].

In this section, we describe two approximation methods, the expansion and
the swap algorithms [113]. According to the results in [491], the swap algorithm
may be used whenever Vy(or, @) + Vi(8,8) < Vigla, B) + Vie(8, &) for all
«, 8 € £, which we call the swap inequality. The expansion algorithm may be
used whenever Vo (o, @)+ Vo (8,7) < Viglo, ¥)+ Vo (8, 0) forall o, 3,y € L,
which we call the expansion inequality. Any V,,, which satisfies the expansion
inequality also satisfies the swap inequality, hence the expansion inegquality is
more restrictive.

Both swap and expansion inequalities admit discontinuity preserving Vjq’s.
The truncated linear Vpo{w, 3) = min(T,||a — 3|} satisfies the expansion in-
equality. The truncated quadratic Vyq(a, 8) = min{T,|la — f§||?) satisfies the
swap inequality. Here T is a positive constant, which is the maximum penalty
for a discontinuity. The truncated linear and truncated quadratic V,,, correspond
to a piecewise smooth model. Small deviations in labels incur only a small
penalty, thus the smoothness is encouraged. However sharp jumps in labels are
occasionally permitted because the penalty T is not too severe to prohibit them.

SIn the binary case, it is typically catled the Ising model.
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5.5.2.1 Local Minimum with Respect to Expansion and Swap Moves

Both the expansien and the swap algorithms find a local minimum of the energy
function. However, in discrete optimization, the meaning of “a local minimum”
has to be defined. For cach f, we define a set of moves M. Intuitively, these are
the moves to other labelings that are allowed from f. Then we say that [ is a local
minimum with tespect to the set of moves, if for any ' € My, E(f') > E(f).
Most discrete optimization methods (e.g. [341, 81]) use standard moves, defined
as follows. Let H(f, '} be the number of sites for which f and ' differ. Then
for each f, standard moves are My = {f'|H(f, f') < 1}. Thus a standard move
allows to change a label of only one site in f, and hence | M| is linear in the
number of sites, making it is easy to find a local minimum with respect to the
standard moves. The result, however is very dependent on the initial point since a
high dimensional energy has a huge number of such locat minima. In particular,
the solution can be arbitrarily far from the global minimum.

We now define the swap moves. Given a labeling f and a pair of labels & and
8, a move f*? is called an a-F swap if the only difference between f and fo?
is that some sites that were labeled o in f are now labeled 4 in f*#, and some
sites that were labeled @ in f are now labeled c in f*#. M; is then defined as the
collection of a-@ swaps for all pairs of labels «, 5 € £.

We now define the expansion moves. Given a labeling f and a label o, a move
J® is called an a-expansion if the only difference between f and f™ is that some
sites that were not labeled & in f are now labeled o in f®. My is then defined
as the collection of a-expansions swaps for all labels « € £. Figure 5.7 shows
an example of standard move versus a-expansion and a-3 swap. Notice that a
standard move is a special case of an o-expansion and a o-3 swap. However
there are a-expansion moves which are not a7 swaps and vice versa.

The expansion (swap) move algorithm finds a local minimum with respect to
expansion {swap) moves. The number of expansion (swap) moves from each la-
beling is exponential in the number of sites. Thus direct search for an optimal
expansion {(swap) move is not feasible. This is where graph cuts are essential. It
is possible to compute the optimal a-expansion or the optimal «-f swap with
the minimum cut on a certain graph. This is because computing an optimal o-
expansion (optimal o~ swap) is a binary minimization problem which happens
to be regular [491] when the expansion (swap) inequality holds.

The expansion (swap) algorithms are iterative. We start with an initial labeling
f. We then cycle in random order until convergence over all labels o € £ (pairs
of o, # € £), find the optimal f* (f*?) out of all a-expansions (a-3-swaps), and
change current labeling to ¢ (f*#). Obviously this cannot lead to an increase in
energy, and at convergence we found the local minimum with respect to expansion
(swap) moves. Thus the key step is how to find the optimal a-expansion (a-0
swap), which is performed by finding a minimum cut on a certain graph G =
(V, ). The actual graph constructions can be found in [113].

The criteria for a local minimum with respect to the expansions (swaps) are
so strong that there are significantly fewer of such minima in high dimensional
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spaces compared to the standard moves. Thus the energy function at a local min-
imum is likely to be much lower. In fact, it can be shown that the local minimum
with respect to expansion moves is within a constant factor of optimum, The best
approximation is in case ol the Potts model, where this factor is 2. It is not surpris-
ing then that most applications based on graph cuts use the expansion algorithm
with the Potts model [111, 88, 489, 490, 895, 499, 521, 403, 10, 9001.



Chapter6

Minimal Paths and Fast Marching
Methods for Image Analysis

L. Cohen

Abstract
We present an overview of part of our work on minimal paths. Introduced
first in order to find the global minimum of active contours’ energy using
Fast Marching [210], we have then used minimal paths for finding multiple
contours for contour completion from points or cutrves in 2D or 3D images.
Some variations allow to decrease computation time, make easier initializa-
tion and centering a path in a tubular structure. Fast Marching is also an
efficient way to solve balloon model evolution using level sets. We show
applications like for road and vessel segmentation and for virtual endoscopy.

6.1 Introduction

Deformable models have been the object of considerable studies and variations
since their introduction in [456]. Most of the approaches that were introduced
since then tried to overcome the main drawbacks of this model: initialization, min-
imization and topology changes. The model requires the user to input an initial
curve close to the goal. Using the balloon model [204] allows a less demanding
initialization. Level sets approaches have the same property [152, 538, 157]. A
region-based approach (for example [207, 205]) also makes the solution less sen-
sitive to local minima and initialization. Also, a priori knowledge included in a
parametric deformable model (for example [51, 203]) allows to be more robust.
However, for images like the one in figure 6.4, a very precise initialization is
needed to avoid the active contour being trapped by an insignificant local mini-
mum of the energy [205, 204]. In order to find a global minimum for the energy,
authors of [210] have introduced a minimal path approach. This is based on previ-
ous work by [472, 469] in a different framework. Curve initialization is replaced
by just giving two endpoints. The numerical method has the advantages of be-
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ing consistent (see [210]), fast and efficient, using the Fast-Marching algorithm
introduced in [730].

This chapter contains various improvements of the original method, relevant
in 2D or 3D. Some of the problems we dealt with for segmentation and contour
extraction, finding trajectories and perceptual grouping are presented in this paper
as follows:

» Minimal path between two points: The solution proposed in [209, 210] with
Fast Marching is reviewed in Section 6.2.

* Minimal paths between an ordered list of points or a given set of pairs of
points is a simple application of the previous case.

» Minimal paths for a given unstructured set of points: we propose a way to
find pairs of linked neighbors and paths between them [206] (Section 6.3).

» Minimal paths between an unknown set of key points to be determined from
a larger set of admissible points [206].

* Minimal paths for an unstructured set of connected components, by extend-
ing the previous approaches to determine pairs of regions to be linked. [266]
(Section 6.4).

= Segmentation of 2D and 3D tubular and tree structures [264, 265] (sections
6.4 ¢ 6.5).

* Finding a centered path inside a tubular structure and application to virtual
endoscopy [264] {section 6.6),

6.2 Minimal Paths

6.2.1 Geometrical optics

In order to understand Fermat Principle which is the physical interpretation of
minimal paths described afterwards, we illustrate light propagation in two simple
cases.

According to Fermat Principle, the path followed by monochromatic light to
go from a point pgy to a point p; is the path which takes least time. In the case of
an homogeneous medium, light speed is constant, and thus light follows a straight
line, since shortest time is proportional to distance, as seen on figure 6.1-left. Sets
of points that are reached at a given time are circles.

Let us now consider a non homogeneous medium composed of two ho-
mogeneous regions separated by a horizontal line in the middle, like in
Figure 6.1-middle. Assuming that tight speed is larger in the bottom rectangle,
the trajectory will "prefer” to remain in this rectangle as much as possible. As
a consequence, trajectories are submitted to a refraction effect, as seen on a few
trajectories shown in the figure. Angles between the two lines and the normal to
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I refinctive fnden

Figure 6.1. Cost function by front propagation and minimal paths for a potential with one
or two values. See text.

the interface between the two media satisfy Snell-Descartes’law (ratio of their
sines is equal to the ratio of refraction indices). The refraction index n > 1is the
ratio between light speed in emptiness ¢ and its speed in the considered medium
u. From this definition, travel time T between two points is the integral along the
followed path of the inverse of the speed % = 2, The followed path is a minimum
forT =171 ;: | nds. The Eikonal equation (see section 6.2.4) was obtained for this
minimization by Hamilton, as a special case of Hamilton-Jacobi equations.

One of the trajectorics shown again on figure 6.1-right illustrates the well
known mirage effect. Light source S is visible from points R, et R,. But the
path followed between S and R; is not a straight line, since light “prefers” going
through the smaller refraction index area to go faster. This is a common phe-
nomenon when temperature variations are large enough between the ground and
atmosphere, making believe an observer at B there is an oasis in the desert. Sim-
ilarity will be obvious in the following sections where active contours potential P
takes the same place as refraction index n.

6.2.2 Global Minimum for active contours

We present in this section the basic ideas of the method introduced in [210] to
find the global minimum of the active contour energy using minimal paths. The
energy Lo minimize is similar to classical deformable models (see {456]) where it
combines smoothing terms and image features attraction term:

B(C)= [ {mllC @)+ walC” (*+P(C(s) i 6.1

where C{s) represents a curve drawn on a 2D image and £ is its domasin of def-
inition. The method of [210] improves energy minimization since the problem is
transformed in a way allowing to find the global minimum.

6.2.3 Problem formulation

As explained in [210], skipping second order term, we are lead to minimize

E(C) = f {w + P(C(s))}ds, 62)
Q::[ LI
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b

Figure 6.2. On the lefl, the potential is defined to be minimat on the ellipse. In the middle,
the minimal action or weighted distance to the matked point. On the right, minimal path
using backpropagation from the second point.

where s is the arclength parameter {[|C*(s)|| = 1). The regularization of this
model is now achieved by the constanl w > 0 (see [210] for details). Given
a potential P > 0, the energy is like a distance weighted by P = P + w. The
minimal action#{ is defined as the minimal energy integrated along a path between
starting point py and any point p:

uw) = jnt BC)= jut { [ Progsas) (63)

where Ap, p is the set of all paths between pg and p. The minimal path between
pp and any point p; in the image can be easily deduced from this action map by
a simple back-propagation (gradient descent on U) starting from py until py is
reached. This backpropagation step is made possible due to the fact that 2/ has no
local minimum except point pg, therefore the descent converges to py for any py.
More accurate gradient descent methods like Runge-Kutta midpoint algorithm or
Heun’s method can be used.

6.2.4 Fast Marching Resolution

In order to compute ¥4, a front-propagation equation related to Eqn. (6.3} is solved:
L = + 7. It evolves a front C starting rom an infinitesimal circle shape around
po untit each point inside the image domain is assigned a value for 24. The value of
U(p) is the time £ at which the front passes over p. The Fast Marching technique,
introduced in [730], was used in [209, 210] noticing that the map If satisfies the
Eikonal equation ||[Vi|| = P and U(pp) = 0. The relation with this equation
will be explained in section 6.5, Since classic finite difference schemes for this

equation are unstable, an up-wind scheme was proposed by [730]:
(max{u ~Us-1,5,u _ui+1,j:0})2+ (6.4)
(max{u _ué’jml‘u _u3!3+1’0})2 = P‘%ﬂ“ )

The improvement made by the Fast Marching is to introduce order in the selection
of the grid points. This order is based on the fact that information is propagat-
ing outward, because the action can only grow due to the quadratic Eqn. (6.4).
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Figure 6.3. Global minimum of active contour model. After giving two points on the left,
the minimal path between them is found in the middle image. On the right we show the
cost function from the start point. Notice faster propagation aleng the roads, Potential is
defined as a decreasing function of the gray level.

The main idea is similar to the construction of minimum length paths in a graph

between two given nodes introduced in [269] (see discussion in [210]).
Complexity of Fast Marching on a grid with N nodes is bounded by

O(N log, N) for the Fast Marching on a grid with NV nodes. The algorithm is

Algorithm for 2D Fast Marching for minimal action 14
Definitions:

» Alive set: grid points at which values of U have been reached and will not be
changed,

* Trial sel: next grid points {(4-connexity neighbors) to be examined. An cstimate {7
of 4 is computed using Eqn. (6.4) from alive neighbors only;

* Far set: all other prid points, there is not yet an estimate for U,
Initialization:
» Alive set: start point po, U{pe) = U{po) = 0;
» Trial set: four neighbors p of pg with initial value U(p) = P{p) (U(p) = co);
* Far set: all other grid points, If = [/ = oo
Loop:
» Let p = (imin, Jmin ) be the Trial point with the smallest action U/;
» Move it from the Trial to the Alive set;
* For each neighbor (4, ) of {imin, fmin }:

— If (4, §) is Far, add it to the Trial set;
~ If (4, §) is Trial, update U; ; with Eqn. (6.4).

Table 6.1. Fast Marching algorithm

detailed in Table 6.1. Examples are shown in Fig. 6.2 to 6.4. Solving Eqn. (6.4) is
detailed next.
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Figure 6.4, Many minimal paths are obtained from a same start point and many end points.
This allows extracting the set of roads in the aerial image on the left and vessels in the eye
fundus image on the right.

6.2.5 2D Up-Wind Scheme

Notice that for solving Eqn. (6.4), only values of alive neighbor points are con-
sidered (Table 6.1). Considering the neighbors of grid point (7, 7) in 4-connexity,
we note {A, Az} and {B), Ba} the two couples of opposite neighbors such that
we get the ordering U{ A1) < U(Ag), U(B1) < U(Bz), and U(A;) < U(Br).
Considering that we have u > U(B,)} > U(A;), the equation derived is

(= U(AL))P + (u —U(By))? = P, (6.5)

Based on testing the discriminant A of Eqn. (6.5), one or two neighbors are used
to solve it:

1. If By > U(Bi1) — U(A,), solution of Eqn. (6.5) is
v U(By)HU(ALY+f2FR  —(U(B1)—U(AL))?
= 3 ;

2. else = L!‘(A]_) + .Pg,_f.

6.2.6 Minimal Paths in 3D

A 3D extension of the Fast Marching algoritbm was presented in [264].
Similarly to previous section, the minimal action i/ is defined as U(p) =
infa,, , {fn ﬁ(C(s))ds} where Ay, ,, is now the set of all 3D paths between
po and p. Given a start point pp, in order to compute 24 we start from an initial in~
finitesimal spherical front around pg. The 2D scheme of equation {6.4) is extended
to 3D, leading to:

(max{u — U1 ;5,8 — Ui 5k, 0})*H(max{u — Ui 1,8 — Ui 11, op?
+(max{u — Ui jx—1,% — Ui j k1,01 = PZ, (6.6)

Ty

giving the correct viscosity-solution u for i ; . An example is given in figure
6.13 of section 6.6.
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(b)

Figure 6.5. {a) Simultaneous propagation: The left itnage is the data set, used as potential
to extract 2 path in a vessel. In the middle, the action map is obtained from the first point
till second point is reached, The right image shows the action map resulting from a simul-
taneous propagation from both extremities points, and the two paths from the intersection
point. {b) Simultaneous estimate of the path length. On the left, potential; In the middle,
minimal action map; on the right, length of the minimal path. These maps are computed
only until a given length is reached.

6.2.7 Simultaneous Front Propagation

The idea is to propagate simultaneously a front from each end point py and py
2641, Let us consider the first grid point p where those fronts meet. This point
has to be on the minimal path between pg and p;. Since during propagation the
action can only grow, propagation can be stopped at this step in order to make
backpropagation. Adjoining the two paths, respectively between pg and p, and )
and p, gives an approximation of the exact minimal action path between pg and
p1- Since p is a grid point, the exact minimal path might not go through it, but in
its neighborhood. Precise location can be cbtained through interpolation between
grid points like in [643]. This algorithm is described in table 6.2. This approach

Algorithm

» Compute the minimal action maps Up and Us to respectively po and p1 until the
two fronts have an Alive point pa in common;

« Compute the minimal path between po and pa by back-propagation on Up from pa;
= Compute the minimal path between p, and pa by back-propagation on Uy from pa;
= Join the two paths found.

Table 6.2. Minimal Path from two action maps
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allows a parallel implementation of the two propagations. Also, the region covered
by Fast Marching is greatly reduced (see Figure 6.5.a).

6.2.8 Simultaneous estimate of the path length

Notations
* astart point po is manually set;
= the minimal energy map U, a min-heap M, and a potential image P;
+ adistance map D to compute the Euclidean length of the minimal path ;

+ a min-heap Hp, where the ordering key for any point p is the value of D{p) (the
first element of this heap will be the Trial point with smallest IY);

Initialization
« initialize the front propagation method, by setting U (py) = D(po) = 0 and storing
po in both min-heaps Hy and Hp;
Loop: at each iteration, consider ppmin the Trial point with smallest [7
« Move it to Alive set, and remove it from both Hy and Hp
= for each neighbor p of prin:

— proceed according to the classical Fast Marching algorithm: update I/ {p) and
re-balance Hys;

— update D(p) according to | VD|| = 1 using the same neighbors of p that
were involved in updating U (p) and re-balance H

Table 6.3. Computing the Euclidean Distance traveled by the front.

In some cases, like for giving extremities in a 3D image, it is easier for the user
to give only one start point and the second should be found automatically. We now
describe an approach which builds a path given a starting point and a given path
length to reach [264]. We are able to compute simultaneously at each point of the
front energy I7 of the minimal path and its length. The end point is then chosen
as the first point that reach the expected length. Propagation is stopped when this
point is reached and minimal path is computed from it. Since the front propagates
faster along small values of the potential, the interesting paths are longer among
all paths which have same minimal action ¥/. When the front propagates in a
tubular structure, all points who reach first the given length are in a same region
of the image, far from the starting point and inside the tubular shape. This gives a
justification for this choice of end point (see Figure 6.5.b).

Once the path is extracted by gradient descent, we can easily compute its [ength.
But this is a very time consumning process to systematically do this at each point
visited. Therefore we proposed to compute on-the-fly an approximation of the
distance traveled by the front. We use the property that when propagating a front
with a constant speed equal to one, the minimal energy obtained at each point
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Figure 6.6. Ellipse. From left to right: potential is an incomplete ellipse and points py, are
given; level sets of minimal action U from pi's; zoom on a saddle point; backpropagation
from selected saddle points to their two source points give the set of paths and voronoi
diagram.

vepresents the Euclidean distance DD to the starting point. The Euclidean length of
the path is found solving ||V D] = 1 using with the same neighbors involved for
P in Eqn. (6.5). The corresponding algorithm is described in table 6.3. This algo-
rithm was used for reducing user-intervention in the Virtual Endoscopy process
presented in section 6.6 by giving only one point [264].

6.3 Minimal paths from a set of endpoints p;,

Minimal paths between points py, minimal action V = U, s<r<n)
+ Initialization:

— pr'sare given; V&, V(pi) = 0;l{(pe) = kis the front index, py alive.

- Vp & {px},V{p) = ocojl(p) = —1; pis far except 4-connexity neighbors
of pi’s that are trial with estimate ' using Eqn. (6.4).

» Loop for computing V' = Uy, a<h<iy:

— Let p = (imin; Jmin) be the Trial point with the smallest action U;

- Move it from the Trial set to the Alive set with V(p) = U(p);

— Update I{p) with the same index as point A; in formula (6.5). If I{A)) #
I{B1) and we are in case 1 of section 6.2.5 where both points are used
and if this is the first time regions of labels (A1) and I(B)) meet,
S{preary, pimy)) = pis set as the saddle point between py (4, and py(g, ;. If
these points have not yet two linked neighbors, they are put as linked neigh-
bors and S(pica,y, Prey) = pis selected,

For each neighbor (4, 7) of {imin, Fmin ):
» If {4, 7) is Far, add it to the Trial set;
= If (4, j) is Trial, update action U; ;.

+ (Obtain all paths between selected finked neighbors by backpropagation each way
from their saddle point.

Table 6.4. Algorithm for unstructured set of points.
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Figure 6.7. Two circles; from left to right; incomplete noisy dala set; the set of found pi.’s;
multiple minimal paths between py’s.

Multiple minimal paths

We propose to use the minimal path approach to extract a set of contours from
an unstructured set of points given on an image. In order to find the set of most
representative contours on the image, we are looking for minimal paths between
pairs of points. We describe briefly the method when points py. are already known,.
An approach to automatically find points py, that are most representative among
a larger set of admissible points was introduced in [206], based on an iterative
farthest point strategy relative to the weighted distance. Such a strategy was used
later on to find adaptive or uniform remeshing of a surface using fast marching
[643].

We assume here that points pg are known. If we knew as well which pairs of
points have to be linked among p;.’s, finding all contours is a trivial application of
section 6.2. The problem we are interested in here is also to find out which pairs of
points have to be connected by a contour. Since the set of points py’s is assumed
to be given unstructured, we do not know in advance how the points connect. This
is the key problem that is solved here using a minimal action map.

The main goal of our method is to obtain all significant paths joining the given
points, However, each point should not be connected to alt other points, but only
to those that are closer to them in the energy sense. There are many possibilities
to decide which pairs of points have to be linked. It depends on data and on the
application in view. In some cases, it is necessary to detect closed curves and
avoid bifurcation, or T-junctions. The criterion is then to constrain a point py to
be linked to at mest two other points among p) s, in order to generate a closed
curve. In case we are looking for tree structures, the criterion is different, as in
section 6.4.

For perceptual grouping, potential P to be minimized along the paths is often a
binary image of edge points, that form incomplete contours, as on figure 6.6-left.
Attraction potential 1o the set of edge points can be defined (see [208]) in order to
have lower values along edge points and higher values in the background.

Main ideas of the approach

OQur approach is similar to computing the distance map to a set of points and their
Voronoi diagram. However, we use here a weighted distance defined through the
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Figure 6.8. From left to right: examples of regions to link; level sets of the minimal action
from the 4 regions; minimal paths obtained from the 3 selected saddle points.

potential P. This distance is obtained as the minimal action with respect to P with
zero value at all points pg. Instead of computing a minimal action map for each
pair of poinls, as in Section 6.2.3, we only need to compute one minimal action
map in order to find all paths. At the same time the action map is computed we
determine the pairs of points that have to be linked together by finding meeting
points of the propagation fronts. These are saddle points of the minimal action 4.

Although the minimal action is computed using fast marching, the level sets
of U give the evolution of the front. During the fast marching aigorithm, the
boundary of the set of alive points also gives the position of the front.

Figure 6.6 illustrates the steps of the algorithm. Figure 6.7 shows the result with
points p, found automatically. More details can be found in [206].

6.4 Multiple minimal paths between regions Ry

We consider perceptual grouping and contour completion from an unstructured
set of regions in a 2D or 3D image. As an extension of previous section 6.3,
complete curves are obtained as minimal paths between pairs of regions [266].
This approach is extended to finding a set of minimal paths that connect a set of
3D regions in 3D images. This makes use of Fast-Marching in a 3D image, as in
section 6.2.6 [264, 263].

Minimal path between 2 regions

Defining a minimal path between two regions is an easy extension of [210]. Con-
sider two connected regions, the start region [y and the set of end points R,. The
problem is finding a minimal path among all paths starting from a point in Ry and
ending on K,;. Minimal action is then defined as:

U(p)= inf E(C)= inf inf E(C) 6.7

Anrg.p € PP

where Ap, . is the set of paths starting from a point in Rp and ending at p. This
is computed using Fast Marching as in table 6.1, with initial set of Alive points
being Ry, with i = 0. In order to find a minimal path between By and Ry, we
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Figure 6.9. Perceptual grouping in the 3D aorta image: MIP view of vascularity potential;
detection of regions in the aorta; vascular tree completion by minimal paths relatively to
vascularity potential.

determine a point p; € Rj such that i (p,) = mingeg, U(p). We then make
backpropagation from p; to Ry,

Tubular structures

Linking regions can be useful when these regions are for example connected com-
ponents obtained after edge detection. In the example of Fig. 6.8, which represent
a tree structure, regions are selected in a way that they do not form together a
closed curve. In medical imaging, finding vessels is a very important problem.
Regions can then be defined from thresholding a vascularity criterion of [326] to
detect tubular regions in a vessel image. In Figure 6.9, we show a MIP view of
the vascularity potential [326] obtained from 3D MRI of the aorta with contrast
product. We obtain a set of regions by thresholding the multiscale criterion. Our
method helps completing these region and finding the structure of the vascular
tree.

6.5 Segmentation by Fast Marching

Several approaches are possible to segment the boundary surface of an object
starting from points inside. We can use for example a balloon model [204] or its
level-sets implementation, as in [538]. In fact, this kind of region growing method
can also be solved fast using the Fast Marching algorithm [535]. This allows
to make a segmentation step in the same framework as minimal path finding.
Having searched for the minimal action from one point, the algorithm provides
the following regions:

* Inside : the points whose action is set, labeled Alive;
= Qutside : the points not yet examined, labeled Far;

« the points at the interface between Alive and Far points, whose actions are
not set, labeled Trial.
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Figure 6.10. Propagation inside colon using Fast Marching.

This last region, on the boundary of the visited points, is a contour in 2D and
a surface in 3D. If the potential is a lot higher along edges than it is inside the
shape, the edges will act as an obstacle to the front propagation. In this case the
Trial points define a surface which segments the object.

In order to see the precise relation between fast marching propagation and ac-
tive contours, consider the usual evolution equation of an interface (2D curve or
3D surface) that appears in level sets methods 5% (p) = F(x)n and C(p,0) =
Co(p). Assume the speed I = }% > 0, and thus the front moves always outwards
in the normal direction n, like an inflating balloon [204], but with a speed which is
not necessarily constant. A way to characterize the interface is to compute at each
point x of the image the arrival time T'(x) of the interface £/{¢) when it sweeps
the domain, Using the classical properties of a level set of T" that its normal is
in the direction of VT, the following equation is obtained from the evolution of
interface C(#):

vr
TCx ) =t=>VT-C=1=VT - (F— | =1=F.|vT| =1
( 1V )
where we recognize the Eikonal equation seen above in section 6.2.4. This equa-
tion was thus solved by fast marching in [335] for surface segmentation since
it has the same advantages as the level set formulation, but is much faster. This
equation is solved using 3D Fast Marching (see section 6.2.6) in the example for
segmentation of the colon shown in figure 6.10, [264].

When the front propagates in a long and thin structure for which the potential
conirast between inside and outside is not sufficient, the front will likely flood out
of the object during propagation. Indeed, when the front propagates in the tubular
structure, there is only a small part of the front, which we could call the “head”
of the front, that really moves. Most of the front is located close to the boundary
of the structure and moves very slowly. For example voxels that are close to the
starting point, the “tail” of the front, are moving very slowly. However, since the
structure may be very long, in order for the “head” voxels to reach the end of
the structure, the “tail” voxels may flow out of the boundary since their speed is
always positive, and integrated over a long time. This is iltustrated in the example
of Figure 6.11.

We introduced in [265] an approach where points of the front are "frozen" when
a distance criterion is satisfied. This makes use of the length of the minimal paths
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Figure 6.11. Front Propagation in a 3D MR image of the aorta. On the left it floods, in the
middle, freezing prevents flooding. On the right, virtual endoscopy in the tree structure,
with visible paths,

computed as in section 6.2.8. Figure 6.11 shows the result with freezing which
gives a correct segmentation.

6.6 Centered Minimal Paths and virtual endoscopy

A minimal path minimizes the integral of the potential in equation {6.2). If the
potential is constant in some areas, like inside a tubular object, it will lead to a
shortest geodesic path. The same thing happens when the potential does not vary
much inside a tubular shape. The minimal path extracted is often tangential to the
edges, as shown on the left of figure 6.12, and this is a problem when looking
for a trajectory for virtual endoscopy [264]. A centered path is more relevant. The
method we proposed to obtain a centered path in a tubular shape first segments the
tubular region and then looks for a path inside as far as possible from the walls,
using a distance map. The complete method is detailed in [264], here are the main
steps:

1. Segmentation: compute the weighted distance map by front propagation
from the given start point till reaching the end point, which can be found
automatically using a length criterion of section 6.2.8.

2. Segmentation: set of fria/ points, as described in section 6.5.

3. Centering Potential : compute inside the tubular object the distance map T
to the surface previously obtained (fast marching with P = 1).

4. Centered path : this is the minimal path between start and end points rel-
atively to a decreasing function of the distance D. The path locates as far
as possible from the walls, which means in the center where distance to the
boundary is larget. The final step is to make back-propagation from the end
point using the last action map,

Figure 6.12 compares the resulting path with classical potential and center-
ing potential on brain vessels. Figure 6.13 shows an example of the centered
minimal path obtained in a 3D colon image. This path is used as a trajectory
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Figure 6.12, Centered path in a vessel: Two images on the left show both paths on a
sketch and original image. Two images on the right show propagation and path for classical
potential and centering distance potential obtained.

Figure 6.13. On the left, example of a minimal path on a 3D image of colon. On the right,
virtual endoscopy through the color (colonoscopy).

for a virtual camera by image rendering at each point of the path from the
3D image data giving a virtual endoscopy. Movies are available on the website
http://www.ceremade.dauphine.fr/~cohen/MPEG This approach can be extended
[265] to exlraction of a set of paths in a tree structure and the possibility of virtual
endoscopy where the user can choose at each bifurcation the path he wishes Lo
Tollow (figure 6.11),

Acknowledgements. A large part of the presented work was done in collab-
oration with R. Kimmel or during PhD supervision of T.Deschamps and 1 thank
both of them greatly.

6.7 Conclusion

We have presented various aspects of minimal paths methods and their appli-
cations, in particular for medical imaging. These approaches allow to extract a
contour or a set of contours in a 2D image, as well as tubular structures, or tree
structures in 2D and 3D images. The Fast marching algorithm makes the task
much easier and also allows o segment curves or surfaces in an image very fast.
Let us quote some of our more recent related work : surface segmentation defined
as a set of minimal paths, [30], image segmentation from a set of source points
using an extension of the definition of minimal action [29] and fast marching on
a triangulated surface used for adaptive remeshing [643].



Chapter7

Integrating Shape and Texture in
Deformable Models: from Hybrid
Methods to Metamorphs

D. Metaxas, X. Huang and T. Chen

Abstract

In traditional shape-based deformable models, the external image forces
come primarily from edge or gradient information. Such reliance on edge
information, however, makes the models prone to get stuck in local min-
ima due to image noise and various other image artifacts. Integrating region
statistics constraints has been a centerpiece of the efforts toward more robust,
well-behaved deformable models in boundary extraction and segmentation.
In this chapter, we review previous work on the loose coupling of boundary
and region information in two major classes of deformable models: the para-
metric models and the geometric models. Then, we propose a new class of
deformable shape and texture models, which we term ‘“Metamorphs”. The
novel formulation of the Metamorph models tightly couples shape and inte-
rior texture and the dynamics of the models are derived in a unified manner
from both boundary and region information in a variational framework.

7.1 Introduction

Automated image segmentation is a fundamental problem in computer vision
and medical image analysis applications. Object texture, image noise, intensity
inhomogeneity and variations in lighting, to name a few, add to the problem
complexity. To address these difficulties, deformable model-based segmentation
methods have been extensively studied and widely used, with promising results.
Deformable models are curves or surfaces that move under the influence of in-
ternal smoothness and external image forces. In the literature, there are two major
classes of deformable models. The first is the parametric (explicit) deformable
models that explicitly represent deformable curves and surfaces in their paramet-
ric form during the segmentation process. Examples are Active Contour Models
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[455] and their extensions in both 2D and 3D [562, 756, 208, 558, 255, 631,
887]. The evolution of these parametric models is derived either in a energy-
minimization process [455, 897} or through a dynamic-force formulation [208].
The energy-minimization formulation has the advantage that its solution satisfies
a minimum principle; while the dynamic force formulation provides the flexibil-
ity of applying different types of external forces onto the deformable model. The
external forces can be potential forces such as image forces, non-potential forces
such as balloon forces, and the combination of both. The other class of deformable
models is the geometric {implicit) deformable models [155, 538, 908, 902, 174].
These models represent curves and surfaces implicitly as the level set of a higher-
dimensional scalar function [728, 617], and the model evolution is based on
the theory of curve evolution, with speed function specifically designed to in-
corporate image information. Comparing the two classes of deformable models,
the parametric deformable models have a compact representation, and allow fast
implementation, while the geometric deformable models can handle topological
changes naturally.

Although the parametric and geometric deformable models differ both in their
formulations and in their implementations, both classes use primarily edge (im-
age gradient) information to derive external image forces to drive a shape-based
model. Such reliance on edge information, however, makes the models sensitive
to image noise and various other image artifacts. For instance, a model may leak
through small or large gaps on the object boundary, or it may get stuck in local
minima due to spurious edges inside the object or clutter around the true boundary.

To address these limitations, there have been significant efforts in the literature
to integrate region information into both parametric [680, 922] and geometric de-
formable models [626, 841, 807]. The integration frameworks however, are still
imperfect. In the case of parametric models, region information and boundary in-
formation are ofien treated separately in different energy minimization processes,
thus parameters of region intensity statistics can not be updated simultaneously
with the boundary shape parameters. In the case of geometric models, the integra-
tions are mostly based on solving reduced cases of the minimal partition problem
in the Mumford and Shkah model for segmentation [591]. Variational frameworks
are proposed to unifying boundary and region-based information sources, and
level set approaches are used to implement the resulting PDE systems. However,
these frameworks assume piecewise constant, or Gaussian intensity distributions
within each partitioned region. This limits their applicability and robustness in
finding objects whose interiors have high noise level, intensity inhomogeneity,
and/or complex multi-modal intensity distributions.

In this chapter, we focus on presenting the work from our group on the integra-
tion of region statistics consiraints into shape-based deformable models, which
includes: (1) a hybrid framework that loosely couples a region-based module
and a boundary deformable model-based module, and (2) Metamorphs, a recently
developed new class of deformable models that possess both shape and interior
texture and integrate boundary and region information in a unified manner within
a variational framework.
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In [181], we proposed a hybrid segmentation framework which integrates a
region-based segmentation module driven by Gibbs prior models, a boundary-
based module using deformable models and the marching cubes method which
connects these two modules. The region-based and boundary based modules work
recursively: The region segmentation results are used to initialize the deformable
model and the deformable fitting results are used to update the parameters of the
region segmentation. This way, the two modules can help each other out of local
minima. The quality of the segmentation output also improves when we update
the Gibbs model’s parameters using more accurate region and boundary informa-
tion at the end of each iteration. To accommodate 3D segmentation applications,
we integrate the marching cubes method into our methed, which can construct
deformable meshes based on 3D binary masks.

One limitation in the hybrid framework, however, is that the region information
and the boundary/shape information are still treated separately instead of being in-
tegrated in driving model deformations. To utilize information from both sources
in a unified manner, we have developed, recently, a new class of deformable
models called “Metamorphs™ [412].

Metamorphs integrate dynamically shape and interior texture. The resulting la-
grangian formulation is derived from both boundary and region information based
on a novel variational framework. These new models bridge the gap between para-
metric and geometric deformable models by borrowing the best features of both
worlds. The model shapes are embedded in a higher dimensional space of dis-
tance transforms, thus represented by distance map “images”. (This is similar to
the implicit shape representation in geometric level-set based models). The model
deformations are efficiently parameterized using a space warping lechnique, the
cubic B-spline based Free Form Deformations (FFD) [22, 51, 413). ! The interior
intensity statistics of the models are captured using nonparametric kernel-based
approximations, which can represent complex multi-modal distributions. When
finding object boundaries in images, the dynamics of the Metamorph models are
derived from an energy [unctional consisting of both edge (which encodes gra-
dient information) and region intensity energy terms. In our formulation, both
types of energy terms are differentiable with respect to the model deformation pa-
rameters. This allows for a unified gradient-descent based defermation parameter
updating paradigm using both boundary and region information. Furthermore,
our Metamorph model deformations are constrained in such way that the interior
statistics of the model after deformation is consistent with the statistics learned
from the past history of the model interiors. A Metamorph model can be initial-
ized far-away from the object boundary and efficiently converge to an optimal
solution, The proposed energy functional enables the mode! to pass small spuri-
ous edges and prevents it from leaking through large boundary gaps, hence makes
the boundary finding robust to image noise and inhomogeneity.

INote that we separate the shape representalion, which is implicit in a higher dimension, and model
deformation, which is explicitly parameterized by FFD.
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In the remainder of the chapter, we will first present our hybrid segmenta-
tion framework and then the new form of deformable shape and texture models -
Metamorphs.

7.2 Hybrid Segmentation Method

In the framework we proposed in [181], we segment an object as follows. First
we use the Gibbs model to get a rough binary mask of the object. Then we use the
marching cubes method to construct the deformable mesh and make the mesh de-
torm to fit the object surface using the gradient information. The Gibbs parameters
need to be updated from iteration to iteration to improve the segmentation re-
sults. By doing so, we integrated the region information into deformable models.
In the following, we present the modules that comprise the hybrid segmentation
approach.

7.2.1 Gibbs Models

Most medical images are Markov Random Field images, that is, the statistics of
a pixel in the medical image are related to the statistics of pixels in its neighbor-
hood. According to the Equivalence Theorem proved by Hammersley and Clifford
[379], a Markov Random Field is equivalent to a Gibbs field under certain restric-
tions. Therefore the joint distribution of a medical image with MRF property can
be wrilten in the Gibbsian form as follows.

(X)) = Z™ ' exp(—H(X)) a1

where X is the set of all possible configurations of the image X, z is an image in
the set of X, Z == % .y exp(—H(7)) is a normalizing factor, and H(X) is the
energy function of image X. The local and global properties of MRF images are
incorporated into the model by designing an appropriate energy lunction H(X)
and minimizing it. The lower the value of the energy function, the betier the image
fits to the prior distribution. Therefore the segmentation procedure corresponds to
the minimization of the energy function.

I'Iprior(X) == Hl(X) g HE(X) (7'2)

where H1(X) models the piecewise pixel homogeneity statistics and Ha(X)
models the object boundary continuity. In general, the homogeneity term H; (X))
has a smoothing effect on pixels inside the object and will leave boundary features
beyond the threshold unchanged. The boundary continuity term in the energy
function H3(X) has the following form:

N
Hy(X) =92 ) Wils) (7.3)

sEX i=1
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Figure 7.1. Clique definitions: cliques can be classified into clique types of a) smooth
boundary, b) smooth boundary with angle, c) smooth boundary in diagonal direction, d)
object interior, ¢) outside the object, f} irregular boundaries or noisy regions. Pixels labelled
1 are in the object, while pixels labelled 0 are out of the object.

where s is a pixel, ¥4 is the weight term for the boundary continuity, V is the
number of local configurations, and W;(s) are weight functions (also called the
potential functions} of local configurations. In our model, the potential functions
are defined on a neighborhood system based on cliques with the size of 3 by 3
pixels. There are altogether 2° possible local configurations in a clique including
3 by 3 pixels. We can classify them into 6 clique types. Among these 6 types, three
of them contain configurations at smooth boundaries (Fig.7.1.5, .b, .c), one type
for the homogengous region inside (Fig.7.1.d) and one for such region outside
(Fig.7.1.e) the object respectively, and one clique type includes all local configu-
rations that lead to noisy regions or irregular boundaries (Fig.7.1.f). Cliques that
belong to the same clique type share the same potential value. We assign lower
potential values to clique configurations that are located at smooth and continuous
boundaries, Therefore, when we minimize H3{X), pixels in the image (especially
those near the boundary) will alter their intensities to form clique configurations
of lower potentials. These alternations make the currently estimated boundaries
smoother, the weak boundaries stronger, and extend boundaries into image re-
gions without strong gradient information. Hence the minimization of the energy
function will lead to continuous and smooth object boundaries.

We use the Bayesian framework to get a MAP estimation of the object region.
In a Bayesian framework, the segmentation problem can be formulated as the
maximization of the posterior probability P(X|Y), which can also be written as
an energy functional:

Hpostem'or(Xn Y) = Hprim‘{X) S Hobse'ruat'éo'n(Xs Y) (74)

where Hopservation (X, Y) is the constraint from the observation of the original
image. Using Hposterior (X, V) instead of Hprior (X)) in the energy minimization,
we get a MAP estimation of the object region. The constraint of the observation
will compete with the prior distribution during the minimization process. Hence
the result of the minimization process will still be close enough to the original
observation, while important image features, such as irregular edges, will be kept
regardless of the prior distribution.

The output of the Gibbs prior model includes region information so that when
its output is used to initialized the geometric form of the deformabie, the region
information will be passed to the deformable.
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7.2.2  Deformable models in the Hybrid Framework

We use Gibbs models and the marching cubes method to construct the geometry of
the deformable model, i.e, a deformable surface close to the object surface. Then
we write the deformable model dynamics in the form of the first order Lagrangian
equation:

C.i + Kd = ext (7'5)

where d = %‘ K is the stiffness matrix. f.z; is the external force,

According to equation (5), the deformable model deforms under the effect of
the internal force Kd and the external force. The internal force keeps the de-
formable model surface smooth and continuous during its deformation. If the
object boundary in the image to be segmented is weak, the internal force will
act as a surface constraint that prevents the model from being trapped into lo-
cal minima or overflowing beyond the boundary. The external force will lead the
model to the object surface using image information such as the gradient.

In our framework, we use the second order derivative gradient as the external
force. It is defined as:

f(;{:('-,y, Z) = "—VP(U’J,‘IE_;, Z) = _v[’weiv[ca(wﬂ . ,Z) * j(:’!‘:!y‘.‘ Z)“)Z (?6)

where f(x,y,z) is the original image, w, is a positive weighting parameter,
Gy (%, y, z} is a three dimensional Gaussian function with standard deviation o,
V is the gradient operator, and * is the convolution operator. We use the Gaussian
filter to blur the original image in order to remove small noisy regions and expand
the effective range of the gradient-derived force. In a second order gradient flow
field, all gradient vectors point to the location of edge features so that they can
lead the model to the object surface directly. During the fitting process, we calcu-
late the dot product of the second order gradient vector and the normal vector at
every node on the deformable surface. Tt yields a positive value if the model node
locates inside the edge feature and a negative value il the model node locates out-
side. We can define the magnitude of the external force as the magnitude of the
dot product and the direction of the force vector as the direction of the normal
vector at the node.

We now can calculate the derivative of displacements of every node on the de-
formable model surface using Eqn. (7.5). The displacements will then be updated
using the Euler equation:

dpew = d - At + dog (1.7)

where At is the time step. The deformation stops when the forces equilibrate or
vanish,
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Figure 7.2. Flow-Chart for 3D-segmentation hybrid framework.

7.2.3  Integration of Deformable Models and Gibbs Models

Fig. 7.2 shows iniernal modules and the data flow of our 3D hybrid segmentation
framework. In the first iteration of the recursive hybrid framework, the parameters
of the Gibbs prior models are set to default values. Using the segmentation result
of the deformable model in the current iteration, we update the Gibbs prior pa-
rameters before restarting the Gibbs models in the following iterations to improve
their segmentation performance. Besides updating regional parameters such as
the mean intensity and the standard deviation of the object, we also updale po-
tentials of local configurations in Egn. {7.3). The clique potentials of the Gibbs
Prior model are set to be proportional to the number of appearances of each type
of cliques in the deformable model segmented binary image.

‘We illustrate our hybrid segmentation framework by applying it to segment the
tumor region in a 3D MR image volume of human brain (See Fig. 7.3). Fig, 7.3(a)
shows one slice of the volume. The image volume size is 256 by 256 by 32 pixels
(preprocessing has been applied to remove slices that do not contain the structure
of interest), We use 32 2D Gibbs Prior models to create a 3D binary mask for
the tumor region. The initial edge threshold is set to 6, the potential weight for
smooth boundaries are set to (.0, and the potential for other local configurations
are set to 5.0. We then use the marching cube method to create a surface mesh
for the deformable model to begin with. During the deformable model fiiting, the
time step is set to 0.07, and the gradient magnitude w, is 1.0. The hybrid segmen-
tation process stops after two iterations. Fig. 7.3(d) shows the final segmentation
result of the hybrid framework. For quality evaluation purposes, we overlay the
segmentation result onto the original image 7.3(a) as in Fig. 7.3(e}). We show the
initial deformable mesh surface constructed by the marching cube method in Fig.
7.3(D), and the 3D reconstruction of the fumor region based on final segmentation
result in Fig. 7.3(g), (h). Notice that the segmentation result of the Gibbs model
is improved by using updated parameters. The fact that in Fig. 7.3(g) and (h) the
deformable model fits well at concavities and convexities proves that our hybrid
framework has a good performance in segmenting complex object surfaces. The
total segmentation time is about 6 minutes for 2 iterations, which is much shorter
than the method described in [901].
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Figure 7.3. Segmentation of a tumor in the brain from MR image, (a) the original image;
(b & c} the Gibbs model segmentation result in the first and second iterations; {d) the final
segmentation result of the hybrid framework; (e) the segmentation result overlaid upon the
original image; (I} the initial deformable sarface; (g, h) 2 views of the final segmentation
result in 3D. Data courtesy of Prof, Kikinis's group at Harvard University.

7.3  Metamorphs: Deformable Shape and Texture
Models

A limitation In the hybrid segmentation framework introduced in section 7.2 is
that, the region-based module and the boundary-bascd module are used separately,
thus the information from both sources are not integrated during the evolution of
a deformable model. Furthermore, the region-based module produces an initial-
ization mesh to start a deformable model, which makes the final segmentation
result highly dependent on this initialization. To address these limitations, we
present our recent work [412] on a new class of deformable shape and texture
models, which we call “Metamorphs”, The formulation of Metamorphs naturally
integrates both shape and interior texture, and the model dynamics are derived
coherently from both boundary and region information during the whole course
of model evolution in a common variational framework,

7.3.1 The Metamorphs Model representations
7.3.1.1 The Model’s Shape Representation

The model’s shape is embedded implicitly in a higher dimensional space of dis-
tance transforms. The Euclidean distance transform is used to embed an evolving
model as the zero level set of a higher dimensional distance function. In order
to facilitate notation, we consider the 2D case. Let ® : {} — R™* be a Lipschitz
function that refers to the distance transform for the model shape M. The shape
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defines a partition of the domain: the region that is enclosed by M, [R ], the
background [ — Ra4], and on the model, [0R »4] (In practice, we consider a
narrow band around the model M in the image domain as R »4). Given these
definitions the following implicit shape representation is considered:

0, X € IR M
B p1(x) = { +ED(x, M) >0, X € R
—ED(x, M} <0, x€[Q—Ru

where ED(x, M) refers to the min Euclidean distance between the image pixel
location X = {z,y) and the model M.

Such treatment makes the model shape representation a distance map “image”,
which greatly facilitates the integration of boundary and region information. This
shape representation in 3D is similarly defined in a volumetric embedding space.

7.3.1.2 The Medel’s Delormations

The deformations that Metamorph models can undergo are defined using a space
warping technique, the Free Form Deformations (FFD) {719]. The essence of FFD
is to deform an object by manipulating a regular control lattice I overlaid on its
volumetric embedding space. In Metamorphs, we consider an Incremenlal Free
Form Deformations {(IFFD) formulation using the cubic B-spline basis [413].
Let us consider a regular lattice of control points
Foom=(Fy o F¥ im=1,M n=1.,N

mnttm,n

overlaid to a region ', = {x} = {(z,¢)|! <z £ X,]1 < y < ¥} in the em-
bedding space that encloses the model in its object-centered coordinate system.
Let us denote the initial configuration of the control lattice as F°, and the deform-
ing control lattice as F' = F® 4 §F. Under these assumptions, the incremental
FFD parameters, which are also the deformation parameters for the model, are the
deformations of the centrol points in both directions {x, ¥):

q = {(0F5 0, 0F% n) ) (myn) € [1, M) x [1, N]

The deformed position of a pixel x = (z,y) given the deformation of the control
lattice from F© to ¥, is defined in terms of a tensor product of Cubic B-spline
polynomials:

3 3
D(g;x) = x+3D(aix)} = D _ > Bu(w)Bi()Fiyx i1 + 8Fingrt)  (18)
k=0 {=0
where i = | £-(M~1}|+1, j = | #-(N—1)]+1. The terms of the deformation
component refer to:

» 6F 540, (k1) € [0,3] x [0, 3] are the deformations of pixel x’s (sixteen)
adjacent control points,



122 Metaxas, Huang & Chen

® ] -

(®) (®) {c) (&)

Figurc 7.4. The Left Ventricle Endocardium scgmentation. (1) Initial model. (2) Intermedi-
ate result. {3) Final converged result, (a) The evolving model drawn it colored lines (blue
or red) on original image. (b) Interior of the cvolving model. (c) The intensity p.d.f of the
mode! interior. The X axis is the intensity value in the range of [0, 255] and the Y axis is
the probability value in the range of {0, 1}. {d) The tmage probability map based on the
p.d.f of the model interior.

+ Bp(u)isthe k" basis function of a Cubic B-spine, defined by:
Bo(u) = (1 —u)/6, Bi(u) = (3u® — 6u® +4)/6
By(u) = {~3u® + 3u? + 3u 4+ 1)/6, Bs(u) =u*/6
withu= % - (M - 1)~ | & - (M —1)]. Bi{v) is similarly defined.

« $D(ax) = 4o Sob_o Br(u)By(v)0Fy4x 444 i8 the incremental defor-
mation for pixel x.

The extension of the models to account for deformations in 3D is straightfor-
ward, by using control lattices in the 3D space and a 3D tensor product of B-spline
polynomials.

7.3.1.3 The Model’s Texture

Rather than using traditional statistical parameters {(such as mean and vari-
ance) to approximate the intensity distribution of the model interior, we model
the distribution using a nonparametric kernel-based method. The nonparamet-
ric approximation is differentiable, more generic and can represent complex
multi-modal intensity distributions.

Suppose the model is placed on an image I, the image region bounded by
current model @ 54 is R 44, then the probability of a pixel’s intensity value 4 being
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Figure 7.5, The effect of small spurious edges inside the object of interest (endocardium
of the Left Ventricle} on the “shape image”, (a) The original MR image. (b) The edge map
of the image. (¢c) The derived “shape image”, with edges points drawn in yellow. Note the
effect of the small spurious edges on the “shape image” inside the object.

consistent with the model interior intensity can be derived using a Gaussian kernel

as:
1 1 T 42
P(i|®pm) = e~ gy 7.9
)J{ 2ro (7.9)

V(Rm

where V(R a4) denotes the volume of R, and o is a constant specifying the
width of the gaussian kernel,

Using this nonparametric approximation, the intensity distribution of the model
interior gets updated automatically while the model deforms. The initialization of
the model texture is tlexible. We can either start with a small model inside the
texture region to be segmented, or use supervised learning to specify the desired
texture a Priori. One example of the model interior texture representation can be
seen in {lig. {(7.4)]. In the figure, we show the zero level set of the current model
D 4 in colored lines [Fig. (7.4}.a], the model interior region R 4 [Fig. (7.4).b],
the probability density function {p.d.f.) for the intensity of current model interior
P{z’|‘1>_,\,,) for ¢ = 0, ...255 {Fig. (7.4).c], and the probability map of every pixel’s
intensity in the image according to the mode! interior distribution [Fig. {7.4).4].

7.3.2 The Metamorph Dynamics

The motion of the model is driven by both boundary {edge) and region (intensity)
energy terms derived from the image. The overall energy functional E consists of
two patts — the shape data terms Eg, and the intensity data terms Ey:

IE=Eg+ kE; (7.10)
where k is a constant balancing the contribution of the two parts. Next, we derive
the shape and intensity data terms respectively.
7.3.2.1 The Shape Data Terms

We encode the gradient information of an image using a “shape image” ¢, which
is derived from the un-signed distance transform of the edge map of the image. In
[Fig. (7.5).c], we can see the “shape image” of an example MR heart image,
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(a) (d)

Figure 7.6. The boundary shape data term constraints at small gaps in the edge map. (a)
Original Image. (b) The edge map, note the small gap inside the red square region. (¢) The
“shape image”. (d) Zoom-in view of the region inside the red square. The numbers are the
“shape image” values at each pixel location. The red dots are edge points, the blue squares
indicate a path favored by the boundary term for a Metamorph model.

To evolve a Metamorph model toward image edges, we define two shape data
terms — an interior term K5, and a boundary term E, :

Eg = Eg, +aFg, (7.11)

In the interior shape data term of the model, we aim to minimize the
Sum-of-Squared-Differences between the implicit shape representation values in
the model interior and the underlying “shape image™ values al corresponding
deformed positions. This can be written as:

B = ?(7;1}")4{ (@ae(x) - (D(q:x))) dx (7.12)

During optimization, this term will deform the model along the gradient direction
of the underlying “shape image”. Thus it will expand or shrink the model ac-
cordingly, serving as a two-way balloon force without explicitly introducing such
forces, and making the atfraction range of the model large.

To make the model deformation more robust to small spurious edges detected
within an object due to texture, we consider a separated boundary shape data
term, which allows higher weights for pixels in a narrow band around the model
boundary R 4.

Eg, = W;mag (@(D(a %)) dx @.13)

Intuitively, this term will encourage the deformation that maps the model bound-
ary to the image edge locations where the underlying “shape image” distance
values are as small (or as close to zero) as possible. One additional advantage of
this term is that, at an edge with small gaps, this term will constrain the model to
go along the “geodesic” path, which coincides with the smooth shortest path con-
necting the two open ends of a gap. This behavior can be seen from [Fig. (7.6)].
Note that at a small gap of the edge map, the boundary term will favor a path with
the smallest accumulative distance values to the edge points.
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Figure 7.7. Deriving the “region of interest” intensity data term. (a) The model shown
(in yellow) on the original image. {b) The intensity probability map based on the mode!
interior statistics. (¢) The region of interest (ROI) derived from the thresholded probability
map. The threshold is the mean probability over the entire image. (d) The “shape image”
encoding boundary information of the ROI.

7.3.2.2 The Intensity Data Terms

In cur current framework, the intensity energy function Er consists of two in-
tensity data terms — a “Region Of Interest” (ROI) term £ , and a Maximum
Likelihood term K7

E; = By, +bEp, (7.14)

In the “Region Of Interest” (ROT) term Fy_, we aim to evolve the model toward
the boundary of current region of interest, which is determined based on current
model interior intensity distribution. Given a model M on image I [Fig. (7.7).a],
we first compute the image intensity probability map Pr [Fig. (7.7).b], based on
the model interior intensity statistics {see section 7.3.1.3). Then a small threshold
(typically the mean probability over the entire image domain) is applied on F; to
produce a binary image B FP;, in which pixcls with probabilities higher than the
threshold have value 1. Morphological operations arc used to fill in small holes
in B Pr. We then take the connected component on this binary image overlapping
the model as current region of interest (ROT). Suppose the binary mask of this
ROIL is BI. [Fig. (7.7).c], we encode its boundary information by computing the
“shape image™ of B[,, which is the un-signed distance transform of the region
boundary [Fig. (7.7).d]. Denote this “shape image” as ®,, the ROI intensity data
term is defined as follow5'

Ey, = V(,R ﬂ (@ p{x) = @,(Dla;x))) dx (7.15)

This ROI intensity data term is the most effective in countering the effect of small
spurious edges inside the object of interest (e.g. in Figs. (7.5,7.9). It also provides
implicit balloon forces to quickly deform the model toward object boundary.

To achieve better convergence when the model gets close to the object bound-
ary, we design another Maximum Likelihood (ML) intensity data term that
constrains the model to deform toward areas where the pixel probabilities of
belonging to the model interior intensity distribution are high, This ML term is
formalized by maximizing the log-likelihood of pixel intensities in a narrow band
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Figure 7.8. Segmentation of the Endocardium of the Left Ventricle in a MR image with
a large portion of the object boundary edge missing. (1.a) The original image. (1.b) The
“shape image” derived from edge map. (1.c) The intensity probability map based on the
initial model. (2.8) Initial model (zero level set shown in blue), (2.b) Intermediate model
(zero level set shown in red). (2.c¢) converged model.

around the model after deformation:
Etn = ~vte lom . l0aP (D (g x))| @ ar)ix

= — vz Homp, [“’9 v T
— (I (D )} f (2
log [, 0w dy] dx (1.16)

During model evolution, when the model is still far away from object bound-
ary, this ML term generates very little forces to influence the model deformation.
When the model gets close fo object boundary, however, the ML term generates
significant forces to prevent the model from leaking through large gaps (e.g. in
Fig. 7.8), and help the model to converge to the true object boundary.

7.3.3 Model Evolution

In our formulations above, both shape data terms and intensity data terms are
differentiable with respect to the model deformation parameters q, thus a uni-
fied gradient-descent based parameter updating scheme can be derived using both
boundary and region information. Based on the definitions of the energy func-
tions, one can derive the following evolution equation for each element g, in the
model deformation parameters q:

oF I + baEr,., )

oF (BES :
da; das 8q; Oqq
The detailed derivations for each term can be found in [412].

. . OFs
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Figure 7.9. The tagged MR heart image. (1.2) The original image. (1.b) The edge map.

{1.¢)

The edge points overtaid on original image. (1.d) The “shape image”. (2) Initial

model. (3) Intermediate resvlt. (4) Final model (after 50 iterations). (2-4){a)} The evolv-
ing model. (2-4)(b) The model interior. (2-4)(c) The model interior intensity probability
density. (2-4)(d) The intensity probability map of the image based on the p.d.f in {c).

7.3.4  The Model Fitting Algorithm and Experimental Results

The overall model fitting algorithm consists of the following steps:

L.

6

Tnitialize the deformation parameters q lo be q°, which indicates no
deformation.

. Compute gf— for each element g; in the deformation parameters q.
. Update the parameters o, = q; — A - g—f.

. Using the new parameters, compute the new model M’ = D(q’; M).

. Update the model. Let M = A, re-compute the implicit representation

of the model ® 44, and the new partitions of the image domain by the new
model: [R 4], [@ — Raq], and [OR p4]- Also re-initialize a regular FFD
control lattice to cover the new model, and update the “region of interest”
shape image ¢, based on the new model interior.

. Repeat steps 1-5 until convergence.

In the algorithm, after each iteration, both shape and interior intensity statistics
of the model get updated based on the model dynamics, and deformation parame-
ters get re-initialized for the new model. This allows continuous, both large-scale
and small-scale deformations for the model to converge to the energy minimum.
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(®)

Figure 7.10. Segmenting lesion in ultrasound breast image. (a) The original ultrasound
image, with the initial model drawn on top, (b) The shape image based on edge map of the
image, (c) The texture likelihood map, (d) The final segmentation result.

Some examples of using our Metamorph models for boundary finding in im-
ages have been shown in [Fig. (7.4)] and {Fig. (7.8)]. In [Fig. (7.9)], we show
another example in which we segment the Endocardium of the left ventricle in
a noisy tagged MR heart image. Note that, due to the tagging lines and inten-
sity inhomogeneity, the detected edges of the object are fragmented, and there are
sputious small edges inside the region, In this case, the integration of both shape
and texture information is critical in helping the model out of local minima. In
[Fig. (7.10)], a metamorph model is used to extract the boundary of a lesion in an
ultrasound image of the breast. On natural images, we show an example using the
pepper image in [Fig. (7.11)]. Starting from a small model initialized inside the
object, the model quickly deforms to the object boundary.

The Metamorph model evolution is computationally efficient, due to our use of
the nonparametric texture representation and FFD parameterization of the model
deformations. For all the examples shown, the segmentation process takes less
than 200m.s to converge on a 2Ghz PC station.

7.4 Conclusions

In this chapter, we have reviewed traditional shape-based deformable models,
and introduced new frameworks that integrate region texture information into
deformable models.

The new class of deformable models we proposed, Metamorphs, possess both
boundary shape and interior intensity statistics. In Metamorphs the boundary and
region information are intergated within a common variational framework to com-
pute the deformations of the model towards the correct object boundaries. There is
no need to learn statistical shape and appearance models a priori. In our formula-
tion, the model deformations are constrained so that the interior model statistics as
it deforms remain consistent with the statistics learned from the past evolution of
the model’s interior. This framework tepresents a generalization of previous para-
metric and geometric deformable models, by exploiting the best features of both
worlds. Segmentation using Metamorph models can be straightforwardly applied
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(d)

Tigure 7.11. Boundary finding in the pepper image. (a) Original image, with initial model
drawn in blue, (b) The shape image derived from edge map, with edges drawn in yellow.
(c) The intensity probability map derived based on model interior statistics. (d) Region of
Interest (ROI) extracted. {(e) Final segmentation result.

in 3D, and can handle elficiently the merging of multiple models that are evolving
simultaneously.
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Chapter8

Variational Segmentation with Shape
Priors

M. Bergtholdt, D. Cremers and C. Schnérr

Abstract

We discuss the design of shape priors for variational region-based
segmentation. By means of two different approaches, we elucidate the
critical design issues involved: representation of shape, use of percep-
tually plausible dissimilarity measures, Euclidean embedding of shapes,
learning of shape appearance from examples, combining shape priors and
variational approaches to segmentation. The overall approach enables the
appearance-based segmentation of views of 3D objects, without the use of
3D models.

8.1 Introduction

Variational models [456, 591] are the basis of established approaches to image
segmentation in computer vision. The key idea is to generate a segmentation by
locally optimizing appropriate cost functionals defined on the space of contours.
The respective functionals are designed to maximize certain criteria regarding the
low-level information such as edge consistency or (piecewise) homogeneity of
intensity, color, texture, motion, or combinations thereof.

Yet, in practice the imposed models only roughly approximate the true inten-
sity, texture or motion of specific objects in the image. Intensity measurements
may be modulated by varying and complex lighting conditions. Moreover, the
observed images may be noisy and objects may be partially occluded. In such
cases, algorithms which are purely based on low-level properties will invariably
fail to generate the desired segmentation.

An interpretation of these variational approaches in the framework of Bayesian
inference shows that the above methods all impose a prior on the space of contours
which favors boundaries of minimal length. While the resulting length constraint
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in the respective cost functionals has a strongly regularizing effect on the gen-
erated contour evolutions, this purely geometric prior lacks any experimental
evidence. In practical applications, an algorithm which favors shorter boundaries
may lead to the cutting of corners and the suppression of small-scale structures.

Given one or more silhouettes of an object of interest, one can construct shape
priors which favor objects that ate in some sense famifiar. In recent years, it was
suggested to enhance variational segmentation schemes by imposing such object-
specific shape priors. This can be done either by adding appropriate shape terms
to the contour evolution [513, 808] or in a probabilistic formulation which leads
to an additional shape term in the resulting cost functional [237, 688, 573]. By
extending segmentation functionals with a shape prior, knowledge about the ap-
pearance of objects can be directly combined with clues given by the image data
in order to cope with typical difficulties of purcly data-driven image processing
caused by noise, occlusion, etc.

The design of shape priors strongly depends on ongoing work on statistical
shape models [223, 284, 4591, In parlicular, advanced models of shape spaces,
shape distances, and corresponding shape transformations have been proposed
recently [912, 336, 785, 177, 478, 736]. Concerning variational segmentation,
besides atlempting to devise “intrinsic” mathematical representations of shape,
further objectives which have to be taken into account include the gap between
mathematically convenient representations and representations conforming (o
properties of human perception [820, 588, 61], the applicability of statistical
learning of shape appearance from examples, and the overall variational approach
from the viewpoint of optimization.

The objective of this paper is to discuss these issues involved in designing
shape priors for region-based variational segmentation by means of two repre-
sentative examples: (i) non-parametric statistics applied (o the standard Euclidean
embedding of curves in terms of shape vectors, and (ii} perceptually plausible
matching [unctionals defined on the shape manifoid of closed planar curves. Both
approaches are powerful, yet quite different with respect to the representation
of shape, and of shape appearance. Their properties will be explained in the
following sections, in view of the overall goal — variational segmentation.

Section 8.2 discusses both the common representation of shapes by shape vec-
tors, and the more general representation by dissimilarity structures. The latter
is mathematically less convenient, but allows for using distance measures which
conform to findings of psychophysics. Learning of shape appearance is described
in Section 8.3. The first approach encodes shape manifolds globally, whereas
the second approach employs structure-preserving Euclidean embedding and
shape clustering, leading to a collection of locally-linear representations of shape
manifolds. The incorporation of corresponding shape priors into region-based
variational approaches to segmentation is discussed in Section 8.4.

We confine ourselves to parametric planar curves and do not consider the
mere involved topic of shape priors for implicitly defined and multiply connected
curves — we refer the reader to [513, 808, 187, 688, 177, 236} for promising
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advances in this field. Nevertheless, the range of models addressed are highly
relevant from both the scientific and the industrial viewpoint of computer vision.

8.2 Shape Representation

One generally distinguishes between explicit (parametric) and impficit contour
representations. In the context of image segmentation, implicit boundary repre-
sentations have gained popularity due to the introduction of the level set method,
which allows to propagate implicitly represented interfaces by appropriate partial
differential equations acting on the corresponding embedding surfaces. The main
advantages of representing and propagating contours implicitly are that one does
not need to deal with control/marker point regridding and can elegantly (without
heuristics) handle topological changes of the evolving boundary.

On the other hand, explicit representations also have several advantages. In par-
ticular, they provide a compact (low-dimensional) representalion of contours and
concepts such as intrinsic alignment, group invariance and statistical learning are
more easily defined. Morcover, as we shall sce in this work, the notion of corre-
sponding contour points (and contour parls) arises more naturally in an explicit
representation. In this work, we will only consider explicit simply-connected
closed contours.

8.2.1 Parametric Contour Representations, Geametric Distances,
and Invariance

Let
c:[0,1] > QcR? (8.1)

denote a parametric closed contour in the image domain £2. Throughout this paper,
we use the finite-dimensional representation of 2D-shapes in terms of uniform
periodic cubic B-splines [304]:

M
c(s) = Y PmBm(s) =Pv(s), (8.2)
m=1
with control points {p;} and basis functions {B;(s)}:

P=[p1 b2 ... puj, V()= (Bi(s) Bals) ... Bumls))'

Well-known advantages of this representation include the compact support of the
basis functions and continuous differentiability up to second order. Yet, most of
our results also hold for altemative explicit contour representations.

Using the natural uniform sampling {s1, ..., 8ps} of the parameter interval, we
stack together the corresponding collection of curve points, to form shape vectors
representing the contour. For simplicity, and with slight abuse of notation, we
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Figure 8.1. Stretching and bending of contours does not affect perceptually plausible
matchings.

denote them again with':

e:={els))T ..., c(san)T) | € RM (8.3)

Note, that there is a one-to-one correspondence between shape vectors ¢ and
corresponding control points {p;}i=1,.. s through the symmetric and sparse
o ; . T
positive-definite matrix: B = (v(s1) ... v(sar)) .
‘We consider a simple geometric distance measure between contours which is
invariant under similarity transformations:
d*(c1, cz) = min |e; — sRgcp — 2 (8.4)
&,

Here, the planar rotation Ry and translation ¢ are defined according to the
definition (8.3) of shape vectors:

(cos ! —sinf

o ‘]‘
sin # (:058)’ t:(tl‘h"”’t]"ﬁz) :

and s is the scaling parameter. The solution to (8.4) can be computed in closed-
form [284, 459]. Extensions of this alignment to larger transformation groups
such as affine transformations are straight-forward. Furthermore, since the loca-
tions of the starting points ¢, (0), ¢2(0) are unknown, we minimize (8.4) over all
eyclic permutations of the contour points defining cz.

8.2.2 Maiching Functionals and Psychophysical Distance
Measures

It is well-known that there is a gap between distance measures with mathemati-
cally convenient properties like (8.4), for example, and distance measures which
conform with findings of psychophysics [820]. In particular, this observation is
relevant in connection with shapes [588].

Given two arc-length parametrized curves c; (), ca(s), along with a diffeomor-
phism ¢ = g(s) smoothly mapping the curves onto each other, then corresponding
studies [61] argued that matching functionals for evaluating the quality of the

!In the following, it will be clear from the context whether ¢ denotes a contour (8.1) or a shape
vector (8.3).
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Figure 8.2. Local matching cost. The local cost for bending of the matching functional
(8.5) as a function of the k1, for two values of x2. Note how in the case k2 = 2, relatively
lower costs for x1 == 2 allow for significant bending, without affecting matching too much.

mapping g based on low-order derivatives, should involve stretching ¢'(s) and
bending {change of curvature) of the curves (cf. Figure 8.1).
Ag a representative, we consider the matching functional [61]:

E(g; c1,62) =

! lra(s) — mag(s))o( G) s +/\f1 98 -1, 4s)

lka(s)] + |1 (g{s)}g |+1

where #1{L), ka(s) denote the curvature functions of the contours ¢;,cz. The
two terms in (8.5) take into account the bending and stretching of contours,
respectively (see Figure 8.2).

Functional (8.5) favors perceptually plausible matchings because it accounts
that often objects are structured into nearly convex-shaped parts separated by con-
cave extrema. In particular, for non-rigid objects, parts are likely to articulate, and
the matching functional produces articulation costs only at part boundaries.

From the mathematical viewpoint, lunctional (8.5) is invariant to rotation and
translation of contours, and also to scaling provided both contours are normalized
to length one. This is always assumed in what follows below. Furthermore, by
taking the g-th root of the integral of local costs, where ¢ > 2.4, (8.5) defines a
metric between contours [61]:

di(cy, €3) = min E(g; ¢1, e3)!/? (8.6)
9

Clearly, this distance measure is mathematically less convenient than (8.4). This
seems to be the price for considering findings of psychophysics. However, regard-
ing variational segmentation, we wish to work in this more general setting as well.
For a discussion of further mathematical properties of matching functionals, we
refer to [806].

The minimization in (8.6) is carried out by dynamic programming over all
piecewise-linear and strictly monotonously increasing functions g. Figure 8.3
itlustrates the result for two human shapes.
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Figure 8.3, Matching by minimizing {(8.5) leads to an accurate correspondence of parts of
non-rigid objects, here illustrated for two human shapes.

8.3 Learning Shape Statistics

Based on the shape representations described in Section 8.2, we consider in this
section two approaches to the statistical learning of shape appearance from ex-
amples. The common basis for both approaches are Euclidean embeddings of
shapes.

The first approach uses the embedding of shape vectors into Reproducing Ker-
nel Hilbert Spaces by means of kemel functions, leading to a non-parametric
global representation of shape manifolds. The second approach uses embeddings
of dissimilarity structures by multidimensional scaling, along with a cluster-
preserving modification of the dissimilarity matrix. Subsequent clustering results
in a collection of local encodings of shape manifolds, and in corresponding aspect
graphs of 3D objecis in terms of prototypical object views.

8.3.1 Shape Distances in Kernel Feature Space

Let {¢n}ln=1,..n € R*M denote the shape vectors associated with a set of
training shapes. In order to model statistical shape dissimilarity measures, it is
commonly suggested to approximate the distribution of training shapes by a Gaus-
sian distribution, either in a subspace formed by the first few eigenvectors [223],
or in the full 20-dimensional space [237]. Yet, for more complex classes of
shapes — such as the various silhouettes corresponding to different 2D views of a
3D object — the assumption of a Gaussian distribution fails to accurately represent
the distribution underlying the training shapes.

In order to model more complex (non-Gaussian and multi-modal) statistical
distributions, we propose o embed the training shapes into an appropriate Re-
producing Kernel Hilbert Space (RKHS) [851], and estimate Gaussian densities
there — see Figure 8.4 for a schematic illustration.

A key assumption in this context is that only scalar products of embedded shape
vectors ¢(c) have to be evaluated in the RKHS, which is done in terms of a kernel
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Figurc 8.4. Gaussian density cstimate upon nonlincar transformation to features space.

function:

Kl{cy,e2) = (¢(e1), ¢lez)} (8.7)

Knowledge of the embedding map ¢(c) itself is not required. Admissible kernel
functions, including the Gaussian kernel, guarantee that the Gramian matrix

ti=1,.0 ¥

is positive definite [851]. This “non-linearization strategy™ has been successfully
applied in machine learning and pattern recognition during the last decade, where
the RKHS is called feature space.

Based on this embedding of given training shapes, we use the following
Mahalanobis distance:

Js(e) = (¢(c) — ¢o) " B7 ((c) ~ o), (8.9)

where ¢ is the empirical mean, and ¥, is the corresponding covariance matrix.
Note that all evaluations necessary to compute Jg{c) in {8.9) can be traced back
to evaluations of the kernel function according te (8.7). Furthermore, by exploit-
ing the spectral decomposition of the kernel matrix K in (8.8), we regularize the
covariance matrix X, with respect to its small and vanishing eigenvalues, thus
defining two orthogonal subspaces as illustrated in Figure 8.4 on the right. For
further details, we refer to [233].

8.3.2 Structure-Preserving Embedding and Clustering

Based on the matching functional (8.5) and the corresponding distance measure
dg(ey,cy) defined in (8.6), we consider an arbitrary sample set {cp}n=1,... -
To perform statistical analysis, we wish to compute an Euclidean embedding
{%n tn=1,..., nv such that ||x; —x;|| = dr{ci, ¢;), V¥4, 5. Such an embedding exists
iff the matrix K = *%QDQ, with the dissimilarity matrix D = (dg(c;,¢;)?%)
and the centering matrix = I — -Rl,,—eeT, is positive semidefinite {231]. The
vectors X, representing the objects {contours) c,, of our data structure can then
be computed by a Cholesky factorization of K.
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Figure 8.5. Eigenvalues of the matrices K corresponding to the shapes of four different
objects.

Figure 8.5 shows the eigenvalues of K for four different objects. The graphs
illustrate that the contours are “almost embeddable” since only few and small
eigenvalues are negative. This fact is caused by the powerful matching which
tightly groups given curves, and is performed by evaluating the distance measure
el g. The standard way then is to take the positive eigenvalues only, and to compute
a distorted embedding.

In view of subsequent clustering, however, a better alternative is to regularize
the data structure by shifiing the off-diagonal elements of the dissimilarity ma-
trix: D = D — 2An(ee” — I). For the resulting embedding, it has been shown
[682] that the group structure with respect to subsequent k-means clustering is
preserved.

Figure 8.6 shows a low-dimensional — and thus a heavily distorted — projec-
tion of the embedded shapes of the rabbit. For the purpose of illustration, only
shapes corresponding to a single (hand-held) walk around the view-sphere are
shown on the left, along with cluster centers as prototypical views of the object.
In this way, we compute high-quality aspect graphs for genera! objects, without
any restrictions discussed in the literature [106, 674].

On the right, Figure 8.6 also shows a clustering of 750 human shapes. In
general, when using simple geometric distance measures, the many degrees of
freedom of articulated shapes would require many templates for an accurate rep-
resentation. The matching distance (8.6), however, accounts for part structure and,
therefore, the principal components of the measure seem to be closer related to
topological shape properties. For example, the clusters on the left are all “single-
leg™ prototypes, whereas on the right we find only clusters with two legs. The
second principal component seems to account for the viewing direction of the
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Figure 8.6. Clustering of the views of the rabbit sequence and the human shapes, projected
to the first two principal components. The clusters are indicated by prototypical shapes
(cluster centers) dominating a range of corresponding views.

human, which changes from left to right along a vertical direction through the
plot.

8.4 Variational Segmentation and Shape Priors

8.4.1 Variational Approach

We consider partitions = Q(F) U Q(B) of the image domain into foreground
and background, respectively. Our objective is to compute an optimal partition
in tetms of a planar closed curve cs) = GQ(F) based on the corresponding
restrictions of the image lunction F = gy, B = I|g(g),G = Il¢(s), and by
using models H = (Hp, Hpg, He, Hg) for these components, including a shape
prior Hg for the separating curve c(s).

The variational approach is to compute the Maximum A-Posteriori (MAP)
estimate of the contour e, given the image data I, and using the models H:

&(s) = a.rgtil(agcp(c(sﬂf,ﬂ) (8.10)

We use Bayes’ rule to obtain:
P{lle(s), H)P(c(s)[H)
P(I|H)
o P(Fle(s), Hr)P(B|c(s), Hp) P(Glc(s), Ha) Ple(s)|Hs) ,

Ple(s)|1,H) =

where we have also split up the image likelihood P(f|c{s), H} into three parts,
assuming independence of these parts, given the contour c{s). Moreover, we as-
sume independence of the various models. This assumption is appropriate in the
single object — single object class scenario considered here.
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The common form of the foreground model is:
P(F|C(3)‘HF) o pr(_'}F) ) JF(C) = f df"(F(X))dX,
Q(F)

where the functional Jx depends on the contour ¢ through the domain of integra-
tion {{{ F'}, and dF is any measure of homogeneity of the foreground image data
F, i.e. object appearance. Typically, dp is a parametric model, a semi-parametric
(mixture) model, or even a non-paramelric model of the local spatial statistics of
the image data, or some filter outputs, Note that dr depends on c through the
domain of integration, too. Similarly, we have:

PBIEE), M an(—a):  Tale)= /ﬂm dn(BEx))dx ,

Pl alincesl-00), Jale)= ){dC(G(x))ds

In the following, we do not consider boundary models P{G|c(s), He), but focus
in the following two sections on shape models P{c(s)|Hyg), the main topic of this
paper.

In order to solve (8.10), we minimize — log P{c(s)|I, H), which entails to
compute the derivatives of the above functionals with respect to c, that is changes
of the shape of the domain 2(F). Let v(x) be a small and smooth vector field
such that {{ +v)(x) is a diffeomorphism of the underlying domain. Then standard
calculus [741, 256] yields:

{Jule),v) = /E;(F) dip (F(x))dx +id}? (F(x))(n-v)ds, (8.11)

where n is the outer unit normal vector of 2(F'). Analogously, we compute the
derivative of the background functional Jg.

[f d  depends on parameters which are estimated within ({ F'}, then computing
dp amounts to apply the chain rule until we have to differentiate (functions of)
image data which do not depend on the domain (see, e.g., [432] for examples). As
aresult, the right hand side of (8.11) involves boundary integrals oaly. If, however,
dp more generally depends on fimctions which, in tum, depend on the shape of
Q(F), e.g. through some PDE, then the domain integral in (8.11) involving the
unknown domain derivative d}, can be evaluated in terms of a boundary integral
by using an “adjoint state”, See [715] for details and a representative application.

Finally, we set the normal vector field v, := n.v equal to the negative integrand
of the overall boundary integral resulting from the computation of Jj, J, and
evolve the contour:

&=v.n ondN(F) (8.12)

Inserting (8.2) vields a system of ODEs which are solved numerically.
Evolution (8.12) constitutes the data-driven part of the variational segmenta-
tion approach (8.10), conditioned on appearance models of both the foreground
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object and the background. In the following two sections, we describe how this ap-
proach is complemented in order to take into account statistical shape knowledge
of object appearance.

8.4.2 Kernel-based Invariant Shape Priors

Based on the shape-energy (8.9), the shape-prior takes the form:
P(c|Hg} o< exp(—Jg)}

Invariance with respect to similarity transforms is achieved by restricting the
shape energy functienal Jg to aligned shapes & = &{c) with respect to the mean
shape, which resuit from given shapes ¢ by applying to them the translation,
rotation and scaling parameters defining the invariant distance measure (8.4):

Js(c) = Js[&(c)]

To incorporate Lhe statistical shape-knowledge into the variational segmentation
approach, we perturb the evolution (8.12) by adding a small vector field directed
towards the negative gradient of J5:

(IJS ﬁ
dé de

For further details, we refer to [233].

8.4.3 Shape Priors based on the Matching Distance
Related to the KPCA approach {Sections 8.3.1, 8.4.2), we use a non-parametric

density estimate for the posterior of ¢ given the training samples ¢, ..., ¢n:
P(e|Hg) = plcfey, ..., cn)
Given the Euclidean embedding x4, ..., xn of the training samples {cf. Section

8.3.2), the kernel-estimate of the probability density evaluated at x reads:

Ry X — Xp
px) ~pw(x) =5 D 7K (T) ; (8.13)
n=1

where K() is a normalized non-negative smoothing kermnel. A kemel with
compact support, favored in practice, is the Epanechnikov kerne! in d-dimensions:

K(x) = Vild+2)(1-x"x) ifx'x<1
1] otherwise

where V; is the volume of the d-dimensional unit sphere. To increase the posterior
probability of ¢, we have to move in the gradient direction of the density estimate:

ko od+2 (1
Vel = e % E;(x)x‘_x
xXi e
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Figure 8.7. Top row: prior from Section 8.4.2, segmentation without the prior (a), with the
prior (b), two more views with the prior (¢), (d). Bottom row: prior from Section 8.4.3,
segmentalion without the prior (e), (g) and, with the prior (), (h}

where By, (x) is the ball with radius 4 centered at x, and k is the number of samples
Xy, in By (x). This leads to the well-known mean-shift x — £ 305 (. X; [333,
191].

By virtue of the embedding [ix; — x;|| = dg(c;, ¢;) (see Section 8.3.2), we
may interpret this as computing the Fréchet mean [504]:

& = arg min / dp(e, c)’du(c)
<

of the empirical probability measure u on the space of contours ¢, which is
equipped wilh the metric (8.6). As a result, we perturb the evolution (8.12) by
adding a small vector field v = (€ — ¢), 0 < € € R, and thus incorporate
statistical shape-knowledge into the variational segmentation approach.

8.4.4 Experimental Results

Both approaches to the design of shape priors allow to encode the appearance
of objects. Applying the variational framework for segmentation, the models are
automatically invoked by the observed data and, in turn, provide missing infor-
mation due to noise, clutter, or occlusion. This bottom-up top-down behavior was
verified in our segmentation experiments.

In Figure 8.7 we see segmentation results for two image sequences showing a
rabbit and a head, computed with and without a shape prior. We can see that both
shape priors can handle the varying point of view and stabilize the segmentation.
Where data evidence is compromised by occlusion (a)-(d), shadows (e)-(f), or
difficult illumination (g)-(h), the shape prior can provide the missing information.
For the segmentation in Figure 8.8, we learned the shape prior model 8.4.3 using
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Figure 8.8. Sample screen shots of a human walking sequence. First image is without
a shape prior, second image is result obtained with a shape prior, for each image pair
respectively.

750 human shapes. The shapes in the sequence are not part of the training set.
The obtained results encourage the use of shape-priors for the segmentation and
tracking of articulated body motion as well.

8.5 Conclusion and Further Work

We investigated the design of shape priors as a central topic of variational seg-
mentation. Two different approaches based on traditional shape-vectors, and on
contours as elements of a metric space defined through a matching functional,
respectively, illustrated the broad range of research issues involved. The use
of shape priors allows for the variational segmentation of scenes where pure
data-driven approaches fail.

Future work has mainly to address the categorization of shapes according to
classes of objects, and the application of this knowledge for the interpretation of
scenes with multiple different objects.

Acknowledgment, We thank Dr. Dariu Gavrila, DaimlerChrysler Research, for
making available the database with human shapes to the CVGPR group.



Chapter9

Curve Propagation, Level Set
Methods and Grouping

N. Paragios

Abstract

Image segmentation and object extraction are among the most well
addressed topics in computational vision. In this chapter we present a com-
prehensive tutorial of level sets towards a flexible frame partition paradigm
that could integrate edge-drive, regional-based and prior knowledge to object
extraction. The central idea behind such an approach is to perform image
partition through the propagation planar curves/surfaces. To this end, an ob-
jective function that aims to account for the expected visual properties of the
object, impose certain smoothness constraints and encode prior knowledge
on the geometric form of the object to be recovered is presented. Promising
experimental results demonstrate the potential of such a method.

9.1 Introduction

Image segmentation has been a long term research initiative in computational
vision. Extraction of prominent edges [381] and discontinuities between in-
homogeneous image regions was the first attempt to address segmentation.
Statistical methods that aim to separate regions according to their visual charac-
teristics was an attempt to better address the problem [341], while the snake/active
contour model [455] was a breakthrough in the the domain.

Objects are represented using parametric curves and segmentation is obtained
through the deformation of such a curve towards the lowest potential of an
objective function. Data-driven as well as internal smoothness terms were the
components of such a function. Such a model refers to certain limitations like,
the initial conditions, the parameterisation of the curve, the ability to cope with
structures with multiple components, and the estimation of curve geometric
propetties.



146 Paragios

Balloon models [204] where a first attempt to make the snake independent with
respect to the initial conditions, while the use of regional ferms fotcing visual
homogeneity [922] was a siep further towards this direction. Prior knowledge
was also introduced at some later point [756] through a learning stage of the
snake coefficients. Geometric alternatives to snakes [152] like the geodesic active
contour model [155] were an attempt to eliminate the parameterisation issue.

Curves are represented in an implicit manner through the level set method
[618]. Such an approach can handle changes of topology and provide sufficient
support to the estimation of the interface geometric properties. Furthermore, the
use of such a space as an optimisation framework [917], and the integration of
visual cues of different nature [622] made these approaches quite attractive to nu-
merous domains [617]. One can also point recent successful atiempts to introduce
prior knowledge [513, 688] within the level set framework leading to efficient
object extraction and tracking methods [689].

To conclude, curve propagation is an established technique to perform object
extraction and image segmentation. Level set methods refer to a geometric alter-
native of curve propagation and have proven to be a quite eflicient optimisation
space to address numerous problems of computational vision. In this chapter, first
we present the notion of curve optimisation in computer vision, then establishes
a connection with the level set method and conclude with the introduction of
ways to perform segmentation using edge-driven, statistical clustering and prior
knowledge terms.

9.2 On the Propagation of Curves

Let us consider a planar curve L : [0, 1] — R x R defined at a plane 2. The most
general form of the snake model consists of:

1
E() = fu (@Bine(T(p)) + BLimg (Z(T'(P))) + ¥Eeae (L)) dp (0.1

where 7 is the input image, Fjni[= wq|I’| 4+ w2||] imposes smoothness con-
straints (smooth derivatives), E;mq[= —|VZ|] makes the curve to be attracted
from the image features (strong edges), F.,; encodes either user interaction or
prior knowledge and «, 3, v are coefficients that balance the importance of these
terms.

The calculus of variations can be used to optimise such a cost function. To
this end, a certain number of control points are selected along the curve, and the
their positions are updated according to the partial differential equation that is
recovered through the derivation of E{I') at a given control point of I'. In the
most general case a flow of the following nature is recovered:

T'(p;7) = (@Fym(T) + BFimy(L) + 1Fpe (D) N ©2)

»
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where A is the inward normal and F},,, depends on the spatial derivatives of the
curve, the curvature, etc. On the other hand, Fj,,,, is the (orce that connects the
propagation with the image domain and F.(I") is a speed term that compares
the evolving curve with a prior and enforces similarity with such a prior. The
tangential component of this Aow has been omitted since it affects the internal
position of the control points and doesn’t change the form of the curve itself.

Such an approach refers to numerous limitations. The number and the sampling
rule used to determined the position of the contrel points can affect the final seg-
mentation result. The estimation of the internal geometric properties of the curve
is also problematic and depends on the sampling rule. Control points move ac-
cording to different speed functions and therefore a frequent re-parameterisation
of the contour is required. Last, but no least the evolving contour cannot change
the topology and one cannot have objects that consist of multiple components that
are not connected.

9.2.1 Level Ser Method

The level set method was first introduced in [261] and re-invented in [618] to
track moving interfaces in the community of fluid dynamics and then emerged in
computer vision {152, 537]. The cenltral idea behind these methods is to represent
the {closed) evolving curve T with an implicit function ¢ that has been constructed
as follows:

0,sel
{rfl)(s) T -8 & ]-11".7;
+e,8 € Fout
where epsilon s a positive constant, 'y, the area inside the curve and I, the
area outside the curve as shown in [Figure (9.1)]. Given the partial differential

equation that dictates the deformation of I' one now can derive the one for ¢
using the chain rule according to the following manner;

& o w_ $C(p1)) L(pr) B¢ _
FN

Let us consider the arc-length parameterisation of the curve I'{(c). The values
of ¢ along the curve are 0 and therefore taking the derivative of ¢ along the curve
I" will lead to the following conditions:

8¢(T'(c)) o¢ ar
where 7'(¢) is the tangential vector to the contour. Therefore one can conclude
that V¢ is orthogonal to the contour and can be used {(upon notmalisation) to

replace the inward normal [N = —%} leading to the following condition on
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Figure 9.1, Level set method and tracking moving interfaces; the construction of the
(implicit) ¢ function [figure is courtesy of 5. Osher].

the deformation of ¢:
—F g+ ¢, =0 — ¢, = F iqb] (9.5)

Such a flow establishes a connection between the family of curves I' that have
been propagated according to the original flow and the ones recovered through
the propagation of the implicit function ¢. The resulting flow is parameter free,
intrinsic, implicit and can change the topology of the evolving curve under certain
smoothness assumptions on the speed function F'. Last, but not least, the geomet-
ric properties of the curve like its normal and the curvature can also be determined
from the level set function [618]. One can see a demonstration of such a flow in
[Figure (9.2)].

In praclice, given a flow and an initial curve the level sel function is constructed
and updated according to the corresponding motion equation in all pixels of the
image domain. In order to recover the actual position of the curve, the march-
ing cubes algorithm [526] can be used that is seeking for zero-crosgings. One
should pay altention on the numetical implementation of such a method, in par-
ticular on the estimation of the first and second order derivatives of ¢, where
the ENO schema [618] is the one to be considered. One can refer to [728] for a
comprehensive survey of the numerical approximation technigues.

In order to decrease computational complexity that is inherited through the
deformation of the level set function in the image domain, the narrow band algo-
rithm [194] was proposed. The central idea is update the level set function only
within the evolving vicinity of the actual position of the curve. The fast marching
algorithm [727, 815] is an alternative technique that can be used to evolve curves
in one direction with known speed function. One can refer to earlier contribution
in this book [Chapter 7] for a comprehensive presentation of this algorithm and its
applications. Last, but not least semi-implicit formulations of the flow that guides
the evolution of ¢ were proposed [351, 873] namely the additive operator split-
ting, Such an approach refers to a stable and fast evolution using a notable time
step under certain conditions.
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(a)

(b)

Figure 9.2. Demonstration of curve propagation with the level set method; handling
of topological changes is clearly illustrated through various initialization configurations
{a,b,c).

9.2.2 Optimisation and Level Set Methods

The implementation of curve propagation flows was the first attempt to use the
level set method in computer vision. Geometric flows or flows recovered through
the optimisation of snake-driven objective functions were considered in their im-
plicit nature. Despite the numerous advantages of the level set variant of these
flows, their added value can be seen as a better numerical implementation tool
since the definition of the cost function or the original geometric flow is the
core part of the solution. If such a flow or function does not address the desired
properties of the problem to be solved, its level set variant will fail. Therefore, a
natural step forward for these methods wag their consideration in the form of an
optimisation space.



150 Paragios

Such a framework was derived through the definition of simple indicator
[unctions as propesed in [917] with the following behaviour

1, $>0
5(@6):{ (1} ' ﬁig , H{g)= o, $=0 (3.6)
' 0, ¢<0

Once such indicator finctions have been defined, an evolving interface I" can be
considered directly on the level set space as

F={seQ:d(p)=1} ©.D
while one can define a dual image partition using the H indicator functions as:
Tin={s€Q:H(-¢) =1}
i Byl o= 9.8
Uowt = {s €Q: H(~p) =0} ™" . ©8)

Towards continuous behaviour of the indicator function [H] , as well as well-
defined derivatives [d] in the entire domain a more appropriate sclection was
proposed in [917], namely the DIRAC and the HEAVISIDE distribution:

0 , 9l >a
da(d) = ﬁ(l—i—cos (%)) , ol <a

1 b 9.9)

Ha(g)={ O & -

J(i+g+tan(Z)) , Wi<e

Such an indicator function has smooth, conlinuous derivatives and the following
nice property:

a :
55 71a(8) = 02(9)

Last, but not least one consider the implicit function ¢ to be a signed distance
transform s, T},

o, sel
o(s) = D(s,I) , wels (9.10)
—D(s,T) , 5€Q—-Tin=Tou

Such a selection is continuous and supports gradient descent minimisation tech-
niques. On the other hand it has to be maintained, and therefore frequent
re-initialisations using either the fast marching method [727] or PDE-based ap-
proaches [774] were considered. In [353] the problem was studied from a different
perspective. The central idea was to derive the same speed function for all level
lines - the one of the zero level set - an approach that will preserve the distance
function constraint.
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9.3 Data-driven Segmentation

The first attempt to address such task was made in [537] where a geometric low
was proposed to image segmentation. Such a flow was implemented in the level
set space and aimed to evolve an initial curve towards strong edges constrained by
the curvature effect. Within the last decade numerous advanced techniques have
taken advantage of the level set method for object extraction.

9.3.1 Boundary-based Segmentation

The geodesic active contour model [155, 462] - a notable scientific contribution
in the domain - consists of

1
B(T) = f 4 (IVZ, (o)) D 1T ()] dp ©.11)

where 7, is the output of a convelution between the input image and a Gaussian
ketnel and ¢ is a decreasing function of monotonic nature. Such a cost func-
tion seeks a minimal length geodesic curve that is aitracted to the desired image
features, and is equivalent with the original snake model once the second order
smoothness component was removed. In [155] a gradient descent method was
used to evolve an initial curve towards the lowest potential of this cost function
and then was implemented using the level set method.

A more elegant approach is to consider the level set variant objective function
of the geodesic active contour;

B(p) = / /ﬂ 5 (#())g (VI (@)]) [V () e ©.12)

where I is now represented in an implicit fashion with the zero-level set of ¢. One
can take take the derivative of such a cost function according to ¢:

br = ba(d)div (g(;)r%) (©.13)

where w and |VZ, (w)| were omitted from the notation. Such a flow aims to shrink
an initial curve towards sirong edges. While the strength of image gradient is
a solid indicator of object boundaries, initial conditions on the position of the
curve can be issue. Knowing the direction of the propagation is a first drawback
{the curve has either to shrink or expand), while having the initial curve either
interior to the objects or exterior is the second limitation. Numerous provisions
were proposed to address these limitations, some of them aimed to modify the
boundary attraction term [627], while most of them on introducing global regional
terms [922].
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9.3.2 Region-based Segmentation

In [623] the first attempt to integrate edge-driven and region-bascd partition com-
ponents in a evel set approach was reported, namely the geodesic active region
model. Within such an approach, the assumption of knowing the expected inten-
sity properties (supervised segmentation) of the image classes was considered.
Without loss of generality, let us assume an image partition in two classes, and let
Tin{Z), Tout (I} be regional descriptors that measure the fit between an observed
intensity Z and the class interior [ri, (Z)] and exterior 0 [ray: (7)) the curve. Un-
der such an assumption one can derive a cost function that separates the image
domain into two regions:

« according to a minimal length geodesic curve atiracted by the regions
boundaries,

» according to an optimal fit between the observed image and the expected
properties of each class,

E(¢) =w [ fg 3a($())9 (VT (@)1} [V () div
3 f /ﬂ Ho = () rin (D) + f ]ﬂ (1 Hap (=3 rons (D)l

where w is a constant balancing the contributions of the two terms. One can
see this framework as an integration of the geodesic active contour model [155]
ang the region-based growing segmentation approach proposed in [922]. The ob-
jective is to recover a minimal length geodesic curve positioned at the object
boundaries that creates an image partition that is optimal according to some im-
age descriptors. Taking the partial derivatives with respect to ¢, one can recover
the flow that is to be used towards such an optimal partition:

(9.14)

b = Ga(@) (D) = rona(T)) + wba(d)div (g(; )%) ©.15)

where the term d,(—¢) was replaced with &,(¢) since it has a symmetric be-
haviour. In [623] such descriptor function was considered to be the -log of the
intensity cenditional density [p;, (1), pin ()] for each class

rin(Z) = —log (pin(Z)), Towt(T) = —log (Pout(Z))

In [701] the case of supervised image segmentation for more than two classes
was considered using the frame partition concept introduced in [917], One can
also refer to other similar techniques [16]. Promising results were reported from
such an approach for the case of image in [624] [Figure (9.3)] and for supervised
texture segmentation in [625].

However, segmentation often refers to unconstrained domains of computational
vision and therefore the assumption of known appearance properties for the ob-
jects to be recovered can be unrealistic. Several attempts were made to address
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3)

Figure 9.3. Multi-class image segmentation [624] through integration of edge-driven and
region-based image metrics; The propagation with respect to the four different image
classes as well as the final presentation result is presented.

this limitation. To this end, in [173, 909] an un-supervised region based segmen-
tation approach based on the Mumford-Shah [590] was proposed. The central idea
behind these approaches of bi-modal [173] and tri-modal [909] segmentation was
that image regions are piece-wise constant intensity-wise,

The level set variant of the Mumford-Shah [590] framework consists of
minimising

E(Qf’: Hiny ;uouz) ™
w [ [ bats)vo@ldot [ [ Hal-8)@0) i 5,

+f fn (1 = Ha(—p(@))T(w) — pous)do

where both the image partition [$] and the region descriptors [in, fous] for the
inner and the outer region are to be recovered. The calculus of variations with re-
spect to the curve position and the piece-wise constants can be consider to recover
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the lowest potential of such a function,

PRI N e e
o fan(—f,#)dw ’ out ffg(l - 46) dw

917

ér = 6a() | (T(w) — ptan)) NZ — (T(w) — Hout)?)) + wdiv (;i;)]

Such a framework was the basis to numerous image segmentation level set
approaches, while certain provisions were made to improve its performance.
In [465] the simplistic Gaussian assumption of the image reconstruction term
(picce-wise constant) was replaced with a non-parametric approximation den-
sity function while in [685] a vectorial un-supervised image/texture segmentation
approach was proposed.

Last, but not least in [841] the same framework was extended to deal with
multi-class segmentation. The most notable contribution of this approach is the
significant reduction of the computational cost and the natural handling (op-
posite to [917]} of not forming neither vacuums nor overlapping regions. Such
an approach can address the N-class partition problem, using log, (V) level set
functions.

9.4 Prior Knowledge

Computational vision tasks including image segmentation often refer to con-
strained environments. Medical imaging is an example where prior knowledge
exists on the structure and the form of the objects to be recovered. One can claim
that the level set method is among the most promising framework to model-
free segmentation. Introducing prior knowledge within such a framework is a
natural extension that could make such level sets an adequate selection to numer-
ous applications like object extraction, recognition, medical image segmentation,
tracking, etc. In [513] a first attempt to perform knowledge-based segmentation
was reported, while later numerous authors have proposed various alternatives

[188, 808, 688, 236].

9.4.1 Average Models

Statistical representation of shapes is the first step of such an approach. Given a
set of training examples, one would like to recover a representation of minimal
length that can be used to reproduce the training set. To this end, all shapes of
the training set should be registered to the same pose. Numerous methods can be
found in the literature for shape registration, an adequate setection for building
shape models in the space of implicit functions is the approach proposed in [413]
where registration is addressed on this space. Without loss of generality we can
assume that registration problem has been solved.
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Let S4 = {&1,¢2,..., ¢} be the implicit representations of n training samples
according to a signed Euclidean distance transform. Simple averaging of the shape
belonging to the training set can be used to determine a mean model

o= D ©19)

that was considered in [513, 808, 236]. Such a model is a not an signed Eu-
clidean implicit function, an important limitation. However, one can recover a
mean model in the form of a planar curve I' 44 through the marching cubes al-
gorithm [526]. Once such a model has been determined, one can impose shape
prior knowledge through the constraint that the object to be recovered at the image
plane I that is a clone of the average shape I' o4 according to some transformation:

T = AT ) 9.19)

where A can be a linear or non-linear transformation. In [188] prior knowledge
has been considered in the form of a mean represented with a signed distance
function. Once such a model was recovered, it was used [ | 88] within the geodesic
active contour model [155] to impose prior knowledge in the level set space:

E@.A) = [ [ 6(0) (UVIDIVY + Mk Ao 020

where A = (s,8, (7., 7,)) is a similarity transformation that consists of a scale
factor [s], a rotation component [¢] and a translation vector (7, 7,). ¢ is an
implicit representation of the mean model according to a distance function and A
is a constant that determines the importance of the prior term. Such an objective
function aims at finding a minimal length geodesic curve that is attracied to the
object boundaries and is not far from being a similarity transformation of the prior
model:

Pm{AT M) — 0

Such an approach can be very efficient when modelling shapes of limited varia-
tion. On the other hand, one can claim that for shapes with important deviation
from the mean model the method could fail. Furthermore, given the small number
of constraints when determining the transformation between the image and the
model space the estimation [A] could become a quite unstable task.

Towards a more stable approach to determine the optimal transformaltion be-
tween the evolving contour and the average model, in [688] a direct comparison
between the contour implicit function and the model distance transform was used
to enforce prior knowledge:

P(w) = P (A(w))
Despite the fact that distance transforms are robust to local deformations, invari-

ant to translation and rotation, they are not invariant to scale variations. Slight
meodification of the above condition [629] could also lead to scale invariant term:

sp(w) = pm (Alw))
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Figure 9.4, Level set methods, prier knowledge, average models and similarity invariant
object extraction [688] in various pose conditions {i,ii, iii).

The minimisation of the $8D between the implicit representations of the evolving
contour and the distance transform of the average prior model can be considered
to impose prior knowledge, or

E(6,A) = / [l 6a(@) (58(w) — Sp1 (A2 (9:21)

a term that is evaluated within the vicinity of the zero level-set contour (modulo
the selection of «). The calculus of variations within a gradient descent method
can provide the lowest potential of the cost function. Two unknown variables are
to be recovered, the object position {form of function ¢),

L= | 250u(0)| (50— om(AF 2850 = bmilA) 02

\ -

"
shape consistency force

s
orea force

This flow consists of two terms: (i) a shape consistency force that updates the
interface towards a better local much with the prior and (i) a force that aims at
updating the level set values such that the region on which the objective functions
is evaluated (—c, ) becomes smaller and smaller in the image plane. In order to
better understand the influence of this force, one can consider a negative ¢ value,
within the range of (—a, a); Such a term does not change the position of the
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interface and therefore it could be omitted:
d
£ 5= ~28a(g)s(sp — m(A) ©023)

Towards recovering the transformation parameters [.A] between the evolving con-
tour and the average maodel, a gradient descent approach could be considered in
parallel: A

[ 50=2 [ 8050~ b ANTom(A) - )0

d &
Sf=o ]; 88066 = bl AN (Vam(A) - Ao -

5T =2 [ 806~ o (ANTom(A) - A

L dt

One can refer to very promising results - as shown in [Figure (9.4)] - on objects
that refer to limited shape variability using such a method [688]. However, often
the object under consideration presents important shape variations that cannot be
accounted for with simple average models. Decomposition and representation of
the training set through linear shape spaces is the most common method to address
such a limitation.

o= / (9)(6 ~ a(A) (=4 + Veua(4) - o A)D

9.4.2 Prior Knowledge through Linear Shape Spaces

In [513] a principal component analysis on the registered set of the space of
distance functions (training examples) was considered to recover a model that
can account for important shape variations. Similar approach was consider in
[808, 116, 689]. Principal component analysis refers to a linear transformation
of variables that retains - for a given number n of operators - the largest amount
of variation within the training data.

Let ¢p;=1..,, be a column vector representation of the training set of n implicit
function elements registered to the same pose. We assume that the dimensionality
of this vector i1s d. Using the technique introduced in [688] one can estimate a
mean vector ¢ 4 that is part of the space of implicit functions and subtract it from
the input to obtain zero mean vectors {¢; = ¢; — ¢},

Given the sei of training examples and the mean vector, one can define the d x d
covariance matrix:

T = E{d:d7} (9.25)

It is well known that the principal orthogonal directions of maximum variation
are the eigenvectors of ¥ ;.
One can approximate % ¢ with the sample covariance matrix that is given by

[&Négr], where ¢ is the matrix formed by concatenating the set of implicit
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Figure 9.5, Level set methods, prior knowledge, linear shape spaces and Object Extraction
[689]; segmentation of lateral brain ventricles (Top Left} surface evolution, {Top Right)
projected surfacc in the Iearning space and ground-truth surface (from the training set},
{Bottom) surface cut and its projection in the leaming space during surface cvolution.

functions {é@}gzl_,_n. Then, the eigenvectors of & 4 can be computed through
the singular value decomposition (SVD) of éN :

oy = UDUT (9.26)

The eigenvectors of the covariance matrix 4 are the columns of the matrix U
(referred to as the basis vectors henceforth) while the elements of the diagonal
matrix I7 are the square root of the corresponding eigenvalues and refer to the
variance of the data in the direction of the basis vectors. Such informalion can
be used to determine the number of basis vectors (s} required to retain a certain
percentage of the variance in the data.

Then, one can consider a linear shape space that consists of the (m) basis
vectors required to retain a certain percentage of the training set:

$=dm+ Y NU; (9.27)

j=1

Such linear space can now be used as prior model that refers to a global transfor-
mation .4 of the average model ¢ o¢ and its local deformation A = (A, ..., An)
through a linear combination of the the basis vectors U;. Then, object extraction
is equivalent with finding a shape for which there exists such a transformation that
will map each value of current representation to the "best" level set representation
belonging to the class of the training shapes:

P AN = [ 80) (sqs . (ng(A) +:Zl"3’ U;-(A)))zdn (928)
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where the rotation factor U;(A) has to be accounted for when applying the
principal modes of variations to deform the average shape.

In order to minimise the above functional with respect to the evolving level set
representation, the global linear transformation A and the modes weights );, we
use the calculus of variations. The deformation of ¢ is guided by a flow similar
to (9.22) that is also the case with respect to the pose parameters .4 as shown
in (). Last, but not least he ditferentiation with respect to the coefficients A =
{A1,..00 A leads to a linear system that has a closed form solution VA=5h
with:

Vi, i) = f 5. ($) U AU, (A)
f (9.29)
bi) = /‘; 5.(6) (6 — Spa(A)UL(A)

where V' is a 7 xm positive definite matrix, Such an approach as shown in [Figure
(9.5)] - can cope with important shape variations under the assumption that the
distribution of the training set is Gaussian and therefore its PCA is valid.

9.5 Discussion

In this chapter, we have presented an appreach to object extraction through the
level set method that is implicit, intrinsic, parameter free and can account for
topological changes. First, we have introduced a connection between the active
contours, propagation of curves and their level set implementation. Then, we
have considered the notion ol implicit functions to represent shapes and define
objective functions in such spaces to perform object extraction and segmentation.
Edge-driven as well as global statistical-based region-defined segmentation crite-
ria were presented. In the last part of the chapter we have presented prominent
techniques to account for prior knowledge on the object to be recovered. To this
end, we have introduced constraints of increasing complexity proportional to the
spectrum of expected shape deformations that constraints the evolving interface
according to the prior knowledge. Therefore one can conclude that the level set
method js an efficient technique to address object extraction, is able to deal with
important shape deformations, topological changes, can integrate visual cues of
different nature and can account for corrupted, incomplete and oceluded data.
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On a Stochastic Model of Geometric
Snakes

A. Yezzi, D. Nain, G. Unal, O. Zeitouni and A.
Tannenbaum

Abstract

It this note, we give a formulation of a stochastic snake model based the
theory of interacting particle systems and hydrodynamic limits. Curvature
flows have been extensively considered from a deterministic point of view.
They have been shown to be useful for a number of applications including
crystal growth, flame propagation, and computer vision. In some previous
work [71], we have described a random particle system, evolving on the dis-
cretized unit circle, whose profile converges toward the Gauss-Minkowsky
transformation of solutions of curve shortening flows initiated by convex
curves. The present note shows that this theory may be implemented as a
new way of evolving curves as a possible alternative to level set methods.

10.1 Introduction

In this paper, we describe a model of stochastic snakes based on the theory of
interacting particle systems. In some previous work Ben-Arous, Tannenbaum, and
Zeitouni [71], described a stochastic interpretation of curve shortening flows. This
brought together the theories of curve evolution and hydrodynamical limits, and
as such impacted on the growing use of joint methods from probability and pde’s
in the image processing and computer vision. In this present note we will indicate
how this theory may be implemented to forge a novel stochastic curve evolution
algorithm.

We should note that there have been other models of stochastic active contours
and geometric flows; see [443] and the references therein. These approaches are
very different than ours. In [443], the authors consider stochastic perturbations of
mean curvature flows and applications to computer vision. Their model is con-
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tinuous (macroscopic). Our model is inherently microscopic as we will elucidate
below.

Following [71], we will now set the background for our results, to which we
refer the reader for all the technical details. Let C(p,t) : S* x [0,T) — R? be
a family of embedded curves where ¢ parameterizes the family and p parameter-
izes each curve. We consider stochastic interpretations of certain curvature driven
Sflows, i.e., starting from an initial embedded curve Co(p) we consider the solution
{when it exists) of an equation of the form

ac(p,t)
at

=V, thN, C(.)=Cl), (10.1)

where x(p,t) denotes the curvature and A denotes the inner unit normal of the
curve C(-, ) at p. Of particular interest is the case in which V () = +x®. Note
that the cage V() = x corresponds to the Euclidean curve shortening flow [334]
while V(z) = #1/3 corresponds to the gffine curve shortening, which is of strong
relevance in computer vision and image processing [706]. Since in both cases we
get gradient tlows and resulting heat equations, a stochastic interpretation seems
quite natural.

We will be dealing with convex curves here and so we employ the standard
parameterization via the Gauss map, that is fixing p = #, the angle between the
exterior normal to the curve and a fixed axis. It is well known that the Gauss map
can be used to map smooth convex curves C(-} into positive functions m(.) on St
such that [, €*™®m(f)df = 0, and that this map can be extended to the Gauss-
Minkowsky bijection between convex curves with C(0) = 0 and positive measures
on S with zero barycenter; see (140, Section 8] for details. We denote by M®
the latter set of measures. Under this parameterization, a convex curve C{f) can
be reconstructed from a i1 € MY by the formula C(8) = jf €?™9,(dO) , using
linear interpolation over jumps of the function C(8). Further, whenever u pos-
sesses a strictly positive density p(@}df then the curvature of the curve at 0 is
&[0} = 1/p(0).

Our interest is in constructing stochastic approximations to the solutions of
curvature driven flows and from this to derive a new stochastic snake model,
Approximations corresponding to polygonal curves have been discussed in the lit-
erature under the name “crystalline motion™; see [824] for a description of recent
results and references. The approach in [71] is different and can be thought of as a
stochastic crystalline algorithm: we construct a stochastic particle system whose
profile defines an afomic measure on S, such that the corresponding curve is a
convex polygon. Applying standard tools from hydrodynamic limits, it is proven
in [71] that the (random) evolution of this polygonal curve converges, in the limit
of a large number of particles, to curve evolution under the curve shortening flow.
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10.2 Overview of Geodesic Snake Models

The snake model we develop here is based on so-called geodesic or conformal
snakes developed by [157, 463, 733]. The undetlying flow for these meodels is
given by

Ce = (¢ — V¢ - NN,

where ¢ is a stopping term, » is curvature and M is the unit normal. (See more
details about this below.) The curvature based term is used as regularization term
as well as directing the flow inward to capiure the object of interest. The term
involving V¢ - A/ acts to pull the contour into the potential well defined by the
object via the flow and to push it out when it passes the object of interest.

Our stochastic shake model will be based completely on an outward flow whose
underlying density evolution p is a lincar heal equation (see equation {10.3)
below). The corresponding curve evolution equation is certainly nonlinear and
expanding, and would be difficult to implement in a stable manner using a de-
terministic scheme. The linear heat equation of course ig very easy to model
stochastically, and so leads to a straightforward implementation of our expanding
flow. All this will be explained in Section 10.7 below.

10.3 Birth and Death Zero Range Particle Systems

We first set-up some notation. As above let
Clp,£): 8' x [0,T] = R?

be a family of embedded curves where p parametrizes the curve and ¢ the family.
Then as above we consider curvature-driven fows of the form

% = V(k(p, tHN, (10.2)

where & denotes the curvature and A the inward unit normal.

Since we are interested in a stochastic interpretation, we consider the evo-
lution of a "density" corresponding to Equation {10.2). Accordingly, using the
standard angle parametrization 9, we interpret p(#,#) := 1/x(f,£) as a density,
and compute its evolution to be:

Bp(6,t) _ V(p(6,1)
=g = TT - V(p(8.1)), (10.3)
Vig) = V(/x).

In Equation (10.3), the first term on the right hand side is called the diffusion
term and the second term the reaction term.

The approximations we use are based on so-called birth and death zero range
particle systems. To get a flavor of the simplicity of the algorithm, we write down
this system down in some detail. Full details may be found in [71],
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Let Ty = Z/KZ denote the discrete circle. Let g : N — R, (the jump
rate, with g(0) = 0), & : N — R (the birth rate), d : N — Ry (the death
rate, with d{0} = 0) be given, and define the Markov generator on the particle
configuration By = N/ by

(LK D)) = KLY + (Lof) (), feCu(Ex),

where
(Lof)(m) = % Z g(n(®) [Fin") + flg*1) — 2f ()]
(Lif){m) =
> () (£ = fm)] + @) [F05T) - Fm)]]
€T,
and

B n(@) +1 =it L@ #0,
7E(G) =
n(4), else,

vt ={ 16 =
i—ray 0l — 1,3 =4n() >0,
)= { ??(;),else.

Note that the #zere-range part £y approximates diffusion term of equation (10.3)
while the birth-death part £, approximates the reaction term of (10.3).

10.4 Poisson System Simulation

We assume that we have a system in state € NT¥ at time £,. We will
suppress the dependence on n (unless absolutely necessary). We are given 4
rates at site i: b;=birth, d;,=death, g;T=jump to right, g; "=jump to left. We let
E; = {b;,di, 9:7, .7 } be the set of possible transition rates for system in state
7 at site i. We let e; € Fi.

A bit more notation:

E = UiETK E‘i:
Alm, €:) = eiln(d)),

Uln, i) 1= Z An, ;).

e, EE;
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Then there are three standard ways of getting the Poisson system for simulating
the Markov process described above.

Algorithm 1: Per Site Transition

1. Get values for T; ~ exponential{T (#,)). (By this of course we mean that
the T}’s are exponential random variables with parameter U (n, ).)

2. Bet
Ti=min{T;} =: T}
iz Ty { !,} 3
i* is the site where the transition occurs at time ¢, + 7.

3. To find the event in E;, we then take e; € E; with probability

An, e)
U("r;‘: 81',) ,

the {conditional) transition probability.

Algorithm 2: Per Event Transition

1. Get T'{e;) ~ exponential(A(n, e;)) for all 4, ;.
2. Set

T = min{T(e;})}.

gl
3. Then the next event time is £, + T and the next event is

arg min{7'(e;)}.

Algorithm 3: Summing all the Rates
This is the method we use, so we only briefly describe it here. See our discussion
below in Section 10.5. The basic idea is as follows:

I. We sum all the rates

Uln) = Uln,i).

2. Choose an event e &€ E with probability A(n,e)/U(n). The time for this
event would be T exp{U/(n)). Note that this way you need only one expo-
nential random variable per transition, while the choice of e only requires
one uniform random variable,
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10.5 Choosing a Random Event

We now outline in detail an O(log K') implementation of Algorithm 3 (summing
all the rates) in the previous section to choose which random event £y, to carry
out at each step in the simulation of the stochastic particle system. Note that an
event Fy denotes a particular event type (birth, death, jump left, jump right) at a
particular site location.

10.5.1 Using a List of Event Tokens

A conceptually simple method to simulate a random event utilizes a list of “event
tokens” together with a uniform random number generator such as rand() in the
standard C library. The method proceeds as follows. We [first generate a list of
tokens corresponding to events Ej. Given that there are four different event types,
a particle system with K sites will admit a total of 4K distinct event tokens, Note
however that to ensure the proper likelihood ratios between different events, the
list will in general not contain exactly one occurrence of each event token. Instead,
Uy, tokens will be included in the list for each event Ej, where Uy, is chosen to
be proportional to the event’s transition rate. Next a random element of the list
is selected with uniform probability, and the event corresponding to the selected
token is performed.

While conceptualty simple, there are some practical difficulties in implement-
ing this token list method. First, it is only possible to choose token counts Uy,
which are all exactly proportional to the transition rates of their respective events
I5;; if the the total set of 4K transition rates has a common divisor. Calculating
a common divisor, assuming one even exists, can be expensive. Second, once an
event occurs, the transition rates change for events at the corresponding lattice site
(as well as a neighboring site in the case of a jump event). Thus, a new common
divisor must be computed and the number of tokens I/, must be redetermined for
every event Ey,.

If we opt to use a constant small € > 0 as an approximate common divisor,
then we may calcnlate token counts Up which are approximately proportional
to the transition rates of their associated events FEj by integer truncation of the
quotients between each transition rate and this constant divisor. Tn this way, we
avoid having to change the number of tokens in the list for events whose rates
have not changed. Updating the list for events whose rates have increased is casy
and efficient since this amounts to adding new tokens (note that we do not have to
keep the list sorted, so new tokens may simply be appended to the end of the list).
However, updating the list for events whose rates have decreased is much more
expensive since this amounts to removing tokens and therefore requires searching
the list for the tokens we want to remove.

A final difficulty in the implementation difficulty stems from the fact that the
size of the list changes dynamically as the particle system evolves. However, if
we can estimate a reasonable upper-bound in advance, then we may avoid having
to perform multiple memory allocations to maintain the event token list.
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. B LA it . S::k 5
Figure 10.1. Sorted virtual list of “event tokens” used when simulating a random cvent.

10.5.2 Virtual Token List Method

We now outline a more efficient algorithm, closely modelled after the token list
method described above, which avoids the need to physically instantiate and
maintain the token list. The method will be based upon a “virtual token list” which
has the additional property that its event tokens are sorted in increasing order ac-
cording to the index k of the associated events £}.. The fact that the list is sorted
means that tokens belonging to the same event must occur consecutively within
the list (see Fig. 10.1).

The algorithm will utilize an array (of size 4K) of nondecreasing accumulaior
variables Sy defined by

recalling that U, denotes the number of tokens stored in the list for event Ex.
Notice that the size of the virtual token list is equal to value of Sy (recalling
that K denotes that number of lattice sites) and that the first token for event Ey,
assuming Uy # 0, occurs at site S,y + 1. We may now choose a random token
from this list by generating a random integer n between 1 and Sqx and selecting
the n’th list elemenl. It is possible to delermine the event £}, associated with the
n'th token in the list using only the set of accumulator variables 57,55, ..., Sk
by noting that

k=min{i|n <) (10.4)

We may easily locate this event index % by traversing the array of accumulator
variables until the first Sy is encountered such that 3, > n. We may further capi-
talize on the monotonicity of the Sy values and use a bisection lechnique to locate
the index k.

We therefore see that the only data structure we need to maintain is the array
of accumulators. Furthermore, since we don’t actually instantiate the list of event
tokens, we are free to use non-integer values of Uy (thereby circumventing the
problem of finding a common divisor) and can directly equate each Uy to the
transition rate for event Ej and accordingly set each Sy, to the cumulative sum
of the first & transition rates. n is then chosen as a random positive floating point
number between 0 and S3x which is the sum of all the event rates, and the event
E}. is still chosen according to the criterion (10.4).
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Once the randomly selected event E); is performed, the transition rates for the
corresponding lattice site (and its neighboring site if a jump occurred) are updated
if necessary and the cumulative rate sums .51,.52,. .., Sax are updated. Thus,
cost of choosing an event consists at most of log, (4K) array lookups (assuming
a bisection search is used) to locate the event index k and log, (4K') floating point

additions {assuming a binary tree is used) to update the cumulative rate sums
81,0, 851K,

10.6 Similarity Invariant Flows

For the stochastic snake model, we will use a flow which is scale-invariant. Ac-
cordingly, in this section, we describe a flow which are invariant relative to the
scale-invariant versions of the Euclidean group, namely the similarity flow,

We begin with the heat fiow for the similarity group (rotations, translations, and
isotropic scalings). This flow was first presented and analyzed in [705]. We as-
sume for the remainder of this section that our curves are strictly convex (x > 0).
Accordingly, let C be a smooth strictly convex plane curve, p the curve parameter,
and as above, let M, 7, and ds denote the Euclidean unit normal, unit tangent,
and BEuclidean arc-length, respectively. Let

o= ds
T op
be the speed of parametrization, so that
Cp =0T, Cpp =6,T +0%kN.
Then clearly,
Cp-Cy = a2,
[Cov Cipl = o3k
For the similarity group (in order to make the Euclidean evolution scale-invariant),
we take a parametrization p such that
Cp+ Cp = 1Cp, Cppl, (10.5)
which implies that
a=1/k.
Therefore the similarity group invariant arc-length is the standard angle parameter
#, since
dag .
ds
where ds is the Euclidean arc-length. (Note that 7 = [cos#,sin §]7.) Thus the
similarity normal is Cgg, and the similarity invariant flow is

Cy = Cog. (10.6)
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Projecting the similarity normal into the Euclidean normal direction, the follow-
ing flow is obtained

€= =N, (10.7)

and both {10.6) and (10.7) are geometrically equivalent flows.

Instead of looking at the flow given by (10.7) (which may develop singuiari-
ties), we reverse the direction of the flow, and look at the expanding flow given
by

aC 1

e R 10.

ot KIN ao)
We should also note that —A//& is the normal to the curve € where the derivatives
are computed with respect to 8.

For completeness, we state the following results for the flow (10.8) (the proofs
are given in [705]):

Theorem 10.6.1. 1. A4 simple convex curve remains simple and convex when
evolving according to the similarity invariant flow (10.8).

2. The solution to (10.8) exists {and is smooth) for all 0 < t < 0.

Lemma 1. Changing the curve parameter from p to 0, we obiain that the radius
of eurvature p, p = 1/k, evolves according to

P = pas + p. (10.9)

Theorem 10.6.2. 4 simple (smooth) convex curve converges fo a circle when
evolving according to (10.8).

Skeich of Proof:

So this result is so important to our construction of stochastic snakes, we briefly
sketch the proof. The idea is that since the equation (10.9) is a linear heat equation,
we can separate variables and see thal in the standard manner p{#, £} converges to
a constant as # — oc. This means that the curvaturc converges to a constant, i.c.,
we get convergence to a circle. O

10.6.1 Heat Equation and Similarity Flows

The equation (10.9) will be the basis for our stochastic model of snakes. In the
equation g will be interpreted as a density. It is important to note that it is a linear
heat eguation (even though the underlying curvature flow (10.8) is nonlinear.
The stochastic model of (10.9) also gives a simple way of implementing the
flow (10.8). Indeed, one can easily show thai the stochastic rates for (10.9) are
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g{n} = b(n) = n and that d(n) = 0. This means that the interacting particle
system is based on a classical random walk with a birth rate equal to the number
of particles at a given site,

10.6.2 Gradient Flow

We now state the fundamental flow underpinning the segmentation method. We
state it in general even though we will only apply it to planar curves, Sce [740]
for another derivation.

Let R be an open connected bounded subset of R™® with smooth boundary &R.
Let 44* : R — R" be a family of embeddings, such that 1 is the identity. Let
A:R® > Rbea C! function. We set R(t) := 1*(R) and S(¢) := ¥'(OR). We
consider the family of ¢-weighted volumes

HE) = [ Mt (e))dy*(x)
= fR(t) Alw)dy.

Set X - %fi—thzo then using the area formula [742] and then by the divergence
theorem, the first variation is

dH

T 0= Jpdw(AX)de

= = fn(AX) Ny,

where A/ is the inward unit normal to R.
We now specialize the discussion to planar curves. In this case we have that if
we define the functional

L(t)
M i== [N,
6

the first variation is

L(t)
() = f (€., ColAdo.
0
Then notice if we take
i = =Ml

and uging the relation (10.5), we get that

ANt = ] [Ca, Coa] A%dE = f Call2 X240,
which implies that the flow
Cy = ~AN/x, {10.10)

is a gradient flow for increasing A-weighted area.
Following the discussion about geodesic snakes in Section 10.7, we will choose

Ai=¢+Veo-N. (10.11)
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Figure 10.2. Envelope representation of a convex polygon

Here ¢ is the conformal stopping term. Notice that for a A evaluated inside a
object (expanding snakes), it will be positive.
This will be used in the formulation of stochastic snakes.

10.7 Stochastic Snakes

In this section, we describe our formulation of a stochastic geometric active con-
tour model. For the geometric active contour model case which we considered in
this study, the density function evolves according to

pr=(Aples + A, (10.12)

where A is as in (10.11), and subscripts indicate partial derivatives. This
corresponds to the curvature driven flow (16.11).

The rates of the interacting particle system corresponding to the equa-
tion (10.12) are given by AnK 2% x (mass of particle) for the diffusion, and by Anx
mass of particle for the birth/death, where n is the number of particles at the given
site. With these rates, we use the method outlined in section 10.5 to choosing an
event {site and type) to simulate in each single iteration of the Markov process
(i.e. one evolution step for the stochastic snake). We now turn our attention to the
remaining implementation details. In particular, how do we construct an evolving
snake from the evolving particle system?

10.7.1 Polygon representation and construction

Here we describe a representation of polygons that connects in a particularly con-
venient way with our particle system model. They key point is that each site in the
particle system corresponds to a polygonal edge with a fixed angle. As the particle
system evolves, only the lengths of the polygonal edges change. Since the angle
is always a fixed property associated with each site, we wish to exploit this in our
mathematical representation of the evolving polygon.

Envelope Representation
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One way to represent a K -sided convex polygon is as the inner envelope of a set
of K oriented lines {y,...,l53 in the plane, where the orientation of each line
Iy is given by a choice of outward unit normal Nj. We assume that the lines
are ordered according to the angle made between their unit normals and the »
axis and that the changes in angle between consecutive unit normals are all pos-
itive with a total sum of 2x. The resulting polygon will consist of K vertices
Xy,--- X ;c1 Where each vertex is given by the point of intersection X, between
the lines {5, ., and I. Each edge of the polygon will in turn correspond to the seg-
ment of the line {; between the points X and X 1. A minimal set of parameters
to describe a particular polygon in this representation would be the unit normals
No,....Ng..| of each line (or equivalently their angles with the x-axis) and the
distances rp,...,Tx 1, between each line ly,... /) and the origin O. Note that
these distances are signed to indicate whether the origin lies on the inner or outer
side of each line according to the orientation of its unit outward normal.

Notice that this representation is particularly convenient in conjunction with or
particle system since we may associate each line [, to a lattice site & and that the
unit normal Ny is a function of the lattice site only, not the number of particles
n(k) at that site. Assuming an equally spaced lattice, the angle ¢ between consec-
utive unit normats will be fixed and given by @ = 27/ K. This prescribes all of the
unit normals once the first one is chosen. Thus, as the particle system evolves, the
only parameters that need to be determined in this representation are the signed
distances rp,. ..,rg-1. Next we will show how to compute these distances based
upon the particle configuration. First, however, we refer the reader to Fig. 10.2
which illustrates the representation and notation discussed in this section.

Least-squares construction

Let us denote by Ly the length of the polygon segment on the line Ix between
the vertices X and Xy 4. Note that to relate the polygon ideally to the particle
system, each edge length Ly should be proportional to the number of particles
n(k) at the site k. If we let AL denote the proportionality factor (i.e. the per-
particle-length}, then the ideal relationship between the polygon and the particle
system is:

Ly =Ly :=n{k) AL (ideal case) (10.13)

However, this is not always realizable in the form of a closed polygon with the
prescribed unit normals Nj. As such it is not always possible to choose the pa-
rameters ry, to satisfy the consiraint (10.13) forall 0 < k& < K—1. We will instead
try to satisfy the constraints in a least squares sense by choosing

{rg,. .+ "} =argmin E(ro,...,Tk-1)

where

K-1
E(ro,...,rxo) = %Z ; — (i) AL)® (10.14)
1=0
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We may generate an expression for each vertex point X in terms of the unit
normals Ny,...,Nx_; and the distances rg,..., 71 by noting that X, is given
by the intersection ol lines {x_; and {;, (see Fig. 10.2) and therefore satisfies both
line equations (X Ny = r, and X Ny = rp1). Hence

XF = [ Tk T H Ni N l_l = ;i—:i-é ([ Tea Tk } [ ...,:::_1 ])F

where T}, denotes the unit tangent vector of the line {;. (by clockwise rotation of
its outward unit normal N). This of course yields

Ty —~ 1 Tk

Xi = (10.15)

sinf
and
e — 2ri cosf 4+ rep

Ly = (X — Xi) - Ti = o

(10.16)

from which we can now see that the partial derivatives of £ are given by

OE  rpg —4Arpg cos0 4 (2+4cos? O)ry — Argy cosf + Tiye
. sin® 0
j’k—l — 2cos gf;k + f;kH
sin f '
Setting g‘% = [ yields the following optimality criteria for the distances
L SO

(Tha + Tiga) — 4cosO{riy + rip)

10.17
+(2+4cos® )y = ALsinG(n(kwl) — 2cosbn(k) + r,i(k+1)) ( )

10.8 Experimental Results

In this section, we describe illustrate our algorithm on a real data set. We used the
stochastic implementation of equation 10.12 as described in Section 10.7 above.
Specifically, we considered the problem of segmenting the left ventricle (short-
axis view) of a heart from an MRI data set gotten from the the Department of
Radiology of the Emory Medical School.

QOur results are shown in Figure 0.3, We start from a polygonal initial curve
and let the contour grow according to the stochastic snake mode! given above.
“Green” indicates birth and “red” indicales death. Notice that one gets a death
process when the contour leaks over the boundary which pushes it back to a steady
state position.
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Figure 10.3. Stochastic Snuke Capturing Left Ventricle of Heart from MRI

10.9 Conclusions and Future Research

In this paper, we proposed a novel approach to active contours based on a stochas-
tic interpretation of curvature-driven flows. There are a number of extensions
which we would like to consider in some future work.

First of all, the theory is now restricted to convex objects. Using the gradi-
ent term, we were able to overcome this difficulty, however we are considering
other approaches based on first principles. One way would be to use negatively
weighted particles (particles with “negative™ mass) for concavities in the given
curve.

Secondly, we are interested in extending our work to active surfaces. There is a
theory of stochastic flows for surfaces; see [476]. However, the extension would
cerfainly be nontrivial, We would need to consider the theory on the 2D discrete
torus.
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Chapterll

Invariant Processing and Occlusion
Resistant Recognition of Planar
Shapes

A. Bruckstein

Abstract

This short paper surveys methods for planar shape smoothing and processing
and planar shape recognition invariant under viewing distortions and even
partial occlusions. It is argued that all the results available in the literature
on these problems implicitly follow from successfully addressing two basic
problems: invariant location of points with respect to a given shape (a given
set of points in the plane) and invariant displacement of points with regard to
the given shape.

11.1 Introduction

Vision is an extremely complex process aimed at extracting useful information
from images: recognizing three-dimensional shapes from their two-dimensional
projections, evaluating distances and depths and spatial relationships between ob-
jects are tantamount to what we commonly mean by seeing. In spite of some
irresponsible promises, made by computer scientists in the early 60s, that within
a decade computers will be able "to see", we are not even close today to hav-
ing machines that can recognize objects in images the way even the youngest of
children are capable to do. As a scientific and technological challenge, the pro-
cess of vision has taught us a lesson in modesty: we are indeed quite limited in
what we can accomplish in this domain, even if we call to arms deep mathemati-
cal results and deploy amazingly fast and powerful electronic computing devices.
In order to address some practical technological image analysis questions and
in order to appreciate the complexity of the issues involved in “seeing” it helps
to consider simplified vision problems such as “character recognition” and other
“model-based planar shape recognition” problems and see how far our theories
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{1.e. our "brain-power") and experiments {or our “number-crunching power”) can
take us toward working systems that accomplish useful image analysis tasks. As
aresuli of such scientilic and commercial efforts we do have a few vision systems
that work and there is a vast literature in the “hot” field of computer vision dealing
with representation, approximation, completion, enhancement, smoothing, exag-
geration, characterizalion and recognition of planar shapes, This paper surveys
methods for planar shape recognition and processing (smoothing, enhancement,
exaggeration etc.) invariant under distortions that occur when looking at planar
shapes from various points of view. These distortions are the Euclidean, Simi-
larity, Affine and Projective maps of the plane to itself and model the possible
viewing projections of the plane where a shape is assumed to reside into the im-
age plane of a pinhole camera, that captures the shape from arbitrary locations. A
further problem one must often deal with when looking at shapes is occlusion. If
several planar shapes are superimposed in the plane or are lloating in 3DD-space
they can and will (fully, or partially) occlude each other. Under full occlusion
there is of course no hope for recognition, but how about partial occlusion? Can
we recognize a planar shape from a partial glimpse of its contowr? Is there enough
information in a portion of the projection of & planar shape to enable its recogni-
tion? We shall here address such questions too. The main goal of this paper will
be to point out that all methods proposed to address the above mentioned topics
implicitly requite the solution of two fundamental problems: distortion-invariant
location of points with respect to given planar shape (which for our purposes can
be a planar region with curved or polygonal boundaries or in fact an arbitrary set
of points) and invariant displacement, motion or relocation of points with respect
to the given shape.

11.2 Invariant Point Locations and Displacements

A planar shape S, for our purpose, will be a set of points in B? points that most
often specify a connected a planar region with a boundary that is either smooth or
polygonal. The viewing distortions are classes of transformations V,, : R? - R?
parameterized by a set of values ¢, and, while the class of transformations is
assumed to be known to us, the exact values of the parameters are not. The classes
of transformations considered are continuous groups of transformations modeling
vatious imaging modalities, the important examples being:

* The Euclidean motions (parameterized by a rotation angle @ and a two-
dimensional translation vector (t,t,), i.e. ¢ has 3 parameters).

cosf  sind

£,
Vg (z,y)— (I'?f)[ —sinf cosf

} + {te, ty)
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* Similarity transformations (Euclidean motions complemented by uniform
scaling transformations, i.e. |¢| = 4 parameters).

cosf  sind

g,
Vg i (2:9) = (z.9) { —sinf  cosd

} o+ (I, ty)

« Equi-Affine and Affine Mappings (parameterized by 2 x 2 malrix - 4 pa-
rameters - or 3, if the matrix has determinant 1 - and a translation vector,
ie. |[¢] = 6 or 5 parameters).

AL fooh e | G G12
Vi (@) — (= y}[ e } $ilteot)

» Projective Transformations (modeling the perspective projection with |¢| =
& parameters).

1y 09

Ve (my) > ———————(z, 9. 1) | a1z an
az @+ azzy + 1

Q12 dng

Given a planar shape § C R? and a class of viewing distortions V}, : R? — R?
we consider the following problem:

Two observers A and B look at S4 = V,;,(S) and at Sg = Vi, (S} respec-
tively without knowing ¢4 and ¢p. In other words A and B look at § from
different points of view and the details of their camera location orientation and
settings are unknown to them (See Figure 11.1). Observer A chooses a point
Py in its image plane /7, and wants to describe its location w.r.t. Vy, (S) to
observer B, in order to enable him to locate the comresponding point Pg =
Viu(V,; ' (Pa)). Aknows that B looks at Sp = V,,(S) = Vi, (V71 (S4)),
but this is all the information available to A and 2. How should A describe the
location of P4 w.rt. 5S4 to B?

Solving this problem raises the issue of characterizing a position (P4} in the
plane of 54 in a way that is invariant to the class of transformations V.

Let us consider a very simple example: take S be a set of indistinguishable points
in the plane {P, P3,..., Py} and V, be the class of Buclidean motions. A
new point P should be described to observers of this point constellation, under
arbitrary viewing distortions V, i.e, observers of

Vol Pryooy Pt = {Va(P1), Vi (P2) .. V(Pn)}

so that they will be able to locate Vy(P) in their respective “images”. How should
we do this? Well, we shall have to describe P’s location w.r.t. {P,Py,...,Py}in
an Euclidean-invariant way. We know from elementary geometry that Euclidean
motions preserve lengths and angles between line segments so there are several
ways to provide invariant coordinates in the plane w.r.t. the shape S. The origin
of an invariant coordinate system could be the Euclidean-invariant (in fact even
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Figure 11.1.

Affine-invariant) centroid of the points 5, i.e. Og = (Zi\;% Pi) /. As one of
axes (say the x-axis) of a “shape-adapted invariant” coordinate system, one may
choose the longest or shortest (or closest in length to the “average™ length) vector
among {OP;} for i = 1,2,..., N. This being settled, the y-axis can be defined
as a 90°- rotation counter-clockwise and all one has to do is to specify P in this
adapted and Euclidean-invariant coordinate system with origin at (J, and orthog-
onal axes chosen as described above. Note that many other solutions are possible.
‘We here assumed that the points of S are indistinguishable, otherwise the problem
would be even simpler. Note also that ambiguous situations can and do arise. In
case all the points of § form a regular N-gon, there are IV equal length vectors
{OF;}i=1,2,..., N and we can not specify uniquely an x-axis. But, a moment
of thought will reveal that in this case the location of any point in the plane is
inherently ambiguous up to rotations of 2w /.

Contemplating the above-presented simple example one realizes that solving
the problem of invariant point location is heavily based on the invariants of the
continuous group of transformations V. The centroid of the point constellation
(8), Og, an invariant under Vj, enabled the description of P using a distance
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d{Os, 15), the length of vector OgP (again a V-invariant), up to a further param-
eter that locates P on the circle centered at Og with radius d(OgP), and then the
“variability” or inherent “richuess” of the geometry of S enabled the reduction of
the remaining ambiguity.

Suppose next that we want not only to locate points in ways that ate invariant
under V, but we also want to perform invariant motions. This problem is already
completely addressed in the above presented example, once an “S-shape-adapted”
coordinate system became available. Any motion can be defined with respect to
this coordinate system and hence invariantly reproduced by all viewers of S. In
fact, when we establish an adapted frame of references we implicitly determine
the transformation parameters, ¢, and can effectively undo the action of /.

To complicate the matters [urther consider the possibility that the shape S will
be partially occluded in some of its views. Can we, in this case, establish the lo-
cation of P invariantly and perform some invariant motions as before? Clearly, in
the example when S ig a point constellation made of V indistinguishable points, if
we assume that occlusion can remove arbitrarily some of the points, the situation
may become rather hopeless. However, if the occlusion is restricted to wiping out
only points covered by a disk of radius limited to some Ho,,., or alternatively, we
can assume that we shall always see all the points within a certain radius around
an (unknown) center peint in the plane, the prospects of being able to solve the
problem, at least in certain lucky instances, are much better. Indeed, returning to
our simple example, assume that we have many indistinguishable landmark points
(forming a “reference’ shape .5 in the plane), and that a mobile robot navigates in
the plane, and has a radius of sensing or visibility of .. Ateach location of the
robot in the plane, P, it will see all points of S whose distance from P is less than
Rinaz» up fo an arbitrary rotation. Hence, the question of being able to specify P
from this data becomes the problem of robotic self location w.r.t the landmarks.
So given a reference map (showing the “landmark”points of S in some “absolute”
coordinate system}, we want the robot to be able to determine its location on this
map from what it sees (i.e. a portion of the points of ' translated by P and seen in
an arbitrary rotated coordinate system). Clearly, to locate itself the robot can do
the following:

Using the arbitrarily rotated constellation of points of S within its
radius of sensing, i.e.

S(P,R) = {Q(P, — P)/P; € 8, d((P.,P) < R}

when {1z is a rotation matrix 2 x 2 about }5, “search” in S for a
similar constellation by checking various center points (2 parame-
ters: Tz, y;) and rotations {1 parameter: #). As stated this solution
involves a horrendous 3-dimensional search and it must be avoided
by using various available tricks like invariant geometric signatures
and (geometric) hashing based on “distances™ from P to Qg (P, — P)
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and distances and angles between the P;’s seen from £. This Jeads
to much more efficient, Hough-Transform like solutions, for the self
location problem. By the way, this is exactly how satelites determine
their orientation in space with respect to the constellations of distant
stars acting as landmark points!

In the above discussed problem it would help if the points of S would be ordered
on a curve, forming, say, a polygonal boundary of a planar region, or would be dis-
crete landmarks on a continuous but clearly visible and definable boundary curve
in the plane. Fortunately for those addressing planar shape analysis problems this
is most often the case.

11.3 Invariant Boundary Signatures for Recognition
under Partial Occlusions

If the shape S is a region of R2 with a boundary curve 85 = C that is either
smooth or polygonal, we shall have to address the problem of recognizing the
shape 5 from Vj-distorted portions of its boundary. Portions of the boundary,
and not the entire boundary because, we must remember, we are dealing with a
scenario of possible occlusions. Qur claim is that if we can effectively sclve the
problem of locating a peint P on the curve € in a V-invariant way based on the
"local behavior" of C' in a neighborhood of P, then we also have a way to detect
the possible presence of the shape § from a pertion of its boundary. How can we
locate P based on the local behavior of C' in Vj-invariant ways? We shall have
to associate to P a set of numbers (“co-ordinates” or “signature” values) that are
invariant under the class of Vy-transformations. To do so, one again has to rely on
known geometric invariants of the group of viewing transformation assumed to
act on S to produce its image. The fact that we live on a curve C makes our life
quite a bit easier.

As an example, consider first the case where C is a polygonal curve
and V} is the group of Affine-transformations. Since all the view-
ing transformations map lines into lines and hence the vertices of
the poly-line € into vertices of a transformed poly-line Vi (C') we
can define the local neighborhood of each vertex C(i) of C, as
the “ordered” constellation of 2n + 1 points {C(i — n),...,C(i —
1), C(5),C(i +1),...,C(i + n)} and associate to C(£) invariants of
V, based on this constellation of points. Affine transformations are
known to scale areas by the determinant of their associated 2 x 2 ma-
trix, A, of “shear and scale” parameters, hence we know that ratios of
corresponding areas will be affine invariant. Therefore we could con-
sider the areas of the triangles Ay = [{C(i — 1)CE)C(E+1)], Ap =
[C{i - 2YC(H)CE+ 2)] - Ap = [C(i ~ n),C{i), C(i + n)] and
associate to C(i) a vector of ratios of the type {Ax/Ak,l =
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{1,2,...,n}, k # I} (See Figure 11.2). This vector will be invariant
under the affine group of viewing transformation and will (hopefully)
uniquely characterize the point C(7) in an affine-invariant way.

Figure 11.2.

The ideas outlined above provide us a procedure for invariantly characterizing the
vertices of a poly-line, however, we can use similar ideas to also locate interme-
diate points situated on the line segments connecting them. Note that the number
n in the cxample above is a locality-parameter : smaller n’s imply more local
characterization in terms of the size of neighborhoods on the curve €. Contem-
plating the foregoing example we may ask how to adapt this method to smooth
curves where there are no vertices to enable us to count “landmark” points 1o
the left and to the right of the chosen vertex in view-invariant ways. There is a
beautiful body of mathematical work on invariant differential geometry provid-
ing differential invariants associated to smooth curves and surfaces, work that
essentially carried out Klein's famous Erlangen program for differential geom-
etry, and is reported on in books and papers that appeared many years ago, see
([97], {890], [378], {301] and [136]). Differential invariants enable us to de-
termine 2 V-invariant metric, i.e. a way to measure “length” on the curve C
invariantly with respecl to the viewing distortion, similar to the way one has, in
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a straightforward manner, the Euclidean-invariant arclength on smooth curves. If
we have an invariant metric, we claim that our problem of invariant point char-
acterizations on ¢’ can be readily put in the same framework as in the example
of a poly-line. Indeed we can now use the invariant metric to locate to the left

and right of P on C (if we define P 2 C(0), and describe C as C'(u) where
i 1s the invariant metric parameterization of C about C(0) = P) the points
{C(0 - nA),...,C{0-A),C0+A),...,C0 +nA}, and these 2n -+ 1 points
now form an invariant constellation of landmarks anchored at P = C(0) (See
Figure 11.3). Here A is atbitrarily chosen as a small “invariant” distance in terms
of the invariant metric. [t is very nice to see that letting A ™, 0 one often re-
covers, from global mvariant quantities that were defined on the constellation of
points about C(0) = P, differential invariant quantities that correspond to known
“generalized invariant curvatures” (generalizing the classical curvature obtained
if V is the simplest, Euclidean viewing distortion). Therefore to invariantly lo-
cate a point P on C, we can use the existin g Vi invariant metrics on C (note that
if C is a polygon - the ordering of vertices is an immediate invariant metric!) to
determine about P an invariant constellation of “landmark” points on the bound-
ary curve and use global invariants of Vy to associate to P an “invariant signature
vector” Ta{A). If A ™, 0 this vector yields, for quite a variety of “good” choices
of invariant quantities “generalized invariant curvatures” for the various viewing
groups of transformations V.

We however do not propose to let A N 0. A is a locality parameter (as was n
before) and we could use several small, but finite, values for A to produce (what
we can call) a “scale-space” of invariant signature vectors {/5 } A, crange(ofa’s)-

This freedom allows us to associate to a curve C'(p), parameterized in terms
of its “invariant metric or arclength”, a vector valued scale space of signature
functions {p (1) }a, e Range, that will characterize it in both a localized and view-
invariant ways. This characterization being local (its locality being in fact under
our control via A and n) is useful to recognize portions of boundaries in scenes
where planar shapes appear both distorted and partially occluded. The recogni-
tion process becomes, in terms of the vector-valued signature function, a partial
matching algorithm, see [129].

11.4 Invariant Processing of Planar Shapes

Smoothing and other processes of modifying and enhancing planar shapes in-
volves moving their points to new locations. Here we are naturally led to define
planar shape deformations or evolutions, by motions of points on the shape bound-
aries that are small and based on the local geometry, i.e. the geometry of the
constellation of other boundary points in the neighborhood. In the spirit of the
discussion above, we want to do this in “viewing-distortion-invariant” ways. To
do so we have to locate the points of a shape S (or of its boundary C' = 45) and
then invariantly move them to new locations in the plane. The discussions of the
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Figure 11.3.

previous sections showed us various ways to invariantly locate points on 5 or in
the plane of .5. Moving points around is not much more difficult. We shall have
to associate to each point (of S, or in the plane of S) a vector M whose direction
and length have been defined so as to take us to another point, in a way that is V-
invariant. In the example of S being a constellation of points, with a robot using
the points of S to locate itself at P, we may also want it to determine a new place
to go, i.e. to determine a point P,.... = P+M, soasto have the property that from
Vi(P) a robot using the points {Vg{F1) ... Vy(Pw)} will be able to both locate
itself and move to V(P ). Of course, on shapes we shall have to do motions
that achieve certain goals like smoothing the shape or enhancing it in desirable
ways as discussed in [761] . To design view-distorlion invariant motions, we can
{(and indeed must) rely on invariant point characterizations. Suppose we are at a
point P on the boundary ' = 65 of a shape 5, and we have established a constel-
lation of landmark points about I°. We can use the invariant point constetlation
about P to define a Vj;-invariant motion from P to P, (See Figure 11.4).

Let us first consider again a very simple example: if 1y is the Affine
group of viewing transformations, the centroid of the peint constella-
tions about £ is an invariantly defined candidate for Py ers- Indeed it
is an average of points around P and the process of moving P to such
a P, ¢ or, differentially, toward such a new position can (relatively
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easily) be proved to provide an affine invariant shape smoothing op-
eration. If §' is a polygonal shape, i.e. 35 = (' is a poly-line, then
moving the vertices according to such a smoothing operation can be
shown to shrink any shape into a polygonal ellipse, "the affine image
of a regular polygon" with the same number of vertices as the orig-
inal shape. This beautiful result is a generalization of the very early
work of Darboux [244], see also [130] and [717], on "a problem in el-
ementary geometry" that addresses the evolutions of planar polygons
under an iterative process which replaces the vertices of a polygon by
the (ordered) midpoints of its edges. In fact ellipses and polygonal el-
lipses are the results of many reasonably defined invariant averaging
processes [7037].

If we are dealing with a smooth continuous boundary curve C' and we move
the points infinitesimally according to a local "velocity" vector invariantly de-
fined we are in the realm of "geometric" curve evolution processes described by
nonlinear partial differential equations. A very prominent recent example of such
an evolution process is the Euclidean invariant curve evolution moving the smooth
boundary points in the direction of the local normal vector N, proportionaily to
the local Euclidean curvature ;. The temporal evolution of simple closed curves
(boundaries of planar shapes) under this rule, described by

%Ct = ke, N, Co = original boundary.

was thoroughly analyzed and it was proved to smoothly deform and shrink any
original curve into an infinitesimal circle, see e.g. [334] and [361]. This nice
mathematical result, together with the fact that other Euclidean invariant motions
like Blum’s prairie fire evolution model [100], [142] which postulates constant
velocity motion in the direction of the local normal and leads to "shocks" or
"wavefront" collisions that were found useful for shape descriptions since they
produce the so-called "shape skeletons”, generated a lot of interest and activity in
the computer vision community. This activity culminated with the realization that
a variety of geometric and viewpoint invariant shape evolutions exist and mdy be
uscful in invariant shape analysis and classification. Note that k. N, — ag =, LB
that in the Euclidean case the invariant vector k. /¥, associated to a point C on a
smooth curve is the second derivative of the curve with respect to the Euclidean
invariant arclength. This observation yields a very nice interpretation of this in-
variant evolution: a point on the curve is simply replaced by weighted average of
points of the curve of C(s) in the neighborhood with averaging weight depen-
dent on their distance measured in the view invariant metric, from the anchor part
C', If the averaging kernel is Gaussian then if is readily seen that a "geometric"
diffusion process results, but recall that a variety of local processing and averag-
ing operations are readily available and implementable and should be considered
as viable alternatives in generating useful shape evelutions. The process of de-
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riving the invariant evolutions is, of course, readily generalized to more complex
viewing transformations and distortions [131], [703].

Figure 11.4.
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11.5 Concluding Remarks

The main point of this paper is the thesis that in doing “practical” view-point
invariant shape recognition or shape processing for smoothing or enhancement,
one has to rely on the interplay between global and local (and preferably not
differential) invariants of the group of viewing transformations.

Invariant reparameterization of curves based on “adapted metrics™ enables us
to design generalized and local but not necessarily differential signatures for par-
tially occluded recogaition. These signatures have many incarnations, they can
be scalars, vectors or even a scale-space of values associated to each point on
shape boundaries. They are sometimes quite easy to derive, and generalize the
differential concept of “invariant curvature” in meaningful ways. A study of the
interplay between local and global invariances of viewing trans[ormations is also
very useful for invariant shape smoothing, generating invariant scale-space shape
representations, and also leads to various useful invariant shape enhancement an
exaggeration operations.

The point of view that geometry is the study of invariances under groups
of transformations is, of course, the famous Erlangen program of Felix Klein.
Several books appeared over the years that carry out parts of this program for
Euclidean affine and projective geometry, see for example Guggenheimer [370],
Buchin [136], Blaschke [97], Lane [501]. These theories found their way into
the computer vision literature rather late, for example though the works of Weiss
[8751,[875] [876], [877], [677], Cygansky [242], [833], Abter and Burkhardt [1]
and others. The point of view exposed in this paper developed through a series of
papers written over many years. These papers, with the details of what is exposed
herein, are [127], [126], [1281, [1301, [131], [129], [132], [761]. Other researchers
have made significant contributions to the field and Iil mention the important con-
tributions of Peter Olver [141], [610], Jean-Michel Morel and T. Cohignac [211],
[212], Lue Van Gool and his team [829], [830], M. Brilt [55], [54], Z. Pizlo and
A. Rosenfeld [650], L. Moisan [582], J. Sato and R. Cippola [707], [708] and O.
Fangeras [307],

Students, collaborators and academic colleagues and friends have helped me
develop the point of view exposed in this paper. I am grateful to all of them for
the many hours of discussions and debates on these topics, for agreeing and dis-
agreeing with me, for sometimes [ighting and competing, and ofien joining me on
my personal journey into the field of applied invariance theory.
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Planar Shape Analysis and Its
Applications in Image-Based
Inferences

A. Srivastava, S. Joshi, D. Kaziska and D. Wilson

Abstract

Shapes of boundaries can play an important role in characterizing objects in
images. We describe an approach for statistical analysis of shapes of closed
curves using ideas from differential geometry. A fundamental tool in this
shape analysis is the construction and implementation of geodesic paths
between shapes. We use geodesic paths to accomplish a variety of tasks,
including the definition of a metric to compare shapes, the computation of
intrinsic statistics for a set of shapes, and the definition of probability mod-
els on shape spaces. We demonstrate this approach using three applications:
(i) automated clustering of objects in an image database according to their
shapes, (ii) interpolation of heart-wall boundaries in echocardiographic im-
age sequences, and (iii) a study of shapes of human silhouettes in infrared
surveillance images.

12.1 Introduction

Detection, extraction and recognition of objects in an image is an important area
of research. Objects can be characterized using a variety of features: textures,
edges, boundaries, colors, motion, shapes, locations, etc. These features are often
used in a statistical framework to perform image analysis. In particular, one de-
fines a feature space, trains probability models on these spaces using past data,
and uses them to conduct statistical inferences on future data. Shape often pro-
vides an important clue for determining how an object appears in an image. For
example, we have displayed the images of four animals in the top panels of Figure
12.1. The lower panels show the silhouettes of these animals in the corresponding
images. It is easy to see that the shapes of these silhouettes can help shortlist, or
even identify, the animals present in these images. Tools for shape analysis can
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Figure 12.1. Analysis of shapes of objects’ boundaries in images can help in computer
vision tasks such as objcct recognition.

prove important in several applications including medical image analysis, human
surveillance, military target recognition, finger-print analysis, space exploration,
and underwater search. One reason for pursuing shape analysis is the possibility
that an efficient representation and analysis of shapes can help even in situations
where the observations are corrupted, e.g. when objects are partially obscured
or corrupted by excess clutter. Shape is a global feature that can help overcome
loss of some local data. This possibility, along with the development of statistical
methods, has led to the idea of Bayesian shape analysis. In this approach a con-
textual knowledge is used to impose prior probabilities on shape spaces, followed
by the use of posterior probabilities to perform inferences from images.

In order to perform statistical analysis of shapes, one needs tools to address the
following questions:

1. How can an object be represented by the shape of its boundary?

2. How can dissimilarities between the shapes of two closed curves be
quantified?

3. How to compute summary statistics, such as mean, covariance, etc, for a
given collection of observed shapes?

4. What family of probability models cant be used to describe variability in a
collection of shapes?

Ln

. How to solve an optimization problem, e.g. estimation of maximum
a-posterioti (MAP) shape, on a shape space?

6. Given an cbserved shape, how to decide which family of shapes does it
belong to?

In summary, one needs tools for representation, comparison, clustering, learning,
estimating, and testing ol shapes. Solutions to several of these questions exist as
shapes have been an important topic of research over the past decade. However, a
comprehensive approach for analysis of shapes in R2 has emerged only recently.
A significant past of the past efforts has been restricted to “landmark-based" anal-
ysis, where shapes are represented by a coarse, discrete sampling of the object
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contours[284, 747]. Since automatic detection of landmarks is not straightfor-
ward and the ensuing shape analysis depends heavily on the landmarks chosen,
this approach is limited. In addition, shape interpolation with geodesics in this
framework lacks a physical interpretation. A similar approach, called active shape
models, uses principal component analysis (PCA) of landmarks to model shape
variability [223]. Despite its simplicity and efficiency, its scope is rather limited
because it ignores the nonlinear geometry of shape space, Grenander’s formula-
tion [364] considers shapes as points on infinite-dimensional manifolds, where
the variations between the shapes are modeled by the action of Lie groups (dif-
feomorphisms) on these manifolds [366]. In summary, the majority of previous
work on analyzing shapes of planar curves involves either a discrete collection
of points or diffeomorphisms on R?, Seldom have shapes been studied as closed
curves!

In contrast, a recent approach [478, 735] considers the shapes of continuous,
closed curves in R2, without any need for landmarks, diffeomorphisms, or level
sets to model shape variations. We summarize this approach in Section 12.2, and
preseni three applications of this approach in later sections, First, in the area of
computet vision, one is interested in automated partitioning of an observed set
of shapes into clusters of similar shapes, which is useful in applications such as
image retrieval, organization of large databases of images, and learning of prob-
ability models on the shape space. We describe a method for clustering shapes
where dissimilarities between shapes are quantified using geodesic lengths on the
shape space. Second, we look at a problem in ecocardiographic image analysis
where shapes of epicardial and endocardial boundaries are studied to determine
the extent and progression of disease in a patient’s heart. We focus on the specific
problem of interpolating these boundaries in image sequences when an expett pro-
vides contours for the first and last frames in the sequence. Lastly, we will present
an application involving human surveillance with a goal of detecting humans in
low-gquality night-vision (infrared) images. Our approach is to use a statistical
analysis of shapes of human silhouettes in detection, and we present a statistical
model to capture human shapes.

The rest of this chapter is organized as follows. In Section 2 we present a
differential-geometric representation of shapes that leads to natural and clficient
statistical analysis. Tn Sections 12.3-12.5, we describe the three applications and
present a summary in Scction 6.

12.2 A Framework for Planar Shape Analysis

We start with a basic question of how to represent shapes of closed curves.
Our approach is to identify a space of closed curves, remove shape-preserving
transformations from it, impose a Riemannian structure on it, and treat the re-
sulting quotient space as the shape space. Using the Riemannian structure of this
space, we have developed algorithms for computing geodesic paths on these shape
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Figure 12.2. Alternate representations of a closed curve (left panel) via = and y coordinate
functions o (second panel), angle function & (third panel), or curvature function & (last
pancl).

spaces. We summarize the main ideas here and refer to the recent paper by Klassen
et al [478] for details.

. Geometric Representation of Shapes: Consider the boundaries or silhou-
ettes of the imaged objects as closed, planar curves in R? (or equivalently in
C) parameterized by the arc length. Define the angle function as follows: note
the angle, made by the velocity vector with the positive x-axis, as a function of
arc length. Coordinate function a(s) relates to the angle function 8(s) according
o &fs) = e, § = /=1. The curvature function of this curve is given by
#(s) = B(s). A curve can be represented by its coordinate function e, the angle
function 8, or the curvature function &, as demonstrated in Figure 12.2.

In this approach, we choose angle functions to represent and analyze shapes.
The direction function of a unit circle is given by #p({s) = s. For any other closed
curve of rotation index 1, the direction function takes the form & = fp + A, where
h € L2, and L? denotes the space of all real-valued functions with period 2x
and square integrable on [0, 27]. The next issue is to account for equivalence of
shapes. As shown in Figure 12.3, shape is a characteristic that is invariani to rigid
motions (franslation and rotation) and uniform scaling. Additionally, for closed
curves, shape is also invariant to the placement of origin (or starting point) on
the curves, To build representations that allow such invariances, we proceed as
foliows. We remove the scale variations by forcing all curves to be of length 27.
The translation is already removed since the angle function & is invariant to the
translation of the curve in B2, To make shapes invariant to rotation, restrict to # €
{0 + L2} such that, ;- 02'” #(s)ds = w. Alse, for a closed curve, (! must satisfy
the closure condition: foz " exp(j 6(s))ds = 0. Summarizing, one restricts to the
set C = {f € 6y + L% 5 (?" 6(s)ds = =, foh e#%(}ds = 0}. Furthermore,
to remove the re-parametrization group (relating to different placements of the
origin), define the quotient space & = C/S! as the space of continuous, planar
shapes, where S denotes the unit circle in R2. C is called the pre-shape space
and § is called the shape space.

For the purpose of shape analysis, the incidental variables such as scale, loca-
tion, orientation, etc, are termed as nuisance variables, and are removed from the
analysis as described above. In contrast, detection and recognition of objects in
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Figure 12.3. Shape is & characteristic that is invariant to rigid rotation and translation, and
uniform scaling. Shape spaces are always quotient spaces,

images requires estimation of both their shapes and their nuisance variables. In
this case, the shape and the nuisance variables may have independent probability
models. Let Z = {SO(2) x R? x R, ) be the space of nuisance variables, and
let {#, z) be a representation of a closed curve « such that # € § is its shape and
z € Z are its nuisance variables.

2. Geodesic Paths Between Shapes: An important tool in a Riemannian anal-
ysis of shapes is to construct geodesic paths between arbitrary shapes. Klassen
et al. [478] approximate geodesics on § by successively drawing infinitesimal
line segments in L% and projecting them onto S, as depicted in the top panel
of Figure 12.4. For any two shapes §;,0, € 5, one uses a shooring method to
construct a geodesic between them. The basic idea is to search for a tangent di-
rection g at the first shape #,, such that a geodesic in that direction reaches the
second shape &, (called the target shape) in unit time. This search is performed
by minimizing a “miss function", defined as the chord length or the L? distance
between the shape reached and &3, using a gradient process. The geodesic metric
is {q1,92) = f; " g1(s)g2(s)ds on the tangent space of S. This choice implies
that a geodesic between two shapes is the path that uses minimum energy to
bend one shape into the other. Shown in the bottom two rows are examples of
geodesic paths connecting the two end shapes. We will use the notation ¥, (6, g)
for a geodesic path starting from 8 € S, in the direction g € T4(5), as a function
of time ¢, Here T5{S) denotes the space of functions tangents to S at the point .
If g € Ty, (S) is the shooting direction to reach #; in unit time from &, then the
following holds: Wq(61,g) = 61, ¥1(6h,9) = 02, and ¥o(61,g) = g. The length
of this geodesic is given by d(#,62) = /{9, 9}.
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Figure 12.4. Top: A cartoon diagram of a shooting method to find geodesics in shape space.
Bottom two rows; Examples of a geodsic path in S.

3 3

3. Mean Shape in S: For a collection 61, .. ., 8,, in S, and d(#;, ;) the geodesic
length between #; and #;, the Karcher mean is defined as the element 4 € & that
minimizes the quantity 37, d(8,6;)% A gradient-based, iterative algorithm for
computing the Karcher mean is presented in [503, 454] and is particularized to S
in [478].

This approach provides a comprehensive framework for a statistical analysis
of planar shapes. In the next three sections, we present some applications of this
framework to problems of practical interest.

12.3  Clustering of Shapes

In order to facilitate training of probability models for shape families, one needs
to organize the observed shapes into ctusters of similar shapes. One of the popular
techniques for clustering points in Euclidean spaces is k-mean clustering [429)]. In
this method, 2 given points are clustered into & groups, for a given &, in such a way
that the sum of within cluster-variances is minimized. Since computing means of
shapes is expensive, we modify this procedure so that it avoids computing cluster
means at every iteration.

Our approach is to divide n given shapes into & clusters in such a way that
a cumulative dispersion within the clusters is minimized. Let a configuration C
consist of clusters denoted by Cy, Cs, .. ., Cy. If n; is the size of C;, then the cost
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(2 associated with a cluster configuration C' is given by [401]:

k

Q(C):Z% S0 da,0)?]. (12.1)

i P \f.eCibca e,

i=1

We seek configurations that minimize @, i.e., C* = argmin Q(C). This cost func-
tion differs from the usual variance function and avoids the need for updating
means of clusters at every iteration.

In [755], we utilize a stochastic scarch process to lind an optimal configuration,
The basic idea is to start with a random configuration of n shapes into & clusters,
and use a sequence of moves, performed probabilistically, to re-arrange that con-
figuration into an optimal one. The moves are restricted to be of two different
kinds: move a shape from one cluster to another, or swap two shapes from two
dilferent clusters. The probabilities of performing these moves are set (o the neg-
ative exponential of the resulting ¢ function. Additionally, a temperature variable
T is decreased slowly in each iteration to simulate annealing so that this process
converges to an optimal configuration in due time. Next we present the algorithm
for clustering of n planar shapes inte £ clusters.

Algorithm 1. 1. Compute pairwise geodesic distances between all n shapes.
This requires n{n — 1)/2 geodesic computations.
2. With equal probabilities pick one of two moves:
{a) Move a shape:
i, Pick a shape 8; randomly. If it is not a singleton in ity cluster,

then compute Q(-i), the cost obtained after moving 8; to C,, for
alli =1,2,... k.
ii. Compute the probability Py (§,1;T) according to

exp(-Q"/T)
ok ) L i=1,2,.. ..k,
2y exp(—Q; 7 /T)
and re-assign 8, to a cluster chosen according o the probability
Pum,
(k) Swap two shapes:
i Select two clusters randomly, and select a shape from each of

them. Let Q) and Q2 be the configuration costs before and
after the swap, respectively.

ii. Compute the probability Ps(T), where
exp(-Q®/T)
Tie1 exp(—QW/T)

and swap the two shapes according to that probability.

P (3,5 T) =

Ps(T) =

3. Update temperature using T = T/ and return 1o Step 2. We have used
3 = 1.0001 in our experiments.
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Figure 12.5. Clustering of 50 shapes from ETH-80 dataset using Algorithm 1. Each row
represents a cluster.
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Displayed in Figure 12.5 are the results of Algorithm 1, where a collection of 50
shapes have been sorted into into seven clusters. All the shapes in a cluster have
been placed in the same row. (These shapes are taken from the ETH database.)
With only a few exceptions (e.g. the pear in row one or the dog in row four)
similar shapes have been clustered together. Shown in Figure 12.6 is an evolution
of algorithm (left panel) and a histogram of @{C™") values resulting from 200 runs
of the algorithm, each starting at a different random initial condition. Additional
examples of clustering databases, consisting of thousands of shapes, are presented
in [755]. Once the shapes are clusiered, the next goal is 1o develop probability
models that efficiently capture variability within clusters. Another extension is
to form a hierarchy, where one organizes shapes into a tree structure. The mean
is computed for each cluster at each each level of the tree. The clusters of these
means are used to form the next level of the tree [755].

12.4 Interpolation of Shapes in Echocardiographic
Image-Sequences

Shape analysis continues to play a major role in medical diagnostics using non-
invasive imaging. Shapes and shape variations of anatomical parts are often
important factors in deciding normality/abnormality of imaged patients. For ex-
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Figure 12.6. Left panel shows the evolution of Q under Algorithm 1. Right panel shows
the histogram of minimum Q values cbtained in 200 runs.

ample, the two images displayed in Figure 12.7 were acquired as the end diastolic
(ED) and end systolic (ES) frames from a sequence of echocardiographic im-
ages during systole, taken frem the apical four chamber view. Note that systole
is the squeezing portion of the cardiac cycle and that the typical acquisition rate
in echocardiography is 30 image frames/second. Superimposed on both images
are expert tracings of the epicardial (solid lines) and endocardial borders {broken
lines) of the lefi ventricle of the heart. From these four borders, indices of cardiac
health, inchiding chamber area, fractional area change, and wall thickness, can be
easily computed. Since a manual tracing of these borders is too time consuming to
be practical in a clinical setting, these borders are currently generated for research
purposes only. The current clinical practice is to estimate these indices subjec-
tively or {at best} make a few one-dimensional measurements of wall thickness
and chamber diameter.

A major goal in echocardiographic image analysis has been to develop and im-
plement automated methods for computing these two sets of borders as well as
the sets of borders for the 10-12 image frames that are typically acquired between
ED and ES. Different aspects of past efforts [896, 188, 187] include both the
construction of geometric figures to model the shape of the heart as well as vali-
dation. While it is difficult for cardiologists to gencrate borders for all the frames,
it is possible for them to provide borders for the first and the last frames in a
cardiac cycle. Since it is not uncommeon for the heart walls to exhibit diskinetic
(i.e. irregular) motion patterns, the boundary variations in the intermediate frames
can be important in a diagnosis. Our goal is o estimate epicardial and endocar-
dial boundaries in the intermediate frames given the boundaries at the ED and ES
frames.

As stated earlier, a closed contour « has two sets of descriptors associated
with it: a shape descriptor denoted by @ € S and a vector z € Z of mui-
sance variables. In our approach, interpolation between two closed curves is
performed via interpolations between their shapes and nuisance components, re-
spectively. The interpolation of shape is obtained using geodesic paths, while that
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Figure 12.7. Expert generated boundaries, denoting epicardial (solid lines) and endocardial
{broken lines) borders, drawn over ED (left) and ES (right) frames of an echocardiographic
image sequence.

of the nuisance components is obtained using linear methods. Let er) = (8, 21)
and ap = (2,27} be the two closed curves, and our goal is to find a path
@ : [0,1] — & X Z such that ®y = (6;,21) and ®, = (s, z2). For exam-
ple, in Figure 12.7, the endocardial boundary (broken curves) of the ED and ES
frames can form o and cvs, respectively. Altematively, one can treat the epicar-
dia! boundaries {solid curves) of ED} and ES frames as «; and s as well, The
different components are interpolated as follows:

1. Shape Component: Given the two shapes #; and &; in &, we use the shoot-
ing method to find the geodesic that starts from the first and reaches the
other in unit time. This results in the flow W, (¢, g} such that ¥y (0;,¢) =
61 and ¥4 (6, g} = #,. This also results in a re-parametrization of #3 such
that the origins (points where s = @) on the two curves ate now registered.
With a slight abuse of notation we will also call the new curve ;. Let a
shape along this path be given by 8, = U, (0, g). Since the path &, lies in
&, the average value of 6, for all ¢ is 7.

2. Translation: If p;, p, represent the locations of the initial points on the two
curves, i.e. p; = ;(0), ¢ = 1, 2, then the linear interpolation between them
is given by p(t) = {1 — t)py + tpo.

3. Orientation: For a closed curve «;, the average orientation is defined by
$i = & f;" Hlog(du(s))ds, i = 1,2, j = V=L Given ¢, and ¢5, a
linear interpolation between them is ¢(t) = (1 — t)¢z + tdz, where ¢y =
argMiNye 4, 2. do,¢y+20} 19 — O1.

4. Scale: If py and pg are the lengths of the curves ¢ and o, then a linear
interpolation on the lengths is simply p(¢) = (1 — t}p1 + tpa2.

Using these different components, the resulting geodesic on the space of closed
curves is given by {®; : ¢ € [0, 1]} where:

Bu(s) = pl0) + p(t) [ expl(OU(r) = 7+ )i



Planar Shape Analysis and Its Applications in Image-Based Inferences 199

Figure 12.8. Interpolated shapes using geodesic paths in shape space,

Shown in Figure 12.8 is a sequence of 11 image frames for the same patient
as displayed in Figure 12.7. Again, each image frame has a set of epicardial and
endocardial borders overlaid on the image. In Figure 12.8, borders in the first and
last frames have been traced by an expert, while the borders on the intermediate
frames have been penerated using the path &, one each for epicardial and en-
docardial boundaries. Note that the endocardial border 1s more distorted than the
epicardial border in the transition. In view of the geodesic paths in & relating to the
minimum bending energy, this method provides a smoother interpelation for the
endocardial borders, as compared Lo a direct linear interpolation of coordinates.

‘We foresee a number of uses for this idea. First, this method could be included
in an acquisition system so that if an expert traces sets of borders at ED and ES,
then the borders for the intermediate frames can be generated automatically. Since
the technique for generating the intermediate borders uses no image information,
they may not always be acceptable. However, one can implement software that
allows the expert to adjust the intermediate contours manually to reflect a better
maich with the images. In this way, models will be available for both computer-
based automated methods as well as validation and testing. As a future extension,
one might modify the proposed interpolation to include image information. That
is, formulate a boundary-value problem in & that seeks an optimal path under an
image-based energy function, while fixing the exper: generated boundaries as the
end points.
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Figure 12.9. Top panels: Examples of infrared images of human subjcets. Bottom panels:
hand extracted boundaries for analyzing shapes of human silhouettes.

12.5 Study of Human Silhouettes in Infrared Images

There is a great interest in detection and recognition of humans using static im-
ages and video sequences. While most applications use visible-spectrum cameras
for imaging humans, certain limitations, such as large illumination variability,
has shifted interest towards cameras that operate in bandwidths beyond the vi-
sual spectrum. In particular, night vision cameras, or infrared cameras, have been
found importani in human detection and tracking, especially in surveillance and
security environments. These cameras capture emissivity, or thermal states, of the
imaged objects, and are largely invariant to ambient illumination. In this section,
we investigate the use of infrared images in detection of human silhouettes. Al-
though, we are generally interested in the full problem of detection, tracking, and
recognition, here we restrict ourselves to two specific subproblems: (1) building
statistical shape models for human silhouettes, and (ii} their use in improving
silhouette detection.

Using a hand-held Raytheon Pro250 IR camera, we have hand-generated a
database of human silhouettes. Shown in Figure 12.9 are some examples: the top
panels show five IR images and the bottom panels show the corresponding hand-
extracted human silhouettes. Furthermore, the database has been partitioned into
clusters of similar shapes. These clusters correspond to front views with legs ap-
pearing together, side views with leps apart, side views with leg together, etc, and
an example cluster is shown in Figure 12,10,

12.5.1 TPCA Shape Model

Our first goal is to “train" probability models by assuming that elements in the
same cluster are samples from the same probability model, These models can
then be used for future Bayesian discoveries of shapes or for classification of new
shapes. To train a probability model amounts to estimating a probability density
function on the shape space .S, a task that is rather difficult to perform precisely,
The two main difficulties are: nonlinearity and infinite-dimensionality of S, and
they are handled here as follows. S is a nonlinear manifold, so we impose a prob-
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Figure 12.10. An example of a cluster of human silhouettes.
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ability density on a tangent space instead. For a mean shape ¢t € §, T, (8) C LA,
is a vector space and more conventional statistics applies. Next, we approximate
a tangent function ¢ by a finite-dimensional vector, e.g. a veclor of Fourier co-
eflicients, and thus characterize a probability distribution on 7,,(S) as that on a
finite-dimensional vector space. Let a tangent element ¢ € T,,(S) be represented
by its approximation: g(s) = 3 *, z;e;(s), where {e;} is a complete orthonor-
mal basis of T,(S) and m is a large positive integer. Using the identification
g = x = {z;} € R™, one can define a probability distribution on elements of
T,.(&) via one on ™. The simplest model is a multivariate normal probability
impesed as follows. Using principal component analysis (PCA) of the elements
of x, determine variances ol the principal coeflicients, and impose independent
Gaussian models on the these coefficients with zero means and estimated vari-
ances. This imposes a probability model on 7,(5), and through the exponential
map (exp,, : T,(S) — S defined by exp,,(g) = v1(u, g)) leads to a probability
model on §. We term this model “Tangent PCA" or TPCA.

Consider the set of 40 human silhouettes displayed in Figure 12.10. Their
Karcher mean p is shown in the top-left panel of Figure 12.11. For each observed
shape #;, we compute a tangent vector g, such that ¥y (i, ¢;) = 6;. Using TPCA
model we obtain a normal probability model on the tangent space T, (S). Shown
in the bottom row of Figure 12.11 are 12 examples of random shapes generated
by this probability model.
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Figure 12.11. Top: Mean shape (left) and singular values (right) of covariance in T,,(S).
Bottom: Random samples from a Gaussian probability model on the principal coeflicients
of g € Tyu(8).

12.5.2 Bayesian Shape Estimation

Shown in Figure 12.12 is an example of estimating a human silhouette in an in-
frared image. The left panel shows the observed image [/, and we seek a closed
curve a* = argmax, P(a|l) = argmax, P{o)P(!|e). The prior P{w) comes
from the TPCA model described previously. For the likelibood function P({J|a)
there are a variety of choices: Kullback-Leibler divergence between interior and
exterior pixel histograms, absolute difference between entropies of interior and
exterior pixel densities, Gaussian models for pixels, etc. In this papet, we use a
simple function that measures the proportion of saturated pixels, i.e. pixels with
highest possible value, inside the contour. The remaining three panels in Figure
12.12 show the evolution of « as P(e]1) is maximized.

12.6 Summary & Discussion

We have described a geometric approach for statistical analysis of planar shapes,
and its use in image-based inferences. Shapes of closed curves are represented by
their angle funclions, restricted appropriately Lo remove shape-preserving trans-
formations. Geodesic paths on the resulting shape space, under the classical L2
Riemannian metric, are used to impose a metric on the shape space. The use
of geodesic paths also leads to a framework for statistical modeling of shape
variability, including an intrinsic technique to compute sample statistics (means,
covariances, etc) of a given set of shapes. We have demonstrated this framework
using three applications of shape analysis in clustering, medical image analysis,
and human surveillance.
One limitation of the proposed model is its assumption of arc-length parametriza-

tion for all shapes, which does not allow local stretching or compressing of shapes.
In some situations, it is preferable to match shapes via local stretching/shrinking,
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Figure 12.12, Bayesian shape extraction: Left panel shows an IR image { and the remaining
three panels show the evolution of a search that maximizes the posterior P{w|/). Estunated
curves are drawn aver the image in black.

and not be limited to bending only. A recent paper [572] desctibes an extension
that uses a diflerent Riemannian metric on shape spaces to allow for both bending
and local stretching/shrinking.
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Chapter13

Diffeomorphic Point Matching

H. Guo, A. Rangarajan and S. Joshi

Abstract

In medical imaging and computer vision, the problem of registering point-
sets that differ by an unknown non-rigid transformation frequently arises.
We discuss the matching problem of shapes parameterized by point sets.
Mathematical models of diffeomorphic landmark matching and diffeomor-
phic point shape matching are formulated. After formulating an objective
function for diffeomorphic point matching, we give numerical algorithms to
solve the objective. Results are shown for 2D corpus callosum shapes.

13.1 Introduction

Point matching and correspondence problems arise in various application areas
such as computer vision, pattern recognition, machine learning and especially in
computational anatomy and biomedical imaging. Point representation of image
data is widely used in all areas and there is a huge amount of point feature data
acquired in various modalities, including MRI, CT and Diffusion Tensor Images
(DTI) [223, 315, 199]. The advantage of point set representations of shapes over
other forms like curves and surfaces is that the point set representation is a uni-
versal representation of shapes regardless of the topologies of the shapes. This is
especially useful in biomedical imaging because it has the ability to fuse different
types of anatomical features in a single uniform representation.

Point matching in general is a difficult problem because, as with many other
problems in computer vision, like image registration and segmentation, it is often
ill-posed. In this chapter, we attempt to formulate a precise mathematical model
for point matching. There are two important cases that need to be distinguished.
When the two point-sets are of equal cardinality and when the correspondences
are known, we have the landmark matching problem. This problem is not as dif-
ficult as the case when the correspondences are unknown. When we have two
point-sets of unequal cardinality and when the correspondences are unknown, we
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have the point shape matching problem. The presence of outliers in either/both
sets makes the correspondence problem even more difficult. In the following,
we will first discuss the landmark matching problem and then the point shape
matching problem.

13.2 Diffeomorphic Landmark Matching

We assume the image domain is the d-dimensional Euclidean space R%. Usually
d = 2o0rd = 3. In landmark based registration, we assume that we have two
corresponding sets of feature peints, or landmarks, {p; € 27 =1,2,..,n} and
{o: € a|i = 1,2,..,n} where @y C R% and ; C R¥ We need to find a
transformation f : {4 — {13 such that Vi = 1,2, ...n, f(p:) = ¢..

In many applications, we are required to find the transformation within
some restricted groups, like rigid transformations, similarity transformations,
affine transformations, projective transformations, polynomial transformations,
B-spline transformations and “non-rigid” transformations. Different transforma-
tion: groups have different degrees of freedom, namely, the number of parameiers
needed to describe a transformation in the group. This also determines the number
of landmark pairs that the transformation can exactly interpolate. Let us look at
some examples. In two dimensional space, where d = 2, a rigid transformation,
which preserves Buclidean distance, has 3 degrees of freedom and cannot interpo-
late arbitrary landmark pairs. The landmark pairs to be matched must be subject
to some constraints. That is, they have o have the same Euclidean distance. A
similarity transformation has 4 degrees of freedom and can map any 2 points to
any 2 points. An affine transformation has 6 degrees of freedom and can map any
3 non-degenerate points to any 3 non-degenerate points. A projective transforma-
tion has 8 degrees of freedom and can map any 4 non-degenerate points to any
4 non-degenerate points. In three dimensional space, where ¢ = 3, a rigid trans-
formation has 6 degrees of freedom. A similarity transformation has 7 degrees of
frecdom. An affine transformation has 12 degrees of freedom and can map any 4
non-depenerate points to any 4 non-degenerate points. A projective transforma-
tion has 15 degrees of freedom and can map any 3 non-degenerale points Lo any
5 non-degenerate points.

The term “non-rigid” transformation is often used in a narrower sense. Al-
though similarity, affine and projective transformations do not preserve Euclidean
distance, they all have finite degrees of freedom. In the literature, "non-rigid"
transformations usually refer to a transformation with infinite degrees of freedom,
which can potentially map any finite number of points to the same number of
points. So we immediately see a big difference between finite degree of freedom
transformations and non-rigid transformations. Given a fixed number of land-
matk pairs to be interpolated, the former is easily over constrained but the latter
is always under constrained. This is one of the reasons why the non-rigid point
matching problem is much more difficult. To find a unique non-rigid transforma-
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tion, we need further constraints. This 18 termed regularization in the computer
vision and medical image analysis literature [347).

Two desirable properties of non-rigid transformations are smoothness and
topology preservation. Again, let 3 C R? and 23 C R™. A transformation
f 0 — Q is said to be smooth if all partial derivatives of f, up to certain or-
ders, exist and are continuous. A transformation f : {}; — €5 is said to preserve
the topology if (; and Img(f) = {p2 € Qa|Ip1 € Q4, p2 = f(p1)} have the
same topology. A transformation that preserves topology is called a homeomor-
phism and its definition is: A transformation f : £2; — £} is a homeomorphism
if f is a bijection and if it is continuous and if its inverse is also continuous. A
smooth transformation f : £, — £ may not preserve the topology. There are
several cases when this is true. First, the smooth map f is a bijection but the in-
verse is not continuous. Second, the smooth map f may fail to be a bijection. That
is, multiple points may be mapped to the same point and we call this the folding
of space. There are two sub-cases here, one sub-case is that at some point, the
tangent map of f is not an isomorphism. The other sub-case is that the tangent
map of f is an isomorphism at every point but globally it is not a bijection. On the
other hand, a homeomorphism may not be smooth because in the definition, we
only require continuily in both f and its inverse but we do not require differentia-
bility. A transformation f that is both smooth and topology preserving is called
a diffeomorphism. The diffeomorphism f : Q) — . is defined as a bijection
that is smooth and its inverse is also smooth, Now let us look at an example of a
smooth transformation, namely, the Thin-Plate Spline {TPS) interpolation [851].

For simplicity, we discuss the problem in 2-D space. Everything in the
2-D formulation easily applies to 3-D except we have a different kernel in
3-D. The original thin-plate spline interpelation problem is formulated as:

find a smooth function f : £ — R, such that the thin-plate energy
il [( gi %3%)2 f}Q] dudy is minimized, subject to constraints at
7 control pomts {me8i=12..,n}

fp)=v. peQueR i=12..n. (13.1)

The reproducing kernel Hilbert space (RKHS) method is used to solve this
problem. We assume f is in the Sobolev space WH52(2). Let ||f||? = £

2 2
ol [(#}Z—FZ(%{%)z—i—(g—yé)ﬂ dzdy, where ||f]| is the norm of f in

WE2()). Since W*2(0}) is a Hilbert space, [rom the Riesz representation
theorem, for any p € 2, the evaluation linear functional
0y s WE2(Q) = R, 8,(f) = f(p) (13.2)

has a representer [467] u, € W*2(Q) such that

Sp(f) = fp) =< up, f > . (13.3)
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Now the original problem is transformed to the problem: find a function f €
WH2(§1) with minimal norm || f|, subject to constraints

<tp, fr=v;,i=1,2,..,n. (13.4)

For pu, py € Q, w(pa,Ps) = up, (pu) is the kemel of the reproducing kernel
Hilbert space.

Let 7' be the linear subspace spanned by u,,, ¢ = 1,2,...,n. Any function
f € W52(Q) can be decomposed into f = fr + f, where fr € T and fo is
in the orthogonal complement of T' and hence < wy, , f1 >= 0. We know if fr
satisfies (13.4), then f also satisfies (13.4) only with || f]| > fr it f, # 0. Sowe
only need to search for the solution in 7. The general solution can thus be written
as

L)
f(p) = ao + @13 + azy + Y wiulpi, p), (13.5)
i=1
where a9, a1, a2, w; € R and functions of the form ap + @12 + agy span the null
space.
With this form, £ can be rewritten as

E= Y wUjw;=WUWH, (13.6)

=l g=1

where W == (wq,...,wy,) and U is the matrix with clements U;; = u{p;, p;).

Bookstein [101, 102] applied thin-plate splines to the landmark interpolation
problem. The goal is to find a smeoth transformation f : £2 — {2 that interpolates
n pairs of landmarks {p; € 0|i = 1,2,...,n} and {¢; € §|¢ = 1,2, ...,n} and
also minimize the thin-plate bending energy

o f’l O fu 24 & fﬁ
B= Z//hu{ 727 ) (d 2 (5 =2 | dady, (137

where f and f5 are the x and y components of the mapping. If we interpret each
of f1 and fy as the bending in the z direction of a metal sheet, or thin plate,
extending in the x-y plane, the energy in (13.7) is the analog of the thin plate
bending energy. The kernel in this case is

U(r) =r?log r?, (13.8)
where r is the distance 1/x2 + 2. We also denote

1 T m
p=|1 = | Ghchis3xn, (13.9)

1 =n ¥n
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Duchon [286] proved that if P has maximum column rank, then the solution
exists and is unique and the general solution is of the form

kel
Fay) = a1+ ez +ayy+ »_wl(lp— (#,9))). (13.10)

i=1

Because an affine transformation has no contribution to the bending energy, the
transformation allows for a free affine transformation. Define the matrices

0 U(Tlg) f)r(?“lﬂ)
o= U (r21) g e Hi{Tin) ;whichisn x n, (13.11)
Ulrar) Ulrag) - 0
and
L= { ;fr g } ,whichis (n + 3) x (n +3), (13.12)

where the symbol T is the matrix transpose operator and (? is a 3 x 3 matrix of
ZETDS.

Let V = (w1,..,v,) be any n-vector and write ¥ = (V |[000)*. The
coeflicients W = (w3, ..., wy) ang (a1, 6z, @) can be found by

LY = (W |ay ag (Ly)T. (13.13)

A numerically stable solution in a different form is given by Wahba [851] using a
QR decomposition.

While the preceding development is somewhat appealing, there is no mech-
anism to guarantee a diffeomorphic transformation. Intuitively this problem is
known as the folding of space.

{7\

(a) (b) (©)

Figure 13.1. The folding problem in TPS and the desirable diffeomorphism.

Figure 13.1a shows the displacement of landmarks. Figure 13.1b is the thin-
plate spline interpolation. We can see the folding of space. This is the drawback of
thin-plate spline interpolation, Due to the folding of space, features in the template
may be smeared in the overlapping regions. And furthermore, the transformation
is not invertible. A diffeomorphic transformation is strongly desirable, which pre-
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serves the features, the topology and which is smooth as shown in Figure 13.1c.
Next we show that such a diffeomorphism always exists.

Theorem. A diffeomorphic transformation that interpolates arbitrary numbers
of i pairs of landmarks always exists.

Proof:

We show the existence by construction. We construct a simple, although most
likely undesirable in most of the applications, diffeomorphism. The intuitive idea
is to dig canals connecting the landmark pairs. We first choose the [irst pair of
landmarks y and ¢;. For simplicity, we assume the dimension « of space is 2.
The proof is similar for d > 2. First assume no other landmarks lie on the line
connecting p; and ¢;. Establish a coordinate system such that p;, and ¢, are on
the x axis, shown in Figure 13.2, where dots are source landmarks and squares
are target landmarks. Let the signed distance from py to ¢q be a. Construct the
transformation f) : £ — £, such that f1{z,y) = (', ¢),

]

¥ = ztae (13.14)
y = v

where v = tan(y), for any arbitrarily small e. We choose € to be sufficiently

small so that any other landmarks do not lie in the belt

{(z.9) e R?|Jy| < c}.

It is easy to show that f; is a diffeomorphism and that it maps p; to ¢; and keeps
all other landmarks qs,..., gy, fixed. This is very much like the flow of viscous fluid
in a tube. Similarly we can construct a diffeomorphism f; that maps p; to ¢; and
keeps all other landmarks fixed, for 7 = 1, 2, ..., n. The composition of this series
of diffeomerphisms

JF=fuo- -faoh (13.15)

is also a diffeomorphism and obviously f maps p; to ¢;, fori = 1,2, ..., n.

I some landmark gy, lies on the line joining p; and ¢;, we can find such a
dircetion such that we draw a line I, through gy and there are no other landmarks
on the line. Then we make a ditfeomorphism £ transporting gx to a nearby point
o, along the line without moving any other landmarks, using the same canal as
in the viscous Muid techunigue. Then we make a diffeomorphism f; as described
before. After that, we move landmark ¢}, back to the old position with the inverse
of h=1. Soweuse F; = h™ ! f;h in place of f;.

One straightforward approach to find a diffeomorphism for practical use is to
remedy the thin-plate spline so that it does not fold. We can restrict our search
space to the set of diffeomorphisms and the ideal one should minimize the thin-
plate energy. We make the observation that if the Jacobian of the transformation f
changes sign at a point, then there is folding. We can place a constraint requiring
the Jacobian to always be positive. There is some literature on this approach but
most of these approaches do not guarantee that the transformation is smooth [440,
197].
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Figure 13.2. Diffeomorphism construction.

Another approach is lo utilize the flow ficld [289, 442, 571]. We introduce
one parameter, the time ¢ into the diffeomorphism. Let ¢, : £ — Q be the dif-
feomorphism fom £ to 2 at time £. A point  is mapped to the point ¢, (x).
Sometimes we also denote this as ¢{z, t). It is easy to verify that for all the values
of t, ¢, forms a one parameter diffeomorphism group. If = is fixed, then ¢(zx, )
traces a smooth trajectory in §2, The interpolation problem becomes: find the one
parameter diffeomorphic group ¢{.,t) : © — £ such that given p; € £ and
g € O Vi=12.,n, éx0)=zand ¢(p;, 1) = ¢. We introduce the velocity
field v(z, t} and construct a dynamical system by the transport equation

Bé(x, )
b8

The integral form of the relation between ¢, £) and v(z, ) is

= v(¢(x, 1), 1) . (13.16)

1
Sl =i +f o(d(e, 1), )t (13.17)
0

Obviously, such a ¢{x,#) is not unique and there are infinitely many such so-
lutions. With the analogy to the TPS, it is natural that we require the desirable
diffeomorphism results in minimal space deformation. Namely we require the
deformation energy

/1/ || Lv(z, t)||*dxdt (13.18)
o Ji

to be minimized, where L is a given linear differential operator.
The following theorem [442] states the existence of such a velocity field and
shows a way to solve for it.

Theorem (Joshi and Miller). Let p; € Qand ¢ € Vi = 1,2,....n. The
solution to the energy minimization problem

TR
#(-) = arg minf / Lo, ) || 2 dadt (13.19)
0o Ja :
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subject to
dlp,)=gq, Yi=12..,n (13.20)
where

1
¢(m,1)=m+[ v{d(x, £}, dt (13.21)
Jo

exists and defines a diffeomorphism (-, 1) : Q — Q. The optimum velocity field
4 and the diffeomorphism ¢ are given by

8z, t) = ) _ K(glait) x) SKGE) bl t) (13.22)

i=1
where
K((p(plst)s é(pli t)) ToE I{(¢(plst)!¢(prnvt))
K(9(1) =
K(‘f)(pm t), o(m, t)) K(‘;’(pm £), 9’)(!}"1? t})
(13.23)

with (K (($(£))s; denotiﬂg the ij, 3 x 3 block entry
(K (BN = K($(ps, 1), 6(py, 1)), and

1
dpu) = org in, /O Zé(pi‘a:)T(K(qﬁ(t)}—lm(m,m}drm.m)

subject to $(p;,1) = q¢, i = 1,2, ..., N with the optimal diffeomorphism given
by

Mz 1) =z r-fl (dz, 1), 8)dt . (13.25)

The proof [442] is omitted here. With this theorem, we can convert the criginal
optimization problem on the vector field ©(x, £} to a problem of finite dimensional
optimal conlrol with end point conditions.

This problem is called the exact matching problem because we required the
given sel of points p;,i = 1,2,...,n map exactly to the other given set of
points ¢; ¢ = 1,2,...,n. The exact matching problem is symmetric with re-
spect to two sets of landmarks or two point shapes. When the two point sets
{p; € ]i=1,2,...,n}and {g; € |i = 1,2,...,n} are swapped, the new
optimal diffeomorphism is the inverse of the old diffeomorphism. This is stated
more formally in the following theorem.

Theorem. Jf ¢(zg,1) = wyx and ¢(x,t) and v(x,t) minimize the energy

E= fn jil |L1,'{:r £)||2dixdt, then the inverse mapping maps the landmarks back-
ward ¢~ yk, 1) = xx, and ¢~ (x,t) and —v(z, ~t) also minimize the energy
E.
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Proof: First, from the known property of the diffeomorphism group of such
a dynamical system, ¢(xz,t1 + t2) = ¢{@(x,t1),t2), it is easy to show that
¢z, t) = ¢(w, —t). This is because

¢l —t) o (., £)(z)
= cﬁ(,t ¢( —t)(z)
b{piz, 1), —t)
(
(

Il
o

a{x, b+ (—t))
= ¢{x,0)

= .
Furthermore, ¢(x, —t)and —ov{x, —t) also satisfy the transport equation

d¢(x, —t)
_(95_ = --?J(qb(il’,‘, _L): _t)

Suppose ¢(zx, t) and v(z, t) minimize the energy

=]{;1L|;Ly(m,a)|]zdm

but ¢~1(x,t) = $(x, ~¢) and —v(x, —t) do not minimize the energy

L
E:/ /HLv(;r:,t)HQd:r:er
S0 40

Let the minimizer be «(x,¢) and u{x,?) such that V&, (ys) = ax and
L )|} Pdzdt < f[; Jo l1Lv(z, )| |*dzdt. Then, we can construct

¥z, 8) = b(z, -1)

such that 9~ (x, 2) and —u (=, —t) satisfy the transport equation and 4~ (z;, 1) =
Y. However ful Jo | Lu(z, )|1Pdedt < fol Jo |Lo(z, £)|)*dedt contradicts the
assumption that v(«. ¢} is the minimizer of the cnergy 19,

The exact matching problem can be generalized to the inexact matching prob-
femn. In the inexact matching problem, we do not require that the points exactly

match. Instead, we seek a compromise between the closeness of the matching
points and the deformation of space. We minimize

i n
2 - . 2
]ﬂ [ﬂ (e, ot + 33l = 6 DI, 1326

which can be similarly solved.
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13.3 Diffeomorphic Point Shape Matching

In the diffeomorphic point matching problem, the points are samples from the
shape and we have a point representation of the shape, When we have two such
shapes represented by points, usually the cardinality of the points in the two shape
point-sets are different and there is no point-wise correspondence. We want to find
the correspondence between the two shapes. The approach we take is clustering.
The two point shapes are clustered simultaneously and we assume there is a one-
to-one correspondence between the clusters. The correspondences between the
two sets of clusters are, unfortunately, also unknown. We put the correspondence
and the diffeomorphism together and by minimizing an objective function which
has both the clustering energy and the diffeomorphic deformation energy, we are
able to find the clustering, the correspondence between cluster centers and the
diffeomorphism in space simultancously. The objective function is

E(M® MY v 5,v,¢)

Ny N No N
= D S MEm - nlP D0 Mudy —sl? (13.27)
i=1 k=1 7=1 k=1

N

1
+ 3 llsk = @0 I + )\/ / | Lo(z, 8)]Pdadt.
k=1 0; i

In the above objective function, the M* and M¥ are the cluster membership ma-
trices, which satisfy M, € [0, 1], Vik and M}, € [0,1], Vjk and SN ML =1,
EQ{:] M}”k = 1. The matrix entry M, is the membership of data point %; in clus-
ter k& whose center is at location ry. The matrix entry Mfk is the membership of
data point y; in cluster k whose center is al position s;. Point-set X has N, points,
Y has N points and the number of shared cluster centers is V.

The diffeomorphic deformation energy in £ is induced by the landmark
displacements from r to s, where & € Q and ¢(, £} is the one parameter dif-
feomorphism:  — £1. Since the original point-sets differ in point count and are
unlabeled, we cannol immediately use the diffeomorphism objective functions
as in [442] or [145] respectively. Instead, the two point-sets are clustered and
the landmark diffeomorphism objective is used between two sets of cluster cen-
ters  and s whose indices are always in correspondence. The diffeomorphism
¢{x,t) is generated by the velocity field v(x, t). ¢{x,t) and v(z,t) together sat-
isfy the transport equation %ﬁ” = u(p{x, 1), %) and the initial condition Ve,
#{z,0) = =z holds. This is in the inexact matching form and the displacement
term 2;:;1 ||sx —~ ¢(rk, 1)||? plays an important role here as the bridge between
the two systems. This is also the reason why we prefer the deformation energy in
this form because the coupling of the two sets of clusters appear naturally through
the inexact matching term and we don’t have to introduce external coupling terms
as in [372]. Another advantage of this approach is that in this dynamic system
described by the diffeomorphic group ¢(z, t), the landmarks trace a trajectory ex-
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actly on the flow lines dictated by the field u(x, £). Also, the feedback coupling
is no longer needed as in the previous approach because with this deformation
energy described above, due to the above theorem, if ¢(x, 1) is the minimizer of
this energy, then ¢~1(z, t) is the inverse mapping which also minimizes the same
energy.

We are now ready to give an algorithm that simultaneously finds the cluster
centers, the cotrespondence and the diffeomorphism.

The joint clustering and diffeomorphism estimation algorithm has two com-
ponents: i) diffeomorphism estimation and ii) clustering. For the diffeomorphism
estimation, we expand the velocity field in term of the kernel K ofthe L operator

o
vl 1) = 3 oK (=, on(t)) (13.28)
k=1
where ¢ (¢} is notational shorthand for ¢{ry, ) and we also take into consider-
ation the afline parl 0[ the mapping when we use thin-plate spline kernel with
matrix entry Ky; = r2  log7i; and ry; =|| @ — @ ||. After discretizing in time ¢,
the objective in 13. 27 is expressed as

Ny N
=3 M knxzwnuwzzw Gllys —sell? (13.29)

i=1 k=1 F=1k=1
¥ Z o= 16— 3" (PO + ax(BK B (8) NP
vow s
+A Z DD <anl(d),oult) > K(da(t), u(t)
k= i=1 t=0

where

1ogit)  ¢i()
P(t) = o : (13.30)

g )
and d is the alline parameler matrix. We then perform a QR decomposition on PP,
P() = (Qult) : Q2(8)) ( R{(]t) ) : (13.31)

We iteratively solve for oy (t) and ¢4 (f} using an alternating algorithm. When
¢i(t) is held fixed, we use the following approximation to solve for o (2). The
solutions are

d(t) = R71(t) [Q1()$(t + 1) — Q1 (K ($(1) Q2(t)7(t)] (13.32)
a(t) = Qz(thy(t) (13.33)
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where K ($(t)) denotes the thin-plate spline kernel matrix evaluated at ¢(t) et
{¢(rr,t)|k=1,...,N} and
¥(t) = (QF YK (B(£)Qa(t) + A) ™ QF (Bo(t +1). (13.34)

When o (2) is held fixed, we use gradient descent to solve for ¢ (1)

Bpelt) 2y < ap{tha(t) — 2Wi > 1K (g(t) &it) (13.35)

wheore W) = s —rp — E:::_______l ful g (L} (b (£), i (£} )02

The clustering of the two point-sets is handled by a deterministic annealing EM
algorithm which iteratively estimates the cluster memberships M* and MY and
the cluster centers r and s. The update of the memberships is the very standard
E-step of the EM algorithm [199] and is performed as shown below.

exp(~ Az — rill?)
eIV P
> 1= exp(=Bllz: — %)

_ e 2
2
2= exp(=Blly; — sill?)

where 3 = % is the inverse temperature. The cluster center update is the M-step
of the EM algorithm. This step is not the typical M-step. We use a closed-form
solution for the cluster centers which is an approximation. From the clustering
standpoint, we assume that the change in the diffeomorphism at each iteration is
sufficiently small so that if can be neglected. Afler making this approximation, we
get

T
M

, ik and (13.36)

S My + s, = 00 [ co() K (9n(t), pe(t))dt
1+ M M,

Na ¥
S M My + T ‘11
Lj= Myt 90 ) (13.39)
1+ 20 MY,

In the clustering and diffeomorphic estimation steps, we let A vary proportion-
ately with the temperature. This controls the rigidity of the mapping, starting
from an almost rigid mapping while we obtain good correspondence and grad-
ually softens so that good clustering is achieved. In this way both clustering and
diffeomorphism are obtained simultaneously at convergence.

The overall algorithm is described below.

T , (13.38)

S =

* Initialization: Initial temperature
T = 0.5(max; ||z; — |2 + max; [ly; — v.||2) where z. and y, are the
centroids of X and Y respectively.

* Begin A: While T > Tqpal
— Step 1: Clusteting
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Figure 13.3. Point sets of nine corpus callosum images.

Update memberships according to (13.36), {13.37).

Update cluster centers according to (13.38), (13.39).
— Step 2: Diffeomorphism

Update {¢,v) by minimizing

Egia(é,v ZHSL = ¢re, DII?

+ AT f / |1 Lo(, £)])? dudt
0 Ja

according to {13.32)(13.33) and (13.35).
— Step 3: Annealing. T — ~T where v < 1.

* End

Next we show the experimental results applying the algorithm to nine sets of
2D corpus callosum slices. The feature points were extracted with the help of
a neuroanatomical expert. Figure 13.3 shows the nine corpus callosum 2D im-
ages, labeled CC1 through CC9, Tn our experiments, we first did the simultaneous
clustering and matching with the corpus callosum point sets CC5 and CC9. The
clustering of the two point sets is shown in Figure 13.4. There are 68 cluster cen-
ters. The circles represent the centers and the dots are the data points. The two sets
of cluster centers induce the diffeomorphic mapping of the 2D space. The warp-
ing of the 2D grid under this diffeomorphism is shown in Figure 13.5. Using this
diffeomorphism, we calculated the after-image of original data points and com-
pared them with the target data points. Due to the large number of cluster centers,



218

Guo, Rangarajan & Joshi

o o5
i 04
3 63
[i¥] 0.2 o
b o
-01
-1
-02
63 -02
04 08 oe 1z 04 [+X:] 1
Figure 13.4. Clustering of the two point sets
1} T T 1 L b5
e 'a\ “‘3‘-“31“
o3 i H ; i
[ B! | I “.“‘ “‘é‘
n £ Wy
T HE 11‘“‘
=) T ‘
PIITs die Y
a2 na <1} oE 2

Figure 13.5. Diffeomorphic mapping of the space.

the cluster centers nearly coincide with the original data points and the warping
of the original data points is not shown in the figure. The correspondences (at the
cluster level) are shown in Figure 13.6. The algorithm allows us to simultaneocusly

obtain the diffeomorphism and the ¢orrespondence.
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Figure 3.6, Matching between the two point sets.
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Figure 13.7. Overlay of the after-images of cight point sets with the ninth set.
13.4 Discussion

There are other approaches to the diffeomorphic point matching problem which
we have not considered here. One indirect approach is to use distance trans-
forms to convert the point matching problem into an image matching problem.
There are as yet no theoretical and/or experimental comparisons between dis-
tance transforms-based diffeomorphisms and our approach. Also, there are other
approaches to diffcomorphic landmark matching [ 145, 372]. While we have only
provided results for 2D diffeomorphic point malching, the theoretical formu-
lation presented here extends to 3D. Finally, the joint clustering and matching
formulation is not the only approach that in principle can marry diffcomorphisms
and correspondence [198]. However, it appears to be the simplest formulation
that does not require us to establish point correspondences via estimation of
permutations.
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Chapterl4

Uncertainty-Driven, Point-Based
Image Registration

C. Stewart

Abstract

Point-based registration is the problem of computing the transformation that
best aligns two point sets, such as might be obtained using range scan-
ners or produced by feature extraction algorithms. The Iterative Closest
Points (ICP) algorithm and its variants are the most commonly used tech-
niques for point-based registration. The ICP algorithm may be derived as
the solution to a global optimization problem. A commonly-used lineariza-
tion of the distance function in this optimization problem produces a useful
approximation to the covariance matrix of the ICP-estimated transforma-
tion parameters. Two recent algorithms exploit this covariance matrix to
improve ICP registration. One uses the covariance matrix to sample the cor-
respondences so that the estimate is well-constrained in all directions in
parameter space. A second uses the covariance matrix to guide a region-
growing and model-selection technique that “grows” accurate estimates from
low-order initial estimates that are only accurate in small image regions. Both
show substantial improvements over standard ICP on challenging alignment
problems.

14.1 Introduction

Point-based registration techniques have been used in many applications, ranging
from 3d modeling and industrial inspection to medical imaging. In point-based
registration, the data are geometric point sets, P and Q, such as image feature lo-
cations or 3d range measurements. The points are treated as samples from curves
or surfaces in R", and they may have associated attributes such as intensity values
or normal vectors. The goal of point-based registration is to compute the transfor-
mation, M : R™ — R", that best aligns the point sets. Of particular interest here
are parametric transformation models of the form M(p;8), where p € R” is
point location, and 8 is the vector of transformation mapping parameters to be
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Figure 14.1. Synthetic range data sets illustrating the challenges that arise when the set of
surfaces being aligned differ significantly in size. In the example on the left two planar
surfaces have | mm deep groves cut into them. When a small amount noise is added to the
data, constraints from matching points on the much larger planar surface prevent matches
along the surface of the grooves from rotating the I[CP alighment into place. A similar
elfect occurs with the alipniment of two data sets from a spherical shell, shown on the right.

estimated. Similarity, affine, projective and quadratic transformations all fit into
this category of parameltric models.

Most approaches to point-based registration require establishing correspon-
dence between points from P and Q. If reliable correspondences are known,
estimating the optimal set of transformation parameters is well-understood. On
the other hand, given an accurate estimate of 8, establishing correspondence is
straightforward. This poses a classic “chicken-and-egg” problem, This problem is
widely addressed using the Tterative Closest Points (ICP) algorithm, discovered
almost simultaneously in the early 1990°s by several groups [82, 164, 183, 560,
916]. The idea of ICP is straightforward: (1) given a transformation parameter
estimate, &, apply the transformation to a subset of P, and for each transformed
point find the closest point from Q; (2) from these (temporary) correspondences,
compute a new transformation parameter eslimate 8. These two steps are repeated
until an appropriate convergence criteria is met. Important variations on ICP are
discussed and analyzed in [697].

While initialization of ICP is clearly an important issue, the primary focus of
this chapter is convergence. Ensuring proper convergence of ICP is challenging.
Two reasons for this are illustrated in Figures 14.1 and 14.2. First, when there
are significant variations in the sizes and the orientations of the surfaces to be
registered, correspondence constraints from large surfaces can impede the align-
ment of smaller surfaces, mostly due to the effects of noise. Second, when the
point sets represent complicated curve or surface patterns, such as in the vascu-
lar structure of the retina (Figure 14.2), misalignments early in the ICP process
can cause mismatches that drive the algorithm to an incorrect local minimum.
These mismatches often have relatively small alignment errors and therefore are
not eliminated easily using robust estimation.

These two problems — one caused by a lack of balance in the constraints
and one caused by incorrect correspondences — have been addressed recently
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in papers from the 3d modeling literature [339], and from the medical imaging
literature [763]. Underlying both is the use of uncertainty in the transformation
estimate that is computed by ICP. Unlike earlier work, which studied the infiu-
ence of uncertainty in point locations [276] and evaluated the uncertainty of the
final ICP result [766], these two new techniques use uncertainty to guide the ICP
estimation process itself. This new theme in registration conld have importan
implications for developing more reliable and more generat-purpose algorithms.

The goal of this chapter is to present this uncertainty-driven approach to regis-
tration. Section 14.2 formulates the point-based registration problem and derives
both the ICP algorithm and the commonly-used normal distance form of ICP.
Section 14.3 derives the transformation estimation equations and resulting ap-
proximate covariance matrix. This is used as a measure of uncertainty in the two
algorithms described in Sections 14.4 and 14.5. The chapter concludes with a
summary of the technigues and an outline of importani questions suggested by
the uncertainty-driven approach.

14.2  Objective Function, ICP and Normal Distances

Given are two point sets, P and Q. These points sets are generally discrete, but
they may be formed into a mesh. For expository purposes, however, they may be
modeled in the continuous domain using an implicit function, e.g. f : R® — R,
such that @ = {q | f(g) = 0}. The point set registration objective function may
be defined based on the proximity between transformed points from P and the set
g

F(6;P,Q) = > min|M(pi; 8) — ql*. (14.1)
 AER
piEP
The goal of registration, now stated more formally, is to find the parameter
estimate & minimizing this objective function.
Several approaches to minimizing ¥'(8; P, Q) are possible. Here are two:

» The approach taken in the ICP algorithm alternates steps of solving the
two minimization problems. The inner minimization (the matching step) in
(14.1) is solved for fixed @ to produce a correspondence set C = {p;, d:},
and then the outer minimization is solved in slightly altered form by re-
placing the inner minimization with just the distance | M(py; 0) — qqli®.
If infinitesimal steps are taken in q; and in 8, this converges to a local
minimum of the objective function.

* @ is represented implicitly using a distance function in R™ that is 0 at
locations q where f(q) = 0. Example representations include Chamfer
distance measures [103] and octree splines [164]. Derivatives of the objec-
tive function (14.1) may be computed based on computing derivatives of
the distance function without explicitly identifying the closest point in O,
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Figure 14.2. Example of misregistration of retinal images. Contours in black are blood
vessel centerlines detected in one retinal image and contours in white are blood vessel
centerlines detected in a second retinal image (ol the same eye). The complexity of the
structure of the vesscls, together with a small initial misalignment, causes ICP to mismatch
a significant fraction of the contours and converge to an incorrect estimate.

The focus of this chapter is on the ICP approach, which has been used widely,
especially in the range image literature [697].

With the focus on ICP, the matching step must be examined in more detail.
Using the implicit function definition of @, the minimization

min | M(ps; 8) - q|* (14.2)
qcQ

becomes
min || M(p;; @) — q||? subject to f(q) = 0.

Writing this using Lagrange multipliers and introducing the simplifying notation
p; = M(p;; 0) creates the function

h{q, ) = ||p} — qal* ~ 2)f(q),

which must be minimized simultaneously over q and A. Computing partial
derivatives &h/0q and 3h/H) and setting the results equal to 0 yields

(pi—q) —AVf{q)=0
flg) =0 (14.3)

Solving this, in turn, requires an iterative technique. Let q; be the current best esti-
mate of the closest point. After the iterations converge it will be the corresponding
point for p; in ICP. Linearizing f around g; produces

fla)=(q—a:)"n;=0 and Vf{qg)=m,
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pr o

Figure 14.3. IHustrating the linearization of implicit function f that defines point set O,
Let p; be a transformed point from P, let q; be the closest point from Q, and let 7, be the
local surface normal. {The linearization is pictured as the dashed line segment.) A small
change in the transformation that moves p; to p! does not require recomputation of the
closest point from @ in order lo compuate the (approximate) distance from pf to Q.

where 7}, is the notrmal to f at ;. Substituting these into (14.3) produces the

system of equations
T 7?4) o i} P!:
7 0)\A T \nia)

q = p; — MmN P} + 0;7; Ai- (14.4)

Solving yields

This produces an update g, «— gq. This point, however, does not satisfy f{q) =0,
a problem that must be solved by moving along the constraint surface in direction
q — ¢ rather than directly making the substitution ¢; < . This important detail
is not a concern here, however, because the current focus is on approximating the
objective function.

The approximate closest point in (14.4) may be substituted back into the dis-
tance calculation equation (14.2) to yield a simplified but approximate calculation
of distance. Afier some manipulation this yields,

min [|M(p.; 8) — all* = a[(M(p# 8) — a:) n,}*, (14.5)
Qe

where ¢ = n! n,. When f{q) is a distance function, ¢ 7 1 because a unit step
normal to the surface produces a unil change in distance. This is equivalent to
assuming ¥, is a unit vector, an assumption made throughout the remainder of
this chapter. As illustrated in Figure 14.3, equation (14.5) simply reflects the fact
that computing the minimum distance between a point and a linear structure does
not require knowing the closest point on the lincar structure; all that is needed is
any point from the structure and the normal vector.

Tuming back to the original problem of estimating the transformation parame-
ters, (14.5) may be substituted into the original objective function (14.1) to obtain
the approximation

F&;P, Q) = > (M(pi:0) — a:) ] (14.6)
PEP
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This approximation allows the calculation of the point-registration objective func-
tion without updating the correspondences. It is valid as long as changes in the
transformation parameters keep mapped points M(p;; @) in locations where the
linearization around «q; is valid. This is used in deriving the covariance matrix in
the next section. Equation 14.6 also leads to the “normal-distance” form of the
ICP algorithm, originally proposed in [185]. The summation on the right-hand
side of (14.6) is minimized for a fixed set of correspondences 1o estimate the next
set of transformation parameters. The fact that this is a closer approximation to the
true underlying objective function shows why use of normal distance constraints
causes much faster and more reliable convergence of [CP [697].

14.3 Parameter Estimates and Covariance Matrices

The next step is Lo derive equations for estimating the transformation parameters
given a fixed set of correspondences, C = {(p;, q:)}. This leads directly to an
approximalion for the covariance matrix of the resulting estimate,

The derivation starts with a simplified form of the transformation model:

M(p; 0) = p + X(p)6. (147

A few examples will clarify this revised form. For a 3D rigid transformation using
a small angle approximation (see [339], e.g.},

M(p;8) =Rp+t=p-+rxptt=pi (S 1 (:)

Here, r is the vector of small angle approximations, t is the translation, and 8 is
the skew-symmetric mattix such that Sr = r x p. This form is used for estimating
incremental estimates ol a rigid transformation. Writing an affine transformation
in the form (14.7) is straightforward.?2 A 2D quadratic transformation is written

x e A1
M(p;8) =p+ ( E]r;} x?p)‘l") 9.

Here 0 is a 12x1 vector and if p = (u,v)7 then x(p) = (1, u, v, v*, uv, v?)T.
Using the form of (14.7), the normal-distance 1CP equation (14.6) for a fixed
set of correspondences becomes

F(6:0) = Y (b + X(pi)0 —ai) . (14.8)

{pi,ai)eC

18ee [576] for a recent generalization to second-order approximations,

2Planar homographies may not be written in this form because side constraints must be imposed
on the parameter vector. Different derivations of the estimation equations and covariance matrices are
needed, combining the normal-distance form of (14.6) with the covariance derivations in [389, Ch. 4].
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Rewriting,
F(B:C)= > miX(p)e-n(a-p)l’
{pi.qi)eC
= (X8 -y)T (X0 -y) (14.9)
where
71 X{p1) ni (a1 — p1)
X= : and Yy = :
niX(py) nf{ax — pk)

Taking the derivative with respect to 8, setting the result to 0, and solving vields
the estimate,

8 = (X7X) X y. (14.10)

This has the structure of a linear regression problem. Making the simplifying
assumption (discussed below) that y is the only random variable, the expected
value of the estimate is

7 = B[6] = (XTX) ' X7 E[y].

Moreover, if y is independent and identically distributed (i.i.d.}, with covariance
matrix o1, then the covariance matrix of the parameter estimate is

g == Bl(0 - 0)(0 - 0)T - o2(XTX)? (14.11)

When robust weighting of the correspondences is added (see, e.g. [764]), the
estimate becomes

6 = (X*WX) ' X Wy. (14.12)

where W is a diagonal mairix of the weights of the individual constraints. The
parameter estimate covariance matrix is then approximately

g = B0 -0)0 -9)" = X WX)! (14.13)

The approximate covariance matrix has been used in a number of algorithms,
including the ones described here. Before proceeding to these, it is impor-
tant to examine the assumptions and approximations underlying the foregoing
derivation.

= The derivation of the covariance matrix that started from (14.6) is based on
a fixed correspondence set. The prior derivation leading to (14.6) showed
that (14.6) is a good approximation to the original objective function (which
involves changing correspondences) when changes in the transformation
are not large enough to invalidate the linearization around the points g;.
This is true in particular as the overall algorithm — not just the estimate for
a fixed set of correspondences — nears convergence.



228 Stewart

* In deriving (14.11) from the estimate equation (14.10), the matrix X is as-
sumed to depend only on deterministic quantities. For this to hold, point
locations p; are treated as deterministic. While this clearly underestimates
the uncertainty, the effects of this should be small since the p; values
themselves will be much larger than errors in p;.

+ Errors in the normal directions are assumed to be small enough that any
resultant errors in projections onto the normal vectors — as in 57 X(p;)
and T;E[pt- — q;) — are relatively insignificant. Since the errors in these
projections will be proportional to the error in the orientation and since
for small error angles, ¢, cos¢ == 1, this is reasonable, cspecially as the
algorithm converges.

« Weight matrix ‘W is also assumed to be non-random. Since each w; de-
pends on the error in the correspondence and therefore in the transformation
itself, this is again an oversimplification.

Finally, 57 (p; — q;) is assumed to be i.i.d. In part this says that all er-
rots in the point positions are along the normal direction. On the negative
side, this ignores errors that depend on the sensor direction [276]. On the
positive side, since the point sets are treated as sets of samples from contin-
uous manifolds, the errors in the point positions g tangent to the manifold
keep the points (ulmost) on the manifold and do not change the distance
meuasurcment significantly.

Overall, it should be clear that the derived covariance matrix (a) is only a rough
approximation of the true covariance matrix, (b) the approximation becomes more
accuracte as the ICP estimation process nears the minimum, and {c) the primary
effect of the approximation is that the magnitude of the covariance matrix is
under-estimated.

14.4 Stable Sampling of ICP Constraints

This section and the next present applications of the covariance matrix eslimate
in ICP algorithms that address the two problems described in the introduction.
This section considers the situation (Figure 14.1) where the ICP correspondences
match points from the same surface in the two different data sets and are therefore
in a sense “correct”, but they still do not pull the estimate in the direction needed
to correctly align the surfaces.

This problem is addressed in [339] by using the covariance matrix to select
a subset of the correspondences that will constrain the transformation estimate
as uniformly as possible in all directions. This sampling strategy is governed
by a spectral decomposition of the parameter estimate covariance matrix and its
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inverse:

] it} m
oyt = %(XTWX) =Y N, e =) (/AT (1414)
i=1 F=1
The A;’s and ;s are the eigenvalues and eigenvectors, respectively, of the in-
verse covariance matrix, ordered so that Ay > Ay = --- = A, > 0. The A
values represents the “stability” — the inverse of the variance — in direction +;
in parameter space. Ideally, the stability values for each direction should be ap-
proximately equivalent. Stated another way, the condition number Ay /A, should
be as small as possible.
Consider the constraints from Equation (14.9) and in particular consider the
projection of the constraint for correspondence ¢ onto gigenvector 7:

! X{(pi)7;- (14.15)

The magnitude of this projection tells how much the ith point correspondence
constrains the transformation in the fth direction in parameter space. Given a
subset C’ of the correspondence sel C, the value

si= > I X(pa)y, I /iC] (14.16)

{piai)el

is roughly proportional to the inverse variance of the estimate in the jth direction
based on the subset. The goal of the stable sampling algorithm is to find a subset
that makes these sf values as close to equal as possible, thereby constraining the
estimate equally-well in all directions.

The steps involved are:

1. Compute the inverse covariance matrix and its eigenvector decomposition
from a small initial set ¢’ of correspondences in the region where the
data sets overlap. These correspondences and the overlap region must be
compuled using an earlier [CP parameter estimate.

2. Compute bf for each eigenvector based on the initial set.

3. For eigenvector j with the smallest 52, choose the correspondence from
the overlap region that has the greatest magnitnde of (14.15), add it to the
cotrespondence set C’, and update sf (14.16) for all eigenvectors. Note that
the chosen correspondence is taken from € — C'.

4. Repeat until a sufficient number of correspondences have been selected or
until the addition of a new correspondence starts to increase the approxi-
mate condition number — the ratio between the largest s; value and the
smallest. The second condition tests if the constraints available to increase
the stability of the smallest eigenvalue have been exhansted.

For details of the data structures and search algorithms that make this compu-
tation efficient, see [339]. Two other important details should be mentioned here,
however.
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* The parameter vector & involves parameters of different units, including
rotation angles and terms of differing orders. Numerically, the individual
components of @ are not comparable; they can differ by several orders
of magnitude. To solve this, the subsets of P and Q that form the cor-
respondences should each be centered and then normalized so that the
average magnitude of corresponding points p; and g, are each 1 [339, 389].
All computations of the sample selection technigue should be done in the
centered and normalized system.

» The constraint n? X(p;) depends on a point location from 7 and a normal
from €. This means sampling must be applied alter correspondences are
formed, even though many correspondences will not be used. This wasted
computation may be avoided easily. Observe that after the ICP algorithm
has removed the worst ol the misalignments, the surface normals of the
transformed points p; should be roughly parallel to the normals from q,.
Therefore, the transformed normals from p; can be used in place of the
normals from 7, in the above calculations. This means the sampling can be
computed prior to establishing correspondence.

The overall computation places a third step in each iteration of ICP: {1) ap-
ply stable sampling to select a subset of the points in the overlap region, (2)
establish maltches (correspondences) for these peints, and {3) compute the new
transformation estimatc using the correspondences.

Using this technique, the two problem examples shown in Figure 14.1 are each
correctly aligned. For the ileration starting [rom the positions shown in the figure,
the condition numbers dropped from 66.1 to 3.7 for the plancs and from 26.9
to 4.1 for the spheres using stable sampling. The RMS alignment errors alier ICP
converged using stable sampling were in each case a factor of 3 lower than when a
spatially-uniform sampling of point set P was used. See [339] for more examples.

14.5 Dual-Bootstrap ICP

The second algorithm that exploits the covariance matrix during the registration
process is designed to avoid the problem of mismatches due to poor initialization.
The problem occurs in particular in the registration of retinal images because of
the complexity of the vascular structure and the effects of disease.

The Dual-Bootstrap algorithm described here uscs points detected along the
centers of blood vessel curves [146, 331] as the registration point sets P and Q.
Registration is initialized using matches between landmarks — branching and
cross-over points of the vessels — detected in the two images. Unfortunately,
images with significant pathologies sometimes have very few landmarks and even
fewer that match correctly for initialization. Therefore, the approach taken is a
hypothesize-and-test method, where single correspondences are generated to form
initial fransformation estimates that are only accurate in small image regions. The
Dual-Bootstrap algorithm tests each small region and initial estimate separately
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Figure 14.4. Inttial (upper left), intermediate (upper right, lower left), and final (lower right)
results of the Dual-Bootstvap ICP algorithm on a pair of retinal images. Vessel centerlines
forming the point sets 7 and Q are shown using white and black contours. The rectangle
drawn on top ol the images shows the current region, R. The images are well-aligned
within R in each iteration, and as R is expanded to cover the entire overlap region, the
overall estimate converges to an accurate alignment,

by “growing™ an image-wide transformation estimate. If the initial transformation
is moderalely accurate the Dual-Boolstrap algorithm rarely [ails o produce an
accurate result.

Dual-Bootstrap ICP works by iterating three steps, illustrated in Figure 14.4:

1. It applics one iteration of ICP using only points from the current region, R
{the highlighted rectangle in the panels ol Figure 14.4),

2. Based on the correspondences and the covariance matrix, the best transfor-
mation mode! is selected from among a set of possible models. Initially,
when the region is small, there are only sufficient constraints for a similar-
ity transformation. The eventual image-wide transformation is a quadratic
model [147]. In between, the algorithm can select an affine transformation
or a simplified version of the quadratic transformation.
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3. The Dual-Bootstrap algorithm uses the uncertainty in the transformation to
expand the boundary of the region, R. More stable transformations lead to
faster region growth.

These steps are repeated until the entire process converges for the given initial
estimate. If the final estimate covers the apparent overlap between images and is
sufficiently accurate and stable, the estimate is accepted as correct. Otherwise,
another starting landmark correspondence and associated region is tried. This
greedy process terminates and indicates that no alignment is possible if the initial
possibilities are exhausted.

The model selection and region growing steps are most relevant to the theme of
this chapter, so they arc discussed in more detail in the remainder of this scction.

Model selection techniques [135, 799] choose the model that optimizes the
trade-off between the alignment accuracy of high-order models and the stability
of low-order models, with stability being measured using the covariance matrix
of the parameters. The Dual-Bootstrap ICP model selection criteria is based on
the expression (see [135] for a derivation):

d. - g A
5 log 27 — ;wm + 5 logdet(Zy), (14.17)

where ¢ is the number of degrees of freedom in the model, 3 . w;r? is the

sum of the robustly-weighted alignment errors (r; = (M(py; #) — q;)7'n,), and
det(Z f-)} is the determinant of the parameter estimate covariance matrix. Intu-
itively, for higher-order models ¢ increascs, - ), wir? incrcases (because the
residuals decrease), and det[F?a) decreases because the models are less stable,
In choosing the best model, (14.17) is evaluated for a set of models using a fixed
correspondence set. The model with the greatest value of (14.17) is chosen.

The growth of the region in step 3 of the Dual-Bootstrap algorithm is based on
the uncertainty in the mapping of point locations on the boundary of the regions.
This uncertainty is computed from the covariance of the transformation parameter
estimate using fairly standard covariance propagation techniques, often called the
“transfer error’” [389, Ch. 4] in the computer vision literature. As before, let p’ =
Mi(p, #) be the mapping of point location p. The covariance of this mapping is
approximately

By = JEOJT
where
oM .
J = —(8) = X(p),
o (8) = X()

using the definition of M from (14.7). No uncertainty in p is considered because
p is treated simply as a position in the coordinate system of set P, not an estimated
point location,

The transfer error is used to expand each of the four sides of region rectangle
R (Figure 14.5). Let p, be one of these points, described in a coordinate system
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Figure 14.5. Expansion of the region B in the Dual-Bootstrap ICP algorithm. The center
of each side of the region rectangle is pushed outward in inverse proportion to the transfer
error variance, This means that more certainty in the transformation leads to Taster growth
m H. The new region is the axis-aligned rectangle formed by the four outwardly-moved
points.

centered on the reciangle, and let p} be its mapping into the coordinate system
of Q. Let i, be the cutward normal of the side of the rectangle and let 7/, be the
mapping of this normal into the coordinate system of Q. The variance of p’, in
the _outward direction is 2 = n/, rEp; 77,. Using this, the ocutward movement of
ps i

q_(Pimy)

Ap, = 14.18
Pe=p max(1, o2} ( )

This growth is proportional to the current distance (p? 1,) of p,, from the center of
R, and is inversely proportional to the transfer error in the normal direction. The
lower bound of 1 in the denominator prevents growth from becoming too fast. The
center of each side ol B is expanded outward independently using Equation 14.18,
and the new region is the axis-aligned rectangle formed by the resulting four
points (Figure 14.5). Parameter & controls the growth rate; the setting used in
practice, # = 2 — 1, ensures that the area of R al most doubles in each iteration.

The Dual-Boolstrap TCP algorithm has been tested on thousands of retinal
image pairs, including images of unhealthy eyes in various stages of disease pro-
gression [765, 810]. Overall, when there is at least 30% overlap between images,
at least one starting correspondence, and enough extracted vessels to form a sta-
ble covariance matrix, the algorithm never fails. Together, the region growth and
model selection lechniques work 1o keep the algorithm near the optimal estimate
within region /. More detail about the behavior of these techniques is as follows:

* Model selection is imperfect. The algorithm tends to switch to higher-order
models too early. Estimation errors in these higher-order models may lead
to more mismatches, especially on the region periphery. Empirically, the
implementation uses the heuristic that the quadratic model may not be used
until the region has grown to 20% of the image size. A likely cause of this
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problem is that the covariance matrix used underestimates the amount of
uncertainty.

» Region growth, on the other hand, works extremely well. One measure of
this is that halving or doubling the growth rate does not change the effec-
tiveness of the algorithm. Removing region growth altogether, on the other
hand, reduces the number of image pairs that the algorithm is able to align
by 16%.

14.6 Discussion and Conclusion

This chapter has addressed the problem of point-based registration, focusing
on the use of covariance-based technigues to improve the performance of the
iterative closest point {ICP) algorithm in both range image and retinal image
registration. The chapter starled by formulating the objective Nunction and then
deriving the normal distance version of ICP. This provides a locally-accurate
approximation to the overall objective function without the need for rematch-
ing. This approximation was then used to derive the equations for estimating the
trang{ormation parameters and the covariance matrix of this estimate. Scveral sim-
plifying assumptions were used in deriving this matrix. These assumptions lead
to an underestimate in the overall amount of uncertainty, but are a reasonable
approximation as the overall ICP process nears convergence.

The chapter then suminarized two algorithms in which the covariance matrix is
used to modify the behavior of ICT. Tn the stable sampling algorithm ol [339], the
covariance matrix is used to guide the selection of correspondences, ensuring thal
all directions in parameter space are well-constrained. Geometrically, this allows
the ICP algorithm to accurately align small-scale surfaces. In the Dual-Bootstrap
ICP algorithm of [765], the covariance matrix is used to grow a transformation
estimate and ils associated region, starting from a small region surrounding a
single correspondence. The covariance matrix helps avoid mismatches between
vascular structures by controling the growth of the region and the selection of
transformation medels. Empirical results show that in both algorithms the use of
the covariance matrix substantially improves the registration results.

The algorithms work well despite the approximations needed to compute the
covariance matrix. The main reason for this effectiveness is that the covariance
matrix plays ils most important role as the algorithms near convergence. Stable
sampling only has a significant e[Tect when the dominant structures of the data are
well-aligned —- the small surface misalignments then appear in the eigenvectors
of the smaller eigenvalues and may therefore be corrected through the sampling
procedure. In the Dual-Bootstrap algorithm, the alignment is always close to con-
vergence in region F, even when the alignment appears to be poor throughout the
image. This means that the parameter estimate covariance matrix may be used to
guide the growth and model selection based only on points from E.
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The work described here offers a new approach to improving the performance
of registration algorithms — using the uncertainty in the estimates being com-
puted to guide further steps in the overall algorithm. This is reminiscent of
recursive estimation techniques such as the Kalman filter [637], but in the new
algorithms uncertainty is used more broadly, beyond the estimation equations
themselves. This could point toward the development of a variety of new algo-
rithms. Moving in this direction requires that a number of issues be addressed. On
the theoretical side, a new and more accurate approximation of the covariance ma-
trix is needed that depends on fewer assumptions. One approach might be the use
of resampling methods such as the bootstrap technique from statistics [295]. On
the more applied side, a second advance would be integrating uncertainty-driven
methods with approaches to initialization based on keypoint matching [121]. A
third advance would be incorporating uncertainty information into deformable
registration, one of the most important problems in medical image analysis.
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Chapterl5

Optical Flow Estimation

D. Fleet and Y. Weiss

Abstract

This chapter provides a tutorial introduction to gradient-based optical flow
estimation. We discuss least-squares and robust estimators, iterative coarse-
to-fine refinement, different forms of parametric motion models, different
conservation assumptions, probabilistic formulations, and robust mixture
models.

15.1 Introduction

Motion is an intrinsic property of the world and an integral part of our visual ex-
perience. It is a rich source of information that supports a wide variety of visual
tasks, including 3D shape acquisition and oculomotor control, perceptual organi-
zation, object recognition and scene understanding [319, 346, 393, 525, 542, 596,
754, 822, 865]. In this chapter we are concerned with general image sequences of
3D scenes in which objects and the camera may be moving. In camera-centered
coordinates each point on a 3D surface moves along a 3D path X (¢). When pro-
jected onto the image plane each point produces a 2D path 2(t) = (z(t),v(¢))7,
the instantaneous direction of which is the velocity d z(t)/dt. The 2D velocities
for all visible surface points is often referred to the 2D motion field [407]. The goal
of optical flow estimation is to compute an approximation to the motion field from
time-varying image intensity. While several different approaches to motion esti-
mation have been proposed, including correlation or block-matching (e.g, [25]),
feature tracking, and energy-based methods (e.g., [5]), this chapter concentrates
on gradient-based approaches; see [59] for an overview and comparison of the
other common techniques.
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Figure 15.1. The gradient constraint relates the displacement of the signal to its temporal
difference and spatial derivatives (slope). For a displacement of a linear signal {left), the
difference in signal values at a point divided by the slope gives the displacement, For

noniinear signals (right), the difference divided by the slope gives an approximation to the
displacement.

15.2 Basic Gradient-Based Estimation

A common slarting point for optical flow estimation is to assume that pixel
intensities are translated from one frame to the next,

Iw@,t) = I{@+u t+1), (15.1)

where I(x,t) is image intensity as a function of space z = (z,y)? and time
t,and u = (uy,up)7 is the 2D velocity. Of course, brightness constancy rarcly
holds exactly. The underlying assumption is that surface radiance remains fixed
from one frame to the next. One can fabricate scenes for which this holds; e.g.,
- the scene might be constrained to contain only Lambertian surfaces {no specular-
ities), with a distant point source (so that changing the distance to the light source
has no effect), no object rotations, and no secondary illumination (shadows or
inter-surface reflection). Although unrealistic, it is remarkable that the brightness
constancy assumption (15.1) works so well in practice.

To derive an estimator for 2D velocity u, we [irst consider the 1D case. Let
f1{z) and fa(z) be 1D signals (images) at two time instants. As depicted in Fig,
15.1, suppose further that f,(«) is a transtated version of fi(z); i.e., let fa(x) =
f1(z — d) where d denotes the translation. A Taylor series expansion of fi(z — d)
about z is given by

flz—d) = filz) —dfi(z)+O0@*f]), (15.2)

where f' = d f(z)/dz. With this expansion we can rewrite the difference
between the two signals at location z as

h(z) - fa2(z) = dfifz) + O f)).
Ignoring sccond- and higher-order terms, we obtain an approximation to d:

s _ (=) - falw)
d= BEEE (15.3)
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The 1D case generalizes straightforwardly to 2D. As above, assume that the
displaced image is well approximated by a first-order Taylor series:

e+ u,t+1) = I{z,t)+u Vi t)+ Lix,1), (15.4)

where VI = (I, I,) and I; denote spatial and temporal partial derivatives of the
image I, and u = (u;, u3)7 denotes the 2D velocity. Ignoring higher-order terms
in the Taylor series. and then substituting the linear approximation into (15.1), we
obtain {409]

VHz, t) - u+ L(x, 1) = 0, (15.5)

Equation (15.5) relates the velocity to the space-time image derivatives at one
image location, and is oflen called the gradient constraint equation. It one has
access to only two frames, or cannot estitmate [y, il is straightlorward to derive
a closcly related gradient constraint, in which 7, (=,%) in (15.5) is replaced by
affwe, &) = I{x,t+1) =, 1) [533].

Intensity Conservation

Tracking points of constant brightness can also be viewed as the estimation of 2D
paths «&(#) along which intensity is conserved:

Ha(i), 1) = ¢, {15.6)
the temporal derivative of which yields
d
Flz(t),t) = 0. 15.7
= (), 1) (157

Expanding the left-hand-side of (15.7) using the chain rule gives us

olde oldy 0Idt

dif(m(t) t) = ErT) +5§E+E;ﬂ = Vi u+1, (15.8)

where the path derivative is just the optical flow « = (du/dt, dy/dL)”. If we
combine (15.7) and (15.8) we obtain the gradient constraint equation (15.5).

Least-Squares Estimation

Of ceurse, one cannot recover « from one gradient constraint since (15.5) is one
equaticn with two unknowns, w; and us. The intensity gradient constrains the
flow to a one parameter family of velocitics along a line in velocity space. One
can see from (15.5) that this line is perpendicular to V{, and its perpendicular
distance from the origin is |I;|/|[V1]| .

One common way to further constrain u is to use gradient constraints from
nearby pixels, assuming they share the same 21 velocity. With many constraints
there may be no velocity that simultaneously satisfies them all, so instead we find
the velocity that minimizes the constraint errors. The least-squares (LS) estimator
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minimizes the squared errors [533]:

Blu) =Y g(@)[u- Viiz,0) + L(=z, ), (15.9)

where g(x) is a weighting function that determines the support of the estimator
(the region within which we combine constraints). It is commeon to let g(z} be
Gaussian in order to weight constraints in the center of the neighborhood more
highly, giving them more influence. The 2D velocity 7 that minimizes E(u) is
the least squares flow estimate.

The minimum of E{u} can be found from its critical points, where its
derivatives with respect to u are zero; i.c.,

OE (101, 149) ) )
e = ;g(m) [ulfx tuglly+ L] = 0
AL (g, ) . .

T Ouwp gg(cc) [ugdy? oLl + [0y = 0.

These equations may be rewritten in matrix form:
Mu = b, (15.10%

where the elements of M and b are:

M = [ Z'Ufzz ngT‘:‘J } b — _( ZQ‘[,T,JF;; ) )
Z.'}[xfy Z.@“’y ’ Zgryfri

‘When M has rank 2, then the LS estimate is 4 = M~'b.

Implementation Issues

Usually we wish to estimate optical flow at every pixel, so we should express VI
and b as functions of position x, i.e., M{z) u(x) = b{x). Note that the elements
of M and b are local sums of products of image derivatives. An effective way to
estimate the flow field is to first compute derivative images through convolution
with suitable filters. Then, compute their products (1., I. 1, £,% I 1, and I 1),
as required by (13.10). These quadratic images are then convelved with g(x, } to
cbtain the elements of M(x) and b(z}.

In practice, the image derivatives will be approximaled using numerical dif-
ferentiation. It is important to use a consistent approximalion scheme for all
three directions [303). For example, using simple forward differencing (i-e.,
I, = I{z,y) — I{z + 1,y)) will not give a consistent approximation as the z,
1y and ¢ derivatives will be centered at different locations in the xyi-cube [407].
Another practicality worth mentioning is that some image smoothing is generally
useful prior to numerical differentiation (and can be incorporated into the deriva-
tive filters). This can be justified from the first-order Taylor series approximation
used to derive (15.5). By smoothing the signal, one hopes to reduce the ampli-
tudes of higher-order terms in the image and to avoid some related problems with
temporal aliasing.
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Figure 15.2. (left) A single moving grating viewed through a circular aperture is consistent
with all 2D velocities along a line in velocity space. {right} With two drifting gratings there
are multiple constraint lines that intersect to uniquely constrain the 2D velocity. (After [6])

Aperture Problem

When M in (15.10) is rank deficient one cannot solve [or «. This is often called
the aperture problem as it invariably occurs when the support g(x) is sufficientty
local. However, the imporiant issue is not the widih of supporl, but rather the
dimensionality of the image structure. Even for large regions, if the image is one-
dimenstonal then M will be singular. As depicted in Fig. 15.2 (left); when each
image gradient within a region has the same spatial direction, il is easy to see that
rank[IM] = L. Moreover, note that a single gradient constraint only provides the
normal component of s,
T

Up = mme e
VI (v
When there exist constraints with two or more gradient directions, as depicted in

Fig. 15.2 (right), then the different constraint lines intersect to uniquely constrain
the 2D velocity.

15.3 Iterative Optical Flow Estimation

Equation (15.9) provides an optimal solution, but not to our original problem.
Remember that we ignored high-order terms in the derivation of (15.3) and (15.5).
As depicted in Fig. 15.1, if fi is linear then d = d. Otherwise, to leading order,
the accuracy of the estimate is bounded by the magnitude of the displacement and
the second derivative of fi:
5 & ()] 1 :
—d| € /e 2 .
ld—d| < 2V ()] b O{d™) {15.11)
For a sufficiently small displacement, and bounded | fi’/ f1 |, we expect reasonably
accurate estimates. This suggests a form of Gauss-Newton optimization in which
we use the current estimate to undo the motion, and then we reapply the estimator
to the warped signals to find the residual motion, This continues until the residual
motion is sufficiently small.
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In 2D, given an estimate of the optical flow field w4 °, we create a warped image
sequence 1%(x, t):

I, t+8t) = Iz +ult,t+6t), (15.12)

where &t is the time between consecutive frames. (In practice, we only need to
warp enough frames for temporal differentiation.) Assuming that 2 = u® + fu,
it is straightforward to see from (15.1) and (15.12) that

Pa,t) = (@ +0u,t+1). (15.13)

If d1 = 0, then clearly /Y would be constant through time (assuming brightness
constancy). Otherwise, we can estimate the residual flow using

d=M"1b (15.14)

where M and b are computed by taking spatial and lemporal derivatives
(differcnees) of £°. The refined optical flow cstimate then becomes
ul = w450

In an itcrative manner, this new tlow estimate is then used to rewarp the original
sequence (as in (15.12)), and another residual low can be estimated.

This iteration yields a sequence of approximate objective functions that con-
verge to the desired objective function [91]. At iteration 7, given the estimate 2/
and the warped sequence I?, our desired objective function is

E(du) = Zq(.r) [I(:I:_,f,) — I{w-Fu? +du, b 1}]2 {15.15)
x
= Y g@) [Flat) - F(z+6u, t + 1)]°
x

2

Y g() [ij(a:,t)-éu—l-ff(m,t)]z = B(du). (15.16)
&r

The gradient approximation to the difference in {15.15) gives an approximate
objective function F. From (15.11) one can show that F approximates F to
second-order in the magnitude of the residual flow, du. The approximation er-
ror vanishes as du is reduced to zero. The iterative refinement with rewarping
reduces the residual motion at each iteration so that the approximate objective
function converges to the desired objective function, and hence the flow estimate
converges to the optimal LS estimate (15.15).

The most expensive step at each iteration is the computation of image gradi-
ents and the matrix inverse in (15.14). One can, however, formuiate the problem
so that the spatial image derivatives used to form M are taken at titne £, and as
such, do not depend on the current flow estimate w7 [375]. To see this, note that
the spatial deriatives are computed at time ¢ and it is straightforward to see that
I{z,t) = Ii{x,t). Of course b in (15.14) will always depend on the warped im-
age sequence and must be recomputed at each iteration. In practice, when M is
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Temporal Sampling with Period T
T

ay 49

i

2n/T

N L

Figure 15.3, (Left} The spectrum of a translating signal is nonzero on a line in the frequency
domain. Temporal sampling introduces spectral replicas, causing aliasing for higher speeds
{stceper slopes). (Right) The problem may be avoided by bluring the images before
computing derivatives. The spectra of such codrse-scale filters will be insensitive to the
replicas, Velocity estimates from the coarse scale are used to warp the images, thereby
undoing much of the motion. Finer-scale derivative filters can now be used Lo estimate the
residual motion. {After [743])

nol recomputed from the warped sequence then the spatial and temporal deriva-
tives will not centered at the same location in (x, y, £) and hence more iterations
may be needed.

Temporal Aliasing and Coarse-1o-Fine Refinement

In practice, our images have temporal sampling rates lower than required by
the sampling theorem to uniguely reconstruct the continuous signal. As a
consequence, temporal aliasing is a common problem in motion estimation.

The spectrum of a translating signal is confined to a plane through the origin
in the frequency domain [322, 866]. That is, if we construct a space-time signal
f(z, 1) by translating a 2D signal fo{®) with velocity u, i.c., f(z,t) = folz -
wt), one can show that the space-time Fourier transform of f{a, ) is given by

Flwg,wy,wy) = Folwy,wy) 6(uiwy + ugwy +wy) , {15.17)

where Fy is the 2D Fourier transform of fo and 8() is a Dirac delta, Equation
(15.17) shows that the spectrum is nonzero only on a plane, the orientation of
which gives the velocity. When the continucus signal is sampled in time, replicas
of the spectrum are introduced at intervals of 2 /T radians, where 7" is the time
belween frames (see Fig. 15.3 (left)). It is easy to see how this causes problems;
i.e.,, the derivative filters may be more sensitive to the spectral replicas at high
spatial frequencies than to the original spectrum on the plane through the origin.
This suggests a simple approach to aliasing problems [25, 75]. Optical flow
can be estimated at the coarsest scale of a Gaussian pyramid, where the image
is significantly blurred, and the velocity is much slower (due to subsampling).
The coarse-scale estimate can be used to warp the next (finer) pyramid level to
stabilize its motion. Since the velocities after warping are slower, as shown in
Fig. 15.3 (right)), a wider low-pass frequency band will be free of aliasing. One
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can therefore use derivatives at the finer scale to estimate the residual motion.
This coarse-to-fine estimation continues until the finest level of the pyramid (the
original image) is reached. Mathematically, this is identical to iterative refine-
ment except that each scale’s estimate must be up-sampled and interpolated before
warping the next finer scale.

While widely used, coarse-to-fine methods have their drawbacks, usually stem-
ming from the fact that fine-scale estimates can only be as reliable as their
coarse-scale precursors; a poor estimate at one scale provides a poor initial guess
at the next finer scale, and so on. That said, when aliasing does occur, one must
use some mechanism such as coarse-to-fine estimation to avoid local minima in
the optimization,

15.4 Robust Motion Estimation
The LS estimator is optimal when the gradient constraint errors, i.e.,
elx) = w-Vi(x, &)+ Li{z,1), (15.18)

are mean-zero Gaussian, and the errors in different constraints are independent
and identically distributed {IID}. Not surprisingly, this is a fragile assumption.
For example, brightness constancy is often violated due to changing surface ori-
entation, specular refllections, or time-varying shadows. When there is significant
depth variation in the scene, the constant motion model will be extremely poor,
especially at occlusion boundaries.

LS estimators are not suitable when the distribution of gradient constraint errors
is heavy-tailed, as they are sensitive to small numbers of measurement outliers
[380, 518]. It is therefore often crucial that the quadratic estimator in (15.9) be
replaced by a robust estimator, p(-), which limits the influence of constraints with
larger errors {(e.g., see [40, 89, 612]):

E(u) = ) g(=) ple(@), 0) . (15.19)

&Y

For example, Black and Anandan [89] used the redescending Geman-McClure
estimator [342], ple,0) = e%/(e® + o?), where o determines the range of
constraint errors for which influence is reduced.

Among the various ways one might minimize (15.19), one very useful approach
takes the form of iteratively reweighted least-squares [518]. In short, this is an iter-
ative solution in which the weights g(x) in (15.9) are scaled by a weight finction
that downweights those constraints that are inconsistent (i.e., have large errors)
with the current motion estimate. Often it is also useful to anneal the optimization,
wherein o starts large, and is then slowly decreased to achieve greater rebustness.
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15.5 Motion Models

Thus far we have assumed that the 2D velocity is constant in local neighbour-
hoods. Unfortunately, even for small regions this is ofien a poor assumption. We
now consider generalizations to more interesting motion models,

Affine Model

General first-order affine motion is usually a better mode! of local motion than
a translational model (e.g., [75, 89, 320]). An affine velocity field centered at
focaliom arp can be expressed in matrix Torm ag
ulx; ey} = Az ) e, (15.20)
where ¢ = (£, €0, €3, €4, G5, ¢g) - are the motion model parameters, and
O R
Combining (15.20) and (15.5) yields the gradient constraint equation
Vi, t) Alzyzo) e + Lim,t) = 0,
for which the LS estimate for the neighbourhood has the form
&= M"'b, (15.21)
where now M and b are given by
M=) gA"VITVIA , b=-> gA"vIT],.
T x

When M is rank deficient there is insufficient image structure to estimate the six
unknowns. Atfine models often require larger support than constant models, and
one may need a robust estimator instead of the LS estimator.

[terative refinement is also straightforward with affine motion models. Let the
optimal affine motion be w = A e, and let the affine estimate at iteration j be
u/ = A ¢?, Because the flow is linear in the motion parameters, it follows that
Su = u—u’ and de = ¢ — ¢ satisfy

du = Adec. (15.22)

Accordingly, defining I7(x, t) to be the original sequence I{x, ¢} warped by u’
as in (15.12) we use the same LS estimatot as in (15.21), but with I and £ replaced
by 17 and dé. The updated LS estimate is then ¢/*! = ¢/ + §é.

Low-Order Parametric Deformations

There are many other polynomial and rational deformations that make useful mo-
tion models. Similarity deformations, comprising translation (dy, d2), 2D rotation
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(a)

Figure 15.4. (a,5) Mouth regions of two consecutive images of a person speaking. (c) Flow
field estimated using dense optical flow method. (d) Flow field estimated using the learned
model with 6 basis flow fields. {After [319])

@, and uniform scaling by & arc a special case of' the affine model, but still very use-
ful in practice. In a neighbourhood centred at @y it has the same form as (15.20),
but with € = (d), dy, s cosf, s sin)T and

0 1 y—w x—xp
With this lincar form, one can solve directly for ¢ using linear least-squares, and
then compute the similarity parameters dy, ds, 5, and £.

Another useful motion model is the projective deformation (or homography)
[75], which captures image deformations of a 3D plane under camera rotation
and translation. See in Chapter 17 for a discussion of homographies and related
motion models.

Sl = [1 0 @—z0 —y+uo

Learned Subspace Models

Many objects exhibit complex motions that arc not well modeled by low-order
polynomials. For example Fig. 15.4(a,b) shows two frames of a mouth during
speech, for which non-rigidity, occlusion, and fast speeds make flow estimation
difficult. Interestingly, the regression framework above extends to diverse types
of complex 2D motions with the use of basis flow fields, {b;(x)}7_;, such that
the local optical flow field is cxpressed as

J
u(m) = ) c;b;(w). (15.23)
i=1

In this context, optical flow estimation reduces to the estimation of the linear
coefficients ¢, analogous to the affine model discussed above.

In [319] a motion basis was learned for human mouths. This was accomplished
by applying a robust estimator with a generic smoothness model [89] to mouths
to obtain training dala (e.g., see Fig. 15.4(c)). The principal components of the
ensemble of training flow fields were then extracted and used as the basis. Figure
15.4(d) shows the optical flow obtained with the subspace model and a robust
estimator. The model was found to greatly increase the quality of the optical flow
estimates, and the temporal variation in the subspace coefficients were then used
to recognize linguistic events [319].
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General Differentiable Warps

In general, one can formulate area-based regression in terms of warp functions
w{z; p) that are not necessarily smooth in space, nor linear in the warp parameters
p. One can parametrize the warp as a function of time, or assume the two-frame
case:

Ha,t) = Hw(z;p), t+1). (15.24)

The warp functions must be differentiable with respect to p. To develop an effi-
cient estimation algorithm, one may need to further constrain w to be invertible
{e.g., see [375]).

15.6 Global Smoothing

While arca-based regression is commonly used, some of the earliest formulations
of optical flow cstimation assumed smoothness through non-parametric motion
models, rather than an explicit parametric model in each local neighbourhood
{e.g., see [407, 593, 7141}, Horn and Schunck [409] proposed an energy functional
of the form:

E(u) = /(w-u+ LY + M ([|[Vw|? + [|Vug||?) dedy. (15.25)

A key advantage of global smoothing is that it enables propagation of information
over large distances in the image. In image regions ol nearly uniform intensity,
such as a blank wall or tabletop, local methods will often yield singular {or poorly
conditioned) systems of equations. Global methods can fiff in the optical flow
from nearby gradient constrainlts.

Equation (15.25) can be minimized directly with discrete approximations to
the integral and the derivatives in (15.25). Thie yieids a large system of linear
equations that may be solved through iterative methods such as Gawss-Seidel or
SOR overrelaxation {352]. Allematively one can solve the corresponding Euler-
Lagrange (PDE) equations under reflecting boundary conditions (e.g., [133, 714]).
Recent extensions to global methods include robust penalty functions (for data
and smoothness terms), the use of coarse-to-fine search for optimization, and the
incorporation of stronger local constraints on the motion, resulting in impressive
optical flow estimates [133].

The main disadvantage of global methods is computational efficiency. Even
with more efficient optimization algorithms (e.g. [779, 878]) the computational
cost is far higher than with local methods. Whether this is justified may depend
on the image domain and the need for dense optical flow. Another problem is
in the setting of the regularization paramefer X that determines the amount of
desired smoothing (similar problems arise in choosing the support width for area-
based regression). Prior knowledge on the smoothness of flow can be useful here,
and more sophisticated methods might be used to estimate (or marginalize)} the
regularization parameter.
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15.7 Conservation Assumptions

All of the above formulations assumed intensity conservation. Nevertheless,
gradient constraints may be used to track any differentiable image property.

Higher-Order Derivative Constraints

Some techniques assume that image gradients are conserved (e.g., [593, 743,
823]). This provides two further constraints at each pixel, i.e.,

Uy 1:1:2. + 'U-QI:J.‘y 2 "rJ;t — 0 (15.26)
gy + Uplyy + Ly (.

These are useful insofar as they provide more constraints with which to esti-
male motion paramelers. Conversely, higher-order derivatives are olten extremely
noisy, and the conservation of V/ implies that the motion field has no first-
order deformation (e.g., rotation). Intensity conservation {15.7), by comparison,
assumes only that the image motion is smooth.

Phase-Based Methods

TPhase-based methods [320, 321] are based on an iniial decomposition of the
image into band-pass channels, like those produced by quadratore-pair fillers in
steerable pyramids [330]. While multi-scale representations are commonly used
for flow estimation, a further decomposition into orientation bands yields more
local constraints, often with betler signal-to-noise ratios. Complex-valued band-
pass images can be represented as real and imaginary images, or in terms of
amplitude and phase images. Figure 15.5 shows the real-part of a 1D band-pass
signal, along with its amplitude and phase, Amplitude encodes the magnitude of
local signal modulation, while phase encodes the local structure of the signal (e.g.,
zero-crossings, peaks, etc).

Phase-based methods assume conservation of phase in each band-pass channel.
The phase-based gradient constraint, given a complex-valued band-pass channel,
r(x, t}, with phase ¢(x, t) = arg[r(wx, t}], is simply

Vo(z,t) - u+ ¢lw,t) = 0. (15.21

These may be combined to estimate optical flow using any of the eslimators
above. In practice, because phase is a multi-function, only uniquely defined on
intervals of width 2, explicit differentiation is difficult. Instead, it is convenient
to exploit the following identities for computing spatial derivatives and temporal
differences,

9¢(w, 1) - Imry (@, ) r*(x)]
Oz r(z)[? ‘

éd(m,t) = argr(z, £+ 1) 7" (x,t)] .
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Figure 13.5. A band-pass filtered 1D signal can be expressed using its amplitude and phase
signals. Note the linearity of phase over large spatial extents.

where Im[r] denotes the imaginary part of , r* is the complex-conjugate of r,
and v, = 8r/dzx. Compared to phase, r{x, 1) is relatively easy to differentiate
and interpolate [322, 320].

Phasc has a number of appealing properties [or optical flow estimation. First,
phase is amplitude invariant, and thercfore quite stable when significant changes
in conirast and mean intensity occur between frames. Second, phase is approxi-
mately linear over relatively large spatial extents, and has very few critical poinls
where the gradient is zero. This is important as it implics that more gradient con-
straints may be available, and that the range of velocities thal can be estimated
is signilicantly larger than wilh image devivatives. This also improves the accu-
racy of gradient-bascd estimates, reducing the number of iterations required for
refinement. Phase has also been shown to be stable with respeet to first-order de-
formations of the image (rom one time to the nexi [321]. Both the expecied spatial
extent of phase linearity and the stability of phase are determined, in patt, by
filter bandwidth. The main disadvantages of phase concern the computational ex-
pense of the band-pass filters, and the spatial support of the filters near occlusion
boundaries and fine-scale objects.

Brightness Variations

While contrast normalization, or the use of phase, provides some degree of in-
varinnce with respect to deviations [rom brightness constancy, more signilicant
variations in brightness must be modeled explicitly. The models may be object
specific, to model objects under different lighting conditions [375], poses or con-
figurations {91]. Alternatively, the models may be physics-based [390], or they
may be generic models for smooth mean and contrast variations [595]. Despite the
wide-spread use of brightness constancy these models may be extremely useful
for certain domains.
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15.8 Probabilistic Formulations

One probiem with the above estimators is that, although they provide useful esti-
mates of optical flow, they do not provide confidence bounds. Nor do they show
how to incorporate any prior information one might have about motion to further
constrain the estimates. As a result, one may not be able to propagate flow esti-
mates from one time to the next, nor know how to weight them when combining
flow estimates from different information sources. These issues can be addressed
wilh a probabilistic formuldtion.

The cost function {15.16) has a simple probabilistic interpretation. Up to nor-
malization constants, it corresponds to the log likelihood of a velocity under the
assumption that intensity is conserved up to Gaussian noise.

I{z,t) = Ie+wu,b+1)+n. {15.28)

If we assume that the same velocity w is shared by all pixels within a neighbour-
hood, that # is white Gaussian neise with standard deviation o, and uncorrelated
at different pixels, we obtain the conditional density

p(I| u) o e7ar B (15.29)

where E{u) is the LS objective function {15.16). To obtain further insight into
this likelihood function, we again approximate F to second order using £ as in
(15.15). Under this approximation the liketihood function is Gaussian with mean
M ' b and covariance matrix MY,

The approximale covariance matrix M~ defines an uncertainty ellipse around
the estimated optical low, These uncertaintics can be propagated o subsequent
frames, or 1o olher spatial scales [744]. They can also be used directly in algo-
rithms for 312 reconstruction [418]. (See [880] for a more detailed discussion of
likelihood [unctions [or probabilistic optical flow estimation.)

The probabilistic formulation also allows one to introduce prior information.
Equation (15.29) can be combined with a prior probability distribution over local
velocities. For example, a very useful prior model is that the local flow tends
to be slow {e.g. [744]). This is convenient to model with a zero-mean Gaussian
distribution,

1 2
plni) og 3% THE (15.30)
Combining this prior probability with the approximate tikelihood tunction (15.29)
gives us a Gaussian posterior probability whose mean (and mode) is

w = (M+X) b, (15.31)

where X is the ratio of the noise and prior variances, A = 0”/c2. Note that this
Bayesian estimate will actually be biased, and will not correctly estimate the
speed or direction of patterns where the local uncertainty is large. This has the
benefit that it dampens the estimates to help avoid divergence in iterative refine-
ment and tracking. Interestingly, many “illusions” in human motion perception
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can actually be explained with a prior favoring slow motions and a Bayesian
model of inference [881].

Total Least-Squares

When one assumes significant image noise that contaminates spatial as well
as temporal derivatives, then the maximum likelihood motion estimate given a
collection of space-time image gradients is given by total-least-squares (TLS)
[598, 867]. If we view velocity as a unit direction in space-time, or in 3D homo-
geneous coordinates v = efug, uz,1), @ € R, and denote the space-time image

gradient 0, = (VI{xy,t),];(zx,t))7, then the gradient constraint becomes
0T v = 0. The sum or squared constraint errors is then
B(v) = vTSv , where S = z ok ok L. (15.32)
k

The TLS soluiion is obtained by minimizing 5{v) in (15.32), subject to the
constraint ||#|| = 1 lo avoid the trivial solution. The solation is given by the
eigenveclor corresponding lo the minimum eigenvalue of 5. This approach has
been called tensor-based, with S called the structure tensor [86, 390, 428}, These
methods have produced excellent optical flow results [305].

Different noise models yield different estimators. TLS is a ML estimator when
the noise in oy, is additive, isotropic and 1ID. When the noise is anisotropic and not
identically distributed the formulation becomes much more complex [597]. More
complex noise models, especially those with correlaied noise in local regions,
remain a topic for future research.

15.9 Layered Motion

One common problem with area-based regression methods concerns the size of
spatial support. With larger support there are more constraints for parameter es-
timation, but there is a greater risk that simple parametric motion models will
be unsuitable. This is particularly serious near occlusion boundaries where mul-
tiple motions exist. For example, in the scene depicted in Fig. 15.6 the camera
was translating, and therefore both the soda can and the background move with
respect to the camera, but with different image velocities. To demonstrate this,
Fig. 15.6 (right) shows a subset of the gradient constraints in the small region
(marked in white) at the left side of the can. There are two peints with a high
density of constraint-line intersections, corresponding to the velocitics of the can
and the background.

One way to cope with regions with multiple motions is to explicitly model
the fayers in the scene. The layered model is like a cardboard cutout represen-
tation of a scene in which different cardboard surfaces correspond to different
layers, and they are assumed to be able to move independently [435, 853]. Lay-
ered motion estimation can be formulated using probabilistic mixture models,
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Figure 15.6. {left) The depth discontinuity at the left side of the can creates a motion
discontinuity as the camera translates right. (right) Motion constraint lines in velocity space
are shown from pixels within the white square. (After [435])

with the Expectation-Maximization {EM) algorithm for parameter estimation
[38, 435, 878, 8791.

Mixture Models

Let there be a region of pixels {z), }i.(:l in which we suspect there are multiple

velocities; e.g., the region might contain an vcclusion boundary. By way of no-
tation, let u(ix; ¢} denote a parameterized How ficld with parameters ¢. Within a
single region of the image we will assume that there are N motions, parameter-
ized by ¢,, for 1 < 1 < N. Furthermore, according to the our mixture model, the
individual motions occur with probability .. These mixing probabilities tell us
what fraction of the f pixels within the region we expect to be consistent with
{i.¢., owned by) each motion. Of course the mixing probabilitics sum to 1.

Let us further assume that we have onc gradient constraint per pixel within the
region. Let og = (VI (xk, ), Ii{xx, t))7 denoto the spatial and temporal image
derivatives at pixel @;. As above, given the correct motion, we assume that the
gradient constraint is satisfied up to Gaussian noise:

e(xg; en) = Vi@, t) - uplz; cq) + Lz, t) = 77,

where 7 is a mean-zero Gaussian random variable with a standard deviation of
. Thus, the likelihcod of observing a constraint o, given the nt* flow model,
is simply pn(0k | €n) = Gle{mi; €n); o) where Gle; o) denotes a mean-zero
Gaussian with standard deviation o evaluated at ¢.

Finally, given the mixing probabilities and likelihood functions, the mixture
model expresses the probability of a gradient measurement oy, as

N
plok|m, c1, . en) = Y Mupalor|ca) .
n=1

The probability of observing o is a weighted sum of the probabilities of
observing o from each of the individual motions. The joint likelihood of a col~
lection of K independent observations {0z}, is the product of the individual
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probabilities:

K
L(m: L4 PRETER CN) = Hp{ok |m1 €l oveny CN) 5 (15'33)
k=1

Our goal is to find the mixture model parameters (the mixture proportions and
the motion model parameters) that maximize the likelihood (15.33). Alternatively,
it is often convenient to maximize the log likelihood:

K N
log Lim, ¢, ..., en) = Zlog ( My Prlok | c“)) .
1

k=1 n=

EM and Ownerships

The EM algorithm is a general technique for maximum likelihood or MAP param-
cter estimation [257]. The approach is often explained in terms of a parametric
model, some observed data, and some unobserved data. Our observed data are
the gradient constrainis. The model parameters are the motion parameters and
mixing probabilities, and the unobserved data are the assignments of gradient
measurements to motion models. Note that if we knew which measurements were
associated with which motion, then we could solve for each motion independently
from their respective constraints.

Roughly speaking, the EM algorithm is an iterative algorithm that iterates two
steps that compute 1) the expected values of the unobserved data given the most
recent estimate of the model parameters (the E Step), and then 2) the ML/MAP es-
timate for the model parameters given the obscrved data, and the expected valucs
for the unobserved data.

A key quantity in this algorithm is called the ownership probability. An owner-
ship probability, denoted g, {2y}, is the probability that the #** motion model is
responsible for the constraint (i.e., generated the observed data) at pixel @ This
is an important quantity as it effectively segments the region, telling us which pix-
els belong to which motions. Using Bayes’ rule, the probability that o4, is owned
by model M,, can be expressed as

p(ok | My) p(My)
plow)
In terms of the mixture model notation here, this becomes

p(Mn|og) =

My pn(ok | cva)
Sonm1 M Bn(0k | €n)

That is, the likelihood of the observation given the n'* model is simply
Dn(0k | €n), and the probability of the n** model is just m,,. The denominator
is the marginalization of the joint distribution p(oy, ¢,) over the space of mod-
els. And of course it is easy to show that > gn{xx) = 1. Inthe context of the EM
algorithm these ownership probabilities can be viewed as soft assignments of data

Gnl2s) = (15.34)
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to models. Once these assignments are made we can perform a weighted regres-
sion to find the motion parameters of each model, using the same tools developed
above for a single motion.

Given ownership probabilities, the updated mixing probability for model M,
is just the fraction of the total available ownership probability assigned to the n**
model, m, = % E;{-{ﬂ ¢n (g ). The estimation of the motion model parame-
ters is similarly straightforward. That is, given the ownership probabilities, we
estimate the motion parameters for each model independently as a weighted area-
based regression problem. For the case of a translational motion model, where the
molion parameters are just €, = ., this is just the minimization of the weighted
least-squares error

K
E(un) = Z Qﬂ.(mk) [v"(mk:‘t) $ Uy + It(wk:t) ]2 2 (15.35)
k=1
Because the mixture model likelihood function (15.33) will have multiple local
minima, a starting point lor the EM ilerations is required. That is, to begin the
iterative procedurc one needs an initial guess of either the ownership probabilitics,
or of the model parameters {motion and mixture parameters). Often one starts by
choosing random values for the initial ownership probabilitics and then begin with
the estimation of the mixing probabilitics and the motion model parameters.

Outliers

As above, we must expect outlicrs among the gradient constraint observations.
Gradient measuremenis near an ocelusion boundary, [or example, may not be
consistent with either of the iwo motions. As a result, il is oflen extremely uselul
to introduce an outlier model, My, in addition to the motion models; the likeli-
hood for this outlicr layer may be modcled with a uniform density [435]. Figure
15.7 shows results for the region near the can with two motion models and an
outlier model like that described here. For the region shown in Fig. 15.7, the mea-
surement constraints owned by the outlier model are shown in the bottom-right
plot.

15.10 Conclusions

This chapter surveys scveral approaches to optical flow cstimation. It is therefore
natural 1o ask what works best? While histonically some techniques have becn
shown to oulperform others [59], in recent years several dillerent approaches have
produced excellent results on benchmark data sets, provided one pays attention to
detail. Some of the important details include (1) multiple scales to help avoid
local minima, (2) iterative warping and estimate refinement, and (3) robust cost
functions to handle outliers. Accordingly, many techniques work well up to the
limits of the key assumptions, namely, brightness constancy and smoothness.
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Figure 15.7. The top ligures show a region at a depth discontinuity, and some of the con-
straint lines from pixels within that region. The black crosses in the upper-right show a
sequence of estimates at EM ilerations. While crosses depict the final the estimates. The
bottom figures showing ownership probabilitics. The bottom-left shows ownership proba-
bilities at each pixel (based on the motion constraint at that pixel). The next two plots shown
the velocily constraints where intensity depicts ownership (black denotes high owncrship
probability). The bottom-right plot shows constraint lines owned by the outlier model.
(After [435])

Future research is needed to move beyond brightness constancy and smooth-
ness. Detecting and tracking occlusion boundaries should greatly improve optical
flow cstimation. Similarly, prior knowledge concerning the expected form of
brightness variations {e.g., given knowledge of scene geometry, lighting, or re-
flectance) can dramatically improve optical flow estimation. Brightness constancy
is especially problemaiic over long image sequences where one must expect
the appearance of image patches to change significantly. One promising area
for future research is the joint estimation appearance and motion, with suitable
dynamics for both quantities.



Chapter16

From Bayes to PDEs in Image
Warping

M. Nielsen and B. Markussen

Abstract

In many disciplines of computer vision, such as stereo vision, flow com-
putation, medical image registration, the essential computational problem is
the geometrical alignment of images. In this chapter we describe how such
an alignment may be obtained as statistical optimal through solving a par-
tial differential equation (PDE) in the matching function. We treat different
choices of matching criteria such as minimal square difference, maximal cor-
relation, maximal mutual information, and several smoothness criteria. All
are treated from a Bayes point of view leading to a functional minimization
problem solved through an Euler-Lagrange formulation as the solution to a
PDE. We try in this chapter to collect the most used methodologies and draw
conclusions on their properties and similarities.

16.1 Motivation and problem statement

In many disciples in computer vision, the essential ill-posed problem is that of
matching two images. The same problem has been given different names depen-
dent on the context: matching, correspondence, flow, registration, warping, etc.
No matter the name, the problem is to establish pairs (1, %2) of points so that
Iy (x1) = I3(x2). Here the notation ~ has been used for “corresponds to”. At this
point, we will denote the correspondence with a function W, disregarding prob-
lems in relation to whether it has unique values or whether it is defined in every
point:

Ty = W([L‘l) : Ql — QQ.

Using projection images I, I as in stereo vision [653], optic flow computa-
tion [409], and x-ray imaging, a unique correspondence will not in general exist.
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This is a serious problem of also practical importance since occlusion often ap-
pears in real world examples. However, this is due to the projection and not the
fundamental problem of cstablishing a geometrical alignment. Tn this chapler, we
will not deal with the problems originating from the projection (such as occlu-
sions) leading to multi-valued or locally undefined functions W. We will limil
ourselves to mappings otiginaling [rom physical actions such as deformations,
articulations, or viscous flows of objects. That is, taking the domains €7 and Q5
as the NV-dimensional Euclidean space IR,

xy = W(z1), x e RN,z eRY, W eH,

where H is a sct of admissible warps. We will later define the set of admissible
warps as the set of diffeomorphisms D: differentiable mappings where the inverse
exists and also is differentiable. This setup is valid for all physical, non-projected,
imaging situations ol evolving objeclts. Tt also applies Lo the situation of mapping
images of different objects of identical topology.

16.2 Admissible warps

The set H of admissible warps must from a physics/engineering point of view ful-
fill some basic requirements. Nevertheless, often for mathematical convenience
and guaranteing unique solutions, these properties may be violated. In the follow-
ing we list the required properties, the most popular choices of sets of admissible
warps, and shortly list their pros and cons.

The required properties of admissible warps are:

Realizability A smooth development over time must be able to produce the warp.
Otherwise an underlying physical process would not be realizable.

Prescervation An admissible warp must be defined for all points in the source
image. Otherwise poinls would disappear and have no image.

Smoothness The admissible warp must be continuous and differentiable. Oth-
erwise non-physical situations like breaking objects under zero-viscosity
would arise.

Composition The warp of a warp must be an admissible warp. Otherwise,
warped images would not be images themselves, since they could not
necessarily be warped again.

Invertibility The inverse of an admissible warp must also be an admissible warp,
Otherwise, we could match A to B, but not necessarily B to A. Hence, all
the above propertics must also be fulfilled for the inverse warp.

Examples of these are shown in Figure 16.1.

The most general class of warps {ulfilling all the above criteria is the set of
positive diffeomorphisms Dy : non-retlective differentiable mappings where the
inverse exists and also is differentiable. They form a group so that the difference
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Figure 16.1. Example of a one dimensional matching function W{z) : IR — 1R At a the
preservation is vielated, a b the smoothness, and at ¢ the invertibility,

of any two warps exists: W = Wy o lVl_l takes W5 into Wy, A non-reflective dif-
feomorphism W = {w, },,<x has positive Jacoby determinant with the Jacobean
given by J(W) = {Bwn /05 }_ . Tn 2D this reads

W = ( w(z, y) ) . where Yx,y € R*: det(J(W)) = uzu, — uyv, > 0.
v(z, y) .

The group of diffeomorphisms is not always very easy to handle. Hence, other
sets of admissible warps often are employed in practical algorithms. From a math-
ematical point of view, the two most “nasty™ properties of diffeomorphisms are:
— 1t is not possible to decide whether a mapping is diffeomorphic from the indi-
vidual coordinate functions.

— One cannot span all diffeomorphisms in a neighborhood by exponentiating the
local affine connection. That is, one cannot view the group as a manifold.

The first nasty property makes it algorithmically necessary to treat all coordinate
functions at the same time. One cannot decouple their computation and prove
properties in simple seperable form. The second nasty property makes it compli-
cated {though not impossible) to define sensible norms on diffeomorphisms since
“geodesics will not be straight™, Lo put it simply. Norms are often a very necessary
ingredient in identifying warps, as one wishes to find the “smallest” warp fulling
some data constraints,

The two nasty properties of diffeomorphism have lead to allernative choices of
admissible sets of warps. The most popular choice has been (here stated in 2D):

W = ( u(w, y) ) ,  where u,v e §%,
W(ng)

Here, 52 is a Sobolev space of order n (all derivatives up to order 7 exist and
are square integrable). We will denote this space of admissible warps S,,. The
popularity of &, mainly comes from the fact that the Sobolev spaces are normed
regular spaces, and the norm on &,, may simply be computed as the sum of the
norm of the coordinate functions {u, v). Using S2 (employing the L3-norm) fur-
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Figure 16.2. Two images of large deformations: Left is the maximum likelihood diffeomorphic warp,
riphi is a Sobolev warp. The latler shows a folding and is not invertible.

thermore makes it possible to prove uniqueness and existence of solutions: the
theory from Tikhonov regularization [797] of ill-posed problems carries over.

The price to pay Tor this mathemaltical and algorithmic convenience is that some
of the above properties are vielated. The definition on the full domain, continuity
and differentiability (up to order n) of the warp, and the smooth development are
fulfilled. While, we cannot any longer guarantee an inverse warp and composition
of warps.

For small deformations, there may not be huge difference, from a practical point
of view, of the warps minimizing any Sobolev norm or one minimizing a norm
on diffeomorphisms. Nevertheless, it is evident from theory, and also practical
experiments, that for larger deformations, the Sobolev norm minimizing warps
suffer also from practical deficiencies such as foldings making several points map
to the same point.

Lately, also the space of functions of bounded variation BV -space has been em-
ployed as warp functions, These also {in a zero-measure set) violate the continuity
and differentiability criterion. They have mainly been employed to overcome
problems due to a projective transformation (such as occlusion), and they will
not be treated further here, but show nice practical propetties in e.g. the optic flow
setting [122].

16.3 Bayesian formulation of warp estimation

The problem of identifying a warp given a pair of images is ill-posed since a
unique solution in general does not exist. Hence, an inference is necessary and a
mere deduction is not viable. We employ statistical inference. The optimal warp
may be identified on basis of the posterior:

p(I, LIW) p{W)
pWlih,Ly=——"— =
p(Wih, o) p(l, Ia)

Many different solution may be singled out from the posterior: the mean, gen-
eralized median, local modes, or global modes. We employ the MAP (Maximum
A Posteriori) scheme being the minimum risk estimator when all wrong solutions
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are considered equally bad. Thal is, we wish to find the warp that maximizes the
posterior.

We then ignore the evidence p(Iy, {2) in our quest lor W, since il does not de-
pend on W, Notice, if you wish Lo probe the posterior as a normalized probability
density function computing e.g. mean and/or moments, normalization may easi-
est be obtained through explicit normalization by [ p(W {1, I3)dW . Our optimal
estimate reads:

W* e M;%IH;EXP(W“l’ Iy) = fugm_m ( = logp{f1, f2|W) — log p(W)}.
€
In which the first term is denoted the log-fikelifood or matching or data term and
the second term is denoted the fog-prior or smoothness or regularization terim.
Normally, we will assume a Markov property of both the likelihood and the
prior so that the marginal distribution in a point only depends on a spatial neigh-
borhood A of this point, and so that the total distribution may be written as
independent marginal distributions. Hence,

W* = arg min/ (Pd(W(.’I;" e N(x)) + P.(W(z' e Nz )))
WeH

In the discrete selting, (his translation using the Markov property is straightfor-

ward. In the continuous sctting however, this is not the case since the distribution

is a product integral and the space of warps on the finite neighborhood is stilf in-

finite dimensional. Without treating potential problems arising from this, we will

simply assume that in the continuous domain we may write

P(W{x' € N(z))) = F(W(z), DW (x)),

where [7 is an appropriate finite list of ditferential operators. In the discrete setting
this is straightforward using appropriate finite difference operators.
In this way the functional E[W] = Eg(W]+ E,[W!] = —log p(W|I1, I2) reads

EW] = / Fa(W(x), DW (z))dw + / Fy(W(x), DW (x)) da.

As a conclusion, we have now cast the MAP estimation problem into a
functional minimization problem that may be solved by a gradient descend
algorithm:

Wiz, 0) = Wy(a),

OW(z,t)  OE (16.1)
at W’

where Wy is some initial guess, and typically the identity Wy (z) = =

In the following we will examine different likelihood and prior terms, and Lo
the degree the result is known to us, comment on problems regarding existence
and uniqueness of the sclution. In some special simple cases direct solution of the
Euler Lagrange equation /7 /4W == 0 may even be possible.
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16.4 Likelihood: Matching criteria

In this section we go through some of the most commonily adopted match-
ing criteria, their statistical justifications, and when appropriate their variational
formulation to plug into the gradient descend PDE (Eq.16.1).

Landmarks. We will start with the simplest possible scenario where a number of
landmarks ; and their match ), are known a priori:

plI, LIW) = Ha L — W(z;)).

This will normally be solved as a constraint minimization problem:
W*=  argmin E,[W]
WeHy=W(z)

gither using Lagrange multipliers or a gradient projection algorithm [681]. For
simple smoothness terms this may even be solved analytically [102). This is the
case for H = & (see below).

Given imprecise landmark matches the likelihood reads:

o, W) = HGU‘ (g — W (1)),

here using additive Gaussian noise of standard deviations o;. In this case the
minus log-likelihood is quadratic in W

e 3R
EJ[W; — E {?;’-a W(“Cz}) , aFd Z Y — W{I1

20‘1;

Like for the precise landmark matches this may be solved analytically for simple
smoocthness terms.

The siluation where the landmarks are not matched up in pairs so that ypgy —
Wi{x,;) is the quantity for minimization and the minimization must also be per-
formed over the permutation function § = P(i) is not tractable to solve by
gradient descend approaches, but must be combined with algorithms for solving
the “optimal marriage problem” [349].

Image noise models. A more interesting class of likelihood terms does not require
an identification of landmarks, but operate directly on the image functions. The
simplest here is Lo assume a model of ii.d. Gaussian additive noise: I{xw) =
I (W (z)) + n(x). This leads to a data term
; 1 2
BW) = 55 [ (@) - hW()* da
=

§Ey L(x) — (W (z))
= fa—zw (W (w)) da.
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Of course other i.i.d. noise models than Gaussian can be assumed leading to the
more general form

BAW] = [ 6(nle) - (W) e

L,
W

/ ¢ (Ia(z) — 1L (W (2))) VI (W () dx.

Furthermore the neise model may be generalized to stationary noise process,
e.g. the Brownian noise model, where the local increments are i.i.d. Gaussian:

W] = 5 [ V(@) - (W) do

=
6By _ [ (VYOI = W@ s iy an
m} - [ p VI{W () dz.

This term has, to cur best knowledge, never been employed in practice, but would
potentially allow for drift in inlensities like in MR images with a smooth bias
fields uncorrelated between the two images.

Intensity transforms. Another model directly taking into account that image
intensities are not the result of the same formation process but may arise from
different modalities is the correlation ratio:
[ LA(WE)hE)

VEW (@) L)
The probabilistic interpretation on this is very similar to the additive Gaussian
noise process above, but with the additional degree of freedom that images may be
multiplied with a free parameter so that (a; — bl>) is the term for minimization.
Here appropriate constraint on @, b must be added, so that ab = 1, to avoid the
trivial solution ¢ = & = 0. Formal derivation of this leads to the correlation ratio
being proportional to the log-likelihood. The variation of this with respect to the
warp is computed by Hermosillo et al. [397].

The final data term we will present is the muwsual information criterion [652].
This is not simplest derived from the Bayes point of view, but from the Minimum
Description Length principle [676]. In general, Bayes and MDL inference has
been shown to be identical and merely a reformulation of each other [430], Some
problems may easier be formulated in the Bayes language, while others are most
easily formulated using the MDL language. Mutual information belongs to the
latter category, The basic idea here is to find the warp so that Iy may be commu-
nicated in the shortest message possible to a person already knowing Iy. Using
Shannon’s formalism of Z{z) = —logp(x), where Z is the information shows
that this does not change anything with respect to handling the prior term, The
total object of minimization is the sum of the code length of the likelihood and
the prior: T = Z gy, + 7 The code length of I knowing I3 (W (z)) may be

Eq[W]

prior
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wrilten as a (negleclable) constant minus the mutual information of I and I so
that

E,_{[I’V] =S f‘p'w' (’!.1 3 Lg:l ].()g M d“ d'r‘:g,
pw (i Jp(ia)
where 11, i3 arc the intensities in image ) and [ respectively and p(%) is the dis-
tribution ol intensities in the image. p(41, i2) is the joinl distribution of intensitics
in corresponding positions. Henee, it depends on the warping of ;. In this case
we find [397]:

éﬁf:‘i@ . / ( 1 Sow (41, 1".2) 3 1 épw (11)
aw ; pw(%l,’&g) 611 j}('.‘:l) 3!1
This concludes our journey through likelihood terms. A final comment is that
all these are of course constructed models relying on the image formation pro-
cess. In any situation, the choice of model comprises a compromise between the
modeling capabilities and the model complexily. The models presented here are,
o our opinion, gradually more compiex allowing for more loosc definitions of
“correspondence”.

) VI (W(z))dx.

16.5 Prior: Smoothness criteria

All the likelihood terms above are not sufficient to ensure a regular warp. The prior
term ensures this, when regular warps are more probable than irregular warps. In
this section we look at a number of priors and the properties they induce on the
warps. In order to make a prior on warps ensuring the above mentioned properlies,
rather complex constructions must be used. Before going into such constructions,
we handle the simplest and most popular cases. Seme of these also have the nice
property that they ensure the existence of solutions.

Soboley norms. The most simple construction is a Brownian motion model for
the coordinate functions so that

2
EJ(W) = f”J(T‘;’;F;"?))”z i
=
dEs [ AW(z)
W f—f}ﬁmd“:’

where .J is the Jacobean and A denotes the coordinate-wise Laplacean. This
Brownian motion assumptions hence leads to a first order Sobolev norm S% induc-
ing a gradient descend which is the heat equation in the coordinate functions, and
thereby fulfill the realizability, preservation, and smoothness, but not necessarily
the composilion and invertibility criteria. We may denole this warp diffusion. It
has been employed for simplifying 3D shape correspondences in the geometry-
constrained diffusion [26), and in the optic flow setting in the original work by
Homm and Schunck [409].



From Bayes to PDEs in Image Warping 267

Next step of complication is to use the local second order structure for a
Graussian model to construct the prior. In this case

e | Te(IT (W (2))) |1
E(W) = Lo
) - [N
.___>
5B, [AAW()
W / a? !

where H is the component-wise Hessian and Tr is the component-wise trace. In
2D with W = (u, v), this reads

2 2 2 e 2
Fe(W) = 2z, + 2unattyy + uyy + Uiy + 20000y + vy,

This is also denoted the Thin-Plale energy as F, compares to the bending energy
of a thin plate [102). This is simply the second order Sobelev norm S3. Since it
does not depend on the first order structure, it is invariant to affine transformations
of any of the source or destination images [348). Furthermore, it remains the nice
existence propertics of the Sobolev norm regularizers, but still does not in general
lead to invertible warps.

For the Sobolev norms it is in general possible to solve the Euler-Lagrange
equation analytically by cigenfunction cxpansions. Especially in the exact land-
mark matching scenario this leads to very simple schemes just involving the
inversion of an NM x NM matrix where M is the number of landmarks and
N the dimensionality of the warp domain [102].

It has also been proved for more complex likelihood terms such as image
difference, correlation ratio, and mutual information that the solution exists [397].

Diffeomorphic warps. We could now continue to Sobolev norms of even higher
order. However, they have never proved their value in practice, and may mainly
be seen as an exercise in symbol manipulation. Instead we turn to the construc-
tion of a sensible prior on the space of ditfcomorphisms. This is a little more
complex than the above quadratic separable energies that lead to simple separable
lincar PDEs in the warp. On the other hand, the motivation is to obtain prov-
able invertible warps, that may even be constructed source-destination symmetric
[600].

Above, we used Brownian motion models in the coordinate function to con-
struct a prior. In the warp selting we may make another Brownian motion
construction more natural for warps [601]. Assume a warp W is constructed as

the composition of A small warps Wy, = IEH):

W=Wgo -coWyoW; = H oWy,
Rl
Furthermore, assume that these warps are statistically independent. In this case
such a sequence of warps may be considercd a Brownian motion in the spacc
of diffeomorphisms. If we only look at the first order structure J(W¥W () in a
point &y, following along the warps so that =, = Wi {zx_,} we find by chain rule
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Figure 16.3. The independent action of the parameters on a unit square.

differentiation:

I‘V .’,CQ H J(H h :I'h,_.
he H

Assuming statistical independence and finite variance of the individual entrics in

the Jacobians lead to a unique solution for the distribution p 4 4(./) only dependent
on the infinitesimal mean and variance

b= lim H mean(J{W}Em) - 1), A= Hﬁm H Vaf{'I(LV#EH))]'
b )

Hevoa

The exact probability density function is a rather complicated entity and {s to our
knowledge only known explicitly in dimension N = 2, see [427]. In this case it
for b = 0 and A = o7 can be written as

Pa2rald) = Go(5) g(F,0),

where 7, 1s the Gaussian distoibution with standard deviation o and S, I,  are
the local scaling, skew, and rotation respectively:

Scaling 5 = log(det(J{W})}

1

] | LU 2
Skewness 2 Aot TV I|J(W)|5
Rotation f = arctsn (M)

Ji1 + J2e

The distribution may be approximated very well by the following expression
independent in the parameters [601]:

Porta(d) % Co(8) Gy ya(8) €10,
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Furthermore assuming spatial independence of the Jacobeans of the warps leads
to the following energy and its variation;

2 2 1
W) = 59 25'02+ 2ot
=
5B, 1 2logD =20l 8D 1 6]iJ|3 g a0
W T 2 D oW B ew s

where J is the Jacoby matrix of W and D = det(.J).

This smoothness term provably leads to source-destination symmetric (and also
thereby also invertible) selutions [600]. It fulfills all the above mentioned prop-
erties, but is more complicated to handle than the regularizers based on Sobolev
norms as they lead to linear terms in the PDEs. Furthermore, existence of the
golution still remains to be proved on the continuons domain,

The solution above is not the ounly one [ulfilling all the propertics. Any
smoothness term on the following form will ensure this:

Eo(WY = X J(S?) + A g(F) + A3 h(6%)

where f, g, h are differentiable monotonically increasing functions. Especially the
cases (A1, Az, Az} = {1,0,0) leads to nearly incompressible (area preserving)
warps in the landmark matching cases, whereas (A1, Az, Az} = (0,1,0) leads to
nearly conformal (angle preserving) mappings.

16.6 Warp time and computing time

The realizability requirement on admissible warps implicitly assumes the exis-
tence ol a physical mechanism producing the warp. Suppose this physical process
evolves over the time interval [0, 7. At time zero we have the initial image Iy and
at time I’ we have the final image f;. Similarly, the warp at time zero is simply
the identity mapping Wy (:x) = = and the warp Wy at time T is the warp between
the initial and final image. At other points of time ¢ intermediate warps Wi exist.
We refer to the time variable ¢ as the warping time, which is to be interpreted as
a physical time. For any two points of time s, ¢ the physical mechanism produces
the warp W,y = W, o W, ! from time s to time t. The collection of warps W 4
must satisty the following flow properties

W, oz} =z, Wiy = Wy oW,

The first property states that there is no physical action at a single time point. The
sccond property states that the cvolution from time & to time ¢ can be realized
by composing the evolution from time s to time w with the evolution from time
1 to time 4. The Brownian motion in the space of diffeomorphisms discussed in
Section 16.5 uses warping time. Here the warp W,EH) can be considered as the
warp from time (£ — 1)1'/{! to time KT/ H. The statistical assumptions leading
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to the Brownian prior then state that the flow of warps is temporal homogeneous
and stochasticaily independent over disjoint time intervals.

The introduction of the warping time can be impracticable for implementations
since it requires the estimation of the entire flow of warps W; instead of the final
warp W = Wy, Tf only the final warp is needed, then it can be beneficial to
neglect the warping time. In this formulation an energy functional £ (W) of the
warp is defined, e.g. implicitly using the warping time. The corresponding MAP
estimation is ofien performed using gradient descend, see (Eq.16.1), over some
artificial time variable ¢t. We refer to such a time variable as the computing time.

16.7 From fluid registration to diffeomorphic
minimizers

A classical PDE approach to image warping still left undiscussed is fluid registra-
tion, Lel & be some partial difTerential operator, e.g. the linear elasticity operator
with Lamé constants g and A from the Navier-Stokes equation

PLv=uViu+ A+ p)V(V o).

The velocity field v{z) is given by the PDE .2’v = b with appropriate boundary
conditions, see [196]. Here the driving force b is given by the direction minimizing
the maiching criteria. The fluid registration is given by the evolution

oW s Eq(W)
bl Loy =— S |W=Wa.'

Over the infinitesimal time increment df the warp is evolved by Wipue = (I |-
wydt o W) o W,. This composition of warps ensures the admissibility at every
point of time. As time increases the matching criteria Fg(W,) is minimized. If
we define the energy of the velocity ficld by [ ||.%°v]|? dw, then the total warping
energy is given by the squared length of the gradient descend path

f/ “j”t“zda:dt_f/

Albeit linked to physics via the Navier-Stokes equation the temporal variable ¢
in the fluid registration method is a computing time. This is due fo the fact that
the driving force at time ¢ depends on the image I, at the infinile fulure and
hence is non-physical. To reformulate the fiuid registration method in a Bayesian
framework and interpret the temporal variable as warping time the energy should
be decoupled from the matching criteria. For this we define the velocity lield on
its own right, now over a finite time horizon »(f,%): [0,T] x RY — R The
warp W (x) = Wr(x) is connected to the velocity field via the transport equation

bE; 2
L L2 - | doat

Wi(:t:)::n-i--/‘; ol W, o) e
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and the corresponding smoothness criteria is defined via the energy

T =
By(W) = /U /w 1 Lo(t, 52 du i,

see [442]. This functional may be interpreted as an iterated Sobolev norm. If
»* denotes the MAP solution to the velocity field, then the corresponding warp
W= = W1 is given by

-t
Wi (z) =z + / v (s, Wi{z)) ds.
0
The Bayesian formulation of the fluid registration method is closely linked to
the Brownian prior described at the end of Section 16.5. The statistical assump-
tions leading to the Brownian prior imply, see [495], that there exist coefficient
functions b, fy : RY — RN such that the flow of warps is the solution to the
stochastic differential equation

t o t
H”L{a}):x—f—/g b{(W(z)) ds+z/0 Fi(Ws(2)) dBi(s).
; o

Here the 53;(s)’s are stochastically independent Brownian motions and the inte-
gral is the so-called Ité stochastic integral. Let the function a{z, ) be defined by
alz,y) = Frey ful@) fi(y)™. If the functions b{z) = b and a(z,z) = A are
constant, then the distribution of the Jacobean J (W)} exactly equals the distri-
bution p4 4(J) discussed above. Instead of using the Jacobeans it is possible to
do the Bayesian analysis directly on the Brownian motions By, see [545]. More-
over, if the covariance function a(x,y) is the Greens function for the square of
the partial differentia} operator 22, i.e. £ Lalx,y) = 65—y, then the MAP warp
in the fluid registration formulation equals the MATP warp in the Brownian prior
formulation. This was proved explicitly for the landmark matching problem in
[545].

16.8 Discussion and open problems

Above we have presented the warp-estimation process in the Bayes framework
leading to PDEs as gradient descend algorithms in the minus log posterior. For all
likelihood or data terms existence of a solution to the PDE has been proved using
a Sobolev norm regularizer on the warp.,

We have presented such Sobolev norm regularizers. Among which the second
order “thin-plate bending energy™ is one of the most popular choices in biomed-
ical image registration. We have argued that the Sobolev norm regularizers has
a deficiency in fulfilling the required property of invertibility. As a remedy we
have made the connection of iterated Sobolev norms to more complex regulariz-
ers based on norms on diffeomorphisms. Basically, this indicates that all existence
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results may carry over to these more theoretically satisfactory albeit more com-
plex norms. Nevertheless, from a formal point of view, many open problems still
exists:

+ Are iterated Sobolev norms formally identical to the Brownian warps?

= Does the more complex diffeomorphic norms guaraniee existence of
solution to the Euler-Lagrange equation?

* Can efficient algorithms for the diffeomorphic norm minimizers be con-
structed?

+ Cun g more [ormal connection between (uid flows and Brownian warps be
cstablished?

= How does scale arise in the representations? Can we carry over knowledge
from weakly turbulent flows?

These are open problems of more theoretical nature. The final and maybe most
important chailenge is to characterize the sclution implied by the different PDEs
in order to make it possible to make qualified decision of which methodology to
apply in which practical setting.



Chapterl7

Image Alignment and Stitching

R. Szeliski

Abstract

Stitching multiple images together to create beautiful high-resolution
panoramas is one of the most popular consumer applications of image
registration and blending. In this chapter, I review the motion models (ge-
ometric transformations) that underlie panoramic image stitching, discuss
direct intensity-based and feature-based registration algorithms, and present
global and local alignment techniques needed to establish high-accuracy
correspondences between overlapping images. I then discuss various com-
positing options, including multi-band and gradient-domain blending, as
well as techniques for removing blur and ghosted images. The resulting tech-
niques can be used to create high-quality panoramas for static or interactive
viewing.

17.1 Introduction

Algorithms for aligning images and stitching them into seamless photo-mosaics
are among the oldest and most widely used in computer vision. Image stitching al-
gorithms have been used for decades to create the high-resolution photo-mosaics
used to produce digital maps and satellite photos [570]. Frame-rate image align-
ment is used in every camcorder that has an image stabilization feature. Image
stitching algorithms come “out of the box” with today’s digital cameras and can
be used to create beautiful high-resolution panoramas.

In film photography, special cameras were developed at the turn of the cen-
tury to take wide-angle panoramas, often by exposing the film through a vertical
slit as the camera rotated on its axis [559]. In the mid-1990s, image align-
ment techniques started being applied to the construction of wide-angle seamless
panoramas from regular hand-held cameras [543, 180, 776]. More recent work
in this area has addressed the need to compute globally consistent alignments
[781, 709, 739], the removal of “ghosts” due to parallax and object movement
[570, 248, 739, 825, 7], and dealing with varying exposures [543, 825, 7]. (A
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collection of some of these papers can be found in [74].) These techniques have
spawned a large number of commercial stitching products [180, 710].

While most of the above techniques work by directly minimizing pixel-to-
pixel dissimilarities, a different class of algorithms works by extracting a sparse
set of features and then matching these to each other [148, 121]. Feature-based
approaches have the advantage of being more robust against scene movement,
and are potentially faster. Their bigpest advantage, however, is the ability to
“recoghize panoramas”, i.e., to automatically discover the adjacency {overlap)
relationships among an unordered sel o[ images, which makes them ideally suited
for fully automated stitching of panoramas taken by casual users [121].

What, then, are the fundamental algorithms needed for image stitching? First,
we must determine the appropriate motion model relating pixel coordinates in one
image Lo pixel coordinates in another (Section 17.2), Next, we must somehow
estimate the correct alignments relating various pairs of images, using either di-
rect pixel-to-pixel comparisons combined with gradient descent or feature-based
alignment techniques (Section 17.3). We must also develop algorithm to com-
pute globally consistent alignments from large collections of overlapping photos
{Section 17.4). Once the alignments have been estimated, we must choose a fi-
nal compositing surface onto which to warp and place all of the aligned images
(Section 17.5}. We also need to seamlessly blend overlapping images, even in
the presence of parallax, lens distortion, scene motion, and exposure differences
{Section 17.6). In the last section of this chapter, I discuss additional applications
of image stitching and open research problems. For a more detailed tutorial on all
of these components, please consult [778].

17.2 Motion models

Before we can slitch images to create panoramas, we need to establish the math-
ematical relationships that map pixel coordinates from one image to another. A
variety of such parametric motion models are possible, from simple 2D trans-
forms, to planar perspeclive models, 31 camera rotations, and non-planar (e.g.,
cylindrical) surfaces [776, 781].

Figure 17.1 shows a number of commonly used 2D planar transformations,
while Table 17.1 lists their mathemalical form along with their intrinsic dimen-
sionality. The casiest way to think of these is as a set of (potentially restricted)
3 x 3 matrices operating on 2D homogeneous coordinate vectors, &' = (2, ¢, 1)
and & = (2,7, 1), s.L.

a ~ Ha, (17.1)

where ~ denotes equality up to scale and H is one of the 3 > 3 matrices given in
Table 17.1.

2D transiations are useful for tracking small patches in videos and for com-
pensating for instantaneous camera jitter. This simple two-parameter model is the
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Figure 17.1, Basic set of 2D planar transformations

one most commonly associated with Lucas and Kanade’s patch tracker [533],
although, in fact, their paper also deseribes how to use an affine motion model.

The three-parameter rotationttranslation {(also known as 2D rigid body motion
or the 2D Euclidean fransformation) is useful for modeling in-plane rotations,
for example when different portions of a larger image are scanned on a flatbed
scanner.

Scaled rotation, also known as the similarity transform, adds a fourth isotropic
scale parameter s. This is a good mode! [or a slowly panning and zeoming cam-
era, especially when the camera has a long focal length. The similarity transform
preserves angles between lines.

The six parameter affine transform uses a general 2 x 3 matrix (or equivalently,
a 3 x 3 matrix where the bottom row is [ 0 01 ]) It is a good model of
local deformations induced by more complex transforms, and also models the 3D
surface foreshortening observed by an orthographic camera. Affine transforms
preserve parallelism between lines.

The most general planar 2D transform is the eight-parameter perspective trans-
Jorm or homography denoted by a general 3 x 3 matrix H. The resull of
multiplying H o must be normalized in order to obtain an inhomogenecus result,
Le.,

s koo + hory + hoz2 2 y; - hiox + b1y + hio
hoot + hory + hao hao + hary + hao

(17.2)

Perspective transformations preserve straight lines, and, as we will see shortly,
are an appropriate model for planes observed under general 3D motion and 3D
scenes observed under pure camera rotation.

In 3D, the process of central prajection maps 3D coerdinates @ = (z,y, 2) o
2D coordinates =’ = (2,4, 1) through a pinkole at the camera origin onto a 2D
projection plane a distance f along the z axis,

tag® oy
gy Pl (17.3)

Perspective projection can also be denoted using an upper-triangular 3 x 3 intrinsic
calibration matrix K that can account for non-square pixels, skew, and a variable
optic cenler location. Hlowever, in practice, the simple local tength scaling used
above provides high-quality results when stitching images from regular cameras.
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[ Name r Matrix | #D.O.F. | Preserves: | Tcon |

£ ous 2 orientation - - - - D

i 3 lengths + - - - <>

i 4 angles | - -- O
Sai 6 parallelism - - - - D

34l 8 straight lines u

Table 17.1. IHierarchy of 2D coordinate transformations. The 2 x 3 matrices arc ex-
tended with a third [0* 1] row to form a full 3 x 3 matrix for homogeneous coordinate
iransformations.

translation [ I

rigid (Euclidean) | [ R | ¢ |

similarity [ sR | t ]

affine [ A ]

projective [ H ]

Whal happens when we take two images ol a 3D scene from dilferent camera
positions and/or orientations? A 3D point p = (X, Y, Z,1) gets mapped to an
image coordinate x(, through the combination of a 3D rigid-body (Euclidean)
motion Ey and a perspective projection K,

xo ~ KoEyp = Pyp, (17.4)

where the 3 x 4 matrix Py is often called the camera matrix. If we have a 2D
point xg, we can only project it back into a 3D ray in space. However, for a
planar scene, we have one additional plane equation, fig - p + dp = 0, which we
can use to augment Py to obtain Py, which then allows us to invert the 3D—+2D
projection. If we then project this point into another image, we obtain

~ —1
£y ~ PlPU g = Hlnﬂﬂ[}, (175)

where g is a general 3 x 3 homography matrix and @, and xg are 2D homo-
geneous coordinates. This justifies the use of the 8-parameter homography as a
general alignment model for mosaics of planar scenes [543, 776].

The more interesting case is when the camera undergoes pure rotation {which
is equivalent to assuming all points are far from the camera). In this case, we get
the more restricted 3 x 3 homography

Hyp=K RR'K;' = K RoK . (17.6)

In practice, we usually set Ky = diag(fx, fx,1). Thus, instead of the general 8-
parameter homography relating a pair of images, we get the 3-, 4-, or 5-parameter
3D rotation motion models corresponding to the cases where the focal length f is
known, fixed, or variable [781]. Estimating the 3D rotation matrix (and optionally,
the focal length} associated with each image is intrinsically much more stable than
estimating a full 8-d.o.f. homography, which makes this the method of choice for
large-scale image stitching algorithms [781, 739, 121].
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An alternative to using homographies or 3D rotations is to first warp the images
into eylindrical coordinates and to then use a pure translational model to align
them [180]. Unfortunately, this only works il the images are all taken with a level
camera or wilh a known tilt angle. The equations for mapping between planar and
cylindrical/spherical coordinates can be lound in [781, 778).

17.3 Direct and feature-based alignment

Once we have chosen a suitable motion mocdel to describe the alignment between
a pair of images, we need to devise some method to estimate its parameters. One
approach is to shilt or warp the images relative to each other and (o look at how
much the pixels agree. Approaches such as these are often called direct methods,
as opposed to the feature-based methods described a little later.

17.3.1 Direct methods

To use a direct method, a suitable error metric must first be chosen to compare
the images. Once this has been established, a suitable search technique must be
devised. The simplest search technique is to exhaustively try all possible align-
ments, i.e., to do a full search. Tn practice, this may be Loo slow, so hierarchical
coarse-to-fine techniques based on image pyramids have been developed [75]. Al-
ternatively, Fourier transforms can be used to speed up the computation [778]. To
get sub-pixel precision in the alignment, incremental methods based on a Tay-
lor series expansion of the image function are often used [533]; these can also
be applied to parametric motion models [533, 75]. Each of these techniques is
described in more detail in [778] and summarized below.

The simplest way lo establish an alignment between two images is to shilt one
image relative to the other. Given a femplate image In{x) sampled at discrete
pixel locations {@; = {x;,y:)}, we wish to find where it is located in image
I {x). A least-squares solution to this problem is to find the minimum of the sum
of squared differences (SSD) function

Bgsp(w) = [hi(@: -+ ) — To(w:))” =3 e, (17.7)

%

where u = {u., v) is the displacement vector and ¢; = [1{x; + u) — Io{m,) is
called the residual error.,

In general, the displacement » can be fractional, so a suilable interpolation
function must be applied to image ) (). In practice, a bilinear interpolant is
often used, but bi-cubic interpolation may yield slightly betier results.

We can make the above error metric more robust to outliets by replacing the
squared error terms with a robust function p(e;) [764]. We can also model poten-
tial bias and gain variations belween the images being compared, and to associate
spatially varying weights with different pixels, which is a principled way to deal
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with partial overlap and regions that have been “cut out” [rom one of the images
{43, 778]. The extended version of this chapter [778)] also discusses correlation
{and phase corvelation) as an alternative to robust pixel difference matching.
Tt also discusses how coarse-to-fine (hierarchical} techniques [75] and Pourier
fransforms can be used to speed up the search for optimal alignment. (Fourier
transforms unfortunately only work for pure translation and for a very limited set
of (small-motion) similarity transforms.)

Incremental refinement

To obtain better swb-pixel eslimates, we can use one of several techniques. One
possibility is to evaluate several discrete (integer or fractional) values of (u,v)
around the best value found so far and to interpolate the matching score to find
an analytic minimum. A more commoniy used approach, first proposed by Lucas
and Kanade [533], is to do gradient descent on the SSD energy function (17.7),
using a Taylor Series expansion of the image function,

Ly _ssp (u + Au} =1 Z[Jl(:.!:g + u)Au + tBi]z, (17.8)
where
ar, oI
i@+ u) = Vi +u) = (5 5 0@+w) (179)

is the image gradient at &; + u.
The above least squares problem can be minimizing by solving the associated
normal equations.

AAdu=5 (17.10)
where

A=+ u)i(@:+u) and b= ed](x;+u) (17.11)

are called the IHessian and gradient-weighted residual vector, respectively.

The gradients required for J (2; + 2] can be evaluated at the same time as the
image warps required to estimate 7y (w; 4+ u}, and in fact are often computed as a
side-product of image interpolation. If efficicney is a concern, these gradients can
be replaced by the gradients in the femplafe image,

J (s 4+ u) = Jolx), (17.12)

since near the correct alignment, the template and displaced target images should
look similar. This has the advantage of allowing the pre-computation of the Hes-
sian and Jacobian images, which can result in significant computational savings
[43].

Parametric motion

Many image alignment tasks, for example image stitching with handheld cameras,
require the use of more sophisticated motion models. Since these models iypi-
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cally have more parameters than pure translation, a full search over the possible
range of values is impractical. Instead, the incremental Lucas-Kanade algorithm
can be peneralized Lo parametric motion models and used in conjunction with a
hierarchical search algorithm [533, 75, 43].

For paramelric motion, instead of using a single constant translation vector =,
we use a spatially varying motion field or correspondence map, «'(x; p), parame-
terized by a low-dimensional vector p, where ' can be any of the motion models
presented in Section 17.2. The parametric incremental motion update rule now
becomes

Erx_puip + Ap)

> _Ih (@ (@i p + Ap)) — To(w)]*

~ Y [i{@)Ap + el (17.13)
i
where the Jacobian is now
W G

i.e., the product of the image gradient VI, with the Jacobian ol correspondence
field, J v = ' /Op.

The derivatives required to compute the Jacobian can be derived directly from
Table 17.1 and are given in [778].

The compulation of the Hessian and residual vectors for parametric motion can
be significantly more expensive than for the translational case. For parametric mo-
tion with n parameters and NV pixels, the accumulation of A and b takes O(n2N)
operations [43]. One way to reduce this by a significant amount is to divide the
image up into smaller sub-blocks (patches) F; and to only accumulate the simpler
2 x 2 quantities {17.11} at the pixel level [739, 43, 778].

For a complex parametric motion such as a homography, the computation of
the motion Jacobian becomes complicated, and may involve a per-pixel division.
Szeliski and Shum [781] obscrved that this can be simplified by first warping
the target image 7, according Lo the current motion estimate x'(x; p) and then
comparing this warped image against the template Io(x). Baker and Matthews
[43] call this the forward compositional algorithm, since the target image is being
re-warped, and the final motion estimates are being composed, and also present
an imverse compositional algorithm that is even more efficient.

17.3.2  Feature-based registration

As mentioned earlier, directly matching pixel intensities is just one possible
approach te image registration. The other major approach is to first extract dis-
tinclive features [rom each image, to match individual features to establish a
global comespondence, and to then estimate the geometric transformation be-
tween the images. This kind of approach has been used since the early days
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of stereo matching and has more recently gained popularity lor image stitching
applications [148, 121].

Schmid ef al. [712] survey the vast literature on interest point detection and
perform some experimental comparisons to determine the repeatability of feature
detectors. They also measure the information content available at each detected
feature point. Among the techniques they survey, they find that an improved
version of the Harris operalor works best.

More recently, feature detectors that are more invariant to scale [532] and
affine transformations have been proposed. These can be very useful when match-
ing images that have different scales or different aspects {e.g., for 3D object
recognition).

After detecting the features (interest points), we must match them, i.e., deter-
mine which features come from corresponding locations in different images. In
some situations, e.g., for video sequences or for stereo pairs that have been rec-
tified, the local motion around each feature point may be mostly translational. In
this case, the error metrics introduced previously can be used o directly compare
the intensities in small patches around each feature point. {The comparative study
by Mikolajczyk and Schmid [569] discussed below uses cross-correlation.)

If features are being tracked over longer image sequences, their appearance can
undergo larger changes. In this case, it makes sense to compare appearances using
an gffine motion model. Because the features can appear at different orientations
or scales, a more view invariant kind of representation must be used. Mikolajczyk
and Schmid [569] review some recently developed view-invariant local image
descriptors and experimentally compare their performance.

The simplest method to compensate for in-plane rotations is to find a dom-
inant orienfation at each feature point location before sampling the patch or
otherwise computing the descriptor. Mikolajezyk and Schmid use the direction of
the average gradient orientation, computed within a small neighborhood of each
feature point. The descriptor can be made invariant to scale by only selecting
feature points that are local maxima in scale space. Among the local descriptors
that Mikolajczyk and Schmid compared, David Lowe’s Scale Invariant Feature
Transform (SIFT) [532] performed the best.

The simplest way to find all corresponding [eature points in an image pair
is to compare all features in one image against all features in the other, using
one the local descriptors described above. Unfortunately, this is quadratic in the
expected number of features, which makes it impractical for some applications.
More efficient matching algorithms can be devised using dillerent kinds of index-
ing schemes, many of which are based on the idea of finding nearest neighbors in
high-dimensional spaces.

Once an initial set of feature correspondences has been computed, we need Lo
find a set that is will produce a high-aceuracy alignment. One possible approach
is to simply compute a least squares estimate, or to use a robustified version of
least squares. However, in many cases, it is better to first find a good starting set
of inlier correspondences, i.e., points that are all consistent with some particular
motion estimate. Two widely used solulion to this problem are RANdom SAmple
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Consensus (RANSAC) and least median of squares (LMS) [764]. Both techniques
start by selecting a random subset of & correspondences, which is then used to
compute a motion estimate p. The RANSAC technique then counts the number of
infiers that are within € of their predicted location. Least median of squares finds
the median value of the ||v;|| values. The random selection process is repeated
S times, and the sample set with largest number of inliers (or with the smallest
median residual) is kept as the final solution.

Geometric registration

Once we have computed a sct of matched feature point correspondences, we still
need Lo estimate the motion parameters p thatl best register the two images. The
usual way to do this is to use least squares, i.e., to minimize the sum of squared
residuals given by

Brs = Y |ima)” = (@i p) — &), (17.15)

where & are the estimated (mapped) locations, and &} are the sensed (detected)
fealure point locations corresponding to point a; in the other image.

Many of the motion models presented in Section 17.2, i.e., translation, simi-
larity, and affine, have a finear relationship between the motion and the unknown
parameters p. In this case, a simple linear regression (least squares) using normal
equations works well.

The above least squares formulation assumes that all feature points are matched
with the same accuracy. This is often not the case, since certain points may fall
in more textured regions than others. If we associate a variance estimate o7 with
each correspondence, we can minimize weighted least squares instead,

Bwis =Yo7 %||m% (17.16)

As discussed in [778], a covariance estimate for patch-based matching can be ob-
tained by muliiplying the inverse of the Hessian with the per-pixel noise estimate.
Weighting each squared residual by the inverse covariance E;l = a,7% A; (which
is calted the information matrix), we obtain

Eowrs =Y il 2 =3 o787 =3 072 Awrs, (17.17)
3 i i

where A; is the patch Hessian.

If there are outliers among the feature-based correspondences, it is betier to use
a robust version of least squares, even if an initial RANSAC or MLS stage has
been used to select plausible inliers. The robust least squares cost metric is then

Bras(u) = plllrills). (17.18)

For moticn models that are not linear in the motion parameters, non-linear least
squares must be used instead. Deriving the Jacobian of each residual equation
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with respect to the motion parameters is relatively straightforward, once a suitable
parameterization has been chosen [778].

17.3.3  Direct vs. feature-based

Given that there are these two alternative approaches to aligning images, which is
preferable?

My original work in image stitching was firmly in the direct (image-based)
camp [776, 781, 739]. Early feature-based methods scemed to get confused in
regions that were either too textured or not textured enough. The features would
often be distributed unevenly over the images, thereby failing to match image
pairs that should have been aligned. Furthermore, establishing correspondences
relied on simple cross-correlation between paiches surrounding the feature points,
which did nol work well when the images were rotated or had foreshortening due
to homographies.

Today, feature detection and matching schemes are remarkably robust and can
even be used for known object recognition from widely separated views [532]. Be-
cause they operate in scale-space and use a dominant orientation (or orientation
invariant descriptors), they can match images that differ in scale, orientation, and
even foreshortening. My own recent experience is that if the features are well dis-
tributed over the image and the descriptors reasonably designed for repeatability,
enough correspondences to permit image stitching can usually be found.

The other major reason T used to prefer direct methods was that they make op-
timal use of the information available in image alignment, since they measure the
coniribution of every pixel in the image. Furthermore, assuming a Gaussian noise
model (or a robustified version of it), they properly weight the contribution of dif-
ferent pixels, e.g., by emphasizing the contribution of high-gradient pixels. (See
Baker et al. [43], who suggest that adding even more weight at strong gradients is
preferable because of noise in the gradient estimates.)

The biggest cisadvantage of direct techniques is that they have a limiled range
of convergence. Even though hierarchical (coarse-to-[ine) techniques can help, it
is hard to use more than two or three levels of a pyramid before important details
start get blurred. For matching sequential frames in a video, the direct approach
can usuaily be made to work. However, for matching pattially overlapping images
in photo-based panoramas, they fail too often to be useful.

Ts there no rdle then for direct registration? I believe there is. Once a pair of im-
ages has been aligned with a feature-based approach, we can warp the two images
to a common reference frame and re-compute a more accurate correspondence us-
ing patch-based alignment. Notice how there is a close correspondence between
the patch-based approximation to direct alignment and the inverse covariance
weighted foature-based least squares error metric {17.17).

In fact, if we divide the template images up into patches and place an imaginary
“feature point” at the center of each patch, the iwo approaches return exactly the
same answer (assuming that the correct correspondences are found in each case).
However, for this approach to succeed, we still have to deal with “outliers”, i.e.,
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regions that do not fit the selected motion model due to either parallax or moving
objects. While a feature-based approach may make it somewhat easier to reason
about cutliers {fcaturcs can be classified as inliers or outliers), the patch-based
approach, since it establishes correspondences more densely, is potentially more
useful for removing local mis-registration (paraliax).

17.4  Global registration

So far, I have discussed how to register pairs of images using both direct and
feature-based methods. In most applications, we are given more than a single pair
of images to register. The goal is to find a globally consistent set of alignment
parameters that minimize the mis-registration between all pairs of images [781,
739, 709]. In order to do this, we need to extend the pairwise matching criteria to
a global energy function that involves all of the per-image pose parameters. Once
we have computed the global alignment, we need to perform local adiustments
such as parallax removal to reduce double images and blurring due to local mis-
registration. Finally, if we are given an unordered set of images to register, we
need to discover which images go together to form one or more panoramas.

17.4.1 Bundle adjustment

One way to register a large number of images is to add new images to the
panorama one at a time, aligning the most recent image with the previous ones
already in the collection [781], and discovering, if necessary, which images it
overlaps [709]. In the case of 360° panoramas, accumulated error may lead to the
presence of a gap (or excessive overlap) between the two ends of the panorama,
which can be fixed by siretching the alignment of all the images using a process
called gap closing [781]. However, a beiter alternative is to simultaneously align
all the images together using a least squares framework to evenly distribule any
mis-registration errors.

The process of simultaneously adjusting pose parameters for a large collection
of overlapping images is called bundle adjustment in the photogrammetry com-
munity [805]. In computer vision, it was first appliced to the general structure from
motion problem [780], and then later specialized for panoramic image stitching
[739, 709].

In this section, | formulate the problem of global alignment using a feature-
based approach, since this results in a simpler system. An equivalent direct
approach can be oblained by dividing images into patches and creating a virtual
feature correspondence for each one {739].

Consider the feature-based alignment problem given in (17.15). For multi-
image alignment, instead of having a single collection of pairwise feature
correspendences, {(x;, &)}, we have a collection of n features, with the location
of the 4th feature point in the jth image denoted by =x;; and iis scalar confi-
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dence (inverse variance) denoted by ¢;;. Each image also has some associated
pose parameters.

In this section, I assume that this pose consists of a rotation matrix £2; and a
focal length f;, although formulations in terms of homographies are also possible
[781, 709]. The equation mapping a 3D point w; into a point a,; in frame 7 can
be re-written from (17.4—17.6) as

zi; ~ K R, and @ ~ R 'K '@y, (17.19)

where K ; = diag(f;, f;,1) is the simplificd form of the calibration matrix. The
motion mapping a point &,; from frame j into a point @ in frame 4 is similarly
given by

iy ~ Hypjg; = KRy R7TK . (17.20)

Given an initial set of {(R;, f;)} estimates obtained from chaining pairwise
alignments, how do we reline these estimates?

One approach is to dircctly cxtend the pairwise energy to a multiview
formulation,

Fall—patrs—20 = 3 3 it Baw (453 By, Fi, Re, Fo) — @l (17.21)
i gk
where the &y, function is the predicted location of feature ¢ in frame & given by
(17.20), &;; is the observed location, and the “2D” in the subscript indicates than
an image-plane error is being minimized.

While this approach works well in practice, it suffers from two potential
disadvantages. First, since a summation is taken over all pairs with correspond-
ing fealures, features that are observed many times get overweighted in the
final solution. Second, the derivatives of &g, wort. the {(R;, f;)} are a little
cumbersome.

An alternative way to formulate the optimization is to use true bundie adjust-
menl, 1., Lo solve nol only for the pose parameters {(F;, f;)} but also for the
3D peint positions {z;},

Fra_p = sz%ﬁﬁﬁﬁ(:ri; Ry, fi) — &4, {17.22)
i
where &;; (x;; 12, f;) 1s given by (17.19). The disadvantage of full bundle adjust-
ment is that there are more variables to sclve for, so both each iteration and the
overall convergence may be slower. However, the computational complexity of
each linearized Gauss-Newton step can be reduced using sparse matrix techniques
[780, 739, 805].

An alternative formulation is to minimize the error in 3D projected ray
directions [739], i.e.,

Bpaap =) Y cill@:(@e; By, i) - 2l (17.23)
LI

where &;(x;;; Ry, f;) is given by the second half of (17.19).
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However, il we eliminate the 3D rays x;, we can derive a pairwise energy
formulated in 3D ray space {7391,

Bl palis—3D = ZZQQ‘QH@;?@RJQ R, fi) — @i(@ae; R, f)I?. (17.24)
i gk

This results in the simplest set of update equations [739], since the fi can be
folded into the creation of the homogeneous coordinate vector. Thus, even though
this formula over-weights features that occur more frequently, it is the method
used both by Shum and Szeliski [739] and in my current feature-based aligner.
In order 1o reduce the bias towards longer focal lengths, I multiply each residual
(30 error) by /f; fr., which is similar to projecting the 3D rays into a “virtual
camera” of intermediate focal length.

17.4.2  Parallax removal

Once we have estimated the global orientations and focal lengths of our cam-
eras, we may find that the images are still not perfectly aligned, i.e., the resulting
stitched image looks blurry or ghosted in some places. This may be caused by a
variety of factors, including unmodeled radial distortion, 3D parallax (failure to
rotate the camera around its optical center), small scene motions such as waving
tree branches, and large-scale scene motions such as people moving in and out of
piclures.

Each of these problems can be treated with a dillerent approach. Radial dis-
tortion can be estimated using one of several classic calibration techniques. 3D
parallax can be attacked by doing a [ull 3D bundle adjustment. The 3D positions
of the matched features points and cameras can then be simultaneously recov-
ered, although this can be significantly more expensive that parallax-frec image
registration.

When the motion in the scene is very large, i.e., when objects appear and dis-
appear completely, a sensible solution is to simply select pixels from onty one
image at a time as the source for the final composite [248, 7], as discussed in
Section 17.6. However, when the motion is reasonably small (on the order of a
few pixels), general 2-D motion estimation {optic flow) can be used to perform
an appropriate correction beforc blending using a process called local alignment
[739]. This same process can also be used to compensate for radial distortion and
3D parallax, although it uses a weaker motion mode] than explicitly modeling the
source of error, and may therefore fail more often.

17.4.3  Recognizing panoramas

The final piece needed to perform fully automated image stitching is a technique
to determine which images actually go together, which Brown and Lowe call rec-
ogrizing panoramas [121]. If the user takes images in sequence so that each image
overlaps its predecessor, bundie adjustment combined with the process of topol-
ogy inference can be used to automatically assemble a panorama [709]. However,
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Figure 17.2. A set of images and the panorama discovered in them

users often jump around when taking panoramas, e.g., they may start a new row
on top ol a previous one, or jump back to take a repeated shot, or create 360°
pancramas where end-to-end overlaps need to be discovered. Furthermore, the
ability to automatically discover multiple panoramas taken by a user can be a big
convenience.

To recognize panoramas, Brown and Lowe [121] first find all pairwise image
overlaps using a feature-based method and then find connected components in the
overlap graph to “recognize” individual panoramas (Figure 17.2). First, they use
Lowe’s Scale Tnvariant Feature Transform (STFT features) [532] followed by near-
est neighbor matching, RANSAC is then used to find a set of infiers, using puirs
of matches to hypothesize similarity motion estimates. Once pairwise alipnments
have been computed, a global registration (bundle adjustment) stage is used to
compute a globally consistent alignment for all of the images. Finally, a two-level
Laplacian pyramid is used to seamlessly blend the images [121].

17.5 Choosing a compositing surface

Once we have registered all of the input images with respect to each other, we
need to decide how to produce the final stitched (mosaic) image. This involves
selecting a final compositing surface, e.g., {lal, cylindrical, or sphetical. It may
also involve computing an optimal reference view to ensure that the scene appears
(0 be upright, as described in [778].

If only a few images are stitched together, a natural approach is o select one
of the images as the reference and to then warp all of the other images into the
reference coordinate system. The resulting composite is called a flaf panorama,
since the projeclion onto the final surface is still a perspective projection, and
hence straight lines remain straight.

For larger fields of view, however, we cannot maintain a flat representation
without excessively stretching pixels near the border of the image. (In practice,
flat panoramas start to look severely distorted once the field of view exceeds 90°
or 50.) The usual choice for compositing larger panoramas is to use a cylindri-
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cal [180] or spherical [781] projection. In fact, any surface used for environment
mapping in computer graphics can be used, including a cube map that represents
the full viewing sphere with the six square faces of a box [781].

The choice of parameterization is somewhat application dependent and in-
volves a tradeoff between keeping the local appearance undistorted (e.g., keeping
straight lines straight) and providing a reasonably uniform sampling of the envi-
ronment. Automatically making this selection and smoothly transitioning between
representations based on the extent of the panorama is an interesting topic for
Tuture research.

17.6 Seam selection and pixel blending

Once the source pixels have been mapped onto the final composite surface, we
must decide how to blend them in order to create an attractive looking panorama.
Tf all of the images are in perfect registration and identically exposed, this is an
casy problem (any pixel combination will do). However, for real tmages, vis-
ible seams (due o exposure differences), blurring (due to mis-regisiration), or
ghosting {due to moving objects) can occur.

Creating clean, pleasing looking panoramas involves both deciding which pix-
els to use and how to weight or blend them. The distinction between these two
stages is a little fluid, since per-pixel weighting can be though of as a combination
of selection and blending. In this section, T discuss spatially varying weighting,
pixel selection (seam placement), and then more sophisticated blending.

Feathering and center-weighting

The simplest way to create a [inal composite is to simply take an average value at
each pixel., However, this usually does not work very well, since exposure differ-
ences, mis-registrations, and scene movement are all very visible (Figure 17.3a).
If rapidly moving objects are the only problem, taking a mediom filter (which is a
kind of pixel selection operator) can often be used to remove them [417].

A better approach is to weight pixels near the center of the image more heav-
ily and to down-weight pixels near the edges. When an image has some cutout
regions, down-weighting pixels near the edges of both cutouts and edges is prefer-
able. This can be done by computing a distance map or grassfire iransform, where
each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel.
Weighted averaging with a distance map is often called feathering [781, 825], and
does a reasonable job of blending over exposure differences. However, blurring
and ghosting can still be problems {Figure 17.3b).

One way to improve feathering is to raise the distance map values to some
power. The weighted averages then become dominated by the larger values, i.e.,
they act like a p-norm. The resulting composite can often provide a reasonable
tradeoff between visible exposure differences and blur.
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Figure 17.3. Final composites computed by a variety of algorithms: (a) average, (b) feath-
ered average, (c) weighted ROD vertex cover with feathering, (d) graph cut seams with
Poisson blending. Notice how the regular average cuts off moving people near the edges
of images, while the feathered average slowly blends them in. The vertex cover and graph
cut algorithms produce similar results.

In the limit as p — oo, only the pixel with the maximum distance value
gets selected, which is equivalent to computing the Vornoi diagram. The result-
ing composile, while useful for artistic guidance and in high-overlap panoramas
(manifold mosaics) tends to have very hard edges with noticeable seams when the
€Xposures vary.

Optimal seam selection

Computing the Vornoi diagram is one way to select the seams between regions
where different images contribute to the final composite. However, Yornoi images
iotally ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where the images agree,
so that transitions from one source to another are not visible. In this way, the
algorithm avoids “cutting through” moving objects, where a seam would look
unnatural [248). For a pair of tmages, this process can be formulated as a simple
dynamic program starting from one edge of the overlap region and ending at the
other [570, 248]. Unfortunately, when multiple images are being composited, the
dynamic program idea does nol readily generalize.

To overcome this problem, Uyttendacle et al. [825] observed that for well-
registered images, moving objects produce the most visible artifacts, namely
translucent looking ghosty. Their sysiem therefore decides which objects to keep,
and which ones to erase. First, the algorithm compares all overlapping input image
pairs to determine regions of difference (RODs) where the images disagree. Next,
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a graph is constructed with the RODs as vertices and edges representing ROD
pairs that overlap in the (inal composite. Since the presence of an edge indicates
an area of disagreement, vertices (regions) must be removed from the final com-
posite until no edge spans a pair of unremoved vertices. The smallest such set can
be computed using a verfex cover algorithm. Since several such covers may exist,
a weighted vertex cover is used instead, where the vertex weights are computed
by summing the feather weights in the ROD. The algorithm therefore prefers re-
moving regions that are near the edge of the image, which reduces the likelihood
that partially visible objects will appear in the final composite. Once the required
regions of difference have been removed, the final composite is created using a
feathered blend (Figure 17.3¢).

A different approach to pixel selection and seam placement was recently pro-
posed by Agarwala ef al. [7]. Their system computes the label assignment that
optimizes the sum of two objective functions. The first is a per-pixel image ob-
Jective Cp that determines which pixels are likely to produce good composites. In
their system, users can select which pixels to use by “painting” over animage with
the desired object or appearance. Alternatively, automated selection criteria can
be used, such as maximum likelihood that prefers pixels which occur repeatedly
(Tor object removal), or minimum likelihood for objects that occur infrequently
(for greatest object retention).

The second term is a seam objective Cg that penalizes differences in labelings
between adjacent images. For example, the simple color-based seam penalty used
in [7] measures the color difference between corresponding pixels on both sides
of the seam. The global energy function that is the sum of the data and seam
costs can be minimized using a variety of techniques [778]. Agarwala et af. [7]
use graph cuts, which involves cycling through a set of simpler a-expansion re-
labelings, each of which can be solved with a graph cut (max-flow) polynomial-
time algorithm [113].

For the result shown in Figure 17.3d, Agarwala ef o/ [7] use a large dala penalty
for invalid pixels and O for valid pixels. Notice how the scam placement algorithm
avoids repions of differences, including those that border the image and which
might result in cut off objects. Graph culs [7] and vertex cover [825] ofien pro-
duce similar looking results, although the former is significantly slower since it
optimizes over all pixels, while the latter is more sensitive to the thresholds used
to determine regions of difference.

Laplacian pyramid blending

Once the seams have been placed and unwanted objects removed, we still need
to blend the images to compensate for exposure differences and other mis-
alignments. An allraclive solution to this problem was developed by Burt and
Adelson [139}. Instcad of using a single transition width, a frequency-adaptive
width is used by creating a band-pass (Laplacian) pyrainid and making the transi-
tion widths a function of the pyramid level. First, each warped image is converted
into a band-pass (Laplacian) pyramid. Next, the masks associated with each
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source image are converted into a low-pass (Gaussian) pyramid and used to per-
form a per-level leathered blend of the band-pass images. Finally, the composite
image is reconstructed by interpolating and summing all of the pyramid levels
(band-pass images).

Gradient domain blending

An alternative approach to multi-band image blending is to perform the operations
in the gradient domain. Here, instead of working with the initial color valucs, the
image gradients from each source image are copied; in a sccond pass, an image
that best matches these gradients is reconstructed [7]. Copying gradienis directly
from the source images after seam placement is just one approach to gradient
domain blending. Levin ef ol [514] examine several differenl variants on this
approach, which they call Gradient-domain Image STitching (G18T). The tech-
niques they examine include feathering (blending) the gradients from the source
images, as well as using an L | norm in performing the reconstruction of the image
from the gradient field, rather than using an 1.2 norm. Their preferred technique is
the L1 optimization of a feathered (blended) cost function on the original image
gradients (which they call GIST1-{;). While L1 optimization using linear pro-
gramming can be slow, a faster iterative median-based algorithm in a multigrid
framework works well in practice. Visual comparisons between their preferred
approach and what they call optimal seam on the gradients {which is equiva-
lent to Agarwala et af.’s approach [7]) show similar results, while significantly
improving on pyramid blending and feathering algorithms.

Exposure compensation

Pyramid and gradient domain blending can do a good job of compensating for
moderale amounts of exposure differences between images. Flowever, when the
exposure differences become large, alternative approaches may be necessary.

Uyttendaele ef «f. [825] iteratively estimate a local correction between each
source image and a blended composite. First, a block-based quadratic transfer
function is {it between each source image and an initial feathered composite. Nexi,
transfer functions arc averaged with their neighbors to get a smoocther mapping,
and per-pixel transfer functions are computed by splining between neighboring
block values. Once each source image has been smooihly adjusted, a new feath-
ered composite is computed, and the process is be repeated {typically 3 times).
The results in [825] demonstrate that this does a better job of exposure compen-
sation than simple feathering and can handle local variations in exposure due to
effects like lens vignetting.

High dvnamic range imaging

A more principled approach is to estimate a single high dynamic range (HDR)
radiance map from of the differently exposed images [252, 577]. This approach
assumes that the input images were taken with a fixed camera whose pixel values
are the result of applying a parameterized radiometric transfer function f(R, p)
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10 scaled radiance values ¢y R(a). The exposure values ¢y are either known (by
experimental setup, or from a camera’s EXIF tags), or are computed as part of
the parameter estimation process. Afier the transfer funciion has been estimated,
radiance values from different exposures can be combined to emphasize reliable
pixels.

Once a radiance map has been computed, it is usually necessary to display
it on a lower gamut {i.e., 8-bit) screen or printer. A variety of fone mapping
techniques have been developed for this purpose, which involve either comput-
ing spatially varying transfer functions or reducing image gradients to fit the the
available dynamic range.

Unfortunately, most casually acquired images may not be perfectly registered
and may contain moving objects. Kang et af. [452] present an algotithm that com-
bines global registration with local motion estimation (optic flow) to accurately
align the images before blending their radiance estimates. Since the images may
have widely different exposures, care must be taken when producing the motion
estimates, which must themselves be checked for consistency to avoid the creation
of ghosts and object fragments.

17.7 Extensions and open issues

While image stitching has now reached a point where it is commonly used in
consumer photo editing products, there are still a lot of open research problems
that need to be addressed.

The first of these is improving the reliability of fully automated stitching.
Whenever images contain small amounts of overlap, repeated texlures, or large
regions of difference because of moving objects, it becomes increasingly diffi-
cult to disambiguate between accidental and correct alignments. Global reasoning
about a compatible set of correspondences might be the solution, as might be
improvements in robust (partial) feature matching.

Dealing with motion and parailax is another important area, since pictures are
often taken with handheld cameras in highly dynamic situations. At some point,
full 3D reconstruction with moving object detection and layer extraction may be
required, which also raises interesting issues in designing guick and easy user
interfaces to specify the desired final output.

Dealing with images at different resolutions and zoom factors is another in-
teresting area, especially since variable resolution image represenlations and
viewers are not common. A related issue is super-resolution, i.e., enhancing im-
age resolution through the combination of jittered photographs of the same region
[543, 148]. Unfortunately, because of limitations in oplics and motion estimation,
there seems to be a very limited {< 2x) improvement that can be achieved in
praclice.

Stitching videos is another area that is likely to grow as more digital cameras
start to include the ability to take videos. Examples of stitching videos to obtain
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summary panoramas have been around for a while [417, 710]. In the future, we are
likely to see the construction of “live” panoramas that nclude moving elements
along with still portions [776].

Ultimately, image alignmenl and stitching will become part of a repertoire
of computer vision algorithms used to merge multiple images (with different
orientations, exposures, and other attributes) to create enhanced and innovative
composite pictures and photographic experiences,



Chapter18

Visual Tracking: A Short Research
Roadmap

A. Blake

Abstract

A research roadmap to many of the best known, and most used,
contributions to visual tracking is set out. The scope includes simple ap-
pearance models, active contours, spatiotemporal filtering and briefly points
to important further topics in tracking.

18.1 Introduction

Visual tracking is the repeated localisation of instances of a particular object, or
class of objects, in successive frames of a video sequence. Video analysis may
be causal or non-causal, but tracking is usually taken to be an online process,
and therefore causal with some emphasis on efficient algorithms. The question of
automatic initialisation, though sometimes important, is not addressed here. This
is sensible in that there are plentiful applications where initialisation is not an
issue, such as tracking vehicles on a highway, or indoor surveillance, in which
initialisation can be effected by a simple motion trigger. The aim is to achieve
location estimates at least as good as independent, exhaustive examinations of
each frame [402]. Exploitation of object dynamics offers improved computational
efficiency and more refined motion estimates. Perhaps most important of all, it
offers extended capability to resolve ambiguity, as with a person in a crowd or a
leaf on a bush (figure 18.1).
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Figure 18.1. Tracking in camouflage. The wrail of tracked positions of a mov-
ing leaf in heavy camouflage, at two different times in g sequence. FOr details of
the method see section 18.4. Images reprinted from [94] For related movies see
robots.ox.ac.uk/~vdg/dynamics.html.

18.2 Simple appearance models

18.2.1 Simple patches

The most basic tracker consists of matching a template patch 7'(r),r € 7 onto
an image I {r under translation [533] by cross correlation. The aim is to minimise
the misregistration error

p=> [{r)-Tlr+uw)? (18.1)
re7
and this can be done to subpixel reselution using an estimate of the gradi-
ent g(v) = VI{r), computed using a suitable filter (such as a gradient of
Gaussian filter), Then the iterative registration algorithm alternates two steps, to
convergence!

. Newton step on p

=) (& g;r)_l > e
n

i
2. Recompute template offset
u—u-—-v

More generally, the class of transformations can be generalised [rom translation

X — X + u to a larger class x — W, (x) in which ~ are the parameters of, for

example, an affine transformation or a non-rigid spline mapping [101] — see later

for more details of these iransformations. Taking 2 = pg + dpu and linearising
gives

1)~ T(W (s o) + 04+ SV, (18.2)
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which can be solved iteratively for u, to perform generalised registration [533, 60,
376].

18.2.2 Blobs

An alternative approach to localising regions is to model only the gross properties
of a region, modelling it as a “blob” [898], a Gaussian mixture model (GMM) in
a joint (r, I'} position and colour space. Thus a pixel I{r) is modelled probabilis-
tically as belonging to a model M with probability p(r, I(x} | M} and in a new
test image, each pixel is evaluated against each of a number of models M & M.
The model with the greatest likelihood is assipned to the pixel. The cluster of pix-
els with label M is deemed to be the new position of object M, whose moments
(mean elc.) can be computed 1o represent the location of object M, and the GMM
for M can also be updated periodically.

Recently a variation on the blob idea, *mean-shift” tracking [216] has been very
influential because it allows progressive updating of object pesition without the
obligation to visit ali pixels of each and every frame. Successive approximations
to the estimated locations of an object are obtained iteratively as:

= = S rulgle i) (183)

reT

where ' = 3" v/ w(r)g(|lr—~F,_1||*), g is the derivative of a particular kernel
function used to build spatial densily functions, and w{r) is a weight measuring
the degree of prevalence of the color of pixel r in the template relative to its preva-
lence in the test object. The result, used over an image sequence, is a remarkably
tenacious tracker (figure 18.2), despile its simplicity.

Figure 18.2. Mean shift tracking A mean-shift iracker, (here in a particle filter form —
see later) is used heve to track player no 75 in a primitive form of sport. Image reprinted

from [640].

18.2.3  Background maintenance

Blobs represent foreground objects as distributions over colour (and space) but
modelling a background, assuming it is largely static, is also useful as a guide
to what is nof part of an object. [592]. Just as blobs model the loreground as a
mixture, so also modelling background pixels as mixture distributions is useful
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[691, 757]. If My is the background model, then pixels could be tested for their
likelihood of belonging to the background in general by evaluating p(f | Mp),
and high scoring pixels removed from consideration as possible parts of any
foreground object, What is more powerful still, when the background is static,
is to mode! each background pixel individually by collecting statistics of colour
over time from that pixel, and building a mixture model for p(! | r, Mp). These
form typically narrow distributions which make powerful tests for background
membership,

Having infroduced some simple, though nonetheless very effective forms of
tracker, the next section looks at some elaborations on the basic theme of matching
shapes.

18.3 Active contours

An active contour is a parameterised curve 1(s),0 < s < 1 in the plane that is
set up to be atiracted to Features in an image I (r). A detailed account of the devel-
opment and mechanisms of active contours is given elsewhere [94], but here we
sumimarise the main types. In section 18.4, explicitly dynamical forms of active
contour r{s,1),¢ > 0, attracted to an image sequence I(%), are outlined. It focuses
on the temporal filtering required to extract information most effectively over a
sequence, exploiting fully the temporal coherence of the moving scene. This sec-
tion is restricted to the static case and follows the development of active contours
{rom snakes to parametric structures and affine contour models.

18.3.1 Shakes

“Snakes” [455] have been one of the most influential ideas in computer vision,
They were revolutionary in their time because they directed attention away from
bottom up edge detection, an enterprise which had become stuck in a rut, towards
top down, hypothesis driven search for object structures. The main idea is that the
active contour r{#) is dropped into a potential energy field F(r) which is itself
a function of the image intensity lundscape. For example I'(r) = —|VI| would
generate an attraction of the snake towards high image contrast. An equilibrivm
conliguration of the snake satisfies an (Euler-Lagrange) equation

(B(wlr) _ 8*(war)

5 5 )+ VEuy =0. (18.4)

external force

internal forces

in which internal force parameters can be adjusted to give the curve a tendency
towards smooth shapes. Such a system can be converted to a numerical scheme,
for example using finite differences along a line polygonal approximation to the
curve r(s), with typically hundreds of variables corresponding to the polygon
vertices o, + = 1,..., M. Equilibria are then sought by iterative solving. Alter-
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image contrast map snake equilibrum

Figure 18.3. Snakes 4n input image and a filter (o extract a contrast map F(r), serving as
« potential field under which snakes can reach equilibrium. Images reprinted from [94].

natively direct solution by dynamic programming [23] is also possible, with the
added attraction that hard constraints can be incorporated easily.

So far the snake is defined with respect to a single image I{r) but for shape
tracking, its behaviour over an image sequence f{r, ) must be defined. This can
be expressed as a Lagrangian dynamical system [793, 241] with distributed mass
and viscosity, whose equations of motion could typically take the following form

_ Blunr) | 8*(war)
prip.  =— (fm ety Skl (TR (18.5)
inertial force » extornal force

~
internal forces

in which the additional parameters v and p respectively govem viscosity of the
medium and distribuled mass along the contour.

Of course this leaves questions about how to choose parameters wy, 1wz, 7, g,
which may be spatial functions, not just constants, unanswered. This is a problem
that can be addressed effectively in a rather different framework, that of proba-
bilistic temporal filiering (see section 18.4). This idea was [irst cast [793] in a
space of state vectors consisting of vertices of the snake polygon {g;}. Practical
implementation however, demands a much lower dimensional state space, not just
for computational economy but for stability [93], and this is elaborated in section
18.4.

18.3.2  Parametric structures

If a lower dimensional state space is essential for stable tracking, one way to
construct such a state space is in terms of a state vector X = {Ay,..., Ax)
whose components are physical degrees of freedom in the underlying object, rep-
resenting a contour (or set of contours) r(s; X), s € [0, 1]. For example X could
encode the position and orientation of a rigid object. Then the image locations
r{s;, X), i = 1,.... M of M distinguished features on the curve (for example
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vertices of a polyhedral object) can be predicted, and compared with observed
locations ry{s;). In principle X can then be cstimated by minimising an error
measure such as

M
E=Y " |x(s;, X) —rp{si)l*. (18.6)
i=1
To include the possibilily that the model conlains vertices ot multiple discon-
nected segments, r{s; X), s € [0, 1] need not be everywhere smooth, and may be
discontinuous at a finite set of points along s € [0, 1].

A simple and highly effective example applies to the view of a road from a
camera mounted forward-looking on a car, for navigation purposes [268]. In that
case X encodes the offset and orientation of the car on the road, and the obser-
vations are the road edges. Such a system resulted in the first autonomous, vision
guided automobile to travel al realistic speeds on the open road. Other prominent
examples of the parametric approach include real-time tracking of complex 3D
wire-frame structures [384] and a hinged box [530], in which the prediction func-
tion r(s; X} applies perspective projection to map a canonical struclure, in state
X, onto the image plane. The state vector X can also incorporate further param-
eters which allow adjustment of the underlying canonical structure, in addition to
position and orientation, allowing tracking of any object from a given family of
objects. This was successful for example with tracking automoebiles in overhead
views of the highway [487], in which the pose of the vehicle and also variations
in automobile shape were encoded together in the state vector X.

18.3.3  Affine contours

Another natural way to construct a low-dimensional state space for tracking is to
specily parameters relating directly to image-based shape of the active contour,
This is especially appealing because because, as we will see, the contour r(s; X)
can then often be expressed as a linear function of X and this considerably sim-
plifies the task of curve fitting and (later) of temporal filtering [93]. One natural
choice is the planar affine space in which r(s; X) sweeps out the space of 2D
affine transformations of a base shape ¥(s):

r(s; X) = AF(s) +u (18.7)

where A isa 2 x 2 matrix and wis a 2 x 1 vector, [L is natural because it is
known to span the space of outlines of a planar shape, in an arbitrary 3D pose, and
viewed under affine projection (the approximation to image projection that holds
when perspective ellects are not too strong). Tt is linear because we can choose
X = (A, u) so that r(s; X) is linear in X, and this linear relation is denoted

r{s; X) = H(s)X, (18.8)

where H(s) is a simple (linear) function of T(s). For nonplanar 3D outlines,
still under affine projection, there is a linear parameterisation of the form X =
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(A,u,v) (see [94] for details) where v is another vector, so the dimensionality
of X increases from 6 to 8. Of course the underlying dimensionality of the space
is still & — three parameters for 3D translation and 3 Tor rotalion — and the
additional 2 are the price of insisling on a linear parameterisation.

Having defined the linear parameterisation r(s; X) of image curves, a curve
can now be fitted to a particular set of image data. Suppose the data itself is a
curve r¢(s), then the least squares fit, the curve r(s; X) minimising

f|r(s;X) —rp(s)|*ds, (18.9)
is given simply by
X=mn" /HT(s)rJr(s} ds where H = /HT(S)H(S) ds, (18.10)

provided the solution is unique. For better stability, regularisation on r(s; X) can
also be introduced. The integrals in (18.10) have to be computed finitely in prac-
tice, and this can be achieved by a using finite parameterisation of the base curve
t(s) (and therefore also of H (s}): for example T(s) can be modelled as a B-spline
[93, 94] or simply as a polygon [223].

There remains one important issue. The fitting scheme above is correct only if
correspondence between the curves is known — that is, for any given value of
5, the point x(s; X'} in the plane is supposed to correspond to the point r;{s) on
the data curve. Tn practice, of course, this is not the cuse: ry(s) may be parame-
terised quite differently from r(s; X'} so that in principle one should fit r(s; X)
to r¢{g(s)}, for some unknown reparameterisation function g. In the case that the
reparameterisation is not too severe, this is dealt with approximately by replac-
ing total displacement in (18.9) by normal displacement [94, Ch. 6], as in figure
18.4. Normal displacement is commonly used, for this reason, in tracking systems

. Sl 2

A/«@

Figurc 18.4. Normal displacement @} Displacement along the normal from one curve
o another, as shown, forms the basis for « measure of difference hetween curves that
is approximately invariant to reparamelrisation. b} Total displacement can be factored
vectorially into two components, tangential and normal. Image reprinted from [94].
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[384, 223],
For full details on curve fitting, regularisation, recursive fitting and normal
displacement see [94, ch. 6].

18.3.4 Nonrigidity

Nonrigid motions fall outside the affine families described above, but may still be
captured by a suitable space of shapes. The widely used “Active Shape Model”
(ASM) [223] does this by analysing a training set of contours, and constructing
an eigen-space of shape by Principal Components Analysis (PCA). Initially the
high-dimensional parameterisation X = (q;, i = 1,...,V) of polygon ver-
tices is chosen. Then the training set {r1(s),...,ra,.(s)} of curves is encoded
in terms of its polygon-vertex representation X1, ..., Xn,.. Now the sample co-
variance matrix X of the X,,..., Xy, is computed and, as usual in PCA, its
dominant eigenvectors are retained, and form a compact basis for curve shape.
Components in this basis form a new, low-dimensional curve parameter X which
captures nonrigidity. Finally it is possible to combine the rigid and the non-
rigid approach by explicitly projecting out the affine variations in the training set
{ri(s),...,rn.(s)} of cirves, and using PCA to account only for the remaining
nonrigid variability. In this way the curve parameter X contains both affine com-
ponents and, separately, components for nonrigid deformation as in figure 18.5.

Figure 18.5. ASM components The dominant eigenvectors from PCA analysis of a training
sef of lip shapes, describing the main non-rigid components of motion. Images reprinted

Jrom {94].

18.3.5 Robust curve distances

Simple least squares error measures like (18.9), and its modified counterpart
for normal displacement, have no built in robustness to distortions of the data,
in particular those caused by occlusion and clutter. The advantage of (18.9) is
its tractability, in that it is quadratic and so can be minimised in closed form.
"Chamfer matching”, which has been used with notable success in pedestrian de-
tection [338], exchanges some tractability for robustncss. In place of summing
squared-distance (18.9), summing a truncated distance [ dc(r(s; X) —rs(s))ds,
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where d.{x) = min(|z], €), is more tolerant to outliers. Furthermore, the ideal of
minimising over possible parameterisations, previously approximated by normal
displacements, can be fully restored to give an asymmetric distance

p= /‘min de(r(s; X} —ryp(s')) ds, (18.11)
which can be expressed as
p= /D(r[s; X))ds, where D(r) = mind(r —rs(s')). {18.12)

The image £Xr} is the “chamfer image” which can be precomputed for a given
observed data curve r (). In this way, muoch of the computational load of comput-
ing o is compiled, once for all, into the computation of D(r). Then the marginal
cost of multiple evaluations of p for numerous different values of X is very low,
consisting simply of a summation along the curve r(s; X). This low marginal cost
makes up considerably for the lack of closed form minimisation, and can be used
to search efficiently over both pose and shape. Further organisation of shapes into
a tree structure based on similarlity makes matching even more eflicient by reduc-
ing the number of evaluations of p required, and this has been very successful in
matching even articulated shapes [338, 7631

A related distance measure {415], mentioned briefly here as a relative of the
chamfer distance, is the Hausdorff distance min, min, |r(s; X) — ry(s")| which
is also asymmetric and, in its pure form, not robust. Robustness is dealt with in
practice by replacing min,, which is frail in that it makes the HausdorfT distance
dependent on the distance between two particular points on each of the curves, by
a quantile over s.

18.4 Spatio-temporal filtering

The difference between tracking and localisation is that tracking exploits object
dynamics, both for efficiency and for effectiveness.

18.4.1 Dynamical models

Dynamical models can be more or less elaborate, according to the nature of the
motion being modelled. Some motions, for example of vehicles, tatking lips or
human gait are often quite predictable and it makes sense to model them in some
detail [66, 95]. Tn any case il is natural to think of a classes of motions, and a
probability distributions over that class, which is very naturally represented as an
AutoRegressive process (ARP) on the state vector X at time ¢ (denoted X;). A
simple ARP on X, expressed in terms of a “driving” vector w, of independent
Gaussian noise variables, and constant square matrix B, takes the form (first order
AR process)

Xy = (X1, W), (18.13)
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with F' linear, and some examples follow.
Tethered: X; = Bw,
Brownian: X, = X;_; 4 Bw;
Constant velocity; X, = X, + Bw, +v
Constrained Brownian: X, = ¢ X, 1 + Dw, with |a| < 1
Damped oscillation: X; = a1 X1 + a2 X2 + Bw; with appropriate a1, ag.

The last is, of course, not a first-order AR process, but is 2nd order, of the form
X = F(Xy .1, X¢-q) + wy. Details of the expressive power of various AR mod-
els, the roles of the various constants, and algorithms for learning them from
training data are detailed in [94, Ch. 9]. Of course these are just a few of the
possible linear dynamical models. More elaborate models may also be appropri-
ate, and nonlinearily is also powerful for allowing switching belween different
kinds of motions [422] — effectively mixtures of AR models.

18.4.2  Kalman filter for point features

Classically, the Kalman filter is the exact computational mechanism for incorpo-
rating predictions from an AR model of dynamics into a stream of observations,
and in due course this important idea was introduced into machine vision
[377, 343, 312]. The most straightforward setting is the tracking of point features,
such as polyhedral vertices, used with an affinely deforming image structure [673]
(recall section 18.3.3) or a 3D rigid body structure [383] (as section 18.3.2). In
cither case, it is essential to represent explicitly the uncertainty in the observation
r¢(s;) ef each point, in terms of independent, two-dimensional standard Gaussian
noise vectors v;:

rplsg) = (s, X+ i=1,..., M (18.14)

where g; is the magnitude of the positional uncertainty associated with the mea-
surcd the image location r¢(s;) of the i*" feature, Measurement uncertainty can
then be traded off with uncertainty in the (noise driven) AR prediclions to achieve
a natural and automatic balance between the influence of observations and of pre-
diction. The result is that an estimate X, of state X, is propagated in the following
manner.

At each clock tick, predict:
X, = F(X-1,0). (18.15)
— the ARP prediction equation (18.13) with zero noise.
Each measurement vy(s,t), ..., vp{s5n,t) is assimilated as:

Xy = Ko+ Kigep(50,8) — v(s0, X2))- (18.16)
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The “Kalman gains” K , are computed by an associated recursion whose details
are omilted here, but see e.g. [268].

18.4.3  Kalman filter for contours

Kalman filtering for contour tracking |93] proceeds in a similar fashion as for
point-features, but using the idea of normal displacement, introduced in section
18.3.3 and illustrated here in fig 18.6. Only the normal component of feature

Figure 18.6. Kalman filter for contours Prediction and measurement phases for contours,
with observations (double arrows) of normal displacement, fmages veprinted from [94].

displacement is assimilated, so that step (18.16) above takes instead the form:
X: =5 X't k: }q‘t[“(% t)+ (ry(s:,8) — (s, -f(t})]: (18.17)

where n(s;, t) is the normal to the curve r(s, )A(;) at the i*h sample point s = 3.
Unlike the case of point features, where the locations s = &, are locations on
the contour of distinguished point fealures, here Lhe s = #; are simply a conve-
nient sampling pattemn along the length of the contour, implementing a numetical
approximation of the mean-square normal displacement.

18.4.4 Particle filter

The Katman filter has two limitations that can prove very restrictive in relatively
unconstrained tracking problems.

1. Clutter: it is limited to one observation r (s;, t] for each contour location
r{sq, b}. Chutter in the image tends to generate muliiple observations at each
location, as figure 18.7 shows.

2. Dynamics: the Kalman filter is limited to ARP models of dynamics. Mild
non-linearities can be dealt with, in practice, by locat linearisation. Hybrid
dynamical models that swilch between ARPs (e.g. light/bouncing/rolling)
demand a more powertul mechanism for temporal filtering.

Particle filters are a class of Monte-Carlo temporal filters that are more powerful
than the Kalman filter in that they escape both from the restrictions of clutter
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g

Figure 18,7, Image clutter disrupts ebservations dctive contour and normals ave shown.
Crosses mark observations of high conirast features, some of which are triggered by the
true obfject outline while others are vesponding fo clutier, both inside and outside the object.
Imuge reprinted from [419].

[419] and dynamics [422], but at the cost of being only approximate, The idea
of sampling shapes in clultered observations derives originally from static studies
[365]. The carliest form of the particle filter was the “bootstrap filter” [355]. The
more powerful form described here is based [421, 523] on importance sampling .

The essence of the particle filter is summarised in figure 18.8. In place of the
single estimate X, in the Kalman filter, particle filters maintain an entire set
{XP.,n = 1,..., Ng} of possible estimated values of the state X,. This is a
robust approach that allows the explicit representation of ambiguity in a way that
a Kalman filter simply cannot. For example in clutter, the ambiguity is generated
by uncerlainty as lo which of many visible [eatures is actually generaled by the
true object. With hybrid dynamics, the ambiguity reflects uncertainty as to which
ARP model currently explains the observed motion; typically ambiguity is height-
ened around the time that the model switches. The particle set for time ¢ consists
of the set of possible values {X}* ; } along with a set of positive weights {m}" ; }.

The algorithm description explains how the particle set evolves from one
timestep to the next. First new values X" are generated by sampling from a pro-
posal distribution g;. In the simplest CONDENSATION [419] or bootstrap [355]
forms of the filter,

(X | Xy} =p(Xe | Xy = X7

— the proposal is simply a simulation of the dynamical model itself. In other
wordg, particles are generaled by predicting the change of state from time-step
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Temporal update for ime step £t — 1 — ¢

From the sample-set { X", 7P ,n = 1,...,Ng} at time £ — 1, construct a
new sample-set { X, '}, m = 1,..., Ng for time {, as follows.

l. Select samples X;" by sampling from the “proposal distribution”
(X | XiLy).

2. Weight the new particles in terms of the vector of measured features
z; = {rp(s1. 8}, ... vp(sp, b)

= ﬂ?_tp(zﬂxn = X7 p(Xy = XP| Xy = X1 4)
' q( Xy = XP | Kooy = X7L4)

3. Resample, at occasional time-steps, to avoid the distribution of weighis

becoming (oo uneven:

(a) Sample, with replacement, from {X*,n = 1,..., Ng}, selecting
X[ with probability proportional to 7}*, to form a new, resampled
set {X7',n=1...,Ng}.

{b) Resetall weights to m* = 1.

Figure 18.8. A Particle filtex. Standard form of particie filter, following {641].

t — 1 to timestep . In the case of ART dynamics (18.13) this gives
XP= P w0, (18.18)

where the wl', n = 1,... N arc independent draws of a standard normal variable,
thus using the ARP to make noisy predictions of object position. In this way, par-
ticles X* sweep out a set of ¢ priori probably values for X;. A more adventurous
form of proposal distribution uses hints from the image — “importance sampling”
— at time ¢ to generate probable values for X, For example, tracking hands or
faces, a “pinkness” measure ¢°"*(X) can be used to generate states likely 1o
coincide with skin colouration in the image.

The second slep of the algorithm generates the weights 7 and in doing so
achieves two things: i} it takes account of the new measurements ry(s;, £); and ii)
it compensates for any bias in the proposal distribution ¢,{.). Again, the simplest
case is the CONDENSATION filter, in which ¢ {.) is unbiased, and the formula for
weights simplifies to

AP =l plm) X, = XP). (18.19)
A simple example of a measurement process was given earlier (18.14), and in that

case the observation likelihood is the Gaussian

M
1
p(2]X) o exp— 3 | o lles(ss) —rlss, X1 (18.20)

=1
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Of course, part of the point of the particle filter is to be able to track in clutter, and
then the simple likelihood (18.20) is replaced by something non-Gaussian with
multiple modes [419].

The third step of the algorithm controls the efficacy of the particle set in repre-
senting the posterior distribution over X, via occasional reweightings. Delaiis of
how exactly reweighting is triggered are omitted here, but see [641].

Results of particle filtering for an active contour was given in figure 18.1. This
example uses simple CONDENSATION [419] to track a blowing leaf in severe clut-
ter. The figure shows a trail of estimated mean states X = [3._«P XP|/[32,, 77
over time.

18.5 Further topics

There are a number of further topics in (racking that build on the ideus already
outlined, and go beyond them in various intriguing ways. There is no space here
to explore them in the depth they deserve, so pointers and brief summaries will
have to suffice.

Fusing contour and appearance Much of this roadmap has addressed contour
tracking, and in section 18.2 we briefly outlined approaches to appearance
tracking. More recently there have been breakthroughs in joint modelling
and localisation of contour and appearance [221] and the related approach
[718], without dynamics however. An alternative fusion of appearance and
contour combines particle filiering of contours [640] with an observation
model tike the one used in mean-shift tracking.

Filter Banks Observations based around contours have drawbacks both from the
point of view of the principles of good Bayesian inference and, as above, the
need to fuse both contour and appearance information. A complementary
approach is to model the observations as the joint output of a set of fil-
ter banks [340, 773], which harnesses both appearance from filters within
the object contour, and contrast from those that straddle the contour. The
approach becomes even more powerful when combined with background
modelling [423]. Another impressively powertul variation models filter out-
puts as a hybrid [436], with each filter switching independently between
models for stasis, steady motion, or random walk.

Articulated and deformable structures Modelling deformation has been dis-
cussed above, and there are numerous variations on the theme, for example
“deformable templates” {317, 914]. Outright articulation — jointed as-
semblies of rigid bodies — can be dealt with effectively using greedy
strategies [402, 672], though at considerable computational cost, which can
be mitigated using observation-cost gradient information [115]. Alterna-
tively, the ASM approach of section 18.3.4 can be used for articulation
also [90]. Issues arising in image-based models when image topology
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changes as the body articulates have been addressed using several shape
space models connected via “wormholes” [391], in a Markov network.
Alternatively, cartoon-like catalogues of outline-exemplars with differing
topologies [338, 801], also connected in a Markov neiwork, and matched
using chamfers, are a very effective memory-inlensive approach,

Persistence Finally, there have been striking advances in trained recognisers for
localising [aces and walking figures, in a single frame [847, 848]. These are
so powerful and ¢fficient that, without any recourse to dynamical models,
real-time performance can be achieved on a modern workstation. However,
these too can bencfit from a dynamical approach [37, 894], promising real-
time tracking in the background of a desktop machine’s process lead, and
on portable devices, in the futare.

All of these issues and others will be treated in more detail in a lorthcoming, long
version of this readmap article [92].
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Shape Gradient for Image and Video
Segmentation

S. Jehan-Besson, A. Herbulot, M. Barlaud, G. Aubert

Abstract

In this chapter, we propose to concentrate on the research of an optimal
domain with regards to a global criterion including region and boundary
functionals. A local shape minimizer is obtained through the evolution of
a deformable domain in the direction of the shape gradient. Shape derivation
tools, coming from shape optimization theory, allow us to easily differentiate
region and boundary functionals. We more particularly focus on region func-
tionals involving region-dependent features that are globally attached to the
region. A general framework is proposed and illustrated by many examples
involving functions of parametric or non parametric probability density func-
tions (pdfs) of image features. Among these functions, we notably study the
minimization of information measures such as the entropy for the segmen-
tation of homogeneous regions or the minimization of the distance between
pdfs for tracking or matching regions of interest.

19.1 Introduction

Active contours are powerful tools for image and video segmentation or tracking.
They can be formulated in the framework of variational methods. The basic princi-
ple is to construct a PDE (Partial Differential Equation) from an energy criterion,
including usually both region and boundary functionals. This PDE changes the
shape of the current curve according to some velocity field which can be thought
of as a descent direction of the energy criterion. Given a closed curve enclosing an
initial region, one then computes the solution of this PDE for this initial condition.
The corresponding family of curves decreases the energy criterion and converges
toward a (local) minimum of the criterion hopefully corresponding to the objects
to be segmented.
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Originally, snakes [456], balloons [204] or geodesic active contours [157] are
driven towards the edges of an image through the minimization of a bound-
ary integral of features depending on edges. Active contours driven by the
minimizaticn of region functionals in addition Lo boundary funclionals have ap-
peared later. Introduced by [207] and [680], they have been [uriher developed in
[922, 174, 192, 626, 625,254, 910]. Actually, the use of active contours for the op-
timization of a criterion including both region and boundary functionals appears
to be powerful,

However, the PDE compultation is nol trivial when the energy criterion involves
region functionals. This is mostly due to the fact that the set of image regions
does not have a structure of vector space, preventing us to use in a straightforward
fashion gradient descent methods. To circumvent this problem, we propose to take
benefit of shape derivation principles developed by [751, 256]. This computation
becomes more involved when global information about regions is present iu the
energy criterion, the so-called region-dependent case. Tt happens when statistical
features of a region such as, for examplc, the mean or the variance of the intensity,
are involved in the minimization. In this chapter, we propose a general framework
based on shape derivation tools Tor the compulation of the related evolulion equa-
tion. Inside this theoretical framework, many descriptors based on parametric or
non parametric pdfs of image features may be studied. We propose to give some
results for both of them and some examples of applications.

Region and boundary functionals are presented in section 19.2 while shape
derivation tools are presented in section 19.3. Statistical region-dependent de-
scriptors based on parametric and non paramelric probability density functions
(pdfs) are studied in section 19.4.

19.2 Problem Statement

In many image processing problems, the issue is to find 4 sct of image regions that
minimize a given error criterion. The basic idea of active contours is to compute
a Partial Differential Equation (PDE) that will drive the boundary ol an initial
region towards a local minimum of the error criterion. The key point is to compute
the velocity vector at each point of the boundary at each time instant.

To fix ideas, in the two-dimensional case, the evolving boundary, or active con-
tour, is modeled by a parametric curve I'(s,7) = (x1(s, 7), %2(s, 7)), where s
may be its arc-length and 7 is an evolution parameter. The active contour is then
driven by the following PDE:

Y %1; =v with I{r =0) =T,
where Ty is an initial curve defined by the user and v the velocity vector of
I'(s,7). This velocity is the unknown that must be differentiated from an er-
ror criterion so that the solution I'(., T) converges towards a curve achieving a



Shape Gradient for Image and Video Segmentation 311

local minimum and thus, hopefully, towards the boundary of the object to be
gsegmented, as 7 — oo,

Following the pioneer work of Mumford Shah [591], a segmentation problem
may be formulated through the minimization of a criterion including both region
and boundary functionals. Let U be a class of domains of R", and {2 an element
ol of boundary 92. A boundary functional, .J,, may be expressed as a boundary
integral of some scalar function %y of image features:

J,(8) = [3 a(x,0) da) (19.1)

where @1 is the boundary of the region and da ils area element.
The most classical example of boundary functional comes from the work of
Caselles et al [157], where the authors minimize for an image in 2D:

J(O5) — /6 _o(I7HOR(s) i

where s represents the arc length of the curve 9t and g{r) = -1-4-‘-%-*, m = 1or
2. The function g drives the curve towards the image edges characterized by high
values of the image gradient.

A region functional, J, may be expressed as an integral, in a domain €2 of U, of
some function & of some region features:

J{) = /{ k(x dx (19.2)

Let us note that the scalar function % in (19.2) is generally region-dependent. A
classical example of region-dependent descriptor is the following one proposed
by [174, 254]:

k(x, Q) = (I(x) - j)?

where #{Q) represents the mean of the intensity values within the region €. This
dependency on the region must be taken into account when searching for a local
minimum of the functional.

Generally one uses a linear combination of region-based and contour-based
terms in order to perform a segmentation task. A simple example is the segmen-
tation into two regions £2;, and £2,,;, which basically correspond to obijects and
background. An appropriate energy functional for this task would be:

J(Qsm Qout) = / km(xa Qa’n) dx + f
2

Qo

k‘ou.t(xs Quut) dx +/ kb (X_) ds
B hine

where ky, is the descriptor for the object region, k. for the background region

and & the descriptor for the contour.

The choice of the descriptors is dependent on the application. In this article
we propose to focus on statistical descriplors based on purametric or non para-
metric pdfs. Once this choice is made the terms have to be derived in order to
calculate a velocity function that drives an initial contour towards a minimum. A
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detailed state of the art on region-based active contours can be found in [432]. Let
us bricfly note that some authors do not compute the theoretical expression of the
velocity field but choose a deformation of the curve that will make the criterion
decrease [159, 192]. Other authors [922, 625] compute the theoretical expression
of the velocity vector from the Euler-Lagrange equations. The compulation is per-
formed in two main steps. First, region integrals representing region functionals
are transformed into boundary integrals using the Green-Riemann theorem. Sec-
ondly, the corresponding Euler-Lagrange cquations are derived, and used to define
a dynamic scheme in order to make evolve Lhe initial region. Another alternative is
to keep the region formulation to compute the gradient of the energy criterion with
respect to the region instead of reducing region integrals to boundary integrals. In
[254], the authors propose to compute the derivative of the criterion while taking
into account the discontinuities across the contour. In [431, 432] the computation
of the evolution equation is achieved through shape derivation principles.

This compulation becomes more difficult for region-dependent descriptors. It
happens when statistical features of a region such as, for example, the mean or
the variance of the intensity, are involved in the minimization. This case has been
studied in [174, 254, 910, 465, 234]. In [431, 432] the authors show that the mini-
mization of functionals involving region-dependent features can induce additional
terms in the evolution equation of the active contour that are important in practice.
These additional terins are easily computed thanks to shape derivation tools.

In the following, we present shape derivation tools for the computation of the
evolution equation.

19.3 From shape derivation tools towards region-based
active contours models

As far as the derivation is concerned, two main difficulties must be solved. First,
the set of image regions, i.e. the set of regular open domains in R™, denoted by I,
does not have a structure of vector space, preventing us from using in a straight-
forward fashion gradient descent methods. To circumvent this problem, shape
derivation methods [751, 256] can be brought to bear on the problem as detailed
in this section. Secondly, the descriptors &, or k; may be region or boundary-
dependent. Such a dependence must be taken into account in the derivation of the
functionals as pointed out in {431, 432, 34, 335]. We here recall a theorem giving
relation between derivatives that will be helpful for derivation of region func-
tionals for both region-independent and region-dependent descriptors. We also
give some details and references for the dertvation of boundary-based terms using
shape derivation tools.
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19.3.1 Shape derivation tools
19.3.1.1 Introduction of transformations

As it has already been pointed out, the optimization of the region functional .J{£2)
is difficult since &/ does not have the stracture of a vector space. Variations of a
domain must then be defined in some way. Let us consider a reference domain
@ € U and the set A of applications 1" : £} — R™, which are at least as regular as
homeomorphisms (i.e. one to one with I’ and 7"~! continuous). We define

A= {T onetoone, T, 7~ € WH°(Q, R™)}
where:

W R*y = {T: 8 — R" such that
TeLl=(@,R ) and T € L¥(Q,R"), i=1,- - ,n}

Given a shape function I : L — RT, for I" € A, letus define F(1) = F(T(52)).
The key point is that W1H22(£2, R™) is a Banach space. This allows us Lo define
the notion of derivative with respect to the domain 2 as follows:

Definition 19.3.1. F is Gdtequx differentiable with respect to X if and only if F
is Géteaux differentiable with respect to T,

In order to compute Gateaux derivatives with respect to T we introduce a family
of deformation (T'(7)),>0 such that T{r} € A for = > 0, T(0) = Id, and
T(.) € CH{[0, Al; W= (), R*), A > 0.

For a point x € £2, we denote:

x(7) =T(r,x} with T(0,x)=x
Q) =T(7,) with T{O,0) =0

Let us now define the velocity veetor field 'V corresponding to 4'(7) as

V{irx) = g—f('r,x} Ve Vr >0

19.3.1.2 Relalions between the derivatives
We now introduce two main delinitions:

Definition 19.3.2. The Gdteaux derivative of J(Q) = [, f(x,Q)dx in the
divection of V, noted d.J.(§), V), is equal to;

dJ(Q, V) = lin}) M
T—F T
This devivative is called the Eulerian derivative.

Definition 19.3.3. The shape derivative of k(x,11), noted ks(x,, V'), is equal
fo:

k(x, (7)) — k(x, ©)

e

ko(x,2,V) = im
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The following theorem gives a relation between the Eulerian derivative and
the shape derivative for the region functional (19.2). The proof can be found in
[751, 256], an elementary one is provided in [432] for completeness.

Theorem 19.3.1. The Eulerian derivative of the fimetional J($1) f“ (x, ) dx
in the dirvection of 'V is the following:

4JL (0. V) = fﬂ ks(x,Q,V)dx—/a KDV NG)daly

where N is the unit inward normal to $5) and da ity area element,

Note that Theorem 19.3.1 provides a necessary condition for a domain 2 to be
an extremum of J{2):

[ks(x,fl,V)dx - / E(x, Q)(V(x) - N(x))da(x) =0 VV.
9] a8

19.3.2 Derivation of boundary-based terms

In the case of boundary-independent descriptors, the Eulerian derivative of Jp =
Jaq ku{x}da(x) in the direction v,, = (V - N) is the following:

dJy (90, v,) = /a (ho(x) N =y (x) w)(V - N)da (19.3)

where & is the mean curvature of 50).
>From Lhis Eulerian derivative, we can deduce the following evolution equation
for the active contour:

Iy = (ks(x) k — Vhy(x) - N)N  with T'(r =0) =T,. (19.4)

This evolution equation has been computed by Caselles et al [157] by using
techniques of calculus of variations.

As far as boundary-dependent descriptors are concerned, the dependence on the
boundary must be taken into account for the computation of the Eulerian deriva-
tive. In [335], the authors studied the following descriptor which represents the
distance between the current boundary &€ and a reference one 96, ;:

ky = d(BL, B0 s).

The authors conpule the evolution equation and they show that some terms appear
coming from the dependency of the deseriptor with the boundary, This descriptor
has been used for the introduction of shapc prior for segmentation. Let us nole
that the introduction of shape priors for segmentation using active contours has
also been studied by [628, 233, 235]. Let us also note that in [399], the authors
remind some theorems for the computation of the Eulerian derivative of boundary-
dependent descriptors and in [177], the authors deal with shape metrics following
considerations developed in [256].
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19.3.3 Derivation of region-based terms

Let us now apply the previous results to differentiale the velocity vector of the
active contour.

15.3.3.1 Region-independent descriptors

We first consider the simple case where the function %k does not depend on 2, i.e.
k = &(x). In that case, the shape derivative &, is equal to zero and the Eulerian
derivative of J is simply (Theorem 19.3.1):

AT, V) = — / KV (x) - N(x))da(x)
o
This leads to the following evolution equation for region-independent descriptors:
I'; =kN with T{r=0)=T,.
This is the classical result [922, 625] when & has no region dependency. Let

us now consider the more general case where the function % has some region
dependency.

19.3.3.2 Region-dependent descriptors

Region-dependent descriptors of the form J.(Q) = fn k(x, Q)dx are more com-
plicated to differentiate. Using Theorem 19.3.1 one can obtains a derivative of the
following form [432, 34] for some of them (see section 19.4):

dJ (V) = — ];n(k(x, Q) + A(x,2))(V -N)da (19.5)

This leads to the following evolution equation for these region-dependent
descriptors:

I, =(k+AN with [{(r=0)=T,.

The term A(x, {2} is a term that comes from the region-dependence and so from
the evaluation of the shape derivative &;,. We here propose a general [rame-
work for deriving some region-dependent descriptors based on parametric or non
parametric statistics. The pringiple is to model region-dependent descriptors as
follows:

J@Q) = / b(x, G(Q)dx, where G(Q) = [ HaxQdx  (19.6)
S0 )
As shown in this equation, the function H is itself region-dependent, more
precisely:

Hx, O Y Hx, K(©), and K(Q) = / Lx)dx (197
%)

Note that we have stopped the process at the second level but it could conceivably
continue. We have chosen this special case of dependency because it often arises
in applications, as shown in sections 19.4.2 and 19.4.1.
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Theorem 19.3.2. The Eulerian derivative in the direction of V of the functional
J defined in {19.9) is:

d J (0, V) = - fan (A(x, ) + E(x, 0} (V(x) - N(x))da{x)

where !

Ax, Q) = Uﬂ ke (%, (;(Q))@) (L(x)]ﬂﬁx(x,ff{ﬂ))dx—}— H(x,K(Q)))

The terms kg and Hy denote respectively the partial derivative of the function k
and I1 with respect to their second argument.

Proof: According to Theorem 19.3.1, we have:
&I, V) = / kodx— |k (V. N)dax)
0 Jan
Let us first compute the shape derivative of k. From the chain rule we get:
Ey(x,9, V) = ka(x, Q)d-C(, V), (19.8)
where k; denotes the partial derivative of the function k with respect to its second
argument,

Next we compute the Bulerian derivative of (G in the direction of V. We apply
again Theorem 19.3.1, and we get:

4.G(0, V) = / H, dx — / H (V- Nda(x).
Rt iy

Plugging this into (19.8), we obtain:

fnksdx= (/ﬂkG(X,G(Q)) dx) (/HH e /E;nff(v-N)aa(x)),

We also compute the shape derivative of H thanks to Theorem 19.3.1:
Hi(x,Q,V) = Hr (%, K)d K(Q, V)
The Eulerian derivative of X in the direction of 'V is given by:
4 K(9, V) = f B e / LV (x) - N(x))dafx)
0 Jan
Since L does not depend on ), we obtain L, = 0 and we get the result.

We can now state the result for the general case where £ is described as a linear
combination or region funciionals as follows:

J() = /ﬂ k(x, G1(82), Go(S1), .., G (§2)) dx, (19.9)
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where the functionals G, are given by G,(Q) = [, Hi(x,Q)dx 7 = l.m. As
shown in this equation, the function A is itself repion-dependent, more precisely:

Hi(x, ) 2 Hy(x, Ky (), Kia (), 1.0 K, (82)) (19.10)
where F(”(Q} :/ L.&j(f) dx j = _I_,.Ei 7= l.m, (1911)
2

We have chosen this special case of dependency because it often arises in
applications, as shown in sections 19.4.2 and 19.4.1.

Theorem 19.3.3. The Eulerian derivative in the direction of V of the functional
J defined in (9.9} is:

4. IO, V) = */ (A(x, Q) + k(x, ) (V- Nda.
a0
where A(x, ) =310 D, Z;LI(B@_-;' Lij(x)) + X000 (Ds Hy),

and D,

/ ko e, Gi{Q), G dx i=1.m
¢)

B'U f I_If.,‘(.,_., (:}‘:, Kﬂ(ﬂ),, [(,j;j(ﬂ)) dx i=1.m j = l..J@-
1]

19.4 Segmentation using Statistical Region-dependent
descriptors

In this section, we are interested in the minimization of the region functional
(19.2) for region-dependent descriptors. The general framework introduced in
section 19.3,3.2 allows us to compute the derivative and the evolution equation
for many descriptors based on parametric or non parametric statistics. Some ex-
amples of computation are given for descriptors based on parametric statistics in
section 19.4.1, while a general computation of the derivative is proposed for non
parametric statistics in section 19.4.2.

Let us first introduce some notations and some examples of region-dependent
descriptors. We note f(x) the feature of interest of the image at location x. This
feature may be the intensity of the image, the motion vector, a shape descriptor
and is a function f : {8y — R™ where £2; C R? is the image domain and m
is the dimension of the feature. If f is the image intensity, m = 1 for grayscale
images and yn = 3 for color images. If f is a motion vecter, m = 2.

When congidering the pdf ol £ within the region, denoted by g{f(x}, (), we can
choose the following general descriptor for segmentation:

k(x.9) = p(a(f(x), 2)) (19.12)
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When minimizing the -log-likelihood function for independent and identically
distributed observations (iid) £{x), we have:

plg(f(x), ) = —In{g{(x), ) (19.13)

When minimizing the entropy function, we get:

lalE(0), ) = —g(£(0), ) In(q(£(x), ) (19.14)

The concept entropy designates the average quantity of information carried out
by a feature [229]. Intuitively the entropy represents some kind of diversity of a
given lealure.

These descriplors may be chosen Lo characterize the homogeneity of a region
according to the feature. In both cases, the pdf may be parametric, i.e. it follows
a prespecified taw (CGaussian, Rayleigh ...) or non parametric. In the last case, no
assumption is made on the underlying distribution.

As far as paramelric pdfs are concerncd, the descriptor (19.13) has first
been introduced by [922] for the segmentation of homogeneous regions using
region-based active contours and further developed by [625, 547]. [n the case of
parametric pdfs, the probability density function ¢ is indexed by one or more pa-
rameters, denoted by a vector !, describing the distribution model. For example,
when using a one dimensional Gaussian distribution, we get:

' el L) = 1)2
ao(f(x), Q) = ! exp (f( )‘ 1)

- no 202

where ¢ = [y (;]T. The terms p and o represent respectively the mean and the
variance of the scalar feature f within the region £2. Note that the parameters of the
distribution depend on £2 and that such a dependence must be taken into account
during the derivation process. Some other descriptors for segmentation are derived
from the development of the expression {19.13) for Gaussian distributions. For
example, the descriptor k(x, ) = (I(x) — u)* has been proposed by [174] for
the segmentation of homogeneous regions, and the descriptor k(x, Q) = p{c?)
by [432].

As far as non parametric pdfs are concerned, the expression of the pdf ¢ is given
by the Parzen method [287]:

a(£(x),92) = ﬁ /ﬂ K(£(x) — £&)) d% (19.15)

where K is the Gaussian kernel of the estimation with J-mean and o-variance and
{€}| the shape area. Non parametric pdfs have been introduced in region-based
active contours in [34] for the minimization of the distance between two pdfs and
in [465] for the minimization of information measures. The general descriptor
{19.12} has been studied in [395, 396] and the descriptor (19.13) has been studied
by [465, 464, 123).
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19.4.1 Examples of Descriptors based on parametric statistics

In the case of parametric pdfs, the probability density function g is indexed by one
or more parameters, denoted by a vector 8, describing the distribution model. The
parameters @ depend on the domain £ and such a dependence must be taken into
account in the derivation process through the evaluation of the domain derivative.
We propose here to give some results for the derivation of functions depending on
simple statistical parameters such as the mean or the variance. This study can be
extended to the derivation of the covariance matrix determinant.

19.4.1.1 Region-dependent descriplors using the mean

For a onc-dimensional image feature f, let us choose:
K, 9) = o)~ ) = ol 0~ o [ F0a0) (19.16)

where p : R — R is a positive function of class C!, The region funclional can
be expressed as in equation (19.9):

5@ = [ ks = [ o0~ max = [ alr) - Gxhax,
where
G0 = de,ﬂ}dx: f(x)dxa.ud Gy (02 /H; (x Q)dx—-fldx
Ja Q

In this case, the functions H‘,-, i=1,2donotdepend on the region O, 1} =1, =0
and K;(x) =0 Vi, j. Theterms D;, j = 1,2 can then be computed:

Di = —fod o (F0) - 8) dx = Jo O(f — mydx

Dy = ol @ (S0 &) dx=f [, 0(f - p)dx

The terms B;; are equal to zero and the velocity vector of the active conlour is
ther:

S (f — 1) '
lf—{k— 9] .s_!g(f—;s)dx}N

In this example, the term coming from the region dependency of f is equal to
ﬂlﬁ“‘l Jq ¢'(f — p)dx. Note that in the particular case of p(r) = r2, this term is
equal to zero [174, 254].

19.4.1.2 Region-dependent descriptors based on the variance

Let us take another example of descriptor for one dimensional image feature.
Consider the case where the function & is a function of the variance given by:

) = oo = o (g [0 =) =0 (G5 )
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where ¢ : Rt — RT isof class ¢,
We can then compute the velocity vector of the active contour from Theorem
19.3.3 using:

2
Gi) - th{x,ﬂ}d}(, Ijl(x,&'ﬁ)=(f(x) %) . h=2

Ga() = [.Hg(}(,ﬂ}dﬁ, Hy(x, Q) =1, =0,
0o

and we find:

Tp= [k+ (@) ((f - 1) - 0®)] N

In this simple example, we notice that the dcpendcncy of the function on the
region induces the term A(x, ) = ¢'(0?) ((f(x) — - ¢} in the evolution
equation, see [432] for details.

This result can be extended to a descriptor based on the covariance matrix de-
terminant for multidimensional image features f = [f!, f%, ..., f*|T. Itcan be a
useful tool for the segmentation of homogeneous regions since minimizing the
entropy is equivalent to minimize the determinant of the covariance matrix in the
case of Gaussian distributions [360, 359]. The evolution equation can be com-
puted using Theorem 19.3.3. Details of the computation as well as experimental
results for the segmentation of the face in color video sequences may be found in

[432].

19.4.2  Descripfors based on non parametric statistics

19.4.2.1 Region-dependent descriptors based on non parametric pdfs of image
features

We consider the following descriptor, where i is a function: RY — Rt and g is
given by {19.15):

k{x, Q1) = rp(q(f(x),ﬂ)) (19.17

Theovem 19.4.1. The Eulerian devivative in the direction V of the functional
J() = [, k(x, Q)dx where k is defined in (19.17) is:

G e /%_ (k(x, ) + Alx, D) (V - N) da(x)
where  Afx,(1) = T {f o (g{E(X), QN[ (%), £) — K(£(X) ~ £(x))]dx

Proof: The criterion is differentiated using the methodology developed in
section 19.3,3.2, We have:

1@ = [ (S ix= [ #6100 Ga)as
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d. Tteration 100

f. Initial histograms 2. Tteration 100 h. Final hislograms

Figure 19.1. Evolution of segmentation and histograms with the minimization of the
entropy for a grayscale image (f = I)

with  Gq(x,§2)

i

l &M, Hi0) = KE) - 1(R)),
() = /an(i,Q)di, Hy(k, Q) =1,

In comparison with the general results presented in section 19.3.3.2, we must
pay attention to the fact that If; depends on x and % during the derivation process.

These results can then be used for segmentation using information measures such
as the entropy or the mutual information [395, 396]. If we choose to minimize
the entropy as in [395], (¢} = —¢lIn(g). In Figure 19.1, an example of seg-
mentation of an osteoporosis image is given by minimizing J(Qn, Qput) =
E{Qn) + B(Quu) + A [ ds where E(Qy,) and I(£2,,¢) represent respectively
the entropy of the one-dimensional feature f(x) = J(x) inside and ouiside the
curve and X [i. ds is the classical regularization term that minimizes the curve
length balanced with a positive parameter A. The Figure 19.1 shows the evolu-
tion of the segmentation and the evolution of the associated histograms (of the
region (., and £,,;) during iterations. Figure 19.2 shows an example of seg-
mentation of color video by minimizing the joint entropy of a two dimensional
feature f(x) = [Y(x), U(x)]7, where Y is the luminance and U is the chromi-
nance. The joint entrepy is computed by using the joint probabilities between each
color channel. In Figure 19.2, we can see the evolution of the object histogram
(histogtam inside the region ;).

19.4.2.2 Minimization of the distance between pdfs for tracking

We next assume that we have a fanction p : RT x Rt — R* which allows
us to compare two pdfs. This Function is small if the pdfs are similar and large
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c. Initial curve d. Tteration 100 e, Final curve

f. Initial histogram g. Tteration 100 h. Final histogram

Figure 19.2. Evolution of segmentation and the associated object histogram (histogram of
the two components color of the region inside the curve) with the minimization of the joint
entropy

otherwise. [t allows us to introduce the following functional which represents the
"distance" belween the two histograms:

D) = [ o(alt, 0t o)) 19.18)
Rm

The distance can be for example the Hellinger distance when w(j,q) =

(\/E = \/(})2 Using the tools developed in section 19.3.3.2, we can compute the
Eulerian derivative of the functional £J. We have the

Theorem 19.4.2. The Eulerian derivative in the direction V of the functional D
defined in (19.18) is:

4DE,V) = g [ (00l 0,2 ) () -C(D) (VN)dafx),

where Shpl.,.) is the derivative of v according to its first variable and
Cl) = [rm Op(G(F, ), q(f, ey ))E, Q) df. The first term under the in-
tegral, D10(d(., ), ¢(., Quey)) * K, is the convolution of the function

(., 0, q(., Qreg)) : R™ — R with the kernel K.

A proof of this theorem can be found in [34, 433]. An example of tracking is
given in Figurc 19.3 for a two-dimensional image feature £(x) = [H(x}, V(x}]7,
where I7 is the hue and V' is the value of the color system H SV,

19.5 Discussion

In this article, we focus on the problem of finding local minima of a large class
of region and boundary functionals by applying methods of shape derivation
[256, 751]. We more particularly turn cur attention to region-based function-
als involving region-dependent descriptors. We propose a general methodology
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5 3

b. Initial c. Iteration 200 d. Final

WU U

e. Reference f. Initial g. Iteration 200 h. Final

(i)

Figure 19.3. Example of tracking using the minimization between the current histogram
and a reference one; () segmentation, (ii) histogram. Figure a represents the reference
segmentation and Figure e the associated reference object histogram. Figures b, ¢ and d
show the evolution of the curve and Figures f, g, h the evolution of the objcct histogram,

to derive region-based Minctionals based on parametric or non parametric pdfs.
To illustrate our framework, some examples of derivation and computation of
the evolution equation are given for parametric and non parametric slatistical
descriptors.



Chapter20

Model-Based Human Motion Capture

I. Kakadiaris and C. Barron

Abstract

Human motion analysis is a challenging research area aimed at automat-
ing the study of human behavior. An important part of any such system is
the component that performs the Human Motion Capture (HMC); in order
for human motion to be processed and semantically analyzed, a mathemat-
ical representation of the observed motion needs to be extracted. There are
two separate aspects to a HMC system; sensing (hardware) and processing
(software). The processing itself comprises of an initialization (anthropom-
etry and pose estimation) and a tracking phase. In this chapter, we present
methods for three-dimensional model-based human motion capture from
uncalibrated passive optical sensors with semi-automatic initialization and
tracking. Such methods allow for non-intrusive capture of natural human be-
havior from video cameras or from archival recordings. We demonstrate the
accuracy, advantages, and limitations of our methods for various classes of
data.

20.1 Introduction

In computer vision, human motion analysis (HMA) is a term that describes a
broad field with diverse applications. At its core, the goal of HMA is to provide
automated systems that can recognize humans and their behavior. More specifi-
cally, its aim is to develop algorithms that can process image sequences in order
to detect, track, and provide semantic context for the people recorded and the ac-
tivities they are involved in. Activities is a very loose term in this context, and
several diverse areas of applications have been studied that can be classified un-
der the HMA heading, as indicated by the early seminal surveys of Aggarwal and
Cai [8] or Gavrila [337], the later work of Moeslund and Granum [580] or the
recent review by Wang et al. [854]. They include tele-presence (teleconferencing,
interactive virtual worlds, avatar animation), perceptual user interfaces for control
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and command (gestures, sign-language, signaling), kinesiology (diagnosis, train~
ing, rehabilitation), ergonomics (robotics, product design, testing), content-based
video storage and retrieval (from sports to choreography), and last but not least,
smart visual surveillance. The last area alone is rapidly becoming a driving force
behind advancements in the field, as there is an increasing awareness of its im-
portance, ranging from parking lot safety to maintenance of strict access control
environments, and beyond.

An important part of any successful HMA system is the component that per-
forms the Human Motion Capture (HMC); in order for human motion o be
semantically analyzed, it [irst needs {0 be captlured. In other words, a mathematical
represcntation of the motion observed needs to be extracted. This is a challeng-
ing task in its own right, and garners large interest as it includes fundamental and
inherently difficult problems such as image segmentation, and shape and motion
estimation. This is all compounded by the fact that the objects being sludied are
non-rigid bodies thal are frequently occluded.

There are two scparate aspects to a human motion capture system; sensing
(hardware) and processing (software). Subsequently, the systems used for HMC
can be classified into several different categories according to the methods used
to carry out cach of these tasks. Although electromechanic or electromagnetic
sensing devices can be used, we restrict our discussion to optical sensors,

Optical sensors can be active or passive. The key difference is whether or not
special equipment such as measuring devices or markers need to be worn by the
subject. Active optical sensing operates by placing visible markers on the subject
in the form of a body suit and employs arrays of calibrated infrared cameras in
a predefined, restricted space. It allows for simpler processing and it is used suc-
cessfully in highly controlled environments (e.g., movie production). On the other
hand, passive sensing does not require special equipment suits; it captures motion
from regular video sequences. Passive sensors operate in the visible or infrared
spectrum. It is important here to differentiate, between single and multiple sensor
systems, whether they are moving or stationary, and whether or not the sensors
need to be calibrated before motion capture. Passive sensing syslems, and in par-
ticular single sensors, are the preferred and often compelling alternative in terms
of cost, reliability, ease of use, and adaptability. Another important aspect is that
they are non-intrusive, allowing for natural buman behavior caplure from video
cameras or from archival recordings.

Once the observed human motion has been recorded by the appropriate sensing
devices, its mathematical representation can be extracted. This processing step en-
tails an initialization phase (anthropometry and pose estimation) before the actual
tracking can occur. In our context, the problem of anthropometry pose estimation
from a single image can be formulated as follows:

Given a set of points in an image that corvespond to the profection of
landmark points of a human subject, estimate both the anthropomet-
ric measurements (up to a scale} of the subject and his/her pose that
best maich the observed image.
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Tracking can then be stated as follows:

Given an image sequence of a moving human, estimate his or her
motion by estimating the corresponding pose of the human at each
Jrame of the image sequence.

As mentioned earlier, motion capture of non-rigid objects such as moving hu-
mans presents several challenging steps including segmentation of the human
body from the background and into meaningful body parts, handling of occlu-
sions, and tracking body parts along the image sequence. The approaches that
have been proposed for HMUC can be classified into two groups: model-based
approaches and view-based approaches. Model-based approaches use a priori
models explicitly defined in terms of kinematics and dynamics. They differ based
on the types of models used (stick figures, surface or volume), the ways of model-
ing motion dynamics (kinetics, kinematics), and on whether the model is general
or customized for the person under observation. In general, model-based ap-
proaches are preferred, as the use of predefined or acquired models introduces
robusiness that overcomes obslructions related to lighting conditions, clothes,
rapid motion, occlusion, image quality, and problems with camera calibration.

The rest of the chapter is organized as follows: Section 20.2.1 summarizes our
methods for human body model acquisition, while Section 20.2.2 summatizes
our methods for human body tracking. Section 20.3 presents selected results, and
Section 20.4 offers a brief reflection into the future.

20.2 Methods

The problem of human body model acquisition entails shape and motion esti-
mation for the moving parts ol a complex multi-part object. In earlier work, we
have developed a Part Segmentation Algorithm (PSA) that recovers all the mov-
ing parts of a multi-part cbject by monitoring and reasoning over the deformation
of its apparent contour [449]. This algorithm allows partial overlap belween the
parts and determination of their joint location {if any). We have employed this
algorithm to build a 3D model of the person under observation. First, the apparent
body contour of a moving subject is segmented into its constituent parts and then
the 3D shape of a subject’s body parts is estimated by fusing information from
images taken from three cameras placed orthogonally [447]. Having obtained a
geometric model of the person to be tracked the next step is motion estimation
(i.e., tracking the human in the image sequence [448]).

Note that this technique applies to humans of any anthropometric dimension.
However, it requires multiple cameras and the subject has to perform a set of
movements according to a protocol that allows the integration of information
from multiple views in order to estimate the 3D shape of all the major parts of the
human body. Recently, we have developed methods for estimating shape (both an-
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1D Segment 1D Segment

HD  Head NK  Neck

LY  LeftEye RY  Right Eye

LT Lower Torso UT  Upper Torso

LC  Left Clavicle RC  Right Clavicle
LUA Left Upper Arm RUA Right Upper Arm
LLA Left Lower Arm RLA Right Lower Arm
LHD Left Hand RHD Right Hand

LHP  Left Hip RHP Right Hip

LUL Left Upper Leg RUL Right Upper Leg
LLL Left Lower Leg RLL  Right Lower Leg
LF  LeftFoot RF  Right Foot

Figure 20.1. Names of the VHM s segments

thropometry and pose) [57] and tracking [58] from a single uncalibrated camera.
In the following, we present results for each of these methods separately.

20.2.1 Human body model acquisition

We have developed a four-step technique for simultaneously estimating a human’s
anthropometric measuremenis (up to a scale parameier) and pose [rom a single
uncalibrated image. The user initially selects a set of image points that constitute
the projection of selecled landmarks. Using this information, along with g priori
statistical information about the human body, a set of plausible segment length
estimates are produced. In the third step, a set of plausible poses are inferred
using a geometric method based on joint limit constraints. In the fourth step, pose
and anthropometric measurements are obtained by minimizing an appropriate cost
function subject to the associated constraints. The novelty of our approach is the
use of anthropometric statistics to constrain the estimation process which allows
the simultaneous estimation of both anthropometry and pose.

For the purposes of our research, we have developed a generic virtual human
model (VHM) and a statistical model for the distributions of various model mea-
surements. This allows our algorithm to employ a hierarchical solver to estimate
the parameters of a VHM whose projection most closely matches the image. Our
VHM (Fig. 20.1) was inspired by the human body model employed at the Hu-
man Modeling and Simulation Center at the University of Pennsylvania [41]. Its
skeleton consists of a set of sites/landmarks (Table 20.1) and a collection of seg-
ments (Fig. 20.1). Using the anthropometric measurements in {594], we build
a cadre family for our statistical model, also known as a boundary family [39].
The cadre family is a multivariate representation of the extremes of the popula-
tion distribution. It has the ability to span the multivaniate space in a systematic
fashion and to capture a significant amount of the variance in the space using
a small number of sample human models. Qur particular cadre family has 2187
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Table 20.1. Information related to the joints of the Stick Model

D Joint From To DOF PR
at atlanto occipital NK HD Tz*Rz*Ry*Rx 3
sp solar plexus uT NK. Te*Ry*Ra*x 2
la left ankle LLL 1LF Tx*Rz*Rx*Ry 4
Ic left elavicle uT LC Tz*Rx*Ry 3
le feft elbow LUA LLA T2+ Ry 5
b left hip 1T LUL T2} Re*Rx*Ry 2
1k left knee LUL LLL Tz*R-y 3
1s lefi shoulder 1.C LUA Tz*Rz*Rx*Ry 4
w left wrist LLA LHD T*Ry*Rx*Re 6
ral right ankle RLL RF Tx*R-z*R-x*Ry 4
re right clavicle uT RC Tz*R-x*Ry 3
re right elbow RUA RLA Tz*Ry 5
rh night hip LT RUL Tz*R-2z*R-x*Ry 2
rk right knee RUL RLL Tz*R-y 3
15 right shoulder RC RUA Tz*R-z*R-x*Ry 4
™ right wrist RLA RHD Tz*Ry*R-x*R-z 6
wit walist LT uT Tz*Ry*Rz*Rx 1

Table 20,2, The segments used for computing the covering set
I Iz I3 la i3 lg Iz lg
UT+LT i LUA LLA LHP LUL LLL LF

VHMs. Specifically, our algorithm has the following steps: 1) Selection of pro-
jected landmarks; 2) Initial anthropometric estimates; 3) Initial pose estimates;
and 4) Iterative minimization over lengths and angles.

Step 1 is accomplished via a simple user interface that allows a user to select
the projection of visible landmarks of the subject’s body. In order to conduct an-
thropometric measurements, the user is also prompted to select pairs of segments
rom the covering set given in Table 20,2. These pairs need to be oriented either
parallel to the image plane, or simitarly with respect to the camera. Lelt 7 be the
set of indices these segments have. Let h,, (n € I) be the length of segment »
measured on the image, and let ,,(¢} (¢ = 1,...,2187) be the length of the same
segment 12 on the VHM indexed by ¢ in cur cadre family. According to projective
geometry, ratios of these measurements carry over to ratios of the corresponding
measurements on the VHM. We fix an indexing sct K for the possible ratios sy,
and always choose as denominator the segment with the smaller average length:

i { om B 3L (B} > s (I

hnfhm  otherwise

where g ({,,} is the average of the lengths 1,,(g) over all VHMs (indexed by ¢) in
the cadre family.

Having established the set X of ratios that we are going to use, we next compute
the corresponding length ratios ri(g), (where k¥ € L and ¢ = 1,...,2187) on
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each VHM (indexed by ¢) in our cadre family, and let Q be the covariance matrix
of their ratios.

Step 2 identifics the VHM ¢* from the cadre family whose length ratios v {g*)
are closest to the ratios s, using the Mahalanobis distance. 1t requires solving the
following discrete selection problem:

¢* = argmoin Y (mh() = s)(Y v r(0) — ),

kek JEK

where [ug;] = O™,

We have now identified a VHM with the right proportions (correct up to scale).
In the next two steps of the algorithm the variables we want to estimate are the
lengths of the body segments (the scale factor) and their pose. Therefore, we will
solve a system of equations where prior information about the human body {e.g.,
relations between lengths of segments) wilt provide constraints to an optimization
that minimizes the discrepancy between the synthesized appearance of the VHM
(for that pose) and the image data of the subject in the given image.

As mentioned earlier, the user selects a set of points on the image that corre-
spond Lo the projection of sites of the VHM. For each of these points, we set up a
point-to-line constraint, since the site will lie on a line that goes through the cen-
ter of the camera and the projection of a landmark. Let ¢ be the camera’s center
of projection, m; be the position of a VHM’s site, and m? be the corresponding
projection point selecled by the user. The point-to-line constraint is ¢; = ¢+ Ad,,

where d; = L =0
Im —c|]’

Gathering all these constraints together, the optimization problem becomes;
minimize [|(1, ¢;)]] subject lo Cy(m}{(j = 1,2,3), where €y (my;) is a con-
straint derived from the range of motion of the VHM’s joint; Cy(m;) is a
constraint that enforces symmetry between the left and right sides of the VHM
{e.z., RC=LC, RF=LF, RUL=LUL), and C3{(wn;) proportional constraints (i.e.,
re(q*) = sg).

We seek to minimize the value of this function using a BFGS nonlinear solver
[219]. Due to the large number of degrees of freedom, we apply the solver in a
hierarchical manner. Our method schedules an optimization process starting with
the joints closer to the waist and moving outwards using the priorities given in
Table 20.1 {PR column).

In order for the nonlinear solver not to gel trapped into a local minimum,
we use a geometric method to provide an initial estimate for the pose of the
segments whose endpoints were selected by the user. We compute two ini-
tial estimates as follows. Let mP be the projection of site my in the image,
{; > 0 be the lengtlh of the segment of which this landmark is the end-effector,
J be the position of the parcnt joint of that landmark on the VHM’s skele-
ton, and d; be the unit direction between the camera and mf Then, the two
possible initial guesses for my; are: my; = ¢ 4+ Aid; and e = ¢+ Aody,

where A = y/[die (e =) —lle—dI°+2, A = di o (j—c) + A and
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Ay = d; e (7 — ¢) ~ A. Information about the joint limits is used to prune the
solutions that are nol feasible.

20.2.2 Model-based tracking

Having obtained a geomelric model of the person to be tracked the next step is
Lo track the human in the image sequence. We achieve this by continuously com-
paring the difference between the actual image frame and the synthetic image
computed by projecting the estimated VHM to the image plane. We assume that
the VHM is described by a set of parameters €. The proposed algorithm assumes
that the similarity of appearance of the subject over the time of acquisition teads to
the minimum of a convex function on 8. Specifically, the method searches for the
best pose in each image by minimizing the discrepancics between the image under
consideration and a synthetic image of an appropriate VHM. By including in the
objective function penalty factors from the image segmentation step, the search
focuses on the regions that belong (o the subject. These penalty factors converl the
objective function to a convex function, which guarantees that the minimization
converges to the global minimum. In addition, we follow a hierarchica! decompo-
sition approach from the hip towards the limbs and the head using ensembles of
no more than three segments and restrict the search on the meridian directions (as
per Algorithm 6). By constraining movement to one meridian direction at a time,
the minimization procedure reduces to a one-dimensional problem.

We now describe our method in more detail. In each frame, let p be the coordi-
nates of a pixel, v, be the intensity in location p of the current image, 1/, be the
intensity in location p of the synthetic image of the projection of the VHM, A{V}}
be penalty factors for the projected values of the VHM's segments, and A(v,) be
penalty factors for the image frame. The values of the penalty factors A are close
to 1 for pixels that belong to a region in the image that corresponds to the subject
being tracked or to a region in the synthetic image (hat corresponds Lo the pro-
jection of the VHMs segment, and assume a large positive value otherwise. The
tracking problem can then be described as determining the set of parameters &
that minimize the value of the function f{©):

minimize £(0) = Y AVu)Mv,) (Vp — 2,)° . (20.1)
P

Our hierarchical method of selving this is presented in Algorithm 3. We use an
iterative forward and backward prediction algorithm, where the output of process-
ing one frame is used as input for the next, We present this algorithm first, Let ¢,
be the number of frames in the image sequence, s denote the selected initial
frame, vy a frame counter, ¢y denote the current frame, and f; denote the order
of processing the frames (it can take only two values: 1 for forward or -1 for
backward).

Algorithm 2. HUMAN MOTION TRACKING
L:wy=1 fa=1 andcy = s4.
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2: while (v #t5) do

3: Find © that minimizes f(©) (dlgorithm 3).
4: ifcg =tpthen fy=~1,¢; =sp+ 1

5; else vy = vy + 1,

6: e =¢f+ fa

The objective function f{©) described in Eq. 20.1 is nonlinear and non-convex,
and the search space for © is high dimensional. The key to solving Eq. 20.1
is to restrict the search to subspaces, and proceed hierarchically to cover the
whole search space. The subspaces in the search space correspond to the parame-
ters that describe each area of the VHM: hips (HPS), chest-neck-head {CNH),
lefl arm (LAR), right arm (RAR), left leg (LLG) and right leg {RLG). Thus,
2= (9,-'-“351 e(_';NH, 9;‘_,_4}2._ @Ra’lRa eLLG’; eRLG}- Each subspace S describes
an ensemble of at most three articulated segments (L{, L5, L5). For each seg-
ment in an ensemble, all that is required is the estimation of the segment’s rotation
8;, = {w, 8,), since the position of its distal end has already been established in
previous steps of the algorithm. The only exception is the initial subspace, HPS,
which requires the determination of both positional and rotational information.

Algorithm 3. HIERARCHICAL DECOMPOSITION
1 Update the VHM s appearance,

2: Segment the next image,

3: Find © restricted to HPS that minimizes f(©)
4: for S in {CND,LAR, RAR, LLG, RLG).

5:  forLin{L¥ L§ LS}

6: Predict projected angle {Algorithm 4).
T

8-

9

[

.
.
.
.

Compute line-sphere intersection.
. Perform comvexity test (Algorithm 5).
: Find © restricted to L that minimizes f(©) in two steps:
Compute o, 3 (mevidian divections), and
Compute 7y (the segment s rotation with respect to its axis).

‘We now describe each of the mentioned steps in more detail. For each ensem-
ble 5, the prediction algorithm searches a small sector of a circutar region, The
estimation of the projected angle is based on the continuity of a line that connects
an active joint and its next joint or site over a segment. Let ¢; and e be scaling pa-
rameters, [, be the projected length of a segment, {,,, be the length’s lower bound,
{js be the length’s upper bound, B be a set of points, and ) be the empty set. The
steps predicting the projected angle are the following;:

Algorithm 4, PREDICTION
1: lm = E]l‘._,\, EM = .‘:s, 5; = Ezfs, and B=0,
2: while (B=0 and {,,, > 0) do

3 for all the points on the sector of the circular region between
v and py on the parent segment’s orientation
4: Compute a line from the active joint to the point.

5: if the line lies inside the segment then add this point to B.
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6: if B=0 then {,, = {,, — 6 and {jy = {yy — 6.
7: If B={ then return no projected angle.

8: Estimate the center of mass of B.

9: return projected angle of the center of mass.

Using a projected angle as input, the convexily test is performed on the merid-
ian direction perpendicular to the segiment’s orientation. The objective is to verity
that changes in the angle of the active joint result in a basin on f{©). Let e be
a parameter, ¢ be the projected angle, 8; be the left limit, #, be the right limit,
and fg, (6) = f(©) be the objective function restricted to angles on the merid-
ian direction R; (see Algorithm 6). The steps to perform a convexity test are the
following:

Algorithm 5. CONVEXITY TEST

1: Gg—e—CSaIIdg—mg-}-Fg

2 5 =Ffr ('9-')’ Sr = fry {'9?‘): and § = lete)

3: if Sp > S A S, > 5 then return convexity on [0, 0,.].
4: if Sy > S then

5: repeat until |6, — ;| > 180°

6: Or =0+ 3, Sp = fr, (6,).

7: if S, > S then return convexity on (6, 0,
8: else

9: repeat until |¢,. — &} > 180°

10: 0 =60— €3, Sg = le [0;)

11: if Sy > S then return convexity on 8, §,],

12: return no convexity on [0y, 6,].

Finally, we compute a rotation on the meridian direclions as follows. Let us
consider a joint-segment ensemble for which the coordinate system of the joint
ZXY{w, 3,7) is rotated by a rotation matrix M . Let i, }, and k be the unit vectors
of the global coordinate systems, ¢ be the camera’s center of projection, s be the
cutrent site position, and 5 be the current joint position with respect to the global
caordinate system. The spherical coordinates are denoted by r, 4, w where r > 0,
¥ € [0,27] and w € [~w/2, 7 /2] centered at the origin of the global coordinate
system. Note that when the position of a site moves along the direction 7 this is
equivalent to almost moving parallel over the image plane, while moving along
the direction w is equivalent to moving towards or away from the image plane.
Let Aqf, Aw be the amount Lo rotate a site around the image plane or towards and
backwards from the camera respectively. Then, the angles «, 3, and ~ to locally
rotate the joint-segment ensemble are obtained by the following algorithm:

Algorithm 6. MERIDIAN MOTION

1: Compute 15, 15 and w,, the spherical coordinates of s.

2: Compute the desirvable position 81 = (ry, ¥ + Ath,w -+ Aw).
3: Compute p the Cartesian coordinates of 81.

4 Computepy =p — j, and p; = E%ﬁ

5: Compute the rotated orthogonal unit vectors:
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Table 20.3. Accuracy of the lenglh estimates for the subject Vanessa

L.C LLA LHP LF LF
UTHT LUA oA LUL ILL
Actual 0.6279 0.8625 0.6949 0.5517 0.4778
Estimated 0.6402 0.8516 0.6728 0.5594 (0.4888
PE % 1.9589 1.2638 3.1803 1.3957 23022

’;fl = M;, 31 - M}, and -&.‘1 = Mfi'l

6: If the segment’s direction is negative set:
b =—t1,51 = =3, and k| = -k,

7: Compute the orthogonal projection of Py on the rotated local coordinate
system: Ty =11 -1, th =51 - Py, and 21 = Ky - P

8: Compute the angles v, 3,y taking into consideration the orientation of
the segment at its initial pose, ie., for its angles equal to (0,0.0).

case + X: a = arctan(# ) and y = — arcsin{z).
case = Yioq = — arc:tanf%) and 3 = arcsin(z).
case + Z: 3 = —arctan(L) and v = arcsin(z;)

20.3 Results

We have performed numerous experiments to assess the accuracy, limitations,
and advantages of our methods. Due to space considerations, we present selected
results only. The real image sequences were recorded using a PULNIX TMC-9700
2/3" Color Progressive Scan, and a SONY Handycam Corder Hi8 at 30 frames per
second. For our experiments, we selected €; = 0.9, e = (1.1, and e3 = 5°.

For the first experiment, we applied our technique to an image from the subject
Vanessa whose anthropometric dimensions were manually measured. Fig. 20.2(a)
depicts the selected points, Fig. 20.2(b) depicts the reconstructed model overlaid
to the image, and Figs. 20.2(c,d) depict the reconstructed model from novel views.
Table 20.3 captures the percentage errors (PE) in estimating the length ratios. We
observe that the estimation of anthropometric information is within 3.2% of the
anthropometric dimensions of the subject. Figure 20.3 summarizes results from a
variety of application domains. Specifically, Figs. 20.3(a,d,g,i} depict a geologist,
a basketball player, a tennis player and a golfer, respectively. Figs. 20.3(b,e) depict
the reconstructed models overlaid to the images, and Figs. 20.3(c,f) depict novel
views of the reconstructed VHM. The second experiment assessed the robusiness
of our method in the presence of occlusion. To that end, we have recorded an
image sequence depicling a human drawing on a board (Fig. 20.4(a)). Fig. 20.4(b)
depicts the results of our algorithm overlayed onlo the original image sequence,
while Fig. 20.4(d) depicts the estimated trajectories for Ish, le, lw, rsh, re, rw, and
rhd. To validate our algorithm we compared the reconstructed coordinates of the
markers’ tips on the plane of the board using MatchMover (REALVIZ Products)
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Figure 20.2, Anthropometry and posc cstimation for the subject Vanessa: (a) selected
points, (b) reconstructed model overlaid to the image, and {c.d) novel views of the
reconsiructed 3D skeleton.

and our algorithm. Fig. 20.4(c) depicts the estimates of our algorithm for the right
hand as compared with the estimates oblained with MatchMover. For the right
hand there is occlusion at frames 44-46, 83-85 and 123-125. For these frames
MatchMover requires manual intervention. However, our algorithm can cope with
partial self-occlusions without any need for intervention.

In addition, we have tested our algorithm using a variety of video clips to
assess the robustness of our method with respect to differences in lighting condi-
tions, differences in motion cadence, and degraded image quality. As an example,
a video clip obtained from David Carradine’s Kung Fu Workout video, which
presents difficulties due to variation of lighting, presence of shadows, rapid mo-
tion, and self-occlusion, is analyzed in Fig. 20.5. Figure 20.6 presents tracking
results for a video clip (from http://www.fencing.net/} depicting two fencers in
an action called parry-riposte. Both fencers were tracked independently. In all the
clips tested, our algorithm succesgsfully estimated the movement of the subjects,
Currently, we are developing a vision-based interface that will allow an astronaut
to remotely control ROBONAUT by tracking the astronaut’s upper body move-
ments. The ROBONAUT (ROBOtic astroNAUT) is an anthropomorphic robot
with two arms, two hands, a head, a torso and a stabilizing leg, that is currently
being developed at NASA Johnson Space Center to provide an astronaut sub-
stitute for EVA operations. We have developed a technique for estimating upper
body motion from monoecular images [550], estimating the motion parameters of
the links by maximizing the conditional probability of the frame to [rame inten-
sity differences at observation points. Qur contribution is that technique relates
the frame to frame intensity difference to the motion parameters, we have consid-
ered also: a) the cameta noise, b) the shape errors of the model, and ¢) the position
errors due to the motion estimation errors resulting from the motion analtysis of
previous frames. Preliminary results in that domain indicate that for a camera
noise level of PSNR=40 dB our algorithm achieves a reduction of the error vari-
ance of up to 40% for the estimated translation parameters and up to 35% for the
rotation parameters.
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(& 0

Figure 20.3. Input images depicting (a) a geologist, {d) a basketball player, (g) a tennis
player, and {j) a golfer along with the vser selected input landmarks; (b,e) Reconstructed
models overlaid to the images; (c,f) Novel views of the reconstructed VHM; and (i.k)
Reconstructed 3D models.
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Figure 20.4. (a} Frames 0, 90, 120, and 149 from a vidco depicting a human writing on
a board. (b) Overlay of our results onto the image sequence, (c) Estimated coordinates of
the markers’ tips on the plane of the board using MatchMover (REALVIZ Products} and
our algorithm, (d} Estimated 3D trajectories for Ish, le, lw, Ihd, rsh, re, rw, and rhd for the
image sequence depicting a subject writing on the board.
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Figure 20.5. Frames from the Tiger Kung Fumoves sequence with overlay and novel views.

Figure 20.6. Frames from the fencing sequence with novel views.

20.4 Discussion

Although the problem of autonomous, continuous detection and tracking of hu-~
man motion in video data from a single camera is far from solved, significant
progress in this direction has been made in recent years, Tt is an area of active
research that is receiving significant attention (as evidenced by the large num-
ber of papers in the area), especially after the recent increased awareness of its
importance in relation lo homeland securily. As a resull, several systems have
been designed to tackle this problem, with varying degrees of success. Commer-
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Figure 20.7. Commanding a ROBONAUT simulation developed at NASA-JSC with the
estimated motion parameters of the IIAZTL-B sequence, (a-¢) Frames 1, 45, 90 from the
soquence HAZEL-B. (d-f} Original frames with the model overlayed at the estimated po-
sition and orientation. (g-1) Coronal and (j-1) sagittal view of the postures corresponding to
the frames 1, 45, 90 of the sequence.
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cial systems have entered the market. Mode!l-based approaches can effectively
overcome some of the issues that have been hindering progress in the past, such
us handling occlusions. As the computational efficicney and the availability of
processing power increase, such algorithms become more attractive. The key to
success of model-based methods for HMA is to restrict the problem in more
specific domains, focusing on the specific requirements of an application in-
stead of attempting a general, all encompassing approach. After all, monitoring
and surveillance systems vary greatly depending on the application. In a secu-
rity surveillance environment such as an access control area {e.g., airport), the
gystem needs to be robust enough to be able to handle thwarting attempts and
could be primarily focused on human motion detection. Monitoring sysiems on
the other hand, deployed in other types of environments, such as hospital 1CUs or
retirement homes, are primarily aimed at human motion analysis, trying to detect
dangerous behavior rather than persons themselves. Spoofing attacks tend to be
less of a concern for such monitoring systems, and the main concern is accuracy,

Concerning validation, we are now at a point where several published algo-
rithims exist, and a thorough evaluation of their performance on a comprehensive
corpus of data is needed to assess issues of accuracy, robustness, and computation
cost. In addition, the role of biometrics and how they can be ntegrated [645, 921]
with human motion capture results points in promising future research directions.
A strong interest in security applications is expected to drive such research in the
near future,

In summary, research in human motion analysis has entered an exciting phase
that will continue to provide challenging problems as well as inspired solutions to
the computer vision communily.
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Modeling Dynamic Scenes: An
Overview of Dynamic Textures

G. Doretto and S. Soatto

Abstract

Dynamic scenes with arbitrary radiometry and geometry present a challenge
in that a physical model of their motion, shape, and reflectance cannot be
inferred. Therefore, the issue of representation becomes crucial, and while
there is no right or wrong representation, the task at hand should guide the
modeling process. For instance, if the task is three-dimensional reconstruc-
tion, one can make assumptions on reflectance and iltlumination in order to
recover shape and motion. If the task is synthesis, or reprojection, the cor-
rect shape is unimportant, as long as the model supports the generation of
a valid view of the scene. If the task is detection or recognition, a physical
model is not necessary as long as one can infer a statistical model that can
be used to perform classification. We concentrate our attention on the two
latter cases, and describe a modeling framework for dynamic scenes for the
purpose of synthesis, detection and recognition. In particular, we restrict our
attention to sequences of images of moving scenes that exhibit certain statis-
tical stationarity properties, which have been called Dynamic Textures. They
include sea-waves, smoke, foliage, whirlwind etc. In this chapter we describe
a characterization of dynamic textures and pose the problems of modeling,
learning, recognition and segmentation of dynamic textures using tools from
time series analysis, and system identification theory.

21.1 Introduction

Consider a sequence of images of a moving scene. Each image is an array of pos-
itive numbers that depend upon the shape, pose, viewpoint (geometry), material
reflectance properties, and light distribution (radiometry) of the scene, as well as
upon the changes of all of these factors over time, i.e. upon the dynamics of the
scene. In principle, to fully analyze and understand the properties of a video se-
quence, one would want to recover the physical model of the scene that could have
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generated the images. Unfortunately, it is well known that the joint reconstruction
of radiometry, geometry, and dynamics of the scene (visual reconstruction prob-
lem) is an intrinsically ill-posed problem: From any number of images it is not
possible to uniquely recover all the unknowns (shape, pose, reflectance, light dis-
tribution, and viewpoint). This means that it is always possible to construct scenes
with different radiometry, geomectry, and dynamics that give rise to the same im-
ages. For example, a video clip of the sea at sunset could have been originated by
a very complex dynamic shape (the surface of the sea) with constant reflectance
properties (homogenecous material, water), but also by a very simple shape (e.g.
the plane of the television monitor) with a dynamic non-homogeneous radiance
(the televised spatio-temporal signal). The ill-posedness of the visual reconstruc-
tion problem can be turned into a well-posed inference problem within the context
of a specific task, and one can also use the extra degrees of freedom te the benefit
of the application at hand by salisfying some additional optimality criterion (e.g.
the minimum description length (MDL) principle [675] for compression). This
way, even though one cannot infer “the” (physically correct) model of a scene,
one can infer a representation of the scene that can be sufficient to support, for
instance, contrel, or recognition tasks.

In this chapter we survey a series of recent papers that describe very simple
statistical models that can explain the measured video signal, predict new mea-
surements, and extrapolate new image data. These models are not models of the
scene, but statistical models of the video signal. In general, they fail to capture
the correct radiometry, geometry, and dynamics of the scene. Instead, they cap-
ture a mixture of the three that is equivalent to the underlying physical model
of the scene, once the statistical model is “visualized” as a sequence of images.
Hopefully, these models will provide a representation of geometry, radiometry
and dynamics that is sufficient to support recognition and segmentation tasks.

We put the emphasis on sequences of images that exhibit some form of tempo-
ral regularity’, such as sequences of fire, smoke, water, foliage or flowers in wind,
clouds, crowds of waving people, etc., and we refer to them as dynanmic lextures
[278]. In statistical terms, we assume that a dynamic texture is a sequence of im-
ages, that is a realization from a stationary stochastic process?. In Section 21.2 we
describe a representation of dynamic textures introduced in [748] that is general
(it accounts for every possible decomposition of images, and every possible dy-
namics of sequences), and precise (it allows making analytical statements and
drawing from the rich literature on system identification). In Section 21.7 we
describe a technique to learn model parameters using maximum likelihood or
prediction error methods, Under the hypothesis of second-order stationarity, there
is a closed-form sub-optimal solution of the learning problem. In Section 21.4
the model is tested on simulation and prediction, showing that even the simplest

!The case of sequences that exhibit temporal and spatial regularity is treated in [280],

2A stochastic process is stationary (of order k) if the joint statistics (up to order &) are time-
invariant. For instance a process {I(t)} is second-order stationary ifits mean J = E{I(t)] is constant
and its covariance E[(I{t1) — T}{I(tz) — I)] only depends upon t2 — ¢3.
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instance of the model captures a wide range of dynamic textures. The algorithm
is simple to implement, efficient to learn and fast to simulate; it allows gener-
ating infinitely long sequences from short input sequences, and to control the
parameters in the simulation [281]. In Section 21.7 we investigate the discrim-
inative power of the models and describe a classification scheme based on the
k-nearest neighbor rule, as it has been proposed in [698]. Section 21.7 addresses
the problem of segmenting the image plane of a video sequence into homoge-
neous regions characterized by constani spatio-temporal signatures, as introduced
in [279]. We illustrale a region-based segmentation framework where we model
the signatures with dynamic texture models and compare them by means of the
distances proposed in Section 21.5.1.

21.1.1 Related work

Statistical inference for analyzing and understanding general images has been
extensively used for the last two decades. There has been a considerable amount
of work in the area of 2D texture analysis, starting with the pioneering results
of Julesz [444], until the more recent statistical models (see [658] and references
therein).

There has been comparatively little work in the specific area of dynamic {or
time-varying) textures. The problem has been first addressed by Nelson and
Polana [596], who classify regional activities of a scene characterized by com-
plex, non-rigid motion. Szummer and Picard’s work [783] on temporal texture
modeling uses the spatio-temporal auto-regressive model, which imposes a neigh-
borhood causality constraint or both spatial and temporal domain. This restricts
the range of processes that can be modeled, and does not allow to capture rota-
tion, acceleration and other simple non translational motions. Bar-Joseph et al.
[50] uses multi-resolution analysis and tree-merging for the synthesis of 2D tex-
tures and extends the idea to dynamic textures by constructing trees using a 3D
wavelet transform.

Other related work {318] is used to register nowhere-static sequences of im-
ages, and synthesize new sequences. Parallel to these approaches there is the work
of Wang and Zhu [855, 856] where images are decomposed by computing their
primal sketch, or by using a dictionary of Gabor or Fourier bases to represent im-
age elements called “movetons.” Such models capture the temporal variability of
either the graph describing the sketches, or the movetons. Finally, in [913] feed-
back control is used to improve the rendering performance of the dynamic texture
model we describe in this chapter.

The problem of modeling dynamic textures for the purposes of synthesis has
been tackled also by computer graphics researchers. The typical approach is to
synthesize new video sequences using procedural techniques that essentially en-
tail clever concatenation or repetition of training image data. The reader is referred
to [716, 869, 499, 83] and references therein.
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21.2 Representation of dynamic textures

The intuitive notion of a dynamic texture is that of a sequence of images that
exhibits temporal regularity. Individual images are cleatly not independent real-
izations from a stationary distribution, for there is a temporal coherence intrinsic
in the process that needs to be captured. Therefore, the underlying assumption
is that the temporal correlation of sequences can be modeled by the integration
of independent and identically distributed (IID) samples from a stationary distri-
bution. In other words, a sequence of images can be modeled as the output of a
dynamical system. We follow [278] and now make this concept precise.

Let {{{t)}i=1..+, [(t} € R™, be a sequence of 7 images. Suppose that at each
instant of time ¢ we can measure a noisy version of the image, y(t) = f{¢) +
w{t}, where w(l) € R™ is an IID sequence drawn from a known distribution
pwl-) (hat can be inferred from the physics of the imaging device), resulting in
a positive measured sequence {y(f)}1=1.. . We say that the sequence {I{t)} is
a (linear) dynamic rexture if there exists a set of n spatial filters ¢, : R — R™,
« = 1...n and a stationary distribution ¢{-) such that, defining x(¢) € R” such
that I{t) = ¢(x(t)) (where ¢{-) indicates the combination of the output of the
n filters {¢, } respectively applied to each of the n state components) we have
x(t) = Zle Age(t — 4) 4 v(t), with v(t) € R”™ an IID realization from the
density ¢{-}, for some choice of matrices, 4; € R"*", i = 1,..., %, and initial
condition z(0) = xp. Without loss of generality, we can assume k& = 1 since we
can augment the state of the above model to be Z(t) = [x(£)T z(t —1)T ... z(t -
k)T, Therefore, a linear dynamic texture is associated to the dynamical system

x(t + 1) = Ax(t) + v(t) |
{y(t) = §(a(t) +w(t) @L

with #(0) = a0, v(t) '~ g(-) unknown, w(t) "~ p,.(-) given, such that I(t) =
¢(x(t}). One can easily generalize the definition to an arbitrary non-linear model

dynamic texture.

21.3 Learning dynamic textures

Given a sequence of noisy images {y(¢)};=1.., learning the dynamic texture
model (21.1) amounts to identifying the model parameter A, the filters ¢{-), and
the distribution of the input ¢(-). This is a form of system identification prob-
lem [524], where one has to infer a dynamical model from a time series. The
maximum-likelihood formulation of the dynamic texture learning problem can be
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posed as follows:

A, ¢, 4() = arg T log p(w(l),. ... u{7}) (21.2)

given y(1),...,y{7), find

subject to (21.1) and v(t) I8 q.
While we refer the reader to [278] for a more complete discussion about how to
solve problem (21.2}, and how to set out the learning via prediction error methods,
here we summarize a number of simplifications that lead us to a simple closed-
form procedure.

In (21.2) we have not made any assumption on the class of filters ¢(-), and
there are many ways in which one can choose them. However, in texture analysis
the dimension of the signal is huge (tens of thousands components) and there is
a lot of redundaney. Therefore, we view the choice of filters as a dimensionality
reduction step and seek for a decomposition of the image in the simple {linear)
form I(#) = 3. | %;(t)8;, = Cx(t), where C = [fy,...,0,] € R m > n,
and {f;} can be an orthonormal basis of L2, a set of principal components, or
a wavelet filter bank. Note that the inference method depends also upon what
type of representation we choose for . In principle, the unknown driving distri-
bution belongs to an infinite-dimensional space. In this exposition we assume the

simplest parametric class of densities, which is Gaussian ©{t) gy AN(0,Q), and
@ € R™*™ is a symmetric positive-definite matrix. We assume a similar distri-

bution for the measurement noise w(t) PN (0,R), R € B™*™, Under these
hypotheses model (21.1) reduces to the [ollowing linear Gauss-Markov model
{ s(t+1) = Aa() +0(0), o) ~N(OQ), (O =m0, g o
y{t) = Calt) +w(t), wit) ~ N(0, R) , )
and the system identification problem consists in estimatling the parameters
A, C,Q, R from the measurements y(1),...,y{7). It is well known that this
model can capture the second-order properties of a generic stationary stochastic
process [324].

The first observalion concerning model (21.3) is that the choice of matrices
A, C, ¢ is not unique, in the sense that there are infinitely many such matrices that
give rise to exactly the same sample paths y(t) starting from suitable initial con-
ditions. This is immediately seen by substituting A with TAT 1, C with CT*
and @ with TQTT, and choosing the initial condition T'zg, where 1" € G'L(n) is
any invertible . x n matrix. In other words, the basis of the state-space is arbitrary,
and any given process has nof a unique model, but an equivalence class of models
R = {[A] = TAT-L[C] = CT~1,[Q] = TQTT, | T € GL{n)}. In order to
identify a unique model of the type (21.3) from a sample path {1}, it is neces-
sary to choose a representalive of each equivalence class: such a representative is
called a canonical mode! realization, in the sense that it does not depend on the
choice of basis of the state space (because it has been fixed).
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While there are many possible choices of canonical models (see for instance
[446]}, we will make the assumption that rank(C') = n and choose the canon-
ical model that makes the columns of ' orthonormal: C*'C' = I,,, where I,, is
the identity matrix of dimension n x n. As we will see shortly, this assumption
allows 10 infer a unique model that is tailored to the data in the sense of defining
a basis of the state space such that its covariance P = limy o E[z(t)z? (£)] is
asymptotically diagonal (see Equation (21.7)).

With the above simplifications one might use subspace identification tech-
nigues [524] to learn model parameters in closed-form in the maximum-likelihood
sense, for instance with the well known N4SID algorithm [832]. Unfortunately
this is not possible. In fact, given the dimensionality of our data, the requirements
in terms of computation and memory storage of standard system identification
Llechnigues are far beyond the capabilities of the current state-of-the-art worksta-
tions. For this reason, lollowing [278], we describe a closed-form sub-optimal
solution of the learning problem, that takes few seconds to run on a current
low-end PC when m = 170 x 110 and v = 120.

21.3.1 Closed-form solution

Let ¥7 = [y(1),...,y(7)] € R™*7 with 7 > n, and similarly for X7 =
[®(1),...,&(r)} € R™*7 and W] = [w(1)},...,w(r)] € R™*7, and notice
that

Y7 = CXT + Wy . (21.4)

Now let Y7 = USVT, U e Rron UT = I,V € BT, VTV = [ be the
singular value decomposition (SVD) [352] with ¥ = diag{e1,...,0,}, and {o;}
be the singular values, and consider the problem of finding the best estimate of '
in the sense of Frobenius: C{7), X(7) == arg ming x7 [|W7T || F subject to (21.4).
Tt follows immediately from the fixed rank approximation property of the SVD
[352] that the unigque solution is given by

G =U, X(r)=xvT, (21.5)

A can be determined uniguely, again in the sense of Frobenius, by solving the
following linear problem: A(r) = argming [| X7 — AX] ™| p, where XJ 7' =
[#(D), . .., x{r —1)] € BR™*7 which is trivially done in closed-form using the state
estimated from (21.5):

Alr) =xVvT D v(vTDv)~ st (21.6)

where:lf)-l:{jo1 3}andﬂgz[h{;l 8
ol

determined up to a change of sign of the components of C' and . Also note that

] .Notice that C'(+) is uniquely

Eizt)2T(#)] = lim %Z #Ht+EETE+E)=2vVIVE=32, QL7
k=1
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(b) () (d)

Figure 21.1. Samples of four training sequences (top row) and four synthesized frames with

the corresponding models (bottom row), {a} River sequence (7 = 120 training images of

m = 170 x 115 pixels). Simulation is performed with a model of state dimension n = 50.

{b} Steam scquence {r = 120, m = 176 x 86), n = 30, (¢) Fire sequence (r = 150,

m = 360 x 243), n = 50. (d) Fountain sequence (7 = 150, mn = 320 x 220), n = 50. The
river and steam sequences have been borrowed from the MIT Temporal Texturc database,
whereas the lire sequence comes from the Artbeats Digital Film Library, In all these cases

the state dimension n was given as input parameier. The movies are available on-line at
http://www.cs.ucla.edu/~doretto/projects/dynamic-textures . .html.

which is diagonal as mentioned in the firsi part of Section 21.7. Finally, the sample
input noise covariance ¢} can be estimated from

Ar) = = oGyt 21.8

Q) =7 Lot ), @19
where 9(t) = &(¢ + 1) — A(7)d@(t). Should § not be full rank, its dimensionality
can be further reduced by computing the SVD Q = UQEQUg where Yg =
diag{og1,....00,n,} With n, < n, and one can set v(t) = Br{t), with n{t) ~
N(0, I,,), and 13 such that BB8Y = Q.

In the algorithin above we have assumed that the order of the model n was
given. In practice, this needs to be inferred from the data. Following [278], one
can determine the model order empirically from the singular values o;,02,...,
by choosing . as the cutoff where the singular values drop below a threshold. A
threshold can also be imposed on the difference between adjacent singular values.

21.4 Model validation

One of the most compelling validations for a dynamic texture model is to sim-
ulate it to evaluate to what extent the synthesis captures the essential perceptual
features of the original data. Given a typical training sequence of about one hun-
dred [rames, using the procedure described in Section 21.3.1 one can learn model
paramecters in a few scconds, and then synthesize a potentially infinite number of
new images by simulating (21.3). To generate a new image one needs to draw
a sample »(t) from a Gaussian distribution with covariance ¢}, update the state
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Figure 21.2. Error-bar plot of the average prediction error and standard deviation (for 100
trials), per pixel as a function of the length of the steam training sequence, expressed in
gray levels (the range of pixel values is [0,255]). The state dimension is set to n = 20.

z(t + 1) = Az(l) + v(t), and compute the image I(¢) = Cz(t). This can be
~ done in real-time. Even though the result is best shown with movies, Figure 21.1
provides some examples of the kind of output that one can get (see [278] for more
results). The simple model (21.3), that captures only the second-order temporal
statistics of a video sequence, is able to represent most of the perceptual features
of sequences of images of natural phenomena, such as fire, smoke, water, flowers
or foliage in wind, etc., and even dynamic textures that are periodic signals in
time [277].

An important question is how long should the input sequence be in order to
capture the dynamics of the process. To answer this question experimentally, for
a fixed state dimension, we consider the prediction error as a function of the length
7, of the input (training) sequence. This means that for each length 7, we predict
the frame 7 + 1 (not part of the training set) and compute the prediction etror per
pixel in gray levels. We do so many times in order to infer the statistics of the
prediction error, i.e. mean and variance at each . Using one criterion for learning
(the procedure in Section 21.3.1), and another one for validation (prediction er-
ror} is informative for challenging the model. Figure 21.2 shows an error-bar plot
including mean and standard deviation of the prediction error per pixel for the
steam sequence. The average error decreascs and becomes stable after approxi-
mately 70 frames. The plot of Figure 21.2 validates a-posteriori the model {21.3)
inferred with the procedure described in Section 21.3.1. Other dynamic texturcs
have similar prediction error plots [278].
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21.5 Recognition

According to the model (21.3) a dynamic texture is characterized by a linear dy-
namic system with multiple-input and multiple-output (MIMO) driven by white
noise (which is also a vector autoregressive moving average (ARMA) model).
Therefore, following [698], in order to build a recognition system able to cate-
gorize dynamic textures, one needs to first define a base measure in the space
of vector ARMA models, and then to characterize probability distributions in that
space. Delining an appropriate base measure in the space of vector ARMA models
is not trivial, since cach model entails a combination of an input density and state
and output transition matrices that have a very particular Riemannian struciure
(they are not a linear space), and this problem remains unsolved to this day.
>From a pallern recognition viewpoint [288], constructing a probability density
is not necessary to solve problems such as classification, clustering or group-
ing. For instance, the k-nearest neighbor algorithm only requires a distance to
be implemented. This approach can be applied to the space of models, that
will be endowed by a probability structure induced by the notion of distance
that we have defined. More precisely, suppose a set of model samples M,
-+, My, is given, where each model is labeled with A;, which is one out of
¢ classes. Given a new model sample M, the label A,, is chosen by taking a
vote among the % nearest model samples. That is, A, is selected if the ma-
jority of the k nearest neighbors have label A,,. For ¢ = 2 this happens with
probability Z?m{k—f—l);@ ( f ) P(An| M) (1 — P(Ar|M))*¥ . It can be shown
[288] that if &k is odd, N > ¢, and ¢ = 2, the error rate is bounded above
by the smallest concave function of PP* (the optimal error rate) greater than

z,&z‘;l)ﬂ }f ) (P11~ p)*i 4 P*R=4(1 — P*)PT1) Note that the analysis
holds for k fixed as ¥ — ¢, and that the rule approaches the minimum error rate
for k — co.

We assume that a model M is given by the couple {A, C'}. That is, we do
not consider the covariunce of the measurement noise I3, since that carries no
information on the underlying process. Moreover, we consider processes with
different input noise covariance as equivalent, which means thal we ignore Q.

21.5.1 Distances between dynamic texture models

One of the difficulties in defining a distance between ARMA models is that each
model M is described not only by the parameters (4, C'), but by an equivalence
class of such parameters, as pointed out in Section 21.7. Therefore, a suitable
discrepancy measure has to compare not the parameters directly, but their equiva-
lence classes. One technique for doing so has been proposed in [251]. It consists
of building infinite observability mairices, whose columns span the space gener-
ated by the measurements y(t) of the model (21.3), which is an n-dimensional
subspace of the infinite-dimensional space of all possible measurements. Then
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one can compute the geometric anpgles between such subspaces through their
embedding.

More formally, let § € B™** and T' € R"*" be two matrices with full column
rank. The n principal angles 0y, € [0, %] between range(5) and range(?’) are
recursively defined for bk = 1,.. . ,nas

[l 87 &} ST Ty |
cosfy = max e
1 n.yekn TS=l=0Tullz — TS=zilalTwmllz °

I 2t sty lz) & Ty .
costy = s T = TRy » Tk =2

subject to 7 ST Sz =0 and ¢! TTTy =0, fori=1,2,...,k— 1.

Now, let M| = (4, ) and My = (42, C3) be iwo models with the same output
dimensionality. Their infinite observability matrices Oy, Tor i = 1, 2, are defined
as Oy = [¢F Alcl ... (Afyrcf .]T € R**" and we refer to the
principal angles between the ranges of Oy, and Oy as subspace angles. They can
be computed in closed-form with a procedure described in [251].

For the case of minimum-phase single-input single-output (SISO) state space
models that correspond to autoregressive (AR) models, one can use the subspace
angles to define the so-called Martin distance:

dys(My, My)? = In H (21.9)

cos28,

which was originally proposed in [548) as function of the cepstrum coefficients?
of the model, whereas the expression of the Martin distance as function of the sub-
space angles was introduced in [251]. Tt is also possible to define another distance,
that uses only the biggest subspace angle, i.e. dp = #,. Geometrically dz is the
Finsler distance between two subspaces viewed as two elements in the Grassman
manifold G(co, n) [874]. Roughly speaking, the difference between the Martin
and Finsler distance is that di,, is an L2-norm but dp is an L°°-norm between
linear systems.

Unfortunately, the generalization of d%, and dr to the case of MIMO linear
dynamic systems is not possible. For instance, it is not even guaranteed that the
Martin distance be non-negative. Nevertheless, we used the idea of comparing
two models by computing their subspace angles, and tested the ability ofl the
Martin distance, Finsler distance, and the naive Frobenius norm between model
parameters, (o classify dynamic textures within a k-nearest neighbor scheme.

21.5.2  Performance of the nearest neighbor classifier

We illustrate tests of the distances proposed in the previous section against a
database of 50 categories of dynamic lextures, each of which represented by

3The cepstrum of a discrete-titne process is the inverse Fourier transform of the logarithm of the
power specirum.
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four models, following [698]. The models have state dimension » = 20, and
have been extracted from sequences of length 7 = 75 frames of m = 48 x 48
pixels, using the procedure illustraied in Section 21.3.1. The sequences capture
natural phenomena like ocean waves, smoke, steam, fire, and plants. Included in
the database are similar sequences with different dynamics. For example, there
are water streams recorded from different angles, with flows moving in ditferent
orientations and at different speeds.

Between each pair of models of the database we computed the Frobenius nomm,
and the Martin and Finsler distance. Figure 21.3 shows a gray-level representation
of the confusion matrix for a subset of 10 categories (40 sequences out of the en-
tire database), for the case of Frobenius norm (top) and Martin distance (bottom).
Moving along the horizontal axis, we marked the first (with an “0”) and second
(with an “x”) nearest neighbors, For example, with reference to the results using
Martin distance (bottom), the closest dynamic texture to Smoke! (in the vertical
axis) is Smoke2 (in the horizontal axis). Similarly, the second closest dynamic
texture to Smokel is Water-Fall-b1.

Tf we define a hit when the first nearest neighbor of a sequence is one of the
other three sequences in the same category, Figure 21.3 already highlights the
differences between the Frobenius norm and the Martin distance. In the latter
case most of the first nearest neighbors lie on the diagonal blocks {(meaning that
there are a lot of hits), whereas in the former they are almost randomly spread all
over the blocks. In particular, if we count the number of correct hits for the whole
database, in the case of Frobenius norm we obtain a hit ratio of 5.5%. This poor
result is not unexpected since, even though ARMA models are linear, the space
of model parameters is nonlinear and the Frobenius norm assumes linearity. On
the other hand, the hit ratio of the Martin distance is 89.5%, whereas the Finsler
distance is less efficient with a hit ratio of 24.5%.

The encouraging results obtained using the Martin distance suggest that, in
principle, a comprehensive database of models of commonty occutring dynamic
textures can be maimlained, and a new sequence could be categorized, after
learning its parameters, using the k-nearest neighbor rule.

21.6 Segmentation

Modeling the {global) spatio-temporal statistics of the entire video sequence can
be a daunting task due to the complexity of natural scenes. An alternative con-
sists of choosing a simple class of models, and then partition the scene into
regions where the model fits the data within a specific accuracy. In this section,
which follows [279], we discuss a simple model for partitioning the scene into
regions where the spatio-temporal statistics, represented by a dynamic texture
model, is conslant. To perlonm this segmentation task we use a region-based ap-
proach pioncered in [591]. In particular, we revert to a level set framework of the
Mumford-Shah functional introduced in [170, 8097,
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Figure 21.3, Gray-level representation of the confugion matrices for a subset of 10 dynamic
texture categories (40 sequences out of 200 of the entire database), computed using the
Frobenius norm (top) and the Martin distance (bottom).

Let © < R? be the domain of an image and {€2;}i=1.....v be a partition of
into N (unknown) regions®. We assume that the intensities of the pixels y;(¢),
contained in the region {};, are a Gauss-Markov process that can be modeled with
a dynamic texture model (21.3), with (unknown) parameters A; & B™>*™% ; €
R™+>*% and @ € R™*™. Note that we allow the number of pixels m; to be

2 ; . N x i i
different in each regicn, as long as 37, m; = m, the size of the entire image,

“Thatis, 2 = UM 2 and € 0§ = 9,1 # 5.

)
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and that we require that neither the regions nor the parameters change over time,
Q. Ay, Cy, @y = const. With this generative model, the segmentation problem
can be formalized as follows: Given o sequence of images {y{t)}i=y,. v y(t) €
R™, with two or more distinct regions Q, 1 = 1,..., N > 2 that satisfy model
(21.3), estimate both the regions O, and model parameters of each region, namely
the matrices A;, C;, and ;.

If the regions €2;, ¢ = 1,..., N were known, one would just be left with two
problems. The first one is the learning of model parameters. This problem has
already been solved in Section 21.3.1. Assuming that the parameters A;, €}, Qs
have been inferred for each region, in order to set the stage for a segmentation
procedure, one has to define a discrepancy measure among regions, i.e. between
dynamic texture models. This problem have been approached in Section 21.7, and
one can measure the discrepancy between different models by comparing either
the subspace angles or their combination via the Martin distance (21.9).

On the other hand, if the dynamic texture associaled with each pixel were
known, then one could easily determine the regions by thresholding or other
grouping or segmentation techniques. However, a dynamic texture associated with
a certain pixel x € £, as defined in Equation (21.3), depends on the whole region
Q,; containing x. Therefore, we have a classic “chicken-and-egg” problem: If we
knew the regions, we could easily identify the dynamical models, and if we knew
the dynamical models we could easily segment the regions. Unfortunately, we
know neither.

Since one can always explain the image with a few high-order models with
large support regions {the entire image in the limit), or with many low-order mod-
els with small support regions (individual pixels in the limit), in order to render
the chicken-and-egg problem well posed, a model complexity cost needs to be
added, for instance the description length of model paramelers and the bound-
arics of cach region {675]. This significantly complicates the algorithms und the
derivation. Following [279], we simplify the probiem, and first associate a local
signature s(x) to each pixel x € 2, by integrating visual information on a fixed
spatial neighborhood of that pixel B(x) C ©; then we group together pixels with
similar sipnatures in a region-based segmentation approach.

Each signature contains the cosines of the subspace angles between the local
dynamic texture model corresponding to {y(X, t} }ze pix) t==1,..., 7> and a reference
dynamic texture model, for instance the one corresponding to a preselected spatio-
temporal neighborhood centered at zo € Q, i.e. {y(X, 1) }zem(xa) t=1,.. - With
this representation, a segmentation of the image plane ) into a set of pairwise
disjoint regions £2; of constant signature ¢; € R”™ is obtained by minimizing the
Mumford-Shah cost functional [591]:

B {s)) = Z/(s(x) - 35)2 dx + v

: 137

r

, (21.10)

simultaneously with respect to the region descriptors {s;}, modeling the average
signature of each region, and with respect to the boundary I, separating these
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Figure 21.4. Top row: segmentation of two dynamic textures that share the same
dynamics, and differ only for the “orientation” of their spatial statistics. Middle
row: segmentation of two dynamic textures that are identical in appearance, and
differ only in the dynamics. Bottom row: segmentation when the region bound-
arics (of the flame), arc changing in time. In all the experiments, the local dynamic
textures were defined on neighborhood of 11 x 11 pixels, whercas the state
dimension was set to n — 10. The contour evelutions are available on-line at
http://www.cs.ucla.edu/~doretto/projects/dynamic- segmentation. html,

regions. The first term in the functional {21.10) aims at maximizing the homo-
geneity with respect to the signatures in each region £2;, whereas the second Lerm
aims at minimizing the length |I’| of the separating boundary.

Figure 214 demonstrates some aspects of dynamic texture segmentation, the
reader is referred to [279] for a more complete account. The first row has a few
snapshots of a sequence with ocean waves, where the portion of every frame
within the square and the circle have been rotated by 90 degrees. The superim-
posed contour evolution shows that the segmentation system can partition the
image plane based only on the spatial statistics of the images. On the other hand,
the sequence in the second row has the square and circle filled with the same
ocean waves of the background, but running at different speeds. In this case the
algorithm segments based only on the dynamics of the regions. This ability is the
most important aspect of this approach, The last row shows a sequence of fire
combined with the ocean waves. Here the region boundaries are moving, against
the initial hypothesis. The algorithm manage Lo estimates the “average” region
where the flame is mostly present.
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21.7 Discussion

This chapter, which draws on a series of works published recently [748, 278, 698,
279], illustrates that very simple statistical models can capture the phenomenol-
ogy of very complex physical processes, such as watet, smoke, [ire ete. The fact
that the synthesis from a very simple linear Gauss-Markov model is perceptually
indistinguishable from the simulation of non-linear Navier-Stokes partial differ-
ential equations, such as those that govern fluid motion, is indication that such
models may be sufficient to support detection and recognition tasks and, to a cer-
tain extent, even synthesis and animation [281]. This work shows that modeling
image motion, i.e. deformations of the domain of the image, can be done through
modeling image values, i.e. the range of the image. Depending on the statistical
properties of the scene, this can be more or less efficient, Joint modeling of the
variation in domain and range of the image can result in more efficient models, as
it has been recently exploved [282], pointing at a direction of new development.
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Chapter22

Differential Geometry from the
Frenet Point of View: Boundary
Detection, Stereo, Texture and Color

S. Zucker

Abstract

Frenet frames are a central construction in modern differential geometry, in
which structure is described with respect to an object of interest rather than
with respect to external coordinate systems. The Cartan moving frame model
specifies how these frames adapt when they are transported along the object.
We consider this as a model for integrating local information with informa-
tion in a neighborhood for curve detection, stereo, texture, and color. These
different objects results in a series of geometric compatibility constructions
useful within a number of different optimization and probabilistic inference
techniques.

22.1 Introduction

Many problems in computational vision that involve inferences over noisy, local
measurements have been formulated with a geometrical component. Our goal in
this Chapter is to organize a number of such problems according to their geo-
metric content, to isolate a common thread between them that leads to differential
geometry; and to introduce ideas from differential geometry to show how they can
structure new approaches to seemingly unrelated computational vision problems.
As described, the techniques can be used with a variety of different inference tech-
niques, including relaxation labeling [414], belief propagation, graph cuts [113],
Markov random fields, quadratic programming, and so on.

To prefigure the type of geometry we shall be concerned with, consider the
problem of boundary detection. Starting with local “edge” operators that sig-
nal intensity differences in a small neighborhood around a point, the question
is whether this intensity event is part of a boundary, or not. Since many objects
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have smooth boundaries, and since these boundaries project into the image as
smooth curves, determining whether a putative boundary point continues through
an image neighborhood containing that point is often key. Mathematically, since
only a neighborhood is involved, the analysis is local. Computationally, since such
questions can be asked around each point in the image, the local analysis must be
applicable in a neighborhood around each peint; i.e., it is parallel. Dilferential ge-
ometry is a mathematical abstraction of boundary completion that satisfies these
requirements. It will lead, as we show, to connections between the local estimates
that are specialized for each problem.

Expanding the above points, recall that the best linear approximation in an in-
finitesimal neighborhood to a smooth (houndary) curve is its tangent, and that this
tangent approximation can be made around each point. Therefore the question be-
comes whether nearby tangents are consistently part of a single curve. To develop
an intuition about what consistent might mean, recall the classical Gestalt demon-
stration of perceptual good continuation (Fig. 22.1). Observe how the “Figure 8”
appears lo continue across the crossing poini; that is, how orientation is contin-
ued along the tangent direction. Many such demonstrations were developed in the
early 20" century ([483]).

Approximately a half century earlier a fundamental series of discoveries be-
gan concerning the differential geometry of curves, and they continued through
the time period dominated by the Gestalt psychology movement. Frenet (in 1847)
and, independently Serret (in 1851), introduced the idea of adapting a coordinate
frame directly to a curve, rather than using extrinsic coordinates. The remarkable
discovery was that changes in (derivatives of) this frame could be expressed di-
rectly in terms of the frame itsell. The result is a beautiful expression of the theory
of curves Lhat fits precisely the requiremenis for perceplual organization above,
The Frenet-Serret theory was extended by Darboux to surfaces a few decades
later, and was then elaborated to the powerlul repére mobile—the moving frame—
by Elie Cartan. Moving frames are not slaves to any coordinate system; rather,
they are adapted to the object under study, be it a curve, a surface (notice the
texture flow in Fig, 22.1), a metric space or manifold. For computer vision ap-
plications, we shall adapl them to curves (in 2-D and in 3-D), to texture, and to
color. Local approximations of how these frames move will provide the geome-
try of connections that can be used with the different inference techniques listed
above.

There are many excellent texts describing this approach to differential geome-
try. We recommend [611, 753], which we have followed closely in preparing this
Chapter. For related discussions see also [482]. This research was done in collab-
oration with Ohad Ben-Shahar, Lee Tverson, and Gang Li. T thank Pave]l Dimitrov
for illustrations and AFOSR, DARPA, NIH, and ONR for support.
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Figure 22.1. Perceptual organization is related to Gestalt notions of “good continuation.”
Observe how the “Figure 8 appears as a single curve, with smooth connections across the
crosgsing point, and not as the non-generic arrangement of the two shapes in the middle.
Such notions of orientation good continuation hold for textures as well; notice how this
example appears to continue behind the oecluders,

22.2  Introduction to Frenet-Serret

From a Newtonian perspective a curve can be thought of as the positions a(() =
(o1 (£), o (t), @3(t)) in Euclidean 3-space swept oul by a moving point « at pa-
rameter (time) ¢. Provided the coordinate functions (@, aq, as) are differentiable,
a curve can be defined as a differentiable map o : I — [E?, from the open interval
I into E*. For now we shall assume the curve is simple, i.e., it does not cross
itself, so the map is one-to-one and is an immersion of I into B3,

The derivative of « gives he velocily or tangent vector of ov at €

! dex 1 dﬂ‘g dox 34

o' (8) = (21, 200, 220, Dot

A curve is regular provided these derivatives are not zero simultaneously.

A reparamelerization s = s(l) yields the arc-length (unit speed) parameteri-
zation in which the length of each tangent vector is I. We denote this unit speed
curve by 8 : I — E3 with ||5'(s)|| = 1,s € L.

For simplicity, we work with 3 for the remainder of this Section. We are inter-
ested in direction and, for non-straight lines, the rate at which the curve is bending.
Intuition is helped by picturing the unit tangents as vectors in E? attached to the
points 3(s) € E, that is, as a vector ficld along the curve. Euclidcan coordinates
for this vector field can again be differcntiated:

" ey 2y 4oy
o (f) _{ d£2 (t)! dtz (t)! dtz
to yield the acceleration, but geometrically the following construction will be
more useful. (1) Denoting the unit tangent T = 4, we obain T' = 48",
the curvature vector field. Observe T is orthogonal to T by differentiating
T . T = 1. The direction of the curvature vector is normal to 3, and its length
&(s) = 1T (s)|l, s & I is the curvature. (ii) The vector field N = T/« defines
ihe principal normal, and (iii) the vector ficld 2 = T »x N is the binormal vector
field of 3.

(t}i )u(f)
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Figure 22.2. The Frenet frame attached to a point on a curve «e{ s} approximated to third
order.

The Frenet frame field on 3 is the triple (T, N, B) such that T - T = N . N =
B - B = 1, all other dot products = 0, and the (i)-(iii} above hold (Fig. 22.2),

The remarkable property of this construction is that the derivatives of the frame
can be expressed in terms of the frame itself. For £ > 0 and introducing the
torsion T we have:

T 0 w 0 T
N =} - 0 7 N . (22.1)
B! 0 -7 0 B

These are the famous Frenet-Serret formulas. The torsion  measures how rapidly
the curve is twisting out of the (osculating) plane spanned by (T, N). Tt is in
this sense that the Frenet frame is adapted to the individual curve in a way that
captures its essential (differential) geometric structure.

Basically all of information about the curve is contained in the Frenet-Serrel
formulas. The following theorem is fundamental in differential geometry: Let
Kk, : I — R be continuous {x(s) > U, s € I). Then there is a curve 3 : [ — E*
with curvature function &{s) and torsion 7(s). Any two such curves differ only
by a proper Euclidean motion.

Writing the Taylor approximation to the curve in the neighborhoed of 3(0),
and then substituting the Frenet formulas above and keeping only the dominant
terms, we obtain;

2 k)
Bls) ~ BO+s8O)+56O+Ts670) @2
2 3
~  B0)+ sTh + ko : No+ mm%sw (22.3)

Thus the Frenet approximation shows how the tangent, curvalure, and torsion
effect the curve at each point (Fig.22.2).
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Figure 22.3. Two ways to think about the local structure of a curve in the plane. (left) The
Frenet Frame is a (tangent, normal) coordinate frame that is adapted to the local structure
of each point along a curve; and (right) the osculating circle is that circle with the largest
contact with the curve among all circles langent at that point.

22.3 Co-Circularity in R? x S*

We now focus on curves in the plane E2. Observe that the first two terms in the
Frenet approximation give the line in which the tangent (or best linear approxima-
tion) lies; the first three terms give the best quadratic approximation (a parabola}
which, expressed in the (x,y) plane, has the shape y = rgx? /2 near 5(0).

The quadratic approximation around a point is determined by the curvature at
that point, which can be defined in another way. Suppose the curve is not straight,
and choose any three points on ( in the neighborhood of #(0). Teking the limit
as the three points approach §(0), the osculating circle at that point is obtained.
This is the unique circle tangent to the curve at that point such that its center lies
on the normal and iis radius is the inverse of the curvature (Fig.22.3).

The quadratic parabola is approximated by the osculating circle at that point, an
observation intreduced for the geometry of co-circularily [630]'. The basic idea
is illustrated in Fig. 22.4, which shows how local measurements of the tangent
to a curve at an arbitrary point ¢ and at a nearby point in its neighborhood have
different orientations. The geometry of consistency is given by Frenet: if the frame
in the neighborhood of ¢ is transported along the curve to ¢, it should match the
frame at ¢. If it does not, it is inconsistent.

However, the curve must be known before transport can be applied, but this is
what we seek. The solution to this chicken-and-egg problem is to transport not
along the actual curve, but along its approximation. We earlier showed that curva-
ture dictates this approximation, and it can either be measured directly {which is
what we Lthink happens in neurobiology, [271]) or estimated by other means {[35]).
In any case, once the syslem is discretized, the osculating circle and parabolic ap-

'Because of space limitations, references are very limited; we recommend that the original
publications are consulted for additional references.
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The osculating circle approximates
a curve in the neighberhood of a point

Incompatiple
langent

/

True image Compalible
clrve q i tangent

t

% Local langent

Figure 22.4, The geemetry of co-circularity for curve detection in images. (lelt) Mea-
surements of orientation differ at points along a curve. To determine whether they are
consistent, nearby tangents are transported along the osculating circle approximation to
the curve. If the lransported tangents agree they are consistent; otherwise not, (right) To
accomplish this transport operation in images, tangent position, orientation, and curvature
must be discretized, This shows those nearby tangents that are consistent with a horizon-
tal tangent at the center; that is, those tangent which, if transported along a (discretized)
approximation to the osculating circle would support the central, horizontal tangent. (The
width of the curve for this example is taken to be 3 pixels.) In the language of relaxation
labeling, this is called an excitatory compatibility field. Note that the osculating circle and
parabola approximations agree to within a fraction of a pixcl over this neighberhood.

proximations agree t¢ within a fraction of a pixel over the neighborhoods involved
(Fig. 22.4); cf. [468]. Such geomeitric compatibility ficlds can be used with a num-
ber of different inference techniques, including relaxation labeling [414], belief
propagation, and Bayes [480]. They are related to the forms that arise in elas-
tica [389, 406]. For a different attempt to minimize a functional in curvature, see
{732].

22.3.1 Multiple Orientations and Product Spaces

Thus far in this Chapter we have been concentrating exclusively on simple, regular
curves. But the “figure 8” example in Fig, 22.1 is not simple, and it provided the
motivation for the geomeiric approach. Which way should the curve be continued
at the crossing point? For such examples, although (3(s1) = [{ss) for 51 # s
at the crossing point, we have 3 (s1) # /3 (sq), which provides a clue. Tnstead
of assuming there is only one unique tangent per pixel, which is commonplace in
computer vision [259], we shall allow more than one.

To allow multiple tangents at each position, it is natural to attach a copy of the
space of all possible tangents to each position (Fig. 22.3.1). Since in principle
tangent angle is distributed around the circle and position is g real number, the
resultant space is R* x §1. (Note differences from the classical coordinate repre-
sentation.) This space is an example of another fundamental construct in modern
differential geometry, the unit fangent bundle associated with a surface in E®. In-
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tuitively one might think of a surface as being covered by (i.e., as a union of) all
possible curves on that surface. More generally, the tangent bundle to a surface is
the union of tangent spaces at all points. If the surface is 2-D, the tangent bundle
is 4-D. The geomeiric compatibility fields can be applied in parallel to all tangents
in this space. (We will be generalizing this construct in the next few Sections, and
will show examples then.)

[929] discusses the relevance of this product construction for the neurobiology
of vision,

Figure 22.5. The need for higher-dimensional spaces than the image arises in representing
non-simple or piecewise-regular curves. Since @ priori a curve could be passing through
any pixel at any orientation, it is natural to represent the (discretized) circle (the space of
all unit vectors) S at each (discretized) position (left). When the non-simple “figure 87 is
lifted into the resultant space, the lift is a simple curve in B2 x S (right). The (position,
orientation) space, which is abstract from the image, is sufficent to represent all possible
curves in the image.

22.4 Sterco: Inferring Frenet 3-Frames from 2-Frames

We now move (o 3-space, and consider the problem of inferring the structure of
space curves from projection into two images. Earlier we showed thal a curve
in R? has a tangent, notmal, and binormal Frenel frame associated with every
regular point along it. To sketch a geometric approach to stereo compatibility, for
simplicity consider only the tangent in this frame and imagine it as an (infinitly)
short line segment. This space tangent projects into a planar tangent in the left
image and a planar tangent in the right image. Thus, space tangents project to
pairs of image tangents. Now, consider the next point along the space curve; it
too has a tangent, which projects to another pair of image tangents, one in the
left image and one in the right image. Thus, in general, transport of the Frenet
3-frame in B> from the second point back to the first has a correspondence in
the left-right image pairs of 2-frames. [519] have developed this transport idea
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" : N =

Figure 22.6. (a) Cartoon of the stereo relaxation process. A pair of space tangents associ-
ated with the Frenet approximation around the point with tangenl e;. Each of these tangents
projects to a (left,right) image tangent pair; compatibilily between the space tangents thus
corrcsponds to compatibility over (left,right) image tangent pairs. The projected tangents
are shown as thick lines. One left image tangent is redraw in the right image (as a thin line)
to illustrate positional disparity (Ad)and orientation disparity (A#). The compatibility be-
tween the tangent pair (1) and the pair {7) is denoted r;;. Of course, for the full system ihe
complete Frenet 2-frames are used to infer the Frenet 3-frame attached to the space curve.
{b) Just as the osculating circle provided a local model for transport for image curves, a
section of a helix provides a local model for a space curve. The {T, N') components of the
Frenet 3-frame define the osculating plane, which rotates as the frame is moved along the
space curve,

to find corresponding pairs of image tangents such that their image properties
match, as closely as the geometry can be approximated, the actual space tangents
(Fig. 22.6). They show, in particular, that the sterec projection operator can be
inverted to give the Frenet 3-frame and the curvature, but not the torsion. This
builds on the related work of [267, 713, 653]

Tweo notions of disparity arise from the above transport model. First, the stan-
dard notion of positional disparity cotresponds, through the camera model, to
depth. Second, an orientation disparity is introduced if the space tangent is not in
the epipolar plane. In the computational vision literature, orientation disparity is
largely unexplored, but it is widely studied in visual psychophysics [410]. The ge-
ometric viewpoint shows how to use position and orientation disparities together.
Typical reconstructions [rom this algorithm are shown in Fig. 22.7.
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u

(a) ® ()

Figure 22.7. 3D reconsiruction of a twig pair.(a) Left image (b) Right image; note in
the highlighted region that subtletics in using the ordering constraint arise. Furthermore,
occlusion of branches gives rise to discontinuities in orientation. Representing such discon-
tinuities as multiple tangents [acilitates proper matching. (¢} Reconstruction. Depth scale
1s shown at right (units: meters).

22.5 Covariant Derivatives, Oriented Textures, and
Color

We now denote orientation in the plane as a unit length tangent vector ]:Z}(q) at-
tached to point q = (z,y) € R%. With such tangent vectors attached to every
point of an oriented texture results in a unit length vector field, which creates a
need to generalize the notion of transport: the frame can now be moved in any
direction in the texture, rather than just along the curve.

Asgsuming good continuation as in the Introduction, a small translation V' from
the peint g should rotate the vector E(q) a small amount. Following the Frenet
model, the frame {]:}y, Ey} is placed at the point q and the basis vector B is
identified with B(q) — the langent vector at q (Fig. 22.5). Note that Er is drawn
at an angle & — the local orientation measured relative to the x-axis — such that
(q,0) € R? x S'. Nearby tangents are displaced both in position and orientation
according to the covarigni derivatives, a tensor object whose components are es-
sentially the partial derivatives of the underlying pattern. (Covariant derivatives
generalize the earlier derivatives which were taken only along the curve; i.e., with
respect to the arc length parameter s.) For vector fields the covariant derivative is
taken in a direction given by another vector field, and is a vector. Again follow-
ing Frenet, we observe that such covariant derivatives, VVET and VVE N, 8re

naturally represented as vectors in the basis {I:]T, ]::!N} itselfs

( VyEr ) _ { w1 (V) wiz(V) } ( Er ) (22.4)
VyEw w1 (V) wye(V) Ey
The coetlicients w,;(V) are I-forms, real-valued functions defined on tangent

vectors. They are functions of the displacement direction vector V, and since the
basis {Er, En} is orthonermal, they are skew-symmetric wy; (V) = —w; (V).
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Thus w1 (V) = wyz (V) = 0 and the system reduces Lo:

VyEr Y _ 0 wiz(V) BEr
( VVEN ) - |: —-wlg(V) 0 j| ( EN ) (22.5)

This begins to resemble the Frenet-Serret formulas but is more general; it is Car-
tan s connection equation; w12(V) is called the connection form. Since wy2(V)
is linear in V, it can be represented in terms of {Er, Ex}:

T.U]z(V) = w;z[a ET -+ b EN) = "EL'J_Z(ET) ~+ b wlg(EN} i

The relationship between nearby tangents is thus governed by two scalars at each
point.

& -~
w7 = wiz{Er)

A X (22.6)
Ky = wlz(EN)

We inlerpret them as tangential (x+) and normal (k) curvalures, since they rep-
resent a direclional rate of change of orientation in the tangential and normal
directions, respectively.

The connection equation describes the local behavior of orientation for the gen-
eral two dimensional case, but is can be specialized to the one-dimensional case
of curves developed earlier by considering only Vg :

VETI:‘]T _ 0 i wlg{]:]q») ] ( ]E}T ) S
( Vi, Ex ) { —wia(ET) 0 Ex / @20

which, m our garlier notion, becomes:

T ¢ =& i
(3 )= 5% 51(% ) @)

We refer to kp as the tangential curvature and kv as the normal curvature -
they represent the rate of change of the dominant orientation of the texture flow in
the tangential and normal directions, respectively. In the language of frame fields,
wp and Kk are just the coordinate functions of V6 with respect to {Er, Ex ).

In the case of curves, the theory of frames is coupled to ordinary differential
equations. For vector fields and texture flows, partial differential equations arise.
In particular, since £ and Epy are rigidly coupled, and we have

ET=VXET

s e (22.9)

If ky and ky were known functions of position ¢ = (x,y}, a PDE could be
solved for the rotation angle #(q). Thus k and xjy are not completely indepen-
dent, and integrability conditions arise. In particular, unless k¢ and & are both
equal to zero, they cannot be constant simultaneously in a neighborhood arcund
q, however small, or else the induced flow is nonintegrable. [72] show that, given
any texture flow {Er, B}, its curvature functions x¢ and »y must satisfy the
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Figure 22 8. Displacement (transport) of a Frenet frame within a vector ficld or an oriented
texiure amounts to rotation, but differs for different displacements. The covariant derivative
specifies the frame’s initial rate of rotation for any direction vector V. The four differcnt
cases in this figure illustrate how this rotation depends on 'V both quantitatively {i.e,, dif-
ferent magnitudes of rotation) and qualitatively (i.e., clockwise, counter-clockwise, or zero
rotation), A pure displacement in the tangential direction (i) specifics one rotation com-
ponent (the tangential curvature) and a pure displacement in the normal direction (fL‘N)
specifies the other (normal curvature) component.

relationship
Viy - Ey - Viey-Er = K,%—' -+ K,?V

With osculating circles the natural local model for the geometry of regular pla-
nat curves, and helices the natural model for regular space curves, [72] show that
the natural local model for textures and flows is a helicoid in R® x S*. This fol-
{ows intuitively because each streamline or intergral curve through the flow can
be locally approximated by a section of an osculating circle; this lifts to a section
of a helix. The helicoid is a ruled surface built of these lifts. Local sections of the
helicoid can be projected into the image and discretized to provide connection or
compatibility fields for textures and flows (Fig. 22.9).

The result of applying this system to overlapping flows is shown in Fig. 22.10.
Notice in particular how woven textures can be thought of as multiple threads, or
curves, overlapping one another, This emerged from our discussion of represent-
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Figure 22.9, Texture compatability fields are discretizations of a helicoid approximation {o
a flow lifted into IR® x &, Three examples arc shown: (A) both curvatures are zero; this is
the analog to a straight line for curves; (B) tangential curvature is zero and normal curvalure
is positive; this shows a local portion of a texture flow in which the integral curves converge
to a {singular) point, as lines converge lo a point in the distancc; and (C) both the tangential
and the normal curvatures are positive, This is the general case: notice how singular points
{where all orientations are possible) arise. These are indicated as multiple line scgments
displayed at the same position.

ing multiple orientations at each point. When overlapping textures are lifted into
R? x S* their structure separates just as the “figure 8” separated at the crossing
point. But now, in a discrete sense, such multiple values are very common.

E

Figure 22.10. Examples of texture patterns rich in orientation. {A) A woven texture with
two dominant orientations. This is an extension of (B) two overlapping textures, which are
naturally separated when lifted into R* x 8" in (C). The bottom panels illustrate how a
noisy pattern (D) is refined using the geometric compatibilities in ¥ig, 22.9 to (E), thereby
enforcing a Gestalt-like good contination of the flows.
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Figure 22.11. The HSV color representation in 8* x [0, 1]2 and the color wheel.

22.5.1 Hue Flows

While color is normally thought of as a point in (R,G,B)-space, it can also be
represented in the psychophysically motivated HSV color space. Here a color
image is a mapping € : B2 — 8! x [0,1]? (see Fig.22.11), The hue component
across the image is a mapping H : B? — &' and thus can be represented as a unit
length vector field over the image, which [72] called the Aue field, Displays of the
hue field reveal that it may vary greatly, albeit smoothly, even within perceptually
coherent objects (see Fig 22.12. '

Many color image enhancement algorithms are based on a form of anisotropic
diffusion [2, 153], using either a vectorial representation or a manifold represen-
tation [787]. While diffusion in color space can work within very smooth regions,
it does have the tendency to blur inappropriately.

Hue compatibility fields can be defined analogously to texture compatibility
fields—see[731. As expected, concepts of hue curvatures naturally arise, which ex-
press how the hue is flowing from one image position to those in its neighborhood.
Just as with texture flows, a tangential and a normal hue curvature are required.
Since the local behavior of the hue is characterized (up to Euclidean transforma-
tion) by this pair of curvatures, it is natural to conclude that nearby measurements
of hue should relate to each other based on these curvatures. Or, put differently,
measuring a particular curvature pair at a point should induce a field of coherent
measurements, i.e., a hue function in its neighborhood. Coherence of hue to its
spatial context can then be determined by examining how well it fits with those
around it, Again, a helicoidal approximation in (position, hue) space arises.

Such flows are relevant 10 image denoising; for estimating mutual reflectance
and color bleeding; for estimating smooth surface variations as separate from
lighting variations (for lightness algorithms); and for separating cast shadow
boundaries and highlights from other types of intensity edges.
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Figure 22.12. A flow perspective on color images is provided by their hue fields. These are
typically piecewise smooth. Most importantly, hue can vary smoothly even within percep-
tually coherent objects. (top) A natural image of an apple with varying hue. Notice that
the everyday expression of “red apple” is limited. The corresponding hue field changes
smoothly across the image of the apple’s surface. (bottom) A 3D representation of the hue
filed, where hue is represented as height. Identifying the top face with the bottom (since
hue i8 a circle) leads to the (position, hue) space.

22.6 Discussion

In this Chapter we co-developed ideas from modern differential geometry and
problems in computer vision. The dilTerential geometry was based on Frenet and
Serret’s ideas of attaching frames directly to curves, rather than expressing curve
structure in terms of extrinsic coordinate functions. Such ideas were carried to
a remarkable stage by Cartan, whose moving frame concept is now central in
mathemalics. The covariant derivative emerges for differential variation of frames
in flows, as the normal derivative was uscful for transporting a frame along a
curve.

The moving [rame concept provides a nalural abstraction for perceptual orga-
nization problems, at least for those that can be defined over short distances. We
considered curve detection in 2D and stereo as the projection of 3D curves to
illustrate the power of this geometric abstraction. Techniques for integrating ori-
entation disparity with positional disparity emerged. But the real power was seen
for flows, in which textures and hues were considered.

Although the notion of tangent was introduced as the best linear approximation
to a curve, modern definitions abstract via a limiting operation to an equivalence



Differential Geometry from the Frenet Point of View 373

class of curves. Our discussion attempted to avoid any unnecessary abstraction,
so that all concepts had a direct counterpart in computer vision terms.

Consideration of non-simple curves motivated an elaboration of the types of
representations normally considered in computer vision from image-based ones
to those that attach a space of possibilities at each point. Tt is commonplace to
assume boundaries have a well-defined orientation at each point, but this holds
for only a restricted class of curves. Local occlusion clues involving “T” junc-
tions provide an important example of non-smooth curves, and our elaborated
representation is capable of handling them as well.

The space of possible frames also has an important representation in differential
geometry, and is related to fibre bundles. We just touched on such concepts in
this Chapter, but fully expect them to be playing a much richer role in future
applications of differential geometry to computational vision.



Chapter23
Shape From Shading

E. Prados and O. Faugeras

Abstract

Shape From Shading is the process of computing the three-dimensional
shape of a sutface from one image of thal surface. Contrary to most of the
other three-dimensional reconstruction problems (for example, stereo and
photometric steren), in the Shape From Shading problem, data are minimal
{we use a single image!). As a consequence, this inverse problem is intrinsi-
cally a difficult one. In this chapter we describe the main difficulties of the
problem and the most recent theoretical results. We also give some examples
of realistic modelings and of rigorous numerical methods.

23.1 Introduction

The “Shape From Shading” problem (SFS) is to compute the three-dimen-
-sional shape of a surface from the brightmess of one black and white image of
that surface; see figure 23.1.

[ =]
_F-q_-“'\___
y :
E Problem
P il —_—
Surface Photo Retrieve the surface(s)

which gives the same photo

Figure 23.1. The “Shape-from-Shading” problem.

In the 70°s, Horn [405] was the first to formulate the Shape From Shading prob-
lem simply and rigorously as that of finding the solution of a nonlinear first-order
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a) The crater illusion [638]: From the image we perceive two craters, a small and a big
one. But we can tun these craters into volcanoes (although upside down) if we imagine
the light source to be at the bottom of the picture rather than at the top. This picture is
actually that of a pair of ash cones in the Hawaiian Island, not that of a pair of craters.

b-c) “Bas-relief Ambiguity™ [68]: Frontal and side views of a marble bas-relief sculpture.
Notice how the frontal views appear to have full 3-dimensional depth, while the side view
reveals the flattening. This demonstrates that the image b) can be produced by two surfaces:
the three-dimensional surface we imagine by visualizing image b) and the actual bas-relief
which is at the origin of the two photos b) and c).

Figure 23.2. Examples of Shape From Shading ambiguities.

Partial Differential Equation (PDE) called the brightness equation. [n a first period
(in the 80’s) the authors focus on the computational part of the problem, trying to
compute directly numerical solutions. Questions about the existence and unique-
ness of solutions to the problem were simply not even posed at that time with the
important exception of the work of Bruss and Brooks [134, 118]. Nevertheless,
due to the poor quality of the results, these questions as well as those related to the
convergence of numerical schemes for computing the solutions became central in
the last decade of the 20th century. Today, the Shape From Shading problem is
known to be an ill-posed problem. For example, a number of articles show that
the solution is not unique (118, 608, 609, 690, 68, 292, 665, 663]. The encoun-
tered difficulties have oflen been illustrated by such concave/convex ambiguitics
as the one displayed in Figure 23.2-a), In this figure, the ambiguity is due to a
change of the estimation of the parameters of the lighting. In fact, this kind of am-
biguity can be widely generalized. In [68], Belhumeur and colleagues prove that
when the lighting direction! and the Lambertian reflectance (albede) of the sur-
face are unknown, then the same image can be obtained by a continuous family of
surfaces {depending linearly of three parameters). In other words, they show that
neither shading nor shadowing of an object, seen from a single viewpoint reveals
its exact 3D structure. This is the “Bas-relief Ambiguity”, see [68] and Figures
23.2-b) and 23.2-¢), Being aware of these difficulties, we therefore assume here
that all the paramecters of the light source, the surface reflectance and the camera
are known.

'In the case of a distant light source,
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As we have mentioned above, the modeling of the Shape From Shading prob-
lem introduced by Horn leads to a PDE: the brightness equation. This equation
arises from the following

Izy, 22} = R{n(zy, z2)),

(z1,22) are the coordinates of a point » in the image. The brightness equation
connects the reflectance map (F7) to the brighiness image (7). Al the exception of
an extremely small number of papers, for example [44, 506, 667], almost all the
Shape From Shading methods assume that the scene is Lambertian. In this case,
the reflectance map is the cosine of the angle between the light vector L{:) and
the normal vector niz) to the surface:
L n
R = cos{L, n) T o]’ (23.1)

{where R, L and n depend on (x1, z2)).

23.2 Mathematical formulation of the SFS problem

In this section, we formulate the SFS problem as that of solving some explicit
PDEs. These explicit equations arise from equations (23.1).

Let £2 be an open subset of R? representing the image domain (e.g. the rect-
angle ]0, X[x]0, ¥'[). We represent the scene by a three-dimensional surface
S = {S (x); z € ﬁ} . which can be explicitly parameterized by using the func-
tion S defined on the closure £ into B3, The particular type of parameterization
is irrelevant here but may vary according to the camera type (orthographic versus
pinhole) and to mathematical convenience. In this work, we assume that the light
source is unique and punctual. For i € IR®, we denote L{y) the unit vector rep-
resenting the light source direction at the point y. If the light source is located at
infinity then the light vector field is uniform (i.e. constant). In this case, we denote
by L = (o, B,7) with v > 0, and | = (o, #}. If the light source is located at the
optical center, then L{5(x)) = S(x)/15(z)).

23.2.1 “"Orthographic SFS” with a far light source

This is the traditional setup for the SFS problem. Here, we assume in particu-
lar that the camera performs an orthographic projection of the scene, For such
a modeling, it is natural to denote by u the distance of the points in the scene
to the camera; in other words, S is parameterized by S : x — (x,u{x)). For
such a parameterization, a normal vector n(z) at the point S(z) is given by*

% The two columns of the Jacabian [2.5(x) are tangent vectors to S at the point S{z). Their cross
praduct 1s a normal vector,
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n{z) = (—Vu, 1). The SFS problem is then, given I and L, to find a function
) — IR satisfying the brightness equation:

Y €81, Iz} = (—Vu(z) 14+ 5]/ 1+ |Vulz)2.

In the SFS literature, this equation is rewritten in a variety of ways as fI (x, p) = 0,
where pp = Vu. For example, Rouy and Tourin [690] introduce

Hypr(e,py = Ha)/1+pP+p-1—7
In [290], Dupuis and Oliensis consider

Hpjol,p) = Ha)/1+1p2 = 2p-1+p-1-1.
In the case where L = (0,0, 1), Lions et al. [522] deal with:

Hpgolz, p) = |p} — ﬁi_)? <1 {called the Eikonal equation).
The function & is called the Hamiltonian.

23.2.2 “Perspective SFS" with a far light source

“Perspective SFS” assumes that the camera performs a perspective projection
of the scene. We therefore assume that S can be explicitly parameterized by
the depth modulation function u defined on £1. In other words, we choose
S(x) = ulw).(w, ~F), Vo € Q, where £ denotes the focal length. For such a
parameterization, a normal vector n(x) at the point S{x) is given by n(x) =
(fVu(z), u(z) + = - Vu(x)). Combining the expression of n{x) and the change
of variables® 2 = In(u), we obtain from the irradiance equation (23.1) the
following Hamiltonian [663, 788, 228]:

Hp/plz,p) = f(ﬂi)\/fz-piz e p+ 1)~ (fl+92) p -y

23.2.3 “Perspective SFS” with a point light source at the optical
center

Here, we parameterize 8 by S{z} = u(x) (z, —f), ¥z € Q. In this

|2 + f*
case, we can choose? n(z) = (fVu— jﬁ}gm Vu- :B—I-T;%% /). Combining

the expression of n(z) and the change of variables®* v = In{u), we cbtain from
equation (23.1) the following Hamiltonian [664, 662];

Hope(m,p) = Iz + (p-2)2 + Q(=)? — Q).

3We assume that the surface is visible (in front of the retinat plane) hence % > 0.
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23.2.4 A generic Hamiltonian

In [664, 662], Prados and Faugeras proved that all the previous SFS Hamiltonians
are special cases of the following “generic” Hamiltonian:

Hy(z,p) = ha/|Acp + Vo |* + K2 + w5 -p + ¢y,

with sy, K 2 0,600 € R, v, w, € B2 and A, € Mo(IR), the set of 2 x 2 real
matrices. They also showed that this “generic” Hamiltonian can be rewritten as a
supremum:
Hy(z,p) = sup {—fy(z,a)-p—lylz,a)};
a€Hz(0,1)

see {662] for the delailed expressions of f, and {,. This generic formulation
considerably simplifies the analysis of the problem. Theorems about the charac-
terization and the approximation of the solutions are proved as much as possible
for this generic SFS Hamiltonian. In particular, this formulation unifies the ortho-
graphic and perspective SF§ problems, Also, from a practical point of view, @
single algorithm can be used to numerically solve these various problems.

23.3 Mathematical study of the SFS problem

23.3.1 Related work

Tt is well-known that the SES problem is an ill-posed problem even when we
assume complete control of the experimental setup. For example, the previous
SFS PDEs do not have a unique solution: several surfaces can yield the same im-
age [292]. Before computing a numerical solution, it is therefore very important
to answer the lollowing questions. Does there exist a solution? If yes, in what
sense is it a solution {classical or weak)? Is the solution unique? The various
approaches for providing answers to these questions can be classified in two cat-
egories.  First, Dupuis and Oliensis [290] and Kozera [493] deal with smooth
{classical) solutions. More precisely, Dupuis and Oliensis [290] prove the unique-
ness of some constrainted 2 solutions, and they characterize some C! solutions.
Kozera works with hemi-spheres and planes [493]. Nevertheless, we can design
smooth images “without (smooth) shape™ [119, 479]; also, because of noise, of
errors on parameters {focal length, light position, ete) and of incorrect modeling
(interrectlections, extended light source, nonlambertian retlectance...) there never
exist in praclice such smooth solutions with real images. In other respects, this
also explains why the global methods (e.g. [290, 470, 606]) which are completely
based on such regularity assumptions are somewhat disappointing with real im-
ages. This leads to consider the problem in a weaker framework. Second, in the
90s, Lions, Rouy and Tourin [690, 522] propose to solve the SFS problem by us-
ing the notion of viscosity solutions. Recently, their approach has been extended
by Prados and Faugeras [665, 663] and by Falcone [144]. The theory of viscosity
solutions is interesting for a variety of reasons: 1) it ensures the existence of
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weak solutions as soon as the intensity image is (Lipschitz) continuous; 2) it
allows to characterize alt solutions; 3) any particular sotution is effectively com-
putable. Nevertheless, the work of Lions et al., Prados and Faugeras, Falcone et al.
[690, 522, 665, 663, 1447 has a very important weakness: the characterization of
a viscosity solution and its computation reguire in particular the knowledge of its
vaiues on the boundary of the image. This is quite unrealistic because in practice
such values are not known. At the opposite of the work based on the viscosity so-
lutions, Dupuis and Oliensis [290] characterize some C* solutions with much less
data. In particular, they do not specify the values of the solution on the boundary
of the image. Considering the advantages and the drawbacks of all these methods,
Prados et al. [664, 661] propose a new class of weak solutions which guarantees
the existence of a solution? in a large class of situations including some where
there do not exist smooth sclutions. They call these new solutions: “Singular Dis-
continuous Viscosity Solutions” (SDVS). The notion of SDVS allows to unify
the mathematical frameworks proposed in the SFS literature and to generalize the
previous main theoretical results.

23.3.2 Nonuniqueness and characterization of a solution

The results presented in this section are based on the notion of SDVS [664]. Let us
recall that the viscosity solutions are solutions in a weak sense and that the clas-
sical (differentiable) solutions are particular viscosity solutions. For more details
about this notion of weak solutions, we refer the reader to [52]. For an intuitive
approach connected to computer vision, see for example [664] and references
therein.

Since the CCD sensors have finite size, we assume that £ is bounded. In
this case, it is well known that the Hamilton-Jacobi equations of the form
H{x,Vu(z)) = 0, ¥z € £, (and so the SFS equations considered here) do not
have a unique viscosity solution [52]. Tt follows that for characterizing (and for
computing) a solution, we need to impose additional constraints. In [664] (but
also implicitly, in [290]) it is shown that the idea of state contraints (also called
“Soner conditions™) provides a more convenient nolion of boundary condition
than Dirichlet’s® or Neumann’s®. The “statc contraint” is a boundary condition
which is reduced to

Hiz,u{z), Vulx)) = 0 on 812,

in the viscosity sense (see for example [52]). This constraint corresponds to the
Dirichlet conditions

Vo €90, u{z) =z} withplz) = +oo,

$Corresponding to Dupuis and Olicnsis” solution, if one exists,
IDirichlet conditions consists in fixing the values of the solutions.
SNewmann conditions consists in fixing the values of the derivatives the solutions,
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in the viscosity sense. In a sense, completing an equation with state constraints
consists in choosing the highest viscosity solution. The interest of the notion of
state constraints is twofold: 1) in contrast with the Dirichlet and Neumann bound-
ary conditions, the state constraints do not require any data’. 2) the notion of state
constraints can be approximately expressed as “u(x) increases when x tends to
J07; see [664]. So the addition of this constraint provides a relevant solution as
soon as the original surface verifies this basic assumption. Let us emphasize that
this constraint is in fact not a strong one since, for example, the condition is satis-
fied as soon as the image to be processed contains an object of interest in front of
a background.

The main difficulty encountered when one attempt to solve the 8FS equations

(described in section 23.2) is due to the fact that even if we impose Dirichlet or
Soner (state constraints) boundary conditions all over the boundary of the image,
these constraints are not sufficient for obiaining the uniqueness of the solution.
For characterizing a weak solution (SDVS) or a classical solution (C1), it is
necessary and sufficient to impose (in addition) Dirichlet constraints at the
singular points which are local “minima”®; at the other points, we just impose
slate conslraints [661], Let us remind the reader that the sel of the singular points
188 ={x €| I(z) =1} These points are those of maximal intensity” and
correspond with the points for which the surface normal coincides with the light
direction.
Therefore, in practice, to be able to recover the original surface!®, we need to
know what are the singular points which are local minima and the height of the
surface at all these particular points. In the cases where we do not have this knowl-
edge {unfortunately, we do not have it in practice!), we are unable to recover the
exact original surface. Nevertheless, let us note that Prados and Faugeras® frame-
work allows 1o understand exactly what we compute, namely the SDVS (which
coincides with the value function considered in particular by Dupuis and Olien-
sis [290]). In practice, we fix the height of the solution at the singular points and
on the boundary of the image, when we know i, and we “send” these values to
infinity when this information is not available (i.e., we impose a state constraint).
Finally Prados and his coworkers prove that, with such constraints, there exists a
unigue SDVS of the SFS equations'',

"Dirichlet {respectively, Neumann) boundary conditions require the knowledge of the exact values
of the solution {respectively, the exact values of Vu(x) - ni{z), where n(x) is the unit inward normal
vector to 941 al the point =) on the boundary of the image. In the SFS problem, we rarcly have such
data at our disposal,

$More precisely, the minima of # — ¢, where i is the adequate subsolution [661].

Let us recal! that we have assumed that /{z) = cos(n, L}.

1%j.e., in SFS, the photographed surface,

U'ith some weak adequate assumptions; see [661].
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23.4 Numerical solutions by “Propagation and PDEs
methods”

In section 23.2, we have shown that the SES problem can be considered as that of
solving a [irst order PDE, In this section, we consider the numerical SFS methods
consisting in solving directly the exact SFS PDE. We call them “propagation and
PDEs methods™. These numerical methods do not make any linearizations (at the
opposite of the linear methods; see [291] for a recent state of the art). Moreover,
they do not introduce any biases in the equations contrary to the variational meth-
ods which, for example, add regularization or integrability terms. For more details
about variational approaches in Shape From Shading, we refer the reader to Horn
and Brooks’ book [408] and to the survey of Durou and his coworkers [291] (and
references therein),

23.4.1 Related work

The propagation and PDEs methods can be subdivided into two classes. The
“single-pass” methods and the iterative methods. The main single-pass methods
are: the method of characteristic strips (introduced by Hom [405]), the method
of propagation of the equal-height contours {introduced by Bruckstein [125] and
improved by Kimmel and Bruckstein [471]), the fast marching method (proposed
by Sethian and Kimmel {728, 474]}. Amongst the iterative methods let us cite in
particular; the algorithm introduced by Rouy and Tourin [690] and its extensions
by Prados and Faugeras [665, 663], the algorithms of Dupuis and Oliensis [290]
based on the control theory and differential games, the algorithms of Falcone et
al. [144] based on finite elements. Let us note that, at the exception of the work
of Prados and Faugeras [663, 664], all these methods deal only with the Eikonal
equation [405, 125, 690, 471, 728] or with the orthographic SFS with oblique
light source [290, 144, 474, 665).

In spite of the multiplicity of these methods, we can prove that they all com-
pute approximations of the same solution. [n particular, the initial equal-height
contours method of Bruckstein [125] is a variant of the method of the character-
istic strips of Horn [405]. In [125], Bruckstein assumes that the initial curve is an
equal-height contour. By imposing such special Dirichlet boundary conditions,
he drops the Neumann boundary conditions required by the basic method of the
characteristic strips (see [479] for a nice and rigorous study of these methods).
Basically both above methods are Lagrangian methods that suffer from unstabil-
ity and topological problems, see for example [618]. To aileviate these problems
Kimmel and Bruckstein [471] propose to upgrade Bruckstein’s method by using a
Eulerian formulation of the problem. In other respects, the connection between the
front propagation problems and the Hamilton Jacobi equations are well known.
Tn particular, roughly speaking, it has beeb proved that the viscosity solution of
the Hamilton Jacobi equation associated with a front propagation corresponds
with the evolution of the initial contour defined by Huygens® principle; see for
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example [302]. In the same way, the other methods we cite above (Sethian’s,
Rouy-Tourin’s, Dupuis-Oliensis’, Falcone’s and Prados-Faugeras” methods) com-
pute some approximations of the viscosity solutions of the SFS equations. In
particular in [731], Sethian and Vladimirsky prove that the numerical solutions
computed by the fast marching/ordered upwind methods converge toward the con-
tinuous viscosity solution (with Dirichlet boundary data on the boundary of the
image). In [664], Prados and Faugeras generalize and unify the results proved in
[690, 290, 144, 663, 663]. More precisely, they show that in all cases, the authors
compute approximations of the SDVS. Basically, the difference between the work
[690, 290, 144, 665, 663] is based on the choice of the boundary conditions; see
[661]. In a general manner, all propagation and PDE methods require additional
constraints: in particular, Dirichlet, Neumann or Soner boundary conditions. In
other words, the computed solutions are characterized by the boundary condi-
tions. These boundary conditions must contain enough infermation. Also, this
information is thereby propagated “along” the solutions, Let us note that except
for Horn’s [405] and Bruckstein and Kimmel’s method [125, 471], all the pre-
vious methods can deal with various Dirichlet/Soner boundary conditions. More
precisely, the algorithms of Rouy and Tourin [690], Dupuis and Qliensis [290],
Sethian [728] and Prados and Faugeras [665, 663] can use Dirichlet and/or Soner
conditions on the boundary of the image 80 at all the singular points & and on
any other part of the image (for example, on an equal-height contour...). For in-
stance, when we do not know the values of the solution at any points of the image,
we can impose state constraints (i.e. Soner conditions) on 8§ U & except for one
point where we must impose a Dirichlet boundary condition. Contrary to these
methods, let us note that Horn’s [405] requires Dirichlet and Neumann boundary
conditions and that Brucksiein’s [125, 471] require the knowledge of an equal-
height contour. This last constraint is a very specific Dirichlet condition and is
much stronger than the previous ones. Note that implicitty, Bruckstein methods
£125, 471] also impose state constraints on 90 U S.

Finally, from a more numerical point of view, we can also remark that the ap-
proximation scheme considered by Sethian [728] is the one designed by Rouy
and Tourin in [690]. Moreover, Prados and Faugeras® schemes are extensions of
the Rouy and Tourin’s scheme and their selutions coincide with those of Oliensis’
schemes.

23.4.2 An example of provably convergent numerical method:
Prados and Faugeras’ method

In this section, we present the provably convergent numerical method of Prados
and Faugeras [662]. Let us recall that this method unifies in particular the itera-
tive methods of Rouy and Tourin [690], Prados et al. [665, 663] and Dupuis and
Oliensis [290].

We consider here a finite difference approximation scheme. The reader unfamiliar
with the notion of approximation schemes can refer to [53] or [662]. Let us just
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recall that, following [53], an approximation scheme is a functional equation of
the form

S(pymu(z),u)y=0 Ve,

which “approximates” the considered PDE. S is defined on M x I x B x B({2)
intoR, M =R" x Bt and p = (1. ha) € M defines the size of the mesh that
is used in the corresponding numerical algorithms. B(D) is the space of bounded
functions defined on a set D.

Definition 1, We say that a scheme 5 is stable'® if for all fixed mesh size p it has
solutions and if all the solutions are bounded independently of p.

For ensuring the stability of a scheme, it is globally sufficient that it is
monotonous {i.e. the function u — S(p, z,t,u) is nonincreasing) and that the
function ¢ — S(p,x,t,u) is nondecreasing, see [662]. For obtaining such a
scheme, Prados and Faugeras [662] approximate the generic Hamiltonian I, by

Hy(z, Vu(z)) = sup {i(vfe(a:, sy etz b aln QhiE) aJ}

g 30, 1) —si{z, a)h

i-:1

where fi{x, a)is the i** component of f,(z,a) and 5;(x, ) is its sign. Thus, they
obtain the approximation scheme Symp (#; %, u{x), 1) = 0 with Syp,py defined by:

Simpt(p, T, t,u} = sup {Z(_fx‘(m,a))t_” ulr + si(w, a)hie) {g{m,a}} )

acB1) |5 —si(x, a)hi

By introducing a fictitious time A+, they also transform this implicit scheme in a
“semi-implicit” scheme (also monotonous):

Ssemi(p, &, tu) =1 — (ulz) + At Simpi(p, 2, u(x), 1) ),

where A7 = (fy(x,a0) - (1/ha, l/hz))_l; ag being the optimal control asso-
ciated with Simpi{p, &, u(z), u). Let us emphasize that these two schemes have
exaclly the same solutions and that they verify the previous monotonicity condi-
tions {with respect to 1 and w). Prados and Faugeras prove in [662] the stability of
these two schemes.
By construction, these two schemes are consistent'? with the SFS equations as
soon as the brighlness image T is Lipschilz conlinuous; see [662]. Using the
stability and the monotonicity of the schemes and some uniqueness results, it
follows directly from [53] that the solutions of the approximation schemes Sy,
and 8s.mq converge towards the unique viscosity solution of the considered equa-
tion (complemented with the adequate boundary conditions) when the mesh size
vanishes; see [662].

We now describe an iterative algorithm thal computes numerical approxima-
tions of the solutions of a scheme S(p, x, u(z),u) = 0 for all fixed p = (hy, k).
We denote, for k € 22,z = (k1hy, kohy), and Q := {k € Z% s1. 71, € 1} We

12 Following Barles and Souganidis definitions {53].
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call “pixel” a point xx, in §2. Since § is bounded the number of pixels s finite. The
following algorithm computes for all k € @ a sequence of approximations U}’ of
u(wgh
Algorithm:

1. Initialisation (n = 0): Yk € Q, U] = ug(zy);

2. Choice of a pixel xy, and modification (step n+1) of U : we choose U™+

such that
{ U;"+l =U" if 1#F,
S{p.xx, U;;H, un) =0,

3. Choose the next pixel xy (using altevnating vaster scans [243]) and go
back to 2.
In [662], Prados and Faugeras prove that if ug is a supersolution of the SFS

scheme Siy,pi (respectively, Suermi) then step 2 of the algorithm has always a
unique sclution and that the computed numerical solutions converge {when n —
+oc ) toward the solutions of the scheme. Many details about the implementation
of the algorithm can be found in [662].

23.5 Examples of numerical results

In this section, we show some examples of numerical results on real images.
In these experiments, we test the implicit generic SFS algorithm of Prados and
Faugeras. At the same time, we suggest some applications of the SFS methods
hoping that the results will convince the reader of the applicability of this method
to real problems.

Let us recall that we have assumed that the camera is geomelrically and photo-
metrically calibrated. In the experiments of sections 23.5.1 and 23.5.2 we know
the focal length (5.8 mm) and approximately the pixel size {0.0045 mm; CCD
size = 1/2.7") of the digital camera (Pentax Optioc 330GS). In section 23.5.3, we
choose some arbilrary reasonable parameters. Let us note that in these tests, we
also make some educated guesses for gamma correction {(when the photometric
properties of the images seem incorrect).

23.5.1 Document restoration using SFS

In this section, we consider a reprographic system to remove the geometric and
photometric distortions generated by the classical photocopy of a butky book.
Note that several solutions have been proposed in the SFS literature. Let us cite
in particular the work of Wada et al. [850], Cho et al. [193} and Courteille et
al. [228]. Here, the acquisition process we use is a classical camera. The book
is illuminated by a single light source located at infinity or close to the optical
center (following the models described in section 23.2). The acquired images are
then processed using Prados and Faugeras’ SFS method to obtain the shape of
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the photographed page. Let us emphasize that, for obtaining a compact experi-
mental system, the camera must be located relatively close to the book. Therefore
the perspective model ks especially relevant for this application. Also, the distor-
tion due to the perspective clearly appears in the image a) of figure 23.4. In this
SFS method we assume that the albedo is constant. In this application, this does

e Ty

Figure 23.3. a) Real image of a page of text [size =~ 800 x 800]; b) Surface recovered from
a} by Prados and Faugeras’ generic algorithm {without removing the printed patts of a)),

Figurc 23 4, a) real image of a page containing pictures and graphics [size ~ 2000 x 1500],
b) surface (textured by the printed parts of a}) recovered from a) by Prados and Faugeras’
generic algorithm (after having removed and inpainted the ink parts of a)). ¢) An or-
thographic projection of the surface b): the geometric (and photometric) distorsions are
significantly reduced.

not hold because of the printed parts. Before recovering the surface of the page,
we therefore localize the printed parts by using image statistic (similar to Cho’s
[193]) and we erase them automatically by using an inpainting algorithm. This
step can produce an important pixel noise. Nevertheless, this is not a problem for
us because, as figure 23.3-b) shows, Prados and Faugeras’ SFS method is ex-
tremely robust to pixel noise: figure 23.3-b) displays the result produced by this
algorithm (after 10 iterations) using the image of a text page with its pigmented
parts, Fig.23.3-g). In this test, characters are considered as noise. Once we have
recovered the three-dimensional shape of the page, we can then flatten the surface.
Note that at each step of this restoration process we can keep the correspondences
with the pixels in the image. Thus, at the final step, we can restore the printed
parts.

To prove the applicability of this method, we have tested it on a page wrapped
on a cylindrical surface' (we have used a cheap camera and flash in an approxi-

3For emphasizing the perspective effect.
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b) c)
Figure 23.5. a) Real face image [size ~ 450 x 600}; b) surface recovered from a) by
the generic SFS algorithm with the perspective model with the light source located at the

optical center; ¢} surface recovered by the generic SFS alporithm with the same modeling
hypotheses as for b) after the inpainting process,

mately dark room). Figure 23.4 shows the original image in a), the reconstructed
surface (after 10 iterations) (textured by the ink parts of a)) in B) and an ortho-
graphic projection of the reconstructed surface, in ¢). Figure 23.4-¢) indicates that
this method allows to remove the perspective and photometric distortions.

23.5.2 Face reconstruction from SFS

In this section we propose a very simple protocol based on SFS for face recon-
struction. We use one camera equiped with a basic flash in an approximately dark
place. We have tested the implicit generic SFS algorithm on a real image of a face
(using a small amount of make-up to make it more Lambertian) located at ~700 mm of
the camera in an approximalely dark place (see Fig.23.5-a)). Figure 23.5-b) shows
the surface recovered by the generic algorithm with the perspective model with a
point light source at the optical center. As in the previous application, the albedo
is not constant over the whole image. Therefore we removed!® the eyes and the
eyebrows in the image by using an inpainting algorithm. Figure 23.5 shows in ¢)
the surface recovered from the image obtained aflter the inpainting process.

23.5.3 Potential applications to medical images

In this section, we are interested in applying the SFS method to some medical
images. Our interest is motivated, for example, by the work of Craine et al. [232]
{who usc SFS [or correcting some errors on the quantitative measurement of areas in the
cervix, from colonoscopy images), We have applied Prados and Faugeras® algorithm
to an endoscopic image of a normal stomach'’ (see figure 23.6-2)). For produc-
ing such an image, the light source must be very close to the camera, because of
space constraints. So the adequate modeling is thal of the “perspective SFS” with
the light source located at the optical center. In figure 23.6-b), we show the result

14Can be automated by matching the image to a model image already segmented,
158ugoested by Tankus and Sochen [789); http://www.gastrolab.nel/
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Figure 23.6. Reconstruction of a normal stomach, a} Original image of a normal stomach
[sizer 200 x 200]; b) surface recovered from a} by the generic SFS algorithm with the
perspective model with the light source located at the optical center; ¢) surface b) visualized
with a different illumination.

obtained. To further show the quality of the reconstruction, we display the sur-
face b) with a ditferent illumination. Finally, notice that the stomach wall is not
perfectly Lambertian {see Fig.23.6-a)}. This suggests the robustness of this SFS
method to departures from the Lambertian hypothesis,

23.6 Conclusion

After having presented the SFS problem, we have described its main difficuliies:
in practice, the classical SFS equations are ill-posed. In a second time, we have
focused on the numerical methods. We have considered the propagation and PDEs
methods; in particular Prados and Faugeras’ methods. We have demonstrated the
applicability of the SFS methods by displaying some experimental results with
real images. Finally, we have suggesled that SFS may be useful in a number of
real-life applications.



Chapter24

3D from Image Sequences:
Calibration, Motion and Shape
Recovery

M. Pollefeys

Abstract

In this chapter we discuss how to recover the motion and calibration of a
camera and the shape of a static object from an image sequence. The prob-
lem can be split into four subproblems: (1) computing the geometric relation
between neighboring images, (2) estimating the motion and calibration of the
camera, (3) computing a dense set of correspondences between neighboring
images, (4) reconstruction of the 3D object shape. The approach we present
here is fully automatic and can deal with photo or video sequences acquired
with an uncalibrated hand-held camera. The different algorithms can also be
used to provide solutions for other applications.

24.1 Introduction

In recent years a lot of progress has been made in the area of 3D reconstruction
from images. Computer vision researchers have obtained a deep theoretical under-
standing of the geometric relations between multiple views of a scene [389, 311].
This has resulted in the development of robust algorithms to compute those geo-
metric relations automatically and has made it possible to work with uncalibrated
imagery. The adoption of bundle adjustment algorithms from photogrammetry has
resulted in significant accuracy improvements for calibration, motion and shape
recovery algorithms. During the same period significant progress was also made
in the area of stereo matching and 3D surface reconstruction. By building on those
advances it is now possible to implement a processing pipeline that automatically
obtains a detailed 3D model from an image sequence acquired with an uncali-
brated hand-held camera. In the remainder of this chapter we will discuss how this
can be done. First, we introduce some notations and background, then we discuss
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the solution to the different subproblems. Section 24.2 deals with computing the
relation belween neighboring views based on tracked or matched feature points.
Section 24.3 explains how the 3D structure of the feature points and the motion
and calibration of the camera can be computed. Section 24.4 deals with dense
cotrespondence matching and depth estimation and Section 24.5 describes how
the computed information can be combined to construct a 3D surface model. An
overview of the presented approach is shown in Fig. 24.1.

24.1.1  Notations and background

tn this section we briefly introduce some of the geomeiric concepts and notations
used throughout this chapter. A more in depth descriplion of these geometric con-
cepts can be found in [389, 311]. A perspective camera is modeled through the
projection equation

Ax = Px 4.1)

where A represents a non-zero scale factor, X is a 4-vector that represents 3D world
point in homogeneous coordinates, x is a 3-vector that represents a corresponding
2D image peoint and P is a 3 x 4 projection matrix. In a metric or Euclidean
coordinate frame P can be factorized as follows

[ s u
P =KR'[I|-t] where K = rf oW (24.2)
1

contains the intrinsic camera parameters, R is a rotation matrix representing the
orientation and t is a 3-vector representing the position of the camera. The intrin-
sic camera parameter f represents the focal length measured in width of pixels, r
is the aspect ratio of pixels, (u, v) represent the coordinates of the principal point
and s is & term accounting for the skew. In general, s can be assumed zero, In prac-
tice, the principal point is often close to the center of the image, and the aspect
ratio v close to 1. In many cases the camera does not perfectly satisfy the per-
spective projection model and distortions have to be taken into account, the most
important being radial distortion. In practice, when the amount of radial distortion
is limited it is sufficient to medel the radial distortion as follows:

Ax ~ P(X) = KR(RT[I|-t]X) with R(x) = (1+#1 (s +4*)) [z y0] T +[001]T

(24.3)
where « indicates the amounl of radial distortion that is present in the image,
For high accuracy applications, higher-order terms also have to be used. In this
chapter the notation d{., .) will be used to indicate the Euclidean distance between
entities in the images.
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24.2 Relating images

Starting from a collection of images or a video sequence, the first siep consists
of relating the dilferent fmages to each other. This is not an easy problem. A re-
stricted number of corresponding points is sufficient to determine the geometric
relationship between images. Since not all points are equally suited for match-
ing or tracking, the first step consist of selecting a number of inleresting points
or feature poinis. A typical choice consists of using Harris corners [385). Some
approaches also use other features, such as lines or curves, but these will not be
discussed here. For a collection of images features are extracted independently in
each image and then matched. A simple approach consists of using normalized
cross-correlation, This approach can only deal with relatively small appearance
variations. More advanced approaches, such as the one proposed by Lowe [531],
can deal with larger vartations. 'or a video sequence it is often more efficient to
track features from one image to the next [738). From these corresponding fea-
tures the epipolar geometry can be computed. However, since the correspondence
problem is ill-posed, the set of initial corresponding peints is typically contam-
inated with wrong matches or oufliers. In this case, a traditional least-squares
approach will fail and a robust method is needed. Once the epipolar geometry has
been obtained it can be used to guide the search for additional cerrespondences.
These can then in turn be used to further refine the epipolar geometry.

24.2.1 Epipolar geometry computation

The point x* corresponding to the point x in another image is bound to be on the
projection of its line of sight 1’ ~ Fx where ¥ is the fundamental matrix for
the two views under consideration. The fundamental matrix encodes the epipolar
geometry. The following equation should be satisfied lor all corresponding points:

¥ Fx=0 . (24.4)

The fundamental matrix has rank 2 and the right and left null-space of F corre-
sponds to the epipoles. The epipoles e and e’ are the projections of the projection
center of one image in the other image.

Given a number of corresponding points Eq. (24.4) can be used to compute F.
This equation can be rewritten in the following form:

[ xx' oy’ 2wy oy oy oz oy 1]f=0 (24.5)
with x = [z¥1]7,x" = [2'y'1]7 and f a vector containing the eiements of the
fundamental matrix. Stacking 8 or more of these equations allows to linearly solve
for the fundamental malrix. Even for 7 corresponding points the one parameter
family of solutions obtained by solving the linear equations can be restricted to
1 or 3 solutions by enforcing the cubic rank-2 constraint det {(F) + AF5) = 0. If
the camera calibration is known an algorithm using only 5 corresponding points
can be used [603}. As pointed out by Hartley [386] it is important to normalize
the image coordinates before solving the linear equations, Otherwise the columns
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of Eq. (24.5) would differ by several orders of magnitude and the error would
concenirate on the coefficients corresponding to the smaller columns. If feature
points are well spread over the image the following normalization is appropriate:

xy =K 'xwithKy = wth % (24.6)
1

with w and A the width and height of the image. As we will see later this
normalization will also be useful for other processing steps.

The initial set of correspondences can contain large number of ouiliers which
will cause least-squares approaches to fail. To deal with this problem we use the
RANSAC approach proposed by Fischler and Bolles [316]. A hypothesis for the
fundamental matrix is obtained from a randomly selected minimal subset of data,
and 15 used to classify each correspondence as an inlier or an outlier w.rt the hy-
pothesis under consideration. If the initial data sample contains no outliers, it can
be expected that a large number of inliers will support the solution, otherwise the
initial subset is probably contaminated with outliers. This procedure is repeated
until the probability of having selected at least one outlier-free sample is in ex-
cess of 99% . The expression for this probability isT' = 1 — (1 — +*Y™ with + the
maximal fraction of inliers that has been observed, and p the number of features
in each sample {p = 7 for a fundamental matrix) and m the number of trials. Once
the epipolar geometry has been computed, it can be used to guide the matching
process towards additional matches along the epipolar line.

In the case of a video sequence, consecutive frames are very close together and
the computation of the epipolar geometry is ill conditioned. To aveid this prob-
lem we propose to only consider properly selected key-frames for the structure
and motion recovery. Using appropriately spaced key-frames is also important
for further steps such as the dense stereo matching,. IT it is imporlant to compute
the motion for all frames, such as for insertion of virtual objects in a video se-
quence [224], the pose for in-between frames can be computed afterwards. We
propose to use model selection [800] to select the next key-frame only once the
epipolar geometry model explains the tracked features better than the simpler
homography model.

24.3 Structure and motion recovery

In the previcus section it was seen how different views could be related to each
other. In this section we will build on this to retrieve the structure of the scene and
the motion of the camera, as well as the calibration.

At first two images are selected and used to set up and projective coordinate
frame for the reconstruction. Then, the pose of the camera for the other views is
determined in this frame and each time the existing reconstruction is refined and
extended with newly observed features. In this way the pose estimation of views
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that do not share features with the two initial views also becomes possible, Typi-
cally, a view is only matched with its predecessor in the sequence. In most cases
this works fine, but in some cases (e.g. when the camera moves back and forth)
it can be advantageous fo also relate a new view to a number of additional views.
Once the structure and motion has been determined for the whole sequence, the
results can be refined through a projective bundle adjustment. Then, the ambigu-
ity of the reconstruction can be restricted to a similarity transformation through
self-calibration. Finally, 2 metric bundle adjustment can be carried out to obtain
an optimal estimation of the structure and motion.

24.3.1 Initial structure and motion

Two images of the sequence are used to set up a projective reference frame. The
world frame is aligned with the first camera. The second camera is chosen so that
the epipolar geomelry corresponds to the computed Fys:

P]_ == { 13X3 | 03 ]

24.7
Py = [ lew)xFiatenpa’ | ooy | @40

It was shown [306, 387] that this is sufficient to guarantee that the reconstruc-
tion differs from the recorded scene by no more than a projective transformation.
Eq. (24.7) is not completely determined by the epipolar geometry, but has 4 more
degrees of freedom. The 3-vector a determines the position of the reference plane
(i.e. the plane at infinity in an affine or metric frame) and o determines the global
scale of the reconstruction. The parameter ¢ can simply be put to one. If care is
taken to perform all computations in a projectively invariant way (by perform-
ing measurements in image space and by using homogeneous coordinates for 3D
entities), one can simply choose a = [000]T.

Once the two initial projection matrices have been lully deiermined the cor-
respondences between the two views can be reconstructed through triangulation.
Due to noise the lines of sight will not exactly intersect. As mentioned before,
with a projective basis it is important to minimize an image dislance, vot a 3D
distance. In this case the distance between the reprojected 3D point and the image
points is appropriate:

d(x1, P1X)? + d(xz, P2X)? (24.8)

It was noted in [388] that the only important choice is to select in which epipolar
plane the point is reconstructed. Once this choice is made it is trivial to se-
lect the optimal point in the plane. A bundle of epipolar planes has only one
parameter. Minimizing the following equation is thus equivalent to minimizing
equation (24.8).

d(x, 11 (o)) + d(xz. 12(a))” (24.9)

with 1; (e} and 13{«) the epipolar lines obtained in function of the parameter o
describing the bundle of epipolar planes. It turns out (see [388]) that this equation
is a polynomial of degree 6 in cv. The global minimum of equation {24.9) can thus
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easily be computed. In both images the point on the epipolar line 1, {«) and 12{)
closest to the points x; and x; respectively is selected. Since these points are in
epipolar correspondence their lines of sight meet at a 3D point.

24.3.2  Updating the structure and motion

The previous section dealt with obtaining an initial reconstruction from two views.
This section discusses how to add a view to an existing reconstruction. First the
pose of the camera is determined, then the structure is updated based on the added
view and finally new points are initialized.

For every additional view the pose towards the pre-existing reconstruction is
determined, then the reconstruction is updated. The first step consists of finding
the epipolar geometry as described in Section 24.2.1. Then the matches which
correspond to already reconstructed points are used to infer correspondences be-
tween 2D and 3D. Based on these the projection matrix P is compuied using
a robust RANSAC procedure. Eliminating A from Eq. (24.1) yields two linear
equations per correspondence:

T 0o —uxxT 0
o o Pl (24.10)

with p a 12-vector containing the coeflicients of the projection matrix. In this case
a minimal sample of 6 matches is needed to compute P. A point is considered an
inlier if there exists a 3D point that projects sufficiently close to all associated
image points. We propose to verify this by attempting to refine the previous solu-
tion for X based on all observations, including the one in the new view. Because
this verification step is computationally expensive (as this has to be done for each
generated hypothesis), it is advised to use a modified version of RANSAC with
early termination of unpromising hypotheses [200].

One important problem is that the computation of the camera pose for an un-
calibrated camera remains ambiguous when all points are located on a plane. One
possible solution to this consists of using model selection to detect this case and
to delay the computation of the corresponding camera projection matrices until
after self-calibration since at this point the ambiguity can be resolved [656].

Once the pose for a new view has been determined, the 3D reconstruction of
feature points is refined. This can be done using an iteratively reweighted least-
squares algorithm for each point. Eq. (24.1) can now be rewritten to become linear

inX:
Pax — Py _ 0
[ ][] -
with P; the i-th row of P and (i, ) being the image coordinates of the point. An
estimate of X is computed by solving the system of linear equations obtained from
all views where a corresponding image point is available. To obtain a better so-

lution the criterion 3 d(PX, x) should be minimized. This can be approximately
obtained by weighting Eq.(24.11) with Fl;'jt where X correspond to the previcus
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solution for X. This procedure can be repeated one or two times. By solving this
system of equations through SVD a normalized homogeneous point 1s automat-
ically obtained. Tf a 3D point is not observed the position is not updated. In this
case one can check if the point was scen in a sufficient number of views to be
kept in the {inal reconstruction. We recommend not to use points seen in less
than 3 views. This avoids having an important number of outliers due to spurious
matches.

Of course, in an image sequence some new features will appear in every new
image. If point matches are available that were not related to an existing point in
the structure, then a new point can be initialized as described in Section 24.3.1,

24.3.3 Refining structure and motion

Once the structure and motion has been obtained for the whole sequence, it is rec-
ommended to refine it through a global minimization step. A maximum likelihood
estimation can be obtained through bundie adjustment [804]. The goal is to find
the parameters of the camera view P; and the 3D points X; for which the mean
squared distances between the observed image points x;; and the reprojected im-
age points P;(X;) is minimized. The camera projection model should also take
radial distortion into account. For m views and n points the following criterion
should be minimized:

K n
min 33 dlig, Pi(x;))’ (24.12)

t=1 3=1

If the errors on the localization of image [eatures are independent and satisfy a
zero-mean Gaussian distribution then it can be shown that bundle adjustment cor-
responds to a maximum likelihood estimator. This minimization problem is huge,
but the special structure of the problem can be exploited to solve the problem
much more elficiently [389, 804]. The key reason for this is that a specific resid-
ual is only dependent on one point and one camera, which results in a very sparse
Jacobian.

24.3.4 Upgrading from projective to metric

The reconstruction obtained as described in the previous sections is only de-
termined up to an arbitrary projective transformation which is insufficient for
visualization and to perform measurements. Therefore, we need to upgrade our re-
construction by restricting the ambiguity to at most a similarity transformation. In
recent years many self-calibration approaches have been proposed to achieve this.
The first sclf-calibration algorithms were concerned with unknown but constlant
intringic camera parameters (e.g. [310]). Later algorithms for varying inirinsic
camera parameters have also been proposed (e.g. [654]). An important issue with
self-calibration is that in some cases the motion of the camera is not general
enough to allow for self-calibration to recover the calibration uniquely [772].
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One of the most important concepts for sell-calibration is the absolute conic
and its projection in the images. The simplest way to represent the absolute conic
is through the dual absolute quadric £2* [803]. In a Euclidean coordinate frame
§1* = diag(1,1,1,0) and one can easily verify that it is invariant to similarity
transformations. Inversely, it can also be shown that a transformation that leaves
the dual quadric 2* unchanged is a similarity transformation. For a projective
reconstruction £2* can be represented by a 4 x 4 rank-3 symmetric positive semi-
definite matrix. According to the properties mentioned above atransformation that
transforms Q* — diag(1, 1, 1,0} will bring the reconstruction within a similarity
transformation of the original scene. Our goal is thus to compute the location of
£1* in our projective reference frame.

The projection of the dual absolute quadric in the image is described by the
following equation:

2 =POPT . (24.13)

Tt can be easily verified that in a Euclidean coordinate frame the image of the
absolute quadric is directly related to the intrinsic camera parameters:

w* =KK"' (24.14)

Since the images are independent of the projective basis of the reconstruction,
Eq. (24.14) is also valid for a projective reconstruction and constraints on the
intrinsic camera parameters can be translated to constraints on the location of £3*.

If the self-calibration constraints on the camera intrinsics vield linear con-
straints on w™, a linear self-calibration algorithm is thus easily obtained [654]. If
the images have been normalized using Eq. (24.6), a focal length of a 60mm lens
corresponds to 1 and thus focal lengths in the range of 20mm to 180mm would
end up in the range [1/3, 3]. The principa! point should be mapped close to the ori-
gin. The aspect ratio is typically also around 1 and the skew can be assumed 0 for
all practical purposes. Making this prior knowledge more explicit and estimating
reasonable standard deviations one could assume for example f = rf = 1 £ 3,
U Y 0+ (} 1,r=1 :l: 0 1 and 5 = 0 which approximately corresponds to

Y149, 22 x 140, 50 & 140.2,wf; 5 00,0, wl = wiy & 00,1,

The con%tramt*; “on the lefi- hand side of Eg. (24.13) should also be verificd on
the right-hand side. The uncertainty can be taken into account by weighting the
equations.

& (AP -RPORT) = 0 S (RRT) = 0

% PﬁQ*PzT‘“_P;;Q*P;;: = B U_ri_)\ P]ﬂ*P;;T = 0

s (PR T -PeR") = 0 s (meRT) = 0
(24.15)

with P; the ¢th row of P and A 2 scale factor that is initially set te 1 and later
on to )" P_c;T with 1" the result of the previous iteration. Since £2* is a sym-
metric 4 x 4 matrix it is parametrized through 10 coeflicients. An estimate of
the dual absolute quadric §2* can be obtained by solving the above set of equa-
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tions for ail views through linear least-squares. The rank-3 constraint should be
imposed by forcing the smallest singular value to zero. This scheme can be it-
erated until the A factors converge (typically after a few iterations). Although
the equations related to the focal length are very much down-weighted, they
can be important to regularize the solution when the camera performs a (quasi-
Jeritical motion sequence [656]. The upgrading transformation T can be obtained
from diag (1,1,1,0) = TQ*TT by eigenvalue decomposition of (2*. The metric
structure and motion is then obtained from

Py =PT land X3 = TX, (24.16)

This initial meiric reconstruction can then further be refined through a metric bun-
dle adjustment. Inn this bundle adjustment the constraints on the camera intrinsics
have to be enforced. These constrainis can both be hard constraints (typically
imposed through parameterization) or selt constraints (imposed by including an
additional term in the minimization criterion). A good choice of constraints for a
photo camera consists of imposing a constant focal length (if no zoom was used),
a constant principal point, a constant radial distortion, an aspect ratio of one and
the absence of skew. For a camcorder/video camera it is important to also estimate
the (constant) aspect ratio as this can significantly differ from 1.

24.4 Dense surface estimation

Once the camera motion and calibration have been computed, multi-view recon-
struction algorithms can be used to compute the surface of the recorded scene.
A multitude of approaches have been proposed in the computer vision litera-
ture, e.g. [607, 308, 498]. Here we present a pragmatic approach well suited
for images acquired with a hand-held camera. This approach combines two-view
stereo matching with a multi-view correspondence linking process {481]. This
combines the advantages of small-baseline matching with wide-baseline triangu-
lation. In addition, this scheme is much less sensitive to inaccurate geometric and
photometric calibration and avoids most problems with occlustons. First, stereo
rectification is performed on neighboring images and a stereo matching algorithm
is used to obtain a dense set ol correspondences. Then, a dense depth map is
computed by combining results from multiple stereo pairs.

24.4.1 Rectification and stereo matching

Since the calibration between successive image pairs has been computed, the
known epipolar geometry constrains the correspondence search to one dimension.
To simplify the matching process the images are warped so that the correspond-
ing epipolar lines become corresponding scanlines. This process is called image
pair rectification. Stereo matching can be performed more efficiently on rectified
image pairs because image regions do not have to be warped separately for each
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Figure 24.2. Rectified image pair (teft right) and computed disparity map {cenler).

disparity evaluation, a simple image shift is sufficient. Most stereo algorithms
expect image pairs to be rectified,

For some motions {i.e. when the epipole is located in the image) standard rec-
tification based on planar homographies is not possible and a more advanced
procedure should be used. We propose to use an approach that works for all
possible motions and guarantees minimal image sizes (without losing informa-
tion) [655]. The key idea is to use polar coordinales with the epipole as origin.
Corresponding lines are given through the epipolar geometry. By taking the orien-
tation into account the matching ambiguity can be reduced to half epipolar lines.
A minimal image size is achieved by computing the angle between two consec-
ulive epipolar lines so that the worsl case pixel on the line preserve its area. To
avoid image degradation, both correction of radial distortion and rectification can
be performed in a single resampling step.

Stereo algorithms take a rectified image pair as input and compute a disparity
map which encodes the horizontal displacement between corresponding pixels
(see Figure 24.2). The correspondence search is typically limited to a specific
disparity range. This range depends on the depth of the observed scene and the
camera configuration and can be computed from tracked/matched features. The
simplest stereo algorithms minimize the matching cost for each pixel separately.
More advanced algorithms, such as the one we have used to compute the examples
shown in this chapter [831], perform an optimization over a complete scanline
that trades off matching cost with horizontal continuity. The most advanced —but
also computational most expensive— algorithms perform an optimization over the
whole image trading off matching cost with horizontal and vertical continuity.
A complete taxonomy of stereo algorithms can be found in [711] and a more
in-depth discussion of some algorithms can be found in other chapters of this
book.

24.4.2  Multi-view linking

The pairwise disparity estimation allows us to compute image to image correspon-
dence between adjacent rectified image pairs, and independent depth estimates for
each camera viewpoint. An optimal joint estimate is achieved by fusing all inde-
pendent estimates into a common depth map. The fusion can be performed in an
economical way through controlled correspondence linking (see Figure 24.3). A
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Figure 24.3. Depth fusion and uncertainty reduction from corrcspondence linking (left)
and depth map {right).

point is transferred from one image to the next as follows:
x = B (R(x) + D(R(x))) (24.17)

with 12{.) and R’{.) functions that map points from the original image into the
rectified image and D{.) a function that corresponds to the disparity map. When
the depth obtained from the new image point x’ is outside the confidence inter-
val the linking is stopped, otherwise the result is fused with the previous values
through a Kalman filter. The variance provided by the Kalman filter can also be
stored for later use. More details on this approach can be found in [481]. This
approach combines the advantages of small baseline matching and wide baseline
triangulation. It can provide a very dense depth map by avoiding most occlu-
sions (by linking to all its direct neighbors independently). The depth resolution
is increased through the combination of multiple viewpoints and a large global
baseline while the matching is simplified through the small local baselines. Due
to multiple observations of a single surface point the texture can be enhanced and
noise and highlights can be removed. By only comparing image pixels between
neighboring images, this approach is also robust to small errors in calibration and
can deal with some view-dependent variations and limited changes in lighting or
exposure between images.

24.5 3D surface reconstruction

In the previous sections a dense siructure and motion recovery approach was
given. This yields all the necessary information to build detailed 3D surface mod-
els. In practice, the 3D surface is approximated by a triangular mesh to reduce
geomelric complexity and to tailor the model to the requirements of computer
graphics visualization systems. A simple approach consists of overlaying a 2D
triangular mesh on top of ene of the images and then building a corresponding 3D
mesh by warping the vertices of the triangles in 3D space according to the values
found in the corresponding depth map. To reduce noise it is recommended to first
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smoath the depth image (the kernel can be chosen of the same size as the mesh
triangles). The image itself can be used as texture map (the texture coordinates
are trivially obtained ag the 2D coordinates of the vertices).

It can happen that for some vertices no depth value is available. In these cases
the corresponding triangles are not reconstructed. The same happens when tri-
angles are placed over discontinuities. This is achieved by selecting a maximum
angle between the normal of a triangle and the line-of-sight through its center
(e.g. 85 degrees). This simple approach works very well on the dense depth maps
as obtained through multi-view linking.

To reconstruct more complex shapes it is necessary to combine results from
multiple depth maps. The simplest approach consists of generaling separate mod-
els independently and then loading them together in the graphics system. Since
all depth-maps can be located in a single metric frame, registration is not an issue.
When necessary, a volumetric depth map integration approach [240] can be used
to obtain a single 3D consensus surface. For optimal results the variance, obtained
from the Kalman filter in the multi-view linking step, should be used.

Figure 24.4, Reconstruction of ancient Medusa head: video frame and recovered structure
and motion for key-frames (lop), textured and shaded view of 3D reconstruction (bottom).

The example shown in Fig. 24.4 was recorded using a consumer camcorder
{Somy TRV900). A 20 second shot was made of a Medusa head located on the
entablamre of a monumenta! fountain in the ancient city of Sagalassos {Turkey).
The recorded object is about 1m across. Using progressive-scan frames of 720 x



402 Pollefeys

576 are obtained. Key-frames are automatically selected and the structure of the
tracked features and the motion and calibration of the camera is computed, see
upper-right of Fig. 24.4. 1t is interesting to notice that for this camera the aspect
ratio is actually not 1, but around 1.09 which can be observed by comparing the
upper-left and the lower-left image in Fig. 24.4 (notice that it is the real picture
that is unnaturally stretched vertically). The next stage consisted of computing a
dense surface representation. To this effect stereo matching was performed for all
pairs of consecutive key-frames. Using our multi-view linking approach a dense
depth map was computed for a central frame and the corresponding image was
applied as a texture. Several views of the resulting model are shown in Fig. 24.4.
The shaded view allows to observe the high-quality of the recovered geometry.
We have also performed a quantitative evaluation of the results. The accuracy of
the reconstruction was considered at two levels. Errors in the camera motion and
calibration computations result in a global bias on the reconstruction. From the
resuits of the bundle adjustment we have estimated this etror to be of the order of
3erim for points on the reconstruction. The depth computations indicate that 90%
of the reconstructed points have a relative error of less than 2mm. Note that the
stereo correlation uses a 7 x 7 window which corresponds to a size of Srnrn x Smim,
on the object and therefore the measured depth will typically correspond to the
dominant visual feature within that patch.

24.6 Conclusion

In this chapter we have presented the steps needed to automatically compute 3D
models from image sequences. In the presented system we have attempted (o ex-
tract as much information as possible from the video sequence itsclf to make
our approach as flexible as possible. Howcever, this can also lead to some degen-
eracies such as critical motion sequences or pose estimation from planes which
require additional measures. Therefore, when this information can be obtained
casily from some other source (c.g. pre-calibration) this might benefit efficiency
and robustness. However, when the only available information source are the im-
ages themselves, it is critical to be able to extract all the necessary information
from them. Here we have focussed on the acquisition of photo-realistic 3D mod-
els of objects from images recorded with an uncalibrated hand-held camera, but
many of the algorithms and solutions presented here can also be used to solve dif-
ferent problems. We have for example re-used many of the presented algorithms
to implement the sofiware for a pan-till siereo-head designed to reconstruct the
3D terrain model arcund a Mars lander. A key element in the success of this
project was the ability to calibrate from images. Another example is automatic
matchmoving. The first part of the presented processing pipeline can be used to
compute the camera motion so that virtual objects can be correctly aligned with
the real objects in video sequences. Some commercial products, such as 2D37s
Boujou and RealViz’ MatchMover, use algorithms similar to the ones described
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in this chapter. Also, besides explicit 3D models, it is possible to build alterna-
tive visual representations of the scene such as lightfields. We have adapted the
presented pipeline to elliciently capture unstruciured lightfields by waving the
camera over the scene of interest. OQur unstructured lightfield approach avoids the
need for a single consistent 3D representation and renders view-dependent effects
such as highlights.

Acknowledgement

Many of the results shown in this chapter where obtained using software de-
veloped at the K.U.Leuven and we are grateful to Luc Van Gool, Reinhard
Koch, Maarten Vergauwen, Frank Verbiest, Jan Tops, Kurt Cornelis, Geert Van
Meerbergen and Jason Repko for their contributions to the presented work, The
partial support of the FWO project G.0223.01 and NSF grants 11S-0237533 and
I1S-0313047 are gratefully acknowledged.



Chapter25

Multi-view Reconstruction of Static
and Dynamic Scenes

M. Agrawal, A. Mittal and L. Davis

Abstract

We explore the reconstruction of a three-dimensional scene from multiple
images captured from far away viewpoints (wide-baseline camera arrange-
ment). Such an arrangement is required for complex scenes where the
visibility from any one viewpoint is not sufficient to adequately reconstruct
the entire scene. Also, such an arrangement reduces the error in triangula-
tion of the features, thereby improving the accuracy of reconstruction. Our
emphasis is on algorithms that recover a volumetric model of the scene
from calibrated cameras by explicitly modeling and detecting occlusions. We
present a brief overview of the state of the art in such methods for multi-view
reconstruction. In particular, algorithms based on a probabilistic framework
have become quite popular and produce very accurate models. Several such
probabilistic volume reconstruction methods will be described. For the dy-
namic parts of the scene, where an online reconstruction is needed, simpler
methods are required. An important case of such scenes is that of walk-
ing people in a surveillance scenario. For this case, we present fast online
algorithms that recover approximate shape and appearance models and 3D
trajectories of people as they walk in the scene. Finally, we address the prob-
lem of optimal placement of cameras in order to acquire the best possible
image data for the reconstruction of a given scene according to the particular
task specification.

25.1 Introduction

Reconstruction of surfaces from multiple images has been a central research
problem in computer vision for a long time. Early work in this area focused on
developing stereo algorithms for binocular camera configurations. There is a vol-
ume of literature on binocular stereo with a number of algorithms that work well
on many types of images. More recently, however, due to significant advances
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in computational power, vision systems using multiple cameras are becoming in-
creasingly (easible and practical. Example of multi-view vision systems include
the 3D room developed by Saito et al. [699] and the KECK Laboratory by Davis
et al. [250]. These systems are able to capture multiple synchronized images of
indoor scenes. This has generated a renewed interest in the computer vision com-
munity to develop efficient, scalable, and robust algorithms for 3D reconstruction
from multiple images.

Going from binocular o multiple views has the advantage of potentially
increasing the stabilily and accuracy of the reconstruction, as the baseline is in-
creased. However, in order to fully expleit this potential, the algorithm must be
able to handle occlusions, especially if the views are widely separated. The dis-
parity map representation, which is widely used in binocular stereo, is unable to
represent partially occluded backgrouad regions (due to the fact that only a sin-
gle disparity value is assigned to each pixel in the reference image). Therefore,
most multi-view algorithms use an explicit representation of the 3D volume of
the scene (in Section 25.2.8, we will present an algorithm that uses an alternative
represeniation, muliiple depth and visibility maps to represent the scene). The
goal of reconstruction is to find volume elements (voxels) that lie on the surface
of the objects in the scene. In this chapier, we explore the problem of building a
three dimensional model of a static as well as dynamic scene from multiple im-
ages captured from far away fully calibrated viewpoints (wide-baseline camera
arrangement). Section 25.2 discusses reconstruction of static scenes followed by
reconstruction of dynamic scenes in Section 25.3. Finally, the problem of optimal
placement of sensors for multi-view systems is discussed in Section 25.4.

25.2 Reconstruction of Static Scenes

Reconstruction of static scenes from multiple images is an intensely researched
area. The main challenge for the wide-baseline camera arrangement is to detect
and handle occlusions. Therefore, we will restrict our discussion to approaches
that model and detect occlusions explicitly. One of the simplest ways to build
three-dimensional models is from muliiple silhouette images of an object. The
visual hull algorithm for reconstruction from silhouette images will be described
in Section 25.2.1. The visual hull algorithm does not take into account the pho-
tometric properties of the scene. The voxel coloring framework discussed in
Section 25.2.2 utilizes these photometric constraints to build photo-consistent
models. This algorithm, however, works for only a special arrangement of cam-
eras. The space carving algorithm presented in Section 25.2.3 is a generalization
of voxel coloring that works for arbitrary placement of cameras. More recently,
probabilistic approaches have become quite popular as they take into consid-
eration alternative hypotheses that better explain all the images. Several such
probabilistic algorithms will be described in Sections 25.2.5 through 25.2.8. In
particular, Section 25.2.7 presents our probabilistic surface reconstruction algo-
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rithm. Here, the problem is formulated as one of estimating the probability that a
3D point in the scene lies on the object’s surface. An ilerative scheme is presented
that updales this probability based on the visibility constraints that exist in the
images.

25.2.1 Visual Hull

A sithouetle image is a binary image with the value at a point indicating whether
that image point is part of the background or the object. The binary silhouette
images can be obtained by background subtraction algorithms or by segmentation.
When the cameras are calibrated, each point in a silhouette image defines a ray
in scene space that intersects the object at some unknown depth along this ray.
The entire sithouette can thus be extruded for each camera, creating a cone-like
volume that bounds the extent of the object. The volumetric representation of the
object can then be obtained by intersecting these volumes.

The volume obtained by the intersection of the generalized cones associated
with a set of cameras is only an approximation of the true 3D shape. Lauren-
tini [502) characterized the best approximation obtainable in the limit by the
infinite number of silhouettes captured from all viewpoints outside the convex hull
of the object as the visual Full. The visual hull is guaranteed to enclose the object,
but since it does not capture concavities, it might not be the same as the object. In
practice, only a finite number of silhouettes is used resulting in an approximation
of this visual huil.

The reconstrucied 3D volume is efficiently represented by using an oc-
tree [775]. An octree is a tree-structured representation that can be used to
describe a bounded volume. The octree is constructed by recursively subdivid-
ing each cube into eight sub cubes, starting at the root node (a single large cube).
The current voxel is projected into all the images and tested to deiermine if it
intersects the silhouette in each image. If the projected voxel does not intersect
the silhouette in at least one image, the voxel is carved out, that is, marked trans-
parent. If the projected voxel intersects only silhoueite pixels in every image, the
voxel is marked opague. Otherwise, the voxel intersects both background and sil-
houette points in the images and is termed ambiguous. This ambiguous voxel is
then subdivided into octants, and each sub voxel is processed recursively. The
process is terminated when either the desired octree resolution is attained or the
voxel projects to sub pixel area within the images.

A distributed version of this algorithm was implemented by Borovikov and
Davis in [104]. Figure 25.1 illustrates the volumetric model obtained by using
sixteen silhouette images in an indoor setting,

25.2.2 Voxel Coloring

An approach along ditferent lines is the photo-consistent voxel coloring algorithm
by Seilz and Dyer {721]. The voxel coloring problem is o assign colors (radi-
ances) to voxels (points) in a 3D volume so as to maximize photo-consisiency
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Figure 25.1. IHlustration of visual hull algorithny: (a) observed scenc, (b) silhouctic image
obtained by background subtraction, (¢) voxelated VRML model

with a set of inpul images. That is, rendering the colored voxels from each input
viewpoint should reproduce the original image as closely as possible. Using the
notion of photo-consistency, voxels that are not on the surface are automatically
carved out in the process.

For a Lambertian scene, photo-consistency implies that a voxel must project to
similar colors in all views in which it is visible. Therefore, without noise or quan-
tization effects, a photo-consistent voxel should project to a set of pixels with
equal color values. The consistency of a set of colors can be defined as their stan-
dard deviation or, alternatively, the maximum ol the Lq, L», or L., norm between
all pairs of the projected colors in which it is visible. The voxel is considered to
be on a surface if the measure is less than some threshold. For points s#ot on the
surface of the scene, the colors need not be similar, as illustrated in Figure 25.2{a).

The catch here is the fact that photo-consistency should be applied to only those
views in which a voxel is visible, Therefore, occlusions must be detected before
applying photo-consistency. However, to detect these occlusions, we must know
the scene geometry first. Therefore, this becomes the chicken-and-egg problem.
Seitz and Dyer solved this problem by imposing what they called the ordinal visi-
bility constraint on the camera locations. This constraint requires that the cameras
be placed such that no scene point should be contained within the convex hull
of the camera centers. This placement provides a depth ordering of points in the
scene so Lhat all the voxels can be visited in a single scan in near-to-far order rel-
ative to every camera. Typically, this condition is met by placing all the cameras
on one side of the scene and scanning voxels in planes that are successively fur-
ther from the cameras, Hence, the problem of detecting occlusions is solved by
the scene traversal ordering used in the algorithm; the order is such that if voxel
V occludes Vp then V is visited before V. This traversal greatly simplifies the
computation of voxel visibility and allows a scene to be reconstructed in a single
scan of the voxels.

The voxel coloring algorithm begins with a reconstruction volume of initially
opague voxels that encompasses the scene to be reconstructed. Voxels are tra-
versed in the order of increasing distance from the camera volume. Each opaque
voxel is projected in the images and tested for photo-consistency. Those that are
found to be inconsistent are carved away, that is, made transparent. The con-
sistency test is governed by a threshold on the color variation in the projected
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(a) Hlustration of photo-consistency (b) Illustration of space carving

Figure 25.2. [llustration of photo-consistency and space carving. (a) Two cameras see con-
sistent colors for the point A on the surface. For point B, not on the surface, the cameras
see inconsistent colors. (b) For the current sweeping plane, only cameras that are above
it (green) are used for the consistency check. Cameras that lie on the other side of the
sweeping plane (red) are ignored.

images. The threshold corresponds to the maximum allowable correlation error.
An overly conservalive (small) value of the threshold results in an accurate but
incomplete reconstruction. On the other hand, a large threshold yields a more
complete reconstruction, but one that includes some erroneous voxels. In prac-
tice, the threshold should be chosen according to the desired characteristics of the
reconstructed model, in terms of accuracy vs. completeness. The algorithm stops
when all the remaining opaque voxels are photo-consistent. When these final vox-
els are assigned the colors they project to in the input images, they form a model
that closely resembles the scene.

The voxel coloring approach yields excellent volumetric reconstruction pro-
vided the scene is colorful enough. However, the approach reconstructs only
one of the potentially numerous scenes consistent with the input images. Con-
sequently, it is susceptible to aperture problems caused by image regions of
near-uniform color., These regions cause cusps in the reconstruction, since
voxel coloring yields the reconstruction closest (o the camera volume. Thus,
reconstruction of regions with similar colors is biased.

25.2.3 Space Carving

The ordinal visibility constraint imposes a significant limitation on allowable
camera confligurations in the voxel coloring approach. In particular, a widcly used
configuration in which the cameras surround the scene is not handled by this al-
gorithm, as such an urrangement will not yield a near-to-(ar ordering of voxels
relative to the camera volume. In the absence of such an ordering of voxels, there
is no guarantee that the visibilily of a voxel will not change after it has been
checked for photo-consistency once. Therefore, algorithrs that allow arbitrary
camera placements must allow for multiple passes through the voxels.
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The space carving approach of Kutulakos and Seitz [497] is a generalization
of the voxel coloring approach for arbitrary camcra configurations. Space carving
is @ multi pass approach that makes multiple-plane sweeps, typically along the
positive and negative directions of each of the X, Y, and 7 axes. As in voxel
coloring, during each sweep a plane of voxels is evaluated for photo-consistency.
Photo-consistency is tested using only the cameras and other voxels that are on
one side of the plane that includes the given voxel. By using only the subset of
cameras Lhat lie on one side of the sweeping plane, voxels will always be visited in
an order that ensures that the occlusion relations for the voxel are already known
for that subset of cameras. Figure 25.2(b) illustrates this, wherein for the current
sweeping plane, only cameras that lie above it are used in the consistency check.
Thus, when a voxel is evaluated, the transparencies of voxels that might occlude it
from the cameras currently being used is known. Therefore, its photo-consistency
may be easily evaluated from the set of cameras in which it is visible. If the
voxel is inconsistent, it is carved out. Multiple iterations of the plane sweeps are
necessary until no non-photo consistent voxels can be found on the surface of the
carved volume and the process is terminated,

At each iteration of the multi plane-sweep traversal of voxels, only those voxels
that are photo-inconsistent in the subset of selected cameras are removed. If the
test for photo-consistency is such that if a voxel is photo-inconsistent in a subset
of views, then it will also be photo-inconsistent in the entire set of views, then the
algorithm will never carve out voxeis that would be photo-consistent in the final
model. Because carving is conservative, the set of uncarved voxels produced by
the algorithm is a superset of any other photo-consistent model. This superset of
all photo-consistent volumes of the set of images is termed the photo huil and this
encloses the true shape of the object.

An alternative to this multi sweep approach used by space carving is the gener-
alized voxel coloring algorithm of Culbertson et al. [239]. This algorithm simply
iterates over all the boundary voxels of the scene, checking for their photo-
consistency and removing those voxels thal are not photo-consistent. iterations
are carried out until ne change occurs in a complete pass. The main difference
is that no specific plane is being swept in the scene. Without the plane sweep
constraint the test of visibility of a voxel is more complicated. To improve its effi-
ciency, the algorithm maintains a data structure, that stores, for every pixel in the
image, the surface voxel that is visible along the pixel’s visual ray. Thus, visibil-
ity may easily be determined by checking to see if this visible voxel matches the
projection of the voxel in question. When a voxel is carved out, this data struc-
ture needs to be updated as the visibility of other voxels will also change. This
update operation will result in correct visibility but will be considerably slower.
Fortunately, because carving is conservative, the data structure can be updaled less
frequently, and the resulting out-of-dale visibility can still be used for carving at
the possible cost of additional iterations.
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25.2.4 Probabilistic Approaches

A common problem underlying the approaches discussed until now is that they
make hard decisions in carving away voxels. Therefore, if & voxel is carved away
in error, there is no way 1o recover this voxel at a later step and this leads to a
cascading effect, thereby generating large errors in reconstruction. This is mani-
fested in the final 3D model as large holes, Also, space carving requires the user to
specify a global variance threshold for performing the photo-consistency check of
the projected voxels (a voxel is consistent if the variance of its projected colors is
less than this global threshold). A small threshold leads to incomplete reconstruc-
tions, whereas larger thresholds result in more errors. These two shortcomings of
the space carving algorithm can be addressed in a probabilistic framework that
does not make hard decisions.

25.2.5 Probabilistic Space Carving

Broadhurst et al. [117] have proposed a probabilistic extension of the space
carving algorithm for the case where the cameras satisfy the ordinal visibility
constraint and therefore the images can be processed in a single sweep. Most of
the ideas from the original space carving framework are retained but, significantly,
the existence of a voxel is not a binary function anymore. Instead, each voxel is
assigned a probability that it belongs to the true 3D surface. The voxel array is
processed using the plane sweep algorithm, starting with the plane closest to the
cameras. The probabilities of the planes prior to the current plane are used to de-
termine visibility for voxels in the current plane. This is then used to compute the
probability of the current plane of voxels by comparing the likelihoods for the
voxel being opaque and transparent using the Bayesian framework.

The algorithm uses two models to describe a voxel. The first model deseribes
what the projection of a voxel looks like in the image, and the second model
describes what an image looks like when a voxel is removed. When a voxel exists,
its projections in all the images are modeled by a spherical Gaussian distribution
in RGB space, provided, of course the voxel is visible in that view. The probability
of a voxel being visible in a particular view is computed using the probabilities
of all the voxels in the line of sight. The second possibility is that the voxel is
transparent. In this case when the transparent voxel is projected into each of the
images, the image samples will have actually arisen from different voxels. In this
case, it is assumed that each sample is locally independent and a transparent voxel
is represented by a set of independent models {one for each image).

The entire scene is traversed in a single plane sweep. During the sweep, for
each voxel, the probability of a voxel being opaque is determined using Bayes”
theorem, The voxel and independent models are used to compute the likelihoods
of the data given the models and Bayes’ rule is used to compute the probabilities
of the voxel.
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25.2.6 Roxels: Responsibility Weighted Voxels

The framework developed by Debonet and Viola [253] is also probabilistic. They
use a probabilistic framework to represent voxels with partial opacity. Conse-
quently, this approach is able to reconstruct opaque as well as transparent objects.
In addition, this algorithm allows arbitrary camera placement and is therefore
more general than the previous algorithm.

The Roxel algorithm assigns colors and opacities to a uniform voxel space. The
key observation of this algorithm is the fact that the observed pixel intensity is a
weighted linear combination of the colors along the ray, and the weights are a
function of the voxel transparencies. These weights are termed as the responsi-
bility of a voxel for the cbservation at that pixel. The Roxel algorithm alternates
between estimation of the colors, estimation of responsibilities, and estimation of
opacities. The voxel colors can be computed from the images and the voxel re-
spongibilities by inverting this linear system. Symmetrically, the voxel colors and
images can be used to compute the responsibilities. Finally, the responsibilities
can be used to compute the opacities and vice versa.

It is assumed that initially each voxel along a cast ray is equally responsible
for that pixel. The entire procedure is repeated until the global opacity estimate
converges. At convergence, global color and transparency are extracted and com-
bined to form the final semi transparent voxelated space that accurately reflects
the constraints provided by the input image viewpoints, the positions and shape
of both solid and transparent objects, and the uncertainty that remains.

25.2.7 Probabilistic Surface Reconstruction

The probabilistic space carving algorithm presented in Section 25.2.5 can be ap-
plied Lo image sequences that can be processed in a single sweep. [n other words,
the cameras must satisly the ordinal visibility constraint, which is too restrictive.
The Roxel algorithm allows arbitrary placement of the cameras and represents
transparency with uncertainties. However, in real situations we generally en-
counter opaque objects. Our probabilistic surface reconstruction algorithm [9]
reconstructs an opaque scene from an arbitrary set of cameras. Qur algorithm
is iterative and estimates the probability that a scene point lies on the true 3D sur-
face. This is done by explicitly estimating the probabilities that a 3D scene point
is visible in a particular view.

The key idea behind this algorithm is the visibility constraint that is inherent
in the scene. For a consistent viewing of an opaque scene, the following two
propertics must be satisfied for all points in the scene.

1. If a scene point is occluded from one view, then there must be another
surface point along the ray joining that scene point to the camera center of
that view,
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2. Conversely, if a surface point is visible in a view, then there cannot be an-
other surface point along the ray joining the camera center to that surface
point.

The algorithm uses these two visibility constraints in all the views simultaneously
to refine the probability that a scene point lies on the true surface, in an iterative
manner.

To apply these viewing constraints, we must determine the visibility of a voxel.
We use the pixel intensities of the projected images to obtain estimates for whether
or not a surface point is occluded in a particular view. Under the assumption that
the scene to be reconstructed is approximately Lambertian, il the 3D point X is
not occluded in views i and j#, then the pixel intensities al the projections must
match, that is, I;(i;) & I;(r;). Interpreted differently, il the absolule value of
the difTerence in pixel intensities & = || Jy{a;) — I;{x;) || is large, then it is highly
probable that X is occluded in one of the views ¢ and j. The converse, however, is
not true, untess of course each 3D point is uniquely colored. That is to say, even
if [} ;(=;) — I;i{y)|| is 0, it is possible that X is occluded in one of the views.
Therefore, the probability of a voxel being visible in two views is a function f of
the pixel intensity difference &, where f must satisfy the following two properiies.

L. f should be high for small values of 4 and should decrease as § increases.

2. For small values of 4, the value of f should reflect the uncertainty that exists
on whether or not X is visible if § is small.

For a voxel to be visible in a subset of the views, it must be visible in all such pairs
of views. Under the assumption of independence, the probability of this event can
be obtained by multiplying the probabilities of visibility of each such pair. Fur-
thermore, we assume that each point in the scene is visible in at least V' views.
Knowledge about the camera placement can be used to obtain a conservative es-
timate of V . In the worst case, V' can be salely assigned a value of two. This
reflects the [act that only those scene points visible in at least two images can be
reconstructed. Therefore, the probability that a voxel is visible in a particular view
can be determined from the subset of V' views that includes that particular view
and has the maximum probability of visibility.

The algorithm is iterative. Starting with a distribution of probability that is high
for many scene points, including those which are not surface points, our algorithm
uses the visibility constraints to reduce the probabilities of the non-surface points,
and, at the same time boost the probabilities of the true surface points. So in the
end, the non-surface points are “carved” away. A probabilistic measure B(X) is
introduced that measures how well X satisfies the visibility constraints, which
is then used to update the probabilities for the next iteration. By constraint 1,
all points farther away from the camera along the line of sight than the current
location should be either a non surface point or a surface point that is not visible
along the viewing ray. The probability of this event is given by the sum of the
probabilities of these two events Similarly, by constraint 2, all points along the
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Figure 25.3. Resuits ol probabilistic surlace reconstruclion algorithm: (@) one of the 14
inpul images, (b) and {(¢) two rendered views of the VRML model

viewing ray that are closer to the camera than X must be carved away, provided
X is visible m that view.

These two constraints are then translated into probabilities. Both the constraints
must be simultaneously satisfied for a surface point to be a visible surface point
in a particular view. Therefore, the evidence for X being a visible surface point
in view i, B, (X} is simply the product of these two probabilities of satisfying the
constraints. Once the evidence F;{X) for each voxel and viewing direction are
computed, they are then scaled so that the maximum F;(X) along each viewing
direction is 1. This converts the absolute probabilities F;(X) to relative probabil-
ities R;{X) and accounts for the fact that along each viewing ray, there must be
one surface point that is visible along that ray. Since a voxel is visible in at least
V images, we can sort the 2;{X) and multiply the V" largest values to obtain the
overall uncertainty RB(X).

Using these relative probabilities R{ X ) the probabilities of a voxel being a sut-
face point are updated using Bayes’ rule, wherein the probabilities of the previous
iteration are taken as the prior. The iterations are initialized from probabilities of
visibility computed with the assumplion of visibility in a minimum of I views,
The subset chosen is one with the highest probability of visibility. The algorithm
converges in about 20 to 30 iterations. At each iteration of the algorithm, voxels
with maximum probabilities along each viewing ray represent the reconstructed
surface for that iteration, and the color for each voxel is determined as the aver-
age color of its projection in all the viewing directions in which it is not occluded.
Most surfaces in the real world are smooth almost everywhere, except at sur-
face discontinuities. At each iteration, we take this into account by considering
a small 317 window centered at each voxel and then replacing the probability by
the average probability in that window. Figure 25.3 shows the results of applying
this algorithin on fourteen views of a human subject captured using synchronized
color cameras placed on the four walls of a room.
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25.2.8 Probabilistic Image-Based Stereo

The probabilistic approaches described until now reconstruct a volumetric model
of the scene. These approaches use a discretized volume and reconstruct the vol-
ume model to a predefined accuracy; for example, the number of octree levels
is fixed from the start. However, the space requirement in a volume-based rep-
resentation is cubic. Thus, for large images, a volume-based representation may
not be suitable because of speed and memory requirements. Stretcha et al. [768)
present a probabilistic stereo algorithm that estimates the depth map representa-
tion for each input image. These depth maps are relative to the positions and view
directions of the cameras, and can later be integrated into a single model.

Occlusions are handled through a set of visibility maps. For each pair of views,
the visibility map for the first image indicates whether a pixel in the first view is
visible in the second image and likewise for the vigibility map of the second im-
age. Each inpul image is regarded as a noisy measurement of an unknown image
irradiance or ‘true image’. One of the views is taken as a reference view, and the
depth map is computed in the reference map attached to this camera, The prob-
lem is formulated as one of estimating the true image and the depth map. This is
solved in a Bayesian framework, wherein the visibility maps are regarded as the
hidden or unobservable variables that must also be solved for during the course
of the optimization.

In the Bayesian framework, this is accomplished by maximizing the posterior
probability of the unknown quantities given the images. This reguires that the
unknown variables be integrated over all possible values of the visibility map,
which is computationally intractable. Instead, it is asswmed that the probability
density function for the visibility is centered about a single value, which is then
estimated iteratively from the current values of the unknown variables. This leads
to an Estimation-Maximization (EM) based solution, which iterates between (i)
estimating values for the visibility maps, given the current estimate of the true
image, its noise, and the depth map, and (ii) maximizing the posterior probabil-
ity of the unknown variables, given the current estimate of the depth maps. For
the maximization step, given the visibility maps, it is straightforward to update
the true image and its noise from visible views. The depth map is updated by per-
forming a gradient descent on an energy that assumes locally smooth prior depths.
In the Expectation step, the visibility maps are computed photometrically, given
the current estimates for the depth maps, color model, and noise. The depth map
is used to find the corresponding pixel in the other image. The color model and its
variance is then used to estimate the likelihood that a pixel is occluded or visible
in the other view based on the observed color difference between the projected
pixel and the voxel color. This is very similar to the visibility determination in the
probabilistic surface reconstruction algorithm discussed in the previous section.

These two steps of the EM algorithm are carried out until convergence, at which
we obtain the true image and the depth estimates. The algorithm has few free
parameters, displays a stable convergence behavior, and generates accurate depth
estimates. The algorithm has been applied to several real-world wide-baseline
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image pairs, producing impressive results. As it is an image-space approach, the
true image, and the depth map can be used to perform view interpolation, resulting
in a high-quality walkthrongh of the scene.

25.3 Reconstruction of Dynamic Scenes

Dynamic scenes may be considered at different levels of complexity. One naive
approach would simply involve performing full 3D reconstruction for each new
frame. Such an approach, however, can be quite time-consuming, which might
make the method impractical for real-time applications and does not utilize the
temporal information available in the data. In this section, we will mostly describe
methods that utilize such temporal continuity in order to improve the reconstruc-
tion results. These methods may also be categorized according to the precision of
the desired reconstruction and the models and assumptions used. Such consider-
ations affect the quality of the reconstruction and the computational time taken.
Some metheds attempt to obtain very accurate 3D reconstructions at the expense
of computational time, while others obtain approximate reconstructions for the
sake of real-time performance.

25.3.1 Visual Hull Algorithms

Algorithms describing the visual hull reconstruction of static scenes have already
been described in Section 25.2.1. One may obtain the visual hull of dynamic
scenes by application of this visual hull reconstruction algorithm at each time
instant separately. For real-time applications, this is feasible if the visual hull al-
gorithm is fast enough. Borovikov and Davis [104] describe methods to achieve
real-time voxel reconstruction for dynamic scenes using a distributed architecture,
The local memory and network bandwidth requirements are reduced by hierarchi-
cal flow of data in the multi processor system. They utilize an efficient method to
process octrees using a depth-first-search (DFS) order of traversal through the
nodes. These features make the system extremely efficient for real-time volume
reconstruction, and hence the visual hull algorithm can be applied to reconstruct
dynamic scenes.

25.3.2 Approximate 3D Localization of Targets for Surveillance

In the context of surveillance applications, one is often not required to obtain very
detailed 3D reconstruction of cbjects in a scene. Approximate localization of tar-
gets along with extraction of simple appearance models for matching and tracking
across time are generally sufficient. This task simplification is also necessitated
by the requirement of real-time performance and often the coverage of a large
area reducing the image resolution available for each target.
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Different requirements can be considered for such multi sensor surveillance
systems. Some of the wrade-offs involved include visibility in a crowded scene,
accuracy of object localization, mnning time of the algorithm, and coverage area.
Depending on the system requiremenis, different sensor configurations can been
considered.

One scenario of using multiple cameras involves a wide area with relatively
sparse objects and little inter-object occlusions [215, 738]. In this case, one cam-
era is typically sufficient for observing one part of the scene and an overlap is
required for hand-off between the detections of different cameras. Multiple cam-
eras may also be employed for the same part of the scene in order to deal with
occlusions from static obstacles such as trees and buildings. The system devel-
oped at CMU under the DARPA VSAM project [215] is an example of such a
system. The objective in this system was to cover a large area and detect and
track obiects over large distances as the object moves in the scene. Pan/tilt/zoom
camerags are then utilized to follow and zoom onto detected objects. Each camera
detects objects in its field of view. Such objects are then classified using neural
networks and linear discriminant analysis.

Such detections are then brought into a common 3-D coordinate system by the
use of geodetic coordinates that utilize the latitude, longitude, and elevation with
respect to the W(GS84 datum (so-called “GPS coordinates™). This allows easy
integration of all the delections in a common frame of reference. To determine
3D locations of objects, wide-baseline triangulation is utilized when the views
of multiple sensors overlap. When there is no overlap between the views, do-
main constraints are needed. If the assumption is used that the object 1s in contact
with the domain, one can determine the contact location by passing a viewing ray
through the bottom of the object in the image and intersecting it with a model
representing the terrain. If a scene plane is available, it can be utilized. How-
ever, large outdoor scencs may contain significantly varied terrain. To handie
these situations, geolocation is performed using ray intersection with a full ter-
rain model provided by a georeferenced digital elevation map (DEM). Tracking
is performed by generating a hypothesis for object location and comparing such
a 3D hypothesis to the detections from each camera, using a variety of factors
including geometrical proximity, object classification and color-histogram-based
appearance models. The best matched detection is then assigned to a tracked ob-
ject, and split/merge/enter/exit schemes are used to alter the number of objects
being tracked. The tracking methodology is very similar to the original paper on
Monte Carlo-based tracking by Isard and Blake [420].

When the cameras look al the same scene from different viewpoints, two dif-
ferent approaches can be considered. The approach that many such systems [245]
take is 1o sacrifice visibility for matching accuracy by using “stereo” pairs of
sensors. Stereo matching is performed within each pair of cameras, and matched
points are reconstructed in 3D by triangulation. Then, the 3D information is in-
tegrated across such sterco pairs in a global coordinate system. Some systems
perform such integration in 3D space by clustering 3D triangulated points into
people-shaped blobs. However, most systems [245, 578] assume that objects are
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upright and moving on a ground plane and perform such clustering in an or-
thographic vertical projection The plan-view image thus created simplifies and
speeds up the correspondence in time since only a 2D search is required. Detection
and tracking are then performed in this plan-view image. The tracking in these
systems is often facilitated by the use of automatically developed appearance
models consisting of color histograms obtained from the detected blobs.

The alternate approach is to utilize wide-baseline cameras for increasing visi-
bility of the cameras. When occlusion is moderate, one can consider an approach
where detections are performed independently in each view and such detections
are simply merged across views in a congistent manner without regard to any ap-
pearance constraints [461]. Geometric and temporal constraints are used to match
the trajectories of such detections.

When occlusion is significant from any given viewpoint and one wishes to max-
imize the visibility from a given number of sensors by placing sensors as far away
as possible, one requires more sophisticated reasoning that combines the visual
and geometric constraints in a unified framework. Our work on this topic [578}
addresses this scenario. In particular, we have addressed the problem of automat-
ically segmenting, detecting, and tracking multiple people in multi perspective
video where the scene being viewed is sufficiently “crowded” that one cannot as-
sume that any or all of the people in the scene would be visually isolated from
any vantage point. Figure 25.4 shows images of a typical scenario captured from
6 views (only 2 views are shown in the figure due to space limitations).

The system handles the case of partial occlusions by explicitly segmenting the
foreground region belonging to diflerent people. Bayesian classification is used
and a probabilistic scheme is used for setting priors in such a procedure. The
scheme, which assumes knowledge of approximate shape and location of objects,
dynamically assigns priors for different objects al each pixel so that occlusion
information is encoded in the priors.

The image segmentations thus obtained are utilized by a region-based stereo
algorithm that is capable of finding 3D points inside an object if the regions be-
longing Lo the object int lwo views are known. No exact point matching is required.
This is especially useful in wide-baseline camera systems where exact matching
is very difficult due to self-occlusion and a substantial change in viewpoint.

Rather than performing inference in a single view, the system combines the
evidence gathered from different camera pairs using occlusion analysis so as to
obtain a globally optimum detection and tracking of objects. Higher weight is
given to those pairs having a clearer view of a location than those whose view is
potentially obstructed by some objects. The weight is also determined dynami-
cally and uses approximate shape features to give a probabilistic answer for the
level of occlusion.

Good segmentation of people in a crowded scene is facilitated by models of
the people being viewed. Unfortunately, the problem of detecting and finding the
positions of the people requires accurate image segmentation in the face of occlu-
sions. Therefore, we take a unified approach to the problem and solve both of them
simultaneously. The algorithm uses segmentation results to find people’s ground
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(=) ®) © (d) (e)
Figure 25.4. Results of our algorithim [578] in a crowded scene: (a) and (b) images from a
f-perspective sequence at a particular time instant, (¢) result of segmentation of image (a)
using our system, (d) result of detection and {racking as seen from image {a), (¢) plan-view
likelihood map obtained at this instant

plane positions and then uses the ground plane positions thus obtained Lo oblain
segmenlalions; the process is iterated until the results are stable. This helps to ob-
tain both good segmentations and ground plane position estimates simultaneously.
Some results from this system are shown in Figure 25.4.

Finally, there are methods that try to achieve detection and tracking of multiple
occluding objects from a single view or a few views [423, 668, 920]. The idea
is to develop appearance and motion models of objects while they are visible in
order to predict their trajectories when they are not visible from any view. When
the objects become visible again, they are matched to the lost objects based on
their appearance and motion characteristics. Such trajectory matching is often
performed in a Bayesian sense by utilizing Monte Carlo samples fo estimate the
distribution of the state of the system at any given time. Although some significant
progress has been made in this area, the problem is quite hard due to missing
data. Thus, all such algorithms inevitably give inaccurate results when the object
densily is high, leading to inter-object occlusions and cases where the objects
appear to be very close to each other.

25.4 Sensor Planning

Until now, we have described algorithms for 3D reconstruction of both static and
dynamic scenes for varying model complexity. Another important, although rel-
atively less researched factor, that affects the performance of any reconstruction
method is the placement of the sensors for acquiring the best possible data suit-
able for the method. In this section, we address the problem of optimal placement
of sensors for such systems.

As described in the previous section, different systems have different require-
ments and may vary according to several characteristics: wide-baseline cameras
for better triangulation and visibility vs. short-baseline cameras for better match-
ing, accuracy of reconstruction vs. the coverage of any object, non overlapping



420 Agrawal, Mittal & Davis

cameras for maximum coverage vs. overlapping cameras for high-density areas,
and so on. Optimal sensor planning is a requirement for all of such systems.

Sensor planning has several different variations depending on the application.
Fellowing [556] and [791], one may classify these methods based on the amount
of information available about the scene: (1) no information is available, {2) set
of models for the objects that can occur in the scene is available, and (3) complete
geometric information is available.

The first set of methods, which may be called next view planning or incremen-
tal scene reconstruction, atlempts to build a model of the scene incrementally by
successively sensing the unknown world from effective sensor configurations us-
ing the information acquired about the world up to this point [648, 556, 496]. The
sensors are controlled based on several criteria such as occlusions, ability to view
the largest unexplored region, and abilily to perform good stereo malching. Such
constraints are translated inlo constraints on the camera positions, and satisfaction
of these constraints guarantees optimum and stable acquisition. The second set of
methods assumes knowledge about the objects that can be present in the scene.
The task, then, is to develop sensing strategies for model-based object recognition
and localization [906].

The third set of methods assumes that complete geometric information is avail-
able and determines the location of static cameras so as to obtain the best views
of a scene. The objective is either to detect the dynamic objects in the scene
or to recover the appearance characteristics of the static parts. This problem
was originally posed in the computational geometry literature as the “art-gallery
problem” [614]. The traditional formulation of such problem requires only one
camera to view any part of the scene and utilizes the simple assumption that two
points are called visible if the straight line segment between them lies entirely
inside the polygon. Even with such simple definition of visibility, the problem is
NP-complete. The reader is referred to [614] for a survey of work done in this
area.

Several recent papers have incorporated more complicated constraints such as
incidence angle and range into the problem and obtain an approximate solution
to the resultant NP-complete problem via randomized algorithms [354]. Several
others [230, 671, 792, 556] have studied and incorporated more complex con-
straints based on factors such as resolution, focus, field of view, visibility, view
angle, and prohibited regions. The set of possible sensor configurations satisfying
all such constraints for all the features in the scene is then determined.

In addition to the “static” constraints that have been considered so far, there are
additional constraints that arise when dynamic obstacles are present. Our work
in this area has focused on analyzing visibility constraints in the presence of
random dynamic obstacles, and maximization of system performance given task
specification.

The visibility analysis probabilistically determines the visibility rate of objects
at different locations, given that visibility from even one or a few {two in the case
of stereo matching) sensors may be sufficient. Stated differently, the probability
that the object is visible from at least one {or two for slereo matching) sensor is
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Figure 25.5. Scene geomeiry: (a) 3D case, {b) 2.5D case, where the sensors have finite
heights

evaluated at all possible locations. Such analysis assumes a random occurrence of
objects in a region according to a density function and then evaluates the proba-
bility that no such object appears in a region of occlusion where the occurrence of
another object would cause the target object to be occluded from a given camera,
as shown in Figure 25.5.

The multi-view probabilistic analysis is then combined with several other static
constraints such as image resolution, stereo matching, field of view, and back-
ground scene. An inherent difficulty in the integration of such constraints is the
trade-off that is typically involved between different constraints. For instance, a
reduction in the distance from the camera enhances resolution, but might increase
the viewing angle from the camera and cause difficulties in stereo matching, or
may cause a part of the object to go out of the camera field of view. We have
proposed a generic formulation that integrates a variety of such constraints and
trade-offs in a single quality measure according to user requirements and also
utilizes the multi-view visibility constraints in a natural way. Integration of such
a quality measure over a given region of interest leads to the development of a
cost funciion that can then be minimized for efficient sensor planning, Since ex-
act optimization of such criteria is an NP-hard problem, methods are proposed
that yield “good” configurations for most cases. Customization of the method for
a given system allows the method to be utilized for a variety of different tasks and
applications. Figure 25.6 illustrates the result of such sensor planning for some
example scenes.

25.5 Conclusion

Reconstruction of scenes from multiple cameras has made significant progress
over the past few years. We presented a brief overview of the state of the art in
multi-view reconstruction of static and dynamic scenes. We focused on algorithms
that utilized the wide-baseline camera arrangement and modeled occlusions ex-
plicitly. Such algorithms can be either based on pure geometric intersections
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Figure 25.6. Sensor planning results, Optimum configuration: (a) omni-cameras (360° ficld
of view), (b) field of view restricted to 90°, (¢) a stereo requirement with omni-cameras,
(d) no visibility with the left wall as background (object color matches the left wall)
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{visual hull algorithm) or on the concept of photo-consistency (voxel coloring
and space carving). In particular, algorithms based on a probabilistic frame-
work are receiving more attention these days as they tend to produce superior
reconstruction results. Several such probabilistic algorithms were described in
detail.

Next, we considered the reconstruction of dynamic scenes. The main im-
provement over frame-by-frame reconstruction is the utilization of the temporal
continuity constraints existing in such scenes. In this context, we described
efficient visual hull methods for detailed reconstruction as well as fast but ap-
proximate target localization methods for multi-view surveillance applications.
Finally, we addressed the problem of planning the placement of the sensors so
that the data is acquired in an optimal manner for a given reconstruction tagk.
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Graph Cut Algorithms for Binocular
Stereo with Occlusions

V. Kolmogorov and R. Zabih

Abstract

Most binocular stereo algorithms assume that all scene elements are visible
from both cameras. Scene elements that are visible from only one camera,
known as occlusions, pose an important challenge for stereo. Occlusions
are important for segmentation, because they appear near discontinuities.
However, stereo algorithms tend to ignore occlusions because of their dif-
ficulty. One reason is that occlusions require the input images to be treated
symmetrically, which complicates the problem formulation. Worse, certain
depth maps imply physically impossible scene configurations, and must be
excluded from the output. In this chapter we approach the problem of binocu-
lar stereo with occlusions from an energy minimization viewpoint. We begin
by reviewing traditional stereo methods that do not handle occlusions. If oc-
clusions are ignored, it is easy to formulate the stereo problem as a pixel
labeling problem, which leads to an energy function that is common in early
vision. This kind of energy function can be minimized using graph cuts,
which is a combinatorial optimization technique that has proven to be very
effective for low-level vision problems. Motivated by this, we have designed
two graph cut stereo algorithms that are designed to handle occlusions. These
algorithms produce promising experimental results on real data with ground
truth.

26.1 Traditional stereo methods

Computing stereo depth is a traditional problem in computer vision, and has been
the focus of a great deal of work (see [120, 711] for recent surveys). Given a
pair of images taken at the same time, two pixels are said to correspond if they
show the same scene element. The goal of stereo is to compute correspondences
between pixels, which then determines depth. The binocular stereo problem is
typically formulated as follows:
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For every pixel in one image, find the corresponding pixel in the other
image.

We will refer to this as the traditional stereo problem.

The problem formulation above has many advantages, It easily fits within a
class of problems that arise in early vision called pixel labeling problems, where
the goal is to assign each pixel p = (p,,p,) € P a label from some set £. The
label set £ depends upon the particular problem; for example, in image denoising,
L is intensities. In stereo, £ consists of disparities.

Pixel labeling problems have been widely studied in computer vision. The prob-
lem is naturally formulated in terms of energy minimization, where the goal is to
find the labeling f = {(fi,..., fp, ..., fip|) that minimizes

ZDp(m + > Vifnfo)- (26.1)

{p.gteN

Here D, is the penalty for assigning a label to the pixel p; A is a set of pairs
of adjacent pixels, representing a neighborhood system; and V' is the penalty for
assigning a pair of labels to adjacent pixels. The first term of equation 26.1 gives
a data cost for f, which requires f to respect the observed data, while the second
term imposes spatial smoothness. Note that this energy function has an elegant
connection to the probabilistic framework provided by Markov Random Fields
[520], where the first term comes from the likelihood and the second comes from
the prior.

The traditional stereo problem can be easily formulated as a pixel labeling prob-
lem. We will assign the label [, to the pixel p when the pixel p in one image {
corresponds to the pixel p+ f, in the other image I'. (Note that the set P consists
of pixels in I.) The matching penalty D, will enforce photoconsistency, which is
the tendency of corresponding pixels to have similar intensities. The natural form
of Dy is Dy (fy) = |iI(p) - I'(p + £,

The smoothness penalty V' will depend on what kind of scene geometry we
expect. If V' gives too large a penalty for very different f, f,, the solution will
tend to oversmooth, With fronto-parallel scenes, the natural choice is V ( £y, f,;) =
A-Tify # f4l, where the indicator function T is | if its argument is true and
otherwise 0. This choice of V' is referred to as the Potts model. There are also more
complex forms of V' that naturally handle slanted or curved surfaces [88, 113, 521]
{surprisingly, these often rely on the Polts model).

The terms D and V' can be easily visualized as tables, which are |[£} x 1 or
|£] % |£|, respectively. For stereo with the Potts model, they are

(4 (pe; Pg_:) = p's;py}) OfA|---|A
(I(pivlp‘y) _I ({}1‘ X 11[’!)} A 0 /\

Dy = [(T(pa,py) = T'(Ps — 2,94))° V=T, N
: NS

This visualization will prove useful when we describe how to minimize the energy
function.
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Figurc 26.1. Expansion move example, The input labeling is shown at left. An expansion
move is shown in the middle, and the corresponding binary labeling is shown at right.

26.1.1 Energy minimization via graph cuts

A major advantage of pixel labeling problems is that they can now be rapidly
solved by powerful optimization algorithms such as graph cuts [113, 4247, If the
label set L consists of contiguous integers and if V' is a convex function of f, — f,,
then the global minimum of ¥ can be rapidly computed in a single graph cut
[424]). However, if V' is convex it will give a large penalty for very different f,, fg,
and hence will oversmooth. Any class of smoothness terms that includes the Potts
model is NP-hard to minimize [113], so a good local minimum is the best that we
can hope to achieve.

If V' is a metric on labels, then it is possible to efficiently minimize F using the
expansion move algorithm. The Potts model is a metric, as are some other pop-
ular choices of V that do not oversmoocth [113]. The expansion move algorithm
computes a strong local minimum, in a sense that we will describe with more pre-
cision shorlly. Given a label o and a labeling f, another labeling f” is defined to
be an a-expansion move from [ if for every pixel p

@) #fp) = Flp) =«

Intuitively, f* ig obtained from f by assigning the label o fo an arbitrary set of
pixels. An example of an expansion move is shown in figure 26.1, with f at the
left and f' in the middle.

The expansion move algorithm cycles through the labels in some order (fixed
or random). For a particular label ¢, it computes the lowest energy expansion
move from the current labeling, and moves to that labeling if its energy is lower.
This is obviously a greedy algorithm, and terminates with a labeling that is a local
minimum with respect to expansion moves. More precisely, when it terminates
with a labeling f there is no a-expansion move from f whose energy is lower
than E(f), for any label a.

The number of expansion moves from a given labeling is @(}£] - 2I71) (recall
is the number of pixels). It is possible to prove that the energy of a local
minimum with respcet to expansion moves lies within a fixed multiplicative factor
of the energy of the global minimum. The factor is at least 2, and depends on the
exact form of V' (see [113] for details).

The key challenge in the expansion move algorithm lies in solving the fol-
lowing subproblem: given a labeling f and a label «, (ind the lowest energy
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a-~expansion move from f. In an expansion move, each pixel p has two options: it
can keep its old label f,, orit can swiich to the new label c. As a result, an expan-
sion move can be naturally viewed as a binary image; there is a single bit assigned
to each pixel, representing which option that pixel selecls in this expansion move,
For example, figure 26.1 shows at right the binary image corresponding 1o the
expansion move at center.

We can thus view the problem of finding the lowcest energy expansion move as
an energy minimization problem over binary images. To formalize this, consider
a binary image x = {x, | p € P }. The labeling associated with x, given an
initial labeling f and a label «v, will be « at pixels where x is 1, and the same as f
elsewhere. We will write this labeling as f®[x]. The problem of finding the lowest
etiergy expansion move is to find the x that minimizes £{ f*[x]), given f and a.

We can now rewrite the energy F as a new energy function £(x), where £(x) =
E( f*[x]). The new energy function is defined on binary images, and is given by

E(x) = Z Ep(@p) + Z Ep.a(@psBg)
) 7.q

Just as before, the two terms can be visualized as tables, where

Bl Dp(fp) £ V(fp:fq) V(.fp:a')
P [ Dple) P V(e fy) | Vi o)

The problem of minimizing £(x) can be solved exactly with a single graph
cut as long as &,,, has a property called regularity, introduced in [491]. £, is
regular if the sum of its diagonal elements is less than or equal to the sum of its
off-diagonal elements; so a sufficient condition is

Vie,e) + V(L) < V(L o)+ Vel (26.2)

for any labels {,1', a. As long as this condition is met, the general-purpose con-
struction given in [491] can be used to minimize &£, and hence to find the lowest
energy expansion move. Note that if V' is a metric, it clearly satisfies this condition
since V' (e, &) = 0 and so equation 26.2 is just the triangle inequality.

In summary, the traditional stereo problem is a pixel labeling problem. With the
appopriate choices of D, and V it can be formulated as an energy minimization
problem. When V' is a metric, a sirong local minimum can be computed using the
expansion move algorithm. This stereo algorithm, due to [113], yields very good
experimental results. For example, the majority of the top-ranked methods on the
Middlebury stereo database rely on graph cuts [711].

26.2 Stereo with occlustons

The traditional stereo problem formulation, however, has some serious dis-
advantages. First, note that the problem formulation treats the input images
asymmetrically, which is unnatural. The pixels to be labeled P come from the
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Figure 26.2. It is impossible for the left camera to see the square and the right camera to
see the triangle at the same time.

primary image [, while I” appears only in the data term D,,. Second, by assigning
every pixel in I a label, we assume that every scene element is visible in both
images. This cannot be true if the scene has more than one depth.!

Worst of all, however, certain labelings f imply physically impossible 3D
scenes, and hence must be excluded from consideration. This results from the
geometry of the imaging process. An example showing this constraint is shown
in figure 26.2. A general-purpose pixel labeling algorithm will almost invariably
generate solutions that violate these geometric constraints. For binocular stereo,
these geometric constraints center on occlusions, which are scene elements that
are only visible from one camera.

In this chapter we describe two binocular stereo algorithms that handle occlu-
sions. We take an energy minimization approach, and rely on the expansion move
algorithm to minimize the energy. One key challenge is that graph cuts perform
unconstrained energy minimization [491], while binocular stereo with occlusions
requires a constrained energy minimization algorithm.

The energy minimization approach to binocular stereo with occlusions consists
of following three steps:

+ Pick a representation for the problem. In other words, we need to choose
the space of valid (physically possible) configurations Cya1:4 and define the
correspondence between configurations and real scenes.

"'While it is possible to augment the label set by adding a label that means “this pixel is occluded”,
this approach does not address the other difficulties of the traditional problem formulation,
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* Design an energy function £ : Cyeue — IR that captures the desired
properties of a solution.

* Develop an algorithm for minimizing this energy.

Note that these steps are strongly interconnected. With a poor choice of repre-
sentation, it may be hard or impossible to impose the cotrect problem constraints.
Even if an energy function does captures all the desirable properties, computing
a good minimum may be computationally intractable. We will get an effective
algorithm only if all three issues are properly addressed,

Ideally, a representation for the stereo problem should have the following
propertics: for a given configuration it should be casy to determine

(P1) whether it is valid or not {i.e. whether there exists a real scene correspond-
ing to this configuration); and

(P2) what pixels in the left and in the right image correspond o each other.
This is crucial since photoconsistency should only be imposed between
cotresponding pixels.

There are two obvious types of representations for stereo: voxel-siyle represen-
tations, and representations based on labeling pixels. Voxel-style representations
rely on an explicit representation of the 3D space that the scene may occupy.
Such representations have been used in many approaches, including voxel col-
oring [722], space carving [498] and silhouette intersection [349]. Pixel labeling
approaches include all the standard stereo methods, such as those surveyed in
[120, 711}

26.2.1 Notation

We will redefine P to now be the set of pixels in the left and in the right images
(the previous definition was asymmeiric). Let V be the set of {unordered) pairs of
pixels that may potentially correspond. For simplicity we assume that images are
rectified; then we have

V={{pa|py=0,and ¢z — p: € L}

where £ is the set of possible disparities: £ = {0,—1,..., —dmag}. {We as-
sume that disparities lie in some limited range, so each pixel in the left image can
potentially correspond to one of |£| possible pixels in the right image, and vice
versa). We call a pair v = {(p,q) € V a voxel, lts disparity is denoted as d(v) (i.e,
d(‘t)) =y —Pr € ’C)

Note that each voxel v € V corresponds to a point in 3D space, as shown in
figure 26.3. The disparity d(v) directly depends on the depth of this point, i.e. ils
distance to the cameras. If the cameras are parallel then —d(v) is inversely pro-
portional 1o the depth. In a more general situation the relationship can be more
complicated. In this chapter we assume that disparity is a monotonically increas-
ing function of the depth. In other words, the farther a point from the cameras the
larger the disparity.
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Figure 26.3. Voxel labeling algorithm. Voxels are given a binary label {active or not); dark
shaded voxels are labeled as active. The disparity of the voxel {p, ¢} is d({p,q})) = —4. To
simplify the drawing, orthographic projection is assumed. Note that the two gray-shaded
voxels cannot be active if {p, ¢} is active.

For a voxel v = (p,q) we can compute the matching penalty M(v) de-
scribing how photoconsistent the intensity of pixel p is with the intensity of
pixel g. The simplest function is the squared difference of intensities: M {v) =
111(p) — I'(q)||?; however, more elaborate functions (for example, [87]) tend to
give better results.

26.3 Voxel labeling algorithm

Our first approach, which first appeared in [490], is directly inspired by property
P2. A configuration will just be a labeling ¢ : V — {0, 1} such that g(v) is 1 if
the pixels p and ¢ in voxel v = {p, g) correspond to each other, and 0 otherwise.
In other words g(v) = 1 if and only if the the 3D point corresponding to voxel v
is present in the scene and is visible from both cameras. If this is the case we will
say that v is active.

The set of all configurations is € = {0, 1}Y. However, not all configurations
in C are valid. Some of them violate the uniqueness constraint which says that a
pixel in one image can correspond Lo at most one pixel in the other image. Let
us define the set Cygaig as Tollows: the configuration ¢ € € is valid if for any two
distinct voxels v, v involving the same pixel (i.e. v = {p,¢). ¥ = (p,¢’) with
g # ¢') at least one of them has label 0: g{w) = 0 or g(v') = 0.
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Now let us define the energy we will minimize. It has three terms: data,
occlusion and smoothness;

E(q) = Eda.m(g) + -EOUC(Q) + Bomooth (9) {26.3)

The data term will be Eyuia(g) = 3_,cy 9(v) - M(v). Note that this sum con-
tains matching penalties only for voxels » which are active in configuration g (i.e.
g{v) = 1}. The term E,..(¢) penalizes occlusions: it is equal to Coee * [Poce{g)]
where C.. is the penalty for an occlusion and P,..(¢) is the set of pixels occluded
in configuration g (i.e. pixels p such that g(v) = 0 for all voxels v = {p, g} € V).

The smoothness term involves a notion ol neighborhood; we assume thal there
is a neighborhood system on voxels

My {{v,v'} v, v € V}

We require that for every pair {v,v'} € Ny the disparities of voxels » and »'
are the same: d{z} = d(2'). For example, we can specify Afy: as follows: voxels
{p,q),{®', ¢') with the same disparity are neighbors if pixels p, p’ in the left image
are 4-neighbors. Now the smoothness term can be written:

Es‘mooth (9) - Z A T[{)(‘U‘) ?é g{’”’)]‘

{v,v' JENY

To summarize, the voxel labeling stereo algorithm solves the constrained
minimization problem:

g" =arg min £(g), (26.4)
FECuatin

where F{g) is defined in equation 26.3,

26.4 Pixel labeling algorithm

The representation discussed above might seem natural for stereo correspondence
problem since it allows to identily corresponding pixels easily. However, it has
several drawbacks. First, the smoothness term invelved is rather restrictive —
basically, it is the Potts model on voxels (see [492] for more details). Second, the
set Cyq1:4 cOntaing configurations which do not correspond to any physical scene.
Consider, for example, the configuration g with g(a) = 0 for every voxel v €
V. Bvery pixel is occluded in this confliguration; thus, the configuration contains
*holes”. From a practical point of view, we can ensure that we will not get such a
configuration by setting penalty for occlusion to a sufficiently large value.

We now describe a different approach, first published in [490], which uses a
representation proposed by [451]. We know that each pixel sees some element of
the scene (even though this element may not be seen from the other camera). Our
goal will be to compute the depth of this pixel (or, rather, its disparity). Thus, a
configuration is a mapping f : P — £. The set of all configurations is ¢ = £%.
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As in the previous case, not all configurations are valid. Formally, the configu-
ration f € C is valid if for every voxel v = {p,¢) the following property holds:
if f{p) = d{v) then f(g) < d{v). This can be understood intuitively in terms
of figure 26.2; if the left camera sees the square, the right camera cannot see any
scene element that is behind the square,

Our energy function will be

E(f) = -Edaza(f) + Esrrwoth(f)- (26'5)

Similar to the previous case, we would like the data term to be a sum only over
active voxels. Let us discuss how we can identify such voxels in this representa-
tion. The voxel v = (p, ¢) is active if the corresponding 3D point is present in the
scene and i visible from both cameras, This means that f(p) = flg) = d{v).
This in turn motivates the following data term:

Edatn (f) = Z [ ( Q) d(’U)] D(U)

v={p,qeV

where (v} measures how similar intensities of pixels p and ¢ are. For technical
reasons explained in section 26.5 we need the term D(v) to be non-positive. We
set D(v) = min {M (v) — K, 0} where X is a positive constant.

The smoothness term is very similar to that of tradional stereo problem, except
that it is enforced for both images rather than just the left image:

Esmoom(.f) = 2 V(fps fq}
{p.ateN
where V can be, for example, the Potts model: V(fy, fo) = A T{fp # f4l.
We thus obtain the following constrained minimization problem:

T "arg min  E(f), (26.6)

Feluatid

where £( [} is defined in equation 26.5.

26.5 Minimizing the energy

In this section we skelch how we solve the constrained minimizalion problems
given in equations 26.4 and 26.6. First, we convert our constrained minimization
problems into unconstrained ones. We add a hard constraint term E,y;4 which
is zero if a configuration is valid, and infinite otherwise. In the case of the pixel
labeling algorithm, lor example, the energy becomes

(f) Fdata{f) T Eamoom( f) + Fvahd(f

All terms of this energy (including Fq1:4) can be written as a sum over pairs
of pixels. In other words, the energy has the same functional form as in equa-
tion 26.1, only the neighborhood system A is different and terms V are replaced
by some other functions. Moreover, the representation of cur problem resembles
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that of traditional sterec problem (section 26.1). As in traditional stereo, our goal
is to assign disparities to pixels; the only change in representation is to consider
pixels in beth images. Thus, it is easy to adapt the expansion move algorithm
described in section 26.1 to our minimization problem. We just need to ensure
that for each av-expansion the corresponding binary energy function is regular. We
show in [490] that this condition holds assuming that terms 1){v) are non-positive.

In order to apply the expansion move algorithm to the voxel labeling problem,
we need to modify the definition of ry-expansion. Indeed, the definition given in
section 26.1 applies to multi-label variables, while our problem has binary labels.
We say that configuration ¢’ is within a single a-expansion move from configu-
ration ¢ if voxels which are inactive in g and whose disparity is different from «
are also inactive in g'. Then for every valid configuration g and disparity o it is
possible to compute an optimal «-expansion move using graph cuts (see [490] for
details).

26.6 Experimental results

26.6.1 Implementational details

Expansion move algorithm We selected disparities v € £ in random order,
and kept this order for all iterations. We performed three iterations. {The number
of iterations until convergence was at most five but the result was practically the
same). The voxel labeling algorithm was initialized with a configuration where ev-
ery voxel was inactive; the pixel labeling algorithm was initialized with all pixels
having disparity zero.

Matching penalty For our matching penally M we made use of the method
of [87] to handle sampling artifacts, with a slight variation: we compute intensity
intervals for each band (R,G,B) using four neighbors, and then take the average
data penally. (We used color images; results for grayscale images are slightly
worse).

Smoothness terms We used a Potts model for both algorithms (in one case
this is the Potts model on voxels, while in the other the Potts model on pixels).
This mode! is controlled by one parameter characterizing the penalty for a pair
of neighboring voxels or pixels. This parameter, however, can depend on the pair.
We can use this property to discourage discontinuities between adjacent pixels
with very similar intensities, This trick is referred to as “static cues” in [113] and
is quite useful for stereo.

For the pixel labeling algorithm we set

Vo (fw fp’) = dpy 'T[fp # f}:’]
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where A, v was implemented as the following empirically selected decreasing
function of Al(p, p') (the Lo norm of the intensity difference between p and p'):

3 ifAI(pp') <5,
Appt = .
A otherwise.

For the voxel labeling algotithm we used a similar expression:

3x if max(AI{(p,p'), Al{q,q)) < 8,
Apy = .
A otherwise,

where v = (p,q), v’ = {p/, ¢’} and p and p’ are pixels in the same image, as well
asgqand g'.

Choice of parameters The energy function for the voxel labeling algorithm as
defined above depends on two numbers: occlusion penalty Oy, and smoothness
interaction strength A. Similarly, the pixel labeling algorithm depends on the pa-
rameters & and A. These parameters should be tuned for for different datasets to
reflect our prior knowledge about the scene geometry, amount of noise in the im-
ages and other faciors. Selecting the parameters automatically, however, is a very
challenging task.

We set K in the pixel labeling algorithm using a simple heuristic which tries to
estimate the amount of noise in the images. Details are given in [488], It can be
shown [488, 492] that K /2 approximately cotresponds to the occlusion penalty,
so for the voxel labeling algorithm we set Cyo. = K/2. Finally, the parameter A
was chosen to be proportional to K: A = K/5.

26.6.2 Algorithm performance

We have compared three algorithms: our voxel and pixel labeling algorithms with
occlusions {“[KZ *01]” and “TKZ "02]™) and a traditional stereo algorithm pro-
posed in {113] (“[BVZ]™). The latter technique was found to be the best algorithm
for stereo according to [782]. In addition, we tested the algorithms in two modes:
with reporting occlusions (some of the pixels in the left image are marked as oc-
cluded) and without reporting occlusions (all pixels in the left image are labeled
with some disparity).

Deterinining occluded areas in the voxel and pixel labeling algorithms is easy
since they output what pixels cotrespond to each other. The information produced
by [BVZ], however, is not sufficient to determine where occlusions are. To pro-
duce occlusions, we have augmented the algorithm: we introduced a new label
“occluded” with some fixed penalty,

Note that our voxel labeling algorithm does not produce depths for all pixels.
We have filled occluded regions using some postprocessing: we have assigned to
occluded pixels the depth label of the closest non-occluded left neighbor lying in
the same scanline.

We primarily experimented with images from [711}; output is shown in fig-
ures 26.4-26.6. The running times below wete obtained on 450MHz UltraSPARC
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II processor. We used the max flow algorithm of [110], which is specifically
designed for the kinds of graphs that arise in vision.

sterco pair | 1mage  number running times

size of labels [KZ '01] [KZ°02] [BVZ]
Tsukuba |384 x 288 16 69 secs B0 secs 35 secs
Sawtooth | 434 x 380 20 115 secs 141 secs 66 secs
Venus 434 x 383 22 145 secs 159 secs 85 secs

First we evaluated the three algorithms in the mode without reporting
occlusions. Error statistics using the ground truth from [711] are as follows:

stereo p:u'r1 [KZ’01] [KZ *02] [BVZ]

Tsukuba | 5.82 (1.18) 5.91 (1.86) 7.17 (1.93)
Sawtooth |12.13 (0.71) 11.77 (0.67) 11.86 (0.62)
Venus 15.40 (1.07) 13.19 (0.69) 16.90 (0.75)

We determined the percentage of the pixels where the algorithm did not compute
the correct disparity {“errors” — the first number), or & disparity within £1 of the
correct disparity {“gross errors” — the second number). We counted only pixels
that are not occluded according to the ground truth since depth labels of such
pixels cannot be determined from the photoconsistency constraint.

We have also computed error statistics for the Tsukuba stereo pair in the mode
with reporting occlusions.

algorithm | Errors Gross errors False negatives False positives

KZ01] [6.56% 2.17% 4133% 133%
[KZ'02] |6.51%  2.66% 44.16% 1.03%
[BVZ] [7.28% 2.14% 77.59% 0.62%

The first two columns count only pixels that are not occluded according to the
ground truth. We considered labeling a pixel as occluded to be a gross error. The
last two columns show error rates for occlusions.

26.7 Conclusions

We have presented two stereo algorithms that handle occlusions. The pixel label-
ing algorithm can be viewed as an improvement over the voxel labeling algorithm
for two reasons. First, unlike voxel labeling, pixel labeling explicitly prohibits
“holes” in the scene. In other words, it takes into account the fact that for any real
scene the layer with disparity 0 (corresponding fo the plane at infinity) is filled.
Second, our pixel labeling method allows not only Potts interactions, but other
uselul smoothness terms {for example, truncated linear terms),

The major limitation of our approach lies in its bias towards fronto-paraliel
surfaces. With a sloped surface, our methods yield occlusions at discontinuities
resulting from discretizing disparities. These occlusions are treated in the same
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Ground truth

[KZ *02], occlusions

[KZ '01], occlusions

Figure 26.4. Sawtooth results (occlusions are shown in black).

way as real occlusions at object boundaries. Note that in the pixel labeling algo-
rithm the problem can be alleviated by using a truncated linear smoothness term
instead of Potts model.

It is possible to extend our algorithms to handle multiple cameras [488, 490,
492]. However, na scene point can lie inside the convex hull of the camera centers,
This is the same class of camera configurations where voxel coloring [722] can
be used, and includes many situations of practical interest.
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Left image Ground truth

_[BVZ], occlugions

Figure 26.5. Tsukuba results {(occlusions are shown in black).
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[KZ 01] [KZ '01], occlusions

Figure 26.6. Tree image results (occlusions are shown in black).



Chapter27

Modelling Non-Rigid Dynamic Scenes
from Multi-View Image Sequences

J.-P. Pons, R. Keriven and O. Faugeras

Abstract

This chapter focuses on the problem of obtaining a complete spatio-temporal
description of some objects undergoing a non-rigid motion, given several cal-
ibrated and synchronized videos of the scene. Using stereovision and scene
flow methods in conjunction, the three-dimensional shape and the non-rigid
three-dimensional motion field of the objects can be recovered. We review
the unrealistic photometric and geometric assumptions which plague exist-
ing methods. A novel method based on deformable surfaces is proposed to
alleviate some of these limitations.

27.1 Introduction

Recovering the geometry of a scene from several images taken from different
viewpoints, namely stereovision, is one of the oldest problems in computer vi-
sion. More recently, some authors have considered estimating the dense non-rigid
three-dimensional motion field of a scene, often called scene flow ! [835], from
multiple video sequences. In this case, the input data are a two-dimensional array
of images, in which each row is a multi-view stereovision dataset for a given time
instant, and each column is a video sequence captured by a given camera.

Combining stereovision and scene flow allows to build a spatio-temporal model
of a dynamic event. Once such a model is available, some novel virtual views of
the event can be generated by interpolation across space and time [834].

I'The scene flow should not be confused with the optical flow, which is the two-dimensional motion
field of points in an image. Tbe optical flow is the projection of the scene flow in the image plane of a
camera.
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Stereovision and scene flow estimation both require to match different images
of the same scene, in other words to find points in different cameras and in dif-
ferent frames corresponding to a same physical point. Once the correspondence
problem is solved, the shape and the three-dimensional motion of the scene can be
recovered easily by triangulation, Unfortunately, this problem is a very ditficult
task in computer vision because a scene patch generally has different shapes and
appearances when seen from different points of view and at different times.

In Section 27.2, we report some important works on multi-view stereovision,
scene flow estimation, and their integration. In particular, we show that, in order
to solve the correspondence problem, most exisling stereovision and scene flow
algorithms rely on unrealistic simplifying assumptions that disregard either/both
shape/appearance changes between different images of the scene.

In Section 27.3, we propose a new method that overcomes some of these lim-
itations. Qur method uses the prediction error [777] as a metric for shape and
molion estimation. Both problems then translale into a generic Image registration
task. The latter is entrusted to a similarity measure chosen depending on imaging
conditions and scene properties. In particular, our method can be made robust to
appearance changes due to non-Lambertian materials and illumination changes.
Our method results in a simpler, more flexible, and more efficient implementa-
tion than other deformable surfaces approaches. The computation time on large
datasets does not exceed thirty minutes. Moreover, our method is compliant with
a hardware implementation with graphics processor units.

Finally, in Section 27.4, we show some experimental results. Qur stereovision
algorithm yields very good results on a variety of datasets including speculari-
ties and translucency. We have successfully tested our scene flow algorithm on a
challenging multi-view video sequence of a non-rigid event.

27.2 Previous Work

27.2.1 Multi-view complete stereovision

Doing a complete review of the stereovision area is out of the scope of this chapter.
Here, we are particularly interested in obtaining a complete scene reconstruc-
tion from a high number of input views. So we discard the methods in which
the geometry of the scene is represented by depth maps or disparity maps. In-
deed, these methods compute several partial models which have to be fused at
post-processing. Moreover, they cannot handle visibility globally and consistently
since no complete model of the scene is available during the estimation. However,
let us mention two important works in this category: the graph cuts method of
{490] and the PDE-based method of [769]. The interested reader should also refer
to [711] for a good taxonomy of dense iwo-frame reciified stereo correspondence
algorithms.
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Thus, in the following, we focus on multi-view complete stereovision methods.
These methods fall into two categories: the space carving framework and the
deformable surfuces framework.

In the space carving [ramework [498], the scene is represented by a three-
dimensional array of voxels, Each voxel can be labeled emply or occupied. When
the algorithm starts, all voxels are occupied. Then the volume is traversed in an
adequate order. If a voxel is not consistent with all the input images, it is relabeled
empty. The order of the traversal is important because the visibility of the voxels is
taken into account in the consistency test. In an older method called voxel coloring
[722], there was a constraint on the placement of the cameras, and the algorithm
needed a single pass. Space carving handles arbitrary camera configurations but
is a little more expensive computationally.

The space carving framework sulfers from several important limitations. First,
these metheds make hard decisions. Once a voxel is carved away, it canuot be
recovered. And if one voxel is removed in error, further voxels can be erro-
neously removed in a cascade effect. This limitation is partially atleviated by the
probabilistic space carving method [117].

Second, in the original space carving algorithm, the photo-consistency test de-
rives from a brightness constancy constraint: corresponding points are asssumed
to have the same color. This is a very naive assumption on the photometric prop-
erties of the scene. Tt requires a precise photomeiric calibration of the different
cameras and only applies to strictly Lambertian scenes. In other words, this mea-
sure cannot cope with appearance changes between different images. Moreover,
the choice of the global threshold on the color variance is often problematic.
Recently, there have been some attempts to relax these photometric constraints
[802, 904],

Third, the voxel-based representation disregards the continuily of shape, which
makes it very hard to enforce any kind of spatial coherence. As a result, space
carving is very sensilive to noise and outliers, and typically yields very noisy
reconsiructions.

We now turn to a review of stereovision methods based on deformable surfaces.
These methods inherit from the active contour method pioneered in [455]. Here,
contrarily to the space carving framework, the formulation is continuous and has
a geometric interpretation. The unknown scene is modelled by a two-dimensional
surface, and scene reconstruction is stated in terms of an energy minimization. An
initial surface, positioned by the user, is driven by a partial differential equation
minimizing an energy functional,

The most prominent work in this category is the level set stereovision method of
[309]. In this work, the stereovision problem is formulated as & minimal surface
approach, in the spirit of the geodesic aclive contours method [155]. In other
words, the energy functional is written as the integral on the unknown surface of
a data fidelity criterion. This criterion is the normalized cross correlation between
image pairs.

The surface evelution is implemented in the level set framework [618]. On the
one hand, the implicit representation offers numerical stability and the ability to



442 Pons, Keriven & Faugeras

handle topological changes automatically. On the other hand, it is quite expen-
sive computationally, even with a narrow band approach. So, some authors have
proposed an implementation with meshes [285] including a tangential smoothing
operator to preserve the quality of the mesh and a merging/splitting procedure to
handle topological changes.

Recently, some authors have proposed a new stereovision method to cope with
non-Lambertian scenes [439]. Their method can estimate both the shape and the
non-Lambertian reflectance of the scene. The surface deformation is driven by the
minimization of the rank of a radiance tensor. This method outputs a geometric
and photometric model which allows to predict the appearance of novel views.

Interestingly, in [309, 439], the geometric interpretation allows to agregate
neighborhood information during the matching process, for a better robustness
to noise and lo realistic imaging conditions. But in retumn, these methods have
to handle the geometric distortion between the different views. If fixed matching
windows are used, the underlying asswinption is the fronto parallel hypothesis:
camera retinal planes are identical and the scene is an assembly of planes par-
allel to them. This assumption can still be found in recent work. In [517], the
authors disregard projective distortion and attempt to minimize its impact by
computing the stereo discrepancy of a scene patch with its two most front-facing
cameras only. However, this approach is valid only for a high number of spatially
well-distributed cameras,

In [309, 439], projective distortion is handled at least partially by taking into
account the tangent plane to the object. For example, in [439], the radiance tensors
are computed by sampling image intensities on a tesselation of the tangent plane.
Thus, the matching score depends not only on the position of the surface but also
on its orientation, Unfortunately, this first-order shape approximation results in a
very complex minimizing flow involving second-order derivatives of the matching
score. The computation of these terms is tricky, time-consuming and unstable,
and, to our knowledge, all authors have resigned to drop them.

27.2.2  Scene flow estimation

Three-dimensional motion estimation from multiple video sequences has long
been limited to rigid or piecewise-rigid scenes or parametric models.

The problem of computing a dense non-rigid three-dimensional motion field
from multiple video sequences has been addressed only recently. Two types of
methods prevail in the scene flow literature,

The first family of methods [915, 149, 599] relies on the spatio-temporal deriva-
tives of the input images. As pointed out in {835], estimating the scene flow from
these derivatives without regularization is an ill-posed problem. Indeed, the as-
sociated normal flow equations only constrain the scene flow vector to lie on a
line parallel to the iso-brightness contour on the object. This is nothing but a 3D
version of the aperture problem for optical flow. In [149, 599], several samples of
the spatio-temporal derivatives are combined in order to overconstrain the scene
flow, whereas in [915], the aperture problem is solved by combining the normal
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flow constraint with a Tikhonov smoothness term. However, due to the underly-
ing brightness constancy assumption, and to the local relevance of spatio-temporal
derivatives, these differential methods apply mainly to slowly-moving lambertian
scenes under constant illumination.

In the second family of methods [835, 915}, scene flow is constructed from
previously computed optical flows in all the input images. Flowever, the latter may
be noisy and/or physically inconsistent through cameras. The heuristic spatial
smoothness constraints applied to optical flow may also alter the recovered scene
flow,

27.2.3 Shape-motion integration

Shape and motion estimations are linked. Indeed, the knowlegde of the shape
is required to compute the scenc flow. Conversely, the motion in the different
cameras constrains Lhe shape of the scene, This suggests that more robustness and
more precision can be expected when properly fusing stereovision and scene flow
estimation. More precisely, the correspondences across cameras and over time
satisfy a round-about compatibility constraint that can be used to disambiguate
the matching process.

There have been a few attempts to perform this integration [599, 915, 836]. But
due to their increased computational cost and their modelling complexity, these
techniques have not gained a significant popularity,

For example, in [836], shape and scene flow are estimated simultaneously using
a plane-sweep carving algorithm in a 6D space. But this approach has a very high
computational and memory cost, and is unable to enforce the smoothness of the
recovered motion. As a result, in [834], the same authors renounce to the fusion:
the shape-motion consistency is enforced by modifying the voxel representation
and the scene flow at post-processing.

27.3 The Prediction Error as a New Metric for
Stereovision and Scene Flow Estimation

We propose a common variational framework for complete stereovision and scene
flow estimation which correctly handles projective distortion without any ap-
proximation of shape and motion and which can be made robust to appearance
changes.

The metric used in our framework is the ability to predict the other input views
from one input view and the estimated shape or motion, This is related to the
methodology proposed in [777] for evaluating the quality of motion estimation
and stereo correspondence algorithms. But in our method, the prediction error is
used for the estimation itself rather than for evaluation purposes.

Our method consists in maximizing, with respect to shape and motion, the sim-
ilarity between each input view and the predicted images coming from the other
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views. We adequatly warp the input images to compute the predicted images,
which simultaneously removes projeclive distortion. For example, in the case of
sterecvision, we reproject the image taken by one camera onto the hypothetical
surface, then we predict the appearance of the scene in the other views by project-
ing this texture-mapped surface in the other cameras. If the estimation of geometry
is perfect, the predicted images coincide exactly with the corresponding input im-
ages, modulo noise, calibration errors, appearance changes and semi-occluded
areas. This motivates our approach: we seek a shape or 2 motion maximizing the
quality of the prediction.

Interestingly, this can be formulated as a generic image registration task. The
latter is entrusted to a measure of image similarity chosen depending on imag-
ing conditions and scene properties. This measure is basically a function mapping
two images to a scalar value. The more similar the two images are, the lower
the value of the measure is. Consequently, our formulation is completely decou-
pled from the nature of the image similarity measure used to assess the quality
of the prediction. It can be the normalized cross correlation, some statistical mea-
sures such as the correlation ratio or the mutual information [398], or any other
application-specific measure. Through this choice, we can make the estimation
robust to camera spectral sensilivity differences, non-Lambertian materials and
illumination changes.

Furthermore, contrarily to [309, 439, 285, 517], our method is not a minimal
surface approach, i.e. our energy functional is not written as the integral on the
unknown surface of & data fidelity criterion. In this approach, the data attachment
term and the regularizing term are mixed whereas we may have to control them
separately. As a consequence, to design non trivial regularity constraints, one has
to twist the metric. A good discussion of this topic can be found in [749]. The
authors show in seme numerical experiments that better results can be achieved
by integrating the similarity on the images rather than on the surface.

Consequently, in cur method, the encrgy is defined as the sum of a matching
term computed in the images and of a regularily constraint. The latter is required
to make the problem well-posed. It is application-specilic. For example, it could
be designed to preserve shape or motion discontinuities. Here we focus on the
design of the matching term and we settle for a straightforward regularization for
each problem.

To minimize our energy functionals, we perform a gradient descent. We use
a multi-resolution coarse-to-fine strategy to decrease the probability of getting
stuck in irrelevant local minima.

Our method for scene flow estimation neither needs previous optical flow
computations nor makes use of ambiguous spatio-temporal image derivatives. It
directly evolves a 3D vector field to register the input images captured at dif-
ferent times. [l can recover large displacements thanks Lo the multi-resolution
strategy and can be made robust to illumination changes through the design of the
similarity measure.

Our method processes entire images from which projective distortion has been
removed, thereby aveiding the complex machinery usually needed to match win-
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Figure 27.1. The camera setup and our notations.

dows of different shapes. Moreover, its minimizing flow is much simpler than in
[309, 439]. This results in elegant and efficient algorithms.

27.3.1 Stereovision

In the following, let a surface S C R? model the shape of the scene. We note
L : Q; ¢ R?* — R? the image captured by camera 4. The perspective projection
performed by the latter is denoted by IT; : R* — R2. OQur method takes into
account the visibility of the surface poinis, In the sequel, we will refer to 5; as
the part of S visible in image i. The reprojection from carmera 4 onto the surface
is denoted by II, &+ IL(S) — S;. With this notation in hand, the reprojection of
image j in camera ¢ via the surface writes I; o II; ol'.[gé : IL(S;) — RY. We note
M a generic measure of similarity between two images.

The matching term M is the sum of the dissimilarily between each input view
and the predicted images coming from all the other cameras. Thus, for each
oriented pair of cameras (4, j), we compute the similarity between I, and the
reprojection of 1; in camera ¢ via 5, on the domain where both are defined, i.e.
£, M 1L (Sy), in other words after discarding semi-occluded regions:

M) = 3 Muyu(s), @7.1)
i g
My(8) = Mlannsy (I, 10T oI 5) . (27.2)

We now compute the variation of the matching term with respect to an in-
finitesimal vector displacement 45 of the surface, Figure 27.1 displays the
camera setup and our notations. We neglect the variation related to visibil-
ity changes. This technical assumption is commonly used in the stereovision
literature [309, 439, 285, 517]. Using the chain rule, we get that

£==l) fﬂ,ml,-(s,)

32 M (x;) DI;(x;) DTl;(x)
e M et S

OMi; (5 + ¢ 85)
¢

61'[;;.4_{ 55(X«;}
e

1xd dx2 ZHD e ——
3x1
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where X, is the position in image i and - denotes the Jacobian matrix of a
function. For convenience to the reader, we have indicated the dimensions of the
different matrices in the product.

When the surface moves, the predicted image changes. Hence the variation of
the matching term involves the derivative of the similarity measure with respect to
its second argument, denoted by 2 A/, The meaning of this derivative is detailed
in Subsection 27.3.3. In the sequel, for sake of conciceness, we have omitted the
images for which this derivative is evaluated. But the reader must be aware that
the predicted images, as well as the domains where the similarity measures are
computed, change along the minimizing fow.

We then use a relation between the motion of the surface and the displacement
of the reprojected surface point x = 11~ S(xt)

A5y g5(i)
de

_NT 5S(x) g
4 4

£=0
where d; is the vector joining the center of camera 7 and x, and IN is the outward
surface normal at this point.

Finally, we rewrite the integral in the image as an integral on the surface by the
change of variable dx; = —N—;;ﬁdx , where z; is the depth of x in camera ¢, and
we obtain that the gradient of the matching term is

VMl = =8 ayw(xi)pfj(xj)pnj{x}‘;l; N, 273)

where §,_ is the Kronecker symbol. As expected, the gradient is zero in the regions
not visible from both cameras. The reader should also note that the term between
square brackets is a scalar function.

The regularization term is typically the area of the surface, and the associated
minimizing flow is a mean curvature motion, The evolution of the surface is then
driven by

L {,\HJFZZJSHS azmmjpnj N, (274

ot v

where H denotes Lhe mean curvature of S, and A is a positive weighting factor.

27.3.2 Scene flow

Let now S* model the shape of the scene and I} be the image captured by camera
i at time #, Let v* : $* — R® be a 3D vector ﬁeld represenlmg the motion of the
scene between ¢ a.nd t + 1. The matching term F is the sum over all cameras of
the dissimilarity between the images at time ¢ and the corresponding images at
t + 1 warped back in time using the scene flow.

Zﬂ(vt) ; (27.5)
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As the reader can check easily, its gradient writes
NTd;

3
4

HaM DIFTY DIL, (217

VIF(v") = —8

In this case, the regularization term is typicatly the harmonic energy of the flow
over the surface, and the corresponding minimizing flow is an intrinsic heat
equation [78]. Then, the evolution of the scene flow is driven by

avt —, I i % 1T
G =HAsv D 6y 7 [e.M DI} D11, (27.8)

1

where 7 is the fictious time of the minimization, Ag: denotes the Laplace-
Beltrami operator on the surface, and 4 is a positive weighting factor.

27.3.3  Some similarity measures

For sake of completeness, we present two similarity measures than can be used
in our framework: cross correlation and mutual information. Cross correlation
assumes a local affine dependency between the intensities of the two images,
whereas mutual information can cope with general statistical dependencies. We
have picked these two measures among a broader family of statistical criteria
proposed in [398] for multimodal image registration.

In the following, we consider two scalar images Iy, I» : @ ¢ B2 — R, The
measures below can be extended to vector (e.g. color) images by summing over
the different components.

The minimizing flows given in Subsections 27.3.1 and 27.3.2 involve the
derivative of the similarity measure with respect to the second image, denoted
by &M, The meaning of this derivative is the following: given two images
I, I 0 — RY wenote 8 M (1 I3) the function mapping £ to the row vectors
of R?, verifying for any image variation 1

OM(I1, Iy + €61)
de

Cross correlation is still the most popular matching measure in the stereovision
arca. Most methods still use fixed square or reetangular matching windows. In
this case, the choice of the window size is a difficult trade-off between match
reliability and oversmoothing of depth discontimiities due to projective distortion
[7E1]. Some authors alleviate this problem by using adaptative windows.

In our method, since we match distortion-free images, the size of the match-
ing window is not related to a shape approximation. The matter here is in how
big a neighborhoed the assumption of afline dependency is valid. Typically, non-
Lambertian scenes require to reduce the size of the correlation window, making
the estimation less robust to noise and outliers.

In our implementation, we use smooth Gaussian windows with an infinite sup-
port instead of hard windows. Gaussian windows are more elegant as regards the
continuous formulation of our problem and can be implemented efficiently with

= ] M (11, Ip) (%) 61() dx . 27.9)
e=0 a
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fast recursive [iltering. Thus, we gather neighborhood information using convo-
lutions by a Gaussian kernel. As this is the only difference with the traditional
definition of normalized cross correlation, we do not give the full expression of
the measure here. Moreover, due to space limitations, we invite the reader to refer
to our technical report [657] for the expression of 82 M in this case.

Mutual information is based on the joint probability distribution of the two
images, estimated by the Parzen window method with a Gaussian of standard
deviation J:

5 1 ; 5
P{il,'i.g): ET'[ Gﬁ (Il(x)—n., fg(x) —?.3) ax . (27‘]0)
f
We note P, P, the marginals. Our measure is the opposite of the muiual
information of the two images:
; . Pliy, i2)
MM z—f Bligia) g iuita)
i) e e
Iis derivative with respect to the second image writes
S MM, B)(x) = ((h(x), F2(x)) ,
ok HP PN, . (27.12}
C('H,'lg)— |Q| Cﬁ*( P PQ) (%1,%3).

In practice, along the minimizing flow, the ¢ function changes slowly relative to
I; and I5. So, in our implementation, we update it only every ten iterations.

i1 dia . (27.11)

27.4 Experimental Results

We have implemented our method in the ievel set framework [618], motivated
by its numerical stability and its ability to handle topolopical changes automati-
cally. However, our method is not specific to a particular surface model. Thus, an
implementation with meshes would be straightforward.

The predicted images can be computed very efficiently thanks to graphics
card hardware-accelerated rasterizing capabilities. In our implementalion, we
determine the visibility of surface points in all cameras using OpenGL depth
buffering, we compute the reprojection of an image to another camera via the
surface using projective texture mapping, and we discard semi-occluded areas
using shadow-mapping [720].

The bottleneck in our current implementation is the computation of the simi-
larity measure. Since it only involves homogeneous operations on entire images,
we could probably resort to a graphics processor unit based implementation with
fragment shaders (see http:/rwww.gpgpi.org).

Name |#Images | Image size | Level set size | Time (sec.)
Buddha| 25 500 x 500 1283 530
Bust 24 300 x 600 | 128 x 128 x 256 1831

Table 27.1. Description of the sterecvision datasets used in our experiments.
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27.4.1 Stereovision

Table 27.1 describes the two challenging stereovision datasets used in our exper-
iments. These datasets are publicly available from the OpenLF software (LFM
project, Intel). “Buddha” is a synthetic scene simulating a translucent material
and “Bust” includes strong specularities. However, cross correlation with a small
matching window {(standard deviation of 2 pixels) yields very good results.

Using all possible camera pairs is quite expensive computationally. Moreover,
it is often not necessary since, when two cameras are far apart, no or litile part of
the scene is visible in both views. Consequently, in practice, we only pick pairs of
neighboring cameras.

Our method is very efficient. The computation time does not exceed 30 minutes
on a 2 GHz Pentium IV PC under linux. The number of iterations is 600 for both
datasets. However, in practice, the convergence is often attained earlier. Hence the
computation time could be reduced using an appropriate stopping criterion. In our
experiments, the regularizer is a mean curvature motion.

We show our results in Figures 27.2 and 27.3. For each dataset, we display some
of the input images, the ground truth, then some views of the estimated shape.

\,1})

Figure 27.2. Some images from the “Buddha” dataset, ground truth and our results.

The overzll shape of the objects is successfully recovered, and a lot of details



450 Pons, Keriven & Faugeras

Figure 27.3. Some images from the “Bust” dataset, psendo ground truth and our results,

are captured: the nose and the collar of *“Buddha”, the ears and the moustache
of “Bust”. A few defects are of course visible. Some of them can be explained.
The depression in the Torehead of “Bust” is related to a very strong specularity:
intensity is almost saturated in some images.

Finally, compared with the results of the non-Lambertian stereovision method
of [439] on the same datasets, our reconstructions are significantly more detailed
and above all our computation time is considerably smalier.

27.4.2 Stereovision + scene flow

We have tested our scene flow algorithm on a challenging multi-view video se-
quence of a non-rigid event. The “Yiannis™ sequence is taken from a collection
of datasets that were made available to the community by P. Baker and J. Neu-
mann (University of Maryland) for benchmark purpoeses. This sequence shows a
character talking while rotating his head. It was captured by 22 cameras at 54 fps
plus 8 high-resolution cameras at 6 fps. Here we focus on the 30 synchronized se-
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Figure 27.4. First images of one sequence of the “Yiannis” dataset and cur results.

quences at the lower frame rate to demonstrate that our method can handle large
displacements.

We have applied successively our stereovision and scene flow algorithms: once
we know the shape 5%, we compute the 3D motion v? with our scene fow al-
gorithm. Since S* + v* is a very good estimate of S*+!, we use it as the initial
condition in our stereovision algorithm and we perform a handful of iterations to
refine it. This is mush faster than restarting the oplimization from scraich.

Figure 274 displays the first four frames of one of the input sequence and
our estimation of shape and 3D motion at corresponding times. We successfully
recover the opening then closing of the mouth, followed by the rotation of the head
while the mouth opens again. Moreover, we capture displacements of more than
twenty pixels. OQur results can be used to generate time-interpolated 3D sequences
of the scene, See the Odyssée Lab web page for more results,

27.5 Conclusion and Future Work

We have presented a novel method for multi-view stercovision and scene flow
estimation which minimizes the prediction error. Our method correctly handles
projective distortion without any approximation of shape and motion, and can be
made robust to appearance changes. To achieve this, we adequatly warp the in-
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put views and we register the resulting distortion-free images with a user-defined
similarity measure.

We have implemented our stereovision method in the level set framework
and we have obtained results comparing favorably with state-of-the-art methods,
even on complex non-Lambertian real-world images including specularities and
translucency. Using our algorithm for motion estimation, we have successfully
recovered the 3D motion of a non-rigid event.

Our future work includes a hardware implementation of our stereovision
raethod with graphics processor units to further reduce the computation time, and
the fusion of shape and motion estimations in order to exploit their redundancy.
We believe that this present work, by unifying stercovision and scene flow estima-
tion in the same coherent theoretical and computational framework, is a promising
step towards this integration,
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Interactive Graph-Based
Segmentation Methods in
Cardiovascular Imaging

L. Grady, Y. Sun and J. Williams

Abstract

We examine the use of three techniques, graph cuts, isoperimetric mini-
mization and random-walk partitioning for the interactive segmentation of
cardiovascular medical images. These methods can often be used effec-
tively without heavy reliance on learned or explicitly encoded priors. We
illustrate, through the use of a toy problem, the basic difference in the per-
formance characteristics of the methods. Subsequently, the suitability of
each method to a particular segmentation application in the cardiovascular
imaging domain is demonstrated.

28.1 Introduction

Isolation and quantification of structures in medical images is a continuous and
varied source of segmentation problems. Segmentation methods which rely heav-
ily on learned or explicit prior information often require significant customization
before they can be applied to a specific problem. It is often preferable to use
methods which can be quickly tested on the problem and then later enhanced
with priors to improve accuracy. Graph partitioning algorithms are one such fam-
ily of methods. In particular, we look at three segmentation techniques based on
graph partitioning that at first glance may appear similar, but on closer inspection
demonstrate unique behaviors. It is the distinct nature of these behaviors that can
make one preferable over another for a specific application.

Although the graph cuts algorithm [362, 899] has been successfully employed
in many applications, it is fundamentally a two-label algorithm. In fact, finding
a minimal cut separating multiple terminals is an NP problem, although [113]
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Algorithm ‘ Functional ' Field ‘ Constraints 1
Graphcuts | Q(z) = 27 Lz |z = {0,1} | Seeds fixed to {0, 1}

Random walker | Q(z) = T Lz |0 < 2 < 1| Seeds fixed to {0,1}
Tsoperimetric | Q{z) = i—}‘«f’f 0<a | Seedsfixedto {0}

I

Table 28.1. A tabulaled comparison of the three algorithms. See text for details.

provided an algorithm for getting within a bound of the optimal solution. The al-
gorithm finds the smallest cut between two seed groups. In cases of weak object
boundaries or small seed groups there is a tendency to find the cut that minimally
encloses the seeds. The random walker algorithm proposed in [357] has a simi-
lar user interface (i.e., user “painting”), but does not suffer from the “small cut”
problem and extends naturally to an arbitrary number of labels. The practical cost
of this computation is currently higher than that of performing a binary graph cut
on a similarly sized image graph. As will be discussed later, this algorithm also
has a formal relationship to the graph cuts algorithm.

Both graph cuts and the random walker algorithm require specification of seed
points for each output label in the resulting segmentation. In the case where a
foreground/background segmentation is desired, a user is often interested in spec-
ifying only a few pixels in the foreground region instead of labeling pixels in
both the foreground and background. Additionally, if one wants to apply one
of these algorithms by specifying seeds automatically, it is easier to automati-
cally specify foreground seeds than both foreground and background seeds. The
isoperimetric algorithm of [356] naturally extends the random walker algorithm
to a situation where only foreground labels are provided. Given a foreground-
labeled pixel (or pixel group), the isoperimetric algorithm may be derived by
starting a random walker at each unlabeled pixel and calculating the expected
number of steps before the walker reaches a labeled seed. As with the random
walker algorithm, these probabilities may be calculaied analyticaily with simu-
lation of a random walk. The expected number of steps may be converted into
a foreground/background segmentation by finding a threshold that produces the
minimal isoperimetric ratio, from which this algorithm was originally derived
[356]. Not surprisingly, there is a formal relationship between the random walker
and the isoperimetric algorithm.

28.2 Characteristic Behaviors of the Algorithms

Table 28.1 illustrates differences between these three algorithms. These differ-
ences may appear to be subtle compared with the similarities. From a practical
standpoint, one might wonder if these algorithms return similar results or whether
we can expect essentially identical behavior. It is certainly true that applying each
technique to a simple segmentation task (e.g., a black circle in a white back-
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Figure 28.1. Different “personalitics” of the three algorithms. (z) Input image with
user-specified foreground and background seeds. (b) Graph cuts finds the innermost cir-
cle because it represents the smallest cut between seeds. (c) Random walk parlitioning
finds the middle circle because it is the most “equal” boundary between the two seeds. (d)
The isoperimetric algorithm finds the outermost circle, since it minimizes the isoperimetric
ratio in (28.8). Note that no background seeds were used when applying the isoperimetric
algorithm. (¢} Both the random walker and isopcrimetric algorithms give a soft segmenta-
tion that is converted into a hard segmentation. For this image, each produce s the same
soft segmentation (up o a scaling constant) (hat may be interpreted as a probability that a
pixel lies in the foreground scgment.

ground) will produce the same segmentation. However, Figures 28,1 and 28.2 are
intended to illustrate the different “personalities” of each algorithm.

Figure 28.1 shows three concentric circles, with a foreground seed in the in-
nermost circle and a background seed outside of the outermost circle, Given this
user input, it is unclear how the “true” segmentation should be defined. Note that
there is no ambiguity in the boundaries or difference in statistics of the regions.
The real issue to be addressed by an algorithm that is given these seeds is: What
does the user want? Depending on the user (or the goal), there are three valid
outputs: The innermost object (small circle), the middle boundary between the
foreground/background seeds (middle circle), or the entire group of objects (the
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(a) Tmage with seeds (b) Graph cuts small cut (c) Graph cuts squared off’

(d) Random walker (e} Isoperimetric (f) Isoperimetric soft seg-
mentation

Figure 28.2. Weak edge behavior of the three algorithms. (a) Diagonal line image with
user-specified seeds. (b} “Small cut” behavior of graph cuts. (¢) More seeds overcome
small cut issue, but yiclds a “blocky™ segmentation (see text). {d) Random walker, () The
isoperimetric algorithm finds the desired cut, but without background seeds. (f) Solution to
(28.11) thresholded to produce a hard segmentation of (¢} having a minimum isoperimetric
ratio.

oulermost circle). These results are exactly those given by the three algorithms
respectively. Note that, regardless of the number of concentric circles, graph
cuts will always choose the smallest, random walker will choose the middle and
isoperimetric will choose the largest.

Graph cuts chooses the innermost circle because it will find the cut having the
smallest cost. Each black/while transition of a ring will bear the same cost to
cut, so the circle with smallest circumference will be preferred. This property is
valuable because it finds the smallest object “unit” surrounding a foreground seed.
The downside to this behavior is that a larger object (especially a textured object)
requires many more seeds to locate. Additionally, this property is also the source
of the “small cut” problem that can result in a return of the trivial boundary thai
minimally encloses the seeds.
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A random walker starting from a given pixel will be more likely to reach the
seed that requires crossing a smaller number of circles. Therefore, for an odd
number of concentric circles, the random walker algorithm will always choose
the middle circle. Note, however, that the probabilities form a “wedding cake”
between the inner and outer circle that could be used (using another rule, e.g.,
minimum cut) to find any of the intermediate circles as seen in Figure 28.1. This
behavior of the random walker algorithm is beneficial because the “small cut”
problem is aveided and the most “equal” boundary between the seeds is found.
However, this behavier can also result in the user having to place background
seeds close to the foreground object in order to get the desired segmentation. Ad-
ditionally, if an ever number of concentric circles are present, the random walker
algorithm will, in its neutrality between the two seeds, return a circle that threads
the middle two circles instead of “snapping” the segmentation to the nearest circle.

The isoperimetric algorithm will also produce a “wedding cake” distribution
, where each level corresponds lo a circle. Note that the background seed is not
employed in the isoperimetric algorithm. Given this solution, the isoperimetric
algorithm looks for a threshold that produces a cut minimizing the isoperimetric
ratio, defined as h = 251%@ (see below for detail). This ratio may be thought of
intuitively as the ratio of the surface area {i.e., dual to the cut} to the volume. In
a continuum setting, the isoperimetric ratio of a circle is h = %’-f;{- = ;2- which
will get smaller (and thus preferred) for a larger radius. Since the isoperimetric
algorithm chooses the threshold that minimizes the isoperimetric ratio, the largest
circle will be returned out of the “wedding cake” distribution produced by the
sclution.

Figure 28.2 illustrates another aspect of the personality of the algorithms. Here,
a (broken) black line was drawn on a white image. All three algorithms exhibit
the ability to locate the weak boundary even though there is no intensity cue at the
gap and the statistics of both regions are identical. However, with graph cuts there
are two issues. First, we initially see the “small cut” problem of when small seed
groups are placed. However, even when the seed groups are made large enough,
the algorithm finds a “squared off” cut that is unappealing. The reason for this
squared off cut is because a 4-connected lattice is employed and, therefore, the
squared off cut has the same cut cost as the diagonal cut, so one of these cuts is
simply retutmed by the algorithm. This issue may be ameliorated by using a lattice
with increased connectivity (e.g., 8-connected) at the cost of increased memory
consumption. However, even for a 4-connected lattice, the random walker and
isoperimetric algorithm neither exhibit a “squared off” solution nor suffer from
the “small cut” problem.

28.3 Applications on CT Cardiovascular data

Computed tomography (CT) imaging has, in the last 5 years, undergone a revo-
lution in resolution. Premium multi-slice scanners now have beiween 16 and 256
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detector rows with gantry rotational latencies of less than half a second. These ad-
vances have meant not only an increase in spatial, but also in temporal resolution.
CT angiography {CTA) uses injected contrast to opacity the cardiovascular sys-
tem for high-resolution imaging. CTA is now the modality of choice for imaging
3D cardiovascular morpheology. Due to the huge amount of data produced by these
scanners (2GB volumes are now not uncommon}, automated an semi-automated
post-processing techniques are no longer a curiosity, they are indispensable tools
for the radiologist.

28.3.1 Segmenting Individual Heart Chambers using Graph Cuts

Electrophysiclegical ablation procedures, like pulmonary vein isolation for cur-
ing atrial fibrillation, are today guided by a combination of electrophysiological
and morphological criteria. Therefore it is helptful for the electrophysiologist to
have 3D visualizations of the cardiac chamber which is subject to RF ablation
available for pre-procedural planning, intra-procedural catheter guidance, and
post-procedural follow-up. This requires the tools for heart chamber segmentation
from CTA images.
The requirements of the segmentalion tools are:

1. Accuracy: Segmentation shall be as close as possible to the ground truth
provided by the user.

2. Easy to use: The tool shall need minimal user input.

3. Performance: The algorithm shatl be fast and memory efficient.

Since fully autoematic segmentation inherently has the problem of reliability and
repeatability, an interactive segmentation is more aliractive. Interactive methods
take advantage of the user knowledge of the anatomy, and increase the overall
procedure efficiency.

Even with contrast, accurate chamber segmentation with minimal user inter-
action is still a challenging problem. The dilficulty is largely due to the weak
boundaries between chambers. For example, the left atrium and left ventricle of-
ten have similar intensily due to direct blood pool connection through the mitral
valve. Image noise and different imaging protocols across various sites also pose
a challenge for the robustness of the segmentation algorithm.

28.3.2  Multi-Resolution Banded Graph Cuts

Boykov and Joily [108] describe an interactive graph culs algerithm. The algo-
rithm assumes that some voxels have been identified as object or background
seeds based on a priori knowledge from the anatomy. It computes a globally
optimal binary segmentalion that completely separates the object seeds and the
background seeds.

Despite the power of finding a globally optimal solution, the major difficulty
of the graph cuts algorithm lies in the enormous computational costs and memory
consumption. Typical CT scans generate a 3D volume of hundreds of slices of
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images. For example, & voelume of 512x512x300 has 75M voxels. A graph that
stores the nodes and edges can easily consume over 1GB memory. Performing a
graph cut segmentation on this volume using the max-flow algorithm [345] can
take several minutes.

The approach we use to make the graph cuts algorithm practical in this context
is a multi-resolution banded formulation. With the prior knowledge of the rough
size of the chamber, the background seeds can be automatically detected after the
user specifics an object seed inside the chamber. This makes it possible to achieve
one-click-segmentation. What makes this possible is the compact shape of the
heart chamber and the relatively homogeneous intensity in the chamber due to the
contrast agent injection.

The idea of this algorithm is first to get a rough segmentation using graph cuts
on a reduced resolution graph. The low resolution estimate is then used to guide
a high resolution banded cut.

The algorithm contains five steps:

1. Apply a seeded region growing [4] from the object seeds in the low res-
olution volume. The growing stops when reaching a predefined maximal
distance that depends on the g priori knowledge of the typical chamber
size. The result may contain outliers due to leaking to left ventricle, the
pulmonary arteries, and the bones.

2. Dilate a layer from the boundary of the region growing. The outer layer of
the dilation is marked as background seeds.

3. Apply graph cuts in low resolution to get a rough segmentation of the left
atrium. It is fast to solve because there are significantly fewer nodes for the
low resolution graph.

4, Dilaie a layer from the boundary of the rough segmentation to form a band
whose inner boundary is marked as object seeds and outer boundary is
marked as background seeds.

5. In high resolution, apply the graph cuts te get an accurate segmentation
result. [t is also fast Lo solve because the graph is built on the narrow band
that only contains a few layers of voxels.

28.3.3 Empirical Results

Using the multi-resolution and banded graph cuts, the segmentation of the heart
chambers can be achieved with a single mouse click inside the left atrium.

Fig. 28.3(a) shows the one click segmentation of the left atrium using the multi-
resolution and banded graph cuts algorithm, Tt is segmented from a CT volume
with the resolution of 512x512x370 and it takes less than 15 seconds to segment
the left atrium on a Pentium 4 2.4GHz computer and uses less than 200MB mem-
ory. Fig. 28.3(b) shows the separate heart chambers and vessels, including left
atrium, left ventricle, right atrium, right ventricle, and aorta. These chambers are
segmented individually using the multi-resolution, banded graph cuts algerithm.
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(a) (b)

Figure 28.3. Renderings of cardiac segmentations. (a) Left atrium. (b) Multiple chambers.

28.3.4 Random Walks for Simultaneous Chamber Segmentation

Where graph cuts are well suited to extraction of a single foreground object from
a general background, extension to parallel multi-label segmentation does not fol-
low naturally. Alternatively, the random walker algorithm can segment multiple
regions in a single interactive step.

Assume that the user has provided K labeled pixels (hereafter referred to as
seed peints or seeds). For each unlabeled pixel, we ask: Given a random walker
starting at this location, what is the probability that it first reaches each of the K
seed points? It will be shown that this calculation may be performed exactly with-
ouf the simulation of a randem walk. By performing this calculation, we assign
a K -tuple vector to each pixel that specifies the probability that a random walker
starting from each unlabeled pixel will first reach each of the K seed points. A
final segmentation may be derived from these K -tuples by selecting for each pixel
the most probable seed destination for a random walker. In this approach, we treat
an image (or volume) as a purely discrete object — a graph with a fixed number
of vertices and edges. Each edge is assigned a real-valued weight corresponding
to the likelihood that a randem walker will cross that edpe (e.g., a weight of zero
means that the walker may not move along that edge).

[t has been established [450, 283] that the probabilily of a random walker first
reaching a seed point exactly equals the solution to the Dirichlet problem [227]
with boundary conditions at the locations of the seed points and the seed point in
question fixed to unity, while the others are set to zero, A steady-state, DC circuit
analogy is also given in [357]. Using the principle of superposition from circuit
theory, it can be easily shown that the probabilities at each node sum to unity {(as
expected). For this reason, we need only solve K — 1 systems, given K labels,
since the remaining system is known via the unity constraint (i.e., at each node
subtract the sum of the K — 1 solutions at that node from unily to recover lhe
solution to the remaining system).
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28.3.5 The Random Walker Algorithm

We begin by defining a precise notion for a graph. A graph [382] consists of a pair
G = (V, B} with vertices (nodes) v € V and edgese € & C V' x V. An edge,
€, spanning two vertices, »; and vy, is denoted by e;;. A weighted graph assigns
a value to each edge called a weight. The weight of an edge, e,;, is denoted by
w(eq;) or wyy. The degree of a vertex is d; = 3 w(e;;) for all edges e;; incident
on ;. Given a set of nonnegative weights, the probability that a random walker
at node v; transitions to node v; is given by p;; = %»j— The following will also
assume that our graph is connected.

In order to represent the image structure (given at the pixels) by random walker
biases {i.e., edge weights), one must define a function that maps a change in image
intensities to weights. Since this is a common feature of graph based algorithms
for image analysis, several weighting functions are commonly used in the litera-
ture [737, 112, 356]. Additionally, it was proposed in [923] to use a funclion that
maximizes the entropy of the resulting weights. In this work we have preferred
{for empirical reasons) the typical Gaussian weighting function given by

Wi = e",@(g,‘- =8 }2, (28.[}

where g, indicates the image intensity at pixel 4. The value of [ represents the
only free parameter in this algorithm. In practice, we employ

Wiy = e sle—8)® L o (28.2)

where ¢ is a small constant (we take ¢ = 10~%) and p is a normalizing constant
p = max(g; — g;), Y4, j. The purpose of (28.2) is to keep the choice of § relevant
to images of different quantization and contrast, as well as make sure that none of
the weights go identically to zero (resulting in a possible disconnection).

The discrete Dirichlet problem has been discussed thoroughly in the literature
[85, 283] and a convenient form for the solution is given in {358]. We will now
review the method of solution.

Define the discrete Laplacian matrix [561] as

& ifi=j,
Ly, = ¢ ~w;; ifv; and v; are adjacent nodes, (28.3)
0 otherwise,

where L, is used to indicate that the matrix L is indexed by vertices v; and v;.

Partition the vertices into two sets, Viy (marked/seed nodes) and Vy; (unmarked
nodes) such that Viy UV = V and Vi, NV = & Note that Viy contains ali seed
points, regardless of their label. Then, we may reorder the matrix L to reflect the
subsets

BT Ly

Denote the probability assumed at each node, v;, for each label, s, by z$. Define
the set of labels for the seed points as a function ¢(v;} = s, Yo, € Vyy, where

L= [LM B}. (28.4)
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s € Z,0 < 8 < K. Define the |Vas| x 1 (where | - | denotes cardinality) marked
vector for each label, 5, at node v; € Vs as

. )1 iy} =s,
T 0 ifelyy) # s.

As demonstrated in [358], the solution to the combinatorial Dirichlet problem
may be found by solving

{28.5)

Lyz® = —Bm®, (28.6)

which is just a sparse, symmetric, positive-definite, system of linear cquations
with |Vi/| number of equations and the number of nonzero entries bounded from
above by 2|E| 4+ |V]. Since Ly is guaranteed to be nonsingular for a connected
graph [84], the solution, ¥, is guaranteed to exist and be unique. Therelore, the
potentials for all the labels may be found by solving the system

LuX = —BM, (28.7)

where X has columns taken by each z® and M has columns given by each m®.
As mentioned above, one must solve only K — 1 systems, given K Iabels, since
the probabilities at each node must sum to unity.

28.3.6 Numerical solution

Many good methods exist for solving large, sparse, symmetric, linear systems of
equations {e.g., [352, 666]). A direct method, such as LU decomposition with
partial pivoting has the advantage that the computation necessary to solve (28.7)
is only negligibly increased over the amount of work required to solve (28.6).
Unfortunately, current medical data velumes frequently exceed 256 x 256 x 256 ==
16M voxels, and hence require the solution of an equal number of equations.
Furthermore, there is no reason to believe that the resolution will not continue to
increase. Most contemporary computers simply do not have enough memory to
allow an LI/ decomposition with that number of equations.

The standard alternative to the class of direct solvers for large, sparse systems
15 the class of iterative solvers [374]. These solvers have the advantages of a small
memory requirement and the ability to represent the matrix-vector multiplica-
tion as a function. In particular since, for a lattice, the matrix Ly has a circulant
nonzero structure (although the coefficients are changing), one may avoid storing
the matrix entirely. Instead, a vector of weighls may be stored (or computed on the
fly, if memory is at a premium} and the operation Lyyxj, may be performed very
cheaply. Furthermore, sparse matrix operations (like those required for conju-
gate gradients) may be efficiently parallelized {273, 363](e.g., for use on a GPU).
Because of the relationship of (28.6) to a finite differences approach to selving
the Dirichlet problem on a hypercube domain, the techniques of numerical solu-
tion to PDEs may also be applied. Most notably, the algebraic multigrid method
[734, 258] achieves near-optimal performance for the solution to equations like
(28.6).
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(a) Input {b) Seeds () Segmentation

Figure 28.4. Random walker algorithm applied to a four-chamber slice of a cardiac CTA
volume. (a) Original four-chamber slice. (b) User-specified seeds of each chamber (i.e., left
ventricle, left atrium, tight ventricle, right atrium, background). (c) Resulting segmentation
boundaries.

We have implemented the standard conjugate gradients algorithm with a mod-
ified incomplete Cholesky preconditioning [56], representing the matrix-vector
multiplication implicitly, as described above on an Intel Xeon 2.4 GHz dual-
processor with 1GB of RAM. Sclution of (28.6) using conjugate gradients
(tolerance = 10~%, sufficient for the algorithm) for a 256 x 256 image with two
randomly placed seed points required approximately 3 seconds.

To summarize, the steps of the random walker algorithm are:

1. Obtain a set, Vy,, of marked pixels (seeds) with K labels from the user.
2. Using (28.1), map the image intensities to edge weights in the lattice.

3. Solve {28.7) outright for the probabilities or solve (28.6) for each label
except the final one, f (for computational efficiency). Set ,cf = ¥ =

Eséf x-f'

4. Obtain a final segmentation by assigning io each node, v;, the label
corresponding to max, ().

28.3.7 Empirical Results

Using (28.1), we transformed a four-chamber view of a CTA heart volume into a
weighted graph and applied the random walker algorithm. Results are displayed in
Figure 28.3.7. The random walker algorithm was chosen for this problem because
five labels are required to segment the four chambers of the heart {(each chamber
plus the background). Segmentation of this 256 x 256 image required approxi-
mately 20 seconds of computation time. We have found this algorithm reliable on
a large variety of CTA cardiac data with varying levels of noise.
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28.3.8 Isoperimetric algorithm

Neither the graph cuts nor the random walker algorithm can be used when only
foreground seeds are specified by the user. The isoperimetric algorithm of [356]
may be interpreted as a natural extension of the random walker algorithm to a
single seed group. The segmentation is based on computation of the expected
number of steps a random walker will take, starting from each pixel, to find the
user-specilied seeds. 1lowever, in the original formulation [356], the isoperimetric
algorithm was derived from a segmentation goal of minimizing the isoperimetric
ratio
a7 L

~ min(z?'d, (17 — z7)d)’

where 17 is the vector of all ones and d is the vector of node degrees. The indicator

veclot, @, is defined as
p {0 ify; € 5, (59)

Q) (28.8)

1 ify £ 85,

where S indicates the set of foreground nodes. Unfortunately, a combinatorial
minimization of this problem is NP-Hard [581]. Consequently, the vector z was
relaxed to take real values and the “volume” (represented combinatorially by
the denominator) was fixed to a constant, i.e., x7d = k (see [356] for a full
exposition).

Using a Lagrange multiplier to perform a constrained minimization gives the
energy as

Qlx) = 2T La — MzTd - k), (28.10)

and the resulting minimum as
1
Ly = -é-)\d. {28.11)

Since we are only concemned with relative values of the solution, and in order that
{28.11) represents the expected number of steps required to find a seed, we ignore
the scalar factor 7”2\-, setting % =

Although the Laplacian matrix in (28.11) is singular, the incorporation of user-
specified seeds, e, x; = 0,Vv; € Vir removes the singularity. The solution, x;,
at node, v, obtained through solution of {28.11) gives the expected number of
steps that a random walker would take to find a seed node (see [794] for justifica-
tion of this interpretation). Indeed, if one were to solve (28.11) for two seeds, v
and v, then

_1TdU - d‘u
La! = dy : (28.12)
dy,

where 17 represents the vector of all ones, dy; represents the vector containing
the degrees of unlabeled nodes. The reason that (28.12) holds is because premul-
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tiplication of both sides by 17 produces zero on the left hand side, so the right
hand side must be balanced. Then,

d ~1dy ~ dy dy + dn + da
L(;r.2 - .'I:I) = (EU — dU = ]
il ITdU - dl dwl "1TdU ™ dn o dl
(28.13)

Since it is known [85] that multiplication of the solution to the random walker
problem, xrw, {given the same two seeds as above) by the Laplacian results in

P
Lopw = | 0 |, (28.14)
—p

where p represents the effective conductance between nodes vy and v,,, the solu-
tion to two {or mote) isoperimetric systems {28.11) also yields the random walker
probabilities {up to a scaling and shift). It 1s intuitive that this should be true, since
we would expect that a random walker having fewer expected steps to reach one
seed over another would also be most likely to reach that seed first.

Computation of a solution to {28.11) yields a notion of how “far away™ a given
node is to a seed point, but it does not give a hard segmentation. Therefore, in
accordance with [356], we convert the solution to (28.11) lo a hard segmentation
by thresholding the solution, i, at the value that produces a hard segmentation
minimizing (28.8). Only n thresholds must be evaluated (i.e., one for each node)
and the values of (28.8) may be evaluated quickly, leading to a fast production of
a hard segmentation {see [356] for more details). Producing a hard segmentation
in this way guarantees that all nodes belonging to the foreground segment are
connected ox, if more than one seed group is present, each group of foreground
pixels is connected to a seed [356]. Note that this procedure for converting a soft
segmentation into a hard segmentation is very similar to what is performed in the
NCuts algorithm [737].

To summarize, the sieps of the isoperimetric algorithm are:

1. Obtain a set, Vs, of marked pixels (seeds) indicating foreground.

2. Using (28.1), map the image intensities to edge weights in the lattice.

3. Solve (28.11) for the expected number of steps taken by a random walker
starting from each pixel to reach a node in V.

4. Obtain a hard segmentation by trying n thresholds, «v, of & and choosing the
segmentation that produces the smallest ratio given in (28.8). Assign each
node, v;, to foreground if #; < o and to background if z; > a.

28.3.9 Bone-Vessel Separation

In CTA scans, contrast enhanced and calcified blood vessels can appear with the
same intensity profile as bones. Further confounding an automatic bone/vessel
segmentation is the fact that bones and vessels often touch each other and partial
volume effects produce a gradual, diffuse boundary. Due to the difficulty of this
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(a) Input {b) Seeds () Vessel

Figure 28.5. Isoperimetric algorithm applied to vesscl/bone separation. This problem is
difficult because bone and vessel have similar intensities and touch each other (1., have a
weak boundary} at several areas. (a) Original 3D image. (b) User-specified seeds of vessel
(foreground} and bone (background). See text for meaning of background seeds in this
application. (c) Resulting segmentation vessel segmentation.

situation, a user-guided mode is required Lo accurately separate bones and bleod
vessels.

The ideal user interface for this application is for a user to provide a single
click on a blood vessel, without taking the time to label the bone, We first used an
automatic segmentation algorithm to produce an initial bone/vessel segmentation.
After this initial stage was completed, the user was able to click on a blood vessel
and the isoperimetric algorithm was run on the subgraph of the original volume
defined by the initial, automatic, segmentation. Application of the isoperimetric
algorithm to this problem cften gives the correct answer after placement of one or
two vessel seed points. However, there were cases in which the vessel segmenta-
tion “bled” mto the bone. To handle these circumstances, we allowed the user to
enter “bone” seeds as well. Inclusion of a bone seed at node, v;, had two effects:

1. Scaling the d; entry on the right hand side of (28.11) by a large factor,
¢ >> 1. This scaling has the effect of “pushing back™ the solution to
(28.11) from node w»,. Alternatively, the scaling may also be interpreted
as an additional injection of current at v; in the circuit analogy of the
isoperimetric algorithm presented in [356].

2. Limiting the threshold, o, to @ < ;. With this limi, the resulting hard
segmenlation never encompasses the bone seed.

The performance of the isoperimetric algorithm is data dependent in this semi-
automatic application. However, the algorithm supported interactive performance
(sub-second) for the 64 x 64 x 64 sub-volumes used in our application.
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28.4 Conclusions

The three algorithms described in this section exhibit distinct behaviors that make
each suitable for a given problem. In practice, once a particular method is found to
work well on a given problem without priors, priors are then encoded or learned
from examples to improve overall performance. It remains a challenge to improve
the computational efficiency of these techniques. Already we have seen perfor-
mance improvements of one to two orders of magnitude by mapping the core
solvers for these problems into commodity graphics hardware {GPU}.
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3D Active Shape and Appearance
Models in Cardiac Image Analysis
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Abstract

This chapter introduces statistical shape- and appearance models and
their biomedical applications. Three- and four-dimensional extension of
these models are the main focus. Approaches leading to automated landmark
definition are introduced and discussed. The applicability is underlined by
presenting practical examples of 3D medical image segmentation.
Keywords: Statistical shape models, point distribution models, active shape
models, active appearance models, multi-view models, landmarking, cardiac
segmentation, magnetic resonance.

29.1 Introduction

Three-dimensional diagnostic organ imaging is now possible with X-ray com-
puted tomography, magnetic resonance, positron emission tomography, single
photon emission tomography, and ultrasound to name just the main imaging
modalities. While imaging modalities are developing rapidly, the images are
mostly analyzed visually and therefore qualitatively. The ability to quantitatively
analyze the acquired image data is still not sufficiently available in routine clinical
care. The wealth of information buried in these acquired data is not fully exploited
because of the tedious and time-consuming character of manual analyses. This is
even more so when dynamic three-dimensional image data need to be processed
and analyzed.

Much effort has been described on data driven approaches to automate the seg-
mentation of medical images, however there are three main reasons why these
frequently exhibit lower success rate in comparison with human expert observers,
especially when applied to clinical-quality images — data driven methods do not
incorporate a sufficient amount of a priori knowledge about the segmentation
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problem; do not consider three-dimensional or temporal context as an integral
part of their functionality; and position the segmentation boundaries at locations
of the strongest local image features not considering true anatomical boundary
locations and shape constraints. For these reasons, model driven image analy-
sis has received considerable attention over the last decade. Especially statistical
models of shape and appearance have found widespread application in biomed-
ical segmentation problems. In this chapter, we will briefly introduce statistical
shape- and appearance models and their biomedical applications, discuss issues
inkerent to 3D extension of these models, and focus on application examples of
segmentation of 3D medical volume data.

29.1.1 Background

In general, statistical models capture the mean shape and shape variations from a
training set. Building on the principles explored by Kendall [458], and Dryden and
Mardia [284], Cootes and Taylor developed & statistical point distribution model
(PDM), originally for shape analysis. This approach has helped to gain insight into
typically occurring analomical varialions [220, 223]. Point Distribution Models
describe popuiations of shapes using statistics of sets of corresponding landmarks
of the shape instances [220, 223, 752]. By aligning /N shape samples {consisting
of n landmark points) and applying a principal component analysis (PCA) on the
sample distribution, any sample x within the distribution can be expressed as an
average shape X with a linear combination of eigenvectors P superimposed

x=%+Pb . (29.1)

In two-dimensional models, p = min(2n, N — 1} eigenvectors P form the prin-
cipal basis functions, while in a three-dimensional model; p = min(3n, N — 1)
eigenvectors are formed ', Tn both cases the corresponding eigenvalues provide
a measure for compactness of the distribution along each axis. By selecting
the largest ¢ eigenvalues, the number of eigenvectors can be reduced, where a
proportion & of the total variance, Vo, is described such that

q p
Y Mz k-Vp where Vr=) A . (29.2)
i=1 i=1
One of the primary contributions of PDMs was an ease of automated learning of
the model parameters from sets of corresponding points.

Apart from shape analysis, the learned PDM eigenvariations can be applied to
image segmentation and motion tracking. This PDM extension is known as Ac-
tive Shape Model (ASM), and consists of an iterative image matching scheme
designed to fit the model to image data, while constraining the allowed model
deformations within the trained statistically plausible limits. ASMs may use a

1'The minimum operator is needed since we frequently have more corresponding shape points than
training set samples.
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gray-level model of scan lines perpendicular to the model contour or surface to es-
timate new update positions for each landmark points. Alternatively, updale points
can be generated by an edge detector or a (neural or fuzzy) pixel classifier. The
differences belween the cloud of candidate image feature points and the model
points drive the model alignment and deformation in each iteration. The model
deformation is statistically constrained to lie within the subspace spanned by the
selecled modes of variation of the PDM. Early applications of Active Shape Mod-
els address segmentation of for instance echocardiographic data [223] and deep
neuroanatomical structures from MR images of the brain [293]. In recent litera-
ture, a diversity of other, mainly 2D biomedical applications have been described
for a range of imaging modalities and organs.

The third type of landmark based model is the Active Appearance Model
(AAM) introduced by Cootes [219, 222]. AAMSs are an extension of PDMs with
a statistical intensity model of a complete volumetric image patch, as opposed to
merely scan lines near the landmarks in the ASM matching. An AAM is built by
warping a mesh tessellating the training shapes to the mesh of the average shape.
Obviously, this requires a consistent mesh node localization in all shapes of the
training set. After inlensity normalization to zero mean and unit variance, the in-
tensity average and principal components are computed. A subsequent combined
PCA on the shape and intensity model paramelters yields a set of components that
simultaneously capture shape and texture variability. AAM matching is based on
minimizing a criterion expressing the difference between mode! intensities and
the target image. This enables a rapid search for the cotrect model location dur-
ing the matching stage of AAMs, while utilizing precalculated derivative images
for the optimizable parameters. The sum of squares of the difference between the
model-generated paich and the underlying image may serve as a simple criterion
for matching quality.

AAMs have shown to be highly robust in the segmentation of routinely ac-
quired single-phase, single slice cardiac MR [575] and echocardiographic images
[105], because they exploit prior knowledge about the cardiac shape, image ap-
pearance and observer preference in a generic way. For a detailed background on
2D Active Appearance Shape and Appearance Models and their application to
image segmentation, the reader is referred to [218, 759].

This chapter focuses on dimensional extension of landmark based models, and
is mainly limited to the well-established PDMs, ASMs and AAMs. For complete-
ness, we also mention a few proposed interesting alternatives to landmark-based
statistical modeling that also enable 3D statistically constrained segmentation:

» Statistical Deformation Models {696, 529] are constructed by register-
ing several training sets using multi-level free-form deformations. These
free-form deformations are parameterized using a control point grid, and
statistical analysis using PCA is performed on the conirol point sets,
yielding an average deformation and principal components.

« Probabilistic Atlases have been widely applied to 3D shape modeling, see
for instance [528]. These are typically construcied by rigidly registering
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a set of 3D manual segmentations, and probability maps are generated by
blurring the segmented structure for each image, and averaging over all
subjects. These models can be applied to segmentation using expectation
maximization algorithms.

A multiscale 3D shape modeling approach called M-reps was developed
by Pizer ct al. [649]. M-reps support a coarse-to-fine hierarchy and model
shape variations via probabilistically described boundary positions with
a width- and scale-proportional tolerances. Points on the surface are ex-
pressed in a local object coordinate frame spanned by a medial skeleton,
vielding object specific point correspondence.

29.1.2  Issues inherent to 3D extension

Initially, most PDM, ASM and AAM models were applied to 2D modeling and
matching problems. However, because many modem imaging modalities deliver
(dynamic) 3D image data, extension to higher dimensions is desired. A critical
issue to achieve extension of PDMs to 3 and higher dimensions is point cor-
respondence: the landmarks have to be placed in a consistent way over a large
database of training shapes, otherwise an incorrect parameterization of the ob-
ject class would result. In a 2D case, the most straightforward definition of point
correspondence is by identitying evenly spaced sampling points on a boundary
from one characteristic landmark to the next, although this may lead to a sub-
optimal sampling. In a 3D case, the problem of defining a unique sampling of
the 3D object surfaces is more complex, and far from trivial. Because of this, 3D
point correspondence has recently been intensively researched, and three main
approaches can be distinguished:

= Correspondence by parameterization: this has mainly been applied to
relatively simple geometries that can be described using a spherical or
cylindrical coordinate system, in combination with a few well-defined land-
marks to fixate the coordinate frame. Applying this coordinate definition on
all the samples yields parametrically corresponding landmarks, as will be
exemplified in Section 29.2.3.2.

Correspondence by registration or fitting by mapping a 3D surface tessela-
tion of one sample to all the other samples. Lorenz et al. [527] for instance
propose a 3D deformable surface that is matched to binary segmentations
of new samples. By projecting the tesselation of the matched template to
the new sample, correspondence for the new sample is achieved. Alter-
natively, non-rigid volumetric registration can be applied to defline dense
correspondences between training samples, as will be detailed later on in
Section 29.2.1. These approaches have the advantage that topelogically
more complex shapes can be handled.

Correspondence by optimal encoding: Davies et al. [247] has applied for
instance a Minimum Description Length (MDL) criterion to evaluate the
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quality of correspondence in terms of the ability to encode the whole train-
ing set for a given landmark distribution. Stegmann [759] have shown that
these MDL encoded models optimize model properties such as compact-
ness and specificity. Davies [246] also developed a 3D MDL approach
for 3D objects, however to our knowledge this model has only been ap-
plied to shape analysis, and not for segmentation. In this chapter, no further
applications are given for these MDL based approaches.

In the next section, we introduce a number of recently proposed 3D extensions
of the PDMs, ASMs and AAMSs. First, the issue of automatically defining a dense
correspondence over the training set is addressed, detailing an exampte approach
based on non-rigid registration. The achieved point correspondence is then in-
corporated into an Active Shape Model that can be applied to multi-modal and
multi-planar sparse data. Subsequenily, several higher dimensional exiensions of
Active Appearance Models are discussed.

29.2 Methods

29.2.1 3D Point Distribution Models

Frangi et al. [327] have described a methodology for the construction of three-
dimensional (3D) statistical shape models of the heart, from a large image
database of dynamic MRI studies. Non-rigid registration is employed for the au-
tomatic establishing of landmark cortespondences across populations of healthy
and diseased hearts. The general layout of the method is to align all the images
of the training set to an atlas that can be interpreted as a mean shape. Once all
the necessary transformations are obtained, they are inverted and used to propa-
gate any number of arbitrarily sampled landmarks on the atlas, to the coordinate
system of each subject. In this way, while it is still necessary to manually draw
the contours in each training image, this technique relieves from mannal land-
mark definition for establishing the point correspondence across the training set.
The method can easily be set to build either 1- or 2-chamber heart models. More-
over, its generality allows for using it with other modalities (e.g., SPECT, CT)
and organs with shape variability close to that of the heart (e.g., liver, kidneys). A
detailed description of the method can be found in [327], and can be summarized
as follows:

1. The manually drawn contours in the training setl are converted into labeled
shapes by flood-filling each (closed) sub-part with a different scalar value.

2. The labeled shapes are aligned through a global transformation (rigid regis-
tration with nine degrees of freedom: translation, rotation, and anmisotropic
scaling) to a Reference Sample (RS) randomly chosen from the training set.
The RS is therefore considered as the first atlas estimate.
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3. A new atlas is constructed by shape-based averaging of the aligned shapes.
This is performed by averaging the images in their distance transform do-
main, and defining a new labeled shape by considering the zero iso-surface
of each sub-part separately.

4. To minimize the bias introduced by the choice of the RS, steps 2 and 3 are
repeated until the atlas becomes stable. At this point, the atlas is said to be
in a Reference Coordinate System (RCS),

5. Subsequently, each rigidly aligned shape is locally deformed (using non-
rigid registration) in order to accommodate to the RCS atlas.

6. The obtained local transformations are averaged and the resulting transfor-
mation is applied to the RCS atlas. The new atlas is said to be in a Natural
Coordinate System (NCS) and diminishes the influence of the RS selection.

7. A new set of global and local transformations are recalculated in the same
way as in steps 2 and 5 (Fig. 29.1{a)).

8. Finally, any automatically generated landmarks in the NCS atlas can be
propagated to the training shapes through the transformations in step 7

(Fig. 29.1(b)).

9. In order to build the statistical shape models, the autolandmarked shapes
are normalized with respect to a reference coordinate frame, eliminating
differences across objects due to rotation, translation and size.

Once the shape samples are aligned, the remaining differences are solely shape
related, and PCA can be performed. In Fig. 29.2, the first 4 eigenmodes of the
obtained model are displayed. The main characteristic variations consist of size
difference, twisting, rotation and their combinations. The 1st mode describes the
size differences of the hearts. The 2nd mode indicates the large variation of the
right ventricle, The 3rd and 4th modes describe the bending and twisting of the
left ventricle. Higher modes combine vertical bends and less global deformations,
but with decreasing impact to the total shape.

29.2.2 3D Active Shape Models

The bi-ventricular model described above was extended with a matching algo-
rithm to apply it to image segmentation [827]. A key design criterion behind
this matching approach was applicability to data acquired with arbitrary image
slice orientations, from different modalities (MR and CT), and even to sparsely
sampled data with arbitrary image slice orientations. This implies that:

= only 2D image data may be used for updating the 3D medel, to ensure
applicability to arbitrarily oriented sparse data

« generation of update points is executed based on relative intensity differ-
ence to remove dependence on lraining-based gray-level models.



3D Active Shape and Appearance Models in Cardiac Image Analysis 477

NCS Allas

‘ Autolandmarked
: Samples
{ S "
\)-j NCS Atlas
= — \‘ . =
ai /, NCS Atlas &

samplis aligned swmples

(2) )]
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d, they are inverted and used to propagate any number of arbitrarily
sampled landmearks on the NCS atlas, to the coordinete system of the original samples.

To accomplish this, the landmark points are embedded in a surface triangular
mesh. During the matching, this mesh is intersected by the image planes, gener-
ating 2D contours spanned by the intersections of the mesh triangles. To remove
dependencies on image orientation or limited resolution, medel update informa-
tion is represented by 2D poini-displacement vectors. The 2D update vectors
located at the intersections of the mesh with the image slices are first propagated
to the nodes of the mesh, and projected to the local surface normals. Multiple con-
tributions from different mesh intersections to a single mesh node are averaged to
yield a single 3D update vector per node. Scaling, rotation, and translation differ-
ences belween the current state of the model and the point cloud representing the
candidate updates are eliminated by alighment. The current mesh state is aligned
with the candidate model state using the Iterative Closest Point algorithm [82].
Successively, the parameter vector b controlling model deformation is calculated.
An adjustment to b with respect to the previous iteration is computed, using both
Tproposed AN Eeyrrent

b= bewrrent + &b = boyrrent + @T(wpropmed = wc‘urrent) (29.3)

With @ oy rrens representing the aligned current state of the mesh, and beyyrent rED-
resenting the parameter vector describing the current shape of the model within
the statistical context.

In the classic ASM[223], model updates were generated using a (multi-
resolution) statistical pray level model (GLM) in each sample point; this requires
a modality-dependeni Llraining stage. To enable application to different modalities
without retraining, a Fuzzy Inference System (FIS) was selected instead, which
determines the 2D point-displacement vectors by pixel classification based on
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by varying & single model parameter (6;), fixing all others at zero standard deviations (SD=+/A;) from the mean
shape.

relative intensity differences between tissues in the sampled data. This pixel clas-
sification is realized by fuzzy clustering of the intensity strips in the vicinity of the
surface, Based on the resulting membership functions, different tissue transitions
from blood to muscle and muscle to air can be inferred, which form the update
points for the model matching.

The combined active shape model has been applied to cardiac MR data, where
the left and right ventricle are segmented (see Figure 29.3(a)). Modality inde-
pendence of the model has been shown in [827] , where the mode! is applied
to MR and CT images without retraining. Independence of planar orientation is
illustrated in Figure 29.3(b)

Alternatively, Kaus et al. [457] describe an ASM-based approach, where the
matching mechanism is embedded in the internal energy term of an elastically de-
formable model. Training samples are manual segmentations expressed as binary
volumes, and point correspondence is achieved by fitting a template mesh with a
fixed point topology to each binary training sample. Contrary to van Assen et al.
[827], they model the endo- and epicardial shapes separately. However, a coupling
is realized by integrating connecting vertices between both surfaces and adding a
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(@ (&)

Figure 29.3. (2) Application of the bi-ventricular 3D ASM to & cardiac MR image volume, (b) Matching of the
model to 3 sparse, arbitrarily oriented MR image planes

connection term to the internal energy. In addition, they adopt a spatially varying
featnre model for each landmark. This approach has the advantage that statistical
shape constraints are imposed on the allowed elastic mesh deformation, while al-
lowing for some flexibility to deviate from the trained shapes to accommodate tor
untrained shape variability.

29.2.3 3D and 4D Active Appearance Models
29.2.3.1 2D +time Active Appearance Models

Segmentation of sequences of 2D images, such as echocardiographic or cardiac
MR slices is often hampered by the fact that segmentation results are not time-
continueus. Especially, sequential application of 2D segmentation techniques in
subsequent frames may yield spatial and temporal discontinuities. To resolve that,
an extension to 2D + time modeling has been proposed in [105, 828], where the
terapotal dimension is encoded into the model. In addition to spatial correspon-
dence, time-correspondence is defined by defining "landmark time frames" such
as end-diastole and end-systole. The shapes are interpolated to a fixed number
of frames using a nearest neighbor interpolation. This time-correspondence al-
lows the shape- and intensity vectors to be simply concatenated over the whole
sequence and treated as 2D images, and the 2D AAM machinery described earlier
can be applied unaltered. Though strictly speaking, this is not a fully 3D model,
this way the segmentation is performed on all frames simultaneously, yielding
time-continuous resulis. This approach has been validated on echocardiographic
image sequences {105} and slice-based cardiac MR image sequences {828].
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Figure 29.4. Line parameterization, defining application specific point correspondence for
the 3D cardiac left ventricle. The vertical line demarcates the starting point for a slice-bayed
radial sampling, and is based on a well defined anatomical landmark

29.2.3.2 3D Active Appearance Models: Modeling Volume Appearance

As discussed in the 3D ASM section, Active Shape Models are updated based on
local intensity models in the vicinity of the landmarks. AAMs however differ in
the sense that a complete intensity volume is modeled along with the shape, and
model matching is based on trying to "blend in" the model in the target image.
Mitchell et al. [574] have developed a 3D extension, where point correspondence
is based on an application specific coordinate system (see Figure 29.4).

To create such an appearance model of a full volume, all the sample volumes
are warped to the average shape to eliminate shape variation and yield voxel-
wise correspondence across all the training samples. The voxel intensities can be
represented as a shape-free vector of intensity values. Warping an image I to a
new image I' involves creating a function which maps control points x; to x}
as well as the intermediate points in between. For the 2D case, either piecewise
affine warping or thin-plate spline warping is adequate and landmark points are
used to construct the shape area as a set of triangles.

In 3D models, piecewise affine warping is extended to tetrahedra with four
COMers, Xj, Xa, X3, and x4. Any point within the tetrahedron is represented as
* = ox1+0xa+yx3+0dx4. In a general case creating a telrahedral representation
of volume is solved using a 3D Delaunay Triangulation algorithm. Because all
volumes are warped to the average volume, barycentric coordinates, «, 3, v, ¢ are
precomputed for each fixed voxel point eliminating the time consuming process of
searching for the enclosing tetrahedron for each voxel point during the matching.

After the warping phase, the shape-free intensity vectors are normalized to an
average intensity of zero and an average variance of one as described above. Next,
PCA is applied to the shape-free intensity vectors to create an intensity model, In
agreement with the AAM principle, shape information and intensity information
are combined into a single active appearance model. Lastly, another PCA is ap-
plied to the coefficients of the shape and intensity models to form a combined
appearance model [222].
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In the equations below, the subscript s corresponds to shape parameters while
the subscript ¢ represents intensity (gray-level) parameters. To summarize, the 3D
AAM is created as follows:

. Let x; denote a vector of 3D landmark points for a given sample i. Com-
pute a 3D PDM and approximate each shape sample as a linear combination
of eigenvectors, where b, = PT(x — X) represents the sample shape
parameters,

2. Warp each image to the mean shape using a warping such as piecewise
affine or thin plate spline warping to create shape-free intensity vectors,

3. Normalize each intensity vector, applying a global intensity transform with
parameters h;, to match the average intensity vector E.

4, Perform a PCA on the normalized intensity images.

5. Express each intensity sample as a linear combination of eigenvectors,
where by = P; (g — E) represents the sample shape parameters.

6. Concatenate the shape vectors b, and gray-level intensily vectors by in the
following manner

- ()-(CHE) - e

the weighting matrix W is a diagonal matrix relating the different units of
shape and intensity coefficients.

7. Apply a PCA to the sample set of all b vectors, yielding the appearance
model

b=Qc . (29.5)

20.2.3.3 3D Active Appearance Models: Matching

Matching an appearance model to image data involves minimizing e.g. the root-
mean-square intensity difference between the image data and appearance model
instance by modifying the affine transformation, global intensity parameters, and
the appearance coefficients. A gradient descent method is used that employs the
relation between model coefficient changes and changes in the voxel intensily
difference between the target image and the synthesized model [222].

Gradient descent optimization requires the partial derivatives ol the error func-
tion defined by the intensity of the target and synthesized model volume. While
it is not possible to create such a function analytically, these derivatives may be
approximated using fixed matrices computed by randomly perturbing model coef-
ficients for a set of known training images and observing the resulting difference
in error images [222].
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®)

Figure 29.5. 3D AAM matching process. (a) The initial position of the model in the volu-
metric data get. (b) Final match result. The straight lines show the position of frames in the
other two cutting planes.

Fig. 29.5 demonstrates the model maiching process, from initial model position
to the final fit. The 3D AAM was validated on cardiac MR and echocardiographic
data in [574].

29.2.34 Multi-view Active Appearance Models

The 3D and 2D + time AAMSs described above have mainly been designed to
segment a single image set at a time, whereas cardiac MR patient examinations
typically consist of a number of standardized acquisitions depicting different geo-
metrical or functional features of the heart. For instance, the short-axis, long-axis,
petfugion, rest-stress and delayed enhancement images provide complementary
information about different aspects of cardiac function of the same heart. Because
il involves views of the same heart, the shape [eatures and image appearance in
the different views are highly correlated: for example, an apical LV infarction may
exhibit wall thinning in the apical regions in both a 4-chamber and a 2-chamber
view. So far, such existing correlations between different parts of an integral
patient examination have not been integrated into segmentation algorithms. To
accomplish such behavior, the so-called Multi-View Active Appearance Model
(AAM) was developed: an AAM extension that captures the coherence and cor-
relation between multiple parts of a patient examination. Model training and
matching are performed on multiple 2D views simultaneously, combining infor-
mation from all views to yield a segmentation result. The Multi-View moedel is
constructed by aligning the training shapes for different views separately, and
concatenating the aligned shape vectors x; for each of the IV views. A shape
vector for N frames is defined as:

= el B el (29.6)

By applying a PCA on Lhe sample covariance matrix of the combined shapes,
a shape model is computed for all frames simultaneously. The principal model
components represent shape variations, which are intrinsically coupled for all
views. For the intensity model, the same applies: an image patch is warped on
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Tigure 29.6. The most significant eigenmode for the multi-view AAM, varying from -2
(left) to +2 (right) standard deviations. Note that the appearance simultaneously changes
m the 4-chamber (top row), short-axis (middle row) and 2-chamber views.

the average shape for view ¢ and sampled into an intensity vector g;, the intensity
vectors for each single frame are normalized (o zero mean and unit variance, and
concatenated:

g=1(91,03.,09,--.) - (29.7)

Analogous to the other AAMSs, a PCA is applied to the sample covariance ma-
trices of the concatenated intensity sample vectors. Subsequently, each training
sample is expressed as a set of shape and appearance coeflicients. A com-
bined model is computed from the combined shape-intensity sample vectors.
In the combined model, the shape and appearance of both views are strongly
interrelated, as is illustrated in Figure 29.6.

Like in all AAMSs, estimation of the gradient matrices for computing parame-
ter updates during image matching is performed by applying perturbations on the
model, pose, and texture parameters, and measuring their effect on the residual
images. Because of the correlations between views in the model, a disturbance in
an individual model parameter yields residual images in all views simultaneously.
The pose parameters however, are perturbed for each view separately: the model is
trained to accommodate for trivial differences in object pose in each view, whereas
the shape and intensity gradients are correlated for all views. In the matching pro-
cedure, the pose transformation for each view is alsc applied separately, whereas
the model coefficicnts intrinsically influence multiple frames at once. Hence, the
allowed shape and intensity deformations are coupled for atl frames, while the
pose parameter vectors for each view are optimized independently.

Multi-view AAMs have been successfully applied to segmentation of long-axis
cardiac MR views and left-ventricular angiograms [613]. In Figure 29.7, examples
ol matching results are given for combined long- and short-axis cardiac MR scans.
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Figure 29.7. Multi-view AAM detected contours (white dotted lines) for two patients {top
and bottom row) in a 4-chamber (left), short-axis(middle) and 2-chamber view (right).

29.23.5 3D + time Active Appearance Models

Applying 3D AAM segmentation to the full cardiac cycle would require multiple
models for different phases because any temporal knowledge of the interrelation-
ship between frames would be lost. To extend the 3D AAM framework to 3D +
time, Stegmann [759] has proposed to incorporate a time element to the model by
phase—normalizing objects to a common time correspondence and concatenating
shape and texture vectors of individual phases into a single shape and texture vec-
tor. In essence, this is similar to applying a multi-view AAM to different 3D time
frames. Also, Stegmann has greatly improved the matching performance of 3D
AAMSs compared to the technique of Mitchell [574], by for instance introducing
the "whiskers AAM": AAMSs augmented with ASM-like scan line profiles that in-
crease the model context awareness and lock-in range, In addition, the decreased
computation time in his implementation (.4 s for simultaneously segmenting the
end diastolic and end systolic [rames) enables an exhaustive search of several
model initializations, rendering manual initialization unnecessary.

29.3 Discussion and Conclusion

Active Shape and Appearance models are being employed in medical image anal-
ysis more and more frequently. As most diagnostic imaging modalities nowadays
deliver a high resolution, three-dimensional depiction of organs (sometimes over
time), this chapter focused on higher dimensional extensions of Active Shape and
Appearance models. Both models utilize a Point Distribution Model principle that
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captures the shape of an object from a set of examples in a compact mathemat-
ical description. To extend from 2D to higher dimensional PDMs, the definition
of point correspondence in 3D is the most critical issue. Correspondence by reg-
istration or fitting has shown great potential in clinical applications, and can be
applied to topologically complex shapes. Combining this registration-based corre-
spondence with correspondence by optimal encoding may further optimize model
properties such as compactness and specificity.

Active shape models are matched 1o image data by locally updating the model
based on image information in the vicinity of the landmarks: main challenges for
extending ASMs to 3D lie in generating update points using a robust (preferably
maodality and training independent) classifier. In addition, the use of an inter-
mediary mesh combined with local mesh updates enables application to sparse,
arbitrarily oriented image planes; this is not possible with AAMs due to the re-
quirement of a densely sampled intensity volume. For AAMs, the main extension
to higher dimension lies in delining a robust volume tesselation in 3D. Exiensions
to 2D + time, 3D + time and multiple views mainly rely on concatenating shape
and intensily veclors for multiple time inslances or geometric views.

A major limitation of the approaches described in this chapter is the fact that
all methods rely on a balanced and representative training set. In case of a too—
limited—number of training samples, or when presented with unrepresentative
cases, the shape models may be overconstraining the segmentation results towards
the model. A solution lies in applying a constraint relaxation when the model is
close to its final solution, as has been proposed by Kaus et al. [457].

In conclusion, the field of 3D statistical shape modeling is rapidly expanding,
with several biomedical applications. The landmark-based approaches introduced
in this chapter have demonstrated to be an important step towards automated seg-
mentation of dynamic volume data, because they utilize shape and appearance
knowledge in a principled manner.
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Chapter30

Characterization of Diffusion
Anisotropy in DWI

Y. Chen

Abstract

Diffusion-weighted magnetic resonance imaging (DWI) is unrivaled in
its ability to quantify changes in biological tissue microstructure noninva-
sively. The quantification is based on the anisotropy of water diffusion and
fiber pathways determined from DWI measurements. This chapter is devoted
to the study of the characterization of diffusion anisotropy. Two methods
for characterizing diffusion anisotropy are introduced. One uses transition
probability density function (PDF), and the other uses apparent diffusion
coeflicient (ADC) profiles. Techniques for estimating the PDF and ADC
profiles from high angular resolution DWI are reviewed. In particular we pre-
sented a variational framework for the estimation of the PDF modeled as a
mixture of two Gaussians. We also described a variational model for the esti-
mation of the ADC profiles represented by a truncated spherical harmonic
series, and the algorithm for the characterization of diffusion anisotropy
using ADC profiles. These two models are distinguished by simultaneous
smoothing and estimation. Experimental results indicate the effectiveness of
these models in enhancing and revealing intravoxel information.

30.1 Introduction

Diffusion-weighted magnetic resonance imaging (DWI) adds to conventional
MRI the capability of measuring the random motion of water molecules, referred
to as water diffusion. The mobility of water molecules within tissue depends
on the microstructure of the tissue. For instance, in most gray matter in the
brain, the mobility of water molecules is the same in all directions and is termed
isotropic diffusion. However, in fibrous tissues, such as cardiac muscle and brain
white matter, water diffusion is with preferred direction along the dominant fiber
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orientation, and hindered to different degrees in different directions, causing dif-
fusion anisotropy. DWI renders such complex information non-invasively and in
vivo about how water diffuses into intricate 3-d representations of tissue. The
anisotropy of water diffusion in tissue, and the sensitivity of water diffusion to
the underlying tissue microstructure form the basis for the utilization of DWI
to infer neural connectivity [67], and to probe lissue structures, compositions,
architectures, and organizations [62, 67].

The goal of DWI data analysis is to characterize diffusion anisotropy and re-
construct fiber pathways. The changes in diffusion anisotropy or fiber pathways
reflect the changes in underlying tissue properties, that can often be corre-
lated with processes that occur in development, degeneration, disease, and aging
([6607). In this chapter we focus our attention on the characterization of diffusion
anisotropy, that is to classify the diffusion as isotropic, anisotropic with one fiber
or anisotropic with mulliple fibers within a voxel. Two types of methods in the
study of this problem will be introduced in the next two sections.

One of the methods uses the probability density function {(PDF) » on the dis-
placement r of water diffusion over a period of time ¢. Since p(r, ) is largest in
the directions of least hindrance to diffusion and smaller in other directions, the
information about p{r, ¢} reveals fiber orientations and diffusion anisotropy. The
standard methodology employed in most DWI experiments is the the Stejskal-
tanner pulsed gradient spin echo method [762]. Two magnetic field gradient
pulses of strength G and duration § with a temporal separation of A between the
onset of the pulses are applied to the simple spin-echo sequence. If the duration
of the pulses 4 is negligible comparing with A, the attenuation of the MR sig-
nal s{q) with respect to the diffusion sensitizing gradient g measures the Fourier
transformation (FT) of the average PDF p(r, A) on a spin displacement r over
diffusion time A [64]:

s(a) =30 [ plr, A)e*dr, (1.1)

where q = (27) "1y @, « is gyromagnetic ratio of protons in water, and sq is the
MR signal in the absence of any gradient,

The other method for the characterization of diffusion anisotropy utilizes the
apparent diffusion coefficient (ADC). The ADC in DWI is defined as a function
d(0, ¢) in the Stejskal-tanner equation:

s(q) = soe™*H09), (12)

where (6,¢) (0 < 6 < 7,0 < ¢ < 27) represents the direction of q in spher-
ical coordinates, the b-factor is defined as b = 4n?|q|?(A ~ §/3). For Gaussian
diffusion, the PDF 1s a Gaussian:

B 1 . {——rTD_lr
= VD) VT 4

p(r, t) b (1.3)
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and the measurement s(q) is related to the diffusion tensor D by
s(q) = spe™ " 2, (14)

where u is the normalized q. In this case the ADC is u? Du, that is independent
of the diffusion time ¢ and the magnitude |q| of the diffusion sensitizing gradi-
ent q. For non-Gaussian diffusion equation (1.2) can be used to estimate d(d, ¢)
when the difTusion time A and diffusion gradient strength G (hence |qg) are fixed.
The ADC profiles d{f, ¢) for non-Gaussian diffusion is much more complicated.
By high angular resolution acquisitions with larger b value, it is possible to reveal
the complex shape of the ADC profiles, which provides the information about
the variance of diffusivities in different directions, and indicates the presence of
multiple infravoxel fiber populations [11, 328, 818]. Recently the spherical har-
monic approximation [13, 183, 329] and high rank tensors representation [620]
of the ADC profiles have been used for characterizing diffusion anisotropy for
non-Gaussian diffusion.

30.2 Estimation of PDF

From equation (1.1), the PDF p(r, A) can be estimated from the inverse FT of
s{q)/sg. However, it requires a large number of measurements of s(q) over a
wide range of g for a inverse FT. Recently, Tuch et al. [818] developed ¢-space
imaging method to obtain high angular resolution diffusion (HARD) measure-
ments. In [868] Wedeen et al. succeed in acquiring 512 measurements of s{q) in
each scan to perform a stable inverse FT. In related work Ozarslan et al. [621], es-
timated the PDF by taking a inverse FT on simulated DWI signals. The simulation
considers the diffusion in a cylinder, when the applied diffusion gradient makes
an angle & with the direction of the cylinder. The signal attenuation s{q)/sp is
given by the formula in [750].

A more common approach to estimate a transition PDF of diffusion over time ¢
from much sparser set of measuremenis s{q} is assuming p(r, ¢} to be a Gaussian.
Under this agsumption the measurement s{q) is related to the diffusion tensor D
via {1.4). The diffusion tensor I is a 3 x 3 positive definite mairix. By using
model {1.3) the reconstruction of p(r, ¢) can be posed as estimating the diffusion
tensor D via {1.4), which in principle requires only six independent diffusion-
weighted measurements s{q) plus s9. This technique is known as diffusion tensor
imaging (DTI). Based on the theory, that the principle eigenvector (PE) of D
parallels to the mean fiber orientation, it is possible to infer the orientation of the
diffusion within a voxel. DTI is in particular useful for creating white matter fiber
tracts [64, 190, 411].

Howsever, it has been recognized that the single Gaussian model is inappropriate
for assessing multiple fiber tract orientations, when complex tissue structure is
found within a voxel [11, 63, 328, 329, 818, 868]. A simple extension to non-
Gaussian diffusion is to assume that the multiple compartments within a voxel
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are in slow exchange and the diffusion within each compartment is a Gaussian
[11, 328, 632, 817]. Under these assumption the diffusion can be modeled by a
mixture of n Gaussians:

P = Jl(@mty det(D)) e, (2.2)

where f; is the volume fraction of the voxel with the diffusion tensor D;, f; = 0,
>, fi = 1, and ¢ is the diflusion time, [nserting (2.2) into equation {1.1) #t yields

s(a) =50y i (2.3)

=1

To estimate D; and f;, at least Trn — 1 measurements s(q) plus 3¢ are required.
In [817] Tuch et al. acquired HARD images with a large b-values, and extended
the DTI to a mixture of two Gaussians to the voxels, where the signal s(q)} ex-
hibited multiple local maxima. The DJ; and f; in the mixture problem (2.3) was
solved with certain physiological constraints on the eigenvalues of [);. Without
constraints solving (2.3) is an ill posed problem. In [632] Parker et al. nsed the
mixture model to estimate the PDF for the voxels where the Gaussian model fits
the data poorly. Such voxels were identified by using the spherical harmonic rep-
resentation of the ADC profiles. The Gaussian mixture problem (2.3) was solved
by using Levenberg-Marquard algorithm [666].

To enhance the accuracy and stability in the estimation of biGaussian density
function, recently, we developed [182] a variational framework to estimate D; and
i in (2.3). Different from the methods developed in [817] and [632], where the
estimation was performed at each voxel independently, the model in [182] incor-
porated a smoothness consiraint into the estimation. Then, the mixture problem
solving is well-posed, and D; and f; (i = 1,2) were estimated over entire vol-
ume simultaneously by a joint smoothing and data fitting. This algorithm took two
steps. The first step is to find the region where the diffusion is strongly isotropic
or anisotropic with one fiber, (i.e. the location where the single Gaussian model
fits well). This region was determined using the SHS representation of the ADC
profiles d(0, ¢}. The detail of this method is given in the next section. Denote this
region by ;. In the second step we solve the following minimization problem:

2
i /(ZNL.;]P‘(")+|Vf|P.r(X))dx+)\1f (f —1)%dx
2 jm1 i

Ly, La.f

2 T 2
+Aa f f / | N7 fremto Bl _ b2 singdndpds, (2.4)
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with the constraint Lg"’m >0.In (24) f = f1in(2.3), L; is a lower triangular
matrix from the Cholesky factorization of D; (D; = L, L) (see [862]). With the
constraints on L™ the factorization is unique, and D is positive definite, In (2.4)



Characterization of Diffusion Anisotropy in DWI 491

IVLiP = 31 cpnea VL.

1 1
gl ey S [ EROE S O
pi{x) TTEVO T TP pr(x) =1+ TEVG, T

with parameters k, & > 0, and Gaussian kernel G,. Region £ is given as a prior.
The second term can help to skip local minima of (2.4). Finally the location where
the model solution f = 1 is adjusted from £2; by the smoothing term in (2.4). This
property makes the model less sensitive 1o the preliminary choice of £24.

The smoothing terms in this model is featured by minimizing a nonstandard
growth function, i.e. p; and py are functions of z rather than a constant as the
standard LP norm. Similar idea has been applied in image restoration in [99, 184].
By the choice of p;(x) (also for py) the speed and direction of the smoothing
governed by these terms at each point x varies according to the image gradient,
At the locations where the magnitudes of the image gradients are high, p;(x) = 1,
the diffusion at these locations is based on minimizing the total variation nosrm of
the image gradient, and the direction of the diffusion is strictly tangential to the
edges [98, 162, 695]. In homogeneous regions the image gradients are very small,
pilx) = 2, and the diffusion is essentially isotropic. Al all other localions, the
image gradient forces 1 < p; < 2, and the diffusion is between isotropic and
total variation based, and varies depending on the local properties of the image.
Therefore, the smoothing resulting from this model is very adaptive, and preserves
the features in L; and f.

Model (2.4) has been applied to a set of HARD MRI human data. The
raw HARD MR images were obtained on a GE 3.0 Tesla scanner with
TR/TE=1000/85ms. The ficld of view =220 mm x 220 mm, 24 axial sections
covering the entire brain with the slice thickness=3.8 mm and the intersection
gap=1.2 mm. The diffusion-sensitizing gradient encoding is applied in 35 direc-
tions with b = 1000s/mm?. Thus, a total of 56 diffusion-weighted images, with
a matrix size of 256 x 256, were obtained for each slice section.

To accommodate the constraint on L; into the model in our numerical scheme
we let L™™ = b2 . By solving (2.4) we obtained the solutions L, and f, and
consequently, ); = L,L! (i = 1,2). Fig. 1a shows the model solution f in a
health adult brain slice through the external capsule. Fig. 1b represents a color
pie, which is implemented by relating the azimuthal angle (¢) of the veclor to
color hue (H) and the polar angle (¢ > #/2) to the color saturation (5). We
define I = ¢/2x, § = 2(w - )/, and Value(V) = 1 in SHYV, so (¢, )
is corresponding to a vector in the lower hemisphere. The upper hemisphere is
just an antipodally symmetric copy of the lower one. The zy plane is the plane
of discontinuity. Figs. 1c and 1d show the color representation of the directions
for the PE of Dy(x) and Dy(x), respectively, in the same slice as in Fig. 1a. By
comparing the color-coding in Figs. lc and 1d with the color pie shown in Fig.
1b, the directions of the PE’s are uniquely determined.

To examine the accuracy of the model in recovering intravoxel information we
selected a region inside the corpus callosum, where the diffusion is known as
one-fiber diffusion. We computed the direction in which the ADC profiles d is
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maximized. This direction field is shown in Fig. 2a. On the other hand we solved
(2.4), and oblained f =~ 1 on this region. The direction field generated from the
PE of I} is then shown in Fig. 2b. These two vector fields are comparable, and
the one in Fig. 2b is more regularized due to the regularization terms in the model.
Most recently, we [373] proposed to replace the data fidelity term in (2.4) by

a2 aT @ . -
./s’lfn [0 12}%306_5“1 L:LTu _ 3[q)|28in0d0d¢¢(‘
. i=1

If we determine the strong Gaussian diffusion region {2; using the DWI signal
s{q) and sy, this change enable us to solve the mixture problem without any prior
knowledge on d.

(c) (@

Figure 30.1. (a). Model solution f, (b). color pie, (¢). color-coding of the 1st fiber direction
mapping, (d). color-coding of the 2nd fiber direction mapping.

For sparsely distributed data it is difficult to get a desirable estimate for the
PDF without a model, since a inverse FT requires the measurements s(q) from
a wide range of g, while the s(q)’s with high |q| have very poor signal to noise
ratio. One of the alternatives for characterizing diffusion anisotropy is to use the
ADC profiles estimated from HARD MRI measurements.
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Figure 30.2. Direction field obtained by (a) maximizing d, (b). the PE of I}, (solution of
(240N

30.3 Estimation of ADC profiles

In this section we discuss methods for estimating ADC profiles and characterizing
diffusion anisotropy using the estimated ADC profiles,

The ADC profiles d(x, 8, ¢) is related to the observed signal in DWT through
the Stejskal-tanner equation (1.2). For Gaussian diffusion d{u) = bu? Du. Many
models for smoothing and estimation the diffusion tensor D in DTI model (1.4)
having the ability of preserving the positive definite, anisotropy, or directional
property of the PE of D have been developed [178, 260, 313, 633, 660, 812, 813,
838, 864, 872).

The trace of D provides a measure of the total diffusion within a voxel. The PE
of D indicates the direction of the diffusion. In particular the fractional anisotropy
(FA), which is a measure of the orientational coherence of the diffusion compart-
ments within a voxel [647], has become the most widely used measure of diffusion
anisotropy. The FA is defined as

3 0= A% Qe At (s - M)
- \/;\/ (AL + A2+ As)? ’ (3.1)

where A; (7 = 1,2,3) are the eigenvalues of D. If fibers are strongly aligned
within a voxel, the FA is high, and the diffusion is anisotropy at that voxel. If
diffusion is isotropy, the FA is zero.

For non-Gaussian diffusion, ADC profiles are more complex. Tuch et al. [818]
recognized that HARD imaging with high b-values is able to exhibit the vari-
ance of the signal as a function of diffusion gradient orientations. This admitted a
generation of the concept of DTT to higher order tensors to characterize complex
diffusion properties [13, 183, 329, 620].

To quantify diffusion anisotropy in [620] 6zarslan et al. extended DTI model
{1.4) to the high rank tensor model:

3 3 3

s(q)
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where D; ;. are the components of the Cartesian rank-{ tensor and g;,, (1 <
k < [) are the components of the gradient direction.

In [13, 183, 329] the ADC profiles were represented by its truncated spherical
harmonic series (SHS), and used for the characterization of diffusicn anisotropy.
This idea was [irst initiated by Frank [329], and then applied and more developed
in (13, 183]. In the work of [13, 329] the ADC d(#, ) at each voxel was estimated
from HARD raw data via the linearized version of (1.2);

s
dla) = ~3log" 2, (3.2)
and then, approximated by its truncated SHS:
-
di0,¢) = > mezmw) (3.3)

Ie=0 t=—1

where Y} (8, ¢): are the spherical harmonics, which are complex valued func-
tions defined on the unit sphere. The odd-order terms in (3.3) are sct to be zero,
since the measurements are made by a series of 3-d rotation, and hence, d(#, ¢)
is antipodal symmetry. In [329] the Ay »’s (I is even) are determined by inverse
spherical harmonic transform:

2w
tum= [ [ 5100 DYi n(0,g)sintatas, (3.4

and in [13] they are estimated as the least-squares solutions of

Imax

=3 Z At Yim (0, 6).- (3.5)

t=0 m=-1

Then, the cocfficients A; ,,,’s were used to characterize the diffusion anisotropy.
In their algorithm the voxels with the significant 4th order ({ = 4) components in
SHS are characterized as anisotropic with two-fiber orientations {shorten as two-
fibers), while voxels with the significant 2nd order (I = 2) but not the 4th order
components are classified as anisotropic with single fiber orientation (shorten as
one-fiber), which is equivalent to the DTI model. Voxels with the significant Oth
order ({ = 0) but not the 2nd and 4th order components are classified as isotropic.
The truncated order is getting higher as the structure complexity increases. Their
experimental results showed that non-Gaussian profiles arise consistently in var-
ious brain regions where complex tissue structure is known to exist. Fig.3 from
[13] shows typical ADC profiles (left column) from each of three regions: pons
(top), optic radiation {middle}, and corona radiata {bottom}, together with trun-
cated SHS of orders 0, 2, 4, 6, and 8 (second from left to right columns). In each
case, there is significant dilference between the order 4 and order 2 models, which
indicates significant non-Gaussian behavior. The models with order greater than
4 do not appear 1o change the overall profile shape significantly,

By this method the characterization of the diffusion anisctropy depends heav-
ily on the coefficients in SHS (3.2). To improve the accuracy and stability in the
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Figure 30.3. Typical ADC profiles (left) together with spherical harmonic models of orders
0,2, 4, 6, and 8 (second from left to right) from each of the three regions (This Fig. is from
[13]).

estimation of A;,, and enhance the characterization of anisotropy recently we
[183] proposed a variational mode} that has the ability of simultaneously smooth-
ing and estimating the ADC profiles from noisy HARD measurements s{q}, and
preserving the relevant features, positiveness and antipodal symmetry properties
of d. The basic idea of this approach is to approximate the ADC profiles at each
voxel by a 4th order SIS (consider the case that the maximum number of fibers
within a single voxel is two), whose coefficients are determined by solving the
following constrained minimization problem:

i
mnin /{;{ Z Z |VA£,m(X)|m""(x}+|V§n[x)lp(x)}dx

At (30),50(x) =02 4 e —1
=0,2,4 m=

2 T
+% f { / f ls(x, @) — 3o (x)e 40?2 5in0dfdg+|3o — sol*}dx, (3.6)
1 /0 0

with the constraint:

14
dx,0,8) = > > Apn(X)Vim(8¢) >0, (3.7)

1=0,2,4m=—1
where A > 0 is a parameter,

1 I

) =1 Tve, vamP P = TR, val

(3.8)

In (3.8) k, & > O are parameters, (<, is the Gaussian kernel, and ¢, ,,, is the
least-squares solution of (3.5).
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Since d(x,8,¢) is a real valued function, and Y;., satisfies ¥j ., =
(w-l)m}f;,m, each complex valued function A, ,,, is constrained by

AI.—m = ( -'1)mAi,m

where T° denotes the complex conjugate of . This constraint reduces the 15
unknown complex valued functions 4; , in (3.7) to 15 real valued functions;

Arplx), (1=0,2,4), Redjm(x), and Imdpm(x),{{=2,4, m=1,...,10.

Model (3.6)-(3.7) differs from (3.4) or (3.5) in Lwo aspects. First in model (3.4)
or (3.5), the Ay s are estimated at each individual voxel, the relations of 4, .,
across voxels are not taken into account. While in model (3.6)-(3.7) Ajm(x)
are recovered over the entire volume with a smoothness constraint. Due to the
present of the regularization term problem {3.6) is well-posed, and able to re-
veal the smooth change of diffusion anisotropy across voxels. Secondly, in (3.6)
the estimation of J is based on the original Stejskal-tanner equation (1.2) rather
than its (log) linearized form (3.2). It has been observed in [864] that the original
model provided better results in tensor field estimation from DTI. The smoothing
terms in (3.6) are based on minimizing a nonstandard growth functional. As ex-
plained in the previous section by the choices of py ., (x) and p(x), the smoothing
is isotropic in the homogeneous region, TV based along the edges, and varies in
between isotropic and TV based in other regions depending on the image gradi-
ents at the location. Since the diffusion governed by this model is very adaptive so
that the features in A; ., (x) and 3g(x} are well preserved. The positiveness and
antipodal symmetric propetties of d are constrained in (3.7).

The algorithm for the characterization of diffusion anisotropy in [183] is mainly
based on the A; ., ’s in SHS estimated from HARD raw data, and the variance o
of the ADC profiles £(#, ¢) about its mean, which is as follows.

1LIf

Rofx) = 006 , (39)
21:0,2,4 2mmt [Arm|(x)

is large, or the variance o (x)(x) of d(x, 8, ¢) about its mean o(x) is small at a
particular voxel x, the diffusion at this voxel is classified as isotropic.
2.1f

Ry(x) =: 2=t Mam|(x) (3.10)

- E k)
2s=0,2,4 2=t [Arml{x)

is large at a voxel x, the diffusion at this voxel is characterized as one-fiber
diffusion,

3. For each uncharacterized voxel after the above two steps, search the direc-
tions (8, ¢), where d{#, ¢) attains its local maxima. If there is only one local
maximum, d is viewed as one-fiber diffusion. For the rest of the voxels that
have more than one local maximum (say 3), the diffusion anisotropy is further
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characterized by the weights:

W, = d('ga': @i\) — dynin
LS (0, é5) ~ Bdmin

where (#;, ¢;) (i = 1,2,3) are the directions in which 4 attains 3 local maxima.
Tf one of the weights is significant, it is considered as one fiber diffusion. If two
weights are similar but much larger than the third one, it is viewed as two-fiber
diffusion, if all three weights are similar, then higher order approximation of SHS
for d is required.

We applied model (3.6)-(3.7) to simulated data to test whether this model can
efficiently reconstruct ADC profiles from noisy HARD measurements.

The simulated data was a set of sy and A, on a 3d lattice of dimension 6 x
6 % 5. This volume consists of two homogeneous regions. In the region 1 so(x) =
562, Apo = 6.28 %1073, Ay g = ~B.81 x 1074, Ay = 6.15x 1073, Redy; =
5.22x 1078, ReAg 2 = 5.08 3] e ReAy) = —847x 1075, ReAys =4.92x
10-5, Redys = 3.10 x 10"5, Redyq = —1.38 % 10_4, ImAg‘l = —1.82 x
1074, ImAy p = —1.13x1073, ImAy 1 = 9.62x107°, ImAy 2 = 3.46x 1075,
ImAy; = ~3.58 x 1078, ImA 4 = 1.75 x 1075, In the region 2 sp(x) = 378,
Ag,g =6.08x% 10"3, Ag,g =2.04 x 10“4, A4‘g = 2.63 x 10_4, ReAg,l = 6.63 x
1075, Redyz = —9.71 x 10753, Reds1 = 1.27x 1074, ReAq 2 = 2.22 x 1074,
ReAy; = 1.24 x 1074, Redyy = 4.19 x 107%, ImAs1 = 5.77 x 1075,
)TmAg,g = 9.56 x 10”6, fmA4,1 = 6.51 x 10"5, ImA.';,g = 6.64 x 10"'5,
ImAyg =7.52% 1075 ImAy s =3.71 x 1075,

Fig. 4 shows the true, noise, and recovered ADC profiles d(x, 8, ¢) for a par-
ticular slice of size 4 extracted from the volume 6 x 6 x 5. The ADC profiles
d{x,#,¢) shown in Fig. 4a were computed by using (3.3} with the simulated
data, Using this true d the corresponding s¢..(X, 8, @) was constructed via (1.2)
with & = 1000s/mm?. Then we gencrated the noisy HARD MRI signal s, by
adding a zero mean Gaussian noise with standard deviation s = 0.5. Using s,
and simulated sy we estimated A;,, as the least-squares solutions of (3.5), and
model solutions of (3.6)-(3.7), and then, obtained two corresponding d’s via (3.3)
shown in Figs. 4b and 4c, respectively. Comparing these three figures, it is clear
that the noisy measurements s,, changed the original shapes of d from Fig. 4a into
Fig. 4b, while by applying model (3.6}-(3.7) to the noisy data to reconstruct the
ADC profiles, the shapes of d in Fig. 4a were recovered, as shown in Fig. 4¢ This
experiment demonstrated that model (3.6)-(3.7) was effective in simultaneously
regularizing and recovering ADC profiles.

Model (3.6)-(3.7) has also been applied to human HARD MR brain data for the
estimation of ADC profiles and characterization of diffusion anisotropy.

The raw DWI data was acquired in the same way as in the experiment shown
in Fig. 1. The diffusion-sensitizing gradient encoding is applied in fifty-five direc-
tions. Model (3.6)-(3.7) was applied to the raw data, and the coeflicients A; ,,,’s in
SHS were obtained as the steady state solutions to the flow of the Euler-Lagrange
equation associated with the energy function in (3.6) with constraint (3.7). The
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Figure 30.4. (a)-(¢). The d generated by (3.3), wherc the 4; .,’s are simulated data in (a),
the least-squares solutions of (3.5) with the noisy measurement s, in (b), and the model
solutions of (3.6)-(3.7) in {(c).
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initial A; s were chosen as the least squares solutions of (3.5). Then d{x, 8, ¢)
was computed via (3.3).

To characterize the diffusion anisotropy, we used the estimated A; . (x)’s to
calculate Rq{x) in (3.9), R2(x) in (3.10), and variance o (x) of d(x, #, ¢) about its
mean: o(x) = [ ;ﬂ (d(x,8,¢)~S02 | d(x, 0, d:)/55)2dfd¢. The diffusion at
the voxels with Ro(x) > 0.856, or o(x) < 19.65 were classified as isotropic. The
diffusion at the voxels with Rp{x)} > 0.75 were considered as one-fiber diffusion.
For the remaining voxels we further classified them by using the method in the
third step of the characterization algorithm above. The thresholds used for By, Rp
and o were selected by using their histograms.

Fig. 5 shows the comparison of R2(x) maps and FA map in (3.1) for a particular
slice in a health adult brain volume. Fig. 5a displays the FA image obtained by
using advanced system software from GE. Fig. 5b-3d present the By(x) images
obtained by using (3.10), where the A; ,,,{x}’s are estimated from three different
models. The A;,,{x)’s used to obtain R;(x) in Fig. 5b are directly computed
from (3.4). Those used to obtain R3(x) in Figs. 5¢ and 5d are the least-squares
solutions of (3.5} and the solutions of (3.6)-(3.7), respectively. In Figs. 5a-5d the
voxels with high levels of intensities are characterized as one-fiber diffusion.

Although the image in Fig. 4a is obtained from a conventional DTT model (1.4),
but it still comparable with the R map, since single tensor diffusion characterized
by SHS representation agrees with that characterized by the DTI model. However,
in DTI a voxel with a low intensity of FA indicates isotropic diffusion, while using
our algorithm, multi-fibers diffusion may occur at the location with the low value
of Rg .

It is clearly evident that the ability to characterize anisctropic diffusion is en-
hanced, as shown in Figs. 3a-5d. Fig. 5b indicates ugain that the estimations of
Ajr directly from the log signals usually are not good. Even the least-squares
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solution of (3.5) are not always effective. This can be seen by comparing the
anatomic region inside the square of Figs. 5c and 5d, which are zoomed in Figs.
5e and 5f, respectively. There is a dark broken line showing on the map of the ex-
temal capsule {arrow to the right on Fig. 5e), this same region was recovered by
model (3.6)~(3.7) Our results also showed the connection in a cortical associative
tract (arrow to the left in Fig. 5f), however, this connection was not mapped out
on Fig. 5c or the zoomed image in Fig. 5e. In fact this connection was not mapped
out on Figs 5a-5b either. Moreover, these Lwo connection voxels are characterized
by the third step in our algorithm as anisotropic diffusion with two-fibers (arrow
to the right and left in Fig. 6b below). All these mapped connections are consis-
tent with the known neuroanatomy. Combined together, this experimental result
indicates that joint smoothing and estimation of the ADC profiles governed by
model {3.6)-(3.7) has the advantage over the existing models in the enhancement
of the ability to characterize diffusion anisotropy.

Fig. 6a shows a partition of isotropic diffusion, anisotropic diffusion with one-
fiber, and two-fibers for the same slice displayed in figure 5. The two-fibers, onc-
fiber, and isotropic diffusion regions were further characterized by the white, gray,
and black regions, respectively. The region inside the white square in Fig. 6a,
which is the same one squared in Figs. 5¢ and 5d, is zoomed in Fig. 6b. Tt is clearly
to see the two voxels directed by arrows in Fig. 6b are classified as diffusion with
two-fibers. Fig. 6¢ represents the shapes of d(x, 8, ¢) at three particular voxels
{(upper, middle and lower rows). The d’s in all three voxels are computed using
(3.3). However, the A; ,(x) used in computing d on the left column are the least-
squares solutions of {3.3), while on the right column they are the model solutions
of (3.6)-(3.7). The first and second rows show two voxels that can be characterized
as isotropic diffusion using model (3.5), but as diffusion with two-fibers afier
applying model (3.6)-(3.7). These two voxels are the same voxels as in Fig. 5
(also Fig. 6b) directed by arrows. The lower row of Fig. 6¢c shows the one-fiber
diffusion was enhanced after applying model (3.6)-(3.7).

Finally, we would like to point out that the number of the local maxima in
ADC profiles indicates the number of the fibers through a voxel. However, for
non-Gaussian diffusion the directions in which the ADC profiles attains the local
maxima may not be the same as the fiber orientations,

30.4 Conclusion

The quantification of diffusion anisotropy in biological tissues are very complex.
Two types of methods [or the characterization of diffusion anisotropy were intro-
duced in this chapter. One of them used the PDF of the diffusion of a mixture
of n Gaussians. The second method was based on the significant components
in the SHS approximation of the ADC profiles. The methods for estimation of
the mixture of Gaussians and SHS approximation of the ADC profiles were also
presented in this chapter.
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Figure 30.5. (a). FA from GE software, (b)-(d). Rz with the A; ,,'s as the solutions of
(1.7), least-squares solutions of {2.7), and model solutions, respectively. (e}-{f). Enlarged
portions inside the squares in (¢) and (d), respectively.

The second method of characterization did not require a prior knowledge for
the PDF. However, the characterization might be less accurate, if the order of the
significant components in the SHS was the only factor accounted for. In order to
improve accuracy in [183] the variance, and the number of the local maxima of the
ADC profiles was applicd as the additional measurements in the characterization,
But the extra measuremenis brought more parameters to be determined. There-
fore, better models and methods to study diffusion processes inside the tissue are
needed.
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Figure 30.6. (a). Classification; White, gray, and black voxels are identified as two-fibers,
one-fiber, and isotropic diffusion respectively. (b). Enlarged portions inside the white
squares in (a). (c). Three typical d’s {(upper, middle and lower rows) computed via (3.3).
Aim used in (3.3) on the left and right columns arc the least-squares solutions of (3.3),
and medel solutions of (3.6)~(3.7), respectively.



Chapter31

Segmentation of Diffusion Tensor
Images

Z. Wang and B. Vemuri

Abstract
Diffusion tensor images(DTI), which are matrix valued data sets, have
recently attracted increased attention in the fields of medical imaging and
visualization. In this chapter, we review the state of art in DTI segmentation
and present some details of our recent approach to this problem.

31.1 Introduction

In their seminal work [63], Basser et al. introduced diffusion tensor magnetic res-
onance imaging (DT-MRI) as a new MRI modality from which anisotropic water
diffusion can be inferred quantitatively. Since then, DT-MRI has became a power-
ful method to study the tissue microstructure e.g., white/gray matter connectivity
in the brain or the spinal cord in vivo. DTT analysis consists of a variety of interest-
ing problems: diffusion weighted image (DWI) acquisition, DTI restoration, DTI
segmentation, DTI registration, fiber tracking and visualization. From all these,
research on the DTI segmentation problem has only recently received much atten-
tion and will continue to do so in the near future. Segmentation is a fundamental
problem in medical imaging and computer vision in general. DTI has the added
advantage of providing directional as well as scalar information in one image as
opposed to just the scalar (contrast) information present in standard MRI. In the
following, we will present a brief overview of various techniques currently in
vogue in segmenting DTT.

In the context of DTI segmentation in literature, there are three major ap-
proaches . The first approach is based on clustering techniques. To the best of our
knowledge, the only published work using a clustering technique for DTI seg-
mentation is due to Wiegell et al. [889]. They used k-means to achieve automatic
segmentation of thalamic nuclei from DTL.
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The second approach is based on the now widely popular geometric active
contour model, which was independently pioneered in the compuler vision com-
munity by Malladi et al. [536, 538] and in the applied mathematics community
by Caselles et al. [152] and later refined in several approaches, leading to the
geodesic active contours and the region-based active contours respectively in
[156,462, 174, 808, 625]. Recently, the geodesic active contour models have been
used to handle DTT segmentation in [313, 646, 925]. Zhukov et al. [925] proposed
a level set segmentation method that segments DTIs by segmenting scalar-valued
images computed from the diffusion tensor. The scalar-valued images are func-
tions of the eigen values of the diffusion tensors. However, this is not truly a
matrix-valued image segmentation method since the direction information con-
tained in the diffusion tensors are ignored. In [313], Feddern et al. extended the
concept of image gradients lo matrix-valued images for segmenting the same. The
stopping criteria in the standard geodesic active contour is modified to a decrcas-
ing function of gradient magnitude of the matrix-valued image. In the same year,
Pichon et al. [646] introduced an interesting diffusion flow by using an alignment
penalty of the curve tangent to the dominant eigen vector (the eigen vector with
the largest eigen value of the diffusion tensor) field as the conformal factor in a
geodesic active contour. A group of curves can evolve in this diftusion flow and
cluster together 1o yield a segmentation of the DTI.

The third approach is based on region-based geometric active contours and pro-
vides a much more interesting insight into the segmentation of symmetric positive
definite (SPD) matrix-valued images, in particular DTIs [860, 858, 687, 508, 510].
In [860], Wang and Vemuri were the first to apply the Mumford-Shah func-
tional [591] using an implementation involving the region-based active contours
in a level-set framework to achieve matrix-valued image segmentation. This was
done by incorporating a matrix distance based on the matrix Frobenius norm.
Simultaneously, Rousson et al. [687] extended the geodesic active regions by
incorporating region statistics of matrices for DTI segmentation. [n both works
[860, 687], a diffusion tensor is treated as a matrix wherein every component is
independent and equally weighted, Still, they report realistic results for segment-
ing important subcortical structures like the corpus callosum from rat brains and
human brains.

Each of the diffusion tensors in the DTI however can be viewed as the co-
variance matrix of a local diffusion process. In [858], Wang and Vemuri were
the first to use this fact in the context of DTI segmentation. In particular, they
proposed a novel diffusion tensor “distance” based on concepts grounded in in-
formation theory and incorporated it in active contour without edges model [174]
for DTI segmentation. Soon after, the concepts presented in Wang and Vemuri
[858] were extended by Lenglet et al. [508, 510] to the case of general proba-
bility density field segmentation using region statistics as grouping criteria. In
particular, they use the Fisher information metric on the manifold of a fam-
ily of probability density functions (pdf) as a distance for a family of pdfs, an
idea that was also mentioned in [858] but not carried through. Very recently in
[857, 859], Wang and Vemuri further extend their work in [858] to the case of the
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piece-wise smooth regions, based on the curve evolution implementation of the
Mumford-Shah functional ([808, 175].

Rest of this chapter is organized as follows: in section 31.2, we briefly present
the k-means algorithm for DTI segmentation. Then, in section 31.3, several meth-
ods applying or exiending boundary based active contours are discussed. In
section 31.4, we presenl our recent work on DT segmentation in detail. Finally,
in section 31.5 we present the conclusions.

31.2 K-means for DTI segmentation

The K-means algorithm has long been used for unsupervised clustering [288].
Recently, Wiegell et al. [889] applied this technique for segmentation of thalamic
nuclet from DTI, Specifically, they set the number of clusters » to be 14 based on
visual inspection and the clustering measure between a voxel j and a cluster £ is
defined as:

Ejg = |Ixj — Zx|lws + ¥IID; — Dillr (3L

where X is the location of voxel §, X, is the center of cluster &£, D is the diffusion
tensor at voxel j, D, is the mean of the diffusion tensors in cluster £ which is
simply a channe! by channe! mean. The first term is a Mahalanobis voxel distance
defined as f|x||wr = VT WEk~1x where Wk is the covariance matrix of the
voxels in cluster £, and the second term is simply a Frobenius distance between
twe diffusion tensors defined as

IDy = Dallr = | Y (D14 — Dagy)?

)

Note that due to its simplicity, the above form of diffusion tensor distance has also
been used extensively in DTI restoration {871, 178] and DTI registration [12]. v
is a weighting factor controls the tradeofT between voxel distance and diffusion
tensor differences. The initialization of the algorithm is semi-automatic and the
segmentation results are shown to agree with a histological atlas of the brain.

31.3 Boundary-based active contours for DTI
segmentation

In their seminal work [455], Kass et al. introduced an elastically deformable
contour dubbed the “snake” (a.k.a. “active contour”) to find and link edges by
evolving the “snake” in the image domain, However, this initial version had sev-
eral limitations including the dependency on the parameterization and the inability
to automatically change topology. A geometric active contour in a level-set frame-
work was then proposed in the pioneering works of Malladi et al. [536, 537, 538]
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and Caselles et al. [152] to overcome these limitations. The level-set represen-
tation of evolving curves used in the works of Malladi et al. and Caselles et al.
was first introduced by Dervieux and Thomasset in [261] and also independently
developed and explored by Osher and Sethian [618] in fluid mechanics. Follow-
ing the basic ideas of the geometric active contours in [536, 537, 538, 152], a
variational formulation for the same was independently introduced in Caselles et
al. [156] and Kichenassamy et al. [462], leading to the so called gecdesic snakes.
These models were then further developed to yield more general and stable mod-
els in [887, 740, 907, 189]. Since in these methods motion of the active contour
is governed by the local image forces and local curve geometry defined along the
boundary, it is appropriate to categorize them as boundary-based active contours
models.

Lately, several authors have applied or extended some of these methods to DTI
segmentation. Zhukov et al. [925] applied the following geometric active contour
formulation to achieve DTI segmentation:

e

CTian F.V¢ (31.2)
where the ¢ is a function whose zero level set is the evolving curve C (or sur-
face) and F = Fyup + OF cure is the speed of the evolving curve. The first
term of the speed is data dependent and they use the gradient of grey scale fea-
tures e.g., the gradient magnitude of some smoothed scalar volumes. Specifically,
the scalar volumes they use are the trace of the diffusion tensor or a dimension-
less anisotropy measure computed from DT The second term is the well known
curvature-dependent smoothing term [618].

The works of Feddern et al. and Pichon et al. are both based on the following

evolution equation of geodesic active contours:

o Vo

— = g{)|V|V - == +Vg(.)-V 313
= IOIVAY - T8+ V() V8 613
where g(.) is a stopping function and depends on the local properties of the image
such as the image gradient. In [313], Feddern et al. extended the gradient magni-
tude definition of vector-valued image to matrix~valued image using the following

form:
gradMag(D,) = [>|VD, 4 (31.4)
iy

where D, is a channel by channel Gaussian smoothed DTI, D, ;; is the 45 — th
component of D;. They use g{gradMag(D,}) in defining the stopping criterion
function g{.} and showed results for extracting the cortex from a 2D projection of
a 3D human brain DTL

Simultancously, Pichon et al. proposed another modification of the geodesic ac-
tive contours by rewriting the defining variational principle of the geodesic active
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contours. They define the weighted arc length L of curve C by

1t _
L= ﬂf ller — C;||* Fuds (31.5)
2 Jo

where e; and ¥, are the dominant eigen vector and the fractional anisotropy [65]
of the DTI respectively. L is minimized when the curve C is maximally aligned
with the dominant eigen veclor at places with high anisotropy. Then, they derive
a diffusion flow by minimizing I defined in (31.5) leading to:

C; = F,C,s — curl(er) x C, — VF, (31.6)

Thus, the active contour evolves to get maximally aligned to the dominant eigen
vectors of the D'I'T and a group of curves cun evolve to form a fiber bundle that
can potentially be used to cluster the diffusion direction information. Note that the
3D curves corresponding to the nerve fibers are represented by the intersection of
two 3D surfaces with fixed end points.

31.4 Region-based active contour for DTI segmentation

Region-based active contours involve the use of quantities defined over the whole
image domain to evolve the curves and surfaces and they are preferred over the
boundary-based cousins (discussed above) in medical image segmentation due
to their robustness to noise and relative insensitivity to initialization. Currently
there are two representative segmentation approaches. The first one is based on
the Mumford-Shah functional [591] and was developed by us in a series of papers
[860, 858, 857, 859]. The second approach is based on geometric active regions
[625] developed by Lenglet et al. [508, 510] and Rousson et al. [687]. The sec-
ond approach has been described in detail in an earlier chapter (of this book) by
Deriche et al. and hence, we will focus on presenting the first approach pertain-
ing to our latest work that incorporates an information theoretic diffusion tensor
“distance” in the Mumford-Shah functional for DT segmentation.

31.4.1 Aninformation theoretic diffusion tensor "distance”

In the context of DTI, water molecule diffusion inside a human or animal
being imaged may be characterized by a rank two tensor D which is sym-
metric positive definite. This D is related to the displacement r of water
molecules at each lattice point in the volumetric data at time ¢ via p(r[t,D} =
e:np(L:Ié’_J) /+/(2m)7|2¢D}. Thus, it is natural to use the distance measure
between Gaussian distributions to induce a distance between these diffusion
tensors. The most widely used information theoretic “distance” measure is the
Kullback-Leibler divergence defined as

KL(plq) = f p(x)iog%dx (31.7)
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for two given densities p(x) and g(x). The KL divergence is not symmetric and a
popular way to symmetrize it is

I,0) = 5 (K Liple) + K L) 6L

which is called the J-divergence. An information theoretic diffusion tensor
“distance™ can now be defined as the square root of the J-divergence, i.e.

d(T1, T3) = /J(pr|t, T1), p(r]t, Ta)) (31.9)

it is known that twice the KL divergence and thus twice the J-divergence is the
squared distance between two infinitesimally nearby points on a Riemannian man-
ifold of parameterized distributions [17]. Thus, taking the square root in {31.9) is
justified. Furthermore, equation (31.9} has a very simple closed form for the case
of Gaussian distributions and is given by

d(T1, Ty) = %\/t'r(Ti‘sz—f—T;lTl) —2n (31.10)

where ¢7{-} is the matrix trace operator, n is the size of the square matrix T and
T'y. Note that the “distance” defined in equation (31.10) is not a true distance as
it does not satisfy the triangle inequality. Rao’s distance [33] between the Gaus-
sian distributions p(r|t, Ty ) and p{ri{t, T3}) can be used to define a true distance
between Ty and T'5. However, this distance for diffusion tensors poses a com-
putational difficulty for DTI segmentation in that it does not yield a closed form
expression for the mean value of the DTI required in the piecewise constant seg-
mentation model, Instead, we choose the diffusion tensor *distance” defined in
(31.10) as it approximates the Rao’s distance between diffusion tensors and it is
also computationally efficient for the purpose of segmentation. Note that (31.10)
has been proposed in various other contexts (for example [816]), however, to the
best of our knowledge, this form of “distance™ was proposed in the DTT analysis
literature for the first time by our work in [858].

When the domain of the DTI undergoes an affine transformation, the diffu-
sion tensors will also be transformed but by a congruent transformation, I the
affine domain transformation is represented by y = Ax + b, then the vector r
representing the displacement of a water molecule will be transformed accord-
ing to ¥ = Ar. Since r has a Gaussian distribution with covariance matrix 2¢'T,
the transformed displacement £ has a covariance maltrix of 2HATAT, Thus, the
transformed DT1 is given by

T(y) = AT(x)AT, y=Ax+b (31.11)

The information theoretic diffusion tensor “distance™ is invariant to such affine
domain transformations, i.e,

d(T1,Ty) = d(AT1AT, AT,AT) (31.12)

Although the transformation of the diffusion tensor is actually a congruent trans-
formation, the above invariance however will be referred to as “affine” invariance
because, the congruent transformation on the diffusion tensors is induced by the
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affine transformation of the domain on which they are defined. It is easy to show
that Frobenius norm of the diffusion tensor difference used in earlier published
work [12, 871, 178, 860] does not have this property.

In [858], we proved the following novel theorem that allows the analytical
computation of the mean value of a DTL

Theorem 1. The mean value of a diffusion tensor field is defined as

M(T, R) = minpesp i) / d* [M, T(x)] dx (31.13)
JR
and is given by
M = +/B-1 { vBAVE| VB! (31.14)

where A = [, T(x)dx, B = [, T~'{x)dx and SPD(n) denotes the set of
symmetric positive definite matrices of size n.

This theorem is essential for the piecewise constant Mumford-Shah model used
in the segmentation algorithm, wherein the DTI is modeled by piece-wise constant
regions and the constant is the mean value taken over the region.

31.4.2 The DTI Segmentation Model

In [857, 859], DTI segmentation in R* was posed as a minimization of the
following variational principle based on the Mumford-Shah functional [591]:

E(T,C)=Ldz(T{x),To(x))dx+a‘/;;ucp(T)(x)dx+ﬁ|C| (3L15)

where the curve C is the boundary of the desired unknown segmentation, £ C
%? is the image domain, T is the given noisy DTI, T is a piecewise smooth
approximation of Ty with discontinuities only along C, |C| is the arc length of
the curve €, « and [ are control parameters, d(.,.) is a measure of the distance
between two diffusion tensors. The second term uses the Dirichlet integral [394]
of the DTI T that is a map from R? to &, where & is 2 Riemannian manifold of
SPD matrices of size m with a metric g induced by the Rao’s distance for matrices.
As there are m(m + 1)/2 independent components in SPD matrices of size m,
the dimension of & is m{m + 1)/2. Let the local coordinates of a neighborhood
of 7'(x) on S be given by u = (u1, ..., Upa(m1)/2)> then

out ol
p(T)) = > > gs'j(u)éat—;k (1.16)

l<ksn 1<ij<mi{m+1)/2

where n = 2 for 2D segmentation. The extension of the Mumford-Shah functional
to 3D is straight forward and can be achieved simply by replacing the curve C
with a surface S and the implementation in 3D is similar to that in 2.
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31.4.3 The Piecewise Constant Model for DTI Segmentation

The variational principle in equation (31.15) will capture piecewise smooth re-
gions while maintaining a smooth boundary, the balance between the smoothness
of the DTI in each region and the boundaries is controlled by « and 3. When «
is extremely large, equation (31.15) is reduced to a simplified form which aims to
capture piecewise consiant regions of two types i.e., binary segmentation:

E(C}Tl,Tz)=/d2(T(x),T1}dx+] d*(T(x), T2)dx + BIC} (B1.17)
R R*

where B is the region enclosed by C and R° is the region outside C, T'; and T2
are the mean values of the DTI in region R and R° respectively.

The above model can be viewed as a modification of the active contour model
without edges for scalar valued images by Chan and Vese [174]. It can segment
DTIs with two types of regions with different mean (constant) values (each region
type however can have disconnected parts} in a very efficient way. In [858], we
incorporated the information theoretic dilTusion tensor “distance™ {31.10) in this
active contour model to achieve DTI segmentation.

The Euler Lagrange equation for the variational principle (31.17) is

[Bk — d*(T,T1) + d*(T, T2)] N =0
T) = M(T,R), T =M(T,R")

where & is the curvature of the curve C, N is the outward normal to the curve.
When T and T are fixed as T; = M(T, R) and Ty = M(T, E*), we have the
following curve evolution for the above equation:

oCc
ot

The curve evelution equation {31.18) can be easily written out in a level set
framework leading to,

643) Vt;ﬁ
ol 7]

where ¢ is the signed distance lunction of C.

We then developed a modified version of the Chan and Vese [174] implementa-
tion. Similar to {174], we uscd a two stage implementation in which the first stage
involves evolving the embedding function ¢ according to equation (31.18) fora
fixed T, and T'5. The second stage involves computing the mean values 'T; and
Ty for a fixed ¢. What is different here from [174] is the computation of T'; and
T'; using (31.14). The major step in {31.14) is the computation of the square root
of an SPD matrix and can be achieved by matrix diagonalization [857].

Equation (31.18) can be easily discretized using an explicit Euler scheme. Up-
dating according to equation {(31.18) on the whole domain € has a complexity of
O{|£}|} and will be rather slow when the the domain is large. Since we are only in-
terested in the evolving the zero level set, updating only a narrow band around the
zero level set will suffice and this can be achieved using the narrow band method

— [Bk — & (T, T1 (1)) + d*(T, T2 ()| N

— d*(T,T)) 4 4*(T, Tg}] |V (31.18)



Segmentation of Diffusion Tensor Images 5N

described in [3, 539]. In order to maintain ¢ as a signed distance function of C,
it is necessary to reinitialize ¢ and can also be done only within a narrow band.
There are also scveral other efficient numerical schemes that one may employ for
example the multi-grid scheme as was done in Tsal et al. [B08]. In our work, an
explicit Euler scheme with the narrow band method yielded reasonably fast solu-
tions (3-3secs. for the 2D synthetic data examples and 2-10 minutes for the 3D
real DTT examples ot a 1Ghz Pentium-3 CPU).

31.4.4 The Piecewise Smooth DTI Segmentation Model

In certain cases, the plecewise constant assumption will be violated and the piece-
wise smooth model (31.15) has to be employed in such cases. Tn [857, 859], we
extend our work to accommodate such cases. Following the curve evolution im-
plementation of the Mumford-Shah lunctional by Tsai et al. [808] and Chan et
al. [175], we use a two-stage scheme. In the smoothing stage, the curve is fixed
and a smoothing inside the curve and outside the curve are done by preserving the
discontinuity across the curve, In the curve evolution stage, the inside and outside
of the smoothed DTI are fixed while the curve is allowed to move.

Discontinuity Preserving Smoothing
When the curve is fixed, we have the following energy functional;

Ec(T) = ]{;dz(T(x),Tg(x))dx +aL/Cp(T)(x)dx (31.19)
As we have

P 7
(T (x + hdxy), T(x)) = S PO O il IO TO
o Brr:k dxk
1265 <mim+1)/2

where d(., .} represents Rao’s distance between diffusien tensors. Since our diffu-
sion tensor “distance’ approximates Rao’s distance between infinitesimally close
diffusion tensors and is computationally sound, the above energy functional can
be discretized as follows where we use h = L:

Bo(T) =) d(T(x,To(x))+a Y d&(T(x),T(y)) @1.21)

{(x,¥)eNe

where N defines a collection of neighboring pixels. If a pair (x,¥) cuts across
the boundary, it is excluded from N¢.

We then have an energy functional of a DTI on a discrete grid and we can
therefore compute its gradient with respect to this discrete DTI. A straight forward
way to do this is to treat all the independent components of the diffusion tensors
as the components of a vector and compute the gradient of this energy function
with respect to this vector. However, the form of the gradient will not be compact.
Instead, we use the derivative of a matrix function f{A)} with respect to its matrix
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variable A i.e., the components A;; as follows:
of(A) _Tof(M)] _ [, F(A + diEy;) - f(A)
: I - gy .0
A df'lu dt
where E;; is a matrix with a 1 at location (4, j) and 0 elsewhere.

The directional variation of E with respect to a perturbation V on T(x) is given
by

(31.22)

Ec(T(x) + V) — Ec(T(x)) = itr [(B - T (x)AT }(x))V] (31.23)

where A = a3 oy T Hy) + Ty'(x) and B = ) ena T +
To(x). In particular, let V = dtE;;, and K = [B — T 1{x)AT }(x}], we
have:

1 1
Ec{T{x)+ thij’) — Ec(T(x)) = EtT(dtKEgJ;) o= ZdtK@'j

then the gradient of E¢ can be derived from equation (31.22) as:

8Be 1., 1 1 -1
T = K=y [B - T H{x)AT*(x)] (31.24)

So the minimizer of the discrete variational principle (31.21) satisfies
B = T (x)AT Yx) (31.25)

Note that the above analytical and compact equation (31.25) is a byproduct of
our choice of diffusion tensor “distance” in the form of (31.10). It is not plausible
to derive such a nice form using the exact information theoretic diffusion tensor
distance as given in [508, 510].

Curve Evolution Equation

Once the discontinuity preserving smoothing of the DTI is achieved, the
DTI is fixed and the curve C evolves for several steps in accordance with the
mintmization of the following energy functional:

Er(C) = fR d*(T r(x), To(x))dx + ’/‘;tcdg(TRc(x),Tn(x})dx

v}-‘a./Rp(TR}[x)dx--lv a/Rc p(T R} (x)dx + HCH (31.26)

The gradient descent of the above energy functional is given by,
ac
57 = {~Bk + [d*(Tr, To) - &*(Tp, To)] + er[p(Tre) ~ p(Tr)]} N
Again for implementation, we have
ac
5 = NN+ [4*(T g, To) — d*(Tg-, To)] N (31.27)

+al S A(Tr,Taly)) - Y. dZ(TR,TR(y))]N

ENge(x) YENR(x)
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The level set form of (31.27) can be easily derived and implemented similarly as in
the piecewise constant case [B08, 175]. The major difference here lies in the com-
putation of T and T - instead of the simaple mean diffusion tensor values. Since
the gradient can be computed as in (31.24), it is easy to design efficient numerical
algorithm to achieve the discontinuity preserving smoothing. In [857, 859], we
use gradient descent with adaptive step size due to its simplicity however, more
sophisticated techniques such the implicit Buler with preconditioned conjugate
gradient can be applied and will be the focus of our future research.

31.4.5 Experimental Results

In [858, 857, 839], we presented several sets of experiments on the application of
our DTI segmentation algorithm. We will present excerpts of these results here for
the purposes of illustration. The first one is on 2D synthetic data sets, the second
one is on single slices of a real DTI and the last one is on a 3D real DTE, In these
experiments, ifnot explicitly stated, the segmentation model used is the piecewise
constant model in equation (31.17).

The purpose of the synthetic data experiments is to demonstrate the need to use
the full information contained in the diffusion tensors for segmentation purposes
as opposed to using scalar maps computed from the diffusion tensors. To this end,
we synthesize two 2D diffusion tensor fields, both are 2 x 2 symmetric positive
definite matrix valued images on a 128 x 128 lattice and have two homogeneous
regions. The two regions in the first diffusion tensor field differ only in the orien-
tations while the two regions in the second diffusion tensor field only differ in the
scales. These two fields are visualized as ellipses ai each lattice point, as shown in
Fig. 31.1 top and bottom row respectively. Each ellipse’s axes correspond to the
egigenvector directions of the diffusion tensor and are scaled by the corresponding
eigenvalues. With an arbitrary initialization, our model vields desired segmenta-
tion results as show in Fig. 31.1. The evolving boundaries of the segmentation
are shown as curves in red. Note that the first diffusion tensor field can not be
segmented by using only the scalar anisotropic propertics of diffusion tensors as
in [925] and the second diffusion tensor ficld can not be segmented by using only
the dominant eigenvectors of the diffusion tensors. These two examples show that
one must use the full information contained in diffitsion tensors to achieve quality
segmentation.

For the case of 2D slices of a 3D DTI from a normal rat brain, Fig. 31.2 de-
picts the segmentation procedure applied to extract the corpus callosum with the
evolving segmentation boundary curve in red superimposed on the ellipsoid visu-
alization of the DTL In the final step, the essential part of the corpus catlosum is
captured by our piecewise constant segmentation model. To further get the horns
of the corpus callosum, we use the segmentation results of the piecewise constant
model as initialization and apply the piecewise smooth region model (see equation
31.15). The result is shown in Fig, 31.3, which depicts a significant refinement
over the segmentation achieved using the piecewise constant region model in Fig.
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31.2. In all the above experiments, the region corresponding to water surrounding
the rat brain was excluded as it is of no significance in the biological context.

Finally we demonstrate 3D segmentation results for a normal rat brain DTT of
size 114 x 108 x 12, First row of Fig. 31.4 depicts the initialization, intermediate
and the final stages of the segmentation algorithm in order to segment the corpus
callosum. In addition, intersections of the final 3D segmentation with different
slices of the {),., component of the DTI are shown in the bottom row of Fig. 31.4.
As seen from the overlays in these images, the segmentation of the corpus callo-
sum is visually correct. It is evident that a signilicant part of the corpus callosum
inside this volume is captured.

Validation of the segmentations in the real DTI case for three dimensions is a
hard problem since developing methods for obtaining ground truth segmentations
by manually segmenting DTI data sets is nontrivial. We will focus our luture
ellorts in this research direction,

31.5 Conclusion

We reviewed several approaches in DTI segmentation ranging from the clustering
method to region-based active contour models. In particular, we present our recent
approach in detail. Qur novel DTI segmentation algorithm incorporates an infor-
mation theoretic diffusion tensor “distance” into the popular region-based active
contour models [174, 175, 808]. The particular information theoretic discriminant
we employed offers several advantages: It naturally follows from the physical
phenomena of diffusion, is affine invariant and is computationally tractable. The
computational tractability is facilitated by a novel theorem that we proved which
allows for the computation of, the mean of the diffusion tensor field in closed
form, and an analytical form of the discontinuity preserving smoothing of the dif-
fusion tensor ficld. By using a discriminant on diffusion tensors, as opposed to
either the eigen values or the eigen vectors of these diffusion tensors, we make
full use of all the information contained in the diffusion tensors. Our approach
was apphied to synthetic and real DTI segmentation yielding very promising re-
sults. In situations where the data does not contain sufficient information for the
algorithm to yield desired segmentations, one may resort to use of shape priors
built using the DTI data sets and this is one of our current research foci.
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Figure 31.1. Segmentation of synthetic dilfusion tensor fields with two regions. Top tow:
Two regions are homogeneous and differ only in the orientations. Bottom row: two regions
are homogeneous and differ only in scale. Left to right are the initial, intermediate and final
steps of the curve evolution process for segmentation.

Figure 31.2. Segmentation of the corpus callosum from a real DTI slice. Left to right:
initial, intermediate and final steps in segmenting the corpus callosum.

Figure 31.3. Segmentation of the corpus callosum from a real DTI slice using the piecewise
smeoth model. Left to right: initial and final steps in separating the corpus callosum .
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Gelesles]es)

Figure 31.4. 31D Segmentation of the corpus callosum from the DTI of a normal rat brain.
First row, left to right.: initial, intermediate and final steps in separating the corpus callo-
sum. Second row, left to right: a 2D slice of the correspending evolving 3D segmentation
in the first row superimposed on the D, component, Third row, left to right: different 2D
slices of the final segmentation superimposed on the 7, component.



Chapter32

Variational Approaches to the
Estimation, Regularization and
Segmentation of Diffusion Tensor
Images

R. Deriche, D. Tschumperlé, C. Lenglet and
M. Rousson

Abstract

Diffusion magnetic resonance imaging probes and quantifies the anisotropic
diffusion of water molecules in biological tissues, making it possible to non-
invasively infer the architecture of the underlying structures. In this chapter,
we present a set of new techniques for the robust estimation and regulariza-
tion of diffusion tensor images (DTI) as well as a novel statistical framework
for the segmentation of cerebral white matter structures from this type of
dataset. Numerical experiments conducted on real diffusion weighted MRI
illustrate the techniques and exhibit promising results.

32.1 Introduction

Diffusion magnetic resonance imaging is a relatively new modality [505] that ac-
quires, at each voxel, data allowing the reconstruction of a probability density
function characterizing the average motion of water molecules. As of today, it is
the only non-invasive method that allows to distinguish the anatomical structures
of the cerebral white matter. Well-known examples are the corpus callosum, the
arcuate fasciculus or the corona radiata. These are commissural, associative and
projective neural pathways, the three main types of fiber bundles, respectively
connecting the two hemispheres, regions of a given hemisphere or the cerebral
cortex with subcortical areas. Diffusion MRI is particularly relevant to a wide
range of clinical applications related to pathologies such as acute brain ischemia,
stroke, Alzheimer’s disease or schizophrenia. It is also extremely useful in order
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to identifly the neural connectivity patterns of the human brain [507] and refer-
ences therein.

Tn 1994, Basser et al [63] proposed to model the probability density function
(pdf) of the three-dimensional molecular motion r, at each voxel of a diffusion
MR image, by a Gaussian distribution whose covariance matrix is given by the
diffusion tensor. Diffusion tensor imaging (DTI) thus produces a volumic image
containing, at each voxel, a 3 x 3 symmetric positive-definile matrix. The es-
timation of these tensors requires the acquisition of diffusion weighted images
in several non-collinear sampling directions as well as a T"2-weighted image.
Numerous algorithms have been proposed to perform a robust estimation and reg-
ularization of these tensors fields [811], [839], [884], [541], [872], [863], [864],
[226], [814], [124], [179], [557],[679]. Among all these works, it is worth point-
ing out that [864] was the first to use the original Stejskal-Tanner equation, and
not the lineatized form, in the data term. The authors showed the importance of
this model and relied on the Cholesky decomposition to estimate the symmetric,
positive-definite tensors. In sections 32.2 and 32.3, we will tackle the estimation
and regularization tasks within a common varjational framework while taking into
account the symmetry and positive definiteness constraints.

Moreover, it is well-known that normal brain functions require specific cortical
regions to communicate through fiber pathways. Based on DTI, most of the exist-
ing techniques addressing the issue of the anatomical connectivity mapping work
on a fiber-wise basis. In other words, they do not take into account the global
coherence that exists among fibers of a given tract. Recent work by Corouge et
al [225] has proposed to cluster and align fibers by local shape parameterization
so that a statistical analysis of the tract geometrical and physiclogical properties
can be carried out. This work relies on the extraction of a set of streamlines from
diffusion tensor images by the method proposed in [583] which is known to be
sensitive to noise and unreliable in areas of fibers crossings.

For these reasons, we propose, in section 32.4, to directly perform the segmenta-
tion of diffusion tensor images in order o extract neural fibers bundles. Contrary
to the methods proposed in [925], [889], [314],[861], [858] and [441], our ap-
proach is grounded on the expression of statistics in the space of multivariate
Gaussian distributions [687], [508], [509]. We use this information in a level-set
and region-based framework to evolve a surface while maximizing the likelihood
of the region to extract. The central point in the developments of section 32.4
will be the choice of the probability metric, e.g. the dissimilarity measure used to
compare any two probability density functions.

32.2 Estimation of Diffusion Tensor Images

32.2.1 Dafa acquisition

Qur dataset consists of 30 diffusion weighted images Sz :  C R* — R, k =
1,...,30 as well as a single image Sy corresponding to the signal intensity in the
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absence of any diffusion-sensitizing gradient. They were obtained ona GE 1.5 T
Signa Echospeed with standard 22 mT/m gradient field. The echoplanar images
were acquired on 56 evenly spaced axial planes with 128 x 128 pixels in each
slice. Voxel size is 1.875 mum x 1.875 mm x 2.8 mm. 6 gradient directions gy,
each with 5 different b-factors and 4 repetitions were used. Imaging parameters
were: b-factors between 0 and 1000 s.mm =2, TR = 25 s, T'E = 84.4 ms and
a square field of view of 24 cm [659]'.

32.2.2 Linear estimation

Werecall that the estimation of a field of 3 x 3 symmetric positive definite matrices
D is performed by using the Stejskal-Tanner equation 32.1 [762] for anisotropic
diffusion.

Sk(x) = So(z) exp (—bgi D(z)gx) Yz € Q (32.1)

where g are the normalized non-collinear gradient directions and f the diffusion
weighting factor. Many approaches have been derived to estimate the tensor field
D.

If we effectively restrict ourselves to 6 gradient directions, Westin et al. derived in
[884] a compact analytical solution to eguation 32.1 and, by doing so, eliminated
the need to solve it for every single data point. The idea relies on the 1mr0duct10n
of a dual tensor basis Bk, computed from the tensor basis By = gkgk, and
which can be used to decompose any given tensor D(x). We then end up with the
closed-form solution:

o
Eg (-_) By (32.2)

k=1

This method turns out to be sensitive 1o noise and easily influenced by potential
outliers. This is due to the low number of measurements intrinsically used by
this approach and by the choice of the minimization function {see [541] where
the Geman-McLure M-estimator is used in order to reduce outlier-related arti-
facts). Moreover resulting tensors may not be positive definite, which requires a
subsequent reprojection step [814].

32.2.3  Variational estimation

In order to deal with a more complete estimation approach, we propose to in-
corporate some important priors such as tensor positivity and regularity into
a variational formulation of the estimation problem by minimizing the follow-
ing energy on the manifold of real 3 x 3 symmetric positive-definite matrices

! Data courtesy of J.F, Mangin and J.B Poline, CEA/SHFJ, Orsay, France
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5+(3,R):
) + ap( VD)) da

z)\
Jaemin [5 20 (jn(5) - wip@s:
(32.3)

where 1} controls the robust estimation and the Lagrange multiplier o, together
with the scalar function p, drives the anisotropic regularity of the solution. Min-
imizing this criterion, in the constrained tensor space, leads to the following
evolution equation;

D(—qy = Id

P = (G +GT)D? + DYG + GT)
where G corresponds to the gradient of the unconstrained criterion. defined
as Gy = Sop_, % (lox|)sign(vy) (gkg}f;‘)ﬁj + adiv ( e VDt-j) with

vy, = In(Sy/Sk) — bgf Dgy.

Note that if ¢(v) = ©? and & = 0, the criterion reduces to a simple multilinear
regression by least square that generalizes the linear estimation method of Westin
et al [884] and provides a positive definite solution since the minimization is done
in the constrained space S+ (3, R). This variational method converges to a much
more consistent solution thanks to its global behavior. Concerning the implemen-
tation part, a carefully designed numerical scheme, based on manifold integration,
to ensure that the estimate stays on §1{3,R) at each step of the gradient descent,
is used to solve the associated Euler-Lagrange eguations:

Dirary = ATDyA with A = exp (D (G + GT)dt)

Our iterative method starts from a field of isotropic tensors that are evolving in
S+(3,R) and are morphing until their shapes fit the measured data Sp, Si. En-
forcing the positiveness and regularity constraints has a large interest for DTI
estimation, and leads to more accurate resulls than with classical methods. For
more details, we refer the interested readers to the article [814].

32.3 Regularization of Diffusion Tensor Images

The variational estimation method naturally brings some spatial coherence and
smoothness into the generated tensor field. However, the fundamental properties
of diffusion tensors, like diffusivities and principal orientations, are contained in
their spectral features. It can then be interesting to regularize the tensor field with
regard to those spectral elements. This will bring more coherence into the tensor
structural information and thus improve any subsequent processing such as the
tracking of neural fibers.
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32.3.1 On some non-spectral methods and their limitations

Non-spectral methods are based on a direct anisotropic smoothing of the diffusion
weighted data S, or consider each tensor as 6 independent scalar components
D(:x);; (by symmetry) with possible coupling. We thus evolve each D(x);; by
minimizing the following quantity:

ED) = [ $ID@) ~Dofe)f +p(VD@lds G2

where Dy designates the initial noisy tensor field and the field gradient norm
|VD| behaves as a coupling term between the tensors components. However,
eigenvalues tend to diffuse faster than eigenvectors, resulting in a swelling ef-
fect on the tensors.

Spectral methods separately consider the eigen-elements of the tensors. Eigenval-
ues smoothing is typically performed by a vector-valiied anisotropic PDE ([702]
and references therein} satisfying the maximum principle in order to preserve the
positiveness. The three orthonormal eigenvectors define a matrix of O(3) which
can be regularized by acting only on the principal eigenvector u! and then recon-
structing the associated tensor [226]. The field of orthonormal matrices can also
be evolved under a scheme preserving the eigenvectors norms and angles [811].
This boils down to solving a system of coupled and constrained PDEs. However,
all these approaches require a time-consuming step of eigenvectors realignment
since a given vector and its opposite are both solution of the same singular value
decompasition and thus yield artificially discontinuous vectors fields.

32.3.2 A fast isospectral method

In [179], we proposed an efficient alternative to the previous spectral techniques,
which does not require any spectral decomposition, by building flows acting on
a given submanifold of the linear set of maltrix-valued functions and preserving
some constraints. We showed that this amounts to characterizing the velocity of
the flows (ie. the tangent space of the submanifold) at cach point of that subman-
ifold, Actually, the relevant constraints (orthogonality, eigenvalues conservation
...y can be expressed by simply working with the proper Lie group or homoge-
neous space. For example, an isospectral flow acts on a field of real symmetric
matrices and preserves their eigenvalues. Moreover, its velocity is directly de-
rived from the matrices ficld gradient, hence no need for realignment. If [ X, Y]
denotes the Lie bracket of X and ¥V, e.g. XY — Y X, the general form for our
isospectral [low is given by:

%—If = [D,[D, (G + G")]] (32.5)

where G prescribes the desired regularization process, such as

. (P{IVD])
G@'jzdl\-’( |VD| VD.U
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Figure 32.1. DTI regularization in the genu of the corpus callosum ([TOP LEFT]: Anno-
tated fractional anisotropy axial slice, [TOP RIGHT]; Original tensors, [BOTTOM LEFT]:
Non-speetral regularization, [BOTTOM RIGHT]: Isospectral flow)

p denotes the same scalar function as in section 32.2.3 and preserves important
structures of the tensor field. A specific reprojection-tree scheme based on the
exponential map can also be used to implement the PDE (32.5);

Diiran = ATDyA with A = exp (dt[G + GT, D))

Results of non-spectral smoothing and isospectral llow on diffusion tensors
cstimated in the genu of the corpus callosum are presented in figure 32.1.

32.4 Segmentation of Diffusion Tensor Images

The previous sections described algorithms for the estimation and the regular-
ization of diffusion tensor images. We now Tocus on the segmentation of these
tensor-valued images, seen as fields of Gaussian probability density functions.
We first set up the level-set and region-based surface evolution framework that
will be used throughout this section. We then progressively introduce the var-
ious statistical parameters associated with the probability metrics derived from
the Euclidean distance, the Kullback-Leibler divergence and finally, the geodesic
distance between probability density functions.
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32.4.1 Level-set and region-based surface evolution

Our ultimate goal is to compute the optimal 3D surface separating an anatomical
structure of interest from the rest of a diffusion tensor image. The region-based
front evolution, as developed in [684], is an efficient and well-suited framework
for our segmentation problem. We hereafter summarize the basic notions of this
technique.

Let s be the optimal boundary between the object to exiract £} and the back-
ground (1. We introduce the level-set [261], [262] and [618] function ¢ : 2 - R,
defined as follows:

¢(x) =0, ifres
(25(2‘,) = DEucI{iUs 3), ifz €
#(z) = —Dgual®,s), ifz e

where Dy, {x,s) stands for the Euclidean distance between x and 8 and £ =
1 U Q5. Furthermore, let H.(.) and é.(.) be regularized versions of the Heavi-
side and Dirac functions as defined in [174].

Let g(x, 7) be the probability density finction of our random vector r of R de-
scribing the water molecules average motion at a given voxel z of a DTI dataset.
We also denote by p; and p; the probability distributions of the pdfs q(z, .) respec-
tively in £y or §1p. Then, according to the Geodesic Active Regions model [625],
and by adding a regularity constraint on the interface, the optimal partitioning of
£} in two regions £2, and €25 is obtained by minimizing:

E($,p1,p2) = V/QIVHE(@)Idm—Lﬂe(é)logm(q(w,'})dw 6
- ]ﬂ(l — H ) log polyl(x,.))dx

We have reached the point where we need to express py and p», e.g. the proba-
bility distributions in the space of probability density functions ¢{.,+). This is the
purpose of the next sections.

32.4.2 Multivariate Gaussian distributions as a linear space

When dealing with diffusion tensor images, we recall that the molecular mo-
tion is assumed to follow a Gaussian law of zero mean. The diffusion tensor
can indeed be interpreted as the covariance matrix of the underlying Brownian
motion. As proposed in [687], we start by considering the parameters space of
three-dimensional Gaussian pdfs ¢(., r} as linear, which boils down to reducing a
diffusion tensor image to a vector-valued volume, each voxel being assigned with
the G-dimensicnal vector of the variances and covariances, and the probability
metric being Euclidean.

Let u{x} be the wvector representation of a tensor D{x)}, the probability
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distributions of u(z) in the regions 5 = 1,2 are defined as:

1 o= )AL (um )
(2m)3[A, |1/
The Euclidean mean vectors @, and covariance matrices A, have to be estimated.
They can simply be introduced as unknown in (32.6} and optimized for during the
front evolution process. Our objective function 32.6 then becomes:

E(és{ﬁm,ﬁzl,z})=VfQIVHG(é}ldw—fnHe(é)logpl('w(m)lﬁl,ﬁl)dw

Pslufti, Ay) =

- /(1 — H () log pa(ufx)|Tig, Aa)dx
/5
This type of energy was studied in [684], [686], the Euler-Lagrange equations for
¢ yield the following evolution equation for the level-set function ¢(zx) YV €

(o) = 8.9) (v + Flog 222 ula) ) AT o) )

A 2
+%(u(rﬂ) — ) TAL Hulz) — Hg))

while it can be shown that the statistical parameters must be updated by their
empirical estimates [687]. Adequate implementation schemes for this type of op-
timization can be found in [174]. If we restrict the covariance matrices to the
identity, these equations simplify and the likelihoods in equation (32.6) simply
become the Buclidean distance between the vectors v and Ts— 2, which is equiv-
alent to the Frobenius norm of the difference between the corresponding tensors,
as studied in [861].

Figure 32.2 illustrates this method on a synthetic dataset where the Y-shape re-
gion to be segmented only differs from the background by the orientation of its
tensors, A crossing area with low fractional anisotropy was created and Gaussian
noise was separately added on the eigenvalues and eigenvectors Lo stress the al-
gorithm.

Motivated by the method proposed by Wang and Vemuri in [858], we now
derive the statistics and the associated evolution equation based on a more
natural and widely used measure of dissimilarity between pdfs, known as the
Kullback-Leibler divergence or relative entropy.

32.4.3 Information-theoretic statistics between distributions

We will show that this approach is not only more natural, in the sense that it
is strongly rooted and used in the information theory community, but also more
versatile since it enables the segmentation algorithm to work on fields of Gaussian
densities as well as on nen-parametric densities [508].

We consider a general probability density function g{, r) of the random vector
r of R®. The symmetrized Kullback-Leibler divergence can be used to express
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Figure 32.2. Segmentation (with Euclidean probability metric} ol a noisy tensor field com-
posed by two regions with same scales but different orientations {([TOP LEFT]: 2D-cut of
the tensor field, [TOP RIGHT]: Final segmentation, [BOTTOM]: Surface evolution)

the dissimilarity between diffusion processes at different locations of £1. With
q(z, ), q(y,.) Y&,y € © two probability density functions from R* onto B,
their symmetrized Kullback-Leibler divergence is given by:

1 q{z,7) afy, 7)
Duala(o s ) = 5 [ (st 1o 200 4 gtyr) o 283 )
(32.7)
We denote by §; and g, the mean probability density functions over £ and Qy
verifying equation 32.10. In this section, we make the assumption that the pdfs in
£, and 2, have respective Gaussian distributions pf, p5' with means §,, g, and

variances o, o3

o 1 _DZ G, E
pfgzl,Z(QIqsr 0.82) = ——=——gxp .-—--}‘-i‘{—{—s)

- v/ 271’02 203

‘We can then rewrite our objective function 32.6 as follows:

E(, {G10,052)) =v fn |VH.(¢)dz — L H () log pf (g()[7;, 03 )i

- [ 0= B oenf o)t o)
(32.8)

In the case where the o2 are equal to 1, this energy is equivalent to the one
proposed in [858]. As for the Euclidean probability metric, the Euler-Lagrange
equations yield the following evolution equation:

Ve B )
(x) =8, d logossin i 22 =2 329
i) =) (” iTel T8 ), %‘)) )
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~LLIRl=lo

Figure 32.3. Segmentation of a noisy tensor field composcd by two regions with same
scales but different orientations ([TOP LEFT]: 2D-cut of the tensor field, [TOP CENTER]:
Segmentation obtained from [R58], [TOP RIGHT]: Segmentation based on the Kull-
back-Leibler probability meiric and associated statistics, [BOTTOM:] Respective surface
evolutions)

Moteover, it can be shown that the variance must be updated by its empirical
estimation with respect to the Kullback-Leibler divergence, whereas some more
work is needed for §,, defined as:

Gom12 = 'J.rgmm TN f D (¢(x), go)dz (32.10)

Indeed, for a general probability density function g{., r), the variance is easily
computed as in [686] but the estimation of the §; might require the use of numer-
ical approximation techniques if no closed-form expression is available. It turns
out that, for Gaussian pdffs q(.,+}, the energy 32.8 simplifies as follows:

E(¢'a {61,2: J?,Z}) =
v | 1VH@)ds +5 [ B (#)og(znod) + Diy(ala)g,)or)ds
7 2 Ja

+5 | (1= H@)tor(2rod) + Dhilala) Tos e
(32.11)

Using the closed-form expressions provided in [858] for the symmetrized
Kullback-Leibler divergence between two Gaussian pdfs and for the associated
mean density g, parameterized by the mean diffusion tensor D, the Euler-
Lagrange equations for our energy yield (the dependence on x is omitted for the
sake of clarity):

E]—S(tr(D"lﬁg +D, D)a;2 = :r(D-lﬁl +ﬁ;lD)a{2)>

(32.12)
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Notice that we obtain additional terms {the o2 coefficients) in equation 32.12 if
compared to the Euler-Lagrange equations proposed in [858].
Figure 32.3 illustraies the importance of the variance in our model.

The symmeirized Kullback-Leibler divergence, although it does not salisfy the
triangle inequality, has many useful properties and is widely used to measure
dissimilarities between pdfs. However, for particular densities like multivariate
Gaussian distributions of fixed mean, better probability metrics are available. In
the next section, we show how a Riemannian metric can be associated with the
6-dimensional parameters space of these densities using the Fisher information
matrix. The geodesic distance, intrinsic mean and covariance matrix of multivari-
ate Gaussian distributions, as well as curvature information, can be efficiently
computed to yield a generalized Gaussian distribution of multivariate Gaussian
densities. This generalized distribution can then be used in our segmentation
framework.

32.4.4 A Riemannian approach to DTI segmentation

‘We now consider the Riemannian manifold M of the family of three-dimensional
Gaussian probability density functions parameterized by the 6 components of
their covariance matrix £ (in other words, the diffusion tensor D). Follow-
ing the work by Rao [670] and Burbea-Rao [138], where a Riemannian metric
was introduced in term of the Fisher information matrix, we wish to define the
notion of geodesic distance and intrinsic statistics on this 6-dimensional man-
ifold whose coordinate system, in some local chart, is given by a real vector
parameter ¢ = (0),...,05) € R® such that for all random vector » € R?,
M = {q(r|8}, § € R®}. In the following, we first show the main limitation
of the Kullback-Leibler divergence together with its impact on the segmentation
process. Then, we present the closed-form expression of the geodesic distance as
well as otiginal computational methods to approximate a generalized Gaussian
distribution of multivariate (Gaussian densities with common mean.

The Fisher information matrix: The manifold (M, g} equipped with the Fisher
information matrix g = gy, ¢, = 1,...,6 has the structure of a Riemannian
manifold {670], [746] when g is non-degenerate. We recall that g is defined as
follows:

9=/ 810%‘;57 1) moggf'g)q(rle)dr (32.13)
By plugging the definition of a Gaussian pdf into equation 32.13, the 6 x 6 metric
tensor, as presented in [509], can be expressed in terms of the parameters 6;, i =
1,...,6 used to describe the pdfs. Thus, instead of considering the parameterized
pdfs as living in the linear space R®, we do take into account the Riemannian
structure of the underlying manifold. Moreover, the Kullback-Leibler divergence
D4y turns out to be a Taylor approximation of the geodesic distance between two
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Figure 32.4. Segmentation of the corpus callosum with the Riemannian probability met-
ric ([LEFT]: 3D view with an axial slice of diffusion tensors, [RIGHT]: A: Anterior, P:
Posterior)

nearby distributions ¢(r|0) and q(r|# -+ df}, given suitable technical conditions.
Indeed, as summarized in [45], it can be shown that:

Olog q(r|8) dlog q(v|F)
a8, 00,

This means that the infinitesimal squared geodesic distance gg(df, d8) is twice the
Kullback-Leibler divergence (this is alsc true for its symmetrized form). In other
words, the method presented in the previous section assumes that we always com-
pute distances between nearby elements of A, which, in general, does not hold.
For general pdfs, we may have no other choice but, in the more particular case of
muitivariate Gaussian densities with common mean, a closed-form solution of the
geodesic distance is available, thus allowing the comparison of any two of these
distributions. We now introduce this geodesic distance and derive the associated
intrinsic statistical parameters.

1
Die(6,6 + df) = S [ ] dfdd,

Geodesic distancc and intrinsic statistics: We recall that ST (m, R} denotes
the set of m x m real symmetric positive-definite matrices 2 (here m = 3). A
detailed study on the definition of a statistical model on this nonlinear space was
presented by the anthors in [509]. Another recent work by Pennec et al [636] relies
on a comparable approach to derive tensor fields filtering technigues. Following
[509], [746], [137], [143], [325], [579] and [323], ST (m,R) can be characterized
as an affine symmetric space for which the geodesic distance D, between any two
elements 2; and X3, was derived by Jensen.
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Theorem 32.4.1. (S.T Jensen, 1976 [33])
Consider the family of multivariate Gaussian distributions with common mean

vector bu! different covariance matrices. The geodesic distance between two
members of the family with covariance matrices ¥y and Bg is:

1 —
5 Z log®(\;)
i=1

where the A; are the roots of the deferminantal equation |NE; — o) =0,

Dy(&,}:z) = \/ ll‘(log .30 1/2222_1/2))

We now explain how to estimate the empirical mean, as proposed by Fréchet
[332], Karcher [454] and Pennec [635], as well as the empirical covariance matrix.

Definition 32.4.1. The Gaussian distribution parameterized by & € 8T (m,R)
and defined as the empirical mean of N distributions Xy, k = 1,..., N, achieves
a local minimum of the function a2 : S*(m,R) — RF known as the empirical
variance and defined as:

N
1 e =
o} (S, Bw) = g D D55k, T) = E[D}(Tk, D)
k=1

Katcher proved in [454] that such a mean exists and is unique for manifolds
of non-positive sectional curvature. This was shown to be the case for S (m,R)
in [746]. A closed-form expression of the mean cannot be obtained [579] but a
gradient descent algorithm was proposed in [509]. A flow is derived from an initial
guess Y toward the mean of a subset of S+ (m, R). The following evolution was
obtained:

T =5 ex (—mz‘“Zlo B YR (32.14)

The empirical covariance matrix A? relative to the mean 3 is defined as:

Definition 32.4.2. Given N elements of ST(m,R) and a mean value 3, the
empirical covariance maitrix relative to X is defined as:

1 X
= > B
k=1

where By = flog(Ek_‘lf) is the gradient of the sgquared geodesic distance
VDE (Zx, L) in vector form.

Finally, as detailed in [509], the Ricei curvature tensor R can be computed at
the mean X. Putting everything together and following Theorem 4 of [635], we
have:
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Theorem 32.4.2. The generalized Gaussian distribution in S*{m,R} for a
covariance matrix A9 of small variance o2 = tr(A9) is of the form:

1+ 0(0®) +eo/t)  —TP

Ee) y =
PERA) =R P 2

VE € §%(m,R)

where § = T log(¥7%) is expressed in vector form and the concentration matrix
isy = (A®)"Y — R/3 + O(a) + e(o/€). & is the injection radius at T and ¢ is
such that limg 2 P¢(x) =0V0 € RY,

Implementation: We can use the very same variational framework as the one
described in section 32.4.2 in order to maximize the likelihoods of the diffusion
tensors distributions in 23 and {23. This can now be achieved with respect to the
geodesic distance by using pfz.l’g(ii[fs, A} and by accordingly evelving the
level-set function ¢ toward the optimal segmentation. Figure 32.4 illustrates how
well this approach performs on a real diffusion tensor image.

32.5 Conclusion

Diffusion magnetic resonance imaging gives a direct insight into the micro-
structure of biological tissues through the measurement of hindered molecular
motion. In this chapter, we have described efficient and versatile numerical meth-
ods for the estimation and the regularization of the diffusion tensor images. We
have also presented a novel statistical and geometric approach to the segmenta-
tion of DTI data. The central point of this front evolution framework relies on
the definition of dissimilarity measures and statistics between diffusion tensors,
seen as the covariance matrices of Gaussian probability density functions. The
major contribution of this set of techniques is related to the robust extraction of
anatomical structures in the brain white matter.



Chapter33

An Introduction to Statistical
Methods of Medical Image
Registration

L. Zollei, J. Fisher and W. Wells

Abstract

After defining the medical image registration problem, we provide a short
introduction to a select group of multi-modal image alignment approaches.
More precisely, we choose four widely-used statistical methods applied in
registration scenarios for analysis and comparison. We clarify the implicit
and explicit assumptions made by each, aiming to yield a better under-
standing of their relative strengths and weaknesses. We also introduce a
figural representation of the methods in order to provide an intuitive way
of illustrating their similarities and differences.

33.1 Introduction

Registration of medical image data sets is the problem of identifying a set of ge-
ometric transformations which map the coordinate system of one data set to that
of the others. Depending on the nature of the input modalities, we distinguish be-
tween uni-modal and multi-modal cases, according to whether the images being
registered are of the same type. The multi-modal registration scenario is more
challenging as corresponding anatomical structures will have differing intensity
propertties. In our analysis, we focus on the multi-modal case.

When designing a registration framework, one needs to decide on the nature of
the transformations that will be used to bring images into agreement. For exam-
ple, rigid transformations are generally sufficient in the case of bony structures
while non-rigid mappings are mainly utilized for soft tissue matching. One must
also evaluate the quality of alignment given an estimate of the aligning transfor-
mation. Objective functions or similarity measures are special-purpose functions
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that are designed to provide these essential numerical scores. The goal of a reg-
istration problem can then be interpreted as the optimization of such functions
over the set of possible transformations. fn general, these problems correspond to
multi-dimensional non-convex optimization problems where we cannot automat-
ically bracket the solution (as we would in the case of a | D line-search). Thus an
initial estimate of the aligning transformation is needed before the search begins.

In the past few decades there have been numerous types of objective functions
proposed for solving the registration problem. Among these, there exist a variety
of methods that are based on sound statistical principles. These include vari-
ous maximum likelihood [512, 798], maximum mutual information [534, 8831,
minimum Kullback-Leibler divergence [201], minimum joint entropy [771] and
maximum correlation ratio [678] methods. We are primarily interested in these,
and in our discussion we select four of these registration approaches for fur-
ther analysis. We explore the relative strengths and weaknesses of the selected
methods, we clarify the type of explicit and implicit assumptions they make and
demonstrate their use of prior information. By such an analysis and some graphi-
cal representations of the solution manifold for each method, we hope to facilitate
a deeper and more intuitive understanding of these formulations.

In the past, similar or more detailed overview studies of the registration problem
have been reported. Roche et al. {678], for example, have described the model-
ing assumptions in uni-modal registration applications and a general maximum
likelihood framework for a certain set of multi-modal registration approaches,
and we have described a unified information theoretic framework for analyzing
multi-modal registration algorithms [927, 928].

33.2 The Similarity Measures

In our analysis, we discuss four objective criteria that rely on clear statistical
principles: maximum likelihood (ML), approximate maximum likelihood (MLa),
Kullback-Leibler divergence {KL) and mutual information (MI). While not an
exhaustive list, these similarity measures are representative of a significant group
of currently used registration algorithms. Many registration approaches either di-
rectly employ or approximate one of these measures.

While the analysis presented here carries straightforwardly to registration of
multiple data sets, for simplicity, we focus on the case of two registered data sets,
u(x) and v{x) sampled on 2 € RM_ These data sets represent, for example, two
imaging modalities of the same underlying anatomy in an M-dimensional space.
[n practice, we observe u(x) and v,(:x) where the latter is related to v{:) by

v(7) = o(T"(z)) or v(@)=v, (T (@), (33.1)
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v(z)

Figure 33.1. A 2D example of the registration problem. The observed input images are
u{x), an MRI slice, and v,(z), a CT slice. w{x} is the CT slice that is in correct align-
ment with the MRI slice. The unknown transformation that relates the observed data to
the aligned image is 7. The goal of the registration algorithm is to make T be the best
estimate of (7*) .

where 7% : RM — BM is a bijective mapping corresponding to an unknown rel-
ative transformation. The goal of registration is to find an estimate of an afigning
transformation 7" = (T*)_l which optimizes some objective function of the ob-
served data sets.! Figure 33.1 demonstrates the key components of the registration
problem via a 2D example.

Throughout our analysis (and consistent with practice) spatial samples x; are
modeled as independent random draws of a uniformly distributed random variable
X whose support is the domain of #(z). Consequently, all the analyzed methods
assume that

(IID-i) observed intensities w,(x;) and u(x;) can be viewed as independent
and identically distributed (7.i.4) random variables, despite spatial
dependencies present within the data.

This is a simple consequence of the property that a fimction of an iid. random
variable is itself an iid. random variable under very general conditions.

33.2.1 Maximum Likelihood

The maximum likelihood (ML) method of parameter estimation has served as
the basis for many registration algorithms. Its popularity in parameter estimation
can be explained by the fact that as the sample size increases, ML becomes the
smallest variance unbiased estimator. As we will see, practical issues generally
preclude a direct ML approach. Analysis of the method is however useful for
comparison purposes. Given that the input images are related by an unknown
transformation T™ (see Figure 33.1}, we parameterize the observed data samples

Technically speaking, u{x) may have undergone some ttansformation as well, but without loss
of generality we assume it has not, If there were some canonical coordinate frame (e.g. an anatomical
atlas) by which to register the data sets one might consider transformations on w{x) as well.
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the entire manifold of joint models is
known and available according to ML |

“HH

ML: observed data evaluated under
Joint modch that are parametel ized by T

independent scenario
pluy)= p(u)p'(v)

Figure 33.2. Joint density manifold of the registration search space parameterized by T,
According to the classical ML approach, the entire manifold of joint medels is known and
available for the oplimization lask. The solution is defined at the location which maximives
the likelihood of the observed sample pairs. Here 77 has been chosen as an initial estimate
for the search.

(a sequence of joint measurerments drawn i.i.d) as

Vr- {lwor-1y5- 00 [w,vre] )

{{w(x1), o(T"(@1))], - .., [wlow), (T ()]}

{[#{z1), ve(®1)] 00 s [u TN ), volEn)]} -

According to the ML criterion, we obtain estimates by varying some parameters
of a probabilistic model that is being evaluated on a set of observed data. In the
case of our registration problem, the optimal geometrical transformation that ex-
plains the observations according to the ML criterion satisfies the (normalized)
log-likelihood criterion:

Tw = argmax L1 (Vr-) 332
1
= argmax - Zlog (p{[w o137 - (33.3)

L{(.) in Equation {33.2) indicates that we are evaluating a model parameterized
by the transformation T

This formulaticn of the registration problem implicitly assumes that

(ML-i) as T approaches T, Equation (33.3) is non-decreasing.
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An important distinction between currently used registration methods and the
classical ML approach is that the former optimize the objective criterion by trans-
forming the joint observations ([u, v¢+].). Tn contrast, a classical ML approach
optimizes the objective function by changing the parameters of the joint density
model under which we evaluate the observations (as a function of transformation
I, leaving the observations static throughout the search process. Below, we will
indicate these differences via notional graphs of the solution paths of the selected
methods. [n Figure 33.2, according to the ML approach, the entire search space of
joint models (parameterized by transformation 7") is considered to be known and
available. We let the initial estimate of this example be 1" = 17 (the identity trans-
formation). The solution lies at transformation 7T that maximizes the likelihood
Tunction with respect to the currently observed images. Thus the initial guess by
ML is modified in order to satisfy the criterion.

This framework highlights two practical obstacles to a direct ML approach. The
optimization of Equation (33.2) requires the solution of a system of non-linear
equations for which no direct global solution typically exists, Finding a globally
optimal solution would likely require that p{x, v; T') be pre-computed over all rel-
ative transformations 7' (see Figure 33.2). An alternative is to use an optimization
procedure thai searches for a local optimum, which would require the ability to
produce p{u, v; T} on demand, as we search. The first approach may be imprac-
tical due to computational and memory limitations, While the second approach
may be feasible, as far as we know, it has not been tested or used. The second
obstacle is that there are configurations of the data for which a considerable set
of transformations form an equivalence class under the ML criterion. As the rel-
ative transformations away from the solution 7' = 7™ become large, we observe
empirically that the joint models tend toward statistical independence. In addi-
tion, they may tend towards the same independent model (more on this appears
in Section 33.2.4, below). In this situation, the ML criterion will lose traction for
such large transformations. (In Figure 33.2, such models are located outside of
the dashed outline.) As we shall see, MI-based approaches can be interpreted as
moving away from these models.

33.2.2 Approximate Maximum Likelihood

As mentioned above, the oplimization of Equation (33.2) is generally a very dif-
ficult problem. Suppose, however, that we have a model of the joint density of
our data sets at one particular parameter setting, specifically when the multi-
modal images are registered. We can estimate this model from other registered
data sets and evaluate new observations under the resulting model. This idea was
first suggested by Leventon and Grimson and we refer to it as an approximate
maximum likelihood registration approach (MLa) [512]. (A similar approach has
been discussed more recently in [924].) The approach makes two strong modeling
assumptions:



536 Zillei, Fisher & Wells

the estimated a priori model used by MLa
(assumed to be close to the true joint model)

MLa: offset observations )
evaluated under fixed model d-:psit___J

,_‘\:__ g independent scenario
__\p(u,v):p(u)p(v)

Figure 33.3, The approximate ML method {(MLa) searches over the set of joint data sets
offset by T. The goal is to maximize a criterion that is similar to likelihood with respect to
a fixed model,

(MLa-i) [t is feasible to estimate or learn a joint probability model over the data
modalities of interest at the correct alignment?, and

(MLa-ii) the resulting model accurately captures the statistical properties of
other unseen image pairs (of the same anatomy and with the same
modality pairing as the training set).

We denote the estimated joint density model as
P (w,w) = plu,v;Ty).

As with all of the remaining methods, the MLa approach transforms the obser-
vations prior to evaluating the objective criterion. We dencte the transformed
observations as

Yr

{[w@0), 0B @] .. [l va(Plan))] }
{[uteno@ o F@)] ..., [ulan), (T o Flan))] }

= {lu(z), v(T(@))], ..., [uan), v(T(zw))]}
{[w.vr]y s [w,vr]y ) (334)

i

2 Assuming manual or other types of ground truth results are available from previous registration
experiments.
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We emphasize that the transformation T = (T"‘ o f’) in this particular notation

refers to the relative transformation on () rather than on the observed image of
vo{x). In practice, it is 7" that we apply to the observed image, so optimization is
performed over 7' through fuo(’f“{:;:)). This is equivalent to implicit optimization
over T through the relation v(T(z)) = v, (T™ o T(z)). While we express results
on the implicit transformation, there are simple relationships which allow results

Isal

to be expressed in terms of either " or I

The MLa approach estimates T' (o be the transformation that maximizes a
criterion that is similar to the likelihood criterion:

Tua = orgmgx L, (Vr) (33.5)

1 r
argmax =3 log (b ([w, vrl;3 11) (33.6)

Notice that, according to this approach the joint observations ([u, vy],) are var-
ied as a [unction of T and the model density p° is held static. Tt is under this
particular fixed probability mode] that all the transformed inputs are evaluated. In
Figure 33.3, we indicate the path of the MLa approach by tracing a sample search
path. Beginning with the initial estimate, the algorithm searches over transfor-
mations to maximize the likelihood-like criterion with respect to the previously
constructed, static density model.

The MLa method also makes an implicit assumption when solving the
registration problem. It assumes that:

(MLa-iii) as 7' approaches (T*)~1, or equivalently as (T* o T approaches T,
Equation (33.6) is non-decreasing.

In general, one cannot guarantee the validity of this assumption. Theoretically,
there might exist some counter-intuitive scenarios for which this implicit hypoth-
esis would fail. The existence of these is explained by the information theoretic
phenomenon of fypicality [229]. A more detailed discussion of this issue is not in
the scope of this chapter; it is described in an information-theoretic framework in
[928].

This obstacle, in the context of multi-modal registration, may explain some
shortcomings of the MLa approach that were observed empirically by Chung et
al. {201], Tt motivates their registration approach, which is described in the next
section.

33.2.3 Kullback-Leibler Divergence

Chung et al. suggested the use of KL divergence as a registration measure in or-
der to align digital-subtraction angiography (DSA) and MR angiography (MRA)
data sets [201]. Using the same modelling assumption as in MLa (i.e. 2 model
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the estimated a priori model used by KL
(assumed to be close to the true joint model)

initial estimate by KL

Figure 33.4. According to the KL framework, at each point on the manifold, a joint density
is estimated from the offset data pairs. The aligning transformation is located where the
KL distance (D} is minimized between that current estimate and a previously defined fixed
model.

of the joint intensity data can be estimated from a set of registered data sets),
they optimize an objective function based on a KL divergence term. That is, the
distance between the joint density at the current transformation estimate and the
fixed model is to be minimized:

Ty, = arg H,}i,n D (ﬁ(us”; T)Hpc (u}ﬂ)) :

where p° is constructed as in the MLa approach from correctly registered data
sets and p(u, v; T) is a probability mode! estimated from the transformed sets of
observed pixel intensities {u(z;), v{T{x;)}} (or {u(z;), vo(T{z;)}} as discussed
above). Whereas the previous methods utilize a likelihood function of the ob-
served data sets, here numerical or Monte Carlo integration is used in order to
calculate the KL divergence terms directly.

Consequently, in addition to assumptions MLa-i and MLa-ii, this appreach
makes the following hypothesis:

(KL-i} There is a reliable method for estimating p(w, v; T') from transformed
observations, and

(KL-ii) the KL divergence D (p(w, v; T} |lp°(u, v)) can be accurately estimated
via numerical or Monte Carlo integration of

/ | / $ (u, v:T) log (%’—%)) dudv (337
by substituting $ {u, w; T) for p (2, v; T) in the KL divergence integral.
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The KL method has been demonstrated to be more robust with respect to, or
less dependent on, the size of the sampling region (the area from which the joint
sample pairs are drawn from) than the MLa (or the MI) approaches [201]. This
robusiness is demonstrated empirically [201] and can be partly explained by &yp-
icality, as discussed in the preceding section (Section 33.2.2).

Provided that both of the KL assumptions are valid {the density estimate and the
integration methods are accurate), the KL divergence estimate is non-increasing
as 7' approaches (7). This is supported by empirical comparisons in which
KL did not exhibit some of the undesirable local extrema encountered in the
MLa method[201]. Additionally, the authors emphasize that even though the es-
timated models represent a strong assumption, sufficient mode! distributions can
be constructed even if manual alignment is unavailable. For example, the joint
probability distribution could be estimated from segmented daia for correspond-
ing structures.

In relation to the previous methods, both the samples ([u, vr],) and the eval-
uation density (fi{s,v; I")) are being varied as a function of the transformation
T, while the algorithm approaches the static joint probability density model
{p°{u. v)) constructed prior to the alignment procedure. Instead of evaluating the
joint characteristics of the transformed input data sets under the model distribu-
tion, the KL approach re-estimates the joint model (5(u, v; T')) at every iteration
and uses that when evaluating the observatiens. In Figure 33.4, the KL method
is shown to approach the solution by minimizing the KL distance between the
model and the current estimate.

33.2.4 Mutual Information and Joint Entropy

As has been amply documented in the literature [534, 651, 652, 883], Mutual In-
formation (MI) is a popular information theoretic objective criterion. It estimates
the transformation parameter T' by maximizing the mutual information {or the
statistical dependence) between the input image data sets:

Tur = arg max I (w;vr).
One way to define the M! term is to use marginal and joint entropy measures.

By definition, given random variables A and B, mutual information is the sum of
their marginal entropies minus their joint:

HA B)y=H{A)+ {I(B) - H(A,B).
In the multi-modal alignment scenario that translates to
I(wivr) = Hp(w)+ Hp(o; 1)) - Hp(w, ;7). (33.8)

If T is restricted to the class of symplectic transformations (i.e. volume presery-
ing), then H (p(u)) and H(p(v; T)) are invariant to T". In that case, maximization
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—-l———\__ independent scenario

e[ Pl)=p0p(Y)

Figure 33.5. According to MI, the solution is located maximum KL distance away from
the worst-case, independent scenario, where the joint density is defined as the product of
its marginals: p(u, v; T) = p{u)p(v; T).

of MI is equivalent to minimization of the joint entropy term, H(p(u, v; T)), the
presumption being that this quantity is minimized when 7= (T*}"l. The min-
imization of the joint entropy term has also been widely used in the registration
community.

MI can also be expressed as a KL divergence measure [494] as

I'{u,vr) = D{p(u,v; T)|lp(w)p(v; T)) .

That is, mutual information is the KL divergence between the observed joint den-
sity term and the product of its marginals. Accordingly, the implicit assumption
of MI-based methods is that:

(MI-i) as (T o ’f’) diverges from Ty (as we are getting farther away from
the ideal registration pose) the joini intensities look less statistically
dependent, tending towards statistical independence.

This allows us to write the MI optimization problem as maximizing the divergence
from the current density estimate to the scenario where the images are completely
independent:

Tha = argmax D (9w, v: 1) [ T))

As in the KL divergence alignment approach, both the samples and the evaluation
densities are being simultaneously varied as a function of the transformation T,
However, instead of approaching a known model point according to KL distance,
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the aim is to move farthest away from the condition of statistical independence
among the images, in the KL sense. This behavior is illustrated in Figure 33.5.

Numerous variations on the mutual information metric have been introduced;
for instance, one making it invariant to image overlap {(normalized mutual in-
formation [771]) and another enhancing its robusingss using additional image
gradient information {(gradient-augmented mutual information [651]). In this re-
port, we do not list and analyze these, given that they operate with similar
underlying principles.

333 Conclusion

We have provided a brief comparison of four well-known and widely used multi-
modal image registration methods. We illustrated the underlying assumptions
which distinguish them, and specifically, we clarified the assumed behavior of
joint intensity statistics as a function of transformation parameters. Congidering
the collection of approaches discussed, we see that the ML approach has not ac-
tually been used, in practice. The related MLa method and the KL divergence
method exploit prior information in the form of static joint density estimales over
previously registered data. Subsequently, both make similar implicit assumptions
regarding the behavior of joint intensity statistics as the transformation estimate
approaches the ideal alignment. In contrast, the MI approach makes no use of
specific prior joint statistics - instead, it simply moves away from the general
class of statistically independent models. Figure 33.6 serves as a visual guide to
summarize how Lhe different methods approach the solution.
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the estimated a priori model used by KL and MLa
{assumed to be close to the true joint model)

initigl estimate by ML

[ MLa: offset obsewauons“)l

evaluated under fixed model densit

./ initial estimate by
| MLa, KL and MI
/| and ML solution

! independent sconario

ML: observed data evaluated under
joint models that are parameterized by T

Figure 33.6. Manifold of the registration search space parameterized by transformation T.
The illustration shows how each of the examined methods (ML, MLa, KL and M1) search
through the settings in order to obtain the best estimate of the aligning transformation. Note
that the ML method transforms the mode! to agree with the observed data, while the rest
of the methods operate by transforming the observed data.
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traditional stereo methods, 423426
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representation, 344
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Cchocardiographic image-scquences,
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three-dimensional from image
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Extensions, total variation image restoration,
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Fast marching methods, minimal paths,
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centered minimal paths, virtual
cndoscopy, 110111
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fast marching, scgmentation by, 108 110
fast marching algorithm, 101
minimal paths, 98 105
fast marching resolution, 100-102
geometrical oplics, 98-99
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problem formulation, 99100
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105-107
approach, 106-107
multiple minimal paths, 106
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minimal paths in three-dimensional,
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minimal path between two regions,
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simultancous estimate of path length,
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simultaneous front propagation, 103-104
two-dimensional fast marching for
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two-dimensional up-wind scheme, 102
Filling-in, variational models for, 42-52
elastica-based reonstruction of level
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gray levels, 4548
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Frenct frames, 359-374
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Geometric representation of shapes, 192-193
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163164
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experimental results, 173174
overview, 163
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random cvent, choosing, 166-168
similarity invariant flows, 168—171
gradicnt flow, 17¢ 171
heat equation and similarity flows,
169 170
stochastic snakes, 171
envelope representation, 171 172
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parallax removal, 285
recognizing panoramas, 285-286

Gradient-based estimation, optical flow

estimation, 240243
aperture problem, 243
implementation issues, 242243
intensity conservation, 241
least-squares estimation, 241-242
Graph cul algorithims, binocular stereo with
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algorithun performance, 433434
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energy minimization via graph cuts,
425 426
expansion move algorithm, 432
experimental results, 432434
implementational details, 432 433
matching penalty, 432
minimizing energy, 431.-432
notation, 428429
pixel labeling algerithm, 430-431
smoothness terms, 432
stereo with occlusions, 426429
traditional sterco methods, 423-426
voxel labeling algorithm, 429430
Graph cuts in vision, graphics, 79-80, §2-92
applications of graph cuts as
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example: binary image restoration, 82-84
general case of binary encrgy
minimization, 84
graph cuts
max-flow problem, 81
algorithms for, 81-82
min-cut, §1
algotithims for, 81-82
overview, 80 82
graph-cuts, hypcrsurfaces, theories
conmecting, 90-92
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applications of graph cuts as
hypersurfaces, 87 90
overview, 85-86
topological properties ol graph cuts,
86--87
graph cuts for binary optimization, 82-84
example: binary image resioration,
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general case of binary energy
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algorithms for, 81-82
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min-cut, 81
algorithms for, 81-82

multi-label problems, generalizing graph

cuts for, 92-96

approximate optimization, 94-96
exact multi-label optimization, 92-94
expansion, local minimum, 95 96
swap moves, local minimum, 95-96

overview, 80-82, 85 86

topological properties of graph cuts, 8687

Heart chamber segmentation, cardiovascular
imaging, interactive graph-based
segmentation methods, using graph
culs, 460

Hierarchy bascd on increasing floodings,
levelings for image simplification,
74-76

Hietarchy based on quasi-flat zones,
levelings for image simplification,
76-77

Higher vanishing moments, wavelets with,
13-16

Human motion capture, model-based,
325-340

covering set, segments for computing, 329

human body model acquisition, 328-331

joints of stick model, information related

to, 329

length cstimates, accuracy of, 334

model-based tracking, 331--334
Hypersurfaces

graph-cuts, theories connecting, 90-92

graph cuts as, applications of, 8790

Image alignment, stitching, 273-292
compositing surface, 286-287
direct, featmre-bascd alignment, 277 283
direct methods, 277-279
dircet vs. feature-based, 282 283
feature-based registration, 279282
peometric registration, 281 282
incremental refinement, 278
paratnetric motion, 278-279
cxtensgions, 291 292
global registration, 283-286
bundle adjustment, 283-285
parallax removal, 285
recognizing panoramas, 285-286
motion models, 274-277
scam selection, pixel blending, 287-291
center-weighing, 287-288
exposure compensation, 290
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feathering, 287288
gradient domain blending, 290
high dynamic range imaging, 290-291
Laplacian pyramid blending, 289- 290
optimal seam selection, 288289
Image decomposition, inpainting with, 56-58
Image inpainting, 36-40
Improved rotation imvariance, wavelet
shrinkage with, 10-13
Increasing floodings, hierarchy based on,
levelings for image simplification,
74-76
Infrared images, human sithouettes in,
200- 202
Tnpainting, lofal variation image restoration,
27-28
Inpainting by propagation of information,
36 42
image inpainting, 3640
Navier-Stokes inpainting, 4042
Intensity transforms, image warping,
265-266
Invariant boundary signatures, recognition
under partial occlusions, 182-184
Invariant point, locations, displacements,
178-182
Invariant processing
occlusion resistant recognition, planar
shapes, 177188
planar shapes, 184187
[nvertibility, image warping, 260
[terated refinement, total variation image
restoration, 22-23
[terative optical flow estimation, 243-246
coarse-to-fine refinement, 245-246
temporal aliasing, 245-246

Joint interpolation of vector fields and gray
levcls, 45--48

Joints of stick model, human motion
capture, information related to, 329

Kalman filter
for contours, 303
for point features, 302 303
Kullback-Leibler divergenee, medical image
registration, statistical methods,
537-539

L! fitting, 23-24
Laplace interpolation, 52-55
Laplacian pyramid blending, 289-290
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Layered motion, optical flow estimation,
253-256
mixture models, 254-255
outliers, 256
ownerships, EM, 255-256
Learned subspace models, optical flow
estimation, 248
Level set methods, curve propagation,
grouping, 145-16¢
data-driven segmentation, 151-154
boundary-based segmentation, 151
region-bascd scgmentation, 152-154
ptior knowledge, 154-139
average modcls, 154 157
through linear shape spaces, 157-159
propagation of carves, 146150
level set method, 147-149
level set methods, 149-150
optimisation, and level sct methods,
145-150
Levelings, 65 78
binary commected operators, 66—67
extended connected operators, 68 71
flattening, 70-71
flattenings, 70-71
floodings, 70-71
levelings, 70-71
razings, 70-71
flat grey-tone connected operators, 6768
level by level construction, 67—68
morphological characterization, 68
for image simplification, 71--77
hierarchy based on increasing
floodings, 74--76
hierarchy based on quasi-flat zones,
76 77
multiscale filtering, 74-77
order relations, 74
varying (alpha, beta), 72 73
varying marker function &, 73-74
levelings for image simplification, 71 77
hierarchy based on increasing
floodings, 74-76
hicrarchy based on quasi-flat zones,
76-77
multiscale filtering, 74 77
varying (alpha, beta}, 72-73
varying marker function A, 73-74
Lipschitz cxtension interpolation, 5255
Low-order parametric defermation, optical
flow estimation, 247--248
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Medical imaging, 453-542. See also under
particular medical specialty
statistical methods, 531 542
approximate maximum likelihood,
535 537
Kullback-Leibler divergence, 537 539
maximum likelihood, 533-535
mutial information, joint entropy,
539-541
similarity measures, 532-541
Metamorphs, deformable shape, texture
models, experimental results, 127128
Min-cut, 81
algorithms for, 81-82
Minimal paths, fast marching methods,
image analysis, 97-112
centered minimal paths, virtual
endoscopy, 110-111
Euclidean distance (raveled by front,
computing, 104
fast marching, segmentation by, 108—110
fast marching algorithm, 101
minimal paths, 98105
fast marching resolution, 100--102
geometrical optics, 98 99
global minimum for active contours, 99
problem formulation, 99-100
minimal paths from set of endpoints,
105-107
approach, 106-107
multiple minimal paths, 106
minimal paths in three-dimensional,
162 103
multiple minimal paths between regions,
107-108
minimal path between two regions,
107-108
tubular structures, 108
simultaneous estimate of path length,
104 105
simultancous front propagation, 103—104
two-dimensional fast marching for
minimal action, algorithm, 101
two-dimensional up-wind scheme, 102
Model-based human motion capture,
325-340
covering set, segments for computing, 329
human body mode} acquisition, 328331
joints of stick model, information related
to, 329
length cstimates, accuracy of, 334
modcl-based tracking, 331-334
Motion analysis, 237 356
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Mulii-label problems, generalizing graph
cuts for, 9296
approximate optimization, 9496
exact multi-label optimixzation, 92-94
expansion, local minimum, 95-96
swap moves, local minimum, 95-96
Multi-resolution banded graph cuts,
cardiovascular imaging, interactive
graph-based segmentation methods,
460461
Muiti-view complete stereovision, dynamic
scene modeling, non-rigid, multi-view
image sequences, 440442
Multi-view image sequences, non-rigid
dynamic scene modeling, 439452
multi-view complcte stercovision,
440-442
scene flow, 446 447
sceme flow estimation, 442443
shape-motion integration, 443
similarity measures, 447448
slereovision, 445446, 449450
scene flow, 450-451
scene flow estimation, prediction error,
443 448
Multi-view linking, three-dimensional from
image sequences, 399-400
Multi-view reconstruction, static, dynamic
scencs, 405422
Multiscale decompositions, total variation
image restoration, 28-29

Navicr-Stokes inpainting, 40 42
Non-parametric pdfs of image features,
region-dependent descriptors, 320 321
Non-parametric sampling, texturc synthesis
by, 56
Non-paramectric statistics, descriptors based
on, 320-322
Non-rigid dynamic scene modeling,
multi-view image sequences, 439452
multi-view complete stereovision,
440442
scene flow, 446-447
scene flow estimation, 442443
shape-motion integration, 443
similarity measurcs, 447 448
stereovision, 445446, 449-450
seene flow, 450451
scene tlow estimation, prediction crror,
443448
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processing, planar shapes, 177 188
Optical flow, tracking, 237-356
Optical flow estimation, 239 258
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global smoothing, 249
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implementation issues, 242243
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itcrative optical flow cstimation, 243 246
coarse-to-fine refinement, 245-246
temporal aliasing, 245 246
laycred motion, 253-256
mixture models, 254-255
outliers, 256
ownerships, EM, 255-256
maotion models, 247-249
Affine model, 247
general differentiable warps, 249
learned subspace models, 248
low-order parametric deformation,
247-248
phase-based methods, 250-251
probabilistic formulations, 252-253
lotal least-squares, 253
robust motion cstimation, 246
Overview, 191-194

Parametric statistics, descriptors based on,
319-320
Partial occlusions, invariant boundary
signatures recognition under, 182-184
Particle filter, image tracking, 303306
PDE-based image, surface inpainting, 33-62
absolute minimizing Lipschitz extension
intcrpolation, 52 55
filling-in, variational models for, 42-52
elastica-based reconstruction of level
lines, 4345
joint interpolation of vector fields and
gray levels, 45 48
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inpainting by propagation of information,
36-42
image inpainting, 3640
Navier-Stokes inpainting, 40 42
Laplace interpolation, 52-55
other PDE-based models, 58-59
surface reconstruction, 52- 55
experimental results, 54-55
texture, 55-58
excrplar-based inpainting, 58
inpainting with image decomposition,
56 58
non-parametric sampling, texture
synthesis by, 56
Pixel blending, seam selection, iImage
alignment, 287-291
center-weighing, 287288
exposurs compensation, 280
feathering, 287288
gradient domain blending, 290
high dynamic range imaging, 290-291
Laplacian pyramid blending, 289290
optimal seam selection, 288 289
Planar shape analysis, 189-204
Bayesian shape estimation, 202
clustering of shapes, 194-196
echocardiographic image-sequences,
interpolation of shapes in, 196-200
oricntation, 198
scale, 198
shape component, 198
translation, 198
geodesic paths between shapes, 193194
geometric representation of shapes,
192-193
infrared images, human silbouettes in,
200-202
mean shape n, 194
overview, 191 194
TPCA shape model, 200-202
Pyint-based image registration,
uvncertainty-driven, 221-236
dial-hootstrap ICP, 230 234
objcetive function, ICP, normal distances,
223-226
parameter cstimatces, convariance
matrices, 226-228
stable sampling, 1CP constraints, 228-230
Point matching, diffcomorphic, 205-220
Projective geometry, stereo reconstruction,
357452
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Quasi-flat zones, hicrarchy based on,
levelings for image simplification,
76-77

Random walker algorithm, cardiovascular
imaging, intcractive graph-based
segmentation methods, 463464

Region-bascd terms, derivation of, 315 317

Region-dependent descriptors, 315-317

based on variance, 319-320
using mean, 319

Region-independent descriptors, 315

Riemannian approach, diffusion tensor
image segmentation, §27-530

Rotation invariance, improved, wavelct
shrinkage with, 1013

Roxels, static scene reconstruction, 412

Scale, total variation image restoration,
20-21
Sensor planning, 419421
Shading, shape from, 375 388
documnent restoration using SFS, 385387
face reconstruction from SFS, 387
generic Hamiltonian, 379
mathematical formulation, 377
mathematical study, 379 381
medical images, applications to, 387388
nonuniqueness, 380-381
mumerical results, examples of, 385
“orthographic SF5” with far light source,
377-378
“perspective SFS” with far light source,
378
“perspective SFS” with point light source
at optical center, 378
“propagation, PDEs methods,” numerical
solutions by, 382385
Shape, texiure integration in deformable
maodels, 113130
hybrid segmentation method, 116120
Gibbs models, 116-118
integration of deformable models,
119-12¢
hybrid framework, deformable models
in, 118-119
metamorphs, deformable shape, texture
models, 120128
metamorph dynamies, 123 126
intensity data terms, 125-126
shape data tenus, 123-125
metamorphs model representations,
120-123
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model evolution, 126-127
maodel fitting algorithm, 127128
model’s deformation, 121122
model’s shape representation, 120-121
model’s texture, 122 123
Shape derivation tools, 313-314
transfonmations, 313-314
Shape gradicnt, image, video segmentation,
300324
boundary-bascd terms, derivation of, 314
distance between pdfs for tracking,
minimization of, 321-322
non-parametric pdfs of image features,
region-dependent descriptors,
320-321
non-parametric statistics, descriptors
based on, 320-322
parameiric statistics, descriptors based on,
319 320
region-based terms, derivation of,
315 317
region-dependent descriptors, 315-317
based on variance, 319-320
using mean, 319
region-independent descriptors, 315
shape derivation tocls, 313-314
transformations, 313-314
statistical region-dependent descriptors,
scgmentation using, 317-322
Shape modeling, registration, 175-236
Shape priors, variational segmentation with,
131 144
matching functionals, psychophysical
distancc measurcs, 134-136
shape representation, 133-136
parametric contour representations,
geometric distances, 133-134
shape statistics, 136 139
kernel features space, shape distances
in, 136137
structure-prescrving embedding,
clustering, 137-139
variational segmentation, 139-143
experimental results, 142-143
kernel-based invariant shape priors, 141
matching distance, shape priors based
on, 141-142
variational approach, 139--141
Shape representation
geometric distances, 133-134
invarianecc, 133--134
parametric contour representations,
invariance, 133 134
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Simultancous heart chamber segmentation,
cardiovascular imaging, interactive
graph-based scgmentation methods, 462

Snakes, geometric, stochastic model of,
161-174

birth, death zero range particle systems,
163-164
cvent token list, using, 166167
experimental results, 173-174
overview, 163
Poisson system simulation, 164--165
randem event, choosing, 166168
similarity invariant flows, 168 171
gradient flow, 170171
heat equation and similarity flows,
169-170
stochastic snakes, 171
envelope representation, 171-172
least-squares construction, 172-173
polygon represcntation, construction,
171-173
virtual token list method, 167168

Sobolev norms, image warping, 266267

Space carving, static scene reconstruction,
409-411

Space-discrete diffusion, relations for, 69

Static scene reconstruction, 406-416

probabilistic approaches, 411

probabilistic image-based stereo, 415416

probabilistic space carving, 411

probabilistic surface reconstruction,
412414

roxels, 412

space carving, 409411

visual hull, 407

voxel coloring, 407408

Statistical methods of medical image

rogistration, 531 542
approximate maximum likelihood,
535 537
Kullback-Leibler divergence, 537-539
maximum likelihood, 533-535
mutual information, joint cntropy.
539-541
similarity measures, 532 541

Statistical region-dependent descriptors,
segmentation using, 317-322

Sterco reconstrnction, 357452

Stercovision

dynarmic sceng modeling, non-rigid,
multi-view image sequences,
445446
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multi-view complete, dynamic scene
modeling, non-rigid, multi~view
image sequences, 440-442
Stitching, image alignment, 273-292
compositing surface, 286-287
direct, feature-based alignment, 277-283
direct methods, 277-279
direct vs. feature-based, 282-283
feature-based registration, 279282
geometric registration, 281282
incremental refinement, 278
paramectric motion, 278-279
exlengions, 291-292
global registration, 283 286
bundle adjustment, 283-285
parallax removal, 285
recognizing panoramas, 285286
motion models, 274 277
seam selection, pixel blending, 287291
center-weighing, 287-288
cxposurc compensation, 290
feathering, 287288
gradient domain blending, 290
high dynamic range imaging, 200-291
Laplacian pyramid blending, 289-290
optimal seam selection, 288289
Stochastic model of geometric snakes,
161174
birth, death zero range particle systems,
163-164
event token list, using, 166-167
experimental results, 173174
overview, 163
Poisson system simulation, 164165
random event, choosing, 166168
similarity invariant fiows, 168 171
gradient flow, 170171
heat equation and gimilarity flows,
169 170
stochastic snakes, 171
envelope representation, 171 172
least-squares construction, 172-173
polygon representation, constmction,
171-173
virtual token list methed, 167-168
Structure-prescrving embedding, clustering,
137-139
Surface inpainting, 3362
absolute minimizing Lipschitz cxtension
interpolation, 52-55
filling-in, variational models for, 42-52
clastica-based reconstruction of level
lines, 43-45
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joint interpolation of vector fields and
gray levels, 45-48

inpainting by propagation of information,
36-42

image inpainting, 36-40¢
Navier-Stokes inpainting, 4042
Laplace interpolation, 52-55
other PDE-based models, 58-59
surface reconstruction, 52-55
experimental results, 54 55
texture, 55-58
exemplar-based inpainting, 58
inpainting with image deccomposition,
56-58
non-parametric sampiing, texture
synthesis by, 56
Surlace reconstruction, 52 55
cxperimental results, 54-55
Swap moves, local minimmum, 95-96

Texture, 55-58
exemplar-based inpainting, 58
inpainting with image decomposition,
56-58
non-parametric sampling, texture
synthesis by, 56
total variation image restoration, 28-29
Textures, dynamic, 341-356
closed-form solution, 346347
distances between models, 349350
model validation, 347348
nearest neighbor classifier, performance
of, 350-351
recognition, 349351
representation, 344
scgmentation, 351-354

Three-dimensional active shape, appearance

models, cardiac image analysis,
471-486
mlti-view aclive appearance models,
482-484
three-dimengional

4D active appearance models, 479- 484

with time active appearance models,
84

three-dimensional active appearance
models, 480482

three-dimensional active shape models,
476479

three-dimensional point distribution
models, 475-476

two-dimensional, time active appearance
models, 479--480
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Three-dimensional from image sequences,

389404
dense surface estimation, 398-400
rectification, 398-399
epipolar geometry computation, 392-393
multi-view linking, 399-400
structure, motion recovery, 393-398
initial structure, motion, 394 395
projective to metric, upgrading,
396 398
refining structure, motion, 396
updating structure, motion, 395-396
threc-dimensional surface reconstruction,
400402

Three-dimensional images, projective

geometry, stereo reconstruction,
357 452

Total variation image restoration, 17-32

anisotropic TV, 24-25

BV space, basic propertics, 19-20

caveats, 21-22

deconvolution, 26 27

extensions, 19-21

further applications, 26-29

inpainting, 27-28

iterated refimement, 22-23

L} fitting, 23-24

multi-channel TV, 20

multiscale decompositions, 28-29

numerical methods, 29- 31
artificial time marching, 29-30
duality-based methods, 30-31
fixed point iteration, 29-30

properties, 19-21

regularization, convolution, 25 26

scale, 20-21

texture, 28-29

variants, 22-26

TPCA shape model, 200-202
TV diffusion of signals, wavclct-inspircd

scheme for, 7-8

Two-pixel signals, equivalence for, 6 7

Ungertainty-driven, point-based image

registration, 221 236
dial-bootstrap ICP, 230-234
objective function, TCP, normal distances,
223-226
parameter estimates, convariance
matrices, 226-228
stable sampling, ICP constraints, 228230
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Variational segmentation, kernel-bascd
invariant shape priors, 141

Variational segmentation with shapc priors,

131-144
matching functionals, psychophysical
distance measures, 134-136
shape representation, 133136
parametric contour represcntations,
geometric distances, 133-134
shape statistics, 136139

kemnel features space, shape distances

in, 136-137
structure-preserving cmbedding,
clustering, 137139
variational segmentation, 139143
experimental resulis, 142143

kerncl-based invariant shape priors, 141
maltching distance, shape priors based

on, 141-142
variational approach, 139—141
Visual hufl

algorithms, dynamic scene reconstruction,

416
static sccne reconstruction, 407
Visual tracking, 293-308

active contours, 296-301
Affine contours, 298-300
nonrigidity, 300
parametric structures, 297 298
robust curve distances, 300-301
snakes, 296-297

articulated siructures, 306

deformable structures, 306

filter banks, 306

fusing contour, appearance, 306

persistence, 307

simple appearance models, 294 296
background maintenance, 295-296
blobs, 295

sitmple patches, 294-295
spatio-temporal filtering, 301-306
dynarnical medels, 301 302
Kalman filter for contours, 303
Kalman filter for point foatures,

302-303
particle filter, 303-306
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Voxel coloring, static scene reconstruction,

407408

Warps
Bayesian estimation, 259-272
composition, 260
computing time, 269-270
diffeomorphic minimizers, 270-271
diffeomorphic warps, 267-269
fluid registration, 270-271
general differentiable, motion models,

optical flow cstimation, 249
image noise models, 264-265
intensily transforms, 265 266
invertibility, 260
landmarks, 264
matching criteria, 264 266
open problems, 271-272
PDEs, 259-272
preservation, 260
realizability, 260
smoothness, 260
criteria for, 2662-69

Sobolev norms, 266267
warp time, 269270

Wavelet shrinkage, 45

Wavelets, 3-16

with highcr vanishing moments, 13-16

shrinkage, 45
with improved rotation invariance,
16-13
TV diffusion of signals scheme, 7 8





